isl_map_simplify.c: has_multiple_var_equality: return isl_bool
[isl.git] / isl_bernstein.c
blob10f746b7d093ae1a51832c2f8a67840df2323f36
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl_seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
28 struct bernstein_data {
29 enum isl_fold type;
30 isl_qpolynomial *poly;
31 int check_tight;
33 isl_cell *cell;
35 isl_qpolynomial_fold *fold;
36 isl_qpolynomial_fold *fold_tight;
37 isl_pw_qpolynomial_fold *pwf;
38 isl_pw_qpolynomial_fold *pwf_tight;
41 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
43 unsigned nvar;
44 unsigned nparam;
45 int i;
47 nvar = isl_basic_set_dim(vertex, isl_dim_set);
48 nparam = isl_basic_set_dim(vertex, isl_dim_param);
49 for (i = 0; i < nvar; ++i) {
50 int r = nvar - 1 - i;
51 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
52 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
53 return 0;
56 return 1;
59 static __isl_give isl_qpolynomial *vertex_coordinate(
60 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
62 unsigned nvar;
63 unsigned nparam;
64 int r;
65 isl_int denom;
66 isl_qpolynomial *v;
68 nvar = isl_basic_set_dim(vertex, isl_dim_set);
69 nparam = isl_basic_set_dim(vertex, isl_dim_param);
70 r = nvar - 1 - i;
72 isl_int_init(denom);
73 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
74 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
76 if (isl_int_is_pos(denom))
77 isl_seq_neg(vertex->eq[r], vertex->eq[r],
78 1 + isl_basic_set_total_dim(vertex));
79 else
80 isl_int_neg(denom, denom);
82 v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
83 isl_int_clear(denom);
85 return v;
86 error:
87 isl_space_free(space);
88 isl_int_clear(denom);
89 return NULL;
92 /* Check whether the bound associated to the selection "k" is tight,
93 * which is the case if we select exactly one vertex and if that vertex
94 * is integral for all values of the parameters.
96 static int is_tight(int *k, int n, int d, isl_cell *cell)
98 int i;
100 for (i = 0; i < n; ++i) {
101 int v;
102 if (k[i] != d) {
103 if (k[i])
104 return 0;
105 continue;
107 v = cell->ids[n - 1 - i];
108 return vertex_is_integral(cell->vertices->v[v].vertex);
111 return 0;
114 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
115 int *k, int n, int d, struct bernstein_data *data)
117 isl_qpolynomial_fold *fold;
119 fold = isl_qpolynomial_fold_alloc(data->type, b);
121 if (data->check_tight && is_tight(k, n, d, data->cell))
122 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
123 data->fold_tight, fold);
124 else
125 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
126 data->fold, fold);
129 /* Extract the coefficients of the Bernstein base polynomials and store
130 * them in data->fold and data->fold_tight.
132 * In particular, the coefficient of each monomial
133 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
134 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
136 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
137 * multinom[i] contains the partial multinomial coefficient.
139 static isl_stat extract_coefficients(isl_qpolynomial *poly,
140 __isl_keep isl_set *dom, struct bernstein_data *data)
142 int i;
143 int d;
144 int n;
145 isl_ctx *ctx;
146 isl_qpolynomial **c = NULL;
147 int *k = NULL;
148 int *left = NULL;
149 isl_vec *multinom = NULL;
151 if (!poly)
152 return isl_stat_error;
154 ctx = isl_qpolynomial_get_ctx(poly);
155 n = isl_qpolynomial_dim(poly, isl_dim_in);
156 d = isl_qpolynomial_degree(poly);
157 isl_assert(ctx, n >= 2, return isl_stat_error);
159 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
160 k = isl_alloc_array(ctx, int, n);
161 left = isl_alloc_array(ctx, int, n);
162 multinom = isl_vec_alloc(ctx, n);
163 if (!c || !k || !left || !multinom)
164 goto error;
166 isl_int_set_si(multinom->el[0], 1);
167 for (k[0] = d; k[0] >= 0; --k[0]) {
168 int i = 1;
169 isl_qpolynomial_free(c[0]);
170 c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
171 left[0] = d - k[0];
172 k[1] = -1;
173 isl_int_set(multinom->el[1], multinom->el[0]);
174 while (i > 0) {
175 if (i == n - 1) {
176 int j;
177 isl_space *dim;
178 isl_qpolynomial *b;
179 isl_qpolynomial *f;
180 for (j = 2; j <= left[i - 1]; ++j)
181 isl_int_divexact_ui(multinom->el[i],
182 multinom->el[i], j);
183 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
184 n - 1 - i, left[i - 1]);
185 b = isl_qpolynomial_project_domain_on_params(b);
186 dim = isl_qpolynomial_get_domain_space(b);
187 f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
188 multinom->el[i]);
189 b = isl_qpolynomial_mul(b, f);
190 k[n - 1] = left[n - 2];
191 add_fold(b, dom, k, n, d, data);
192 --i;
193 continue;
195 if (k[i] >= left[i - 1]) {
196 --i;
197 continue;
199 ++k[i];
200 if (k[i])
201 isl_int_divexact_ui(multinom->el[i],
202 multinom->el[i], k[i]);
203 isl_qpolynomial_free(c[i]);
204 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
205 n - 1 - i, k[i]);
206 left[i] = left[i - 1] - k[i];
207 k[i + 1] = -1;
208 isl_int_set(multinom->el[i + 1], multinom->el[i]);
209 ++i;
211 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
214 for (i = 0; i < n; ++i)
215 isl_qpolynomial_free(c[i]);
217 isl_vec_free(multinom);
218 free(left);
219 free(k);
220 free(c);
221 return isl_stat_ok;
222 error:
223 isl_vec_free(multinom);
224 free(left);
225 free(k);
226 if (c)
227 for (i = 0; i < n; ++i)
228 isl_qpolynomial_free(c[i]);
229 free(c);
230 return isl_stat_error;
233 /* Perform bernstein expansion on the parametric vertices that are active
234 * on "cell".
236 * data->poly has been homogenized in the calling function.
238 * We plug in the barycentric coordinates for the set variables
240 * \vec x = \sum_i \alpha_i v_i(\vec p)
242 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
243 * Next, we extract the coefficients of the Bernstein base polynomials.
245 static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
246 void *user)
248 int i, j;
249 struct bernstein_data *data = (struct bernstein_data *)user;
250 isl_space *space_param;
251 isl_space *space_dst;
252 isl_qpolynomial *poly = data->poly;
253 unsigned nvar;
254 int n_vertices;
255 isl_qpolynomial **subs;
256 isl_pw_qpolynomial_fold *pwf;
257 isl_set *dom;
258 isl_ctx *ctx;
260 if (!poly)
261 goto error;
263 nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
264 n_vertices = cell->n_vertices;
266 ctx = isl_qpolynomial_get_ctx(poly);
267 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
268 return isl_cell_foreach_simplex(cell,
269 &bernstein_coefficients_cell, user);
271 subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
272 if (!subs)
273 goto error;
275 space_param = isl_basic_set_get_space(cell->dom);
276 space_dst = isl_qpolynomial_get_domain_space(poly);
277 space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
279 for (i = 0; i < 1 + nvar; ++i)
280 subs[i] =
281 isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
283 for (i = 0; i < n_vertices; ++i) {
284 isl_qpolynomial *c;
285 c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
286 isl_dim_set, 1 + nvar + i);
287 for (j = 0; j < nvar; ++j) {
288 int k = cell->ids[i];
289 isl_qpolynomial *v;
290 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
291 isl_space_copy(space_param));
292 v = isl_qpolynomial_add_dims(v, isl_dim_in,
293 1 + nvar + n_vertices);
294 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
295 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
297 subs[0] = isl_qpolynomial_add(subs[0], c);
299 isl_space_free(space_dst);
301 poly = isl_qpolynomial_copy(poly);
303 poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
304 poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
305 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
307 data->cell = cell;
308 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
309 data->fold = isl_qpolynomial_fold_empty(data->type,
310 isl_space_copy(space_param));
311 data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
312 if (extract_coefficients(poly, dom, data) < 0) {
313 data->fold = isl_qpolynomial_fold_free(data->fold);
314 data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
317 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
318 data->fold);
319 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
320 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
321 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
323 isl_qpolynomial_free(poly);
324 isl_cell_free(cell);
325 for (i = 0; i < 1 + nvar; ++i)
326 isl_qpolynomial_free(subs[i]);
327 free(subs);
328 return isl_stat_ok;
329 error:
330 isl_cell_free(cell);
331 return isl_stat_error;
334 /* Base case of applying bernstein expansion.
336 * We compute the chamber decomposition of the parametric polytope "bset"
337 * and then perform bernstein expansion on the parametric vertices
338 * that are active on each chamber.
340 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
341 __isl_take isl_basic_set *bset,
342 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
344 unsigned nvar;
345 isl_space *space;
346 isl_pw_qpolynomial_fold *pwf;
347 isl_vertices *vertices;
348 isl_bool covers;
350 nvar = isl_basic_set_dim(bset, isl_dim_set);
351 if (nvar == 0) {
352 isl_set *dom;
353 isl_qpolynomial_fold *fold;
355 fold = isl_qpolynomial_fold_alloc(data->type, poly);
356 dom = isl_set_from_basic_set(bset);
357 if (tight)
358 *tight = 1;
359 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
360 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
363 if (isl_qpolynomial_is_zero(poly)) {
364 isl_set *dom;
365 isl_qpolynomial_fold *fold;
366 fold = isl_qpolynomial_fold_alloc(data->type, poly);
367 dom = isl_set_from_basic_set(bset);
368 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
369 if (tight)
370 *tight = 1;
371 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
374 space = isl_basic_set_get_space(bset);
375 space = isl_space_params(space);
376 space = isl_space_from_domain(space);
377 space = isl_space_add_dims(space, isl_dim_set, 1);
378 data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
379 data->type);
380 data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
381 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
382 vertices = isl_basic_set_compute_vertices(bset);
383 if (isl_vertices_foreach_disjoint_cell(vertices,
384 &bernstein_coefficients_cell, data) < 0)
385 data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
386 isl_vertices_free(vertices);
387 isl_qpolynomial_free(data->poly);
389 isl_basic_set_free(bset);
390 isl_qpolynomial_free(poly);
392 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
393 if (covers < 0)
394 goto error;
396 if (tight)
397 *tight = covers;
399 if (covers) {
400 isl_pw_qpolynomial_fold_free(data->pwf);
401 return data->pwf_tight;
404 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
406 return data->pwf;
407 error:
408 isl_pw_qpolynomial_fold_free(data->pwf_tight);
409 isl_pw_qpolynomial_fold_free(data->pwf);
410 return NULL;
413 /* Apply bernstein expansion recursively by working in on len[i]
414 * set variables at a time, with i ranging from n_group - 1 to 0.
416 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
417 __isl_take isl_pw_qpolynomial *pwqp,
418 int n_group, int *len, struct bernstein_data *data, int *tight)
420 int i;
421 unsigned nparam;
422 unsigned nvar;
423 isl_pw_qpolynomial_fold *pwf;
425 if (!pwqp)
426 return NULL;
428 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
429 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
431 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
432 isl_dim_in, 0, nvar - len[n_group - 1]);
433 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
435 for (i = n_group - 2; i >= 0; --i) {
436 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
437 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
438 isl_dim_param, nparam - len[i], len[i]);
439 if (tight && !*tight)
440 tight = NULL;
441 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
444 return pwf;
447 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
448 __isl_take isl_basic_set *bset,
449 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
451 isl_factorizer *f;
452 isl_set *set;
453 isl_pw_qpolynomial *pwqp;
454 isl_pw_qpolynomial_fold *pwf;
456 f = isl_basic_set_factorizer(bset);
457 if (!f)
458 goto error;
459 if (f->n_group == 0) {
460 isl_factorizer_free(f);
461 return bernstein_coefficients_base(bset, poly, data, tight);
464 set = isl_set_from_basic_set(bset);
465 pwqp = isl_pw_qpolynomial_alloc(set, poly);
466 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
468 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
469 tight);
471 isl_factorizer_free(f);
473 return pwf;
474 error:
475 isl_basic_set_free(bset);
476 isl_qpolynomial_free(poly);
477 return NULL;
480 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
481 __isl_take isl_basic_set *bset,
482 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
484 int i;
485 int *len;
486 unsigned nvar;
487 isl_pw_qpolynomial_fold *pwf;
488 isl_set *set;
489 isl_pw_qpolynomial *pwqp;
491 if (!bset || !poly)
492 goto error;
494 nvar = isl_basic_set_dim(bset, isl_dim_set);
496 len = isl_alloc_array(bset->ctx, int, nvar);
497 if (nvar && !len)
498 goto error;
500 for (i = 0; i < nvar; ++i)
501 len[i] = 1;
503 set = isl_set_from_basic_set(bset);
504 pwqp = isl_pw_qpolynomial_alloc(set, poly);
506 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
508 free(len);
510 return pwf;
511 error:
512 isl_basic_set_free(bset);
513 isl_qpolynomial_free(poly);
514 return NULL;
517 /* Compute a bound on the polynomial defined over the parametric polytope
518 * using bernstein expansion and store the result
519 * in bound->pwf and bound->pwf_tight.
521 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
522 * the polytope can be factorized and apply bernstein expansion recursively
523 * on the factors.
524 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
525 * bernstein expansion recursively on each dimension.
526 * Otherwise, we apply bernstein expansion on the entire polytope.
528 isl_stat isl_qpolynomial_bound_on_domain_bernstein(
529 __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
530 struct isl_bound *bound)
532 struct bernstein_data data;
533 isl_pw_qpolynomial_fold *pwf;
534 unsigned nvar;
535 int tight = 0;
536 int *tp = bound->check_tight ? &tight : NULL;
538 if (!bset || !poly)
539 goto error;
541 data.type = bound->type;
542 data.check_tight = bound->check_tight;
544 nvar = isl_basic_set_dim(bset, isl_dim_set);
546 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
547 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
548 else if (nvar > 1 &&
549 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
550 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
551 else
552 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
554 if (tight)
555 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
556 else
557 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
559 return isl_stat_ok;
560 error:
561 isl_basic_set_free(bset);
562 isl_qpolynomial_free(poly);
563 return isl_stat_error;