doc: document *_get_dim functions
[isl.git] / isl_coalesce.c
blobc339d0d0f033e1d2a9d84cf2568645c54c1de016
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
14 #include "isl_seq.h"
15 #include "isl_tab.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
21 #define STATUS_CUT 4
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int *ineq, struct isl_tab *tab)
27 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
28 switch (type) {
29 case isl_ineq_error: return STATUS_ERROR;
30 case isl_ineq_redundant: return STATUS_VALID;
31 case isl_ineq_separate: return STATUS_SEPARATE;
32 case isl_ineq_cut: return STATUS_CUT;
33 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
34 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
38 /* Compute the position of the equalities of basic map "i"
39 * with respect to basic map "j".
40 * The resulting array has twice as many entries as the number
41 * of equalities corresponding to the two inequalties to which
42 * each equality corresponds.
44 static int *eq_status_in(struct isl_map *map, int i, int j,
45 struct isl_tab **tabs)
47 int k, l;
48 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
49 unsigned dim;
51 dim = isl_basic_map_total_dim(map->p[i]);
52 for (k = 0; k < map->p[i]->n_eq; ++k) {
53 for (l = 0; l < 2; ++l) {
54 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
55 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
56 if (eq[2 * k + l] == STATUS_ERROR)
57 goto error;
59 if (eq[2 * k] == STATUS_SEPARATE ||
60 eq[2 * k + 1] == STATUS_SEPARATE)
61 break;
64 return eq;
65 error:
66 free(eq);
67 return NULL;
70 /* Compute the position of the inequalities of basic map "i"
71 * with respect to basic map "j".
73 static int *ineq_status_in(struct isl_map *map, int i, int j,
74 struct isl_tab **tabs)
76 int k;
77 unsigned n_eq = map->p[i]->n_eq;
78 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
80 for (k = 0; k < map->p[i]->n_ineq; ++k) {
81 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
82 ineq[k] = STATUS_REDUNDANT;
83 continue;
85 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
86 if (ineq[k] == STATUS_ERROR)
87 goto error;
88 if (ineq[k] == STATUS_SEPARATE)
89 break;
92 return ineq;
93 error:
94 free(ineq);
95 return NULL;
98 static int any(int *con, unsigned len, int status)
100 int i;
102 for (i = 0; i < len ; ++i)
103 if (con[i] == status)
104 return 1;
105 return 0;
108 static int count(int *con, unsigned len, int status)
110 int i;
111 int c = 0;
113 for (i = 0; i < len ; ++i)
114 if (con[i] == status)
115 c++;
116 return c;
119 static int all(int *con, unsigned len, int status)
121 int i;
123 for (i = 0; i < len ; ++i) {
124 if (con[i] == STATUS_REDUNDANT)
125 continue;
126 if (con[i] != status)
127 return 0;
129 return 1;
132 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
134 isl_basic_map_free(map->p[i]);
135 isl_tab_free(tabs[i]);
137 if (i != map->n - 1) {
138 map->p[i] = map->p[map->n - 1];
139 tabs[i] = tabs[map->n - 1];
141 tabs[map->n - 1] = NULL;
142 map->n--;
145 /* Replace the pair of basic maps i and j by the basic map bounded
146 * by the valid constraints in both basic maps and the constraint
147 * in extra (if not NULL).
149 static int fuse(struct isl_map *map, int i, int j,
150 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
151 __isl_keep isl_mat *extra)
153 int k, l;
154 struct isl_basic_map *fused = NULL;
155 struct isl_tab *fused_tab = NULL;
156 unsigned total = isl_basic_map_total_dim(map->p[i]);
157 unsigned extra_rows = extra ? extra->n_row : 0;
159 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
160 map->p[i]->n_div,
161 map->p[i]->n_eq + map->p[j]->n_eq,
162 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
163 if (!fused)
164 goto error;
166 for (k = 0; k < map->p[i]->n_eq; ++k) {
167 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
168 eq_i[2 * k + 1] != STATUS_VALID))
169 continue;
170 l = isl_basic_map_alloc_equality(fused);
171 if (l < 0)
172 goto error;
173 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
176 for (k = 0; k < map->p[j]->n_eq; ++k) {
177 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
178 eq_j[2 * k + 1] != STATUS_VALID))
179 continue;
180 l = isl_basic_map_alloc_equality(fused);
181 if (l < 0)
182 goto error;
183 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
186 for (k = 0; k < map->p[i]->n_ineq; ++k) {
187 if (ineq_i[k] != STATUS_VALID)
188 continue;
189 l = isl_basic_map_alloc_inequality(fused);
190 if (l < 0)
191 goto error;
192 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
195 for (k = 0; k < map->p[j]->n_ineq; ++k) {
196 if (ineq_j[k] != STATUS_VALID)
197 continue;
198 l = isl_basic_map_alloc_inequality(fused);
199 if (l < 0)
200 goto error;
201 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
204 for (k = 0; k < map->p[i]->n_div; ++k) {
205 int l = isl_basic_map_alloc_div(fused);
206 if (l < 0)
207 goto error;
208 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
211 for (k = 0; k < extra_rows; ++k) {
212 l = isl_basic_map_alloc_inequality(fused);
213 if (l < 0)
214 goto error;
215 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
218 fused = isl_basic_map_gauss(fused, NULL);
219 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
220 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
221 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
222 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
224 fused_tab = isl_tab_from_basic_map(fused);
225 if (isl_tab_detect_redundant(fused_tab) < 0)
226 goto error;
228 isl_basic_map_free(map->p[i]);
229 map->p[i] = fused;
230 isl_tab_free(tabs[i]);
231 tabs[i] = fused_tab;
232 drop(map, j, tabs);
234 return 1;
235 error:
236 isl_tab_free(fused_tab);
237 isl_basic_map_free(fused);
238 return -1;
241 /* Given a pair of basic maps i and j such that all constraints are either
242 * "valid" or "cut", check if the facets corresponding to the "cut"
243 * constraints of i lie entirely within basic map j.
244 * If so, replace the pair by the basic map consisting of the valid
245 * constraints in both basic maps.
247 * To see that we are not introducing any extra points, call the
248 * two basic maps A and B and the resulting map U and let x
249 * be an element of U \setminus ( A \cup B ).
250 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
251 * violates them. Let X be the intersection of U with the opposites
252 * of these constraints. Then x \in X.
253 * The facet corresponding to c_1 contains the corresponding facet of A.
254 * This facet is entirely contained in B, so c_2 is valid on the facet.
255 * However, since it is also (part of) a facet of X, -c_2 is also valid
256 * on the facet. This means c_2 is saturated on the facet, so c_1 and
257 * c_2 must be opposites of each other, but then x could not violate
258 * both of them.
260 static int check_facets(struct isl_map *map, int i, int j,
261 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
263 int k, l;
264 struct isl_tab_undo *snap;
265 unsigned n_eq = map->p[i]->n_eq;
267 snap = isl_tab_snap(tabs[i]);
269 for (k = 0; k < map->p[i]->n_ineq; ++k) {
270 if (ineq_i[k] != STATUS_CUT)
271 continue;
272 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
273 for (l = 0; l < map->p[j]->n_ineq; ++l) {
274 int stat;
275 if (ineq_j[l] != STATUS_CUT)
276 continue;
277 stat = status_in(map->p[j]->ineq[l], tabs[i]);
278 if (stat != STATUS_VALID)
279 break;
281 if (isl_tab_rollback(tabs[i], snap) < 0)
282 return -1;
283 if (l < map->p[j]->n_ineq)
284 break;
287 if (k < map->p[i]->n_ineq)
288 /* BAD CUT PAIR */
289 return 0;
290 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
293 /* Both basic maps have at least one inequality with and adjacent
294 * (but opposite) inequality in the other basic map.
295 * Check that there are no cut constraints and that there is only
296 * a single pair of adjacent inequalities.
297 * If so, we can replace the pair by a single basic map described
298 * by all but the pair of adjacent inequalities.
299 * Any additional points introduced lie strictly between the two
300 * adjacent hyperplanes and can therefore be integral.
302 * ____ _____
303 * / ||\ / \
304 * / || \ / \
305 * \ || \ => \ \
306 * \ || / \ /
307 * \___||_/ \_____/
309 * The test for a single pair of adjancent inequalities is important
310 * for avoiding the combination of two basic maps like the following
312 * /|
313 * / |
314 * /__|
315 * _____
316 * | |
317 * | |
318 * |___|
320 static int check_adj_ineq(struct isl_map *map, int i, int j,
321 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
323 int changed = 0;
325 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
326 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
327 /* ADJ INEQ CUT */
329 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
330 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
331 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
332 /* else ADJ INEQ TOO MANY */
334 return changed;
337 /* Check if basic map "i" contains the basic map represented
338 * by the tableau "tab".
340 static int contains(struct isl_map *map, int i, int *ineq_i,
341 struct isl_tab *tab)
343 int k, l;
344 unsigned dim;
346 dim = isl_basic_map_total_dim(map->p[i]);
347 for (k = 0; k < map->p[i]->n_eq; ++k) {
348 for (l = 0; l < 2; ++l) {
349 int stat;
350 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
351 stat = status_in(map->p[i]->eq[k], tab);
352 if (stat != STATUS_VALID)
353 return 0;
357 for (k = 0; k < map->p[i]->n_ineq; ++k) {
358 int stat;
359 if (ineq_i[k] == STATUS_REDUNDANT)
360 continue;
361 stat = status_in(map->p[i]->ineq[k], tab);
362 if (stat != STATUS_VALID)
363 return 0;
365 return 1;
368 /* Basic map "i" has an inequality "k" that is adjacent to some equality
369 * of basic map "j". All the other inequalities are valid for "j".
370 * Check if basic map "j" forms an extension of basic map "i".
372 * In particular, we relax constraint "k", compute the corresponding
373 * facet and check whether it is included in the other basic map.
374 * If so, we know that relaxing the constraint extends the basic
375 * map with exactly the other basic map (we already know that this
376 * other basic map is included in the extension, because there
377 * were no "cut" inequalities in "i") and we can replace the
378 * two basic maps by thie extension.
379 * ____ _____
380 * / || / |
381 * / || / |
382 * \ || => \ |
383 * \ || \ |
384 * \___|| \____|
386 static int is_extension(struct isl_map *map, int i, int j, int k,
387 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
389 int changed = 0;
390 int super;
391 struct isl_tab_undo *snap, *snap2;
392 unsigned n_eq = map->p[i]->n_eq;
394 snap = isl_tab_snap(tabs[i]);
395 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
396 snap2 = isl_tab_snap(tabs[i]);
397 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
398 super = contains(map, j, ineq_j, tabs[i]);
399 if (super) {
400 if (isl_tab_rollback(tabs[i], snap2) < 0)
401 return -1;
402 map->p[i] = isl_basic_map_cow(map->p[i]);
403 if (!map->p[i])
404 return -1;
405 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
406 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
407 drop(map, j, tabs);
408 changed = 1;
409 } else
410 if (isl_tab_rollback(tabs[i], snap) < 0)
411 return -1;
413 return changed;
416 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
417 * wrap the constraint around "bound" such that it includes the whole
418 * set "set" and append the resulting constraint to "wraps".
419 * "wraps" is assumed to have been pre-allocated to the appropriate size.
420 * wraps->n_row is the number of actual wrapped constraints that have
421 * been added.
422 * If any of the wrapping problems results in a constraint that is
423 * identical to "bound", then this means that "set" is unbounded in such
424 * way that no wrapping is possible. If this happens then wraps->n_row
425 * is reset to zero.
427 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
428 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
430 int l;
431 int w;
432 unsigned total = isl_basic_map_total_dim(bmap);
434 w = wraps->n_row;
436 for (l = 0; l < bmap->n_ineq; ++l) {
437 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
438 continue;
439 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
440 continue;
441 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
442 continue;
444 isl_seq_cpy(wraps->row[w], bound, 1 + total);
445 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
446 return -1;
447 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
448 goto unbounded;
449 ++w;
451 for (l = 0; l < bmap->n_eq; ++l) {
452 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
453 continue;
454 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
455 continue;
457 isl_seq_cpy(wraps->row[w], bound, 1 + total);
458 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
459 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
460 return -1;
461 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
462 goto unbounded;
463 ++w;
465 isl_seq_cpy(wraps->row[w], bound, 1 + total);
466 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
467 return -1;
468 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
469 goto unbounded;
470 ++w;
473 wraps->n_row = w;
474 return 0;
475 unbounded:
476 wraps->n_row = 0;
477 return 0;
480 /* Check if the constraints in "wraps" from "first" until the last
481 * are all valid for the basic set represented by "tab".
482 * If not, wraps->n_row is set to zero.
484 static int check_wraps(__isl_keep isl_mat *wraps, int first,
485 struct isl_tab *tab)
487 int i;
489 for (i = first; i < wraps->n_row; ++i) {
490 enum isl_ineq_type type;
491 type = isl_tab_ineq_type(tab, wraps->row[i]);
492 if (type == isl_ineq_error)
493 return -1;
494 if (type == isl_ineq_redundant)
495 continue;
496 wraps->n_row = 0;
497 return 0;
500 return 0;
503 /* Return a set that corresponds to the non-redudant constraints
504 * (as recorded in tab) of bmap.
506 * It's important to remove the redundant constraints as some
507 * of the other constraints may have been modified after the
508 * constraints were marked redundant.
509 * In particular, a constraint may have been relaxed.
510 * Redundant constraints are ignored when a constraint is relaxed
511 * and should therefore continue to be ignored ever after.
512 * Otherwise, the relaxation might be thwarted by some of
513 * these constraints.
515 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
516 struct isl_tab *tab)
518 bmap = isl_basic_map_copy(bmap);
519 bmap = isl_basic_map_cow(bmap);
520 bmap = isl_basic_map_update_from_tab(bmap, tab);
521 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
524 /* Given a basic set i with a constraint k that is adjacent to either the
525 * whole of basic set j or a facet of basic set j, check if we can wrap
526 * both the facet corresponding to k and the facet of j (or the whole of j)
527 * around their ridges to include the other set.
528 * If so, replace the pair of basic sets by their union.
530 * All constraints of i (except k) are assumed to be valid for j.
532 * However, the constraints of j may not be valid for i and so
533 * we have to check that the wrapping constraints for j are valid for i.
535 * In the case where j has a facet adjacent to i, tab[j] is assumed
536 * to have been restricted to this facet, so that the non-redundant
537 * constraints in tab[j] are the ridges of the facet.
538 * Note that for the purpose of wrapping, it does not matter whether
539 * we wrap the ridges of i around the whole of j or just around
540 * the facet since all the other constraints are assumed to be valid for j.
541 * In practice, we wrap to include the whole of j.
542 * ____ _____
543 * / | / \
544 * / || / |
545 * \ || => \ |
546 * \ || \ |
547 * \___|| \____|
550 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
551 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
553 int changed = 0;
554 struct isl_mat *wraps = NULL;
555 struct isl_set *set_i = NULL;
556 struct isl_set *set_j = NULL;
557 struct isl_vec *bound = NULL;
558 unsigned total = isl_basic_map_total_dim(map->p[i]);
559 struct isl_tab_undo *snap;
560 int n;
562 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
563 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
564 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
565 map->p[i]->n_ineq + map->p[j]->n_ineq,
566 1 + total);
567 bound = isl_vec_alloc(map->ctx, 1 + total);
568 if (!set_i || !set_j || !wraps || !bound)
569 goto error;
571 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
572 isl_int_add_ui(bound->el[0], bound->el[0], 1);
574 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
575 wraps->n_row = 1;
577 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
578 goto error;
579 if (!wraps->n_row)
580 goto unbounded;
582 snap = isl_tab_snap(tabs[i]);
584 tabs[i] = isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k);
585 if (isl_tab_detect_redundant(tabs[i]) < 0)
586 goto error;
588 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
590 n = wraps->n_row;
591 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
592 goto error;
594 if (isl_tab_rollback(tabs[i], snap) < 0)
595 goto error;
596 if (check_wraps(wraps, n, tabs[i]) < 0)
597 goto error;
598 if (!wraps->n_row)
599 goto unbounded;
601 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
603 unbounded:
604 isl_mat_free(wraps);
606 isl_set_free(set_i);
607 isl_set_free(set_j);
609 isl_vec_free(bound);
611 return changed;
612 error:
613 isl_vec_free(bound);
614 isl_mat_free(wraps);
615 isl_set_free(set_i);
616 isl_set_free(set_j);
617 return -1;
620 /* Given two basic sets i and j such that i has exactly one cut constraint,
621 * check if we can wrap the corresponding facet around its ridges to include
622 * the other basic set (and nothing else).
623 * If so, replace the pair by their union.
625 * We first check if j has a facet adjacent to the cut constraint of i.
626 * If so, we try to wrap in the facet.
627 * ____ _____
628 * / ___|_ / \
629 * / | | / |
630 * \ | | => \ |
631 * \|____| \ |
632 * \___| \____/
634 static int can_wrap_in_set(struct isl_map *map, int i, int j,
635 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
637 int changed = 0;
638 int k, l;
639 unsigned total = isl_basic_map_total_dim(map->p[i]);
640 struct isl_tab_undo *snap;
642 for (k = 0; k < map->p[i]->n_ineq; ++k)
643 if (ineq_i[k] == STATUS_CUT)
644 break;
646 isl_assert(map->ctx, k < map->p[i]->n_ineq, return -1);
648 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
649 for (l = 0; l < map->p[j]->n_ineq; ++l) {
650 if (isl_tab_is_redundant(tabs[j], map->p[j]->n_eq + l))
651 continue;
652 if (isl_seq_eq(map->p[i]->ineq[k],
653 map->p[j]->ineq[l], 1 + total))
654 break;
656 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
658 if (l >= map->p[j]->n_ineq)
659 return 0;
661 snap = isl_tab_snap(tabs[j]);
662 tabs[j] = isl_tab_select_facet(tabs[j], map->p[j]->n_eq + l);
663 if (isl_tab_detect_redundant(tabs[j]) < 0)
664 return -1;
666 changed = can_wrap_in_facet(map, i, j, k, tabs, NULL, ineq_i, NULL, ineq_j);
668 if (!changed && isl_tab_rollback(tabs[j], snap) < 0)
669 return -1;
671 return changed;
674 /* Check if either i or j has a single cut constraint that can
675 * be used to wrap in (a facet of) the other basic set.
676 * if so, replace the pair by their union.
678 static int check_wrap(struct isl_map *map, int i, int j,
679 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
681 int changed = 0;
683 if (count(ineq_i, map->p[i]->n_ineq, STATUS_CUT) == 1)
684 changed = can_wrap_in_set(map, i, j, tabs, ineq_i, ineq_j);
685 if (changed)
686 return changed;
688 if (count(ineq_j, map->p[j]->n_ineq, STATUS_CUT) == 1)
689 changed = can_wrap_in_set(map, j, i, tabs, ineq_j, ineq_i);
690 return changed;
693 /* At least one of the basic maps has an equality that is adjacent
694 * to inequality. Make sure that only one of the basic maps has
695 * such an equality and that the other basic map has exactly one
696 * inequality adjacent to an equality.
697 * We call the basic map that has the inequality "i" and the basic
698 * map that has the equality "j".
699 * If "i" has any "cut" inequality, then relaxing the inequality
700 * by one would not result in a basic map that contains the other
701 * basic map.
703 static int check_adj_eq(struct isl_map *map, int i, int j,
704 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
706 int changed = 0;
707 int k;
709 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
710 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
711 /* ADJ EQ TOO MANY */
712 return 0;
714 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
715 return check_adj_eq(map, j, i, tabs,
716 eq_j, ineq_j, eq_i, ineq_i);
718 /* j has an equality adjacent to an inequality in i */
720 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
721 /* ADJ EQ CUT */
722 return 0;
723 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
724 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
725 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
726 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
727 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
728 /* ADJ EQ TOO MANY */
729 return 0;
731 for (k = 0; k < map->p[i]->n_ineq ; ++k)
732 if (ineq_i[k] == STATUS_ADJ_EQ)
733 break;
735 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
736 if (changed)
737 return changed;
739 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
741 return changed;
744 /* Check if the union of the given pair of basic maps
745 * can be represented by a single basic map.
746 * If so, replace the pair by the single basic map and return 1.
747 * Otherwise, return 0;
749 * We first check the effect of each constraint of one basic map
750 * on the other basic map.
751 * The constraint may be
752 * redundant the constraint is redundant in its own
753 * basic map and should be ignore and removed
754 * in the end
755 * valid all (integer) points of the other basic map
756 * satisfy the constraint
757 * separate no (integer) point of the other basic map
758 * satisfies the constraint
759 * cut some but not all points of the other basic map
760 * satisfy the constraint
761 * adj_eq the given constraint is adjacent (on the outside)
762 * to an equality of the other basic map
763 * adj_ineq the given constraint is adjacent (on the outside)
764 * to an inequality of the other basic map
766 * We consider six cases in which we can replace the pair by a single
767 * basic map. We ignore all "redundant" constraints.
769 * 1. all constraints of one basic map are valid
770 * => the other basic map is a subset and can be removed
772 * 2. all constraints of both basic maps are either "valid" or "cut"
773 * and the facets corresponding to the "cut" constraints
774 * of one of the basic maps lies entirely inside the other basic map
775 * => the pair can be replaced by a basic map consisting
776 * of the valid constraints in both basic maps
778 * 3. there is a single pair of adjacent inequalities
779 * (all other constraints are "valid")
780 * => the pair can be replaced by a basic map consisting
781 * of the valid constraints in both basic maps
783 * 4. there is a single adjacent pair of an inequality and an equality,
784 * the other constraints of the basic map containing the inequality are
785 * "valid". Moreover, if the inequality the basic map is relaxed
786 * and then turned into an equality, then resulting facet lies
787 * entirely inside the other basic map
788 * => the pair can be replaced by the basic map containing
789 * the inequality, with the inequality relaxed.
791 * 5. there is a single adjacent pair of an inequality and an equality,
792 * the other constraints of the basic map containing the inequality are
793 * "valid". Moreover, the facets corresponding to both
794 * the inequality and the equality can be wrapped around their
795 * ridges to include the other basic map
796 * => the pair can be replaced by a basic map consisting
797 * of the valid constraints in both basic maps together
798 * with all wrapping constraints
800 * 6. one of the basic maps has a single cut constraint and
801 * the other basic map has a constraint adjacent to this constraint.
802 * Moreover, the facets corresponding to both constraints
803 * can be wrapped around their ridges to include the other basic map
804 * => the pair can be replaced by a basic map consisting
805 * of the valid constraints in both basic maps together
806 * with all wrapping constraints
808 * Throughout the computation, we maintain a collection of tableaus
809 * corresponding to the basic maps. When the basic maps are dropped
810 * or combined, the tableaus are modified accordingly.
812 static int coalesce_pair(struct isl_map *map, int i, int j,
813 struct isl_tab **tabs)
815 int changed = 0;
816 int *eq_i = NULL;
817 int *eq_j = NULL;
818 int *ineq_i = NULL;
819 int *ineq_j = NULL;
821 eq_i = eq_status_in(map, i, j, tabs);
822 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
823 goto error;
824 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
825 goto done;
827 eq_j = eq_status_in(map, j, i, tabs);
828 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
829 goto error;
830 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
831 goto done;
833 ineq_i = ineq_status_in(map, i, j, tabs);
834 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
835 goto error;
836 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
837 goto done;
839 ineq_j = ineq_status_in(map, j, i, tabs);
840 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
841 goto error;
842 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
843 goto done;
845 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
846 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
847 drop(map, j, tabs);
848 changed = 1;
849 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
850 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
851 drop(map, i, tabs);
852 changed = 1;
853 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
854 any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
855 /* BAD CUT */
856 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
857 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
858 /* ADJ EQ PAIR */
859 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
860 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
861 changed = check_adj_eq(map, i, j, tabs,
862 eq_i, ineq_i, eq_j, ineq_j);
863 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
864 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
865 /* Can't happen */
866 /* BAD ADJ INEQ */
867 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
868 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
869 changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
870 } else {
871 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
872 if (!changed)
873 changed = check_wrap(map, i, j, tabs, ineq_i, ineq_j);
876 done:
877 free(eq_i);
878 free(eq_j);
879 free(ineq_i);
880 free(ineq_j);
881 return changed;
882 error:
883 free(eq_i);
884 free(eq_j);
885 free(ineq_i);
886 free(ineq_j);
887 return -1;
890 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
892 int i, j;
894 for (i = map->n - 2; i >= 0; --i)
895 restart:
896 for (j = i + 1; j < map->n; ++j) {
897 int changed;
898 changed = coalesce_pair(map, i, j, tabs);
899 if (changed < 0)
900 goto error;
901 if (changed)
902 goto restart;
904 return map;
905 error:
906 isl_map_free(map);
907 return NULL;
910 /* For each pair of basic maps in the map, check if the union of the two
911 * can be represented by a single basic map.
912 * If so, replace the pair by the single basic map and start over.
914 struct isl_map *isl_map_coalesce(struct isl_map *map)
916 int i;
917 unsigned n;
918 struct isl_tab **tabs = NULL;
920 if (!map)
921 return NULL;
923 if (map->n <= 1)
924 return map;
926 map = isl_map_align_divs(map);
928 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
929 if (!tabs)
930 goto error;
932 n = map->n;
933 for (i = 0; i < map->n; ++i) {
934 tabs[i] = isl_tab_from_basic_map(map->p[i]);
935 if (!tabs[i])
936 goto error;
937 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
938 tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
939 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
940 if (isl_tab_detect_redundant(tabs[i]) < 0)
941 goto error;
943 for (i = map->n - 1; i >= 0; --i)
944 if (tabs[i]->empty)
945 drop(map, i, tabs);
947 map = coalesce(map, tabs);
949 if (map)
950 for (i = 0; i < map->n; ++i) {
951 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
952 tabs[i]);
953 map->p[i] = isl_basic_map_finalize(map->p[i]);
954 if (!map->p[i])
955 goto error;
956 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
957 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
960 for (i = 0; i < n; ++i)
961 isl_tab_free(tabs[i]);
963 free(tabs);
965 return map;
966 error:
967 if (tabs)
968 for (i = 0; i < n; ++i)
969 isl_tab_free(tabs[i]);
970 free(tabs);
971 return NULL;
974 /* For each pair of basic sets in the set, check if the union of the two
975 * can be represented by a single basic set.
976 * If so, replace the pair by the single basic set and start over.
978 struct isl_set *isl_set_coalesce(struct isl_set *set)
980 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);