2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 __isl_give isl_basic_map
*isl_basic_map_normalize_constraints(
48 __isl_take isl_basic_map
*bmap
)
52 unsigned total
= isl_basic_map_total_dim(bmap
);
58 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
59 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
60 if (isl_int_is_zero(gcd
)) {
61 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
62 bmap
= isl_basic_map_set_to_empty(bmap
);
65 isl_basic_map_drop_equality(bmap
, i
);
68 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
69 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
70 if (isl_int_is_one(gcd
))
72 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
73 bmap
= isl_basic_map_set_to_empty(bmap
);
76 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
79 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
80 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
81 if (isl_int_is_zero(gcd
)) {
82 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
83 bmap
= isl_basic_map_set_to_empty(bmap
);
86 isl_basic_map_drop_inequality(bmap
, i
);
89 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
90 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
91 if (isl_int_is_one(gcd
))
93 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
94 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
101 __isl_give isl_basic_set
*isl_basic_set_normalize_constraints(
102 __isl_take isl_basic_set
*bset
)
104 isl_basic_map
*bmap
= bset_to_bmap(bset
);
105 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
108 /* Reduce the coefficient of the variable at position "pos"
109 * in integer division "div", such that it lies in the half-open
110 * interval (1/2,1/2], extracting any excess value from this integer division.
111 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
112 * corresponds to the constant term.
114 * That is, the integer division is of the form
116 * floor((... + (c * d + r) * x_pos + ...)/d)
118 * with -d < 2 * r <= d.
121 * floor((... + r * x_pos + ...)/d) + c * x_pos
123 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
124 * Otherwise, c = floor((c * d + r)/d) + 1.
126 * This is the same normalization that is performed by isl_aff_floor.
128 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
129 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
135 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
136 isl_int_mul_ui(shift
, shift
, 2);
137 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
138 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
140 isl_int_add_ui(shift
, shift
, 1);
141 isl_int_neg(shift
, shift
);
142 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
143 isl_int_clear(shift
);
148 /* Does the coefficient of the variable at position "pos"
149 * in integer division "div" need to be reduced?
150 * That is, does it lie outside the half-open interval (1/2,1/2]?
151 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
154 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
159 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
160 return isl_bool_false
;
162 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
163 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
164 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
165 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
166 bmap
->div
[div
][1 + pos
], 2);
171 /* Reduce the coefficients (including the constant term) of
172 * integer division "div", if needed.
173 * In particular, make sure all coefficients lie in
174 * the half-open interval (1/2,1/2].
176 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
177 __isl_take isl_basic_map
*bmap
, int div
)
180 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
182 for (i
= 0; i
< total
; ++i
) {
185 reduce
= needs_reduction(bmap
, div
, i
);
187 return isl_basic_map_free(bmap
);
190 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
198 /* Reduce the coefficients (including the constant term) of
199 * the known integer divisions, if needed
200 * In particular, make sure all coefficients lie in
201 * the half-open interval (1/2,1/2].
203 static __isl_give isl_basic_map
*reduce_div_coefficients(
204 __isl_take isl_basic_map
*bmap
)
210 if (bmap
->n_div
== 0)
213 for (i
= 0; i
< bmap
->n_div
; ++i
) {
214 if (isl_int_is_zero(bmap
->div
[i
][0]))
216 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
224 /* Remove any common factor in numerator and denominator of the div expression,
225 * not taking into account the constant term.
226 * That is, if the div is of the form
228 * floor((a + m f(x))/(m d))
232 * floor((floor(a/m) + f(x))/d)
234 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
235 * and can therefore not influence the result of the floor.
237 static __isl_give isl_basic_map
*normalize_div_expression(
238 __isl_take isl_basic_map
*bmap
, int div
)
240 unsigned total
= isl_basic_map_total_dim(bmap
);
241 isl_ctx
*ctx
= bmap
->ctx
;
243 if (isl_int_is_zero(bmap
->div
[div
][0]))
245 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
246 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
247 if (isl_int_is_one(ctx
->normalize_gcd
))
249 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
251 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
253 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
254 ctx
->normalize_gcd
, total
);
259 /* Remove any common factor in numerator and denominator of a div expression,
260 * not taking into account the constant term.
261 * That is, look for any div of the form
263 * floor((a + m f(x))/(m d))
267 * floor((floor(a/m) + f(x))/d)
269 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
270 * and can therefore not influence the result of the floor.
272 static __isl_give isl_basic_map
*normalize_div_expressions(
273 __isl_take isl_basic_map
*bmap
)
279 if (bmap
->n_div
== 0)
282 for (i
= 0; i
< bmap
->n_div
; ++i
)
283 bmap
= normalize_div_expression(bmap
, i
);
288 /* Assumes divs have been ordered if keep_divs is set.
290 static __isl_give isl_basic_map
*eliminate_var_using_equality(
291 __isl_take isl_basic_map
*bmap
,
292 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
295 unsigned space_total
;
299 total
= isl_basic_map_total_dim(bmap
);
300 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
301 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
302 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
303 if (bmap
->eq
[k
] == eq
)
305 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
309 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
310 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
313 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
314 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
318 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
319 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
320 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
321 ISL_F_CLR(bmap
, ISL_BASIC_MAP_SORTED
);
324 for (k
= 0; k
< bmap
->n_div
; ++k
) {
325 if (isl_int_is_zero(bmap
->div
[k
][0]))
327 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
331 /* We need to be careful about circular definitions,
332 * so for now we just remove the definition of div k
333 * if the equality contains any divs.
334 * If keep_divs is set, then the divs have been ordered
335 * and we can keep the definition as long as the result
338 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
339 isl_seq_elim(bmap
->div
[k
]+1, eq
,
340 1+pos
, 1+total
, &bmap
->div
[k
][0]);
341 bmap
= normalize_div_expression(bmap
, k
);
345 isl_seq_clr(bmap
->div
[k
], 1 + total
);
351 /* Assumes divs have been ordered if keep_divs is set.
353 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
354 isl_int
*eq
, unsigned div
, int keep_divs
)
356 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
358 bmap
= eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
360 bmap
= isl_basic_map_drop_div(bmap
, div
);
365 /* Check if elimination of div "div" using equality "eq" would not
366 * result in a div depending on a later div.
368 static isl_bool
ok_to_eliminate_div(__isl_keep isl_basic_map
*bmap
, isl_int
*eq
,
373 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
374 unsigned pos
= space_total
+ div
;
376 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
377 if (last_div
< 0 || last_div
<= div
)
378 return isl_bool_true
;
380 for (k
= 0; k
<= last_div
; ++k
) {
381 if (isl_int_is_zero(bmap
->div
[k
][0]))
383 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
384 return isl_bool_false
;
387 return isl_bool_true
;
390 /* Eliminate divs based on equalities
392 static __isl_give isl_basic_map
*eliminate_divs_eq(
393 __isl_take isl_basic_map
*bmap
, int *progress
)
400 bmap
= isl_basic_map_order_divs(bmap
);
405 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
407 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
408 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
411 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
412 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
414 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
416 return isl_basic_map_free(bmap
);
421 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
422 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
423 return isl_basic_map_free(bmap
);
428 return eliminate_divs_eq(bmap
, progress
);
432 /* Eliminate divs based on inequalities
434 static __isl_give isl_basic_map
*eliminate_divs_ineq(
435 __isl_take isl_basic_map
*bmap
, int *progress
)
446 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
448 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
449 for (i
= 0; i
< bmap
->n_eq
; ++i
)
450 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
454 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
455 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
457 if (i
< bmap
->n_ineq
)
460 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
461 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
463 bmap
= isl_basic_map_drop_div(bmap
, d
);
470 /* Does the equality constraint at position "eq" in "bmap" involve
471 * any local variables in the range [first, first + n)
472 * that are not marked as having an explicit representation?
474 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
475 int eq
, unsigned first
, unsigned n
)
481 return isl_bool_error
;
483 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
484 for (i
= 0; i
< n
; ++i
) {
487 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
489 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
491 return isl_bool_error
;
493 return isl_bool_true
;
496 return isl_bool_false
;
499 /* The last local variable involved in the equality constraint
500 * at position "eq" in "bmap" is the local variable at position "div".
501 * It can therefore be used to extract an explicit representation
503 * Do so unless the local variable already has an explicit representation or
504 * the explicit representation would involve any other local variables
505 * that in turn do not have an explicit representation.
506 * An equality constraint involving local variables without an explicit
507 * representation can be used in isl_basic_map_drop_redundant_divs
508 * to separate out an independent local variable. Introducing
509 * an explicit representation here would block this transformation,
510 * while the partial explicit representation in itself is not very useful.
511 * Set *progress if anything is changed.
513 * The equality constraint is of the form
517 * with n a positive number. The explicit representation derived from
522 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
523 int div
, int eq
, int *progress
)
525 unsigned total
, o_div
;
531 if (!isl_int_is_zero(bmap
->div
[div
][0]))
534 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
536 return isl_basic_map_free(bmap
);
540 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
541 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
542 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
543 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
544 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
551 __isl_give isl_basic_map
*isl_basic_map_gauss(__isl_take isl_basic_map
*bmap
,
560 bmap
= isl_basic_map_order_divs(bmap
);
565 total
= isl_basic_map_total_dim(bmap
);
566 total_var
= total
- bmap
->n_div
;
568 last_var
= total
- 1;
569 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
570 for (; last_var
>= 0; --last_var
) {
571 for (k
= done
; k
< bmap
->n_eq
; ++k
)
572 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
580 swap_equality(bmap
, k
, done
);
581 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
582 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
584 bmap
= eliminate_var_using_equality(bmap
, last_var
,
585 bmap
->eq
[done
], 1, progress
);
587 if (last_var
>= total_var
)
588 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
593 if (done
== bmap
->n_eq
)
595 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
596 if (isl_int_is_zero(bmap
->eq
[k
][0]))
598 return isl_basic_map_set_to_empty(bmap
);
600 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
604 __isl_give isl_basic_set
*isl_basic_set_gauss(
605 __isl_take isl_basic_set
*bset
, int *progress
)
607 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
612 static unsigned int round_up(unsigned int v
)
623 /* Hash table of inequalities in a basic map.
624 * "index" is an array of addresses of inequalities in the basic map, some
625 * of which are NULL. The inequalities are hashed on the coefficients
626 * except the constant term.
627 * "size" is the number of elements in the array and is always a power of two
628 * "bits" is the number of bits need to represent an index into the array.
629 * "total" is the total dimension of the basic map.
631 struct isl_constraint_index
{
638 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
640 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
641 __isl_keep isl_basic_map
*bmap
)
647 return isl_stat_error
;
648 ci
->total
= isl_basic_set_total_dim(bmap
);
649 if (bmap
->n_ineq
== 0)
651 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
652 ci
->bits
= ffs(ci
->size
) - 1;
653 ctx
= isl_basic_map_get_ctx(bmap
);
654 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
656 return isl_stat_error
;
661 /* Free the memory allocated by create_constraint_index.
663 static void constraint_index_free(struct isl_constraint_index
*ci
)
668 /* Return the position in ci->index that contains the address of
669 * an inequality that is equal to *ineq up to the constant term,
670 * provided this address is not identical to "ineq".
671 * If there is no such inequality, then return the position where
672 * such an inequality should be inserted.
674 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
677 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
678 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
679 if (ineq
!= ci
->index
[h
] &&
680 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
685 /* Return the position in ci->index that contains the address of
686 * an inequality that is equal to the k'th inequality of "bmap"
687 * up to the constant term, provided it does not point to the very
689 * If there is no such inequality, then return the position where
690 * such an inequality should be inserted.
692 static int hash_index(struct isl_constraint_index
*ci
,
693 __isl_keep isl_basic_map
*bmap
, int k
)
695 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
698 static int set_hash_index(struct isl_constraint_index
*ci
,
699 __isl_keep isl_basic_set
*bset
, int k
)
701 return hash_index(ci
, bset
, k
);
704 /* Fill in the "ci" data structure with the inequalities of "bset".
706 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
707 __isl_keep isl_basic_set
*bset
)
711 if (create_constraint_index(ci
, bset
) < 0)
712 return isl_stat_error
;
714 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
715 h
= set_hash_index(ci
, bset
, k
);
716 ci
->index
[h
] = &bset
->ineq
[k
];
722 /* Is the inequality ineq (obviously) redundant with respect
723 * to the constraints in "ci"?
725 * Look for an inequality in "ci" with the same coefficients and then
726 * check if the contant term of "ineq" is greater than or equal
727 * to the constant term of that inequality. If so, "ineq" is clearly
730 * Note that hash_index_ineq ignores a stored constraint if it has
731 * the same address as the passed inequality. It is ok to pass
732 * the address of a local variable here since it will never be
733 * the same as the address of a constraint in "ci".
735 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
740 h
= hash_index_ineq(ci
, &ineq
);
742 return isl_bool_false
;
743 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
746 /* If we can eliminate more than one div, then we need to make
747 * sure we do it from last div to first div, in order not to
748 * change the position of the other divs that still need to
751 static __isl_give isl_basic_map
*remove_duplicate_divs(
752 __isl_take isl_basic_map
*bmap
, int *progress
)
764 bmap
= isl_basic_map_order_divs(bmap
);
765 if (!bmap
|| bmap
->n_div
<= 1)
768 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
769 total
= total_var
+ bmap
->n_div
;
772 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
773 if (!isl_int_is_zero(bmap
->div
[k
][0]))
778 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
781 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
782 bits
= ffs(size
) - 1;
783 index
= isl_calloc_array(ctx
, int, size
);
784 if (!elim_for
|| !index
)
786 eq
= isl_blk_alloc(ctx
, 1+total
);
787 if (isl_blk_is_error(eq
))
790 isl_seq_clr(eq
.data
, 1+total
);
791 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
792 for (--k
; k
>= 0; --k
) {
795 if (isl_int_is_zero(bmap
->div
[k
][0]))
798 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
799 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
800 if (isl_seq_eq(bmap
->div
[k
],
801 bmap
->div
[index
[h
]-1], 2+total
))
810 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
814 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
815 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
816 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
819 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
820 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
823 isl_blk_free(ctx
, eq
);
830 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
835 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
836 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
837 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
841 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
847 /* Normalize divs that appear in equalities.
849 * In particular, we assume that bmap contains some equalities
854 * and we want to replace the set of e_i by a minimal set and
855 * such that the new e_i have a canonical representation in terms
857 * If any of the equalities involves more than one divs, then
858 * we currently simply bail out.
860 * Let us first additionally assume that all equalities involve
861 * a div. The equalities then express modulo constraints on the
862 * remaining variables and we can use "parameter compression"
863 * to find a minimal set of constraints. The result is a transformation
865 * x = T(x') = x_0 + G x'
867 * with G a lower-triangular matrix with all elements below the diagonal
868 * non-negative and smaller than the diagonal element on the same row.
869 * We first normalize x_0 by making the same property hold in the affine
871 * The rows i of G with a 1 on the diagonal do not impose any modulo
872 * constraint and simply express x_i = x'_i.
873 * For each of the remaining rows i, we introduce a div and a corresponding
874 * equality. In particular
876 * g_ii e_j = x_i - g_i(x')
878 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
879 * corresponding div (if g_kk != 1).
881 * If there are any equalities not involving any div, then we
882 * first apply a variable compression on the variables x:
884 * x = C x'' x'' = C_2 x
886 * and perform the above parameter compression on A C instead of on A.
887 * The resulting compression is then of the form
889 * x'' = T(x') = x_0 + G x'
891 * and in constructing the new divs and the corresponding equalities,
892 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
893 * by the corresponding row from C_2.
895 static __isl_give isl_basic_map
*normalize_divs(__isl_take isl_basic_map
*bmap
,
903 struct isl_mat
*T
= NULL
;
904 struct isl_mat
*C
= NULL
;
905 struct isl_mat
*C2
= NULL
;
913 if (bmap
->n_div
== 0)
919 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
922 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
923 div_eq
= n_pure_div_eq(bmap
);
927 if (div_eq
< bmap
->n_eq
) {
928 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
929 bmap
->n_eq
- div_eq
, 0, 1 + total
);
930 C
= isl_mat_variable_compression(B
, &C2
);
934 bmap
= isl_basic_map_set_to_empty(bmap
);
941 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
944 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
945 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
947 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
949 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
952 B
= isl_mat_product(B
, C
);
956 T
= isl_mat_parameter_compression(B
, d
);
960 bmap
= isl_basic_map_set_to_empty(bmap
);
966 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
967 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
968 if (isl_int_is_zero(v
))
970 isl_mat_col_submul(T
, 0, v
, 1 + i
);
973 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
976 /* We have to be careful because dropping equalities may reorder them */
978 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
979 for (i
= 0; i
< bmap
->n_eq
; ++i
)
980 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
982 if (i
< bmap
->n_eq
) {
983 bmap
= isl_basic_map_drop_div(bmap
, j
);
984 isl_basic_map_drop_equality(bmap
, i
);
990 for (i
= 1; i
< T
->n_row
; ++i
) {
991 if (isl_int_is_one(T
->row
[i
][i
]))
996 if (needed
> dropped
) {
997 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1002 for (i
= 1; i
< T
->n_row
; ++i
) {
1003 if (isl_int_is_one(T
->row
[i
][i
]))
1005 k
= isl_basic_map_alloc_div(bmap
);
1006 pos
[i
] = 1 + total
+ k
;
1007 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1008 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1010 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1012 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1013 for (j
= 0; j
< i
; ++j
) {
1014 if (isl_int_is_zero(T
->row
[i
][j
]))
1016 if (pos
[j
] < T
->n_row
&& C2
)
1017 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1018 C2
->row
[pos
[j
]], 1 + total
);
1020 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1023 j
= isl_basic_map_alloc_equality(bmap
);
1024 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1025 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1034 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1045 static __isl_give isl_basic_map
*set_div_from_lower_bound(
1046 __isl_take isl_basic_map
*bmap
, int div
, int ineq
)
1048 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1050 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1051 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1052 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1053 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1054 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1059 /* Check whether it is ok to define a div based on an inequality.
1060 * To avoid the introduction of circular definitions of divs, we
1061 * do not allow such a definition if the resulting expression would refer to
1062 * any other undefined divs or if any known div is defined in
1063 * terms of the unknown div.
1065 static isl_bool
ok_to_set_div_from_bound(__isl_keep isl_basic_map
*bmap
,
1069 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1071 /* Not defined in terms of unknown divs */
1072 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1075 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1077 if (isl_int_is_zero(bmap
->div
[j
][0]))
1078 return isl_bool_false
;
1081 /* No other div defined in terms of this one => avoid loops */
1082 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1085 if (isl_int_is_zero(bmap
->div
[j
][0]))
1087 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1088 return isl_bool_false
;
1091 return isl_bool_true
;
1094 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1095 * be a better expression than the current one?
1097 * If we do not have any expression yet, then any expression would be better.
1098 * Otherwise we check if the last variable involved in the inequality
1099 * (disregarding the div that it would define) is in an earlier position
1100 * than the last variable involved in the current div expression.
1102 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1105 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1109 if (isl_int_is_zero(bmap
->div
[div
][0]))
1110 return isl_bool_true
;
1112 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1113 bmap
->n_div
- (div
+ 1)) >= 0)
1114 return isl_bool_false
;
1116 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1117 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1118 total
+ bmap
->n_div
);
1120 return last_ineq
< last_div
;
1123 /* Given two constraints "k" and "l" that are opposite to each other,
1124 * except for the constant term, check if we can use them
1125 * to obtain an expression for one of the hitherto unknown divs or
1126 * a "better" expression for a div for which we already have an expression.
1127 * "sum" is the sum of the constant terms of the constraints.
1128 * If this sum is strictly smaller than the coefficient of one
1129 * of the divs, then this pair can be used define the div.
1130 * To avoid the introduction of circular definitions of divs, we
1131 * do not use the pair if the resulting expression would refer to
1132 * any other undefined divs or if any known div is defined in
1133 * terms of the unknown div.
1135 static __isl_give isl_basic_map
*check_for_div_constraints(
1136 __isl_take isl_basic_map
*bmap
, int k
, int l
, isl_int sum
,
1140 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1142 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1145 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1147 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1149 set_div
= better_div_constraint(bmap
, i
, k
);
1150 if (set_div
>= 0 && set_div
)
1151 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1153 return isl_basic_map_free(bmap
);
1156 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1157 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1159 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1167 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1168 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1170 struct isl_constraint_index ci
;
1172 unsigned total
= isl_basic_map_total_dim(bmap
);
1175 if (!bmap
|| bmap
->n_ineq
<= 1)
1178 if (create_constraint_index(&ci
, bmap
) < 0)
1181 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1182 ci
.index
[h
] = &bmap
->ineq
[0];
1183 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1184 h
= hash_index(&ci
, bmap
, k
);
1186 ci
.index
[h
] = &bmap
->ineq
[k
];
1191 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1192 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1193 swap_inequality(bmap
, k
, l
);
1194 isl_basic_map_drop_inequality(bmap
, k
);
1198 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1199 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1200 h
= hash_index(&ci
, bmap
, k
);
1201 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1204 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1205 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1206 if (isl_int_is_pos(sum
)) {
1208 bmap
= check_for_div_constraints(bmap
, k
, l
,
1212 if (isl_int_is_zero(sum
)) {
1213 /* We need to break out of the loop after these
1214 * changes since the contents of the hash
1215 * will no longer be valid.
1216 * Plus, we probably we want to regauss first.
1220 isl_basic_map_drop_inequality(bmap
, l
);
1221 isl_basic_map_inequality_to_equality(bmap
, k
);
1223 bmap
= isl_basic_map_set_to_empty(bmap
);
1228 constraint_index_free(&ci
);
1232 /* Detect all pairs of inequalities that form an equality.
1234 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1235 * Call it repeatedly while it is making progress.
1237 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1238 __isl_take isl_basic_map
*bmap
, int *progress
)
1244 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1246 if (progress
&& duplicate
)
1248 } while (duplicate
);
1253 /* Eliminate knowns divs from constraints where they appear with
1254 * a (positive or negative) unit coefficient.
1258 * floor(e/m) + f >= 0
1266 * -floor(e/m) + f >= 0
1270 * -e + m f + m - 1 >= 0
1272 * The first conversion is valid because floor(e/m) >= -f is equivalent
1273 * to e/m >= -f because -f is an integral expression.
1274 * The second conversion follows from the fact that
1276 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1279 * Note that one of the div constraints may have been eliminated
1280 * due to being redundant with respect to the constraint that is
1281 * being modified by this function. The modified constraint may
1282 * no longer imply this div constraint, so we add it back to make
1283 * sure we do not lose any information.
1285 * We skip integral divs, i.e., those with denominator 1, as we would
1286 * risk eliminating the div from the div constraints. We do not need
1287 * to handle those divs here anyway since the div constraints will turn
1288 * out to form an equality and this equality can then be used to eliminate
1289 * the div from all constraints.
1291 static __isl_give isl_basic_map
*eliminate_unit_divs(
1292 __isl_take isl_basic_map
*bmap
, int *progress
)
1301 ctx
= isl_basic_map_get_ctx(bmap
);
1302 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1304 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1305 if (isl_int_is_zero(bmap
->div
[i
][0]))
1307 if (isl_int_is_one(bmap
->div
[i
][0]))
1309 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1312 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1313 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1318 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1319 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1321 isl_seq_combine(bmap
->ineq
[j
],
1322 ctx
->negone
, bmap
->div
[i
] + 1,
1323 bmap
->div
[i
][0], bmap
->ineq
[j
],
1324 total
+ bmap
->n_div
);
1326 isl_seq_combine(bmap
->ineq
[j
],
1327 ctx
->one
, bmap
->div
[i
] + 1,
1328 bmap
->div
[i
][0], bmap
->ineq
[j
],
1329 total
+ bmap
->n_div
);
1331 isl_int_add(bmap
->ineq
[j
][0],
1332 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1333 isl_int_sub_ui(bmap
->ineq
[j
][0],
1334 bmap
->ineq
[j
][0], 1);
1337 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1338 bmap
= isl_basic_map_add_div_constraint(bmap
, i
, s
);
1347 __isl_give isl_basic_map
*isl_basic_map_simplify(__isl_take isl_basic_map
*bmap
)
1356 empty
= isl_basic_map_plain_is_empty(bmap
);
1358 return isl_basic_map_free(bmap
);
1361 bmap
= isl_basic_map_normalize_constraints(bmap
);
1362 bmap
= reduce_div_coefficients(bmap
);
1363 bmap
= normalize_div_expressions(bmap
);
1364 bmap
= remove_duplicate_divs(bmap
, &progress
);
1365 bmap
= eliminate_unit_divs(bmap
, &progress
);
1366 bmap
= eliminate_divs_eq(bmap
, &progress
);
1367 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1368 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1369 /* requires equalities in normal form */
1370 bmap
= normalize_divs(bmap
, &progress
);
1371 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1373 if (bmap
&& progress
)
1374 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1379 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1381 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1385 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1386 isl_int
*constraint
, unsigned div
)
1391 return isl_bool_error
;
1393 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1395 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1397 isl_int_sub(bmap
->div
[div
][1],
1398 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1399 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1400 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1401 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1402 isl_int_add(bmap
->div
[div
][1],
1403 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1405 return isl_bool_false
;
1406 if (isl_seq_first_non_zero(constraint
+pos
+1,
1407 bmap
->n_div
-div
-1) != -1)
1408 return isl_bool_false
;
1409 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1410 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1411 return isl_bool_false
;
1412 if (isl_seq_first_non_zero(constraint
+pos
+1,
1413 bmap
->n_div
-div
-1) != -1)
1414 return isl_bool_false
;
1416 return isl_bool_false
;
1418 return isl_bool_true
;
1421 isl_bool
isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1422 isl_int
*constraint
, unsigned div
)
1424 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1428 /* If the only constraints a div d=floor(f/m)
1429 * appears in are its two defining constraints
1432 * -(f - (m - 1)) + m d >= 0
1434 * then it can safely be removed.
1436 static isl_bool
div_is_redundant(__isl_keep isl_basic_map
*bmap
, int div
)
1439 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1441 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1442 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1443 return isl_bool_false
;
1445 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1448 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1450 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1451 if (red
< 0 || !red
)
1455 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1456 if (isl_int_is_zero(bmap
->div
[i
][0]))
1458 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1459 return isl_bool_false
;
1462 return isl_bool_true
;
1466 * Remove divs that don't occur in any of the constraints or other divs.
1467 * These can arise when dropping constraints from a basic map or
1468 * when the divs of a basic map have been temporarily aligned
1469 * with the divs of another basic map.
1471 static __isl_give isl_basic_map
*remove_redundant_divs(
1472 __isl_take isl_basic_map
*bmap
)
1477 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
1479 return isl_basic_map_free(bmap
);
1481 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1484 redundant
= div_is_redundant(bmap
, i
);
1486 return isl_basic_map_free(bmap
);
1489 bmap
= isl_basic_map_drop_constraints_involving(bmap
,
1491 bmap
= isl_basic_map_drop_div(bmap
, i
);
1496 /* Mark "bmap" as final, without checking for obviously redundant
1497 * integer divisions. This function should be used when "bmap"
1498 * is known not to involve any such integer divisions.
1500 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1501 __isl_take isl_basic_map
*bmap
)
1505 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1509 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1511 __isl_give isl_basic_map
*isl_basic_map_finalize(__isl_take isl_basic_map
*bmap
)
1513 bmap
= remove_redundant_divs(bmap
);
1514 bmap
= isl_basic_map_mark_final(bmap
);
1518 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1520 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1523 /* Remove definition of any div that is defined in terms of the given variable.
1524 * The div itself is not removed. Functions such as
1525 * eliminate_divs_ineq depend on the other divs remaining in place.
1527 static __isl_give isl_basic_map
*remove_dependent_vars(
1528 __isl_take isl_basic_map
*bmap
, int pos
)
1535 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1536 if (isl_int_is_zero(bmap
->div
[i
][0]))
1538 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1540 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1547 /* Eliminate the specified variables from the constraints using
1548 * Fourier-Motzkin. The variables themselves are not removed.
1550 __isl_give isl_basic_map
*isl_basic_map_eliminate_vars(
1551 __isl_take isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1562 total
= isl_basic_map_total_dim(bmap
);
1564 bmap
= isl_basic_map_cow(bmap
);
1565 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1566 bmap
= remove_dependent_vars(bmap
, d
);
1570 for (d
= pos
+ n
- 1;
1571 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1572 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1573 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1574 int n_lower
, n_upper
;
1577 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1578 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1580 bmap
= eliminate_var_using_equality(bmap
, d
,
1581 bmap
->eq
[i
], 0, NULL
);
1582 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
1583 return isl_basic_map_free(bmap
);
1591 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1592 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1594 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1597 bmap
= isl_basic_map_extend_constraints(bmap
,
1598 0, n_lower
* n_upper
);
1601 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1603 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1606 for (j
= 0; j
< i
; ++j
) {
1607 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1610 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1611 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1613 k
= isl_basic_map_alloc_inequality(bmap
);
1616 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1618 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1619 1+d
, 1+total
, NULL
);
1621 isl_basic_map_drop_inequality(bmap
, i
);
1624 if (n_lower
> 0 && n_upper
> 0) {
1625 bmap
= isl_basic_map_normalize_constraints(bmap
);
1626 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1628 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1629 bmap
= isl_basic_map_remove_redundancies(bmap
);
1633 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1638 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1641 isl_basic_map_free(bmap
);
1645 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1646 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1648 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1652 /* Eliminate the specified n dimensions starting at first from the
1653 * constraints, without removing the dimensions from the space.
1654 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1655 * Otherwise, they are projected out and the original space is restored.
1657 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1658 __isl_take isl_basic_map
*bmap
,
1659 enum isl_dim_type type
, unsigned first
, unsigned n
)
1668 if (isl_basic_map_check_range(bmap
, type
, first
, n
) < 0)
1669 return isl_basic_map_free(bmap
);
1671 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1672 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1673 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1674 return isl_basic_map_finalize(bmap
);
1677 space
= isl_basic_map_get_space(bmap
);
1678 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1679 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1680 bmap
= isl_basic_map_reset_space(bmap
, space
);
1684 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1685 __isl_take isl_basic_set
*bset
,
1686 enum isl_dim_type type
, unsigned first
, unsigned n
)
1688 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1691 /* Remove all constraints from "bmap" that reference any unknown local
1692 * variables (directly or indirectly).
1694 * Dropping all constraints on a local variable will make it redundant,
1695 * so it will get removed implicitly by
1696 * isl_basic_map_drop_constraints_involving_dims. Some other local
1697 * variables may also end up becoming redundant if they only appear
1698 * in constraints together with the unknown local variable.
1699 * Therefore, start over after calling
1700 * isl_basic_map_drop_constraints_involving_dims.
1702 __isl_give isl_basic_map
*isl_basic_map_drop_constraint_involving_unknown_divs(
1703 __isl_take isl_basic_map
*bmap
)
1706 int i
, n_div
, o_div
;
1708 known
= isl_basic_map_divs_known(bmap
);
1710 return isl_basic_map_free(bmap
);
1714 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1715 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
1717 for (i
= 0; i
< n_div
; ++i
) {
1718 known
= isl_basic_map_div_is_known(bmap
, i
);
1720 return isl_basic_map_free(bmap
);
1723 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
1724 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
1728 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1735 /* Remove all constraints from "map" that reference any unknown local
1736 * variables (directly or indirectly).
1738 * Since constraints may get dropped from the basic maps,
1739 * they may no longer be disjoint from each other.
1741 __isl_give isl_map
*isl_map_drop_constraint_involving_unknown_divs(
1742 __isl_take isl_map
*map
)
1747 known
= isl_map_divs_known(map
);
1749 return isl_map_free(map
);
1753 map
= isl_map_cow(map
);
1757 for (i
= 0; i
< map
->n
; ++i
) {
1759 isl_basic_map_drop_constraint_involving_unknown_divs(
1762 return isl_map_free(map
);
1766 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
1771 /* Don't assume equalities are in order, because align_divs
1772 * may have changed the order of the divs.
1774 static void compute_elimination_index(__isl_keep isl_basic_map
*bmap
, int *elim
)
1779 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1780 for (d
= 0; d
< total
; ++d
)
1782 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1783 for (d
= total
- 1; d
>= 0; --d
) {
1784 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1792 static void set_compute_elimination_index(__isl_keep isl_basic_set
*bset
,
1795 compute_elimination_index(bset_to_bmap(bset
), elim
);
1798 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1799 __isl_keep isl_basic_map
*bmap
, int *elim
)
1805 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1806 for (d
= total
- 1; d
>= 0; --d
) {
1807 if (isl_int_is_zero(src
[1+d
]))
1812 isl_seq_cpy(dst
, src
, 1 + total
);
1815 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1820 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1821 __isl_keep isl_basic_set
*bset
, int *elim
)
1823 return reduced_using_equalities(dst
, src
,
1824 bset_to_bmap(bset
), elim
);
1827 static __isl_give isl_basic_set
*isl_basic_set_reduce_using_equalities(
1828 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
1833 if (!bset
|| !context
)
1836 if (context
->n_eq
== 0) {
1837 isl_basic_set_free(context
);
1841 bset
= isl_basic_set_cow(bset
);
1845 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1848 set_compute_elimination_index(context
, elim
);
1849 for (i
= 0; i
< bset
->n_eq
; ++i
)
1850 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1852 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1853 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1855 isl_basic_set_free(context
);
1857 bset
= isl_basic_set_simplify(bset
);
1858 bset
= isl_basic_set_finalize(bset
);
1861 isl_basic_set_free(bset
);
1862 isl_basic_set_free(context
);
1866 /* For each inequality in "ineq" that is a shifted (more relaxed)
1867 * copy of an inequality in "context", mark the corresponding entry
1869 * If an inequality only has a non-negative constant term, then
1872 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
1873 __isl_keep isl_basic_set
*context
, int *row
)
1875 struct isl_constraint_index ci
;
1880 if (!ineq
|| !context
)
1881 return isl_stat_error
;
1882 if (context
->n_ineq
== 0)
1884 if (setup_constraint_index(&ci
, context
) < 0)
1885 return isl_stat_error
;
1887 n_ineq
= isl_mat_rows(ineq
);
1888 total
= isl_mat_cols(ineq
) - 1;
1889 for (k
= 0; k
< n_ineq
; ++k
) {
1893 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
1894 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
1898 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
1905 constraint_index_free(&ci
);
1908 constraint_index_free(&ci
);
1909 return isl_stat_error
;
1912 static __isl_give isl_basic_set
*remove_shifted_constraints(
1913 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*context
)
1915 struct isl_constraint_index ci
;
1918 if (!bset
|| !context
)
1921 if (context
->n_ineq
== 0)
1923 if (setup_constraint_index(&ci
, context
) < 0)
1926 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1929 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
1934 bset
= isl_basic_set_cow(bset
);
1937 isl_basic_set_drop_inequality(bset
, k
);
1940 constraint_index_free(&ci
);
1943 constraint_index_free(&ci
);
1947 /* Remove constraints from "bmap" that are identical to constraints
1948 * in "context" or that are more relaxed (greater constant term).
1950 * We perform the test for shifted copies on the pure constraints
1951 * in remove_shifted_constraints.
1953 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
1954 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
1956 isl_basic_set
*bset
, *bset_context
;
1958 if (!bmap
|| !context
)
1961 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
1962 isl_basic_map_free(context
);
1966 context
= isl_basic_map_align_divs(context
, bmap
);
1967 bmap
= isl_basic_map_align_divs(bmap
, context
);
1969 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1970 bset_context
= isl_basic_map_underlying_set(context
);
1971 bset
= remove_shifted_constraints(bset
, bset_context
);
1972 isl_basic_set_free(bset_context
);
1974 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
1978 isl_basic_map_free(bmap
);
1979 isl_basic_map_free(context
);
1983 /* Does the (linear part of a) constraint "c" involve any of the "len"
1984 * "relevant" dimensions?
1986 static int is_related(isl_int
*c
, int len
, int *relevant
)
1990 for (i
= 0; i
< len
; ++i
) {
1993 if (!isl_int_is_zero(c
[i
]))
2000 /* Drop constraints from "bmap" that do not involve any of
2001 * the dimensions marked "relevant".
2003 static __isl_give isl_basic_map
*drop_unrelated_constraints(
2004 __isl_take isl_basic_map
*bmap
, int *relevant
)
2008 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2009 for (i
= 0; i
< dim
; ++i
)
2015 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2016 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2017 bmap
= isl_basic_map_cow(bmap
);
2018 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2019 return isl_basic_map_free(bmap
);
2022 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2023 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2024 bmap
= isl_basic_map_cow(bmap
);
2025 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2026 return isl_basic_map_free(bmap
);
2032 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2034 * In particular, for any variable involved in the constraint,
2035 * find the actual group id from before and replace the group
2036 * of the corresponding variable by the minimal group of all
2037 * the variables involved in the constraint considered so far
2038 * (if this minimum is smaller) or replace the minimum by this group
2039 * (if the minimum is larger).
2041 * At the end, all the variables in "c" will (indirectly) point
2042 * to the minimal of the groups that they referred to originally.
2044 static void update_groups(int dim
, int *group
, isl_int
*c
)
2049 for (j
= 0; j
< dim
; ++j
) {
2050 if (isl_int_is_zero(c
[j
]))
2052 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2053 group
[j
] = group
[group
[j
]];
2054 if (group
[j
] == min
)
2056 if (group
[j
] < min
) {
2057 if (min
>= 0 && min
< dim
)
2058 group
[min
] = group
[j
];
2061 group
[group
[j
]] = min
;
2065 /* Allocate an array of groups of variables, one for each variable
2066 * in "context", initialized to zero.
2068 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2073 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2074 ctx
= isl_basic_set_get_ctx(context
);
2075 return isl_calloc_array(ctx
, int, dim
);
2078 /* Drop constraints from "bmap" that only involve variables that are
2079 * not related to any of the variables marked with a "-1" in "group".
2081 * We construct groups of variables that collect variables that
2082 * (indirectly) appear in some common constraint of "bmap".
2083 * Each group is identified by the first variable in the group,
2084 * except for the special group of variables that was already identified
2085 * in the input as -1 (or are related to those variables).
2086 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2087 * otherwise the group of i is the group of group[i].
2089 * We first initialize groups for the remaining variables.
2090 * Then we iterate over the constraints of "bmap" and update the
2091 * group of the variables in the constraint by the smallest group.
2092 * Finally, we resolve indirect references to groups by running over
2095 * After computing the groups, we drop constraints that do not involve
2096 * any variables in the -1 group.
2098 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2099 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2108 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2111 for (i
= 0; i
< dim
; ++i
)
2113 last
= group
[i
] = i
;
2119 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2120 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2121 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2122 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2124 for (i
= 0; i
< dim
; ++i
)
2126 group
[i
] = group
[group
[i
]];
2128 for (i
= 0; i
< dim
; ++i
)
2129 group
[i
] = group
[i
] == -1;
2131 bmap
= drop_unrelated_constraints(bmap
, group
);
2137 /* Drop constraints from "context" that are irrelevant for computing
2138 * the gist of "bset".
2140 * In particular, drop constraints in variables that are not related
2141 * to any of the variables involved in the constraints of "bset"
2142 * in the sense that there is no sequence of constraints that connects them.
2144 * We first mark all variables that appear in "bset" as belonging
2145 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2147 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2148 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2154 if (!context
|| !bset
)
2155 return isl_basic_set_free(context
);
2157 group
= alloc_groups(context
);
2160 return isl_basic_set_free(context
);
2162 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2163 for (i
= 0; i
< dim
; ++i
) {
2164 for (j
= 0; j
< bset
->n_eq
; ++j
)
2165 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2167 if (j
< bset
->n_eq
) {
2171 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2172 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2174 if (j
< bset
->n_ineq
)
2178 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2181 /* Drop constraints from "context" that are irrelevant for computing
2182 * the gist of the inequalities "ineq".
2183 * Inequalities in "ineq" for which the corresponding element of row
2184 * is set to -1 have already been marked for removal and should be ignored.
2186 * In particular, drop constraints in variables that are not related
2187 * to any of the variables involved in "ineq"
2188 * in the sense that there is no sequence of constraints that connects them.
2190 * We first mark all variables that appear in "bset" as belonging
2191 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2193 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2194 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2200 if (!context
|| !ineq
)
2201 return isl_basic_set_free(context
);
2203 group
= alloc_groups(context
);
2206 return isl_basic_set_free(context
);
2208 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2209 n
= isl_mat_rows(ineq
);
2210 for (i
= 0; i
< dim
; ++i
) {
2211 for (j
= 0; j
< n
; ++j
) {
2214 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2221 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2224 /* Do all "n" entries of "row" contain a negative value?
2226 static int all_neg(int *row
, int n
)
2230 for (i
= 0; i
< n
; ++i
)
2237 /* Update the inequalities in "bset" based on the information in "row"
2240 * In particular, the array "row" contains either -1, meaning that
2241 * the corresponding inequality of "bset" is redundant, or the index
2242 * of an inequality in "tab".
2244 * If the row entry is -1, then drop the inequality.
2245 * Otherwise, if the constraint is marked redundant in the tableau,
2246 * then drop the inequality. Similarly, if it is marked as an equality
2247 * in the tableau, then turn the inequality into an equality and
2248 * perform Gaussian elimination.
2250 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2251 __isl_keep
int *row
, struct isl_tab
*tab
)
2256 int found_equality
= 0;
2260 if (tab
&& tab
->empty
)
2261 return isl_basic_set_set_to_empty(bset
);
2263 n_ineq
= bset
->n_ineq
;
2264 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2266 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2267 return isl_basic_set_free(bset
);
2273 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2274 isl_basic_map_inequality_to_equality(bset
, i
);
2276 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2277 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2278 return isl_basic_set_free(bset
);
2283 bset
= isl_basic_set_gauss(bset
, NULL
);
2284 bset
= isl_basic_set_finalize(bset
);
2288 /* Update the inequalities in "bset" based on the information in "row"
2289 * and "tab" and free all arguments (other than "bset").
2291 static __isl_give isl_basic_set
*update_ineq_free(
2292 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2293 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2294 struct isl_tab
*tab
)
2297 isl_basic_set_free(context
);
2299 bset
= update_ineq(bset
, row
, tab
);
2306 /* Remove all information from bset that is redundant in the context
2308 * "ineq" contains the (possibly transformed) inequalities of "bset",
2309 * in the same order.
2310 * The (explicit) equalities of "bset" are assumed to have been taken
2311 * into account by the transformation such that only the inequalities
2313 * "context" is assumed not to be empty.
2315 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2316 * A value of -1 means that the inequality is obviously redundant and may
2317 * not even appear in "tab".
2319 * We first mark the inequalities of "bset"
2320 * that are obviously redundant with respect to some inequality in "context".
2321 * Then we remove those constraints from "context" that have become
2322 * irrelevant for computing the gist of "bset".
2323 * Note that this removal of constraints cannot be replaced by
2324 * a factorization because factors in "bset" may still be connected
2325 * to each other through constraints in "context".
2327 * If there are any inequalities left, we construct a tableau for
2328 * the context and then add the inequalities of "bset".
2329 * Before adding these inequalities, we freeze all constraints such that
2330 * they won't be considered redundant in terms of the constraints of "bset".
2331 * Then we detect all redundant constraints (among the
2332 * constraints that weren't frozen), first by checking for redundancy in the
2333 * the tableau and then by checking if replacing a constraint by its negation
2334 * would lead to an empty set. This last step is fairly expensive
2335 * and could be optimized by more reuse of the tableau.
2336 * Finally, we update bset according to the results.
2338 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2339 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2344 isl_basic_set
*combined
= NULL
;
2345 struct isl_tab
*tab
= NULL
;
2346 unsigned n_eq
, context_ineq
;
2348 if (!bset
|| !ineq
|| !context
)
2351 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2352 isl_basic_set_free(context
);
2357 ctx
= isl_basic_set_get_ctx(context
);
2358 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2362 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2364 if (all_neg(row
, bset
->n_ineq
))
2365 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2367 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2370 if (isl_basic_set_plain_is_universe(context
))
2371 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2373 n_eq
= context
->n_eq
;
2374 context_ineq
= context
->n_ineq
;
2375 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2376 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2377 tab
= isl_tab_from_basic_set(combined
, 0);
2378 for (i
= 0; i
< context_ineq
; ++i
)
2379 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2381 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2384 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2387 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2388 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2392 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2394 if (isl_tab_detect_redundant(tab
) < 0)
2396 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2397 isl_basic_set
*test
;
2403 if (tab
->con
[n_eq
+ r
].is_redundant
)
2405 test
= isl_basic_set_dup(combined
);
2406 test
= isl_inequality_negate(test
, r
);
2407 test
= isl_basic_set_update_from_tab(test
, tab
);
2408 is_empty
= isl_basic_set_is_empty(test
);
2409 isl_basic_set_free(test
);
2413 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2415 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2417 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2418 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2421 isl_basic_set_free(combined
);
2427 isl_basic_set_free(combined
);
2428 isl_basic_set_free(context
);
2429 isl_basic_set_free(bset
);
2433 /* Extract the inequalities of "bset" as an isl_mat.
2435 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2444 ctx
= isl_basic_set_get_ctx(bset
);
2445 total
= isl_basic_set_total_dim(bset
);
2446 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2452 /* Remove all information from "bset" that is redundant in the context
2453 * of "context", for the case where both "bset" and "context" are
2456 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2457 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2461 ineq
= extract_ineq(bset
);
2462 return uset_gist_full(bset
, ineq
, context
);
2465 /* Remove all information from "bset" that is redundant in the context
2466 * of "context", for the case where the combined equalities of
2467 * "bset" and "context" allow for a compression that can be obtained
2468 * by preapplication of "T".
2470 * "bset" itself is not transformed by "T". Instead, the inequalities
2471 * are extracted from "bset" and those are transformed by "T".
2472 * uset_gist_full then determines which of the transformed inequalities
2473 * are redundant with respect to the transformed "context" and removes
2474 * the corresponding inequalities from "bset".
2476 * After preapplying "T" to the inequalities, any common factor is
2477 * removed from the coefficients. If this results in a tightening
2478 * of the constant term, then the same tightening is applied to
2479 * the corresponding untransformed inequality in "bset".
2480 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2484 * with 0 <= r < g, then it is equivalent to
2488 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2489 * subspace compressed by T since the latter would be transformed to
2493 static __isl_give isl_basic_set
*uset_gist_compressed(
2494 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2495 __isl_take isl_mat
*T
)
2499 int i
, n_row
, n_col
;
2502 ineq
= extract_ineq(bset
);
2503 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2504 context
= isl_basic_set_preimage(context
, T
);
2506 if (!ineq
|| !context
)
2508 if (isl_basic_set_plain_is_empty(context
)) {
2510 isl_basic_set_free(context
);
2511 return isl_basic_set_set_to_empty(bset
);
2514 ctx
= isl_mat_get_ctx(ineq
);
2515 n_row
= isl_mat_rows(ineq
);
2516 n_col
= isl_mat_cols(ineq
);
2518 for (i
= 0; i
< n_row
; ++i
) {
2519 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2520 if (isl_int_is_zero(ctx
->normalize_gcd
))
2522 if (isl_int_is_one(ctx
->normalize_gcd
))
2524 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2525 ctx
->normalize_gcd
, n_col
- 1);
2526 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2527 isl_int_fdiv_q(ineq
->row
[i
][0],
2528 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2529 if (isl_int_is_zero(rem
))
2531 bset
= isl_basic_set_cow(bset
);
2534 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2538 return uset_gist_full(bset
, ineq
, context
);
2541 isl_basic_set_free(context
);
2542 isl_basic_set_free(bset
);
2546 /* Project "bset" onto the variables that are involved in "template".
2548 static __isl_give isl_basic_set
*project_onto_involved(
2549 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2553 if (!bset
|| !template)
2554 return isl_basic_set_free(bset
);
2556 n
= isl_basic_set_dim(template, isl_dim_set
);
2558 for (i
= 0; i
< n
; ++i
) {
2561 involved
= isl_basic_set_involves_dims(template,
2564 return isl_basic_set_free(bset
);
2567 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2573 /* Remove all information from bset that is redundant in the context
2574 * of context. In particular, equalities that are linear combinations
2575 * of those in context are removed. Then the inequalities that are
2576 * redundant in the context of the equalities and inequalities of
2577 * context are removed.
2579 * First of all, we drop those constraints from "context"
2580 * that are irrelevant for computing the gist of "bset".
2581 * Alternatively, we could factorize the intersection of "context" and "bset".
2583 * We first compute the intersection of the integer affine hulls
2584 * of "bset" and "context",
2585 * compute the gist inside this intersection and then reduce
2586 * the constraints with respect to the equalities of the context
2587 * that only involve variables already involved in the input.
2589 * If two constraints are mutually redundant, then uset_gist_full
2590 * will remove the second of those constraints. We therefore first
2591 * sort the constraints so that constraints not involving existentially
2592 * quantified variables are given precedence over those that do.
2593 * We have to perform this sorting before the variable compression,
2594 * because that may effect the order of the variables.
2596 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2597 __isl_take isl_basic_set
*context
)
2602 isl_basic_set
*aff_context
;
2605 if (!bset
|| !context
)
2608 context
= drop_irrelevant_constraints(context
, bset
);
2610 bset
= isl_basic_set_detect_equalities(bset
);
2611 aff
= isl_basic_set_copy(bset
);
2612 aff
= isl_basic_set_plain_affine_hull(aff
);
2613 context
= isl_basic_set_detect_equalities(context
);
2614 aff_context
= isl_basic_set_copy(context
);
2615 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2616 aff
= isl_basic_set_intersect(aff
, aff_context
);
2619 if (isl_basic_set_plain_is_empty(aff
)) {
2620 isl_basic_set_free(bset
);
2621 isl_basic_set_free(context
);
2624 bset
= isl_basic_set_sort_constraints(bset
);
2625 if (aff
->n_eq
== 0) {
2626 isl_basic_set_free(aff
);
2627 return uset_gist_uncompressed(bset
, context
);
2629 total
= isl_basic_set_total_dim(bset
);
2630 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2631 eq
= isl_mat_cow(eq
);
2632 T
= isl_mat_variable_compression(eq
, NULL
);
2633 isl_basic_set_free(aff
);
2634 if (T
&& T
->n_col
== 0) {
2636 isl_basic_set_free(context
);
2637 return isl_basic_set_set_to_empty(bset
);
2640 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2641 aff_context
= project_onto_involved(aff_context
, bset
);
2643 bset
= uset_gist_compressed(bset
, context
, T
);
2644 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2647 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2648 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2653 isl_basic_set_free(bset
);
2654 isl_basic_set_free(context
);
2658 /* Return the number of equality constraints in "bmap" that involve
2659 * local variables. This function assumes that Gaussian elimination
2660 * has been applied to the equality constraints.
2662 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2670 if (bmap
->n_eq
== 0)
2673 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2674 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2677 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2678 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2685 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2686 * The constraints are assumed not to involve any local variables.
2688 static __isl_give isl_basic_map
*basic_map_from_equalities(
2689 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2692 isl_basic_map
*bmap
= NULL
;
2697 if (1 + isl_space_dim(space
, isl_dim_all
) != eq
->n_col
)
2698 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
2699 "unexpected number of columns", goto error
);
2701 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
2703 for (i
= 0; i
< eq
->n_row
; ++i
) {
2704 k
= isl_basic_map_alloc_equality(bmap
);
2707 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
2710 isl_space_free(space
);
2714 isl_space_free(space
);
2716 isl_basic_map_free(bmap
);
2720 /* Construct and return a variable compression based on the equality
2721 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2722 * "n1" is the number of (initial) equality constraints in "bmap1"
2723 * that do involve local variables.
2724 * "n2" is the number of (initial) equality constraints in "bmap2"
2725 * that do involve local variables.
2726 * "total" is the total number of other variables.
2727 * This function assumes that Gaussian elimination
2728 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2729 * such that the equality constraints not involving local variables
2730 * are those that start at "n1" or "n2".
2732 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2733 * then simply compute the compression based on the equality constraints
2734 * in the other basic map.
2735 * Otherwise, combine the equality constraints from both into a new
2736 * basic map such that Gaussian elimination can be applied to this combination
2737 * and then construct a variable compression from the resulting
2738 * equality constraints.
2740 static __isl_give isl_mat
*combined_variable_compression(
2741 __isl_keep isl_basic_map
*bmap1
, int n1
,
2742 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
2745 isl_mat
*E1
, *E2
, *V
;
2746 isl_basic_map
*bmap
;
2748 ctx
= isl_basic_map_get_ctx(bmap1
);
2749 if (bmap1
->n_eq
== n1
) {
2750 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2751 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2752 return isl_mat_variable_compression(E2
, NULL
);
2754 if (bmap2
->n_eq
== n2
) {
2755 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2756 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2757 return isl_mat_variable_compression(E1
, NULL
);
2759 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2760 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2761 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2762 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2763 E1
= isl_mat_concat(E1
, E2
);
2764 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
2765 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2768 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
2769 V
= isl_mat_variable_compression(E1
, NULL
);
2770 isl_basic_map_free(bmap
);
2775 /* Extract the stride constraints from "bmap", compressed
2776 * with respect to both the stride constraints in "context" and
2777 * the remaining equality constraints in both "bmap" and "context".
2778 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2779 * "context_n_eq" is the number of (initial) stride constraints in "context".
2781 * Let x be all variables in "bmap" (and "context") other than the local
2782 * variables. First compute a variable compression
2786 * based on the non-stride equality constraints in "bmap" and "context".
2787 * Consider the stride constraints of "context",
2791 * with y the local variables and plug in the variable compression,
2794 * A(V x') + B(y) = 0
2796 * Use these constraints to compute a parameter compression on x'
2800 * Now consider the stride constraints of "bmap"
2804 * and plug in x = V*T x''.
2805 * That is, return A = [C*V*T D].
2807 static __isl_give isl_mat
*extract_compressed_stride_constraints(
2808 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
2809 __isl_keep isl_basic_map
*context
, int context_n_eq
)
2813 isl_mat
*A
, *B
, *T
, *V
;
2815 total
= isl_basic_map_dim(context
, isl_dim_all
);
2816 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
2819 ctx
= isl_basic_map_get_ctx(bmap
);
2821 V
= combined_variable_compression(bmap
, bmap_n_eq
,
2822 context
, context_n_eq
, total
);
2824 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
2825 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
2826 0, context_n_eq
, 1 + total
, n_div
);
2827 A
= isl_mat_product(A
, isl_mat_copy(V
));
2828 T
= isl_mat_parameter_compression_ext(A
, B
);
2829 T
= isl_mat_product(V
, T
);
2831 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2832 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
2834 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
2835 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
2836 A
= isl_mat_product(A
, T
);
2841 /* Remove the prime factors from *g that have an exponent that
2842 * is strictly smaller than the exponent in "c".
2843 * All exponents in *g are known to be smaller than or equal
2846 * That is, if *g is equal to
2848 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
2850 * and "c" is equal to
2852 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
2856 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
2857 * p_n^{e_n * (e_n = f_n)}
2859 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
2860 * neither does the gcd of *g and c / *g.
2861 * If e_i < f_i, then the gcd of *g and c / *g has a positive
2862 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
2863 * Dividing *g by this gcd therefore strictly reduces the exponent
2864 * of the prime factors that need to be removed, while leaving the
2865 * other prime factors untouched.
2866 * Repeating this process until gcd(*g, c / *g) = 1 therefore
2867 * removes all undesired factors, without removing any others.
2869 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
2875 isl_int_divexact(t
, c
, *g
);
2876 isl_int_gcd(t
, t
, *g
);
2877 if (isl_int_is_one(t
))
2879 isl_int_divexact(*g
, *g
, t
);
2884 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
2885 * of the same stride constraints in a compressed space that exploits
2886 * all equalities in the context and the other equalities in "bmap".
2888 * If the stride constraints of "bmap" are of the form
2892 * then A is of the form
2896 * If any of these constraints involves only a single local variable y,
2897 * then the constraint appears as
2907 * Let g be the gcd of m and the coefficients of h.
2908 * Then, in particular, g is a divisor of the coefficients of h and
2912 * is known to be a multiple of g.
2913 * If some prime factor in m appears with the same exponent in g,
2914 * then it can be removed from m because f(x) is already known
2915 * to be a multiple of g and therefore in particular of this power
2916 * of the prime factors.
2917 * Prime factors that appear with a smaller exponent in g cannot
2918 * be removed from m.
2919 * Let g' be the divisor of g containing all prime factors that
2920 * appear with the same exponent in m and g, then
2924 * can be replaced by
2926 * f(x) + m/g' y_i' = 0
2928 * Note that (if g' != 1) this changes the explicit representation
2929 * of y_i to that of y_i', so the integer division at position i
2930 * is marked unknown and later recomputed by a call to
2931 * isl_basic_map_gauss.
2933 static __isl_give isl_basic_map
*reduce_stride_constraints(
2934 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
2942 return isl_basic_map_free(bmap
);
2944 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2945 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2949 for (i
= 0; i
< n
; ++i
) {
2952 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
2954 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
2955 "equality constraints modified unexpectedly",
2957 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
2958 n_div
- div
- 1) != -1)
2960 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
2962 if (isl_int_is_one(gcd
))
2964 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
2965 if (isl_int_is_one(gcd
))
2967 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
2968 bmap
->eq
[i
][1 + total
+ div
], gcd
);
2969 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
2977 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2982 isl_basic_map_free(bmap
);
2986 /* Simplify the stride constraints in "bmap" based on
2987 * the remaining equality constraints in "bmap" and all equality
2988 * constraints in "context".
2989 * Only do this if both "bmap" and "context" have stride constraints.
2991 * First extract a copy of the stride constraints in "bmap" in a compressed
2992 * space exploiting all the other equality constraints and then
2993 * use this compressed copy to simplify the original stride constraints.
2995 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
2996 __isl_keep isl_basic_map
*context
)
2998 int bmap_n_eq
, context_n_eq
;
3001 if (!bmap
|| !context
)
3002 return isl_basic_map_free(bmap
);
3004 bmap_n_eq
= n_div_eq(bmap
);
3005 context_n_eq
= n_div_eq(context
);
3007 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3008 return isl_basic_map_free(bmap
);
3009 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3012 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3013 context
, context_n_eq
);
3014 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3021 /* Return a basic map that has the same intersection with "context" as "bmap"
3022 * and that is as "simple" as possible.
3024 * The core computation is performed on the pure constraints.
3025 * When we add back the meaning of the integer divisions, we need
3026 * to (re)introduce the div constraints. If we happen to have
3027 * discovered that some of these integer divisions are equal to
3028 * some affine combination of other variables, then these div
3029 * constraints may end up getting simplified in terms of the equalities,
3030 * resulting in extra inequalities on the other variables that
3031 * may have been removed already or that may not even have been
3032 * part of the input. We try and remove those constraints of
3033 * this form that are most obviously redundant with respect to
3034 * the context. We also remove those div constraints that are
3035 * redundant with respect to the other constraints in the result.
3037 * The stride constraints among the equality constraints in "bmap" are
3038 * also simplified with respecting to the other equality constraints
3039 * in "bmap" and with respect to all equality constraints in "context".
3041 __isl_give isl_basic_map
*isl_basic_map_gist(__isl_take isl_basic_map
*bmap
,
3042 __isl_take isl_basic_map
*context
)
3044 isl_basic_set
*bset
, *eq
;
3045 isl_basic_map
*eq_bmap
;
3046 unsigned total
, n_div
, extra
, n_eq
, n_ineq
;
3048 if (!bmap
|| !context
)
3051 if (isl_basic_map_plain_is_universe(bmap
)) {
3052 isl_basic_map_free(context
);
3055 if (isl_basic_map_plain_is_empty(context
)) {
3056 isl_space
*space
= isl_basic_map_get_space(bmap
);
3057 isl_basic_map_free(bmap
);
3058 isl_basic_map_free(context
);
3059 return isl_basic_map_universe(space
);
3061 if (isl_basic_map_plain_is_empty(bmap
)) {
3062 isl_basic_map_free(context
);
3066 bmap
= isl_basic_map_remove_redundancies(bmap
);
3067 context
= isl_basic_map_remove_redundancies(context
);
3068 context
= isl_basic_map_align_divs(context
, bmap
);
3072 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3073 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3074 extra
= n_div
- isl_basic_map_dim(bmap
, isl_dim_div
);
3076 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3077 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3078 bset
= uset_gist(bset
,
3079 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3080 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3082 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3083 isl_basic_set_plain_is_empty(bset
)) {
3084 isl_basic_map_free(context
);
3085 return isl_basic_map_overlying_set(bset
, bmap
);
3089 n_ineq
= bset
->n_ineq
;
3090 eq
= isl_basic_set_copy(bset
);
3091 eq
= isl_basic_set_cow(eq
);
3092 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
3093 eq
= isl_basic_set_free(eq
);
3094 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
3095 bset
= isl_basic_set_free(bset
);
3097 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3098 eq_bmap
= gist_strides(eq_bmap
, context
);
3099 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3100 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3101 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3102 bmap
= isl_basic_map_remove_redundancies(bmap
);
3106 isl_basic_map_free(bmap
);
3107 isl_basic_map_free(context
);
3112 * Assumes context has no implicit divs.
3114 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3115 __isl_take isl_basic_map
*context
)
3119 if (!map
|| !context
)
3122 if (isl_basic_map_plain_is_empty(context
)) {
3123 isl_space
*space
= isl_map_get_space(map
);
3125 isl_basic_map_free(context
);
3126 return isl_map_universe(space
);
3129 context
= isl_basic_map_remove_redundancies(context
);
3130 map
= isl_map_cow(map
);
3131 if (!map
|| !context
)
3133 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
3134 map
= isl_map_compute_divs(map
);
3137 for (i
= map
->n
- 1; i
>= 0; --i
) {
3138 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3139 isl_basic_map_copy(context
));
3142 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3143 isl_basic_map_free(map
->p
[i
]);
3144 if (i
!= map
->n
- 1)
3145 map
->p
[i
] = map
->p
[map
->n
- 1];
3149 isl_basic_map_free(context
);
3150 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3154 isl_basic_map_free(context
);
3158 /* Drop all inequalities from "bmap" that also appear in "context".
3159 * "context" is assumed to have only known local variables and
3160 * the initial local variables of "bmap" are assumed to be the same
3161 * as those of "context".
3162 * The constraints of both "bmap" and "context" are assumed
3163 * to have been sorted using isl_basic_map_sort_constraints.
3165 * Run through the inequality constraints of "bmap" and "context"
3167 * If a constraint of "bmap" involves variables not in "context",
3168 * then it cannot appear in "context".
3169 * If a matching constraint is found, it is removed from "bmap".
3171 static __isl_give isl_basic_map
*drop_inequalities(
3172 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3175 unsigned total
, extra
;
3177 if (!bmap
|| !context
)
3178 return isl_basic_map_free(bmap
);
3180 total
= isl_basic_map_total_dim(context
);
3181 extra
= isl_basic_map_total_dim(bmap
) - total
;
3183 i1
= bmap
->n_ineq
- 1;
3184 i2
= context
->n_ineq
- 1;
3185 while (bmap
&& i1
>= 0 && i2
>= 0) {
3188 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3193 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3203 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3204 bmap
= isl_basic_map_cow(bmap
);
3205 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3206 bmap
= isl_basic_map_free(bmap
);
3215 /* Drop all equalities from "bmap" that also appear in "context".
3216 * "context" is assumed to have only known local variables and
3217 * the initial local variables of "bmap" are assumed to be the same
3218 * as those of "context".
3220 * Run through the equality constraints of "bmap" and "context"
3222 * If a constraint of "bmap" involves variables not in "context",
3223 * then it cannot appear in "context".
3224 * If a matching constraint is found, it is removed from "bmap".
3226 static __isl_give isl_basic_map
*drop_equalities(
3227 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3230 unsigned total
, extra
;
3232 if (!bmap
|| !context
)
3233 return isl_basic_map_free(bmap
);
3235 total
= isl_basic_map_total_dim(context
);
3236 extra
= isl_basic_map_total_dim(bmap
) - total
;
3238 i1
= bmap
->n_eq
- 1;
3239 i2
= context
->n_eq
- 1;
3241 while (bmap
&& i1
>= 0 && i2
>= 0) {
3244 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3247 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3248 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3249 if (last1
> last2
) {
3253 if (last1
< last2
) {
3257 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3258 bmap
= isl_basic_map_cow(bmap
);
3259 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3260 bmap
= isl_basic_map_free(bmap
);
3269 /* Remove the constraints in "context" from "bmap".
3270 * "context" is assumed to have explicit representations
3271 * for all local variables.
3273 * First align the divs of "bmap" to those of "context" and
3274 * sort the constraints. Then drop all constraints from "bmap"
3275 * that appear in "context".
3277 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3278 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3280 isl_bool done
, known
;
3282 done
= isl_basic_map_plain_is_universe(context
);
3283 if (done
== isl_bool_false
)
3284 done
= isl_basic_map_plain_is_universe(bmap
);
3285 if (done
== isl_bool_false
)
3286 done
= isl_basic_map_plain_is_empty(context
);
3287 if (done
== isl_bool_false
)
3288 done
= isl_basic_map_plain_is_empty(bmap
);
3292 isl_basic_map_free(context
);
3295 known
= isl_basic_map_divs_known(context
);
3299 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3300 "context has unknown divs", goto error
);
3302 bmap
= isl_basic_map_align_divs(bmap
, context
);
3303 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3304 bmap
= isl_basic_map_sort_constraints(bmap
);
3305 context
= isl_basic_map_sort_constraints(context
);
3307 bmap
= drop_inequalities(bmap
, context
);
3308 bmap
= drop_equalities(bmap
, context
);
3310 isl_basic_map_free(context
);
3311 bmap
= isl_basic_map_finalize(bmap
);
3314 isl_basic_map_free(bmap
);
3315 isl_basic_map_free(context
);
3319 /* Replace "map" by the disjunct at position "pos" and free "context".
3321 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3322 int pos
, __isl_take isl_basic_map
*context
)
3324 isl_basic_map
*bmap
;
3326 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3328 isl_basic_map_free(context
);
3329 return isl_map_from_basic_map(bmap
);
3332 /* Remove the constraints in "context" from "map".
3333 * If any of the disjuncts in the result turns out to be the universe,
3334 * then return this universe.
3335 * "context" is assumed to have explicit representations
3336 * for all local variables.
3338 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3339 __isl_take isl_basic_map
*context
)
3342 isl_bool univ
, known
;
3344 univ
= isl_basic_map_plain_is_universe(context
);
3348 isl_basic_map_free(context
);
3351 known
= isl_basic_map_divs_known(context
);
3355 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3356 "context has unknown divs", goto error
);
3358 map
= isl_map_cow(map
);
3361 for (i
= 0; i
< map
->n
; ++i
) {
3362 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3363 isl_basic_map_copy(context
));
3364 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3367 if (univ
&& map
->n
> 1)
3368 return replace_by_disjunct(map
, i
, context
);
3371 isl_basic_map_free(context
);
3372 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3374 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3378 isl_basic_map_free(context
);
3382 /* Remove the constraints in "context" from "set".
3383 * If any of the disjuncts in the result turns out to be the universe,
3384 * then return this universe.
3385 * "context" is assumed to have explicit representations
3386 * for all local variables.
3388 __isl_give isl_set
*isl_set_plain_gist_basic_set(__isl_take isl_set
*set
,
3389 __isl_take isl_basic_set
*context
)
3391 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set
),
3392 bset_to_bmap(context
)));
3395 /* Remove the constraints in "context" from "map".
3396 * If any of the disjuncts in the result turns out to be the universe,
3397 * then return this universe.
3398 * "context" is assumed to consist of a single disjunct and
3399 * to have explicit representations for all local variables.
3401 __isl_give isl_map
*isl_map_plain_gist(__isl_take isl_map
*map
,
3402 __isl_take isl_map
*context
)
3404 isl_basic_map
*hull
;
3406 hull
= isl_map_unshifted_simple_hull(context
);
3407 return isl_map_plain_gist_basic_map(map
, hull
);
3410 /* Replace "map" by a universe map in the same space and free "drop".
3412 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3413 __isl_take isl_map
*drop
)
3417 res
= isl_map_universe(isl_map_get_space(map
));
3423 /* Return a map that has the same intersection with "context" as "map"
3424 * and that is as "simple" as possible.
3426 * If "map" is already the universe, then we cannot make it any simpler.
3427 * Similarly, if "context" is the universe, then we cannot exploit it
3429 * If "map" and "context" are identical to each other, then we can
3430 * return the corresponding universe.
3432 * If either "map" or "context" consists of multiple disjuncts,
3433 * then check if "context" happens to be a subset of "map",
3434 * in which case all constraints can be removed.
3435 * In case of multiple disjuncts, the standard procedure
3436 * may not be able to detect that all constraints can be removed.
3438 * If none of these cases apply, we have to work a bit harder.
3439 * During this computation, we make use of a single disjunct context,
3440 * so if the original context consists of more than one disjunct
3441 * then we need to approximate the context by a single disjunct set.
3442 * Simply taking the simple hull may drop constraints that are
3443 * only implicitly available in each disjunct. We therefore also
3444 * look for constraints among those defining "map" that are valid
3445 * for the context. These can then be used to simplify away
3446 * the corresponding constraints in "map".
3448 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
3449 __isl_take isl_map
*context
)
3453 int single_disjunct_map
, single_disjunct_context
;
3455 isl_basic_map
*hull
;
3457 is_universe
= isl_map_plain_is_universe(map
);
3458 if (is_universe
>= 0 && !is_universe
)
3459 is_universe
= isl_map_plain_is_universe(context
);
3460 if (is_universe
< 0)
3463 isl_map_free(context
);
3467 equal
= isl_map_plain_is_equal(map
, context
);
3471 return replace_by_universe(map
, context
);
3473 single_disjunct_map
= isl_map_n_basic_map(map
) == 1;
3474 single_disjunct_context
= isl_map_n_basic_map(context
) == 1;
3475 if (!single_disjunct_map
|| !single_disjunct_context
) {
3476 subset
= isl_map_is_subset(context
, map
);
3480 return replace_by_universe(map
, context
);
3483 context
= isl_map_compute_divs(context
);
3486 if (single_disjunct_context
) {
3487 hull
= isl_map_simple_hull(context
);
3492 ctx
= isl_map_get_ctx(map
);
3493 list
= isl_map_list_alloc(ctx
, 2);
3494 list
= isl_map_list_add(list
, isl_map_copy(context
));
3495 list
= isl_map_list_add(list
, isl_map_copy(map
));
3496 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3499 return isl_map_gist_basic_map(map
, hull
);
3502 isl_map_free(context
);
3506 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3507 __isl_take isl_map
*context
)
3509 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
3512 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
3513 struct isl_basic_set
*context
)
3515 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3516 bset_to_bmap(context
)));
3519 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3520 __isl_take isl_basic_set
*context
)
3522 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3523 bset_to_bmap(context
)));
3526 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3527 __isl_take isl_basic_set
*context
)
3529 isl_space
*space
= isl_set_get_space(set
);
3530 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3531 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3532 return isl_set_gist_basic_set(set
, dom_context
);
3535 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3536 __isl_take isl_set
*context
)
3538 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3541 /* Compute the gist of "bmap" with respect to the constraints "context"
3544 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3545 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3547 isl_space
*space
= isl_basic_map_get_space(bmap
);
3548 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3550 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3551 return isl_basic_map_gist(bmap
, bmap_context
);
3554 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3555 __isl_take isl_set
*context
)
3557 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3558 map_context
= isl_map_intersect_domain(map_context
, context
);
3559 return isl_map_gist(map
, map_context
);
3562 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3563 __isl_take isl_set
*context
)
3565 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3566 map_context
= isl_map_intersect_range(map_context
, context
);
3567 return isl_map_gist(map
, map_context
);
3570 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3571 __isl_take isl_set
*context
)
3573 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3574 map_context
= isl_map_intersect_params(map_context
, context
);
3575 return isl_map_gist(map
, map_context
);
3578 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3579 __isl_take isl_set
*context
)
3581 return isl_map_gist_params(set
, context
);
3584 /* Quick check to see if two basic maps are disjoint.
3585 * In particular, we reduce the equalities and inequalities of
3586 * one basic map in the context of the equalities of the other
3587 * basic map and check if we get a contradiction.
3589 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3590 __isl_keep isl_basic_map
*bmap2
)
3592 struct isl_vec
*v
= NULL
;
3597 if (!bmap1
|| !bmap2
)
3598 return isl_bool_error
;
3599 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
3600 return isl_bool_error
);
3601 if (bmap1
->n_div
|| bmap2
->n_div
)
3602 return isl_bool_false
;
3603 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3604 return isl_bool_false
;
3606 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3608 return isl_bool_false
;
3609 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3612 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3615 compute_elimination_index(bmap1
, elim
);
3616 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3618 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3620 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3621 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3624 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3626 reduced
= reduced_using_equalities(v
->block
.data
,
3627 bmap2
->ineq
[i
], bmap1
, elim
);
3628 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3629 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3632 compute_elimination_index(bmap2
, elim
);
3633 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3635 reduced
= reduced_using_equalities(v
->block
.data
,
3636 bmap1
->ineq
[i
], bmap2
, elim
);
3637 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3638 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3643 return isl_bool_false
;
3647 return isl_bool_true
;
3651 return isl_bool_error
;
3654 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3655 __isl_keep isl_basic_set
*bset2
)
3657 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3658 bset_to_bmap(bset2
));
3661 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3663 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3664 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3665 __isl_keep isl_basic_map
*bmap2
))
3670 return isl_bool_error
;
3672 for (i
= 0; i
< map1
->n
; ++i
) {
3673 for (j
= 0; j
< map2
->n
; ++j
) {
3674 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3675 if (d
!= isl_bool_true
)
3680 return isl_bool_true
;
3683 /* Are "map1" and "map2" obviously disjoint, based on information
3684 * that can be derived without looking at the individual basic maps?
3686 * In particular, if one of them is empty or if they live in different spaces
3687 * (ignoring parameters), then they are clearly disjoint.
3689 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3690 __isl_keep isl_map
*map2
)
3696 return isl_bool_error
;
3698 disjoint
= isl_map_plain_is_empty(map1
);
3699 if (disjoint
< 0 || disjoint
)
3702 disjoint
= isl_map_plain_is_empty(map2
);
3703 if (disjoint
< 0 || disjoint
)
3706 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
3707 map2
->dim
, isl_dim_in
);
3708 if (match
< 0 || !match
)
3709 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3711 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
3712 map2
->dim
, isl_dim_out
);
3713 if (match
< 0 || !match
)
3714 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3716 return isl_bool_false
;
3719 /* Are "map1" and "map2" obviously disjoint?
3721 * If one of them is empty or if they live in different spaces (ignoring
3722 * parameters), then they are clearly disjoint.
3723 * This is checked by isl_map_plain_is_disjoint_global.
3725 * If they have different parameters, then we skip any further tests.
3727 * If they are obviously equal, but not obviously empty, then we will
3728 * not be able to detect if they are disjoint.
3730 * Otherwise we check if each basic map in "map1" is obviously disjoint
3731 * from each basic map in "map2".
3733 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
3734 __isl_keep isl_map
*map2
)
3740 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3741 if (disjoint
< 0 || disjoint
)
3744 match
= isl_map_has_equal_params(map1
, map2
);
3745 if (match
< 0 || !match
)
3746 return match
< 0 ? isl_bool_error
: isl_bool_false
;
3748 intersect
= isl_map_plain_is_equal(map1
, map2
);
3749 if (intersect
< 0 || intersect
)
3750 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3752 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
3755 /* Are "map1" and "map2" disjoint?
3756 * The parameters are assumed to have been aligned.
3758 * In particular, check whether all pairs of basic maps are disjoint.
3760 static isl_bool
isl_map_is_disjoint_aligned(__isl_keep isl_map
*map1
,
3761 __isl_keep isl_map
*map2
)
3763 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
3766 /* Are "map1" and "map2" disjoint?
3768 * They are disjoint if they are "obviously disjoint" or if one of them
3769 * is empty. Otherwise, they are not disjoint if one of them is universal.
3770 * If the two inputs are (obviously) equal and not empty, then they are
3772 * If none of these cases apply, then check if all pairs of basic maps
3773 * are disjoint after aligning the parameters.
3775 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
3780 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3781 if (disjoint
< 0 || disjoint
)
3784 disjoint
= isl_map_is_empty(map1
);
3785 if (disjoint
< 0 || disjoint
)
3788 disjoint
= isl_map_is_empty(map2
);
3789 if (disjoint
< 0 || disjoint
)
3792 intersect
= isl_map_plain_is_universe(map1
);
3793 if (intersect
< 0 || intersect
)
3794 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3796 intersect
= isl_map_plain_is_universe(map2
);
3797 if (intersect
< 0 || intersect
)
3798 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3800 intersect
= isl_map_plain_is_equal(map1
, map2
);
3801 if (intersect
< 0 || intersect
)
3802 return isl_bool_not(intersect
);
3804 return isl_map_align_params_map_map_and_test(map1
, map2
,
3805 &isl_map_is_disjoint_aligned
);
3808 /* Are "bmap1" and "bmap2" disjoint?
3810 * They are disjoint if they are "obviously disjoint" or if one of them
3811 * is empty. Otherwise, they are not disjoint if one of them is universal.
3812 * If none of these cases apply, we compute the intersection and see if
3813 * the result is empty.
3815 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3816 __isl_keep isl_basic_map
*bmap2
)
3820 isl_basic_map
*test
;
3822 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
3823 if (disjoint
< 0 || disjoint
)
3826 disjoint
= isl_basic_map_is_empty(bmap1
);
3827 if (disjoint
< 0 || disjoint
)
3830 disjoint
= isl_basic_map_is_empty(bmap2
);
3831 if (disjoint
< 0 || disjoint
)
3834 intersect
= isl_basic_map_plain_is_universe(bmap1
);
3835 if (intersect
< 0 || intersect
)
3836 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3838 intersect
= isl_basic_map_plain_is_universe(bmap2
);
3839 if (intersect
< 0 || intersect
)
3840 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3842 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
3843 isl_basic_map_copy(bmap2
));
3844 disjoint
= isl_basic_map_is_empty(test
);
3845 isl_basic_map_free(test
);
3850 /* Are "bset1" and "bset2" disjoint?
3852 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3853 __isl_keep isl_basic_set
*bset2
)
3855 return isl_basic_map_is_disjoint(bset1
, bset2
);
3858 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
3859 __isl_keep isl_set
*set2
)
3861 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
3864 /* Are "set1" and "set2" disjoint?
3866 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
3868 return isl_map_is_disjoint(set1
, set2
);
3871 /* Is "v" equal to 0, 1 or -1?
3873 static int is_zero_or_one(isl_int v
)
3875 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
3878 /* Check if we can combine a given div with lower bound l and upper
3879 * bound u with some other div and if so return that other div.
3880 * Otherwise return -1.
3882 * We first check that
3883 * - the bounds are opposites of each other (except for the constant
3885 * - the bounds do not reference any other div
3886 * - no div is defined in terms of this div
3888 * Let m be the size of the range allowed on the div by the bounds.
3889 * That is, the bounds are of the form
3891 * e <= a <= e + m - 1
3893 * with e some expression in the other variables.
3894 * We look for another div b such that no third div is defined in terms
3895 * of this second div b and such that in any constraint that contains
3896 * a (except for the given lower and upper bound), also contains b
3897 * with a coefficient that is m times that of b.
3898 * That is, all constraints (except for the lower and upper bound)
3901 * e + f (a + m b) >= 0
3903 * Furthermore, in the constraints that only contain b, the coefficient
3904 * of b should be equal to 1 or -1.
3905 * If so, we return b so that "a + m b" can be replaced by
3906 * a single div "c = a + m b".
3908 static int div_find_coalesce(__isl_keep isl_basic_map
*bmap
, int *pairs
,
3909 unsigned div
, unsigned l
, unsigned u
)
3915 if (bmap
->n_div
<= 1)
3917 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3918 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
3920 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
3921 bmap
->n_div
- div
- 1) != -1)
3923 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
3927 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3928 if (isl_int_is_zero(bmap
->div
[i
][0]))
3930 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
3934 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3935 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
3936 isl_int_sub(bmap
->ineq
[l
][0],
3937 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3938 bmap
= isl_basic_map_copy(bmap
);
3939 bmap
= isl_basic_map_set_to_empty(bmap
);
3940 isl_basic_map_free(bmap
);
3943 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
3944 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3949 for (j
= 0; j
< bmap
->n_div
; ++j
) {
3950 if (isl_int_is_zero(bmap
->div
[j
][0]))
3952 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
3955 if (j
< bmap
->n_div
)
3957 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3959 if (j
== l
|| j
== u
)
3961 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
])) {
3962 if (is_zero_or_one(bmap
->ineq
[j
][1 + dim
+ i
]))
3966 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
3968 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
3969 bmap
->ineq
[j
][1 + dim
+ div
],
3971 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
3972 bmap
->ineq
[j
][1 + dim
+ i
]);
3973 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
3974 bmap
->ineq
[j
][1 + dim
+ div
],
3979 if (j
< bmap
->n_ineq
)
3984 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
3985 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3989 /* Internal data structure used during the construction and/or evaluation of
3990 * an inequality that ensures that a pair of bounds always allows
3991 * for an integer value.
3993 * "tab" is the tableau in which the inequality is evaluated. It may
3994 * be NULL until it is actually needed.
3995 * "v" contains the inequality coefficients.
3996 * "g", "fl" and "fu" are temporary scalars used during the construction and
3999 struct test_ineq_data
{
4000 struct isl_tab
*tab
;
4007 /* Free all the memory allocated by the fields of "data".
4009 static void test_ineq_data_clear(struct test_ineq_data
*data
)
4011 isl_tab_free(data
->tab
);
4012 isl_vec_free(data
->v
);
4013 isl_int_clear(data
->g
);
4014 isl_int_clear(data
->fl
);
4015 isl_int_clear(data
->fu
);
4018 /* Is the inequality stored in data->v satisfied by "bmap"?
4019 * That is, does it only attain non-negative values?
4020 * data->tab is a tableau corresponding to "bmap".
4022 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4023 struct test_ineq_data
*data
)
4026 enum isl_lp_result res
;
4028 ctx
= isl_basic_map_get_ctx(bmap
);
4030 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4031 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4032 if (res
== isl_lp_error
)
4033 return isl_bool_error
;
4034 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4037 /* Given a lower and an upper bound on div i, do they always allow
4038 * for an integer value of the given div?
4039 * Determine this property by constructing an inequality
4040 * such that the property is guaranteed when the inequality is nonnegative.
4041 * The lower bound is inequality l, while the upper bound is inequality u.
4042 * The constructed inequality is stored in data->v.
4044 * Let the upper bound be
4048 * and the lower bound
4052 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4055 * - f_u e_l <= f_u f_l g a <= f_l e_u
4057 * Since all variables are integer valued, this is equivalent to
4059 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4061 * If this interval is at least f_u f_l g, then it contains at least
4062 * one integer value for a.
4063 * That is, the test constraint is
4065 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4069 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4071 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4072 * then the constraint can be scaled down by a factor g',
4073 * with the constant term replaced by
4074 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4075 * Note that the result of applying Fourier-Motzkin to this pair
4078 * f_l e_u + f_u e_l >= 0
4080 * If the constant term of the scaled down version of this constraint,
4081 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4082 * term of the scaled down test constraint, then the test constraint
4083 * is known to hold and no explicit evaluation is required.
4084 * This is essentially the Omega test.
4086 * If the test constraint consists of only a constant term, then
4087 * it is sufficient to look at the sign of this constant term.
4089 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4090 int l
, int u
, struct test_ineq_data
*data
)
4092 unsigned offset
, n_div
;
4093 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4094 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4096 isl_int_gcd(data
->g
,
4097 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4098 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4099 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4100 isl_int_neg(data
->fu
, data
->fu
);
4101 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4102 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4103 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4104 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4105 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4106 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4107 isl_int_add_ui(data
->g
, data
->g
, 1);
4108 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4110 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4111 if (isl_int_is_zero(data
->g
))
4112 return isl_int_is_nonneg(data
->fl
);
4113 if (isl_int_is_one(data
->g
)) {
4114 isl_int_set(data
->v
->el
[0], data
->fl
);
4115 return test_ineq_is_satisfied(bmap
, data
);
4117 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4118 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4119 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4120 return isl_bool_true
;
4121 isl_int_set(data
->v
->el
[0], data
->fl
);
4122 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4123 offset
- 1 + n_div
);
4125 return test_ineq_is_satisfied(bmap
, data
);
4128 /* Remove more kinds of divs that are not strictly needed.
4129 * In particular, if all pairs of lower and upper bounds on a div
4130 * are such that they allow at least one integer value of the div,
4131 * then we can eliminate the div using Fourier-Motzkin without
4132 * introducing any spurious solutions.
4134 * If at least one of the two constraints has a unit coefficient for the div,
4135 * then the presence of such a value is guaranteed so there is no need to check.
4136 * In particular, the value attained by the bound with unit coefficient
4137 * can serve as this intermediate value.
4139 static __isl_give isl_basic_map
*drop_more_redundant_divs(
4140 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int n
)
4143 struct test_ineq_data data
= { NULL
, NULL
};
4144 unsigned off
, n_div
;
4147 isl_int_init(data
.g
);
4148 isl_int_init(data
.fl
);
4149 isl_int_init(data
.fu
);
4154 ctx
= isl_basic_map_get_ctx(bmap
);
4155 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4156 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4157 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4166 for (i
= 0; i
< n_div
; ++i
) {
4169 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4175 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4176 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4178 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4180 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4181 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4183 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4185 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4189 if (data
.tab
&& data
.tab
->empty
)
4194 if (u
< bmap
->n_ineq
)
4197 if (data
.tab
&& data
.tab
->empty
) {
4198 bmap
= isl_basic_map_set_to_empty(bmap
);
4201 if (l
== bmap
->n_ineq
) {
4209 test_ineq_data_clear(&data
);
4216 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4217 return isl_basic_map_drop_redundant_divs(bmap
);
4220 isl_basic_map_free(bmap
);
4221 test_ineq_data_clear(&data
);
4225 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4226 * and the upper bound u, div1 always occurs together with div2 in the form
4227 * (div1 + m div2), where m is the constant range on the variable div1
4228 * allowed by l and u, replace the pair div1 and div2 by a single
4229 * div that is equal to div1 + m div2.
4231 * The new div will appear in the location that contains div2.
4232 * We need to modify all constraints that contain
4233 * div2 = (div - div1) / m
4234 * The coefficient of div2 is known to be equal to 1 or -1.
4235 * (If a constraint does not contain div2, it will also not contain div1.)
4236 * If the constraint also contains div1, then we know they appear
4237 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4238 * i.e., the coefficient of div is f.
4240 * Otherwise, we first need to introduce div1 into the constraint.
4249 * A lower bound on div2
4253 * can be replaced by
4255 * m div2 + div1 + m t + f >= 0
4261 * can be replaced by
4263 * -(m div2 + div1) + m t + f' >= 0
4265 * These constraint are those that we would obtain from eliminating
4266 * div1 using Fourier-Motzkin.
4268 * After all constraints have been modified, we drop the lower and upper
4269 * bound and then drop div1.
4270 * Since the new div is only placed in the same location that used
4271 * to store div2, but otherwise has a different meaning, any possible
4272 * explicit representation of the original div2 is removed.
4274 static __isl_give isl_basic_map
*coalesce_divs(__isl_take isl_basic_map
*bmap
,
4275 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4279 unsigned dim
, total
;
4282 ctx
= isl_basic_map_get_ctx(bmap
);
4284 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4285 total
= 1 + dim
+ bmap
->n_div
;
4288 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4289 isl_int_add_ui(m
, m
, 1);
4291 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4292 if (i
== l
|| i
== u
)
4294 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
4296 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
4297 if (isl_int_is_pos(bmap
->ineq
[i
][1 + dim
+ div2
]))
4298 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4299 ctx
->one
, bmap
->ineq
[l
], total
);
4301 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4302 ctx
->one
, bmap
->ineq
[u
], total
);
4304 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
4305 bmap
->ineq
[i
][1 + dim
+ div1
]);
4306 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
4311 isl_basic_map_drop_inequality(bmap
, l
);
4312 isl_basic_map_drop_inequality(bmap
, u
);
4314 isl_basic_map_drop_inequality(bmap
, u
);
4315 isl_basic_map_drop_inequality(bmap
, l
);
4317 bmap
= isl_basic_map_mark_div_unknown(bmap
, div2
);
4318 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4322 /* First check if we can coalesce any pair of divs and
4323 * then continue with dropping more redundant divs.
4325 * We loop over all pairs of lower and upper bounds on a div
4326 * with coefficient 1 and -1, respectively, check if there
4327 * is any other div "c" with which we can coalesce the div
4328 * and if so, perform the coalescing.
4330 static __isl_give isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4331 __isl_take isl_basic_map
*bmap
, int *pairs
, int n
)
4336 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4338 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4341 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4342 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
4344 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4347 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
4349 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4353 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4354 return isl_basic_map_drop_redundant_divs(bmap
);
4359 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4364 return drop_more_redundant_divs(bmap
, pairs
, n
);
4367 /* Are the "n" coefficients starting at "first" of inequality constraints
4368 * "i" and "j" of "bmap" equal to each other?
4370 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4373 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4376 /* Are the "n" coefficients starting at "first" of inequality constraints
4377 * "i" and "j" of "bmap" opposite to each other?
4379 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4382 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4385 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4386 * apart from the constant term?
4388 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4392 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4393 return is_opposite_part(bmap
, i
, j
, 1, total
);
4396 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4397 * apart from the constant term and the coefficient at position "pos"?
4399 static isl_bool
is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4404 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4405 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4406 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4409 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4410 * apart from the constant term and the coefficient at position "pos"?
4412 static isl_bool
is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4417 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4418 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4419 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4422 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4423 * been modified, simplying it if "simplify" is set.
4424 * Free the temporary data structure "pairs" that was associated
4425 * to the old version of "bmap".
4427 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4428 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4431 bmap
= isl_basic_map_simplify(bmap
);
4433 return isl_basic_map_drop_redundant_divs(bmap
);
4436 /* Is "div" the single unknown existentially quantified variable
4437 * in inequality constraint "ineq" of "bmap"?
4438 * "div" is known to have a non-zero coefficient in "ineq".
4440 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4444 unsigned n_div
, o_div
;
4447 known
= isl_basic_map_div_is_known(bmap
, div
);
4448 if (known
< 0 || known
)
4449 return isl_bool_not(known
);
4450 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4452 return isl_bool_true
;
4453 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4454 for (i
= 0; i
< n_div
; ++i
) {
4459 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4461 known
= isl_basic_map_div_is_known(bmap
, i
);
4462 if (known
< 0 || !known
)
4466 return isl_bool_true
;
4469 /* Does integer division "div" have coefficient 1 in inequality constraint
4472 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4476 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4477 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4478 return isl_bool_true
;
4480 return isl_bool_false
;
4483 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4484 * then try and drop redundant divs again,
4485 * freeing the temporary data structure "pairs" that was associated
4486 * to the old version of "bmap".
4488 static __isl_give isl_basic_map
*set_eq_and_try_again(
4489 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4491 bmap
= isl_basic_map_cow(bmap
);
4492 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4493 return drop_redundant_divs_again(bmap
, pairs
, 1);
4496 /* Drop the integer division at position "div", along with the two
4497 * inequality constraints "ineq1" and "ineq2" in which it appears
4498 * from "bmap" and then try and drop redundant divs again,
4499 * freeing the temporary data structure "pairs" that was associated
4500 * to the old version of "bmap".
4502 static __isl_give isl_basic_map
*drop_div_and_try_again(
4503 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4504 __isl_take
int *pairs
)
4506 if (ineq1
> ineq2
) {
4507 isl_basic_map_drop_inequality(bmap
, ineq1
);
4508 isl_basic_map_drop_inequality(bmap
, ineq2
);
4510 isl_basic_map_drop_inequality(bmap
, ineq2
);
4511 isl_basic_map_drop_inequality(bmap
, ineq1
);
4513 bmap
= isl_basic_map_drop_div(bmap
, div
);
4514 return drop_redundant_divs_again(bmap
, pairs
, 0);
4517 /* Given two inequality constraints
4519 * f(x) + n d + c >= 0, (ineq)
4521 * with d the variable at position "pos", and
4523 * f(x) + c0 >= 0, (lower)
4525 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4526 * determined by the first constraint.
4533 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4534 int ineq
, int lower
, int pos
, isl_int
*l
)
4536 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4537 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4538 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4541 /* Given two inequality constraints
4543 * f(x) + n d + c >= 0, (ineq)
4545 * with d the variable at position "pos", and
4547 * -f(x) - c0 >= 0, (upper)
4549 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4550 * determined by the first constraint.
4557 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4558 int ineq
, int upper
, int pos
, isl_int
*u
)
4560 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4561 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4562 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4565 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4566 * does the corresponding lower bound have a fixed value in "bmap"?
4568 * In particular, "ineq" is of the form
4570 * f(x) + n d + c >= 0
4572 * with n > 0, c the constant term and
4573 * d the existentially quantified variable "div".
4574 * That is, the lower bound is
4576 * ceil((-f(x) - c)/n)
4578 * Look for a pair of constraints
4583 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4584 * That is, check that
4586 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4588 * If so, return the index of inequality f(x) + c0 >= 0.
4589 * Otherwise, return bmap->n_ineq.
4590 * Return -1 on error.
4592 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4595 int lower
= -1, upper
= -1;
4600 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4601 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4606 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4608 par
= isl_bool_false
;
4610 par
= is_parallel_except(bmap
, ineq
, i
, o_div
+ div
);
4617 opp
= isl_bool_false
;
4619 opp
= is_opposite_except(bmap
, ineq
, i
, o_div
+ div
);
4626 if (lower
< 0 || upper
< 0)
4627 return bmap
->n_ineq
;
4632 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4633 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4635 equal
= isl_int_eq(l
, u
);
4640 return equal
? lower
: bmap
->n_ineq
;
4643 /* Given a lower bound constraint "ineq" on the existentially quantified
4644 * variable "div", such that the corresponding lower bound has
4645 * a fixed value in "bmap", assign this fixed value to the variable and
4646 * then try and drop redundant divs again,
4647 * freeing the temporary data structure "pairs" that was associated
4648 * to the old version of "bmap".
4649 * "lower" determines the constant value for the lower bound.
4651 * In particular, "ineq" is of the form
4653 * f(x) + n d + c >= 0,
4655 * while "lower" is of the form
4659 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4660 * is ceil((c0 - c)/n).
4662 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4663 int div
, int ineq
, int lower
, int *pairs
)
4670 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4671 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4672 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4677 return isl_basic_map_drop_redundant_divs(bmap
);
4680 /* Remove divs that are not strictly needed based on the inequality
4682 * In particular, if a div only occurs positively (or negatively)
4683 * in constraints, then it can simply be dropped.
4684 * Also, if a div occurs in only two constraints and if moreover
4685 * those two constraints are opposite to each other, except for the constant
4686 * term and if the sum of the constant terms is such that for any value
4687 * of the other values, there is always at least one integer value of the
4688 * div, i.e., if one plus this sum is greater than or equal to
4689 * the (absolute value) of the coefficient of the div in the constraints,
4690 * then we can also simply drop the div.
4692 * If an existentially quantified variable does not have an explicit
4693 * representation, appears in only a single lower bound that does not
4694 * involve any other such existentially quantified variables and appears
4695 * in this lower bound with coefficient 1,
4696 * then fix the variable to the value of the lower bound. That is,
4697 * turn the inequality into an equality.
4698 * If for any value of the other variables, there is any value
4699 * for the existentially quantified variable satisfying the constraints,
4700 * then this lower bound also satisfies the constraints.
4701 * It is therefore safe to pick this lower bound.
4703 * The same reasoning holds even if the coefficient is not one.
4704 * However, fixing the variable to the value of the lower bound may
4705 * in general introduce an extra integer division, in which case
4706 * it may be better to pick another value.
4707 * If this integer division has a known constant value, then plugging
4708 * in this constant value removes the existentially quantified variable
4709 * completely. In particular, if the lower bound is of the form
4710 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4711 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4712 * then the existentially quantified variable can be assigned this
4715 * We skip divs that appear in equalities or in the definition of other divs.
4716 * Divs that appear in the definition of other divs usually occur in at least
4717 * 4 constraints, but the constraints may have been simplified.
4719 * If any divs are left after these simple checks then we move on
4720 * to more complicated cases in drop_more_redundant_divs.
4722 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
4723 __isl_take isl_basic_map
*bmap
)
4733 if (bmap
->n_div
== 0)
4736 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4737 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
4741 n_ineq
= isl_basic_map_n_inequality(bmap
);
4742 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4744 int last_pos
, last_neg
;
4747 isl_bool opp
, set_div
;
4749 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
4750 for (j
= i
; j
< bmap
->n_div
; ++j
)
4751 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
4753 if (j
< bmap
->n_div
)
4755 for (j
= 0; j
< bmap
->n_eq
; ++j
)
4756 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
4762 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4763 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
4767 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
4772 pairs
[i
] = pos
* neg
;
4773 if (pairs
[i
] == 0) {
4774 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
4775 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
4776 isl_basic_map_drop_inequality(bmap
, j
);
4777 bmap
= isl_basic_map_drop_div(bmap
, i
);
4778 return drop_redundant_divs_again(bmap
, pairs
, 0);
4781 opp
= isl_bool_false
;
4783 opp
= is_opposite(bmap
, last_pos
, last_neg
);
4788 isl_bool single
, one
;
4792 single
= single_unknown(bmap
, last_pos
, i
);
4797 one
= has_coef_one(bmap
, i
, last_pos
);
4801 return set_eq_and_try_again(bmap
, last_pos
,
4803 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
4807 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
4812 isl_int_add(bmap
->ineq
[last_pos
][0],
4813 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4814 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
4815 bmap
->ineq
[last_pos
][0], 1);
4816 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
4817 bmap
->ineq
[last_pos
][1+off
+i
]);
4818 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
4819 bmap
->ineq
[last_pos
][0], 1);
4820 isl_int_sub(bmap
->ineq
[last_pos
][0],
4821 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4823 return drop_div_and_try_again(bmap
, i
,
4824 last_pos
, last_neg
, pairs
);
4826 set_div
= isl_bool_false
;
4828 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
4830 return isl_basic_map_free(bmap
);
4832 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
4833 return drop_redundant_divs_again(bmap
, pairs
, 1);
4840 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
4846 isl_basic_map_free(bmap
);
4850 /* Consider the coefficients at "c" as a row vector and replace
4851 * them with their product with "T". "T" is assumed to be a square matrix.
4853 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
4860 return isl_stat_error
;
4861 n
= isl_mat_rows(T
);
4862 if (isl_seq_first_non_zero(c
, n
) == -1)
4864 ctx
= isl_mat_get_ctx(T
);
4865 v
= isl_vec_alloc(ctx
, n
);
4867 return isl_stat_error
;
4868 isl_seq_swp_or_cpy(v
->el
, c
, n
);
4869 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
4871 return isl_stat_error
;
4872 isl_seq_swp_or_cpy(c
, v
->el
, n
);
4878 /* Plug in T for the variables in "bmap" starting at "pos".
4879 * T is a linear unimodular matrix, i.e., without constant term.
4881 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
4882 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
4887 bmap
= isl_basic_map_cow(bmap
);
4891 n
= isl_mat_cols(T
);
4892 if (n
!= isl_mat_rows(T
))
4893 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
4894 "expecting square matrix", goto error
);
4896 if (isl_basic_map_check_range(bmap
, isl_dim_all
, pos
, n
) < 0)
4899 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4900 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
4902 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
4903 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
4905 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4906 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
4908 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
4915 isl_basic_map_free(bmap
);
4920 /* Remove divs that are not strictly needed.
4922 * First look for an equality constraint involving two or more
4923 * existentially quantified variables without an explicit
4924 * representation. Replace the combination that appears
4925 * in the equality constraint by a single existentially quantified
4926 * variable such that the equality can be used to derive
4927 * an explicit representation for the variable.
4928 * If there are no more such equality constraints, then continue
4929 * with isl_basic_map_drop_redundant_divs_ineq.
4931 * In particular, if the equality constraint is of the form
4933 * f(x) + \sum_i c_i a_i = 0
4935 * with a_i existentially quantified variable without explicit
4936 * representation, then apply a transformation on the existentially
4937 * quantified variables to turn the constraint into
4941 * with g the gcd of the c_i.
4942 * In order to easily identify which existentially quantified variables
4943 * have a complete explicit representation, i.e., without being defined
4944 * in terms of other existentially quantified variables without
4945 * an explicit representation, the existentially quantified variables
4948 * The variable transformation is computed by extending the row
4949 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
4951 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
4956 * with [c_1/g ... c_n/g] representing the first row of U.
4957 * The inverse of U is then plugged into the original constraints.
4958 * The call to isl_basic_map_simplify makes sure the explicit
4959 * representation for a_1' is extracted from the equality constraint.
4961 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
4962 __isl_take isl_basic_map
*bmap
)
4966 unsigned o_div
, n_div
;
4973 if (isl_basic_map_divs_known(bmap
))
4974 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
4975 if (bmap
->n_eq
== 0)
4976 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
4977 bmap
= isl_basic_map_sort_divs(bmap
);
4981 first
= isl_basic_map_first_unknown_div(bmap
);
4983 return isl_basic_map_free(bmap
);
4985 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4986 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4988 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
4989 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
4994 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
4995 n_div
- (l
+ 1)) == -1)
4999 if (i
>= bmap
->n_eq
)
5000 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5002 ctx
= isl_basic_map_get_ctx(bmap
);
5003 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
5005 return isl_basic_map_free(bmap
);
5006 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
5007 T
= isl_mat_normalize_row(T
, 0);
5008 T
= isl_mat_unimodular_complete(T
, 1);
5009 T
= isl_mat_right_inverse(T
);
5011 for (i
= l
; i
< n_div
; ++i
)
5012 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
5013 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
5014 bmap
= isl_basic_map_simplify(bmap
);
5016 return isl_basic_map_drop_redundant_divs(bmap
);
5019 /* Does "bmap" satisfy any equality that involves more than 2 variables
5020 * and/or has coefficients different from -1 and 1?
5022 static isl_bool
has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
5027 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5029 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5032 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5035 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5036 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5037 return isl_bool_true
;
5040 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5044 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5045 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5046 return isl_bool_true
;
5049 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5051 return isl_bool_true
;
5054 return isl_bool_false
;
5057 /* Remove any common factor g from the constraint coefficients in "v".
5058 * The constant term is stored in the first position and is replaced
5059 * by floor(c/g). If any common factor is removed and if this results
5060 * in a tightening of the constraint, then set *tightened.
5062 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5069 ctx
= isl_vec_get_ctx(v
);
5070 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5071 if (isl_int_is_zero(ctx
->normalize_gcd
))
5073 if (isl_int_is_one(ctx
->normalize_gcd
))
5078 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5080 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5081 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5086 /* If "bmap" is an integer set that satisfies any equality involving
5087 * more than 2 variables and/or has coefficients different from -1 and 1,
5088 * then use variable compression to reduce the coefficients by removing
5089 * any (hidden) common factor.
5090 * In particular, apply the variable compression to each constraint,
5091 * factor out any common factor in the non-constant coefficients and
5092 * then apply the inverse of the compression.
5093 * At the end, we mark the basic map as having reduced constants.
5094 * If this flag is still set on the next invocation of this function,
5095 * then we skip the computation.
5097 * Removing a common factor may result in a tightening of some of
5098 * the constraints. If this happens, then we may end up with two
5099 * opposite inequalities that can be replaced by an equality.
5100 * We therefore call isl_basic_map_detect_inequality_pairs,
5101 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5102 * and isl_basic_map_gauss if such a pair was found.
5104 * Note that this function may leave the result in an inconsistent state.
5105 * In particular, the constraints may not be gaussed.
5106 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5107 * for some of the test cases to pass successfully.
5108 * Any potential modification of the representation is therefore only
5109 * performed on a single copy of the basic map.
5111 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5112 __isl_take isl_basic_map
*bmap
)
5118 isl_mat
*eq
, *T
, *T2
;
5124 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5126 if (isl_basic_map_is_rational(bmap
))
5128 if (bmap
->n_eq
== 0)
5130 multi
= has_multiple_var_equality(bmap
);
5132 return isl_basic_map_free(bmap
);
5136 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5137 ctx
= isl_basic_map_get_ctx(bmap
);
5138 v
= isl_vec_alloc(ctx
, 1 + total
);
5140 return isl_basic_map_free(bmap
);
5142 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5143 T
= isl_mat_variable_compression(eq
, &T2
);
5146 if (T
->n_col
== 0) {
5150 return isl_basic_map_set_to_empty(bmap
);
5153 bmap
= isl_basic_map_cow(bmap
);
5158 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5159 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5160 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5161 v
= normalize_constraint(v
, &tightened
);
5162 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5165 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5172 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5177 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5179 bmap
= eliminate_divs_eq(bmap
, &progress
);
5180 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5189 return isl_basic_map_free(bmap
);
5192 /* Shift the integer division at position "div" of "bmap"
5193 * by "shift" times the variable at position "pos".
5194 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5195 * corresponds to the constant term.
5197 * That is, if the integer division has the form
5201 * then replace it by
5203 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5205 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5206 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5211 if (isl_int_is_zero(shift
))
5216 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5217 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
5219 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5221 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5222 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5224 isl_int_submul(bmap
->eq
[i
][pos
],
5225 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5227 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5228 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5230 isl_int_submul(bmap
->ineq
[i
][pos
],
5231 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5233 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5234 if (isl_int_is_zero(bmap
->div
[i
][0]))
5236 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5238 isl_int_submul(bmap
->div
[i
][1 + pos
],
5239 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);