isl_tab_pip.c: add some debugging code
[isl.git] / isl_tab_pip.c
blobf6e238a26a6a2180e7ae80438914d65ad2502787
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
21 * The implementation of parametric integer linear programming in this file
22 * was inspired by the paper "Parametric Integer Programming" and the
23 * report "Solving systems of affine (in)equalities" by Paul Feautrier
24 * (and others).
26 * The strategy used for obtaining a feasible solution is different
27 * from the one used in isl_tab.c. In particular, in isl_tab.c,
28 * upon finding a constraint that is not yet satisfied, we pivot
29 * in a row that increases the constant term of the row holding the
30 * constraint, making sure the sample solution remains feasible
31 * for all the constraints it already satisfied.
32 * Here, we always pivot in the row holding the constraint,
33 * choosing a column that induces the lexicographically smallest
34 * increment to the sample solution.
36 * By starting out from a sample value that is lexicographically
37 * smaller than any integer point in the problem space, the first
38 * feasible integer sample point we find will also be the lexicographically
39 * smallest. If all variables can be assumed to be non-negative,
40 * then the initial sample value may be chosen equal to zero.
41 * However, we will not make this assumption. Instead, we apply
42 * the "big parameter" trick. Any variable x is then not directly
43 * used in the tableau, but instead it is represented by another
44 * variable x' = M + x, where M is an arbitrarily large (positive)
45 * value. x' is therefore always non-negative, whatever the value of x.
46 * Taking as initial sample value x' = 0 corresponds to x = -M,
47 * which is always smaller than any possible value of x.
49 * The big parameter trick is used in the main tableau and
50 * also in the context tableau if isl_context_lex is used.
51 * In this case, each tableaus has its own big parameter.
52 * Before doing any real work, we check if all the parameters
53 * happen to be non-negative. If so, we drop the column corresponding
54 * to M from the initial context tableau.
55 * If isl_context_gbr is used, then the big parameter trick is only
56 * used in the main tableau.
59 struct isl_context;
60 struct isl_context_op {
61 /* detect nonnegative parameters in context and mark them in tab */
62 struct isl_tab *(*detect_nonnegative_parameters)(
63 struct isl_context *context, struct isl_tab *tab);
64 /* return temporary reference to basic set representation of context */
65 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
66 /* return temporary reference to tableau representation of context */
67 struct isl_tab *(*peek_tab)(struct isl_context *context);
68 /* add equality; check is 1 if eq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_eq)(struct isl_context *context, isl_int *eq,
72 int check, int update);
73 /* add inequality; check is 1 if ineq may not be valid;
74 * update is 1 if we may want to call ineq_sign on context later.
76 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
77 int check, int update);
78 /* check sign of ineq based on previous information.
79 * strict is 1 if saturation should be treated as a positive sign.
81 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
82 isl_int *ineq, int strict);
83 /* check if inequality maintains feasibility */
84 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
85 /* return index of a div that corresponds to "div" */
86 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
87 struct isl_vec *div);
88 /* add div "div" to context and return non-negativity */
89 int (*add_div)(struct isl_context *context, struct isl_vec *div);
90 int (*detect_equalities)(struct isl_context *context,
91 struct isl_tab *tab);
92 /* return row index of "best" split */
93 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
94 /* check if context has already been determined to be empty */
95 int (*is_empty)(struct isl_context *context);
96 /* check if context is still usable */
97 int (*is_ok)(struct isl_context *context);
98 /* save a copy/snapshot of context */
99 void *(*save)(struct isl_context *context);
100 /* restore saved context */
101 void (*restore)(struct isl_context *context, void *);
102 /* invalidate context */
103 void (*invalidate)(struct isl_context *context);
104 /* free context */
105 void (*free)(struct isl_context *context);
108 struct isl_context {
109 struct isl_context_op *op;
112 struct isl_context_lex {
113 struct isl_context context;
114 struct isl_tab *tab;
117 struct isl_partial_sol {
118 int level;
119 struct isl_basic_set *dom;
120 struct isl_mat *M;
122 struct isl_partial_sol *next;
125 struct isl_sol;
126 struct isl_sol_callback {
127 struct isl_tab_callback callback;
128 struct isl_sol *sol;
131 /* isl_sol is an interface for constructing a solution to
132 * a parametric integer linear programming problem.
133 * Every time the algorithm reaches a state where a solution
134 * can be read off from the tableau (including cases where the tableau
135 * is empty), the function "add" is called on the isl_sol passed
136 * to find_solutions_main.
138 * The context tableau is owned by isl_sol and is updated incrementally.
140 * There are currently two implementations of this interface,
141 * isl_sol_map, which simply collects the solutions in an isl_map
142 * and (optionally) the parts of the context where there is no solution
143 * in an isl_set, and
144 * isl_sol_for, which calls a user-defined function for each part of
145 * the solution.
147 struct isl_sol {
148 int error;
149 int rational;
150 int level;
151 int max;
152 int n_out;
153 struct isl_context *context;
154 struct isl_partial_sol *partial;
155 void (*add)(struct isl_sol *sol,
156 struct isl_basic_set *dom, struct isl_mat *M);
157 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
158 void (*free)(struct isl_sol *sol);
159 struct isl_sol_callback dec_level;
162 static void sol_free(struct isl_sol *sol)
164 struct isl_partial_sol *partial, *next;
165 if (!sol)
166 return;
167 for (partial = sol->partial; partial; partial = next) {
168 next = partial->next;
169 isl_basic_set_free(partial->dom);
170 isl_mat_free(partial->M);
171 free(partial);
173 sol->free(sol);
176 /* Push a partial solution represented by a domain and mapping M
177 * onto the stack of partial solutions.
179 static void sol_push_sol(struct isl_sol *sol,
180 struct isl_basic_set *dom, struct isl_mat *M)
182 struct isl_partial_sol *partial;
184 if (sol->error || !dom)
185 goto error;
187 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
188 if (!partial)
189 goto error;
191 partial->level = sol->level;
192 partial->dom = dom;
193 partial->M = M;
194 partial->next = sol->partial;
196 sol->partial = partial;
198 return;
199 error:
200 isl_basic_set_free(dom);
201 sol->error = 1;
204 /* Pop one partial solution from the partial solution stack and
205 * pass it on to sol->add or sol->add_empty.
207 static void sol_pop_one(struct isl_sol *sol)
209 struct isl_partial_sol *partial;
211 partial = sol->partial;
212 sol->partial = partial->next;
214 if (partial->M)
215 sol->add(sol, partial->dom, partial->M);
216 else
217 sol->add_empty(sol, partial->dom);
218 free(partial);
221 /* Return a fresh copy of the domain represented by the context tableau.
223 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
225 struct isl_basic_set *bset;
227 if (sol->error)
228 return NULL;
230 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
231 bset = isl_basic_set_update_from_tab(bset,
232 sol->context->op->peek_tab(sol->context));
234 return bset;
237 /* Check whether two partial solutions have the same mapping, where n_div
238 * is the number of divs that the two partial solutions have in common.
240 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
241 unsigned n_div)
243 int i;
244 unsigned dim;
246 if (!s1->M != !s2->M)
247 return 0;
248 if (!s1->M)
249 return 1;
251 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
253 for (i = 0; i < s1->M->n_row; ++i) {
254 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
255 s1->M->n_col-1-dim-n_div) != -1)
256 return 0;
257 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
258 s2->M->n_col-1-dim-n_div) != -1)
259 return 0;
260 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
261 return 0;
263 return 1;
266 /* Pop all solutions from the partial solution stack that were pushed onto
267 * the stack at levels that are deeper than the current level.
268 * If the two topmost elements on the stack have the same level
269 * and represent the same solution, then their domains are combined.
270 * This combined domain is the same as the current context domain
271 * as sol_pop is called each time we move back to a higher level.
273 static void sol_pop(struct isl_sol *sol)
275 struct isl_partial_sol *partial;
276 unsigned n_div;
278 if (sol->error)
279 return;
281 if (sol->level == 0) {
282 for (partial = sol->partial; partial; partial = sol->partial)
283 sol_pop_one(sol);
284 return;
287 partial = sol->partial;
288 if (!partial)
289 return;
291 if (partial->level <= sol->level)
292 return;
294 if (partial->next && partial->next->level == partial->level) {
295 n_div = isl_basic_set_dim(
296 sol->context->op->peek_basic_set(sol->context),
297 isl_dim_div);
299 if (!same_solution(partial, partial->next, n_div)) {
300 sol_pop_one(sol);
301 sol_pop_one(sol);
302 } else {
303 struct isl_basic_set *bset;
305 bset = sol_domain(sol);
307 isl_basic_set_free(partial->next->dom);
308 partial->next->dom = bset;
309 partial->next->level = sol->level;
311 sol->partial = partial->next;
312 isl_basic_set_free(partial->dom);
313 isl_mat_free(partial->M);
314 free(partial);
316 } else
317 sol_pop_one(sol);
320 static void sol_dec_level(struct isl_sol *sol)
322 if (sol->error)
323 return;
325 sol->level--;
327 sol_pop(sol);
330 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
332 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
334 sol_dec_level(callback->sol);
336 return callback->sol->error ? -1 : 0;
339 /* Move down to next level and push callback onto context tableau
340 * to decrease the level again when it gets rolled back across
341 * the current state. That is, dec_level will be called with
342 * the context tableau in the same state as it is when inc_level
343 * is called.
345 static void sol_inc_level(struct isl_sol *sol)
347 struct isl_tab *tab;
349 if (sol->error)
350 return;
352 sol->level++;
353 tab = sol->context->op->peek_tab(sol->context);
354 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
355 sol->error = 1;
358 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
360 int i;
362 if (isl_int_is_one(m))
363 return;
365 for (i = 0; i < n_row; ++i)
366 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
369 /* Add the solution identified by the tableau and the context tableau.
371 * The layout of the variables is as follows.
372 * tab->n_var is equal to the total number of variables in the input
373 * map (including divs that were copied from the context)
374 * + the number of extra divs constructed
375 * Of these, the first tab->n_param and the last tab->n_div variables
376 * correspond to the variables in the context, i.e.,
377 * tab->n_param + tab->n_div = context_tab->n_var
378 * tab->n_param is equal to the number of parameters and input
379 * dimensions in the input map
380 * tab->n_div is equal to the number of divs in the context
382 * If there is no solution, then call add_empty with a basic set
383 * that corresponds to the context tableau. (If add_empty is NULL,
384 * then do nothing).
386 * If there is a solution, then first construct a matrix that maps
387 * all dimensions of the context to the output variables, i.e.,
388 * the output dimensions in the input map.
389 * The divs in the input map (if any) that do not correspond to any
390 * div in the context do not appear in the solution.
391 * The algorithm will make sure that they have an integer value,
392 * but these values themselves are of no interest.
393 * We have to be careful not to drop or rearrange any divs in the
394 * context because that would change the meaning of the matrix.
396 * To extract the value of the output variables, it should be noted
397 * that we always use a big parameter M in the main tableau and so
398 * the variable stored in this tableau is not an output variable x itself, but
399 * x' = M + x (in case of minimization)
400 * or
401 * x' = M - x (in case of maximization)
402 * If x' appears in a column, then its optimal value is zero,
403 * which means that the optimal value of x is an unbounded number
404 * (-M for minimization and M for maximization).
405 * We currently assume that the output dimensions in the original map
406 * are bounded, so this cannot occur.
407 * Similarly, when x' appears in a row, then the coefficient of M in that
408 * row is necessarily 1.
409 * If the row in the tableau represents
410 * d x' = c + d M + e(y)
411 * then, in case of minimization, the corresponding row in the matrix
412 * will be
413 * a c + a e(y)
414 * with a d = m, the (updated) common denominator of the matrix.
415 * In case of maximization, the row will be
416 * -a c - a e(y)
418 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
420 struct isl_basic_set *bset = NULL;
421 struct isl_mat *mat = NULL;
422 unsigned off;
423 int row, i;
424 isl_int m;
426 if (sol->error || !tab)
427 goto error;
429 if (tab->empty && !sol->add_empty)
430 return;
432 bset = sol_domain(sol);
434 if (tab->empty) {
435 sol_push_sol(sol, bset, NULL);
436 return;
439 off = 2 + tab->M;
441 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
442 1 + tab->n_param + tab->n_div);
443 if (!mat)
444 goto error;
446 isl_int_init(m);
448 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
449 isl_int_set_si(mat->row[0][0], 1);
450 for (row = 0; row < sol->n_out; ++row) {
451 int i = tab->n_param + row;
452 int r, j;
454 isl_seq_clr(mat->row[1 + row], mat->n_col);
455 if (!tab->var[i].is_row) {
456 if (tab->M)
457 isl_die(mat->ctx, isl_error_invalid,
458 "unbounded optimum", goto error2);
459 continue;
462 r = tab->var[i].index;
463 if (tab->M &&
464 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
465 isl_die(mat->ctx, isl_error_invalid,
466 "unbounded optimum", goto error2);
467 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
468 isl_int_divexact(m, tab->mat->row[r][0], m);
469 scale_rows(mat, m, 1 + row);
470 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
471 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
472 for (j = 0; j < tab->n_param; ++j) {
473 int col;
474 if (tab->var[j].is_row)
475 continue;
476 col = tab->var[j].index;
477 isl_int_mul(mat->row[1 + row][1 + j], m,
478 tab->mat->row[r][off + col]);
480 for (j = 0; j < tab->n_div; ++j) {
481 int col;
482 if (tab->var[tab->n_var - tab->n_div+j].is_row)
483 continue;
484 col = tab->var[tab->n_var - tab->n_div+j].index;
485 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
486 tab->mat->row[r][off + col]);
488 if (sol->max)
489 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
490 mat->n_col);
493 isl_int_clear(m);
495 sol_push_sol(sol, bset, mat);
496 return;
497 error2:
498 isl_int_clear(m);
499 error:
500 isl_basic_set_free(bset);
501 isl_mat_free(mat);
502 sol->error = 1;
505 struct isl_sol_map {
506 struct isl_sol sol;
507 struct isl_map *map;
508 struct isl_set *empty;
511 static void sol_map_free(struct isl_sol_map *sol_map)
513 if (!sol_map)
514 return;
515 if (sol_map->sol.context)
516 sol_map->sol.context->op->free(sol_map->sol.context);
517 isl_map_free(sol_map->map);
518 isl_set_free(sol_map->empty);
519 free(sol_map);
522 static void sol_map_free_wrap(struct isl_sol *sol)
524 sol_map_free((struct isl_sol_map *)sol);
527 /* This function is called for parts of the context where there is
528 * no solution, with "bset" corresponding to the context tableau.
529 * Simply add the basic set to the set "empty".
531 static void sol_map_add_empty(struct isl_sol_map *sol,
532 struct isl_basic_set *bset)
534 if (!bset)
535 goto error;
536 isl_assert(bset->ctx, sol->empty, goto error);
538 sol->empty = isl_set_grow(sol->empty, 1);
539 bset = isl_basic_set_simplify(bset);
540 bset = isl_basic_set_finalize(bset);
541 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
542 if (!sol->empty)
543 goto error;
544 isl_basic_set_free(bset);
545 return;
546 error:
547 isl_basic_set_free(bset);
548 sol->sol.error = 1;
551 static void sol_map_add_empty_wrap(struct isl_sol *sol,
552 struct isl_basic_set *bset)
554 sol_map_add_empty((struct isl_sol_map *)sol, bset);
557 /* Add bset to sol's empty, but only if we are actually collecting
558 * the empty set.
560 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
561 struct isl_basic_set *bset)
563 if (sol->empty)
564 sol_map_add_empty(sol, bset);
565 else
566 isl_basic_set_free(bset);
569 /* Given a basic map "dom" that represents the context and an affine
570 * matrix "M" that maps the dimensions of the context to the
571 * output variables, construct a basic map with the same parameters
572 * and divs as the context, the dimensions of the context as input
573 * dimensions and a number of output dimensions that is equal to
574 * the number of output dimensions in the input map.
576 * The constraints and divs of the context are simply copied
577 * from "dom". For each row
578 * x = c + e(y)
579 * an equality
580 * c + e(y) - d x = 0
581 * is added, with d the common denominator of M.
583 static void sol_map_add(struct isl_sol_map *sol,
584 struct isl_basic_set *dom, struct isl_mat *M)
586 int i;
587 struct isl_basic_map *bmap = NULL;
588 isl_basic_set *context_bset;
589 unsigned n_eq;
590 unsigned n_ineq;
591 unsigned nparam;
592 unsigned total;
593 unsigned n_div;
594 unsigned n_out;
596 if (sol->sol.error || !dom || !M)
597 goto error;
599 n_out = sol->sol.n_out;
600 n_eq = dom->n_eq + n_out;
601 n_ineq = dom->n_ineq;
602 n_div = dom->n_div;
603 nparam = isl_basic_set_total_dim(dom) - n_div;
604 total = isl_map_dim(sol->map, isl_dim_all);
605 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
606 n_div, n_eq, 2 * n_div + n_ineq);
607 if (!bmap)
608 goto error;
609 if (sol->sol.rational)
610 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
611 for (i = 0; i < dom->n_div; ++i) {
612 int k = isl_basic_map_alloc_div(bmap);
613 if (k < 0)
614 goto error;
615 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
616 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
617 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
618 dom->div[i] + 1 + 1 + nparam, i);
620 for (i = 0; i < dom->n_eq; ++i) {
621 int k = isl_basic_map_alloc_equality(bmap);
622 if (k < 0)
623 goto error;
624 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
625 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
626 isl_seq_cpy(bmap->eq[k] + 1 + total,
627 dom->eq[i] + 1 + nparam, n_div);
629 for (i = 0; i < dom->n_ineq; ++i) {
630 int k = isl_basic_map_alloc_inequality(bmap);
631 if (k < 0)
632 goto error;
633 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
634 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
635 isl_seq_cpy(bmap->ineq[k] + 1 + total,
636 dom->ineq[i] + 1 + nparam, n_div);
638 for (i = 0; i < M->n_row - 1; ++i) {
639 int k = isl_basic_map_alloc_equality(bmap);
640 if (k < 0)
641 goto error;
642 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
643 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
644 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
645 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
646 M->row[1 + i] + 1 + nparam, n_div);
648 bmap = isl_basic_map_simplify(bmap);
649 bmap = isl_basic_map_finalize(bmap);
650 sol->map = isl_map_grow(sol->map, 1);
651 sol->map = isl_map_add_basic_map(sol->map, bmap);
652 if (!sol->map)
653 goto error;
654 isl_basic_set_free(dom);
655 isl_mat_free(M);
656 return;
657 error:
658 isl_basic_set_free(dom);
659 isl_mat_free(M);
660 isl_basic_map_free(bmap);
661 sol->sol.error = 1;
664 static void sol_map_add_wrap(struct isl_sol *sol,
665 struct isl_basic_set *dom, struct isl_mat *M)
667 sol_map_add((struct isl_sol_map *)sol, dom, M);
671 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
672 * i.e., the constant term and the coefficients of all variables that
673 * appear in the context tableau.
674 * Note that the coefficient of the big parameter M is NOT copied.
675 * The context tableau may not have a big parameter and even when it
676 * does, it is a different big parameter.
678 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
680 int i;
681 unsigned off = 2 + tab->M;
683 isl_int_set(line[0], tab->mat->row[row][1]);
684 for (i = 0; i < tab->n_param; ++i) {
685 if (tab->var[i].is_row)
686 isl_int_set_si(line[1 + i], 0);
687 else {
688 int col = tab->var[i].index;
689 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
692 for (i = 0; i < tab->n_div; ++i) {
693 if (tab->var[tab->n_var - tab->n_div + i].is_row)
694 isl_int_set_si(line[1 + tab->n_param + i], 0);
695 else {
696 int col = tab->var[tab->n_var - tab->n_div + i].index;
697 isl_int_set(line[1 + tab->n_param + i],
698 tab->mat->row[row][off + col]);
703 /* Check if rows "row1" and "row2" have identical "parametric constants",
704 * as explained above.
705 * In this case, we also insist that the coefficients of the big parameter
706 * be the same as the values of the constants will only be the same
707 * if these coefficients are also the same.
709 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
711 int i;
712 unsigned off = 2 + tab->M;
714 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
715 return 0;
717 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
718 tab->mat->row[row2][2]))
719 return 0;
721 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
722 int pos = i < tab->n_param ? i :
723 tab->n_var - tab->n_div + i - tab->n_param;
724 int col;
726 if (tab->var[pos].is_row)
727 continue;
728 col = tab->var[pos].index;
729 if (isl_int_ne(tab->mat->row[row1][off + col],
730 tab->mat->row[row2][off + col]))
731 return 0;
733 return 1;
736 /* Return an inequality that expresses that the "parametric constant"
737 * should be non-negative.
738 * This function is only called when the coefficient of the big parameter
739 * is equal to zero.
741 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
743 struct isl_vec *ineq;
745 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
746 if (!ineq)
747 return NULL;
749 get_row_parameter_line(tab, row, ineq->el);
750 if (ineq)
751 ineq = isl_vec_normalize(ineq);
753 return ineq;
756 /* Return a integer division for use in a parametric cut based on the given row.
757 * In particular, let the parametric constant of the row be
759 * \sum_i a_i y_i
761 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
762 * The div returned is equal to
764 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
766 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
768 struct isl_vec *div;
770 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
771 if (!div)
772 return NULL;
774 isl_int_set(div->el[0], tab->mat->row[row][0]);
775 get_row_parameter_line(tab, row, div->el + 1);
776 div = isl_vec_normalize(div);
777 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
778 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
780 return div;
783 /* Return a integer division for use in transferring an integrality constraint
784 * to the context.
785 * In particular, let the parametric constant of the row be
787 * \sum_i a_i y_i
789 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
790 * The the returned div is equal to
792 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
794 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
796 struct isl_vec *div;
798 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
799 if (!div)
800 return NULL;
802 isl_int_set(div->el[0], tab->mat->row[row][0]);
803 get_row_parameter_line(tab, row, div->el + 1);
804 div = isl_vec_normalize(div);
805 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
807 return div;
810 /* Construct and return an inequality that expresses an upper bound
811 * on the given div.
812 * In particular, if the div is given by
814 * d = floor(e/m)
816 * then the inequality expresses
818 * m d <= e
820 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
822 unsigned total;
823 unsigned div_pos;
824 struct isl_vec *ineq;
826 if (!bset)
827 return NULL;
829 total = isl_basic_set_total_dim(bset);
830 div_pos = 1 + total - bset->n_div + div;
832 ineq = isl_vec_alloc(bset->ctx, 1 + total);
833 if (!ineq)
834 return NULL;
836 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
837 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
838 return ineq;
841 /* Given a row in the tableau and a div that was created
842 * using get_row_split_div and that been constrained to equality, i.e.,
844 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
846 * replace the expression "\sum_i {a_i} y_i" in the row by d,
847 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
848 * The coefficients of the non-parameters in the tableau have been
849 * verified to be integral. We can therefore simply replace coefficient b
850 * by floor(b). For the coefficients of the parameters we have
851 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
852 * floor(b) = b.
854 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
856 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
857 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
859 isl_int_set_si(tab->mat->row[row][0], 1);
861 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
862 int drow = tab->var[tab->n_var - tab->n_div + div].index;
864 isl_assert(tab->mat->ctx,
865 isl_int_is_one(tab->mat->row[drow][0]), goto error);
866 isl_seq_combine(tab->mat->row[row] + 1,
867 tab->mat->ctx->one, tab->mat->row[row] + 1,
868 tab->mat->ctx->one, tab->mat->row[drow] + 1,
869 1 + tab->M + tab->n_col);
870 } else {
871 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
873 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
876 return tab;
877 error:
878 isl_tab_free(tab);
879 return NULL;
882 /* Check if the (parametric) constant of the given row is obviously
883 * negative, meaning that we don't need to consult the context tableau.
884 * If there is a big parameter and its coefficient is non-zero,
885 * then this coefficient determines the outcome.
886 * Otherwise, we check whether the constant is negative and
887 * all non-zero coefficients of parameters are negative and
888 * belong to non-negative parameters.
890 static int is_obviously_neg(struct isl_tab *tab, int row)
892 int i;
893 int col;
894 unsigned off = 2 + tab->M;
896 if (tab->M) {
897 if (isl_int_is_pos(tab->mat->row[row][2]))
898 return 0;
899 if (isl_int_is_neg(tab->mat->row[row][2]))
900 return 1;
903 if (isl_int_is_nonneg(tab->mat->row[row][1]))
904 return 0;
905 for (i = 0; i < tab->n_param; ++i) {
906 /* Eliminated parameter */
907 if (tab->var[i].is_row)
908 continue;
909 col = tab->var[i].index;
910 if (isl_int_is_zero(tab->mat->row[row][off + col]))
911 continue;
912 if (!tab->var[i].is_nonneg)
913 return 0;
914 if (isl_int_is_pos(tab->mat->row[row][off + col]))
915 return 0;
917 for (i = 0; i < tab->n_div; ++i) {
918 if (tab->var[tab->n_var - tab->n_div + i].is_row)
919 continue;
920 col = tab->var[tab->n_var - tab->n_div + i].index;
921 if (isl_int_is_zero(tab->mat->row[row][off + col]))
922 continue;
923 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
924 return 0;
925 if (isl_int_is_pos(tab->mat->row[row][off + col]))
926 return 0;
928 return 1;
931 /* Check if the (parametric) constant of the given row is obviously
932 * non-negative, meaning that we don't need to consult the context tableau.
933 * If there is a big parameter and its coefficient is non-zero,
934 * then this coefficient determines the outcome.
935 * Otherwise, we check whether the constant is non-negative and
936 * all non-zero coefficients of parameters are positive and
937 * belong to non-negative parameters.
939 static int is_obviously_nonneg(struct isl_tab *tab, int row)
941 int i;
942 int col;
943 unsigned off = 2 + tab->M;
945 if (tab->M) {
946 if (isl_int_is_pos(tab->mat->row[row][2]))
947 return 1;
948 if (isl_int_is_neg(tab->mat->row[row][2]))
949 return 0;
952 if (isl_int_is_neg(tab->mat->row[row][1]))
953 return 0;
954 for (i = 0; i < tab->n_param; ++i) {
955 /* Eliminated parameter */
956 if (tab->var[i].is_row)
957 continue;
958 col = tab->var[i].index;
959 if (isl_int_is_zero(tab->mat->row[row][off + col]))
960 continue;
961 if (!tab->var[i].is_nonneg)
962 return 0;
963 if (isl_int_is_neg(tab->mat->row[row][off + col]))
964 return 0;
966 for (i = 0; i < tab->n_div; ++i) {
967 if (tab->var[tab->n_var - tab->n_div + i].is_row)
968 continue;
969 col = tab->var[tab->n_var - tab->n_div + i].index;
970 if (isl_int_is_zero(tab->mat->row[row][off + col]))
971 continue;
972 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
973 return 0;
974 if (isl_int_is_neg(tab->mat->row[row][off + col]))
975 return 0;
977 return 1;
980 /* Given a row r and two columns, return the column that would
981 * lead to the lexicographically smallest increment in the sample
982 * solution when leaving the basis in favor of the row.
983 * Pivoting with column c will increment the sample value by a non-negative
984 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
985 * corresponding to the non-parametric variables.
986 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
987 * with all other entries in this virtual row equal to zero.
988 * If variable v appears in a row, then a_{v,c} is the element in column c
989 * of that row.
991 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
992 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
993 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
994 * increment. Otherwise, it's c2.
996 static int lexmin_col_pair(struct isl_tab *tab,
997 int row, int col1, int col2, isl_int tmp)
999 int i;
1000 isl_int *tr;
1002 tr = tab->mat->row[row] + 2 + tab->M;
1004 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1005 int s1, s2;
1006 isl_int *r;
1008 if (!tab->var[i].is_row) {
1009 if (tab->var[i].index == col1)
1010 return col2;
1011 if (tab->var[i].index == col2)
1012 return col1;
1013 continue;
1016 if (tab->var[i].index == row)
1017 continue;
1019 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1020 s1 = isl_int_sgn(r[col1]);
1021 s2 = isl_int_sgn(r[col2]);
1022 if (s1 == 0 && s2 == 0)
1023 continue;
1024 if (s1 < s2)
1025 return col1;
1026 if (s2 < s1)
1027 return col2;
1029 isl_int_mul(tmp, r[col2], tr[col1]);
1030 isl_int_submul(tmp, r[col1], tr[col2]);
1031 if (isl_int_is_pos(tmp))
1032 return col1;
1033 if (isl_int_is_neg(tmp))
1034 return col2;
1036 return -1;
1039 /* Given a row in the tableau, find and return the column that would
1040 * result in the lexicographically smallest, but positive, increment
1041 * in the sample point.
1042 * If there is no such column, then return tab->n_col.
1043 * If anything goes wrong, return -1.
1045 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1047 int j;
1048 int col = tab->n_col;
1049 isl_int *tr;
1050 isl_int tmp;
1052 tr = tab->mat->row[row] + 2 + tab->M;
1054 isl_int_init(tmp);
1056 for (j = tab->n_dead; j < tab->n_col; ++j) {
1057 if (tab->col_var[j] >= 0 &&
1058 (tab->col_var[j] < tab->n_param ||
1059 tab->col_var[j] >= tab->n_var - tab->n_div))
1060 continue;
1062 if (!isl_int_is_pos(tr[j]))
1063 continue;
1065 if (col == tab->n_col)
1066 col = j;
1067 else
1068 col = lexmin_col_pair(tab, row, col, j, tmp);
1069 isl_assert(tab->mat->ctx, col >= 0, goto error);
1072 isl_int_clear(tmp);
1073 return col;
1074 error:
1075 isl_int_clear(tmp);
1076 return -1;
1079 /* Return the first known violated constraint, i.e., a non-negative
1080 * constraint that currently has an either obviously negative value
1081 * or a previously determined to be negative value.
1083 * If any constraint has a negative coefficient for the big parameter,
1084 * if any, then we return one of these first.
1086 static int first_neg(struct isl_tab *tab)
1088 int row;
1090 if (tab->M)
1091 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1092 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1093 continue;
1094 if (!isl_int_is_neg(tab->mat->row[row][2]))
1095 continue;
1096 if (tab->row_sign)
1097 tab->row_sign[row] = isl_tab_row_neg;
1098 return row;
1100 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1101 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1102 continue;
1103 if (tab->row_sign) {
1104 if (tab->row_sign[row] == 0 &&
1105 is_obviously_neg(tab, row))
1106 tab->row_sign[row] = isl_tab_row_neg;
1107 if (tab->row_sign[row] != isl_tab_row_neg)
1108 continue;
1109 } else if (!is_obviously_neg(tab, row))
1110 continue;
1111 return row;
1113 return -1;
1116 /* Check whether the invariant that all columns are lexico-positive
1117 * is satisfied. This function is not called from the current code
1118 * but is useful during debugging.
1120 static void check_lexpos(struct isl_tab *tab)
1122 unsigned off = 2 + tab->M;
1123 int col;
1124 int var;
1125 int row;
1127 for (col = tab->n_dead; col < tab->n_col; ++col) {
1128 if (tab->col_var[col] >= 0 &&
1129 (tab->col_var[col] < tab->n_param ||
1130 tab->col_var[col] >= tab->n_var - tab->n_div))
1131 continue;
1132 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1133 if (!tab->var[var].is_row) {
1134 if (tab->var[var].index == col)
1135 break;
1136 else
1137 continue;
1139 row = tab->var[var].index;
1140 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1141 continue;
1142 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1143 break;
1144 fprintf(stderr, "lexneg column %d (row %d)\n",
1145 col, row);
1147 if (var >= tab->n_var - tab->n_div)
1148 fprintf(stderr, "zero column %d\n", col);
1152 /* Resolve all known or obviously violated constraints through pivoting.
1153 * In particular, as long as we can find any violated constraint, we
1154 * look for a pivoting column that would result in the lexicographically
1155 * smallest increment in the sample point. If there is no such column
1156 * then the tableau is infeasible.
1158 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1159 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1161 int row, col;
1163 if (!tab)
1164 return NULL;
1165 if (tab->empty)
1166 return tab;
1167 while ((row = first_neg(tab)) != -1) {
1168 col = lexmin_pivot_col(tab, row);
1169 if (col >= tab->n_col) {
1170 if (isl_tab_mark_empty(tab) < 0)
1171 goto error;
1172 return tab;
1174 if (col < 0)
1175 goto error;
1176 if (isl_tab_pivot(tab, row, col) < 0)
1177 goto error;
1179 return tab;
1180 error:
1181 isl_tab_free(tab);
1182 return NULL;
1185 /* Given a row that represents an equality, look for an appropriate
1186 * pivoting column.
1187 * In particular, if there are any non-zero coefficients among
1188 * the non-parameter variables, then we take the last of these
1189 * variables. Eliminating this variable in terms of the other
1190 * variables and/or parameters does not influence the property
1191 * that all column in the initial tableau are lexicographically
1192 * positive. The row corresponding to the eliminated variable
1193 * will only have non-zero entries below the diagonal of the
1194 * initial tableau. That is, we transform
1196 * I I
1197 * 1 into a
1198 * I I
1200 * If there is no such non-parameter variable, then we are dealing with
1201 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1202 * for elimination. This will ensure that the eliminated parameter
1203 * always has an integer value whenever all the other parameters are integral.
1204 * If there is no such parameter then we return -1.
1206 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1208 unsigned off = 2 + tab->M;
1209 int i;
1211 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1212 int col;
1213 if (tab->var[i].is_row)
1214 continue;
1215 col = tab->var[i].index;
1216 if (col <= tab->n_dead)
1217 continue;
1218 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1219 return col;
1221 for (i = tab->n_dead; i < tab->n_col; ++i) {
1222 if (isl_int_is_one(tab->mat->row[row][off + i]))
1223 return i;
1224 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1225 return i;
1227 return -1;
1230 /* Add an equality that is known to be valid to the tableau.
1231 * We first check if we can eliminate a variable or a parameter.
1232 * If not, we add the equality as two inequalities.
1233 * In this case, the equality was a pure parameter equality and there
1234 * is no need to resolve any constraint violations.
1236 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1238 int i;
1239 int r;
1241 if (!tab)
1242 return NULL;
1243 r = isl_tab_add_row(tab, eq);
1244 if (r < 0)
1245 goto error;
1247 r = tab->con[r].index;
1248 i = last_var_col_or_int_par_col(tab, r);
1249 if (i < 0) {
1250 tab->con[r].is_nonneg = 1;
1251 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1252 goto error;
1253 isl_seq_neg(eq, eq, 1 + tab->n_var);
1254 r = isl_tab_add_row(tab, eq);
1255 if (r < 0)
1256 goto error;
1257 tab->con[r].is_nonneg = 1;
1258 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1259 goto error;
1260 } else {
1261 if (isl_tab_pivot(tab, r, i) < 0)
1262 goto error;
1263 if (isl_tab_kill_col(tab, i) < 0)
1264 goto error;
1265 tab->n_eq++;
1268 return tab;
1269 error:
1270 isl_tab_free(tab);
1271 return NULL;
1274 /* Check if the given row is a pure constant.
1276 static int is_constant(struct isl_tab *tab, int row)
1278 unsigned off = 2 + tab->M;
1280 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1281 tab->n_col - tab->n_dead) == -1;
1284 /* Add an equality that may or may not be valid to the tableau.
1285 * If the resulting row is a pure constant, then it must be zero.
1286 * Otherwise, the resulting tableau is empty.
1288 * If the row is not a pure constant, then we add two inequalities,
1289 * each time checking that they can be satisfied.
1290 * In the end we try to use one of the two constraints to eliminate
1291 * a column.
1293 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1294 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1296 int r1, r2;
1297 int row;
1298 struct isl_tab_undo *snap;
1300 if (!tab)
1301 return NULL;
1302 snap = isl_tab_snap(tab);
1303 r1 = isl_tab_add_row(tab, eq);
1304 if (r1 < 0)
1305 goto error;
1306 tab->con[r1].is_nonneg = 1;
1307 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1308 goto error;
1310 row = tab->con[r1].index;
1311 if (is_constant(tab, row)) {
1312 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1313 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1314 if (isl_tab_mark_empty(tab) < 0)
1315 goto error;
1316 return tab;
1318 if (isl_tab_rollback(tab, snap) < 0)
1319 goto error;
1320 return tab;
1323 tab = restore_lexmin(tab);
1324 if (!tab || tab->empty)
1325 return tab;
1327 isl_seq_neg(eq, eq, 1 + tab->n_var);
1329 r2 = isl_tab_add_row(tab, eq);
1330 if (r2 < 0)
1331 goto error;
1332 tab->con[r2].is_nonneg = 1;
1333 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1334 goto error;
1336 tab = restore_lexmin(tab);
1337 if (!tab || tab->empty)
1338 return tab;
1340 if (!tab->con[r1].is_row) {
1341 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1342 goto error;
1343 } else if (!tab->con[r2].is_row) {
1344 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1345 goto error;
1348 if (tab->bmap) {
1349 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1350 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1351 goto error;
1352 isl_seq_neg(eq, eq, 1 + tab->n_var);
1353 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1354 isl_seq_neg(eq, eq, 1 + tab->n_var);
1355 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1356 goto error;
1357 if (!tab->bmap)
1358 goto error;
1361 return tab;
1362 error:
1363 isl_tab_free(tab);
1364 return NULL;
1367 /* Add an inequality to the tableau, resolving violations using
1368 * restore_lexmin.
1370 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1372 int r;
1374 if (!tab)
1375 return NULL;
1376 if (tab->bmap) {
1377 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1378 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1379 goto error;
1380 if (!tab->bmap)
1381 goto error;
1383 r = isl_tab_add_row(tab, ineq);
1384 if (r < 0)
1385 goto error;
1386 tab->con[r].is_nonneg = 1;
1387 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1388 goto error;
1389 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1390 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1391 goto error;
1392 return tab;
1395 tab = restore_lexmin(tab);
1396 if (tab && !tab->empty && tab->con[r].is_row &&
1397 isl_tab_row_is_redundant(tab, tab->con[r].index))
1398 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1399 goto error;
1400 return tab;
1401 error:
1402 isl_tab_free(tab);
1403 return NULL;
1406 /* Check if the coefficients of the parameters are all integral.
1408 static int integer_parameter(struct isl_tab *tab, int row)
1410 int i;
1411 int col;
1412 unsigned off = 2 + tab->M;
1414 for (i = 0; i < tab->n_param; ++i) {
1415 /* Eliminated parameter */
1416 if (tab->var[i].is_row)
1417 continue;
1418 col = tab->var[i].index;
1419 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1420 tab->mat->row[row][0]))
1421 return 0;
1423 for (i = 0; i < tab->n_div; ++i) {
1424 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1425 continue;
1426 col = tab->var[tab->n_var - tab->n_div + i].index;
1427 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1428 tab->mat->row[row][0]))
1429 return 0;
1431 return 1;
1434 /* Check if the coefficients of the non-parameter variables are all integral.
1436 static int integer_variable(struct isl_tab *tab, int row)
1438 int i;
1439 unsigned off = 2 + tab->M;
1441 for (i = tab->n_dead; i < tab->n_col; ++i) {
1442 if (tab->col_var[i] >= 0 &&
1443 (tab->col_var[i] < tab->n_param ||
1444 tab->col_var[i] >= tab->n_var - tab->n_div))
1445 continue;
1446 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1447 tab->mat->row[row][0]))
1448 return 0;
1450 return 1;
1453 /* Check if the constant term is integral.
1455 static int integer_constant(struct isl_tab *tab, int row)
1457 return isl_int_is_divisible_by(tab->mat->row[row][1],
1458 tab->mat->row[row][0]);
1461 #define I_CST 1 << 0
1462 #define I_PAR 1 << 1
1463 #define I_VAR 1 << 2
1465 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1466 * that is non-integer and therefore requires a cut and return
1467 * the index of the variable.
1468 * For parametric tableaus, there are three parts in a row,
1469 * the constant, the coefficients of the parameters and the rest.
1470 * For each part, we check whether the coefficients in that part
1471 * are all integral and if so, set the corresponding flag in *f.
1472 * If the constant and the parameter part are integral, then the
1473 * current sample value is integral and no cut is required
1474 * (irrespective of whether the variable part is integral).
1476 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1478 var = var < 0 ? tab->n_param : var + 1;
1480 for (; var < tab->n_var - tab->n_div; ++var) {
1481 int flags = 0;
1482 int row;
1483 if (!tab->var[var].is_row)
1484 continue;
1485 row = tab->var[var].index;
1486 if (integer_constant(tab, row))
1487 ISL_FL_SET(flags, I_CST);
1488 if (integer_parameter(tab, row))
1489 ISL_FL_SET(flags, I_PAR);
1490 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1491 continue;
1492 if (integer_variable(tab, row))
1493 ISL_FL_SET(flags, I_VAR);
1494 *f = flags;
1495 return var;
1497 return -1;
1500 /* Check for first (non-parameter) variable that is non-integer and
1501 * therefore requires a cut and return the corresponding row.
1502 * For parametric tableaus, there are three parts in a row,
1503 * the constant, the coefficients of the parameters and the rest.
1504 * For each part, we check whether the coefficients in that part
1505 * are all integral and if so, set the corresponding flag in *f.
1506 * If the constant and the parameter part are integral, then the
1507 * current sample value is integral and no cut is required
1508 * (irrespective of whether the variable part is integral).
1510 static int first_non_integer_row(struct isl_tab *tab, int *f)
1512 int var = next_non_integer_var(tab, -1, f);
1514 return var < 0 ? -1 : tab->var[var].index;
1517 /* Add a (non-parametric) cut to cut away the non-integral sample
1518 * value of the given row.
1520 * If the row is given by
1522 * m r = f + \sum_i a_i y_i
1524 * then the cut is
1526 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1528 * The big parameter, if any, is ignored, since it is assumed to be big
1529 * enough to be divisible by any integer.
1530 * If the tableau is actually a parametric tableau, then this function
1531 * is only called when all coefficients of the parameters are integral.
1532 * The cut therefore has zero coefficients for the parameters.
1534 * The current value is known to be negative, so row_sign, if it
1535 * exists, is set accordingly.
1537 * Return the row of the cut or -1.
1539 static int add_cut(struct isl_tab *tab, int row)
1541 int i;
1542 int r;
1543 isl_int *r_row;
1544 unsigned off = 2 + tab->M;
1546 if (isl_tab_extend_cons(tab, 1) < 0)
1547 return -1;
1548 r = isl_tab_allocate_con(tab);
1549 if (r < 0)
1550 return -1;
1552 r_row = tab->mat->row[tab->con[r].index];
1553 isl_int_set(r_row[0], tab->mat->row[row][0]);
1554 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1555 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1556 isl_int_neg(r_row[1], r_row[1]);
1557 if (tab->M)
1558 isl_int_set_si(r_row[2], 0);
1559 for (i = 0; i < tab->n_col; ++i)
1560 isl_int_fdiv_r(r_row[off + i],
1561 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1563 tab->con[r].is_nonneg = 1;
1564 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1565 return -1;
1566 if (tab->row_sign)
1567 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1569 return tab->con[r].index;
1572 /* Given a non-parametric tableau, add cuts until an integer
1573 * sample point is obtained or until the tableau is determined
1574 * to be integer infeasible.
1575 * As long as there is any non-integer value in the sample point,
1576 * we add appropriate cuts, if possible, for each of these
1577 * non-integer values and then resolve the violated
1578 * cut constraints using restore_lexmin.
1579 * If one of the corresponding rows is equal to an integral
1580 * combination of variables/constraints plus a non-integral constant,
1581 * then there is no way to obtain an integer point and we return
1582 * a tableau that is marked empty.
1584 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1586 int var;
1587 int row;
1588 int flags;
1590 if (!tab)
1591 return NULL;
1592 if (tab->empty)
1593 return tab;
1595 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1596 do {
1597 if (ISL_FL_ISSET(flags, I_VAR)) {
1598 if (isl_tab_mark_empty(tab) < 0)
1599 goto error;
1600 return tab;
1602 row = tab->var[var].index;
1603 row = add_cut(tab, row);
1604 if (row < 0)
1605 goto error;
1606 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1607 tab = restore_lexmin(tab);
1608 if (!tab || tab->empty)
1609 break;
1611 return tab;
1612 error:
1613 isl_tab_free(tab);
1614 return NULL;
1617 /* Check whether all the currently active samples also satisfy the inequality
1618 * "ineq" (treated as an equality if eq is set).
1619 * Remove those samples that do not.
1621 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1623 int i;
1624 isl_int v;
1626 if (!tab)
1627 return NULL;
1629 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1630 isl_assert(tab->mat->ctx, tab->samples, goto error);
1631 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1633 isl_int_init(v);
1634 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1635 int sgn;
1636 isl_seq_inner_product(ineq, tab->samples->row[i],
1637 1 + tab->n_var, &v);
1638 sgn = isl_int_sgn(v);
1639 if (eq ? (sgn == 0) : (sgn >= 0))
1640 continue;
1641 tab = isl_tab_drop_sample(tab, i);
1642 if (!tab)
1643 break;
1645 isl_int_clear(v);
1647 return tab;
1648 error:
1649 isl_tab_free(tab);
1650 return NULL;
1653 /* Check whether the sample value of the tableau is finite,
1654 * i.e., either the tableau does not use a big parameter, or
1655 * all values of the variables are equal to the big parameter plus
1656 * some constant. This constant is the actual sample value.
1658 static int sample_is_finite(struct isl_tab *tab)
1660 int i;
1662 if (!tab->M)
1663 return 1;
1665 for (i = 0; i < tab->n_var; ++i) {
1666 int row;
1667 if (!tab->var[i].is_row)
1668 return 0;
1669 row = tab->var[i].index;
1670 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1671 return 0;
1673 return 1;
1676 /* Check if the context tableau of sol has any integer points.
1677 * Leave tab in empty state if no integer point can be found.
1678 * If an integer point can be found and if moreover it is finite,
1679 * then it is added to the list of sample values.
1681 * This function is only called when none of the currently active sample
1682 * values satisfies the most recently added constraint.
1684 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1686 struct isl_tab_undo *snap;
1687 int feasible;
1689 if (!tab)
1690 return NULL;
1692 snap = isl_tab_snap(tab);
1693 if (isl_tab_push_basis(tab) < 0)
1694 goto error;
1696 tab = cut_to_integer_lexmin(tab);
1697 if (!tab)
1698 goto error;
1700 if (!tab->empty && sample_is_finite(tab)) {
1701 struct isl_vec *sample;
1703 sample = isl_tab_get_sample_value(tab);
1705 tab = isl_tab_add_sample(tab, sample);
1708 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1709 goto error;
1711 return tab;
1712 error:
1713 isl_tab_free(tab);
1714 return NULL;
1717 /* Check if any of the currently active sample values satisfies
1718 * the inequality "ineq" (an equality if eq is set).
1720 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1722 int i;
1723 isl_int v;
1725 if (!tab)
1726 return -1;
1728 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1729 isl_assert(tab->mat->ctx, tab->samples, return -1);
1730 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1732 isl_int_init(v);
1733 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1734 int sgn;
1735 isl_seq_inner_product(ineq, tab->samples->row[i],
1736 1 + tab->n_var, &v);
1737 sgn = isl_int_sgn(v);
1738 if (eq ? (sgn == 0) : (sgn >= 0))
1739 break;
1741 isl_int_clear(v);
1743 return i < tab->n_sample;
1746 /* Add a div specified by "div" to the tableau "tab" and return
1747 * 1 if the div is obviously non-negative.
1749 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1750 int (*add_ineq)(void *user, isl_int *), void *user)
1752 int i;
1753 int r;
1754 struct isl_mat *samples;
1755 int nonneg;
1757 r = isl_tab_add_div(tab, div, add_ineq, user);
1758 if (r < 0)
1759 return -1;
1760 nonneg = tab->var[r].is_nonneg;
1761 tab->var[r].frozen = 1;
1763 samples = isl_mat_extend(tab->samples,
1764 tab->n_sample, 1 + tab->n_var);
1765 tab->samples = samples;
1766 if (!samples)
1767 return -1;
1768 for (i = tab->n_outside; i < samples->n_row; ++i) {
1769 isl_seq_inner_product(div->el + 1, samples->row[i],
1770 div->size - 1, &samples->row[i][samples->n_col - 1]);
1771 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1772 samples->row[i][samples->n_col - 1], div->el[0]);
1775 return nonneg;
1778 /* Add a div specified by "div" to both the main tableau and
1779 * the context tableau. In case of the main tableau, we only
1780 * need to add an extra div. In the context tableau, we also
1781 * need to express the meaning of the div.
1782 * Return the index of the div or -1 if anything went wrong.
1784 static int add_div(struct isl_tab *tab, struct isl_context *context,
1785 struct isl_vec *div)
1787 int r;
1788 int nonneg;
1790 if ((nonneg = context->op->add_div(context, div)) < 0)
1791 goto error;
1793 if (!context->op->is_ok(context))
1794 goto error;
1796 if (isl_tab_extend_vars(tab, 1) < 0)
1797 goto error;
1798 r = isl_tab_allocate_var(tab);
1799 if (r < 0)
1800 goto error;
1801 if (nonneg)
1802 tab->var[r].is_nonneg = 1;
1803 tab->var[r].frozen = 1;
1804 tab->n_div++;
1806 return tab->n_div - 1;
1807 error:
1808 context->op->invalidate(context);
1809 return -1;
1812 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1814 int i;
1815 unsigned total = isl_basic_map_total_dim(tab->bmap);
1817 for (i = 0; i < tab->bmap->n_div; ++i) {
1818 if (isl_int_ne(tab->bmap->div[i][0], denom))
1819 continue;
1820 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1821 continue;
1822 return i;
1824 return -1;
1827 /* Return the index of a div that corresponds to "div".
1828 * We first check if we already have such a div and if not, we create one.
1830 static int get_div(struct isl_tab *tab, struct isl_context *context,
1831 struct isl_vec *div)
1833 int d;
1834 struct isl_tab *context_tab = context->op->peek_tab(context);
1836 if (!context_tab)
1837 return -1;
1839 d = find_div(context_tab, div->el + 1, div->el[0]);
1840 if (d != -1)
1841 return d;
1843 return add_div(tab, context, div);
1846 /* Add a parametric cut to cut away the non-integral sample value
1847 * of the give row.
1848 * Let a_i be the coefficients of the constant term and the parameters
1849 * and let b_i be the coefficients of the variables or constraints
1850 * in basis of the tableau.
1851 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1853 * The cut is expressed as
1855 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1857 * If q did not already exist in the context tableau, then it is added first.
1858 * If q is in a column of the main tableau then the "+ q" can be accomplished
1859 * by setting the corresponding entry to the denominator of the constraint.
1860 * If q happens to be in a row of the main tableau, then the corresponding
1861 * row needs to be added instead (taking care of the denominators).
1862 * Note that this is very unlikely, but perhaps not entirely impossible.
1864 * The current value of the cut is known to be negative (or at least
1865 * non-positive), so row_sign is set accordingly.
1867 * Return the row of the cut or -1.
1869 static int add_parametric_cut(struct isl_tab *tab, int row,
1870 struct isl_context *context)
1872 struct isl_vec *div;
1873 int d;
1874 int i;
1875 int r;
1876 isl_int *r_row;
1877 int col;
1878 int n;
1879 unsigned off = 2 + tab->M;
1881 if (!context)
1882 return -1;
1884 div = get_row_parameter_div(tab, row);
1885 if (!div)
1886 return -1;
1888 n = tab->n_div;
1889 d = context->op->get_div(context, tab, div);
1890 if (d < 0)
1891 return -1;
1893 if (isl_tab_extend_cons(tab, 1) < 0)
1894 return -1;
1895 r = isl_tab_allocate_con(tab);
1896 if (r < 0)
1897 return -1;
1899 r_row = tab->mat->row[tab->con[r].index];
1900 isl_int_set(r_row[0], tab->mat->row[row][0]);
1901 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1902 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1903 isl_int_neg(r_row[1], r_row[1]);
1904 if (tab->M)
1905 isl_int_set_si(r_row[2], 0);
1906 for (i = 0; i < tab->n_param; ++i) {
1907 if (tab->var[i].is_row)
1908 continue;
1909 col = tab->var[i].index;
1910 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1911 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1912 tab->mat->row[row][0]);
1913 isl_int_neg(r_row[off + col], r_row[off + col]);
1915 for (i = 0; i < tab->n_div; ++i) {
1916 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1917 continue;
1918 col = tab->var[tab->n_var - tab->n_div + i].index;
1919 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1920 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1921 tab->mat->row[row][0]);
1922 isl_int_neg(r_row[off + col], r_row[off + col]);
1924 for (i = 0; i < tab->n_col; ++i) {
1925 if (tab->col_var[i] >= 0 &&
1926 (tab->col_var[i] < tab->n_param ||
1927 tab->col_var[i] >= tab->n_var - tab->n_div))
1928 continue;
1929 isl_int_fdiv_r(r_row[off + i],
1930 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1932 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1933 isl_int gcd;
1934 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1935 isl_int_init(gcd);
1936 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1937 isl_int_divexact(r_row[0], r_row[0], gcd);
1938 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1939 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1940 r_row[0], tab->mat->row[d_row] + 1,
1941 off - 1 + tab->n_col);
1942 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1943 isl_int_clear(gcd);
1944 } else {
1945 col = tab->var[tab->n_var - tab->n_div + d].index;
1946 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1949 tab->con[r].is_nonneg = 1;
1950 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1951 return -1;
1952 if (tab->row_sign)
1953 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1955 isl_vec_free(div);
1957 row = tab->con[r].index;
1959 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1960 return -1;
1962 return row;
1965 /* Construct a tableau for bmap that can be used for computing
1966 * the lexicographic minimum (or maximum) of bmap.
1967 * If not NULL, then dom is the domain where the minimum
1968 * should be computed. In this case, we set up a parametric
1969 * tableau with row signs (initialized to "unknown").
1970 * If M is set, then the tableau will use a big parameter.
1971 * If max is set, then a maximum should be computed instead of a minimum.
1972 * This means that for each variable x, the tableau will contain the variable
1973 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1974 * of the variables in all constraints are negated prior to adding them
1975 * to the tableau.
1977 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1978 struct isl_basic_set *dom, unsigned M, int max)
1980 int i;
1981 struct isl_tab *tab;
1983 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1984 isl_basic_map_total_dim(bmap), M);
1985 if (!tab)
1986 return NULL;
1988 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1989 if (dom) {
1990 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1991 tab->n_div = dom->n_div;
1992 tab->row_sign = isl_calloc_array(bmap->ctx,
1993 enum isl_tab_row_sign, tab->mat->n_row);
1994 if (!tab->row_sign)
1995 goto error;
1997 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1998 if (isl_tab_mark_empty(tab) < 0)
1999 goto error;
2000 return tab;
2003 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2004 tab->var[i].is_nonneg = 1;
2005 tab->var[i].frozen = 1;
2007 for (i = 0; i < bmap->n_eq; ++i) {
2008 if (max)
2009 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2010 bmap->eq[i] + 1 + tab->n_param,
2011 tab->n_var - tab->n_param - tab->n_div);
2012 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2013 if (max)
2014 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2015 bmap->eq[i] + 1 + tab->n_param,
2016 tab->n_var - tab->n_param - tab->n_div);
2017 if (!tab || tab->empty)
2018 return tab;
2020 if (bmap->n_eq)
2021 tab = restore_lexmin(tab);
2022 for (i = 0; i < bmap->n_ineq; ++i) {
2023 if (max)
2024 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2025 bmap->ineq[i] + 1 + tab->n_param,
2026 tab->n_var - tab->n_param - tab->n_div);
2027 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2028 if (max)
2029 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2030 bmap->ineq[i] + 1 + tab->n_param,
2031 tab->n_var - tab->n_param - tab->n_div);
2032 if (!tab || tab->empty)
2033 return tab;
2035 return tab;
2036 error:
2037 isl_tab_free(tab);
2038 return NULL;
2041 /* Given a main tableau where more than one row requires a split,
2042 * determine and return the "best" row to split on.
2044 * Given two rows in the main tableau, if the inequality corresponding
2045 * to the first row is redundant with respect to that of the second row
2046 * in the current tableau, then it is better to split on the second row,
2047 * since in the positive part, both row will be positive.
2048 * (In the negative part a pivot will have to be performed and just about
2049 * anything can happen to the sign of the other row.)
2051 * As a simple heuristic, we therefore select the row that makes the most
2052 * of the other rows redundant.
2054 * Perhaps it would also be useful to look at the number of constraints
2055 * that conflict with any given constraint.
2057 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2059 struct isl_tab_undo *snap;
2060 int split;
2061 int row;
2062 int best = -1;
2063 int best_r;
2065 if (isl_tab_extend_cons(context_tab, 2) < 0)
2066 return -1;
2068 snap = isl_tab_snap(context_tab);
2070 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2071 struct isl_tab_undo *snap2;
2072 struct isl_vec *ineq = NULL;
2073 int r = 0;
2074 int ok;
2076 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2077 continue;
2078 if (tab->row_sign[split] != isl_tab_row_any)
2079 continue;
2081 ineq = get_row_parameter_ineq(tab, split);
2082 if (!ineq)
2083 return -1;
2084 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2085 isl_vec_free(ineq);
2086 if (!ok)
2087 return -1;
2089 snap2 = isl_tab_snap(context_tab);
2091 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2092 struct isl_tab_var *var;
2094 if (row == split)
2095 continue;
2096 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2097 continue;
2098 if (tab->row_sign[row] != isl_tab_row_any)
2099 continue;
2101 ineq = get_row_parameter_ineq(tab, row);
2102 if (!ineq)
2103 return -1;
2104 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2105 isl_vec_free(ineq);
2106 if (!ok)
2107 return -1;
2108 var = &context_tab->con[context_tab->n_con - 1];
2109 if (!context_tab->empty &&
2110 !isl_tab_min_at_most_neg_one(context_tab, var))
2111 r++;
2112 if (isl_tab_rollback(context_tab, snap2) < 0)
2113 return -1;
2115 if (best == -1 || r > best_r) {
2116 best = split;
2117 best_r = r;
2119 if (isl_tab_rollback(context_tab, snap) < 0)
2120 return -1;
2123 return best;
2126 static struct isl_basic_set *context_lex_peek_basic_set(
2127 struct isl_context *context)
2129 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2130 if (!clex->tab)
2131 return NULL;
2132 return isl_tab_peek_bset(clex->tab);
2135 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2137 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2138 return clex->tab;
2141 static void context_lex_extend(struct isl_context *context, int n)
2143 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2144 if (!clex->tab)
2145 return;
2146 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2147 return;
2148 isl_tab_free(clex->tab);
2149 clex->tab = NULL;
2152 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2153 int check, int update)
2155 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2156 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2157 goto error;
2158 clex->tab = add_lexmin_eq(clex->tab, eq);
2159 if (check) {
2160 int v = tab_has_valid_sample(clex->tab, eq, 1);
2161 if (v < 0)
2162 goto error;
2163 if (!v)
2164 clex->tab = check_integer_feasible(clex->tab);
2166 if (update)
2167 clex->tab = check_samples(clex->tab, eq, 1);
2168 return;
2169 error:
2170 isl_tab_free(clex->tab);
2171 clex->tab = NULL;
2174 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2175 int check, int update)
2177 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2178 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2179 goto error;
2180 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2181 if (check) {
2182 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2183 if (v < 0)
2184 goto error;
2185 if (!v)
2186 clex->tab = check_integer_feasible(clex->tab);
2188 if (update)
2189 clex->tab = check_samples(clex->tab, ineq, 0);
2190 return;
2191 error:
2192 isl_tab_free(clex->tab);
2193 clex->tab = NULL;
2196 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2198 struct isl_context *context = (struct isl_context *)user;
2199 context_lex_add_ineq(context, ineq, 0, 0);
2200 return context->op->is_ok(context) ? 0 : -1;
2203 /* Check which signs can be obtained by "ineq" on all the currently
2204 * active sample values. See row_sign for more information.
2206 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2207 int strict)
2209 int i;
2210 int sgn;
2211 isl_int tmp;
2212 enum isl_tab_row_sign res = isl_tab_row_unknown;
2214 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2215 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2216 return isl_tab_row_unknown);
2218 isl_int_init(tmp);
2219 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2220 isl_seq_inner_product(tab->samples->row[i], ineq,
2221 1 + tab->n_var, &tmp);
2222 sgn = isl_int_sgn(tmp);
2223 if (sgn > 0 || (sgn == 0 && strict)) {
2224 if (res == isl_tab_row_unknown)
2225 res = isl_tab_row_pos;
2226 if (res == isl_tab_row_neg)
2227 res = isl_tab_row_any;
2229 if (sgn < 0) {
2230 if (res == isl_tab_row_unknown)
2231 res = isl_tab_row_neg;
2232 if (res == isl_tab_row_pos)
2233 res = isl_tab_row_any;
2235 if (res == isl_tab_row_any)
2236 break;
2238 isl_int_clear(tmp);
2240 return res;
2243 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2244 isl_int *ineq, int strict)
2246 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2247 return tab_ineq_sign(clex->tab, ineq, strict);
2250 /* Check whether "ineq" can be added to the tableau without rendering
2251 * it infeasible.
2253 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2255 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2256 struct isl_tab_undo *snap;
2257 int feasible;
2259 if (!clex->tab)
2260 return -1;
2262 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2263 return -1;
2265 snap = isl_tab_snap(clex->tab);
2266 if (isl_tab_push_basis(clex->tab) < 0)
2267 return -1;
2268 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2269 clex->tab = check_integer_feasible(clex->tab);
2270 if (!clex->tab)
2271 return -1;
2272 feasible = !clex->tab->empty;
2273 if (isl_tab_rollback(clex->tab, snap) < 0)
2274 return -1;
2276 return feasible;
2279 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2280 struct isl_vec *div)
2282 return get_div(tab, context, div);
2285 /* Add a div specified by "div" to the context tableau and return
2286 * 1 if the div is obviously non-negative.
2287 * context_tab_add_div will always return 1, because all variables
2288 * in a isl_context_lex tableau are non-negative.
2289 * However, if we are using a big parameter in the context, then this only
2290 * reflects the non-negativity of the variable used to _encode_ the
2291 * div, i.e., div' = M + div, so we can't draw any conclusions.
2293 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2295 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2296 int nonneg;
2297 nonneg = context_tab_add_div(clex->tab, div,
2298 context_lex_add_ineq_wrap, context);
2299 if (nonneg < 0)
2300 return -1;
2301 if (clex->tab->M)
2302 return 0;
2303 return nonneg;
2306 static int context_lex_detect_equalities(struct isl_context *context,
2307 struct isl_tab *tab)
2309 return 0;
2312 static int context_lex_best_split(struct isl_context *context,
2313 struct isl_tab *tab)
2315 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2316 struct isl_tab_undo *snap;
2317 int r;
2319 snap = isl_tab_snap(clex->tab);
2320 if (isl_tab_push_basis(clex->tab) < 0)
2321 return -1;
2322 r = best_split(tab, clex->tab);
2324 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2325 return -1;
2327 return r;
2330 static int context_lex_is_empty(struct isl_context *context)
2332 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2333 if (!clex->tab)
2334 return -1;
2335 return clex->tab->empty;
2338 static void *context_lex_save(struct isl_context *context)
2340 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2341 struct isl_tab_undo *snap;
2343 snap = isl_tab_snap(clex->tab);
2344 if (isl_tab_push_basis(clex->tab) < 0)
2345 return NULL;
2346 if (isl_tab_save_samples(clex->tab) < 0)
2347 return NULL;
2349 return snap;
2352 static void context_lex_restore(struct isl_context *context, void *save)
2354 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2355 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2356 isl_tab_free(clex->tab);
2357 clex->tab = NULL;
2361 static int context_lex_is_ok(struct isl_context *context)
2363 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2364 return !!clex->tab;
2367 /* For each variable in the context tableau, check if the variable can
2368 * only attain non-negative values. If so, mark the parameter as non-negative
2369 * in the main tableau. This allows for a more direct identification of some
2370 * cases of violated constraints.
2372 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2373 struct isl_tab *context_tab)
2375 int i;
2376 struct isl_tab_undo *snap;
2377 struct isl_vec *ineq = NULL;
2378 struct isl_tab_var *var;
2379 int n;
2381 if (context_tab->n_var == 0)
2382 return tab;
2384 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2385 if (!ineq)
2386 goto error;
2388 if (isl_tab_extend_cons(context_tab, 1) < 0)
2389 goto error;
2391 snap = isl_tab_snap(context_tab);
2393 n = 0;
2394 isl_seq_clr(ineq->el, ineq->size);
2395 for (i = 0; i < context_tab->n_var; ++i) {
2396 isl_int_set_si(ineq->el[1 + i], 1);
2397 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2398 goto error;
2399 var = &context_tab->con[context_tab->n_con - 1];
2400 if (!context_tab->empty &&
2401 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2402 int j = i;
2403 if (i >= tab->n_param)
2404 j = i - tab->n_param + tab->n_var - tab->n_div;
2405 tab->var[j].is_nonneg = 1;
2406 n++;
2408 isl_int_set_si(ineq->el[1 + i], 0);
2409 if (isl_tab_rollback(context_tab, snap) < 0)
2410 goto error;
2413 if (context_tab->M && n == context_tab->n_var) {
2414 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2415 context_tab->M = 0;
2418 isl_vec_free(ineq);
2419 return tab;
2420 error:
2421 isl_vec_free(ineq);
2422 isl_tab_free(tab);
2423 return NULL;
2426 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2427 struct isl_context *context, struct isl_tab *tab)
2429 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2430 struct isl_tab_undo *snap;
2432 if (!tab)
2433 return NULL;
2435 snap = isl_tab_snap(clex->tab);
2436 if (isl_tab_push_basis(clex->tab) < 0)
2437 goto error;
2439 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2441 if (isl_tab_rollback(clex->tab, snap) < 0)
2442 goto error;
2444 return tab;
2445 error:
2446 isl_tab_free(tab);
2447 return NULL;
2450 static void context_lex_invalidate(struct isl_context *context)
2452 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2453 isl_tab_free(clex->tab);
2454 clex->tab = NULL;
2457 static void context_lex_free(struct isl_context *context)
2459 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2460 isl_tab_free(clex->tab);
2461 free(clex);
2464 struct isl_context_op isl_context_lex_op = {
2465 context_lex_detect_nonnegative_parameters,
2466 context_lex_peek_basic_set,
2467 context_lex_peek_tab,
2468 context_lex_add_eq,
2469 context_lex_add_ineq,
2470 context_lex_ineq_sign,
2471 context_lex_test_ineq,
2472 context_lex_get_div,
2473 context_lex_add_div,
2474 context_lex_detect_equalities,
2475 context_lex_best_split,
2476 context_lex_is_empty,
2477 context_lex_is_ok,
2478 context_lex_save,
2479 context_lex_restore,
2480 context_lex_invalidate,
2481 context_lex_free,
2484 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2486 struct isl_tab *tab;
2488 bset = isl_basic_set_cow(bset);
2489 if (!bset)
2490 return NULL;
2491 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2492 if (!tab)
2493 goto error;
2494 if (isl_tab_track_bset(tab, bset) < 0)
2495 goto error;
2496 tab = isl_tab_init_samples(tab);
2497 return tab;
2498 error:
2499 isl_basic_set_free(bset);
2500 return NULL;
2503 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2505 struct isl_context_lex *clex;
2507 if (!dom)
2508 return NULL;
2510 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2511 if (!clex)
2512 return NULL;
2514 clex->context.op = &isl_context_lex_op;
2516 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2517 clex->tab = restore_lexmin(clex->tab);
2518 clex->tab = check_integer_feasible(clex->tab);
2519 if (!clex->tab)
2520 goto error;
2522 return &clex->context;
2523 error:
2524 clex->context.op->free(&clex->context);
2525 return NULL;
2528 struct isl_context_gbr {
2529 struct isl_context context;
2530 struct isl_tab *tab;
2531 struct isl_tab *shifted;
2532 struct isl_tab *cone;
2535 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2536 struct isl_context *context, struct isl_tab *tab)
2538 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2539 if (!tab)
2540 return NULL;
2541 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2544 static struct isl_basic_set *context_gbr_peek_basic_set(
2545 struct isl_context *context)
2547 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2548 if (!cgbr->tab)
2549 return NULL;
2550 return isl_tab_peek_bset(cgbr->tab);
2553 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2555 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2556 return cgbr->tab;
2559 /* Initialize the "shifted" tableau of the context, which
2560 * contains the constraints of the original tableau shifted
2561 * by the sum of all negative coefficients. This ensures
2562 * that any rational point in the shifted tableau can
2563 * be rounded up to yield an integer point in the original tableau.
2565 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2567 int i, j;
2568 struct isl_vec *cst;
2569 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2570 unsigned dim = isl_basic_set_total_dim(bset);
2572 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2573 if (!cst)
2574 return;
2576 for (i = 0; i < bset->n_ineq; ++i) {
2577 isl_int_set(cst->el[i], bset->ineq[i][0]);
2578 for (j = 0; j < dim; ++j) {
2579 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2580 continue;
2581 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2582 bset->ineq[i][1 + j]);
2586 cgbr->shifted = isl_tab_from_basic_set(bset);
2588 for (i = 0; i < bset->n_ineq; ++i)
2589 isl_int_set(bset->ineq[i][0], cst->el[i]);
2591 isl_vec_free(cst);
2594 /* Check if the shifted tableau is non-empty, and if so
2595 * use the sample point to construct an integer point
2596 * of the context tableau.
2598 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2600 struct isl_vec *sample;
2602 if (!cgbr->shifted)
2603 gbr_init_shifted(cgbr);
2604 if (!cgbr->shifted)
2605 return NULL;
2606 if (cgbr->shifted->empty)
2607 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2609 sample = isl_tab_get_sample_value(cgbr->shifted);
2610 sample = isl_vec_ceil(sample);
2612 return sample;
2615 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2617 int i;
2619 if (!bset)
2620 return NULL;
2622 for (i = 0; i < bset->n_eq; ++i)
2623 isl_int_set_si(bset->eq[i][0], 0);
2625 for (i = 0; i < bset->n_ineq; ++i)
2626 isl_int_set_si(bset->ineq[i][0], 0);
2628 return bset;
2631 static int use_shifted(struct isl_context_gbr *cgbr)
2633 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2636 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2638 struct isl_basic_set *bset;
2639 struct isl_basic_set *cone;
2641 if (isl_tab_sample_is_integer(cgbr->tab))
2642 return isl_tab_get_sample_value(cgbr->tab);
2644 if (use_shifted(cgbr)) {
2645 struct isl_vec *sample;
2647 sample = gbr_get_shifted_sample(cgbr);
2648 if (!sample || sample->size > 0)
2649 return sample;
2651 isl_vec_free(sample);
2654 if (!cgbr->cone) {
2655 bset = isl_tab_peek_bset(cgbr->tab);
2656 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2657 if (!cgbr->cone)
2658 return NULL;
2659 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2660 return NULL;
2662 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2663 return NULL;
2665 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2666 struct isl_vec *sample;
2667 struct isl_tab_undo *snap;
2669 if (cgbr->tab->basis) {
2670 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2671 isl_mat_free(cgbr->tab->basis);
2672 cgbr->tab->basis = NULL;
2674 cgbr->tab->n_zero = 0;
2675 cgbr->tab->n_unbounded = 0;
2678 snap = isl_tab_snap(cgbr->tab);
2680 sample = isl_tab_sample(cgbr->tab);
2682 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2683 isl_vec_free(sample);
2684 return NULL;
2687 return sample;
2690 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2691 cone = drop_constant_terms(cone);
2692 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2693 cone = isl_basic_set_underlying_set(cone);
2694 cone = isl_basic_set_gauss(cone, NULL);
2696 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2697 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2698 bset = isl_basic_set_underlying_set(bset);
2699 bset = isl_basic_set_gauss(bset, NULL);
2701 return isl_basic_set_sample_with_cone(bset, cone);
2704 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2706 struct isl_vec *sample;
2708 if (!cgbr->tab)
2709 return;
2711 if (cgbr->tab->empty)
2712 return;
2714 sample = gbr_get_sample(cgbr);
2715 if (!sample)
2716 goto error;
2718 if (sample->size == 0) {
2719 isl_vec_free(sample);
2720 if (isl_tab_mark_empty(cgbr->tab) < 0)
2721 goto error;
2722 return;
2725 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2727 return;
2728 error:
2729 isl_tab_free(cgbr->tab);
2730 cgbr->tab = NULL;
2733 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2735 int r;
2737 if (!tab)
2738 return NULL;
2740 if (isl_tab_extend_cons(tab, 2) < 0)
2741 goto error;
2743 if (isl_tab_add_eq(tab, eq) < 0)
2744 goto error;
2746 return tab;
2747 error:
2748 isl_tab_free(tab);
2749 return NULL;
2752 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2753 int check, int update)
2755 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2757 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2759 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2760 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2761 goto error;
2762 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2763 goto error;
2766 if (check) {
2767 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2768 if (v < 0)
2769 goto error;
2770 if (!v)
2771 check_gbr_integer_feasible(cgbr);
2773 if (update)
2774 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2775 return;
2776 error:
2777 isl_tab_free(cgbr->tab);
2778 cgbr->tab = NULL;
2781 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2783 if (!cgbr->tab)
2784 return;
2786 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2787 goto error;
2789 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2790 goto error;
2792 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2793 int i;
2794 unsigned dim;
2795 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2797 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2798 goto error;
2800 for (i = 0; i < dim; ++i) {
2801 if (!isl_int_is_neg(ineq[1 + i]))
2802 continue;
2803 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2806 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2807 goto error;
2809 for (i = 0; i < dim; ++i) {
2810 if (!isl_int_is_neg(ineq[1 + i]))
2811 continue;
2812 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2816 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2817 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2818 goto error;
2819 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2820 goto error;
2823 return;
2824 error:
2825 isl_tab_free(cgbr->tab);
2826 cgbr->tab = NULL;
2829 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2830 int check, int update)
2832 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2834 add_gbr_ineq(cgbr, ineq);
2835 if (!cgbr->tab)
2836 return;
2838 if (check) {
2839 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2840 if (v < 0)
2841 goto error;
2842 if (!v)
2843 check_gbr_integer_feasible(cgbr);
2845 if (update)
2846 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2847 return;
2848 error:
2849 isl_tab_free(cgbr->tab);
2850 cgbr->tab = NULL;
2853 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2855 struct isl_context *context = (struct isl_context *)user;
2856 context_gbr_add_ineq(context, ineq, 0, 0);
2857 return context->op->is_ok(context) ? 0 : -1;
2860 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2861 isl_int *ineq, int strict)
2863 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2864 return tab_ineq_sign(cgbr->tab, ineq, strict);
2867 /* Check whether "ineq" can be added to the tableau without rendering
2868 * it infeasible.
2870 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2872 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2873 struct isl_tab_undo *snap;
2874 struct isl_tab_undo *shifted_snap = NULL;
2875 struct isl_tab_undo *cone_snap = NULL;
2876 int feasible;
2878 if (!cgbr->tab)
2879 return -1;
2881 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2882 return -1;
2884 snap = isl_tab_snap(cgbr->tab);
2885 if (cgbr->shifted)
2886 shifted_snap = isl_tab_snap(cgbr->shifted);
2887 if (cgbr->cone)
2888 cone_snap = isl_tab_snap(cgbr->cone);
2889 add_gbr_ineq(cgbr, ineq);
2890 check_gbr_integer_feasible(cgbr);
2891 if (!cgbr->tab)
2892 return -1;
2893 feasible = !cgbr->tab->empty;
2894 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2895 return -1;
2896 if (shifted_snap) {
2897 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2898 return -1;
2899 } else if (cgbr->shifted) {
2900 isl_tab_free(cgbr->shifted);
2901 cgbr->shifted = NULL;
2903 if (cone_snap) {
2904 if (isl_tab_rollback(cgbr->cone, cone_snap))
2905 return -1;
2906 } else if (cgbr->cone) {
2907 isl_tab_free(cgbr->cone);
2908 cgbr->cone = NULL;
2911 return feasible;
2914 /* Return the column of the last of the variables associated to
2915 * a column that has a non-zero coefficient.
2916 * This function is called in a context where only coefficients
2917 * of parameters or divs can be non-zero.
2919 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2921 int i;
2922 int col;
2923 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2925 if (tab->n_var == 0)
2926 return -1;
2928 for (i = tab->n_var - 1; i >= 0; --i) {
2929 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2930 continue;
2931 if (tab->var[i].is_row)
2932 continue;
2933 col = tab->var[i].index;
2934 if (!isl_int_is_zero(p[col]))
2935 return col;
2938 return -1;
2941 /* Look through all the recently added equalities in the context
2942 * to see if we can propagate any of them to the main tableau.
2944 * The newly added equalities in the context are encoded as pairs
2945 * of inequalities starting at inequality "first".
2947 * We tentatively add each of these equalities to the main tableau
2948 * and if this happens to result in a row with a final coefficient
2949 * that is one or negative one, we use it to kill a column
2950 * in the main tableau. Otherwise, we discard the tentatively
2951 * added row.
2953 static void propagate_equalities(struct isl_context_gbr *cgbr,
2954 struct isl_tab *tab, unsigned first)
2956 int i;
2957 struct isl_vec *eq = NULL;
2959 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2960 if (!eq)
2961 goto error;
2963 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2964 goto error;
2966 isl_seq_clr(eq->el + 1 + tab->n_param,
2967 tab->n_var - tab->n_param - tab->n_div);
2968 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2969 int j;
2970 int r;
2971 struct isl_tab_undo *snap;
2972 snap = isl_tab_snap(tab);
2974 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2975 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2976 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2977 tab->n_div);
2979 r = isl_tab_add_row(tab, eq->el);
2980 if (r < 0)
2981 goto error;
2982 r = tab->con[r].index;
2983 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2984 if (j < 0 || j < tab->n_dead ||
2985 !isl_int_is_one(tab->mat->row[r][0]) ||
2986 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2987 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2988 if (isl_tab_rollback(tab, snap) < 0)
2989 goto error;
2990 continue;
2992 if (isl_tab_pivot(tab, r, j) < 0)
2993 goto error;
2994 if (isl_tab_kill_col(tab, j) < 0)
2995 goto error;
2997 tab = restore_lexmin(tab);
3000 isl_vec_free(eq);
3002 return;
3003 error:
3004 isl_vec_free(eq);
3005 isl_tab_free(cgbr->tab);
3006 cgbr->tab = NULL;
3009 static int context_gbr_detect_equalities(struct isl_context *context,
3010 struct isl_tab *tab)
3012 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3013 struct isl_ctx *ctx;
3014 int i;
3015 enum isl_lp_result res;
3016 unsigned n_ineq;
3018 ctx = cgbr->tab->mat->ctx;
3020 if (!cgbr->cone) {
3021 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3022 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3023 if (!cgbr->cone)
3024 goto error;
3025 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3026 goto error;
3028 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3029 goto error;
3031 n_ineq = cgbr->tab->bmap->n_ineq;
3032 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3033 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3034 propagate_equalities(cgbr, tab, n_ineq);
3036 return 0;
3037 error:
3038 isl_tab_free(cgbr->tab);
3039 cgbr->tab = NULL;
3040 return -1;
3043 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3044 struct isl_vec *div)
3046 return get_div(tab, context, div);
3049 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3051 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3052 if (cgbr->cone) {
3053 int k;
3055 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3056 return -1;
3057 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3058 return -1;
3059 if (isl_tab_allocate_var(cgbr->cone) <0)
3060 return -1;
3062 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3063 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3064 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3065 if (k < 0)
3066 return -1;
3067 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3068 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3069 return -1;
3071 return context_tab_add_div(cgbr->tab, div,
3072 context_gbr_add_ineq_wrap, context);
3075 static int context_gbr_best_split(struct isl_context *context,
3076 struct isl_tab *tab)
3078 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3079 struct isl_tab_undo *snap;
3080 int r;
3082 snap = isl_tab_snap(cgbr->tab);
3083 r = best_split(tab, cgbr->tab);
3085 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3086 return -1;
3088 return r;
3091 static int context_gbr_is_empty(struct isl_context *context)
3093 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3094 if (!cgbr->tab)
3095 return -1;
3096 return cgbr->tab->empty;
3099 struct isl_gbr_tab_undo {
3100 struct isl_tab_undo *tab_snap;
3101 struct isl_tab_undo *shifted_snap;
3102 struct isl_tab_undo *cone_snap;
3105 static void *context_gbr_save(struct isl_context *context)
3107 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3108 struct isl_gbr_tab_undo *snap;
3110 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3111 if (!snap)
3112 return NULL;
3114 snap->tab_snap = isl_tab_snap(cgbr->tab);
3115 if (isl_tab_save_samples(cgbr->tab) < 0)
3116 goto error;
3118 if (cgbr->shifted)
3119 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3120 else
3121 snap->shifted_snap = NULL;
3123 if (cgbr->cone)
3124 snap->cone_snap = isl_tab_snap(cgbr->cone);
3125 else
3126 snap->cone_snap = NULL;
3128 return snap;
3129 error:
3130 free(snap);
3131 return NULL;
3134 static void context_gbr_restore(struct isl_context *context, void *save)
3136 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3137 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3138 if (!snap)
3139 goto error;
3140 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3141 isl_tab_free(cgbr->tab);
3142 cgbr->tab = NULL;
3145 if (snap->shifted_snap) {
3146 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3147 goto error;
3148 } else if (cgbr->shifted) {
3149 isl_tab_free(cgbr->shifted);
3150 cgbr->shifted = NULL;
3153 if (snap->cone_snap) {
3154 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3155 goto error;
3156 } else if (cgbr->cone) {
3157 isl_tab_free(cgbr->cone);
3158 cgbr->cone = NULL;
3161 free(snap);
3163 return;
3164 error:
3165 free(snap);
3166 isl_tab_free(cgbr->tab);
3167 cgbr->tab = NULL;
3170 static int context_gbr_is_ok(struct isl_context *context)
3172 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3173 return !!cgbr->tab;
3176 static void context_gbr_invalidate(struct isl_context *context)
3178 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3179 isl_tab_free(cgbr->tab);
3180 cgbr->tab = NULL;
3183 static void context_gbr_free(struct isl_context *context)
3185 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3186 isl_tab_free(cgbr->tab);
3187 isl_tab_free(cgbr->shifted);
3188 isl_tab_free(cgbr->cone);
3189 free(cgbr);
3192 struct isl_context_op isl_context_gbr_op = {
3193 context_gbr_detect_nonnegative_parameters,
3194 context_gbr_peek_basic_set,
3195 context_gbr_peek_tab,
3196 context_gbr_add_eq,
3197 context_gbr_add_ineq,
3198 context_gbr_ineq_sign,
3199 context_gbr_test_ineq,
3200 context_gbr_get_div,
3201 context_gbr_add_div,
3202 context_gbr_detect_equalities,
3203 context_gbr_best_split,
3204 context_gbr_is_empty,
3205 context_gbr_is_ok,
3206 context_gbr_save,
3207 context_gbr_restore,
3208 context_gbr_invalidate,
3209 context_gbr_free,
3212 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3214 struct isl_context_gbr *cgbr;
3216 if (!dom)
3217 return NULL;
3219 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3220 if (!cgbr)
3221 return NULL;
3223 cgbr->context.op = &isl_context_gbr_op;
3225 cgbr->shifted = NULL;
3226 cgbr->cone = NULL;
3227 cgbr->tab = isl_tab_from_basic_set(dom);
3228 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3229 if (!cgbr->tab)
3230 goto error;
3231 if (isl_tab_track_bset(cgbr->tab,
3232 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3233 goto error;
3234 check_gbr_integer_feasible(cgbr);
3236 return &cgbr->context;
3237 error:
3238 cgbr->context.op->free(&cgbr->context);
3239 return NULL;
3242 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3244 if (!dom)
3245 return NULL;
3247 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3248 return isl_context_lex_alloc(dom);
3249 else
3250 return isl_context_gbr_alloc(dom);
3253 /* Construct an isl_sol_map structure for accumulating the solution.
3254 * If track_empty is set, then we also keep track of the parts
3255 * of the context where there is no solution.
3256 * If max is set, then we are solving a maximization, rather than
3257 * a minimization problem, which means that the variables in the
3258 * tableau have value "M - x" rather than "M + x".
3260 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3261 struct isl_basic_set *dom, int track_empty, int max)
3263 struct isl_sol_map *sol_map = NULL;
3265 if (!bmap)
3266 goto error;
3268 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3269 if (!sol_map)
3270 goto error;
3272 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3273 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3274 sol_map->sol.dec_level.sol = &sol_map->sol;
3275 sol_map->sol.max = max;
3276 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3277 sol_map->sol.add = &sol_map_add_wrap;
3278 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3279 sol_map->sol.free = &sol_map_free_wrap;
3280 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3281 ISL_MAP_DISJOINT);
3282 if (!sol_map->map)
3283 goto error;
3285 sol_map->sol.context = isl_context_alloc(dom);
3286 if (!sol_map->sol.context)
3287 goto error;
3289 if (track_empty) {
3290 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3291 1, ISL_SET_DISJOINT);
3292 if (!sol_map->empty)
3293 goto error;
3296 isl_basic_set_free(dom);
3297 return sol_map;
3298 error:
3299 isl_basic_set_free(dom);
3300 sol_map_free(sol_map);
3301 return NULL;
3304 /* Check whether all coefficients of (non-parameter) variables
3305 * are non-positive, meaning that no pivots can be performed on the row.
3307 static int is_critical(struct isl_tab *tab, int row)
3309 int j;
3310 unsigned off = 2 + tab->M;
3312 for (j = tab->n_dead; j < tab->n_col; ++j) {
3313 if (tab->col_var[j] >= 0 &&
3314 (tab->col_var[j] < tab->n_param ||
3315 tab->col_var[j] >= tab->n_var - tab->n_div))
3316 continue;
3318 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3319 return 0;
3322 return 1;
3325 /* Check whether the inequality represented by vec is strict over the integers,
3326 * i.e., there are no integer values satisfying the constraint with
3327 * equality. This happens if the gcd of the coefficients is not a divisor
3328 * of the constant term. If so, scale the constraint down by the gcd
3329 * of the coefficients.
3331 static int is_strict(struct isl_vec *vec)
3333 isl_int gcd;
3334 int strict = 0;
3336 isl_int_init(gcd);
3337 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3338 if (!isl_int_is_one(gcd)) {
3339 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3340 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3341 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3343 isl_int_clear(gcd);
3345 return strict;
3348 /* Determine the sign of the given row of the main tableau.
3349 * The result is one of
3350 * isl_tab_row_pos: always non-negative; no pivot needed
3351 * isl_tab_row_neg: always non-positive; pivot
3352 * isl_tab_row_any: can be both positive and negative; split
3354 * We first handle some simple cases
3355 * - the row sign may be known already
3356 * - the row may be obviously non-negative
3357 * - the parametric constant may be equal to that of another row
3358 * for which we know the sign. This sign will be either "pos" or
3359 * "any". If it had been "neg" then we would have pivoted before.
3361 * If none of these cases hold, we check the value of the row for each
3362 * of the currently active samples. Based on the signs of these values
3363 * we make an initial determination of the sign of the row.
3365 * all zero -> unk(nown)
3366 * all non-negative -> pos
3367 * all non-positive -> neg
3368 * both negative and positive -> all
3370 * If we end up with "all", we are done.
3371 * Otherwise, we perform a check for positive and/or negative
3372 * values as follows.
3374 * samples neg unk pos
3375 * <0 ? Y N Y N
3376 * pos any pos
3377 * >0 ? Y N Y N
3378 * any neg any neg
3380 * There is no special sign for "zero", because we can usually treat zero
3381 * as either non-negative or non-positive, whatever works out best.
3382 * However, if the row is "critical", meaning that pivoting is impossible
3383 * then we don't want to limp zero with the non-positive case, because
3384 * then we we would lose the solution for those values of the parameters
3385 * where the value of the row is zero. Instead, we treat 0 as non-negative
3386 * ensuring a split if the row can attain both zero and negative values.
3387 * The same happens when the original constraint was one that could not
3388 * be satisfied with equality by any integer values of the parameters.
3389 * In this case, we normalize the constraint, but then a value of zero
3390 * for the normalized constraint is actually a positive value for the
3391 * original constraint, so again we need to treat zero as non-negative.
3392 * In both these cases, we have the following decision tree instead:
3394 * all non-negative -> pos
3395 * all negative -> neg
3396 * both negative and non-negative -> all
3398 * samples neg pos
3399 * <0 ? Y N
3400 * any pos
3401 * >=0 ? Y N
3402 * any neg
3404 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3405 struct isl_sol *sol, int row)
3407 struct isl_vec *ineq = NULL;
3408 enum isl_tab_row_sign res = isl_tab_row_unknown;
3409 int critical;
3410 int strict;
3411 int row2;
3413 if (tab->row_sign[row] != isl_tab_row_unknown)
3414 return tab->row_sign[row];
3415 if (is_obviously_nonneg(tab, row))
3416 return isl_tab_row_pos;
3417 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3418 if (tab->row_sign[row2] == isl_tab_row_unknown)
3419 continue;
3420 if (identical_parameter_line(tab, row, row2))
3421 return tab->row_sign[row2];
3424 critical = is_critical(tab, row);
3426 ineq = get_row_parameter_ineq(tab, row);
3427 if (!ineq)
3428 goto error;
3430 strict = is_strict(ineq);
3432 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3433 critical || strict);
3435 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3436 /* test for negative values */
3437 int feasible;
3438 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3439 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3441 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3442 if (feasible < 0)
3443 goto error;
3444 if (!feasible)
3445 res = isl_tab_row_pos;
3446 else
3447 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3448 : isl_tab_row_any;
3449 if (res == isl_tab_row_neg) {
3450 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3451 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3455 if (res == isl_tab_row_neg) {
3456 /* test for positive values */
3457 int feasible;
3458 if (!critical && !strict)
3459 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3461 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3462 if (feasible < 0)
3463 goto error;
3464 if (feasible)
3465 res = isl_tab_row_any;
3468 isl_vec_free(ineq);
3469 return res;
3470 error:
3471 isl_vec_free(ineq);
3472 return isl_tab_row_unknown;
3475 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3477 /* Find solutions for values of the parameters that satisfy the given
3478 * inequality.
3480 * We currently take a snapshot of the context tableau that is reset
3481 * when we return from this function, while we make a copy of the main
3482 * tableau, leaving the original main tableau untouched.
3483 * These are fairly arbitrary choices. Making a copy also of the context
3484 * tableau would obviate the need to undo any changes made to it later,
3485 * while taking a snapshot of the main tableau could reduce memory usage.
3486 * If we were to switch to taking a snapshot of the main tableau,
3487 * we would have to keep in mind that we need to save the row signs
3488 * and that we need to do this before saving the current basis
3489 * such that the basis has been restore before we restore the row signs.
3491 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3493 void *saved;
3495 if (!sol->context)
3496 goto error;
3497 saved = sol->context->op->save(sol->context);
3499 tab = isl_tab_dup(tab);
3500 if (!tab)
3501 goto error;
3503 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3505 find_solutions(sol, tab);
3507 if (!sol->error)
3508 sol->context->op->restore(sol->context, saved);
3509 return;
3510 error:
3511 sol->error = 1;
3514 /* Record the absence of solutions for those values of the parameters
3515 * that do not satisfy the given inequality with equality.
3517 static void no_sol_in_strict(struct isl_sol *sol,
3518 struct isl_tab *tab, struct isl_vec *ineq)
3520 int empty;
3521 void *saved;
3523 if (!sol->context || sol->error)
3524 goto error;
3525 saved = sol->context->op->save(sol->context);
3527 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3529 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3530 if (!sol->context)
3531 goto error;
3533 empty = tab->empty;
3534 tab->empty = 1;
3535 sol_add(sol, tab);
3536 tab->empty = empty;
3538 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3540 sol->context->op->restore(sol->context, saved);
3541 return;
3542 error:
3543 sol->error = 1;
3546 /* Compute the lexicographic minimum of the set represented by the main
3547 * tableau "tab" within the context "sol->context_tab".
3548 * On entry the sample value of the main tableau is lexicographically
3549 * less than or equal to this lexicographic minimum.
3550 * Pivots are performed until a feasible point is found, which is then
3551 * necessarily equal to the minimum, or until the tableau is found to
3552 * be infeasible. Some pivots may need to be performed for only some
3553 * feasible values of the context tableau. If so, the context tableau
3554 * is split into a part where the pivot is needed and a part where it is not.
3556 * Whenever we enter the main loop, the main tableau is such that no
3557 * "obvious" pivots need to be performed on it, where "obvious" means
3558 * that the given row can be seen to be negative without looking at
3559 * the context tableau. In particular, for non-parametric problems,
3560 * no pivots need to be performed on the main tableau.
3561 * The caller of find_solutions is responsible for making this property
3562 * hold prior to the first iteration of the loop, while restore_lexmin
3563 * is called before every other iteration.
3565 * Inside the main loop, we first examine the signs of the rows of
3566 * the main tableau within the context of the context tableau.
3567 * If we find a row that is always non-positive for all values of
3568 * the parameters satisfying the context tableau and negative for at
3569 * least one value of the parameters, we perform the appropriate pivot
3570 * and start over. An exception is the case where no pivot can be
3571 * performed on the row. In this case, we require that the sign of
3572 * the row is negative for all values of the parameters (rather than just
3573 * non-positive). This special case is handled inside row_sign, which
3574 * will say that the row can have any sign if it determines that it can
3575 * attain both negative and zero values.
3577 * If we can't find a row that always requires a pivot, but we can find
3578 * one or more rows that require a pivot for some values of the parameters
3579 * (i.e., the row can attain both positive and negative signs), then we split
3580 * the context tableau into two parts, one where we force the sign to be
3581 * non-negative and one where we force is to be negative.
3582 * The non-negative part is handled by a recursive call (through find_in_pos).
3583 * Upon returning from this call, we continue with the negative part and
3584 * perform the required pivot.
3586 * If no such rows can be found, all rows are non-negative and we have
3587 * found a (rational) feasible point. If we only wanted a rational point
3588 * then we are done.
3589 * Otherwise, we check if all values of the sample point of the tableau
3590 * are integral for the variables. If so, we have found the minimal
3591 * integral point and we are done.
3592 * If the sample point is not integral, then we need to make a distinction
3593 * based on whether the constant term is non-integral or the coefficients
3594 * of the parameters. Furthermore, in order to decide how to handle
3595 * the non-integrality, we also need to know whether the coefficients
3596 * of the other columns in the tableau are integral. This leads
3597 * to the following table. The first two rows do not correspond
3598 * to a non-integral sample point and are only mentioned for completeness.
3600 * constant parameters other
3602 * int int int |
3603 * int int rat | -> no problem
3605 * rat int int -> fail
3607 * rat int rat -> cut
3609 * int rat rat |
3610 * rat rat rat | -> parametric cut
3612 * int rat int |
3613 * rat rat int | -> split context
3615 * If the parametric constant is completely integral, then there is nothing
3616 * to be done. If the constant term is non-integral, but all the other
3617 * coefficient are integral, then there is nothing that can be done
3618 * and the tableau has no integral solution.
3619 * If, on the other hand, one or more of the other columns have rational
3620 * coefficients, but the parameter coefficients are all integral, then
3621 * we can perform a regular (non-parametric) cut.
3622 * Finally, if there is any parameter coefficient that is non-integral,
3623 * then we need to involve the context tableau. There are two cases here.
3624 * If at least one other column has a rational coefficient, then we
3625 * can perform a parametric cut in the main tableau by adding a new
3626 * integer division in the context tableau.
3627 * If all other columns have integral coefficients, then we need to
3628 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3629 * is always integral. We do this by introducing an integer division
3630 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3631 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3632 * Since q is expressed in the tableau as
3633 * c + \sum a_i y_i - m q >= 0
3634 * -c - \sum a_i y_i + m q + m - 1 >= 0
3635 * it is sufficient to add the inequality
3636 * -c - \sum a_i y_i + m q >= 0
3637 * In the part of the context where this inequality does not hold, the
3638 * main tableau is marked as being empty.
3640 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3642 struct isl_context *context;
3644 if (!tab || sol->error)
3645 goto error;
3647 context = sol->context;
3649 if (tab->empty)
3650 goto done;
3651 if (context->op->is_empty(context))
3652 goto done;
3654 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3655 int flags;
3656 int row;
3657 enum isl_tab_row_sign sgn;
3658 int split = -1;
3659 int n_split = 0;
3661 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3662 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3663 continue;
3664 sgn = row_sign(tab, sol, row);
3665 if (!sgn)
3666 goto error;
3667 tab->row_sign[row] = sgn;
3668 if (sgn == isl_tab_row_any)
3669 n_split++;
3670 if (sgn == isl_tab_row_any && split == -1)
3671 split = row;
3672 if (sgn == isl_tab_row_neg)
3673 break;
3675 if (row < tab->n_row)
3676 continue;
3677 if (split != -1) {
3678 struct isl_vec *ineq;
3679 if (n_split != 1)
3680 split = context->op->best_split(context, tab);
3681 if (split < 0)
3682 goto error;
3683 ineq = get_row_parameter_ineq(tab, split);
3684 if (!ineq)
3685 goto error;
3686 is_strict(ineq);
3687 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3688 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3689 continue;
3690 if (tab->row_sign[row] == isl_tab_row_any)
3691 tab->row_sign[row] = isl_tab_row_unknown;
3693 tab->row_sign[split] = isl_tab_row_pos;
3694 sol_inc_level(sol);
3695 find_in_pos(sol, tab, ineq->el);
3696 tab->row_sign[split] = isl_tab_row_neg;
3697 row = split;
3698 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3699 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3700 if (!sol->error)
3701 context->op->add_ineq(context, ineq->el, 0, 1);
3702 isl_vec_free(ineq);
3703 if (sol->error)
3704 goto error;
3705 continue;
3707 if (tab->rational)
3708 break;
3709 row = first_non_integer_row(tab, &flags);
3710 if (row < 0)
3711 break;
3712 if (ISL_FL_ISSET(flags, I_PAR)) {
3713 if (ISL_FL_ISSET(flags, I_VAR)) {
3714 if (isl_tab_mark_empty(tab) < 0)
3715 goto error;
3716 break;
3718 row = add_cut(tab, row);
3719 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3720 struct isl_vec *div;
3721 struct isl_vec *ineq;
3722 int d;
3723 div = get_row_split_div(tab, row);
3724 if (!div)
3725 goto error;
3726 d = context->op->get_div(context, tab, div);
3727 isl_vec_free(div);
3728 if (d < 0)
3729 goto error;
3730 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3731 if (!ineq)
3732 goto error;
3733 sol_inc_level(sol);
3734 no_sol_in_strict(sol, tab, ineq);
3735 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3736 context->op->add_ineq(context, ineq->el, 1, 1);
3737 isl_vec_free(ineq);
3738 if (sol->error || !context->op->is_ok(context))
3739 goto error;
3740 tab = set_row_cst_to_div(tab, row, d);
3741 if (context->op->is_empty(context))
3742 break;
3743 } else
3744 row = add_parametric_cut(tab, row, context);
3745 if (row < 0)
3746 goto error;
3748 done:
3749 sol_add(sol, tab);
3750 isl_tab_free(tab);
3751 return;
3752 error:
3753 isl_tab_free(tab);
3754 sol->error = 1;
3757 /* Compute the lexicographic minimum of the set represented by the main
3758 * tableau "tab" within the context "sol->context_tab".
3760 * As a preprocessing step, we first transfer all the purely parametric
3761 * equalities from the main tableau to the context tableau, i.e.,
3762 * parameters that have been pivoted to a row.
3763 * These equalities are ignored by the main algorithm, because the
3764 * corresponding rows may not be marked as being non-negative.
3765 * In parts of the context where the added equality does not hold,
3766 * the main tableau is marked as being empty.
3768 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3770 int row;
3772 if (!tab)
3773 goto error;
3775 sol->level = 0;
3777 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3778 int p;
3779 struct isl_vec *eq;
3781 if (tab->row_var[row] < 0)
3782 continue;
3783 if (tab->row_var[row] >= tab->n_param &&
3784 tab->row_var[row] < tab->n_var - tab->n_div)
3785 continue;
3786 if (tab->row_var[row] < tab->n_param)
3787 p = tab->row_var[row];
3788 else
3789 p = tab->row_var[row]
3790 + tab->n_param - (tab->n_var - tab->n_div);
3792 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3793 if (!eq)
3794 goto error;
3795 get_row_parameter_line(tab, row, eq->el);
3796 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3797 eq = isl_vec_normalize(eq);
3799 sol_inc_level(sol);
3800 no_sol_in_strict(sol, tab, eq);
3802 isl_seq_neg(eq->el, eq->el, eq->size);
3803 sol_inc_level(sol);
3804 no_sol_in_strict(sol, tab, eq);
3805 isl_seq_neg(eq->el, eq->el, eq->size);
3807 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3809 isl_vec_free(eq);
3811 if (isl_tab_mark_redundant(tab, row) < 0)
3812 goto error;
3814 if (sol->context->op->is_empty(sol->context))
3815 break;
3817 row = tab->n_redundant - 1;
3820 find_solutions(sol, tab);
3822 sol->level = 0;
3823 sol_pop(sol);
3825 return;
3826 error:
3827 isl_tab_free(tab);
3828 sol->error = 1;
3831 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3832 struct isl_tab *tab)
3834 find_solutions_main(&sol_map->sol, tab);
3837 /* Check if integer division "div" of "dom" also occurs in "bmap".
3838 * If so, return its position within the divs.
3839 * If not, return -1.
3841 static int find_context_div(struct isl_basic_map *bmap,
3842 struct isl_basic_set *dom, unsigned div)
3844 int i;
3845 unsigned b_dim = isl_dim_total(bmap->dim);
3846 unsigned d_dim = isl_dim_total(dom->dim);
3848 if (isl_int_is_zero(dom->div[div][0]))
3849 return -1;
3850 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3851 return -1;
3853 for (i = 0; i < bmap->n_div; ++i) {
3854 if (isl_int_is_zero(bmap->div[i][0]))
3855 continue;
3856 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3857 (b_dim - d_dim) + bmap->n_div) != -1)
3858 continue;
3859 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3860 return i;
3862 return -1;
3865 /* The correspondence between the variables in the main tableau,
3866 * the context tableau, and the input map and domain is as follows.
3867 * The first n_param and the last n_div variables of the main tableau
3868 * form the variables of the context tableau.
3869 * In the basic map, these n_param variables correspond to the
3870 * parameters and the input dimensions. In the domain, they correspond
3871 * to the parameters and the set dimensions.
3872 * The n_div variables correspond to the integer divisions in the domain.
3873 * To ensure that everything lines up, we may need to copy some of the
3874 * integer divisions of the domain to the map. These have to be placed
3875 * in the same order as those in the context and they have to be placed
3876 * after any other integer divisions that the map may have.
3877 * This function performs the required reordering.
3879 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3880 struct isl_basic_set *dom)
3882 int i;
3883 int common = 0;
3884 int other;
3886 for (i = 0; i < dom->n_div; ++i)
3887 if (find_context_div(bmap, dom, i) != -1)
3888 common++;
3889 other = bmap->n_div - common;
3890 if (dom->n_div - common > 0) {
3891 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3892 dom->n_div - common, 0, 0);
3893 if (!bmap)
3894 return NULL;
3896 for (i = 0; i < dom->n_div; ++i) {
3897 int pos = find_context_div(bmap, dom, i);
3898 if (pos < 0) {
3899 pos = isl_basic_map_alloc_div(bmap);
3900 if (pos < 0)
3901 goto error;
3902 isl_int_set_si(bmap->div[pos][0], 0);
3904 if (pos != other + i)
3905 isl_basic_map_swap_div(bmap, pos, other + i);
3907 return bmap;
3908 error:
3909 isl_basic_map_free(bmap);
3910 return NULL;
3913 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3914 * some obvious symmetries.
3916 * We make sure the divs in the domain are properly ordered,
3917 * because they will be added one by one in the given order
3918 * during the construction of the solution map.
3920 static __isl_give isl_map *basic_map_partial_lexopt_base(
3921 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3922 __isl_give isl_set **empty, int max)
3924 isl_map *result = NULL;
3925 struct isl_tab *tab;
3926 struct isl_sol_map *sol_map = NULL;
3927 struct isl_context *context;
3929 if (dom->n_div) {
3930 dom = isl_basic_set_order_divs(dom);
3931 bmap = align_context_divs(bmap, dom);
3933 sol_map = sol_map_init(bmap, dom, !!empty, max);
3934 if (!sol_map)
3935 goto error;
3937 context = sol_map->sol.context;
3938 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3939 /* nothing */;
3940 else if (isl_basic_map_fast_is_empty(bmap))
3941 sol_map_add_empty_if_needed(sol_map,
3942 isl_basic_set_copy(context->op->peek_basic_set(context)));
3943 else {
3944 tab = tab_for_lexmin(bmap,
3945 context->op->peek_basic_set(context), 1, max);
3946 tab = context->op->detect_nonnegative_parameters(context, tab);
3947 sol_map_find_solutions(sol_map, tab);
3949 if (sol_map->sol.error)
3950 goto error;
3952 result = isl_map_copy(sol_map->map);
3953 if (empty)
3954 *empty = isl_set_copy(sol_map->empty);
3955 sol_free(&sol_map->sol);
3956 isl_basic_map_free(bmap);
3957 return result;
3958 error:
3959 sol_free(&sol_map->sol);
3960 isl_basic_map_free(bmap);
3961 return NULL;
3964 /* Structure used during detection of parallel constraints.
3965 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
3966 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
3967 * val: the coefficients of the output variables
3969 struct isl_constraint_equal_info {
3970 isl_basic_map *bmap;
3971 unsigned n_in;
3972 unsigned n_out;
3973 isl_int *val;
3976 /* Check whether the coefficients of the output variables
3977 * of the constraint in "entry" are equal to info->val.
3979 static int constraint_equal(const void *entry, const void *val)
3981 isl_int **row = (isl_int **)entry;
3982 const struct isl_constraint_equal_info *info = val;
3984 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
3987 /* Check whether "bmap" has a pair of constraints that have
3988 * the same coefficients for the output variables.
3989 * Note that the coefficients of the existentially quantified
3990 * variables need to be zero since the existentially quantified
3991 * of the result are usually not the same as those of the input.
3992 * the isl_dim_out and isl_dim_div dimensions.
3993 * If so, return 1 and return the row indices of the two constraints
3994 * in *first and *second.
3996 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
3997 int *first, int *second)
3999 int i;
4000 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4001 struct isl_hash_table *table = NULL;
4002 struct isl_hash_table_entry *entry;
4003 struct isl_constraint_equal_info info;
4004 unsigned n_out;
4005 unsigned n_div;
4007 ctx = isl_basic_map_get_ctx(bmap);
4008 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4009 if (!table)
4010 goto error;
4012 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4013 isl_basic_map_dim(bmap, isl_dim_in);
4014 info.bmap = bmap;
4015 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4016 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4017 info.n_out = n_out + n_div;
4018 for (i = 0; i < bmap->n_ineq; ++i) {
4019 uint32_t hash;
4021 info.val = bmap->ineq[i] + 1 + info.n_in;
4022 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4023 continue;
4024 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4025 continue;
4026 hash = isl_seq_get_hash(info.val, info.n_out);
4027 entry = isl_hash_table_find(ctx, table, hash,
4028 constraint_equal, &info, 1);
4029 if (!entry)
4030 goto error;
4031 if (entry->data)
4032 break;
4033 entry->data = &bmap->ineq[i];
4036 if (i < bmap->n_ineq) {
4037 *first = ((isl_int **)entry->data) - bmap->ineq;
4038 *second = i;
4041 isl_hash_table_free(ctx, table);
4043 return i < bmap->n_ineq;
4044 error:
4045 isl_hash_table_free(ctx, table);
4046 return -1;
4049 /* Given a set of upper bounds on the last "input" variable m,
4050 * construct a set that assigns the minimal upper bound to m, i.e.,
4051 * construct a set that divides the space into cells where one
4052 * of the upper bounds is smaller than all the others and assign
4053 * this upper bound to m.
4055 * In particular, if there are n bounds b_i, then the result
4056 * consists of n basic sets, each one of the form
4058 * m = b_i
4059 * b_i <= b_j for j > i
4060 * b_i < b_j for j < i
4062 static __isl_give isl_set *set_minimum(__isl_take isl_dim *dim,
4063 __isl_take isl_mat *var)
4065 int i, j, k;
4066 isl_basic_set *bset = NULL;
4067 isl_ctx *ctx;
4068 isl_set *set = NULL;
4070 if (!dim || !var)
4071 goto error;
4073 ctx = isl_dim_get_ctx(dim);
4074 set = isl_set_alloc_dim(isl_dim_copy(dim),
4075 var->n_row, ISL_SET_DISJOINT);
4077 for (i = 0; i < var->n_row; ++i) {
4078 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0,
4079 1, var->n_row - 1);
4080 k = isl_basic_set_alloc_equality(bset);
4081 if (k < 0)
4082 goto error;
4083 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4084 isl_int_set_si(bset->eq[k][var->n_col], -1);
4085 for (j = 0; j < var->n_row; ++j) {
4086 if (j == i)
4087 continue;
4088 k = isl_basic_set_alloc_inequality(bset);
4089 if (k < 0)
4090 goto error;
4091 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4092 ctx->negone, var->row[i],
4093 var->n_col);
4094 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4095 if (j < i)
4096 isl_int_sub_ui(bset->ineq[k][0],
4097 bset->ineq[k][0], 1);
4099 bset = isl_basic_set_finalize(bset);
4100 set = isl_set_add_basic_set(set, bset);
4103 isl_dim_free(dim);
4104 isl_mat_free(var);
4105 return set;
4106 error:
4107 isl_basic_set_free(bset);
4108 isl_set_free(set);
4109 isl_dim_free(dim);
4110 isl_mat_free(var);
4111 return NULL;
4114 /* Given that the last input variable of "bmap" represents the minimum
4115 * of the bounds in "cst", check whether we need to split the domain
4116 * based on which bound attains the minimum.
4118 * A split is needed when the minimum appears in an integer division
4119 * or in an equality. Otherwise, it is only needed if it appears in
4120 * an upper bound that is different from the upper bounds on which it
4121 * is defined.
4123 static int need_split_map(__isl_keep isl_basic_map *bmap,
4124 __isl_keep isl_mat *cst)
4126 int i, j;
4127 unsigned total;
4128 unsigned pos;
4130 pos = cst->n_col - 1;
4131 total = isl_basic_map_dim(bmap, isl_dim_all);
4133 for (i = 0; i < bmap->n_div; ++i)
4134 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4135 return 1;
4137 for (i = 0; i < bmap->n_eq; ++i)
4138 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4139 return 1;
4141 for (i = 0; i < bmap->n_ineq; ++i) {
4142 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4143 continue;
4144 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4145 return 1;
4146 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4147 total - pos - 1) >= 0)
4148 return 1;
4150 for (j = 0; j < cst->n_row; ++j)
4151 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4152 break;
4153 if (j >= cst->n_row)
4154 return 1;
4157 return 0;
4160 static int need_split_set(__isl_keep isl_basic_set *bset,
4161 __isl_keep isl_mat *cst)
4163 return need_split_map((isl_basic_map *)bset, cst);
4166 /* Given a set of which the last set variable is the minimum
4167 * of the bounds in "cst", split each basic set in the set
4168 * in pieces where one of the bounds is (strictly) smaller than the others.
4169 * This subdivision is given in "min_expr".
4170 * The variable is subsequently projected out.
4172 * We only do the split when it is needed.
4173 * For example if the last input variable m = min(a,b) and the only
4174 * constraints in the given basic set are lower bounds on m,
4175 * i.e., l <= m = min(a,b), then we can simply project out m
4176 * to obtain l <= a and l <= b, without having to split on whether
4177 * m is equal to a or b.
4179 static __isl_give isl_set *split(__isl_take isl_set *empty,
4180 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4182 int n_in;
4183 int i;
4184 isl_dim *dim;
4185 isl_set *res;
4187 if (!empty || !min_expr || !cst)
4188 goto error;
4190 n_in = isl_set_dim(empty, isl_dim_set);
4191 dim = isl_set_get_dim(empty);
4192 dim = isl_dim_drop(dim, isl_dim_set, n_in - 1, 1);
4193 res = isl_set_empty(dim);
4195 for (i = 0; i < empty->n; ++i) {
4196 isl_set *set;
4198 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4199 if (need_split_set(empty->p[i], cst))
4200 set = isl_set_intersect(set, isl_set_copy(min_expr));
4201 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4203 res = isl_set_union_disjoint(res, set);
4206 isl_set_free(empty);
4207 isl_set_free(min_expr);
4208 isl_mat_free(cst);
4209 return res;
4210 error:
4211 isl_set_free(empty);
4212 isl_set_free(min_expr);
4213 isl_mat_free(cst);
4214 return NULL;
4217 /* Given a map of which the last input variable is the minimum
4218 * of the bounds in "cst", split each basic set in the set
4219 * in pieces where one of the bounds is (strictly) smaller than the others.
4220 * This subdivision is given in "min_expr".
4221 * The variable is subsequently projected out.
4223 * The implementation is essentially the same as that of "split".
4225 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4226 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4228 int n_in;
4229 int i;
4230 isl_dim *dim;
4231 isl_map *res;
4233 if (!opt || !min_expr || !cst)
4234 goto error;
4236 n_in = isl_map_dim(opt, isl_dim_in);
4237 dim = isl_map_get_dim(opt);
4238 dim = isl_dim_drop(dim, isl_dim_in, n_in - 1, 1);
4239 res = isl_map_empty(dim);
4241 for (i = 0; i < opt->n; ++i) {
4242 isl_map *map;
4244 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4245 if (need_split_map(opt->p[i], cst))
4246 map = isl_map_intersect_domain(map,
4247 isl_set_copy(min_expr));
4248 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4250 res = isl_map_union_disjoint(res, map);
4253 isl_map_free(opt);
4254 isl_set_free(min_expr);
4255 isl_mat_free(cst);
4256 return res;
4257 error:
4258 isl_map_free(opt);
4259 isl_set_free(min_expr);
4260 isl_mat_free(cst);
4261 return NULL;
4264 static __isl_give isl_map *basic_map_partial_lexopt(
4265 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4266 __isl_give isl_set **empty, int max);
4268 /* Given a basic map with at least two parallel constraints (as found
4269 * by the function parallel_constraints), first look for more constraints
4270 * parallel to the two constraint and replace the found list of parallel
4271 * constraints by a single constraint with as "input" part the minimum
4272 * of the input parts of the list of constraints. Then, recursively call
4273 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4274 * and plug in the definition of the minimum in the result.
4276 * More specifically, given a set of constraints
4278 * a x + b_i(p) >= 0
4280 * Replace this set by a single constraint
4282 * a x + u >= 0
4284 * with u a new parameter with constraints
4286 * u <= b_i(p)
4288 * Any solution to the new system is also a solution for the original system
4289 * since
4291 * a x >= -u >= -b_i(p)
4293 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4294 * therefore be plugged into the solution.
4296 static __isl_give isl_map *basic_map_partial_lexopt_symm(
4297 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4298 __isl_give isl_set **empty, int max, int first, int second)
4300 int i, n, k;
4301 int *list = NULL;
4302 unsigned n_in, n_out, n_div;
4303 isl_ctx *ctx;
4304 isl_vec *var = NULL;
4305 isl_mat *cst = NULL;
4306 isl_map *opt;
4307 isl_set *min_expr;
4308 isl_dim *map_dim, *set_dim;
4310 map_dim = isl_basic_map_get_dim(bmap);
4311 set_dim = empty ? isl_basic_set_get_dim(dom) : NULL;
4313 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4314 isl_basic_map_dim(bmap, isl_dim_in);
4315 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4317 ctx = isl_basic_map_get_ctx(bmap);
4318 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4319 var = isl_vec_alloc(ctx, n_out);
4320 if (!list || !var)
4321 goto error;
4323 list[0] = first;
4324 list[1] = second;
4325 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4326 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4327 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4328 list[n++] = i;
4331 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4332 if (!cst)
4333 goto error;
4335 for (i = 0; i < n; ++i)
4336 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4338 bmap = isl_basic_map_cow(bmap);
4339 if (!bmap)
4340 goto error;
4341 for (i = n - 1; i >= 0; --i)
4342 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4343 goto error;
4345 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4346 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4347 k = isl_basic_map_alloc_inequality(bmap);
4348 if (k < 0)
4349 goto error;
4350 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4351 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4352 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4353 bmap = isl_basic_map_finalize(bmap);
4355 n_div = isl_basic_set_dim(dom, isl_dim_div);
4356 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4357 dom = isl_basic_set_extend_constraints(dom, 0, n);
4358 for (i = 0; i < n; ++i) {
4359 k = isl_basic_set_alloc_inequality(dom);
4360 if (k < 0)
4361 goto error;
4362 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4363 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4364 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4367 min_expr = set_minimum(isl_basic_set_get_dim(dom), isl_mat_copy(cst));
4369 isl_vec_free(var);
4370 free(list);
4372 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4374 if (empty) {
4375 *empty = split(*empty,
4376 isl_set_copy(min_expr), isl_mat_copy(cst));
4377 *empty = isl_set_reset_dim(*empty, set_dim);
4380 opt = split_domain(opt, min_expr, cst);
4381 opt = isl_map_reset_dim(opt, map_dim);
4383 return opt;
4384 error:
4385 isl_dim_free(map_dim);
4386 isl_dim_free(set_dim);
4387 isl_mat_free(cst);
4388 isl_vec_free(var);
4389 free(list);
4390 isl_basic_set_free(dom);
4391 isl_basic_map_free(bmap);
4392 return NULL;
4395 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4396 * equalities and removing redundant constraints.
4398 * We first check if there are any parallel constraints (left).
4399 * If not, we are in the base case.
4400 * If there are parallel constraints, we replace them by a single
4401 * constraint in basic_map_partial_lexopt_symm and then call
4402 * this function recursively to look for more parallel constraints.
4404 static __isl_give isl_map *basic_map_partial_lexopt(
4405 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4406 __isl_give isl_set **empty, int max)
4408 int par = 0;
4409 int first, second;
4411 if (!bmap)
4412 goto error;
4414 if (bmap->ctx->opt->pip_symmetry)
4415 par = parallel_constraints(bmap, &first, &second);
4416 if (par < 0)
4417 goto error;
4418 if (!par)
4419 return basic_map_partial_lexopt_base(bmap, dom, empty, max);
4421 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4422 first, second);
4423 error:
4424 isl_basic_set_free(dom);
4425 isl_basic_map_free(bmap);
4426 return NULL;
4429 /* Compute the lexicographic minimum (or maximum if "max" is set)
4430 * of "bmap" over the domain "dom" and return the result as a map.
4431 * If "empty" is not NULL, then *empty is assigned a set that
4432 * contains those parts of the domain where there is no solution.
4433 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4434 * then we compute the rational optimum. Otherwise, we compute
4435 * the integral optimum.
4437 * We perform some preprocessing. As the PILP solver does not
4438 * handle implicit equalities very well, we first make sure all
4439 * the equalities are explicitly available.
4441 * We also add context constraints to the basic map and remove
4442 * redundant constraints. This is only needed because of the
4443 * way we handle simple symmetries. In particular, we currently look
4444 * for symmetries on the constraints, before we set up the main tableau.
4445 * It is then no good to look for symmetries on possibly redundant constraints.
4447 struct isl_map *isl_tab_basic_map_partial_lexopt(
4448 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4449 struct isl_set **empty, int max)
4451 if (empty)
4452 *empty = NULL;
4453 if (!bmap || !dom)
4454 goto error;
4456 isl_assert(bmap->ctx,
4457 isl_basic_map_compatible_domain(bmap, dom), goto error);
4459 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4460 return basic_map_partial_lexopt(bmap, dom, empty, max);
4462 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4463 bmap = isl_basic_map_detect_equalities(bmap);
4464 bmap = isl_basic_map_remove_redundancies(bmap);
4466 return basic_map_partial_lexopt(bmap, dom, empty, max);
4467 error:
4468 isl_basic_set_free(dom);
4469 isl_basic_map_free(bmap);
4470 return NULL;
4473 struct isl_sol_for {
4474 struct isl_sol sol;
4475 int (*fn)(__isl_take isl_basic_set *dom,
4476 __isl_take isl_mat *map, void *user);
4477 void *user;
4480 static void sol_for_free(struct isl_sol_for *sol_for)
4482 if (sol_for->sol.context)
4483 sol_for->sol.context->op->free(sol_for->sol.context);
4484 free(sol_for);
4487 static void sol_for_free_wrap(struct isl_sol *sol)
4489 sol_for_free((struct isl_sol_for *)sol);
4492 /* Add the solution identified by the tableau and the context tableau.
4494 * See documentation of sol_add for more details.
4496 * Instead of constructing a basic map, this function calls a user
4497 * defined function with the current context as a basic set and
4498 * an affine matrix representing the relation between the input and output.
4499 * The number of rows in this matrix is equal to one plus the number
4500 * of output variables. The number of columns is equal to one plus
4501 * the total dimension of the context, i.e., the number of parameters,
4502 * input variables and divs. Since some of the columns in the matrix
4503 * may refer to the divs, the basic set is not simplified.
4504 * (Simplification may reorder or remove divs.)
4506 static void sol_for_add(struct isl_sol_for *sol,
4507 struct isl_basic_set *dom, struct isl_mat *M)
4509 if (sol->sol.error || !dom || !M)
4510 goto error;
4512 dom = isl_basic_set_simplify(dom);
4513 dom = isl_basic_set_finalize(dom);
4515 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4516 goto error;
4518 isl_basic_set_free(dom);
4519 isl_mat_free(M);
4520 return;
4521 error:
4522 isl_basic_set_free(dom);
4523 isl_mat_free(M);
4524 sol->sol.error = 1;
4527 static void sol_for_add_wrap(struct isl_sol *sol,
4528 struct isl_basic_set *dom, struct isl_mat *M)
4530 sol_for_add((struct isl_sol_for *)sol, dom, M);
4533 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4534 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4535 void *user),
4536 void *user)
4538 struct isl_sol_for *sol_for = NULL;
4539 struct isl_dim *dom_dim;
4540 struct isl_basic_set *dom = NULL;
4542 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4543 if (!sol_for)
4544 goto error;
4546 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4547 dom = isl_basic_set_universe(dom_dim);
4549 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4550 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4551 sol_for->sol.dec_level.sol = &sol_for->sol;
4552 sol_for->fn = fn;
4553 sol_for->user = user;
4554 sol_for->sol.max = max;
4555 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4556 sol_for->sol.add = &sol_for_add_wrap;
4557 sol_for->sol.add_empty = NULL;
4558 sol_for->sol.free = &sol_for_free_wrap;
4560 sol_for->sol.context = isl_context_alloc(dom);
4561 if (!sol_for->sol.context)
4562 goto error;
4564 isl_basic_set_free(dom);
4565 return sol_for;
4566 error:
4567 isl_basic_set_free(dom);
4568 sol_for_free(sol_for);
4569 return NULL;
4572 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4573 struct isl_tab *tab)
4575 find_solutions_main(&sol_for->sol, tab);
4578 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4579 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4580 void *user),
4581 void *user)
4583 struct isl_sol_for *sol_for = NULL;
4585 bmap = isl_basic_map_copy(bmap);
4586 if (!bmap)
4587 return -1;
4589 bmap = isl_basic_map_detect_equalities(bmap);
4590 sol_for = sol_for_init(bmap, max, fn, user);
4592 if (isl_basic_map_fast_is_empty(bmap))
4593 /* nothing */;
4594 else {
4595 struct isl_tab *tab;
4596 struct isl_context *context = sol_for->sol.context;
4597 tab = tab_for_lexmin(bmap,
4598 context->op->peek_basic_set(context), 1, max);
4599 tab = context->op->detect_nonnegative_parameters(context, tab);
4600 sol_for_find_solutions(sol_for, tab);
4601 if (sol_for->sol.error)
4602 goto error;
4605 sol_free(&sol_for->sol);
4606 isl_basic_map_free(bmap);
4607 return 0;
4608 error:
4609 sol_free(&sol_for->sol);
4610 isl_basic_map_free(bmap);
4611 return -1;
4614 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4615 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4616 void *user),
4617 void *user)
4619 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4622 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4623 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4624 void *user),
4625 void *user)
4627 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);