2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl/space.h>
17 #include <isl/constraint.h>
20 #include <isl/union_set.h>
21 #include <isl/union_map.h>
22 #include <isl/schedule_node.h>
24 #include <isl_tarjan.h>
25 #include <isl_ast_private.h>
26 #include <isl_ast_build_expr.h>
27 #include <isl_ast_build_private.h>
28 #include <isl_ast_graft_private.h>
30 /* Data used in generate_domain.
32 * "build" is the input build.
33 * "list" collects the results.
35 struct isl_generate_domain_data
{
38 isl_ast_graft_list
*list
;
41 static __isl_give isl_ast_graft_list
*generate_next_level(
42 __isl_take isl_union_map
*executed
,
43 __isl_take isl_ast_build
*build
);
44 static __isl_give isl_ast_graft_list
*generate_code(
45 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
48 /* Generate an AST for a single domain based on
49 * the (non single valued) inverse schedule "executed".
51 * We extend the schedule with the iteration domain
52 * and continue generating through a call to generate_code.
54 * In particular, if executed has the form
58 * then we continue generating code on
62 * The extended inverse schedule is clearly single valued
63 * ensuring that the nested generate_code will not reach this function,
64 * but will instead create calls to all elements of D that need
65 * to be executed from the current schedule domain.
67 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
68 struct isl_generate_domain_data
*data
)
72 isl_ast_graft_list
*list
;
74 build
= isl_ast_build_copy(data
->build
);
76 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
77 executed
= isl_map_domain_product(executed
, identity
);
78 build
= isl_ast_build_set_single_valued(build
, 1);
80 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
82 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
87 /* Call the at_each_domain callback, if requested by the user,
88 * after recording the current inverse schedule in the build.
90 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
91 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
94 return isl_ast_graft_free(graft
);
95 if (!build
->at_each_domain
)
98 build
= isl_ast_build_copy(build
);
99 build
= isl_ast_build_set_executed(build
,
100 isl_union_map_from_map(isl_map_copy(executed
)));
102 return isl_ast_graft_free(graft
);
104 graft
->node
= build
->at_each_domain(graft
->node
,
105 build
, build
->at_each_domain_user
);
106 isl_ast_build_free(build
);
109 graft
= isl_ast_graft_free(graft
);
114 /* Generate a call expression for the single executed
115 * domain element "map" and put a guard around it based its (simplified)
116 * domain. "executed" is the original inverse schedule from which "map"
117 * has been derived. In particular, "map" is either identical to "executed"
118 * or it is the result of gisting "executed" with respect to the build domain.
119 * "executed" is only used if there is an at_each_domain callback.
121 * At this stage, any pending constraints in the build can no longer
122 * be simplified with respect to any enforced constraints since
123 * the call node does not have any enforced constraints.
124 * Since all pending constraints not covered by any enforced constraints
125 * will be added as a guard to the graft in create_node_scaled,
126 * even in the eliminated case, the pending constraints
127 * can be considered to have been generated by outer constructs.
129 * If the user has set an at_each_domain callback, it is called
130 * on the constructed call expression node.
132 static isl_stat
add_domain(__isl_take isl_map
*executed
,
133 __isl_take isl_map
*map
, struct isl_generate_domain_data
*data
)
135 isl_ast_build
*build
;
136 isl_ast_graft
*graft
;
137 isl_ast_graft_list
*list
;
138 isl_set
*guard
, *pending
;
140 build
= isl_ast_build_copy(data
->build
);
141 pending
= isl_ast_build_get_pending(build
);
142 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
144 guard
= isl_map_domain(isl_map_copy(map
));
145 guard
= isl_set_compute_divs(guard
);
146 guard
= isl_set_coalesce(guard
);
147 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
148 guard
= isl_ast_build_specialize(build
, guard
);
150 graft
= isl_ast_graft_alloc_domain(map
, build
);
151 graft
= at_each_domain(graft
, executed
, build
);
152 isl_ast_build_free(build
);
153 isl_map_free(executed
);
154 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
156 list
= isl_ast_graft_list_from_ast_graft(graft
);
157 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
162 /* Generate an AST for a single domain based on
163 * the inverse schedule "executed" and add it to data->list.
165 * If there is more than one domain element associated to the current
166 * schedule "time", then we need to continue the generation process
167 * in generate_non_single_valued.
168 * Note that the inverse schedule being single-valued may depend
169 * on constraints that are only available in the original context
170 * domain specified by the user. We therefore first introduce
171 * some of the constraints of data->build->domain. In particular,
172 * we intersect with a single-disjunct approximation of this set.
173 * We perform this approximation to avoid further splitting up
174 * the executed relation, possibly introducing a disjunctive guard
177 * On the other hand, we only perform the test after having taken the gist
178 * of the domain as the resulting map is the one from which the call
179 * expression is constructed. Using this map to construct the call
180 * expression usually yields simpler results in cases where the original
181 * map is not obviously single-valued.
182 * If the original map is obviously single-valued, then the gist
183 * operation is skipped.
185 * Because we perform the single-valuedness test on the gisted map,
186 * we may in rare cases fail to recognize that the inverse schedule
187 * is single-valued. This becomes problematic if this happens
188 * from the recursive call through generate_non_single_valued
189 * as we would then end up in an infinite recursion.
190 * We therefore check if we are inside a call to generate_non_single_valued
191 * and revert to the ungisted map if the gisted map turns out not to be
194 * Otherwise, call add_domain to generate a call expression (with guard) and
195 * to call the at_each_domain callback, if any.
197 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
199 struct isl_generate_domain_data
*data
= user
;
204 domain
= isl_ast_build_get_domain(data
->build
);
205 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
206 executed
= isl_map_intersect_domain(executed
, domain
);
207 empty
= isl_map_is_empty(executed
);
211 isl_map_free(executed
);
215 sv
= isl_map_plain_is_single_valued(executed
);
219 return add_domain(executed
, isl_map_copy(executed
), data
);
221 executed
= isl_map_coalesce(executed
);
222 map
= isl_map_copy(executed
);
223 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
224 sv
= isl_map_is_single_valued(map
);
229 if (data
->build
->single_valued
)
230 map
= isl_map_copy(executed
);
232 return generate_non_single_valued(executed
, data
);
235 return add_domain(executed
, map
, data
);
238 isl_map_free(executed
);
239 return isl_stat_error
;
242 /* Call build->create_leaf to a create "leaf" node in the AST,
243 * encapsulate the result in an isl_ast_graft and return the result
244 * as a 1-element list.
246 * Note that the node returned by the user may be an entire tree.
248 * Since the node itself cannot enforce any constraints, we turn
249 * all pending constraints into guards and add them to the resulting
250 * graft to ensure that they will be generated.
252 * Before we pass control to the user, we first clear some information
253 * from the build that is (presumbably) only meaningful
254 * for the current code generation.
255 * This includes the create_leaf callback itself, so we make a copy
256 * of the build first.
258 static __isl_give isl_ast_graft_list
*call_create_leaf(
259 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
263 isl_ast_graft
*graft
;
264 isl_ast_build
*user_build
;
266 guard
= isl_ast_build_get_pending(build
);
267 user_build
= isl_ast_build_copy(build
);
268 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
269 isl_set_copy(guard
));
270 user_build
= isl_ast_build_set_executed(user_build
, executed
);
271 user_build
= isl_ast_build_clear_local_info(user_build
);
275 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
276 graft
= isl_ast_graft_alloc(node
, build
);
277 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
278 isl_ast_build_free(build
);
279 return isl_ast_graft_list_from_ast_graft(graft
);
282 static __isl_give isl_ast_graft_list
*build_ast_from_child(
283 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
284 __isl_take isl_union_map
*executed
);
286 /* Generate an AST after having handled the complete schedule
287 * of this call to the code generator or the complete band
288 * if we are generating an AST from a schedule tree.
290 * If we are inside a band node, then move on to the child of the band.
292 * If the user has specified a create_leaf callback, control
293 * is passed to the user in call_create_leaf.
295 * Otherwise, we generate one or more calls for each individual
296 * domain in generate_domain.
298 static __isl_give isl_ast_graft_list
*generate_inner_level(
299 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
302 struct isl_generate_domain_data data
= { build
};
304 if (!build
|| !executed
)
307 if (isl_ast_build_has_schedule_node(build
)) {
308 isl_schedule_node
*node
;
309 node
= isl_ast_build_get_schedule_node(build
);
310 build
= isl_ast_build_reset_schedule_node(build
);
311 return build_ast_from_child(build
, node
, executed
);
314 if (build
->create_leaf
)
315 return call_create_leaf(executed
, build
);
317 ctx
= isl_union_map_get_ctx(executed
);
318 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
319 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
320 data
.list
= isl_ast_graft_list_free(data
.list
);
323 error
: data
.list
= NULL
;
324 isl_ast_build_free(build
);
325 isl_union_map_free(executed
);
329 /* Call the before_each_for callback, if requested by the user.
331 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
332 __isl_keep isl_ast_build
*build
)
337 return isl_ast_node_free(node
);
338 if (!build
->before_each_for
)
340 id
= build
->before_each_for(build
, build
->before_each_for_user
);
341 node
= isl_ast_node_set_annotation(node
, id
);
345 /* Call the after_each_for callback, if requested by the user.
347 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
348 __isl_keep isl_ast_build
*build
)
350 if (!graft
|| !build
)
351 return isl_ast_graft_free(graft
);
352 if (!build
->after_each_for
)
354 graft
->node
= build
->after_each_for(graft
->node
, build
,
355 build
->after_each_for_user
);
357 return isl_ast_graft_free(graft
);
361 /* Plug in all the know values of the current and outer dimensions
362 * in the domain of "executed". In principle, we only need to plug
363 * in the known value of the current dimension since the values of
364 * outer dimensions have been plugged in already.
365 * However, it turns out to be easier to just plug in all known values.
367 static __isl_give isl_union_map
*plug_in_values(
368 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
370 return isl_ast_build_substitute_values_union_map_domain(build
,
374 /* Check if the constraint "c" is a lower bound on dimension "pos",
375 * an upper bound, or independent of dimension "pos".
377 static int constraint_type(isl_constraint
*c
, int pos
)
379 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
381 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
386 /* Compare the types of the constraints "a" and "b",
387 * resulting in constraints that are independent of "depth"
388 * to be sorted before the lower bounds on "depth", which in
389 * turn are sorted before the upper bounds on "depth".
391 static int cmp_constraint(__isl_keep isl_constraint
*a
,
392 __isl_keep isl_constraint
*b
, void *user
)
395 int t1
= constraint_type(a
, *depth
);
396 int t2
= constraint_type(b
, *depth
);
401 /* Extract a lower bound on dimension "pos" from constraint "c".
403 * If the constraint is of the form
407 * then we essentially return
409 * l = ceil(-f(...)/a)
411 * However, if the current dimension is strided, then we need to make
412 * sure that the lower bound we construct is of the form
416 * with f the offset and s the stride.
417 * We therefore compute
419 * f + s * ceil((l - f)/s)
421 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
422 int pos
, __isl_keep isl_ast_build
*build
)
426 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
427 aff
= isl_aff_ceil(aff
);
429 if (isl_ast_build_has_stride(build
, pos
)) {
433 offset
= isl_ast_build_get_offset(build
, pos
);
434 stride
= isl_ast_build_get_stride(build
, pos
);
436 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
437 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
438 aff
= isl_aff_ceil(aff
);
439 aff
= isl_aff_scale_val(aff
, stride
);
440 aff
= isl_aff_add(aff
, offset
);
443 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
448 /* Return the exact lower bound (or upper bound if "upper" is set)
449 * of "domain" as a piecewise affine expression.
451 * If we are computing a lower bound (of a strided dimension), then
452 * we need to make sure it is of the form
456 * where f is the offset and s is the stride.
457 * We therefore need to include the stride constraint before computing
460 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
461 __isl_keep isl_ast_build
*build
, int upper
)
466 isl_pw_multi_aff
*pma
;
468 domain
= isl_set_copy(domain
);
470 stride
= isl_ast_build_get_stride_constraint(build
);
471 domain
= isl_set_intersect(domain
, stride
);
473 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
475 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
477 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
478 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
479 isl_pw_multi_aff_free(pma
);
480 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
481 pa
= isl_pw_aff_coalesce(pa
);
486 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
487 * remove_redundant_lower_bounds.
489 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
492 return isl_pw_aff_plain_cmp(a
, b
);
495 /* Given a list of lower bounds "list", remove those that are redundant
496 * with respect to the other bounds in "list" and the domain of "build".
498 * We first sort the bounds in the same way as they would be sorted
499 * by set_for_node_expressions so that we can try and remove the last
502 * For a lower bound to be effective, there needs to be at least
503 * one domain element for which it is larger than all other lower bounds.
504 * For each lower bound we therefore intersect the domain with
505 * the conditions that it is larger than all other bounds and
506 * check whether the result is empty. If so, the bound can be removed.
508 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
509 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
514 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
518 n
= isl_pw_aff_list_n_pw_aff(list
);
522 domain
= isl_ast_build_get_domain(build
);
524 for (i
= n
- 1; i
>= 0; --i
) {
529 domain_i
= isl_set_copy(domain
);
530 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
532 for (j
= 0; j
< n
; ++j
) {
539 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
540 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
541 domain_i
= isl_set_intersect(domain_i
, better
);
544 empty
= isl_set_is_empty(domain_i
);
546 isl_set_free(domain_i
);
547 isl_pw_aff_free(pa_i
);
553 list
= isl_pw_aff_list_drop(list
, i
, 1);
557 isl_set_free(domain
);
561 isl_set_free(domain
);
562 return isl_pw_aff_list_free(list
);
565 /* Extract a lower bound on dimension "pos" from each constraint
566 * in "constraints" and return the list of lower bounds.
567 * If "constraints" has zero elements, then we extract a lower bound
568 * from "domain" instead.
570 * If the current dimension is strided, then the lower bound
571 * is adjusted by lower_bound to match the stride information.
572 * This modification may make one or more lower bounds redundant
573 * with respect to the other lower bounds. We therefore check
574 * for this condition and remove the redundant lower bounds.
576 static __isl_give isl_pw_aff_list
*lower_bounds(
577 __isl_keep isl_constraint_list
*constraints
, int pos
,
578 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
581 isl_pw_aff_list
*list
;
587 n
= isl_constraint_list_n_constraint(constraints
);
590 pa
= exact_bound(domain
, build
, 0);
591 return isl_pw_aff_list_from_pw_aff(pa
);
594 ctx
= isl_ast_build_get_ctx(build
);
595 list
= isl_pw_aff_list_alloc(ctx
,n
);
597 for (i
= 0; i
< n
; ++i
) {
601 c
= isl_constraint_list_get_constraint(constraints
, i
);
602 aff
= lower_bound(c
, pos
, build
);
603 isl_constraint_free(c
);
604 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
607 if (isl_ast_build_has_stride(build
, pos
))
608 list
= remove_redundant_lower_bounds(list
, build
);
613 /* Extract an upper bound on dimension "pos" from each constraint
614 * in "constraints" and return the list of upper bounds.
615 * If "constraints" has zero elements, then we extract an upper bound
616 * from "domain" instead.
618 static __isl_give isl_pw_aff_list
*upper_bounds(
619 __isl_keep isl_constraint_list
*constraints
, int pos
,
620 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
623 isl_pw_aff_list
*list
;
626 n
= isl_constraint_list_n_constraint(constraints
);
629 pa
= exact_bound(domain
, build
, 1);
630 return isl_pw_aff_list_from_pw_aff(pa
);
633 ctx
= isl_ast_build_get_ctx(build
);
634 list
= isl_pw_aff_list_alloc(ctx
,n
);
636 for (i
= 0; i
< n
; ++i
) {
640 c
= isl_constraint_list_get_constraint(constraints
, i
);
641 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
642 isl_constraint_free(c
);
643 aff
= isl_aff_floor(aff
);
644 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
650 /* Return an isl_ast_expr that performs the reduction of type "type"
651 * on AST expressions corresponding to the elements in "list".
653 * The list is assumed to contain at least one element.
654 * If the list contains exactly one element, then the returned isl_ast_expr
655 * simply computes that affine expression.
656 * If the list contains more than one element, then we sort it
657 * using a fairly abitrary but hopefully reasonably stable order.
659 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_op_type type
,
660 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
669 n
= isl_pw_aff_list_n_pw_aff(list
);
672 return isl_ast_build_expr_from_pw_aff_internal(build
,
673 isl_pw_aff_list_get_pw_aff(list
, 0));
675 ctx
= isl_pw_aff_list_get_ctx(list
);
676 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
680 list
= isl_pw_aff_list_copy(list
);
681 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
683 return isl_ast_expr_free(expr
);
685 for (i
= 0; i
< n
; ++i
) {
686 isl_ast_expr
*expr_i
;
688 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
689 isl_pw_aff_list_get_pw_aff(list
, i
));
692 expr
->u
.op
.args
[i
] = expr_i
;
695 isl_pw_aff_list_free(list
);
698 isl_pw_aff_list_free(list
);
699 isl_ast_expr_free(expr
);
703 /* Add guards implied by the "generated constraints",
704 * but not (necessarily) enforced by the generated AST to "guard".
705 * In particular, if there is any stride constraints,
706 * then add the guard implied by those constraints.
707 * If we have generated a degenerate loop, then add the guard
708 * implied by "bounds" on the outer dimensions, i.e., the guard
709 * that ensures that the single value actually exists.
710 * Since there may also be guards implied by a combination
711 * of these constraints, we first combine them before
712 * deriving the implied constraints.
714 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
715 int degenerate
, __isl_keep isl_basic_set
*bounds
,
716 __isl_keep isl_ast_build
*build
)
718 int depth
, has_stride
;
722 depth
= isl_ast_build_get_depth(build
);
723 has_stride
= isl_ast_build_has_stride(build
, depth
);
724 if (!has_stride
&& !degenerate
)
727 space
= isl_basic_set_get_space(bounds
);
728 dom
= isl_set_universe(space
);
731 bounds
= isl_basic_set_copy(bounds
);
732 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
733 bounds
, isl_dim_set
, depth
, 1);
734 set
= isl_set_from_basic_set(bounds
);
735 dom
= isl_set_intersect(dom
, set
);
739 set
= isl_ast_build_get_stride_constraint(build
);
740 dom
= isl_set_intersect(dom
, set
);
743 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
744 dom
= isl_ast_build_compute_gist(build
, dom
);
745 guard
= isl_set_intersect(guard
, dom
);
750 /* Update "graft" based on "sub_build" for the degenerate case.
752 * "build" is the build in which graft->node was created
753 * "sub_build" contains information about the current level itself,
754 * including the single value attained.
756 * We set the initialization part of the for loop to the single
757 * value attained by the current dimension.
758 * The increment and condition are not strictly needed as the are known
759 * to be "1" and "iterator <= value" respectively.
761 static __isl_give isl_ast_graft
*refine_degenerate(
762 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
763 __isl_keep isl_ast_build
*sub_build
)
767 if (!graft
|| !sub_build
)
768 return isl_ast_graft_free(graft
);
770 value
= isl_pw_aff_copy(sub_build
->value
);
772 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
774 if (!graft
->node
->u
.f
.init
)
775 return isl_ast_graft_free(graft
);
780 /* Return the intersection of constraints in "list" as a set.
782 static __isl_give isl_set
*intersect_constraints(
783 __isl_keep isl_constraint_list
*list
)
788 n
= isl_constraint_list_n_constraint(list
);
790 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
791 "expecting at least one constraint", return NULL
);
793 bset
= isl_basic_set_from_constraint(
794 isl_constraint_list_get_constraint(list
, 0));
795 for (i
= 1; i
< n
; ++i
) {
796 isl_basic_set
*bset_i
;
798 bset_i
= isl_basic_set_from_constraint(
799 isl_constraint_list_get_constraint(list
, i
));
800 bset
= isl_basic_set_intersect(bset
, bset_i
);
803 return isl_set_from_basic_set(bset
);
806 /* Compute the constraints on the outer dimensions enforced by
807 * graft->node and add those constraints to graft->enforced,
808 * in case the upper bound is expressed as a set "upper".
810 * In particular, if l(...) is a lower bound in "lower", and
812 * -a i + f(...) >= 0 or a i <= f(...)
814 * is an upper bound ocnstraint on the current dimension i,
815 * then the for loop enforces the constraint
817 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
819 * We therefore simply take each lower bound in turn, plug it into
820 * the upper bounds and compute the intersection over all lower bounds.
822 * If a lower bound is a rational expression, then
823 * isl_basic_set_preimage_multi_aff will force this rational
824 * expression to have only integer values. However, the loop
825 * itself does not enforce this integrality constraint. We therefore
826 * use the ceil of the lower bounds instead of the lower bounds themselves.
827 * Other constraints will make sure that the for loop is only executed
828 * when each of the lower bounds attains an integral value.
829 * In particular, potentially rational values only occur in
830 * lower_bound if the offset is a (seemingly) rational expression,
831 * but then outer conditions will make sure that this rational expression
832 * only attains integer values.
834 static __isl_give isl_ast_graft
*set_enforced_from_set(
835 __isl_take isl_ast_graft
*graft
,
836 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
839 isl_basic_set
*enforced
;
840 isl_pw_multi_aff
*pma
;
843 if (!graft
|| !lower
)
844 return isl_ast_graft_free(graft
);
846 space
= isl_set_get_space(upper
);
847 enforced
= isl_basic_set_universe(isl_space_copy(space
));
849 space
= isl_space_map_from_set(space
);
850 pma
= isl_pw_multi_aff_identity(space
);
852 n
= isl_pw_aff_list_n_pw_aff(lower
);
853 for (i
= 0; i
< n
; ++i
) {
857 isl_pw_multi_aff
*pma_i
;
859 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
860 pa
= isl_pw_aff_ceil(pa
);
861 pma_i
= isl_pw_multi_aff_copy(pma
);
862 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
863 enforced_i
= isl_set_copy(upper
);
864 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
865 hull
= isl_set_simple_hull(enforced_i
);
866 enforced
= isl_basic_set_intersect(enforced
, hull
);
869 isl_pw_multi_aff_free(pma
);
871 graft
= isl_ast_graft_enforce(graft
, enforced
);
876 /* Compute the constraints on the outer dimensions enforced by
877 * graft->node and add those constraints to graft->enforced,
878 * in case the upper bound is expressed as
879 * a list of affine expressions "upper".
881 * The enforced condition is that each lower bound expression is less
882 * than or equal to each upper bound expression.
884 static __isl_give isl_ast_graft
*set_enforced_from_list(
885 __isl_take isl_ast_graft
*graft
,
886 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
889 isl_basic_set
*enforced
;
891 lower
= isl_pw_aff_list_copy(lower
);
892 upper
= isl_pw_aff_list_copy(upper
);
893 cond
= isl_pw_aff_list_le_set(lower
, upper
);
894 enforced
= isl_set_simple_hull(cond
);
895 graft
= isl_ast_graft_enforce(graft
, enforced
);
900 /* Does "aff" have a negative constant term?
902 static isl_stat
aff_constant_is_negative(__isl_take isl_set
*set
,
903 __isl_take isl_aff
*aff
, void *user
)
908 v
= isl_aff_get_constant_val(aff
);
909 *neg
= isl_val_is_neg(v
);
914 return *neg
? isl_stat_ok
: isl_stat_error
;
917 /* Does "pa" have a negative constant term over its entire domain?
919 static isl_stat
pw_aff_constant_is_negative(__isl_take isl_pw_aff
*pa
,
925 r
= isl_pw_aff_foreach_piece(pa
, &aff_constant_is_negative
, user
);
928 return (*neg
&& r
>= 0) ? isl_stat_ok
: isl_stat_error
;
931 /* Does each element in "list" have a negative constant term?
933 * The callback terminates the iteration as soon an element has been
934 * found that does not have a negative constant term.
936 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
940 if (isl_pw_aff_list_foreach(list
,
941 &pw_aff_constant_is_negative
, &neg
) < 0 && neg
)
947 /* Add 1 to each of the elements in "list", where each of these elements
948 * is defined over the internal schedule space of "build".
950 static __isl_give isl_pw_aff_list
*list_add_one(
951 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
958 space
= isl_ast_build_get_space(build
, 1);
959 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
960 aff
= isl_aff_add_constant_si(aff
, 1);
961 one
= isl_pw_aff_from_aff(aff
);
963 n
= isl_pw_aff_list_n_pw_aff(list
);
964 for (i
= 0; i
< n
; ++i
) {
966 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
967 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
968 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
971 isl_pw_aff_free(one
);
976 /* Set the condition part of the for node graft->node in case
977 * the upper bound is represented as a list of piecewise affine expressions.
979 * In particular, set the condition to
981 * iterator <= min(list of upper bounds)
983 * If each of the upper bounds has a negative constant term, then
984 * set the condition to
986 * iterator < min(list of (upper bound + 1)s)
989 static __isl_give isl_ast_graft
*set_for_cond_from_list(
990 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
991 __isl_keep isl_ast_build
*build
)
994 isl_ast_expr
*bound
, *iterator
, *cond
;
995 enum isl_ast_op_type type
= isl_ast_op_le
;
998 return isl_ast_graft_free(graft
);
1000 neg
= list_constant_is_negative(list
);
1002 return isl_ast_graft_free(graft
);
1003 list
= isl_pw_aff_list_copy(list
);
1005 list
= list_add_one(list
, build
);
1006 type
= isl_ast_op_lt
;
1009 bound
= reduce_list(isl_ast_op_min
, list
, build
);
1010 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
1011 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1012 graft
->node
->u
.f
.cond
= cond
;
1014 isl_pw_aff_list_free(list
);
1015 if (!graft
->node
->u
.f
.cond
)
1016 return isl_ast_graft_free(graft
);
1020 /* Set the condition part of the for node graft->node in case
1021 * the upper bound is represented as a set.
1023 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1024 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1025 __isl_keep isl_ast_build
*build
)
1032 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1033 graft
->node
->u
.f
.cond
= cond
;
1034 if (!graft
->node
->u
.f
.cond
)
1035 return isl_ast_graft_free(graft
);
1039 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1040 * the current dimension.
1042 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1050 ctx
= isl_ast_build_get_ctx(build
);
1051 depth
= isl_ast_build_get_depth(build
);
1053 if (!isl_ast_build_has_stride(build
, depth
))
1054 return isl_ast_expr_alloc_int_si(ctx
, 1);
1056 v
= isl_ast_build_get_stride(build
, depth
);
1057 return isl_ast_expr_from_val(v
);
1060 /* Should we express the loop condition as
1062 * iterator <= min(list of upper bounds)
1064 * or as a conjunction of constraints?
1066 * The first is constructed from a list of upper bounds.
1067 * The second is constructed from a set.
1069 * If there are no upper bounds in "constraints", then this could mean
1070 * that "domain" simply doesn't have an upper bound or that we didn't
1071 * pick any upper bound. In the first case, we want to generate the
1072 * loop condition as a(n empty) conjunction of constraints
1073 * In the second case, we will compute
1074 * a single upper bound from "domain" and so we use the list form.
1076 * If there are upper bounds in "constraints",
1077 * then we use the list form iff the atomic_upper_bound option is set.
1079 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1080 __isl_keep isl_set
*domain
, int depth
)
1083 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1085 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1088 /* Fill in the expressions of the for node in graft->node.
1091 * - set the initialization part of the loop to the maximum of the lower bounds
1092 * - extract the increment from the stride of the current dimension
1093 * - construct the for condition either based on a list of upper bounds
1094 * or on a set of upper bound constraints.
1096 static __isl_give isl_ast_graft
*set_for_node_expressions(
1097 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1098 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1099 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1106 build
= isl_ast_build_copy(build
);
1109 node
->u
.f
.init
= reduce_list(isl_ast_op_max
, lower
, build
);
1110 node
->u
.f
.inc
= for_inc(build
);
1112 if (!node
->u
.f
.init
|| !node
->u
.f
.inc
)
1113 graft
= isl_ast_graft_free(graft
);
1116 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1118 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1120 isl_ast_build_free(build
);
1125 /* Update "graft" based on "bounds" and "domain" for the generic,
1126 * non-degenerate, case.
1128 * "c_lower" and "c_upper" contain the lower and upper bounds
1129 * that the loop node should express.
1130 * "domain" is the subset of the intersection of the constraints
1131 * for which some code is executed.
1133 * There may be zero lower bounds or zero upper bounds in "constraints"
1134 * in case the list of constraints was created
1135 * based on the atomic option or based on separation with explicit bounds.
1136 * In that case, we use "domain" to derive lower and/or upper bounds.
1138 * We first compute a list of one or more lower bounds.
1140 * Then we decide if we want to express the condition as
1142 * iterator <= min(list of upper bounds)
1144 * or as a conjunction of constraints.
1146 * The set of enforced constraints is then computed either based on
1147 * a list of upper bounds or on a set of upper bound constraints.
1148 * We do not compute any enforced constraints if we were forced
1149 * to compute a lower or upper bound using exact_bound. The domains
1150 * of the resulting expressions may imply some bounds on outer dimensions
1151 * that we do not want to appear in the enforced constraints since
1152 * they are not actually enforced by the corresponding code.
1154 * Finally, we fill in the expressions of the for node.
1156 static __isl_give isl_ast_graft
*refine_generic_bounds(
1157 __isl_take isl_ast_graft
*graft
,
1158 __isl_take isl_constraint_list
*c_lower
,
1159 __isl_take isl_constraint_list
*c_upper
,
1160 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1164 isl_pw_aff_list
*lower
;
1166 isl_set
*upper_set
= NULL
;
1167 isl_pw_aff_list
*upper_list
= NULL
;
1168 int n_lower
, n_upper
;
1170 if (!graft
|| !c_lower
|| !c_upper
|| !build
)
1173 depth
= isl_ast_build_get_depth(build
);
1174 ctx
= isl_ast_graft_get_ctx(graft
);
1176 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1177 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1179 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1181 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1184 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1185 else if (n_upper
> 0)
1186 upper_set
= intersect_constraints(c_upper
);
1188 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1190 if (n_lower
== 0 || n_upper
== 0)
1193 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1195 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1197 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1200 isl_pw_aff_list_free(lower
);
1201 isl_pw_aff_list_free(upper_list
);
1202 isl_set_free(upper_set
);
1203 isl_constraint_list_free(c_lower
);
1204 isl_constraint_list_free(c_upper
);
1208 isl_constraint_list_free(c_lower
);
1209 isl_constraint_list_free(c_upper
);
1210 return isl_ast_graft_free(graft
);
1213 /* Internal data structure used inside count_constraints to keep
1214 * track of the number of constraints that are independent of dimension "pos",
1215 * the lower bounds in "pos" and the upper bounds in "pos".
1217 struct isl_ast_count_constraints_data
{
1225 /* Increment data->n_indep, data->lower or data->upper depending
1226 * on whether "c" is independenct of dimensions data->pos,
1227 * a lower bound or an upper bound.
1229 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1231 struct isl_ast_count_constraints_data
*data
= user
;
1233 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1235 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1240 isl_constraint_free(c
);
1245 /* Update "graft" based on "bounds" and "domain" for the generic,
1246 * non-degenerate, case.
1248 * "list" respresent the list of bounds that need to be encoded by
1249 * the for loop. Only the constraints that involve the iterator
1250 * are relevant here. The other constraints are taken care of by
1251 * the caller and are included in the generated constraints of "build".
1252 * "domain" is the subset of the intersection of the constraints
1253 * for which some code is executed.
1254 * "build" is the build in which graft->node was created.
1256 * We separate lower bounds, upper bounds and constraints that
1257 * are independent of the loop iterator.
1259 * The actual for loop bounds are generated in refine_generic_bounds.
1261 static __isl_give isl_ast_graft
*refine_generic_split(
1262 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1263 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1265 struct isl_ast_count_constraints_data data
;
1266 isl_constraint_list
*lower
;
1267 isl_constraint_list
*upper
;
1270 return isl_ast_graft_free(graft
);
1272 data
.pos
= isl_ast_build_get_depth(build
);
1274 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1276 return isl_ast_graft_free(graft
);
1278 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1279 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1280 isl_constraint_list_free(list
);
1281 return isl_ast_graft_free(graft
);
1284 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1285 upper
= isl_constraint_list_copy(lower
);
1286 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1287 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1289 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1292 /* Update "graft" based on "bounds" and "domain" for the generic,
1293 * non-degenerate, case.
1295 * "bounds" respresent the bounds that need to be encoded by
1296 * the for loop (or a guard around the for loop).
1297 * "domain" is the subset of "bounds" for which some code is executed.
1298 * "build" is the build in which graft->node was created.
1300 * We break up "bounds" into a list of constraints and continue with
1301 * refine_generic_split.
1303 static __isl_give isl_ast_graft
*refine_generic(
1304 __isl_take isl_ast_graft
*graft
,
1305 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1306 __isl_keep isl_ast_build
*build
)
1308 isl_constraint_list
*list
;
1310 if (!build
|| !graft
)
1311 return isl_ast_graft_free(graft
);
1313 list
= isl_basic_set_get_constraint_list(bounds
);
1315 graft
= refine_generic_split(graft
, list
, domain
, build
);
1320 /* Create a for node for the current level.
1322 * Mark the for node degenerate if "degenerate" is set.
1324 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1334 depth
= isl_ast_build_get_depth(build
);
1335 id
= isl_ast_build_get_iterator_id(build
, depth
);
1336 node
= isl_ast_node_alloc_for(id
);
1338 node
= isl_ast_node_for_mark_degenerate(node
);
1343 /* If the ast_build_exploit_nested_bounds option is set, then return
1344 * the constraints enforced by all elements in "list".
1345 * Otherwise, return the universe.
1347 static __isl_give isl_basic_set
*extract_shared_enforced(
1348 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1356 ctx
= isl_ast_graft_list_get_ctx(list
);
1357 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1358 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1360 space
= isl_ast_build_get_space(build
, 1);
1361 return isl_basic_set_universe(space
);
1364 /* Return the pending constraints of "build" that are not already taken
1365 * care of (by a combination of "enforced" and the generated constraints
1368 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1369 __isl_keep isl_basic_set
*enforced
)
1371 isl_set
*guard
, *context
;
1373 guard
= isl_ast_build_get_pending(build
);
1374 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1375 context
= isl_set_intersect(context
,
1376 isl_ast_build_get_generated(build
));
1377 return isl_set_gist(guard
, context
);
1380 /* Create an AST node for the current dimension based on
1381 * the schedule domain "bounds" and return the node encapsulated
1382 * in an isl_ast_graft.
1384 * "executed" is the current inverse schedule, taking into account
1385 * the bounds in "bounds"
1386 * "domain" is the domain of "executed", with inner dimensions projected out.
1387 * It may be a strict subset of "bounds" in case "bounds" was created
1388 * based on the atomic option or based on separation with explicit bounds.
1390 * "domain" may satisfy additional equalities that result
1391 * from intersecting "executed" with "bounds" in add_node.
1392 * It may also satisfy some global constraints that were dropped out because
1393 * we performed separation with explicit bounds.
1394 * The very first step is then to copy these constraints to "bounds".
1396 * Since we may be calling before_each_for and after_each_for
1397 * callbacks, we record the current inverse schedule in the build.
1399 * We consider three builds,
1400 * "build" is the one in which the current level is created,
1401 * "body_build" is the build in which the next level is created,
1402 * "sub_build" is essentially the same as "body_build", except that
1403 * the depth has not been increased yet.
1405 * "build" already contains information (in strides and offsets)
1406 * about the strides at the current level, but this information is not
1407 * reflected in the build->domain.
1408 * We first add this information and the "bounds" to the sub_build->domain.
1409 * isl_ast_build_set_loop_bounds adds the stride information and
1410 * checks whether the current dimension attains
1411 * only a single value and whether this single value can be represented using
1412 * a single affine expression.
1413 * In the first case, the current level is considered "degenerate".
1414 * In the second, sub-case, the current level is considered "eliminated".
1415 * Eliminated levels don't need to be reflected in the AST since we can
1416 * simply plug in the affine expression. For degenerate, but non-eliminated,
1417 * levels, we do introduce a for node, but mark is as degenerate so that
1418 * it can be printed as an assignment of the single value to the loop
1421 * If the current level is eliminated, we explicitly plug in the value
1422 * for the current level found by isl_ast_build_set_loop_bounds in the
1423 * inverse schedule. This ensures that if we are working on a slice
1424 * of the domain based on information available in the inverse schedule
1425 * and the build domain, that then this information is also reflected
1426 * in the inverse schedule. This operation also eliminates the current
1427 * dimension from the inverse schedule making sure no inner dimensions depend
1428 * on the current dimension. Otherwise, we create a for node, marking
1429 * it degenerate if appropriate. The initial for node is still incomplete
1430 * and will be completed in either refine_degenerate or refine_generic.
1432 * We then generate a sequence of grafts for the next level,
1433 * create a surrounding graft for the current level and insert
1434 * the for node we created (if the current level is not eliminated).
1435 * Before creating a graft for the current level, we first extract
1436 * hoistable constraints from the child guards and combine them
1437 * with the pending constraints in the build. These constraints
1438 * are used to simplify the child guards and then added to the guard
1439 * of the current graft to ensure that they will be generated.
1440 * If the hoisted guard is a disjunction, then we use it directly
1441 * to gist the guards on the children before intersect it with the
1442 * pending constraints. We do so because this disjunction is typically
1443 * identical to the guards on the children such that these guards
1444 * can be effectively removed completely. After the intersection,
1445 * the gist operation would have a harder time figuring this out.
1447 * Finally, we set the bounds of the for loop in either
1448 * refine_degenerate or refine_generic.
1449 * We do so in a context where the pending constraints of the build
1450 * have been replaced by the guard of the current graft.
1452 static __isl_give isl_ast_graft
*create_node_scaled(
1453 __isl_take isl_union_map
*executed
,
1454 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1455 __isl_take isl_ast_build
*build
)
1459 isl_bool eliminated
;
1460 isl_basic_set
*hull
;
1461 isl_basic_set
*enforced
;
1462 isl_set
*guard
, *hoisted
;
1463 isl_ast_node
*node
= NULL
;
1464 isl_ast_graft
*graft
;
1465 isl_ast_graft_list
*children
;
1466 isl_ast_build
*sub_build
;
1467 isl_ast_build
*body_build
;
1469 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1470 domain
= isl_set_detect_equalities(domain
);
1471 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1472 bounds
= isl_basic_set_intersect(bounds
, hull
);
1473 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1475 depth
= isl_ast_build_get_depth(build
);
1476 sub_build
= isl_ast_build_copy(build
);
1477 bounds
= isl_basic_set_remove_redundancies(bounds
);
1478 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1479 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1480 isl_basic_set_copy(bounds
));
1481 degenerate
= isl_ast_build_has_value(sub_build
);
1482 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1483 if (degenerate
< 0 || eliminated
< 0)
1484 executed
= isl_union_map_free(executed
);
1486 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1487 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1488 isl_basic_set_copy(bounds
));
1490 executed
= plug_in_values(executed
, sub_build
);
1492 node
= create_for(build
, degenerate
);
1494 body_build
= isl_ast_build_copy(sub_build
);
1495 body_build
= isl_ast_build_increase_depth(body_build
);
1497 node
= before_each_for(node
, body_build
);
1498 children
= generate_next_level(executed
,
1499 isl_ast_build_copy(body_build
));
1501 enforced
= extract_shared_enforced(children
, build
);
1502 guard
= extract_pending(sub_build
, enforced
);
1503 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1504 if (isl_set_n_basic_set(hoisted
) > 1)
1505 children
= isl_ast_graft_list_gist_guards(children
,
1506 isl_set_copy(hoisted
));
1507 guard
= isl_set_intersect(guard
, hoisted
);
1509 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1511 graft
= isl_ast_graft_alloc_from_children(children
,
1512 isl_set_copy(guard
), enforced
, build
, sub_build
);
1515 isl_ast_build
*for_build
;
1517 graft
= isl_ast_graft_insert_for(graft
, node
);
1518 for_build
= isl_ast_build_copy(build
);
1519 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1520 isl_set_copy(guard
));
1522 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1524 graft
= refine_generic(graft
, bounds
,
1526 isl_ast_build_free(for_build
);
1528 isl_set_free(guard
);
1530 graft
= after_each_for(graft
, body_build
);
1532 isl_ast_build_free(body_build
);
1533 isl_ast_build_free(sub_build
);
1534 isl_ast_build_free(build
);
1535 isl_basic_set_free(bounds
);
1536 isl_set_free(domain
);
1541 /* Internal data structure for checking if all constraints involving
1542 * the input dimension "depth" are such that the other coefficients
1543 * are multiples of "m", reducing "m" if they are not.
1544 * If "m" is reduced all the way down to "1", then the check has failed
1545 * and we break out of the iteration.
1547 struct isl_check_scaled_data
{
1552 /* If constraint "c" involves the input dimension data->depth,
1553 * then make sure that all the other coefficients are multiples of data->m,
1554 * reducing data->m if needed.
1555 * Break out of the iteration if data->m has become equal to "1".
1557 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1560 struct isl_check_scaled_data
*data
= user
;
1562 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1565 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1566 isl_constraint_free(c
);
1570 for (i
= 0; i
< 4; ++i
) {
1571 n
= isl_constraint_dim(c
, t
[i
]);
1572 for (j
= 0; j
< n
; ++j
) {
1575 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1577 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1579 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1580 data
->m
= isl_val_gcd(data
->m
, d
);
1581 if (isl_val_is_one(data
->m
))
1588 isl_constraint_free(c
);
1590 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1593 /* For each constraint of "bmap" that involves the input dimension data->depth,
1594 * make sure that all the other coefficients are multiples of data->m,
1595 * reducing data->m if needed.
1596 * Break out of the iteration if data->m has become equal to "1".
1598 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1603 r
= isl_basic_map_foreach_constraint(bmap
,
1604 &constraint_check_scaled
, user
);
1605 isl_basic_map_free(bmap
);
1610 /* For each constraint of "map" that involves the input dimension data->depth,
1611 * make sure that all the other coefficients are multiples of data->m,
1612 * reducing data->m if needed.
1613 * Break out of the iteration if data->m has become equal to "1".
1615 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1619 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1625 /* Create an AST node for the current dimension based on
1626 * the schedule domain "bounds" and return the node encapsulated
1627 * in an isl_ast_graft.
1629 * "executed" is the current inverse schedule, taking into account
1630 * the bounds in "bounds"
1631 * "domain" is the domain of "executed", with inner dimensions projected out.
1634 * Before moving on to the actual AST node construction in create_node_scaled,
1635 * we first check if the current dimension is strided and if we can scale
1636 * down this stride. Note that we only do this if the ast_build_scale_strides
1639 * In particular, let the current dimension take on values
1643 * with a an integer. We check if we can find an integer m that (obviously)
1644 * divides both f and s.
1646 * If so, we check if the current dimension only appears in constraints
1647 * where the coefficients of the other variables are multiples of m.
1648 * We perform this extra check to avoid the risk of introducing
1649 * divisions by scaling down the current dimension.
1651 * If so, we scale the current dimension down by a factor of m.
1652 * That is, we plug in
1656 * Note that in principle we could always scale down strided loops
1661 * but this may result in i' taking on larger values than the original i,
1662 * due to the shift by "f".
1663 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1665 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1666 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1667 __isl_take isl_ast_build
*build
)
1669 struct isl_check_scaled_data data
;
1674 ctx
= isl_ast_build_get_ctx(build
);
1675 if (!isl_options_get_ast_build_scale_strides(ctx
))
1676 return create_node_scaled(executed
, bounds
, domain
, build
);
1678 data
.depth
= isl_ast_build_get_depth(build
);
1679 if (!isl_ast_build_has_stride(build
, data
.depth
))
1680 return create_node_scaled(executed
, bounds
, domain
, build
);
1682 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1683 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1685 offset
= isl_aff_free(offset
);
1686 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1687 d
= isl_aff_get_denominator_val(offset
);
1689 executed
= isl_union_map_free(executed
);
1691 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1692 data
.m
= isl_val_div(data
.m
, d
);
1694 data
.m
= isl_val_set_si(data
.m
, 1);
1698 if (!isl_val_is_one(data
.m
)) {
1699 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1701 !isl_val_is_one(data
.m
))
1702 executed
= isl_union_map_free(executed
);
1705 if (!isl_val_is_one(data
.m
)) {
1710 isl_union_map
*umap
;
1712 space
= isl_ast_build_get_space(build
, 1);
1713 space
= isl_space_map_from_set(space
);
1714 ma
= isl_multi_aff_identity(space
);
1715 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1716 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1717 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1719 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1720 isl_multi_aff_copy(ma
));
1721 domain
= isl_set_preimage_multi_aff(domain
,
1722 isl_multi_aff_copy(ma
));
1723 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1724 umap
= isl_union_map_from_map(map
);
1725 executed
= isl_union_map_apply_domain(executed
,
1726 isl_union_map_copy(umap
));
1727 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1730 isl_aff_free(offset
);
1731 isl_val_free(data
.m
);
1733 return create_node_scaled(executed
, bounds
, domain
, build
);
1736 /* Add the basic set to the list that "user" points to.
1738 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1740 isl_basic_set_list
**list
= user
;
1742 *list
= isl_basic_set_list_add(*list
, bset
);
1747 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1749 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1750 __isl_take isl_set
*set
)
1754 isl_basic_set_list
*list
;
1759 ctx
= isl_set_get_ctx(set
);
1761 n
= isl_set_n_basic_set(set
);
1762 list
= isl_basic_set_list_alloc(ctx
, n
);
1763 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1764 list
= isl_basic_set_list_free(list
);
1770 /* Generate code for the schedule domain "bounds"
1771 * and add the result to "list".
1773 * We mainly detect strides here and check if the bounds do not
1774 * conflict with the current build domain
1775 * and then pass over control to create_node.
1777 * "bounds" reflects the bounds on the current dimension and possibly
1778 * some extra conditions on outer dimensions.
1779 * It does not, however, include any divs involving the current dimension,
1780 * so it does not capture any stride constraints.
1781 * We therefore need to compute that part of the schedule domain that
1782 * intersects with "bounds" and derive the strides from the result.
1784 static __isl_give isl_ast_graft_list
*add_node(
1785 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1786 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1788 isl_ast_graft
*graft
;
1789 isl_set
*domain
= NULL
;
1790 isl_union_set
*uset
;
1791 int empty
, disjoint
;
1793 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1794 executed
= isl_union_map_intersect_domain(executed
, uset
);
1795 empty
= isl_union_map_is_empty(executed
);
1801 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1802 domain
= isl_set_from_union_set(uset
);
1803 domain
= isl_ast_build_specialize(build
, domain
);
1805 domain
= isl_set_compute_divs(domain
);
1806 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1807 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1813 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1815 graft
= create_node(executed
, bounds
, domain
,
1816 isl_ast_build_copy(build
));
1817 list
= isl_ast_graft_list_add(list
, graft
);
1818 isl_ast_build_free(build
);
1821 list
= isl_ast_graft_list_free(list
);
1823 isl_set_free(domain
);
1824 isl_basic_set_free(bounds
);
1825 isl_union_map_free(executed
);
1826 isl_ast_build_free(build
);
1830 /* Does any element of i follow or coincide with any element of j
1831 * at the current depth for equal values of the outer dimensions?
1833 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1834 __isl_keep isl_basic_set
*j
, void *user
)
1836 int depth
= *(int *) user
;
1837 isl_basic_map
*test
;
1841 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1842 isl_basic_set_copy(j
));
1843 for (l
= 0; l
< depth
; ++l
)
1844 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1846 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1847 isl_dim_out
, depth
);
1848 empty
= isl_basic_map_is_empty(test
);
1849 isl_basic_map_free(test
);
1851 return empty
< 0 ? isl_bool_error
: !empty
;
1854 /* Split up each element of "list" into a part that is related to "bset"
1855 * according to "gt" and a part that is not.
1856 * Return a list that consist of "bset" and all the pieces.
1858 static __isl_give isl_basic_set_list
*add_split_on(
1859 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1860 __isl_keep isl_basic_map
*gt
)
1863 isl_basic_set_list
*res
;
1866 bset
= isl_basic_set_free(bset
);
1868 gt
= isl_basic_map_copy(gt
);
1869 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1870 n
= isl_basic_set_list_n_basic_set(list
);
1871 res
= isl_basic_set_list_from_basic_set(bset
);
1872 for (i
= 0; res
&& i
< n
; ++i
) {
1873 isl_basic_set
*bset
;
1874 isl_set
*set1
, *set2
;
1875 isl_basic_map
*bmap
;
1878 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1879 bmap
= isl_basic_map_copy(gt
);
1880 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1881 bset
= isl_basic_map_range(bmap
);
1882 empty
= isl_basic_set_is_empty(bset
);
1884 res
= isl_basic_set_list_free(res
);
1886 isl_basic_set_free(bset
);
1887 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1888 res
= isl_basic_set_list_add(res
, bset
);
1892 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1893 set1
= isl_set_from_basic_set(bset
);
1894 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1895 set2
= isl_set_from_basic_set(bset
);
1896 set1
= isl_set_subtract(set2
, set1
);
1897 set1
= isl_set_make_disjoint(set1
);
1899 res
= isl_basic_set_list_concat(res
,
1900 isl_basic_set_list_from_set(set1
));
1902 isl_basic_map_free(gt
);
1903 isl_basic_set_list_free(list
);
1907 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1908 __isl_keep isl_basic_set_list
*domain_list
,
1909 __isl_keep isl_union_map
*executed
,
1910 __isl_keep isl_ast_build
*build
);
1912 /* Internal data structure for add_nodes.
1914 * "executed" and "build" are extra arguments to be passed to add_node.
1915 * "list" collects the results.
1917 struct isl_add_nodes_data
{
1918 isl_union_map
*executed
;
1919 isl_ast_build
*build
;
1921 isl_ast_graft_list
*list
;
1924 /* Generate code for the schedule domains in "scc"
1925 * and add the results to "list".
1927 * The domains in "scc" form a strongly connected component in the ordering.
1928 * If the number of domains in "scc" is larger than 1, then this means
1929 * that we cannot determine a valid ordering for the domains in the component.
1930 * This should be fairly rare because the individual domains
1931 * have been made disjoint first.
1932 * The problem is that the domains may be integrally disjoint but not
1933 * rationally disjoint. For example, we may have domains
1935 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1937 * These two domains have an empty intersection, but their rational
1938 * relaxations do intersect. It is impossible to order these domains
1939 * in the second dimension because the first should be ordered before
1940 * the second for outer dimension equal to 0, while it should be ordered
1941 * after for outer dimension equal to 1.
1943 * This may happen in particular in case of unrolling since the domain
1944 * of each slice is replaced by its simple hull.
1946 * For each basic set i in "scc" and for each of the following basic sets j,
1947 * we split off that part of the basic set i that shares the outer dimensions
1948 * with j and lies before j in the current dimension.
1949 * We collect all the pieces in a new list that replaces "scc".
1951 * While the elements in "scc" should be disjoint, we double-check
1952 * this property to avoid running into an infinite recursion in case
1953 * they intersect due to some internal error.
1955 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1957 struct isl_add_nodes_data
*data
= user
;
1959 isl_basic_set
*bset
, *first
;
1960 isl_basic_set_list
*list
;
1964 n
= isl_basic_set_list_n_basic_set(scc
);
1965 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1967 isl_basic_set_list_free(scc
);
1968 data
->list
= add_node(data
->list
,
1969 isl_union_map_copy(data
->executed
), bset
,
1970 isl_ast_build_copy(data
->build
));
1971 return data
->list
? isl_stat_ok
: isl_stat_error
;
1974 depth
= isl_ast_build_get_depth(data
->build
);
1975 space
= isl_basic_set_get_space(bset
);
1976 space
= isl_space_map_from_set(space
);
1977 gt
= isl_basic_map_universe(space
);
1978 for (i
= 0; i
< depth
; ++i
)
1979 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1980 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1982 first
= isl_basic_set_copy(bset
);
1983 list
= isl_basic_set_list_from_basic_set(bset
);
1984 for (i
= 1; i
< n
; ++i
) {
1987 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
1989 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
1991 list
= isl_basic_set_list_free(list
);
1993 isl_die(isl_basic_set_list_get_ctx(scc
),
1995 "basic sets in scc are assumed to be disjoint",
1996 list
= isl_basic_set_list_free(list
));
1998 list
= add_split_on(list
, bset
, gt
);
2000 isl_basic_set_free(first
);
2001 isl_basic_map_free(gt
);
2002 isl_basic_set_list_free(scc
);
2004 data
->list
= isl_ast_graft_list_concat(data
->list
,
2005 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2006 isl_basic_set_list_free(scc
);
2008 return data
->list
? isl_stat_ok
: isl_stat_error
;
2011 /* Sort the domains in "domain_list" according to the execution order
2012 * at the current depth (for equal values of the outer dimensions),
2013 * generate code for each of them, collecting the results in a list.
2014 * If no code is generated (because the intersection of the inverse schedule
2015 * with the domains turns out to be empty), then an empty list is returned.
2017 * The caller is responsible for ensuring that the basic sets in "domain_list"
2018 * are pair-wise disjoint. It can, however, in principle happen that
2019 * two basic sets should be ordered one way for one value of the outer
2020 * dimensions and the other way for some other value of the outer dimensions.
2021 * We therefore play safe and look for strongly connected components.
2022 * The function add_nodes takes care of handling non-trivial components.
2024 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2025 __isl_keep isl_basic_set_list
*domain_list
,
2026 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2029 struct isl_add_nodes_data data
;
2036 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2037 n
= isl_basic_set_list_n_basic_set(domain_list
);
2038 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2042 return add_node(data
.list
, isl_union_map_copy(executed
),
2043 isl_basic_set_list_get_basic_set(domain_list
, 0),
2044 isl_ast_build_copy(build
));
2046 depth
= isl_ast_build_get_depth(build
);
2047 data
.executed
= executed
;
2049 if (isl_basic_set_list_foreach_scc(domain_list
,
2050 &domain_follows_at_depth
, &depth
,
2051 &add_nodes
, &data
) < 0)
2052 data
.list
= isl_ast_graft_list_free(data
.list
);
2057 /* Do i and j share any values for the outer dimensions?
2059 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2060 __isl_keep isl_basic_set
*j
, void *user
)
2062 int depth
= *(int *) user
;
2063 isl_basic_map
*test
;
2067 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2068 isl_basic_set_copy(j
));
2069 for (l
= 0; l
< depth
; ++l
)
2070 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2072 empty
= isl_basic_map_is_empty(test
);
2073 isl_basic_map_free(test
);
2075 return empty
< 0 ? isl_bool_error
: !empty
;
2078 /* Internal data structure for generate_sorted_domains_wrap.
2080 * "n" is the total number of basic sets
2081 * "executed" and "build" are extra arguments to be passed
2082 * to generate_sorted_domains.
2084 * "single" is set to 1 by generate_sorted_domains_wrap if there
2085 * is only a single component.
2086 * "list" collects the results.
2088 struct isl_ast_generate_parallel_domains_data
{
2090 isl_union_map
*executed
;
2091 isl_ast_build
*build
;
2094 isl_ast_graft_list
*list
;
2097 /* Call generate_sorted_domains on "scc", fuse the result into a list
2098 * with either zero or one graft and collect the these single element
2099 * lists into data->list.
2101 * If there is only one component, i.e., if the number of basic sets
2102 * in the current component is equal to the total number of basic sets,
2103 * then data->single is set to 1 and the result of generate_sorted_domains
2106 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2109 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2110 isl_ast_graft_list
*list
;
2112 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2113 data
->single
= isl_basic_set_list_n_basic_set(scc
) == data
->n
;
2115 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2119 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2121 isl_basic_set_list_free(scc
);
2123 return isl_stat_error
;
2128 /* Look for any (weakly connected) components in the "domain_list"
2129 * of domains that share some values of the outer dimensions.
2130 * That is, domains in different components do not share any values
2131 * of the outer dimensions. This means that these components
2132 * can be freely reordered.
2133 * Within each of the components, we sort the domains according
2134 * to the execution order at the current depth.
2136 * If there is more than one component, then generate_sorted_domains_wrap
2137 * fuses the result of each call to generate_sorted_domains
2138 * into a list with either zero or one graft and collects these (at most)
2139 * single element lists into a bigger list. This means that the elements of the
2140 * final list can be freely reordered. In particular, we sort them
2141 * according to an arbitrary but fixed ordering to ease merging of
2142 * graft lists from different components.
2144 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2145 __isl_keep isl_basic_set_list
*domain_list
,
2146 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2149 struct isl_ast_generate_parallel_domains_data data
;
2154 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2156 return generate_sorted_domains(domain_list
, executed
, build
);
2158 depth
= isl_ast_build_get_depth(build
);
2160 data
.executed
= executed
;
2163 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2164 &generate_sorted_domains_wrap
,
2166 data
.list
= isl_ast_graft_list_free(data
.list
);
2169 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2174 /* Internal data for separate_domain.
2176 * "explicit" is set if we only want to use explicit bounds.
2178 * "domain" collects the separated domains.
2180 struct isl_separate_domain_data
{
2181 isl_ast_build
*build
;
2186 /* Extract implicit bounds on the current dimension for the executed "map".
2188 * The domain of "map" may involve inner dimensions, so we
2189 * need to eliminate them.
2191 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2192 __isl_keep isl_ast_build
*build
)
2196 domain
= isl_map_domain(map
);
2197 domain
= isl_ast_build_eliminate(build
, domain
);
2202 /* Extract explicit bounds on the current dimension for the executed "map".
2204 * Rather than eliminating the inner dimensions as in implicit_bounds,
2205 * we simply drop any constraints involving those inner dimensions.
2206 * The idea is that most bounds that are implied by constraints on the
2207 * inner dimensions will be enforced by for loops and not by explicit guards.
2208 * There is then no need to separate along those bounds.
2210 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2211 __isl_keep isl_ast_build
*build
)
2216 dim
= isl_map_dim(map
, isl_dim_out
);
2217 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2219 domain
= isl_map_domain(map
);
2220 depth
= isl_ast_build_get_depth(build
);
2221 dim
= isl_set_dim(domain
, isl_dim_set
);
2222 domain
= isl_set_detect_equalities(domain
);
2223 domain
= isl_set_drop_constraints_involving_dims(domain
,
2224 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2225 domain
= isl_set_remove_divs_involving_dims(domain
,
2226 isl_dim_set
, depth
, 1);
2227 domain
= isl_set_remove_unknown_divs(domain
);
2232 /* Split data->domain into pieces that intersect with the range of "map"
2233 * and pieces that do not intersect with the range of "map"
2234 * and then add that part of the range of "map" that does not intersect
2235 * with data->domain.
2237 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2239 struct isl_separate_domain_data
*data
= user
;
2244 domain
= explicit_bounds(map
, data
->build
);
2246 domain
= implicit_bounds(map
, data
->build
);
2248 domain
= isl_set_coalesce(domain
);
2249 domain
= isl_set_make_disjoint(domain
);
2250 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2251 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2252 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2253 data
->domain
= isl_set_union(data
->domain
, d1
);
2254 data
->domain
= isl_set_union(data
->domain
, d2
);
2259 /* Separate the schedule domains of "executed".
2261 * That is, break up the domain of "executed" into basic sets,
2262 * such that for each basic set S, every element in S is associated with
2263 * the same domain spaces.
2265 * "space" is the (single) domain space of "executed".
2267 static __isl_give isl_set
*separate_schedule_domains(
2268 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2269 __isl_keep isl_ast_build
*build
)
2271 struct isl_separate_domain_data data
= { build
};
2274 ctx
= isl_ast_build_get_ctx(build
);
2275 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2276 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2277 data
.domain
= isl_set_empty(space
);
2278 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2279 data
.domain
= isl_set_free(data
.domain
);
2281 isl_union_map_free(executed
);
2285 /* Temporary data used during the search for a lower bound for unrolling.
2287 * "build" is the build in which the unrolling will be performed
2288 * "domain" is the original set for which to find a lower bound
2289 * "depth" is the dimension for which to find a lower boudn
2290 * "expansion" is the expansion that needs to be applied to "domain"
2291 * in the unrolling that will be performed
2293 * "lower" is the best lower bound found so far. It is NULL if we have not
2295 * "n" is the corresponding size. If lower is NULL, then the value of n
2297 * "n_div" is the maximal number of integer divisions in the first
2298 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2299 * been computed yet.
2301 struct isl_find_unroll_data
{
2302 isl_ast_build
*build
;
2305 isl_basic_map
*expansion
;
2312 /* Return the constraint
2314 * i_"depth" = aff + offset
2316 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2319 aff
= isl_aff_copy(aff
);
2320 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2321 aff
= isl_aff_add_constant_si(aff
, offset
);
2322 return isl_equality_from_aff(aff
);
2325 /* Update *user to the number of integer divsions in the first element
2326 * of "ma", if it is larger than the current value.
2328 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2329 __isl_take isl_multi_aff
*ma
, void *user
)
2335 aff
= isl_multi_aff_get_aff(ma
, 0);
2336 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2338 isl_multi_aff_free(ma
);
2344 return aff
? isl_stat_ok
: isl_stat_error
;
2347 /* Get the number of integer divisions in the expression for the iterator
2348 * value at the first slice in the unrolling based on lower bound "lower",
2349 * taking into account the expansion that needs to be performed on this slice.
2351 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2352 __isl_keep isl_aff
*lower
)
2356 isl_map
*it_map
, *expansion
;
2357 isl_pw_multi_aff
*pma
;
2360 c
= at_offset(data
->depth
, lower
, 0);
2361 set
= isl_set_copy(data
->domain
);
2362 set
= isl_set_add_constraint(set
, c
);
2363 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2364 set
= isl_set_apply(set
, expansion
);
2365 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2366 pma
= isl_pw_multi_aff_from_map(it_map
);
2368 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2370 isl_pw_multi_aff_free(pma
);
2375 /* Is the lower bound "lower" with corresponding iteration count "n"
2376 * better than the one stored in "data"?
2377 * If there is no upper bound on the iteration count ("n" is infinity) or
2378 * if the count is too large, then we cannot use this lower bound.
2379 * Otherwise, if there was no previous lower bound or
2380 * if the iteration count of the new lower bound is smaller than
2381 * the iteration count of the previous lower bound, then we consider
2382 * the new lower bound to be better.
2383 * If the iteration count is the same, then compare the number
2384 * of integer divisions that would be needed to express
2385 * the iterator value at the first slice in the unrolling
2386 * according to the lower bound. If we end up computing this
2387 * number, then store the lowest value in data->n_div.
2389 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2390 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2397 if (isl_val_is_infty(n
))
2399 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2403 cmp
= isl_val_cmp_si(n
, *data
->n
);
2408 if (data
->n_div
< 0)
2409 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2410 if (data
->n_div
< 0)
2412 if (data
->n_div
== 0)
2414 n_div
= get_expanded_n_div(data
, lower
);
2417 if (n_div
>= data
->n_div
)
2419 data
->n_div
= n_div
;
2424 /* Check if we can use "c" as a lower bound and if it is better than
2425 * any previously found lower bound.
2427 * If "c" does not involve the dimension at the current depth,
2428 * then we cannot use it.
2429 * Otherwise, let "c" be of the form
2433 * We compute the maximal value of
2435 * -ceil(f(j)/a)) + i + 1
2437 * over the domain. If there is such a value "n", then we know
2439 * -ceil(f(j)/a)) + i + 1 <= n
2443 * i < ceil(f(j)/a)) + n
2445 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2446 * We just need to check if we have found any lower bound before and
2447 * if the new lower bound is better (smaller n or fewer integer divisions)
2448 * than the previously found lower bounds.
2450 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2451 __isl_keep isl_constraint
*c
)
2453 isl_aff
*aff
, *lower
;
2457 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2460 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2461 lower
= isl_aff_ceil(lower
);
2462 aff
= isl_aff_copy(lower
);
2463 aff
= isl_aff_neg(aff
);
2464 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2465 aff
= isl_aff_add_constant_si(aff
, 1);
2466 max
= isl_set_max_val(data
->domain
, aff
);
2469 better
= is_better_lower_bound(data
, lower
, max
);
2470 if (better
< 0 || !better
) {
2472 isl_aff_free(lower
);
2473 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2476 isl_aff_free(data
->lower
);
2477 data
->lower
= lower
;
2478 *data
->n
= isl_val_get_num_si(max
);
2484 /* Check if we can use "c" as a lower bound and if it is better than
2485 * any previously found lower bound.
2487 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2489 struct isl_find_unroll_data
*data
;
2492 data
= (struct isl_find_unroll_data
*) user
;
2493 r
= update_unrolling_lower_bound(data
, c
);
2494 isl_constraint_free(c
);
2499 /* Look for a lower bound l(i) on the dimension at "depth"
2500 * and a size n such that "domain" is a subset of
2502 * { [i] : l(i) <= i_d < l(i) + n }
2504 * where d is "depth" and l(i) depends only on earlier dimensions.
2505 * Furthermore, try and find a lower bound such that n is as small as possible.
2506 * In particular, "n" needs to be finite.
2507 * "build" is the build in which the unrolling will be performed.
2508 * "expansion" is the expansion that needs to be applied to "domain"
2509 * in the unrolling that will be performed.
2511 * Inner dimensions have been eliminated from "domain" by the caller.
2513 * We first construct a collection of lower bounds on the input set
2514 * by computing its simple hull. We then iterate through them,
2515 * discarding those that we cannot use (either because they do not
2516 * involve the dimension at "depth" or because they have no corresponding
2517 * upper bound, meaning that "n" would be unbounded) and pick out the
2518 * best from the remaining ones.
2520 * If we cannot find a suitable lower bound, then we consider that
2523 static __isl_give isl_aff
*find_unroll_lower_bound(
2524 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2525 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2527 struct isl_find_unroll_data data
=
2528 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2529 isl_basic_set
*hull
;
2531 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2533 if (isl_basic_set_foreach_constraint(hull
,
2534 &constraint_find_unroll
, &data
) < 0)
2537 isl_basic_set_free(hull
);
2540 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2541 "cannot find lower bound for unrolling", return NULL
);
2545 isl_basic_set_free(hull
);
2546 return isl_aff_free(data
.lower
);
2549 /* Call "fn" on each iteration of the current dimension of "domain".
2550 * If "init" is not NULL, then it is called with the number of
2551 * iterations before any call to "fn".
2552 * Return -1 on failure.
2554 * Since we are going to be iterating over the individual values,
2555 * we first check if there are any strides on the current dimension.
2556 * If there is, we rewrite the current dimension i as
2558 * i = stride i' + offset
2560 * and then iterate over individual values of i' instead.
2562 * We then look for a lower bound on i' and a size such that the domain
2565 * { [j,i'] : l(j) <= i' < l(j) + n }
2567 * and then take slices of the domain at values of i'
2568 * between l(j) and l(j) + n - 1.
2570 * We compute the unshifted simple hull of each slice to ensure that
2571 * we have a single basic set per offset. The slicing constraint
2572 * may get simplified away before the unshifted simple hull is taken
2573 * and may therefore in some rare cases disappear from the result.
2574 * We therefore explicitly add the constraint back after computing
2575 * the unshifted simple hull to ensure that the basic sets
2576 * remain disjoint. The constraints that are dropped by taking the hull
2577 * will be taken into account at the next level, as in the case of the
2580 * Finally, we map i' back to i and call "fn".
2582 static int foreach_iteration(__isl_take isl_set
*domain
,
2583 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2584 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2589 isl_multi_aff
*expansion
;
2590 isl_basic_map
*bmap
;
2591 isl_aff
*lower
= NULL
;
2592 isl_ast_build
*stride_build
;
2594 depth
= isl_ast_build_get_depth(build
);
2596 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2597 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2598 stride_build
= isl_ast_build_copy(build
);
2599 stride_build
= isl_ast_build_detect_strides(stride_build
,
2600 isl_set_copy(domain
));
2601 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2603 domain
= isl_set_preimage_multi_aff(domain
,
2604 isl_multi_aff_copy(expansion
));
2605 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2606 isl_ast_build_free(stride_build
);
2608 bmap
= isl_basic_map_from_multi_aff(expansion
);
2610 empty
= isl_set_is_empty(domain
);
2616 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2620 if (n
>= 0 && init
&& init(n
, user
) < 0)
2622 for (i
= 0; i
< n
; ++i
) {
2624 isl_basic_set
*bset
;
2625 isl_constraint
*slice
;
2627 slice
= at_offset(depth
, lower
, i
);
2628 set
= isl_set_copy(domain
);
2629 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2630 bset
= isl_set_unshifted_simple_hull(set
);
2631 bset
= isl_basic_set_add_constraint(bset
, slice
);
2632 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2634 if (fn(bset
, user
) < 0)
2638 isl_aff_free(lower
);
2639 isl_set_free(domain
);
2640 isl_basic_map_free(bmap
);
2642 return n
< 0 || i
< n
? -1 : 0;
2645 /* Data structure for storing the results and the intermediate objects
2646 * of compute_domains.
2648 * "list" is the main result of the function and contains a list
2649 * of disjoint basic sets for which code should be generated.
2651 * "executed" and "build" are inputs to compute_domains.
2652 * "schedule_domain" is the domain of "executed".
2654 * "option" contains the domains at the current depth that should by
2655 * atomic, separated or unrolled. These domains are as specified by
2656 * the user, except that inner dimensions have been eliminated and
2657 * that they have been made pair-wise disjoint.
2659 * "sep_class" contains the user-specified split into separation classes
2660 * specialized to the current depth.
2661 * "done" contains the union of the separation domains that have already
2664 struct isl_codegen_domains
{
2665 isl_basic_set_list
*list
;
2667 isl_union_map
*executed
;
2668 isl_ast_build
*build
;
2669 isl_set
*schedule_domain
;
2677 /* Internal data structure for do_unroll.
2679 * "domains" stores the results of compute_domains.
2680 * "class_domain" is the original class domain passed to do_unroll.
2681 * "unroll_domain" collects the unrolled iterations.
2683 struct isl_ast_unroll_data
{
2684 struct isl_codegen_domains
*domains
;
2685 isl_set
*class_domain
;
2686 isl_set
*unroll_domain
;
2689 /* Given an iteration of an unrolled domain represented by "bset",
2690 * add it to data->domains->list.
2691 * Since we may have dropped some constraints, we intersect with
2692 * the class domain again to ensure that each element in the list
2693 * is disjoint from the other class domains.
2695 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2697 struct isl_ast_unroll_data
*data
= user
;
2699 isl_basic_set_list
*list
;
2701 set
= isl_set_from_basic_set(bset
);
2702 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2704 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2705 set
= isl_set_make_disjoint(set
);
2706 list
= isl_basic_set_list_from_set(set
);
2707 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2713 /* Extend domains->list with a list of basic sets, one for each value
2714 * of the current dimension in "domain" and remove the corresponding
2715 * sets from the class domain. Return the updated class domain.
2716 * The divs that involve the current dimension have not been projected out
2719 * We call foreach_iteration to iterate over the individual values and
2720 * in do_unroll_iteration we collect the individual basic sets in
2721 * domains->list and their union in data->unroll_domain, which is then
2722 * used to update the class domain.
2724 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2725 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2727 struct isl_ast_unroll_data data
;
2730 return isl_set_free(class_domain
);
2732 return isl_set_free(domain
);
2734 data
.domains
= domains
;
2735 data
.class_domain
= class_domain
;
2736 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2738 if (foreach_iteration(domain
, domains
->build
, NULL
,
2739 &do_unroll_iteration
, &data
) < 0)
2740 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2742 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2744 return class_domain
;
2747 /* Add domains to domains->list for each individual value of the current
2748 * dimension, for that part of the schedule domain that lies in the
2749 * intersection of the option domain and the class domain.
2750 * Remove the corresponding sets from the class domain and
2751 * return the updated class domain.
2753 * We first break up the unroll option domain into individual pieces
2754 * and then handle each of them separately. The unroll option domain
2755 * has been made disjoint in compute_domains_init_options,
2757 * Note that we actively want to combine different pieces of the
2758 * schedule domain that have the same value at the current dimension.
2759 * We therefore need to break up the unroll option domain before
2760 * intersecting with class and schedule domain, hoping that the
2761 * unroll option domain specified by the user is relatively simple.
2763 static __isl_give isl_set
*compute_unroll_domains(
2764 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2766 isl_set
*unroll_domain
;
2767 isl_basic_set_list
*unroll_list
;
2771 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2773 return isl_set_free(class_domain
);
2775 return class_domain
;
2777 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2778 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2780 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2781 for (i
= 0; i
< n
; ++i
) {
2782 isl_basic_set
*bset
;
2784 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2785 unroll_domain
= isl_set_from_basic_set(bset
);
2786 unroll_domain
= isl_set_intersect(unroll_domain
,
2787 isl_set_copy(class_domain
));
2788 unroll_domain
= isl_set_intersect(unroll_domain
,
2789 isl_set_copy(domains
->schedule_domain
));
2791 empty
= isl_set_is_empty(unroll_domain
);
2792 if (empty
>= 0 && empty
) {
2793 isl_set_free(unroll_domain
);
2797 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2800 isl_basic_set_list_free(unroll_list
);
2802 return class_domain
;
2805 /* Try and construct a single basic set that includes the intersection of
2806 * the schedule domain, the atomic option domain and the class domain.
2807 * Add the resulting basic set(s) to domains->list and remove them
2808 * from class_domain. Return the updated class domain.
2810 * We construct a single domain rather than trying to combine
2811 * the schedule domains of individual domains because we are working
2812 * within a single component so that non-overlapping schedule domains
2813 * should already have been separated.
2814 * We do however need to make sure that this single domains is a subset
2815 * of the class domain so that it would not intersect with any other
2816 * class domains. This means that we may end up splitting up the atomic
2817 * domain in case separation classes are being used.
2819 * "domain" is the intersection of the schedule domain and the class domain,
2820 * with inner dimensions projected out.
2822 static __isl_give isl_set
*compute_atomic_domain(
2823 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2825 isl_basic_set
*bset
;
2826 isl_basic_set_list
*list
;
2827 isl_set
*domain
, *atomic_domain
;
2830 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2831 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2832 domain
= isl_set_intersect(domain
,
2833 isl_set_copy(domains
->schedule_domain
));
2834 empty
= isl_set_is_empty(domain
);
2836 class_domain
= isl_set_free(class_domain
);
2838 isl_set_free(domain
);
2839 return class_domain
;
2842 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2843 domain
= isl_set_coalesce(domain
);
2844 bset
= isl_set_unshifted_simple_hull(domain
);
2845 domain
= isl_set_from_basic_set(bset
);
2846 atomic_domain
= isl_set_copy(domain
);
2847 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2848 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2849 domain
= isl_set_make_disjoint(domain
);
2850 list
= isl_basic_set_list_from_set(domain
);
2851 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2853 return class_domain
;
2856 /* Split up the schedule domain into uniform basic sets,
2857 * in the sense that each element in a basic set is associated to
2858 * elements of the same domains, and add the result to domains->list.
2859 * Do this for that part of the schedule domain that lies in the
2860 * intersection of "class_domain" and the separate option domain.
2862 * "class_domain" may or may not include the constraints
2863 * of the schedule domain, but this does not make a difference
2864 * since we are going to intersect it with the domain of the inverse schedule.
2865 * If it includes schedule domain constraints, then they may involve
2866 * inner dimensions, but we will eliminate them in separation_domain.
2868 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2869 __isl_keep isl_set
*class_domain
)
2873 isl_union_map
*executed
;
2874 isl_basic_set_list
*list
;
2877 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2878 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2879 executed
= isl_union_map_copy(domains
->executed
);
2880 executed
= isl_union_map_intersect_domain(executed
,
2881 isl_union_set_from_set(domain
));
2882 empty
= isl_union_map_is_empty(executed
);
2883 if (empty
< 0 || empty
) {
2884 isl_union_map_free(executed
);
2885 return empty
< 0 ? -1 : 0;
2888 space
= isl_set_get_space(class_domain
);
2889 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2891 list
= isl_basic_set_list_from_set(domain
);
2892 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2897 /* Split up the domain at the current depth into disjoint
2898 * basic sets for which code should be generated separately
2899 * for the given separation class domain.
2901 * If any separation classes have been defined, then "class_domain"
2902 * is the domain of the current class and does not refer to inner dimensions.
2903 * Otherwise, "class_domain" is the universe domain.
2905 * We first make sure that the class domain is disjoint from
2906 * previously considered class domains.
2908 * The separate domains can be computed directly from the "class_domain".
2910 * The unroll, atomic and remainder domains need the constraints
2911 * from the schedule domain.
2913 * For unrolling, the actual schedule domain is needed (with divs that
2914 * may refer to the current dimension) so that stride detection can be
2917 * For atomic and remainder domains, inner dimensions and divs involving
2918 * the current dimensions should be eliminated.
2919 * In case we are working within a separation class, we need to intersect
2920 * the result with the current "class_domain" to ensure that the domains
2921 * are disjoint from those generated from other class domains.
2923 * The domain that has been made atomic may be larger than specified
2924 * by the user since it needs to be representable as a single basic set.
2925 * This possibly larger domain is removed from class_domain by
2926 * compute_atomic_domain. It is computed first so that the extended domain
2927 * would not overlap with any domains computed before.
2928 * Similary, the unrolled domains may have some constraints removed and
2929 * may therefore also be larger than specified by the user.
2931 * If anything is left after handling separate, unroll and atomic,
2932 * we split it up into basic sets and append the basic sets to domains->list.
2934 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
2935 __isl_take isl_set
*class_domain
)
2937 isl_basic_set_list
*list
;
2940 class_domain
= isl_set_subtract(class_domain
,
2941 isl_set_copy(domains
->done
));
2942 domains
->done
= isl_set_union(domains
->done
,
2943 isl_set_copy(class_domain
));
2945 class_domain
= compute_atomic_domain(domains
, class_domain
);
2946 class_domain
= compute_unroll_domains(domains
, class_domain
);
2948 domain
= isl_set_copy(class_domain
);
2950 if (compute_separate_domain(domains
, domain
) < 0)
2952 domain
= isl_set_subtract(domain
,
2953 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
2955 domain
= isl_set_intersect(domain
,
2956 isl_set_copy(domains
->schedule_domain
));
2958 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2959 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2961 domain
= isl_set_coalesce(domain
);
2962 domain
= isl_set_make_disjoint(domain
);
2964 list
= isl_basic_set_list_from_set(domain
);
2965 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2967 isl_set_free(class_domain
);
2971 isl_set_free(domain
);
2972 isl_set_free(class_domain
);
2973 return isl_stat_error
;
2976 /* Split up the domain at the current depth into disjoint
2977 * basic sets for which code should be generated separately
2978 * for the separation class identified by "pnt".
2980 * We extract the corresponding class domain from domains->sep_class,
2981 * eliminate inner dimensions and pass control to compute_partial_domains.
2983 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
2985 struct isl_codegen_domains
*domains
= user
;
2990 class_set
= isl_set_from_point(pnt
);
2991 domain
= isl_map_domain(isl_map_intersect_range(
2992 isl_map_copy(domains
->sep_class
), class_set
));
2993 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
2994 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2996 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
2998 return isl_stat_error
;
3000 isl_set_free(domain
);
3004 return compute_partial_domains(domains
, domain
);
3007 /* Extract the domains at the current depth that should be atomic,
3008 * separated or unrolled and store them in option.
3010 * The domains specified by the user might overlap, so we make
3011 * them disjoint by subtracting earlier domains from later domains.
3013 static void compute_domains_init_options(isl_set
*option
[4],
3014 __isl_keep isl_ast_build
*build
)
3016 enum isl_ast_loop_type type
, type2
;
3019 for (type
= isl_ast_loop_atomic
;
3020 type
<= isl_ast_loop_separate
; ++type
) {
3021 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3022 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3023 option
[type
] = isl_set_subtract(option
[type
],
3024 isl_set_copy(option
[type2
]));
3027 unroll
= option
[isl_ast_loop_unroll
];
3028 unroll
= isl_set_coalesce(unroll
);
3029 unroll
= isl_set_make_disjoint(unroll
);
3030 option
[isl_ast_loop_unroll
] = unroll
;
3033 /* Split up the domain at the current depth into disjoint
3034 * basic sets for which code should be generated separately,
3035 * based on the user-specified options.
3036 * Return the list of disjoint basic sets.
3038 * There are three kinds of domains that we need to keep track of.
3039 * - the "schedule domain" is the domain of "executed"
3040 * - the "class domain" is the domain corresponding to the currrent
3042 * - the "option domain" is the domain corresponding to one of the options
3043 * atomic, unroll or separate
3045 * We first consider the individial values of the separation classes
3046 * and split up the domain for each of them separately.
3047 * Finally, we consider the remainder. If no separation classes were
3048 * specified, then we call compute_partial_domains with the universe
3049 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3050 * with inner dimensions removed. We do this because we want to
3051 * avoid computing the complement of the class domains (i.e., the difference
3052 * between the universe and domains->done).
3054 static __isl_give isl_basic_set_list
*compute_domains(
3055 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3057 struct isl_codegen_domains domains
;
3060 isl_union_set
*schedule_domain
;
3064 enum isl_ast_loop_type type
;
3070 ctx
= isl_union_map_get_ctx(executed
);
3071 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3073 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3074 domain
= isl_set_from_union_set(schedule_domain
);
3076 compute_domains_init_options(domains
.option
, build
);
3078 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3079 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3080 n_param
= isl_set_dim(classes
, isl_dim_param
);
3081 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3083 space
= isl_set_get_space(domain
);
3084 domains
.build
= build
;
3085 domains
.schedule_domain
= isl_set_copy(domain
);
3086 domains
.executed
= executed
;
3087 domains
.done
= isl_set_empty(space
);
3089 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3090 domains
.list
= isl_basic_set_list_free(domains
.list
);
3091 isl_set_free(classes
);
3093 empty
= isl_set_is_empty(domains
.done
);
3095 domains
.list
= isl_basic_set_list_free(domains
.list
);
3096 domain
= isl_set_free(domain
);
3098 isl_set_free(domain
);
3099 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3101 domain
= isl_ast_build_eliminate(build
, domain
);
3103 if (compute_partial_domains(&domains
, domain
) < 0)
3104 domains
.list
= isl_basic_set_list_free(domains
.list
);
3106 isl_set_free(domains
.schedule_domain
);
3107 isl_set_free(domains
.done
);
3108 isl_map_free(domains
.sep_class
);
3109 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3110 isl_set_free(domains
.option
[type
]);
3112 return domains
.list
;
3115 /* Generate code for a single component, after shifting (if any)
3116 * has been applied, in case the schedule was specified as a union map.
3118 * We first split up the domain at the current depth into disjoint
3119 * basic sets based on the user-specified options.
3120 * Then we generated code for each of them and concatenate the results.
3122 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3123 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3125 isl_basic_set_list
*domain_list
;
3126 isl_ast_graft_list
*list
= NULL
;
3128 domain_list
= compute_domains(executed
, build
);
3129 list
= generate_parallel_domains(domain_list
, executed
, build
);
3131 isl_basic_set_list_free(domain_list
);
3132 isl_union_map_free(executed
);
3133 isl_ast_build_free(build
);
3138 /* Generate code for a single component, after shifting (if any)
3139 * has been applied, in case the schedule was specified as a schedule tree
3140 * and the separate option was specified.
3142 * We perform separation on the domain of "executed" and then generate
3143 * an AST for each of the resulting disjoint basic sets.
3145 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3146 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3150 isl_basic_set_list
*domain_list
;
3151 isl_ast_graft_list
*list
;
3153 space
= isl_ast_build_get_space(build
, 1);
3154 domain
= separate_schedule_domains(space
,
3155 isl_union_map_copy(executed
), build
);
3156 domain_list
= isl_basic_set_list_from_set(domain
);
3158 list
= generate_parallel_domains(domain_list
, executed
, build
);
3160 isl_basic_set_list_free(domain_list
);
3161 isl_union_map_free(executed
);
3162 isl_ast_build_free(build
);
3167 /* Internal data structure for generate_shifted_component_tree_unroll.
3169 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3170 * "list" collects the constructs grafts.
3172 struct isl_ast_unroll_tree_data
{
3173 isl_union_map
*executed
;
3174 isl_ast_build
*build
;
3175 isl_ast_graft_list
*list
;
3178 /* Initialize data->list to a list of "n" elements.
3180 static int init_unroll_tree(int n
, void *user
)
3182 struct isl_ast_unroll_tree_data
*data
= user
;
3185 ctx
= isl_ast_build_get_ctx(data
->build
);
3186 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3191 /* Given an iteration of an unrolled domain represented by "bset",
3192 * generate the corresponding AST and add the result to data->list.
3194 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3196 struct isl_ast_unroll_tree_data
*data
= user
;
3198 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3199 bset
, isl_ast_build_copy(data
->build
));
3204 /* Generate code for a single component, after shifting (if any)
3205 * has been applied, in case the schedule was specified as a schedule tree
3206 * and the unroll option was specified.
3208 * We call foreach_iteration to iterate over the individual values and
3209 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3211 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3212 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3213 __isl_take isl_ast_build
*build
)
3215 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3217 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3218 &do_unroll_tree_iteration
, &data
) < 0)
3219 data
.list
= isl_ast_graft_list_free(data
.list
);
3221 isl_union_map_free(executed
);
3222 isl_ast_build_free(build
);
3227 /* Does "domain" involve a disjunction that is purely based on
3228 * constraints involving only outer dimension?
3230 * In particular, is there a disjunction such that the constraints
3231 * involving the current and later dimensions are the same over
3232 * all the disjuncts?
3234 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3235 __isl_keep isl_ast_build
*build
)
3237 isl_basic_set
*hull
;
3238 isl_set
*shared
, *inner
;
3242 if (isl_set_n_basic_set(domain
) <= 1)
3243 return isl_bool_false
;
3245 inner
= isl_set_copy(domain
);
3246 depth
= isl_ast_build_get_depth(build
);
3247 dim
= isl_set_dim(inner
, isl_dim_set
);
3248 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3249 isl_dim_set
, depth
, dim
- depth
);
3250 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3251 shared
= isl_set_from_basic_set(hull
);
3252 equal
= isl_set_plain_is_equal(inner
, shared
);
3253 isl_set_free(inner
);
3254 isl_set_free(shared
);
3259 /* Generate code for a single component, after shifting (if any)
3260 * has been applied, in case the schedule was specified as a schedule tree.
3261 * In particular, handle the base case where there is either no isolated
3262 * set or we are within the isolated set (in which case "isolated" is set)
3263 * or the iterations that precede or follow the isolated set.
3265 * The schedule domain is broken up or combined into basic sets
3266 * according to the AST generation option specified in the current
3267 * schedule node, which may be either atomic, separate, unroll or
3268 * unspecified. If the option is unspecified, then we currently simply
3269 * split the schedule domain into disjoint basic sets.
3271 * In case the separate option is specified, the AST generation is
3272 * handled by generate_shifted_component_tree_separate.
3273 * In the other cases, we need the global schedule domain.
3274 * In the unroll case, the AST generation is then handled by
3275 * generate_shifted_component_tree_unroll which needs the actual
3276 * schedule domain (with divs that may refer to the current dimension)
3277 * so that stride detection can be performed.
3278 * In the atomic or unspecified case, inner dimensions and divs involving
3279 * the current dimensions should be eliminated.
3280 * The result is then either combined into a single basic set or
3281 * split up into disjoint basic sets.
3282 * Finally an AST is generated for each basic set and the results are
3285 * If the schedule domain involves a disjunction that is purely based on
3286 * constraints involving only outer dimension, then it is treated as
3287 * if atomic was specified. This ensures that only a single loop
3288 * is generated instead of a sequence of identical loops with
3291 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3292 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3295 isl_bool outer_disjunction
;
3296 isl_union_set
*schedule_domain
;
3298 isl_basic_set_list
*domain_list
;
3299 isl_ast_graft_list
*list
;
3300 enum isl_ast_loop_type type
;
3302 type
= isl_ast_build_get_loop_type(build
, isolated
);
3306 if (type
== isl_ast_loop_separate
)
3307 return generate_shifted_component_tree_separate(executed
,
3310 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3311 domain
= isl_set_from_union_set(schedule_domain
);
3313 if (type
== isl_ast_loop_unroll
)
3314 return generate_shifted_component_tree_unroll(executed
, domain
,
3317 domain
= isl_ast_build_eliminate(build
, domain
);
3318 domain
= isl_set_coalesce(domain
);
3320 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3321 if (outer_disjunction
< 0)
3322 domain
= isl_set_free(domain
);
3324 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3325 isl_basic_set
*hull
;
3326 hull
= isl_set_unshifted_simple_hull(domain
);
3327 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3329 domain
= isl_set_make_disjoint(domain
);
3330 domain_list
= isl_basic_set_list_from_set(domain
);
3333 list
= generate_parallel_domains(domain_list
, executed
, build
);
3335 isl_basic_set_list_free(domain_list
);
3336 isl_union_map_free(executed
);
3337 isl_ast_build_free(build
);
3341 isl_union_map_free(executed
);
3342 isl_ast_build_free(build
);
3346 /* Extract out the disjunction imposed by "domain" on the outer
3347 * schedule dimensions.
3349 * In particular, remove all inner dimensions from "domain" (including
3350 * the current dimension) and then remove the constraints that are shared
3351 * by all disjuncts in the result.
3353 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3354 __isl_keep isl_ast_build
*build
)
3359 domain
= isl_ast_build_specialize(build
, domain
);
3360 depth
= isl_ast_build_get_depth(build
);
3361 dim
= isl_set_dim(domain
, isl_dim_set
);
3362 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3363 domain
= isl_set_remove_unknown_divs(domain
);
3364 hull
= isl_set_copy(domain
);
3365 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3366 domain
= isl_set_gist(domain
, hull
);
3371 /* Add "guard" to the grafts in "list".
3372 * "build" is the outer AST build, while "sub_build" includes "guard"
3373 * in its generated domain.
3375 * First combine the grafts into a single graft and then add the guard.
3376 * If the list is empty, or if some error occurred, then simply return
3379 static __isl_give isl_ast_graft_list
*list_add_guard(
3380 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3381 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3383 isl_ast_graft
*graft
;
3385 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3387 if (isl_ast_graft_list_n_ast_graft(list
) != 1)
3390 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3391 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3392 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3397 /* Generate code for a single component, after shifting (if any)
3398 * has been applied, in case the schedule was specified as a schedule tree.
3399 * In particular, do so for the specified subset of the schedule domain.
3401 * If we are outside of the isolated part, then "domain" may include
3402 * a disjunction. Explicitly generate this disjunction at this point
3403 * instead of relying on the disjunction getting hoisted back up
3406 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3407 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3408 __isl_keep isl_ast_build
*build
, int isolated
)
3410 isl_union_set
*uset
;
3411 isl_ast_graft_list
*list
;
3412 isl_ast_build
*sub_build
;
3415 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3416 executed
= isl_union_map_copy(executed
);
3417 executed
= isl_union_map_intersect_domain(executed
, uset
);
3418 empty
= isl_union_map_is_empty(executed
);
3423 isl_union_map_free(executed
);
3424 isl_set_free(domain
);
3425 ctx
= isl_ast_build_get_ctx(build
);
3426 return isl_ast_graft_list_alloc(ctx
, 0);
3429 sub_build
= isl_ast_build_copy(build
);
3431 domain
= extract_disjunction(domain
, build
);
3432 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3433 isl_set_copy(domain
));
3435 list
= generate_shifted_component_tree_base(executed
,
3436 isl_ast_build_copy(sub_build
), isolated
);
3438 list
= list_add_guard(list
, domain
, build
, sub_build
);
3439 isl_ast_build_free(sub_build
);
3440 isl_set_free(domain
);
3443 isl_union_map_free(executed
);
3444 isl_set_free(domain
);
3448 /* Generate code for a single component, after shifting (if any)
3449 * has been applied, in case the schedule was specified as a schedule tree.
3450 * In particular, do so for the specified sequence of subsets
3451 * of the schedule domain, "before", "isolated", "after" and "other",
3452 * where only the "isolated" part is considered to be isolated.
3454 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3455 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3456 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3457 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3459 isl_ast_graft_list
*list
, *res
;
3461 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3462 list
= generate_shifted_component_tree_part(executed
, isolated
,
3464 res
= isl_ast_graft_list_concat(res
, list
);
3465 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3466 res
= isl_ast_graft_list_concat(res
, list
);
3467 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3468 res
= isl_ast_graft_list_concat(res
, list
);
3470 isl_union_map_free(executed
);
3471 isl_ast_build_free(build
);
3476 /* Does "set" intersect "first", but not "second"?
3478 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3479 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3483 disjoint
= isl_set_is_disjoint(set
, first
);
3485 return isl_bool_error
;
3487 return isl_bool_false
;
3489 return isl_set_is_disjoint(set
, second
);
3492 /* Generate code for a single component, after shifting (if any)
3493 * has been applied, in case the schedule was specified as a schedule tree.
3494 * In particular, do so in case of isolation where there is
3495 * only an "isolated" part and an "after" part.
3496 * "dead1" and "dead2" are freed by this function in order to simplify
3499 * The "before" and "other" parts are set to empty sets.
3501 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3502 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3503 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3504 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3508 empty
= isl_set_empty(isl_set_get_space(after
));
3509 isl_set_free(dead1
);
3510 isl_set_free(dead2
);
3511 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3512 isolated
, after
, empty
, build
);
3515 /* Generate code for a single component, after shifting (if any)
3516 * has been applied, in case the schedule was specified as a schedule tree.
3518 * We first check if the user has specified an isolated schedule domain
3519 * and that we are not already outside of this isolated schedule domain.
3520 * If so, we break up the schedule domain into iterations that
3521 * precede the isolated domain, the isolated domain itself,
3522 * the iterations that follow the isolated domain and
3523 * the remaining iterations (those that are incomparable
3524 * to the isolated domain).
3525 * We generate an AST for each piece and concatenate the results.
3527 * If the isolated domain is not convex, then it is replaced
3528 * by a convex superset to ensure that the sets of preceding and
3529 * following iterations are properly defined and, in particular,
3530 * that there are no intermediate iterations that do not belong
3531 * to the isolated domain.
3533 * In the special case where at least one element of the schedule
3534 * domain that does not belong to the isolated domain needs
3535 * to be scheduled after this isolated domain, but none of those
3536 * elements need to be scheduled before, break up the schedule domain
3537 * in only two parts, the isolated domain, and a part that will be
3538 * scheduled after the isolated domain.
3540 * If no isolated set has been specified, then we generate an
3541 * AST for the entire inverse schedule.
3543 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3544 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3547 int empty
, has_isolate
;
3549 isl_union_set
*schedule_domain
;
3551 isl_basic_set
*hull
;
3552 isl_set
*isolated
, *before
, *after
, *test
;
3556 build
= isl_ast_build_extract_isolated(build
);
3557 has_isolate
= isl_ast_build_has_isolated(build
);
3558 if (has_isolate
< 0)
3559 executed
= isl_union_map_free(executed
);
3560 else if (!has_isolate
)
3561 return generate_shifted_component_tree_base(executed
, build
, 0);
3563 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3564 domain
= isl_set_from_union_set(schedule_domain
);
3566 isolated
= isl_ast_build_get_isolated(build
);
3567 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3568 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3569 empty
= isl_set_is_empty(test
);
3574 isl_set_free(isolated
);
3575 isl_set_free(domain
);
3576 return generate_shifted_component_tree_base(executed
, build
, 0);
3578 isolated
= isl_ast_build_eliminate(build
, isolated
);
3579 hull
= isl_set_unshifted_simple_hull(isolated
);
3580 isolated
= isl_set_from_basic_set(hull
);
3582 depth
= isl_ast_build_get_depth(build
);
3583 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3584 gt
= isl_map_universe(space
);
3585 for (i
= 0; i
< depth
; ++i
)
3586 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3587 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3588 lt
= isl_map_reverse(isl_map_copy(gt
));
3589 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3590 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3592 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3593 pure
= only_intersects_first(domain
, after
, before
);
3595 executed
= isl_union_map_free(executed
);
3597 return generate_shifted_component_only_after(executed
, isolated
,
3598 domain
, build
, before
, after
);
3599 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3600 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3601 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3602 after
= isl_set_subtract(after
, isl_set_copy(before
));
3603 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3605 return generate_shifted_component_parts(executed
, before
, isolated
,
3606 after
, domain
, build
);
3608 isl_set_free(domain
);
3609 isl_set_free(isolated
);
3610 isl_union_map_free(executed
);
3611 isl_ast_build_free(build
);
3615 /* Generate code for a single component, after shifting (if any)
3618 * Call generate_shifted_component_tree or generate_shifted_component_flat
3619 * depending on whether the schedule was specified as a schedule tree.
3621 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3622 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3624 if (isl_ast_build_has_schedule_node(build
))
3625 return generate_shifted_component_tree(executed
, build
);
3627 return generate_shifted_component_flat(executed
, build
);
3630 struct isl_set_map_pair
{
3635 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3636 * of indices into the "domain" array,
3637 * return the union of the "map" fields of the elements
3638 * indexed by the first "n" elements of "order".
3640 static __isl_give isl_union_map
*construct_component_executed(
3641 struct isl_set_map_pair
*domain
, int *order
, int n
)
3645 isl_union_map
*executed
;
3647 map
= isl_map_copy(domain
[order
[0]].map
);
3648 executed
= isl_union_map_from_map(map
);
3649 for (i
= 1; i
< n
; ++i
) {
3650 map
= isl_map_copy(domain
[order
[i
]].map
);
3651 executed
= isl_union_map_add_map(executed
, map
);
3657 /* Generate code for a single component, after shifting (if any)
3660 * The component inverse schedule is specified as the "map" fields
3661 * of the elements of "domain" indexed by the first "n" elements of "order".
3663 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3664 struct isl_set_map_pair
*domain
, int *order
, int n
,
3665 __isl_take isl_ast_build
*build
)
3667 isl_union_map
*executed
;
3669 executed
= construct_component_executed(domain
, order
, n
);
3670 return generate_shifted_component(executed
, build
);
3673 /* Does set dimension "pos" of "set" have an obviously fixed value?
3675 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3680 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3683 fixed
= !isl_val_is_nan(v
);
3689 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3690 * of indices into the "domain" array,
3691 * do all (except for at most one) of the "set" field of the elements
3692 * indexed by the first "n" elements of "order" have a fixed value
3693 * at position "depth"?
3695 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3696 int *order
, int n
, int depth
)
3701 for (i
= 0; i
< n
; ++i
) {
3704 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3717 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3718 * of indices into the "domain" array,
3719 * eliminate the inner dimensions from the "set" field of the elements
3720 * indexed by the first "n" elements of "order", provided the current
3721 * dimension does not have a fixed value.
3723 * Return the index of the first element in "order" with a corresponding
3724 * "set" field that does not have an (obviously) fixed value.
3726 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3727 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3732 for (i
= n
- 1; i
>= 0; --i
) {
3734 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3739 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3740 domain
[order
[i
]].set
);
3747 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3748 * of indices into the "domain" array,
3749 * find the element of "domain" (amongst those indexed by the first "n"
3750 * elements of "order") with the "set" field that has the smallest
3751 * value for the current iterator.
3753 * Note that the domain with the smallest value may depend on the parameters
3754 * and/or outer loop dimension. Since the result of this function is only
3755 * used as heuristic, we only make a reasonable attempt at finding the best
3756 * domain, one that should work in case a single domain provides the smallest
3757 * value for the current dimension over all values of the parameters
3758 * and outer dimensions.
3760 * In particular, we compute the smallest value of the first domain
3761 * and replace it by that of any later domain if that later domain
3762 * has a smallest value that is smaller for at least some value
3763 * of the parameters and outer dimensions.
3765 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3766 __isl_keep isl_ast_build
*build
)
3772 min_first
= isl_ast_build_map_to_iterator(build
,
3773 isl_set_copy(domain
[order
[0]].set
));
3774 min_first
= isl_map_lexmin(min_first
);
3776 for (i
= 1; i
< n
; ++i
) {
3777 isl_map
*min
, *test
;
3780 min
= isl_ast_build_map_to_iterator(build
,
3781 isl_set_copy(domain
[order
[i
]].set
));
3782 min
= isl_map_lexmin(min
);
3783 test
= isl_map_copy(min
);
3784 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3785 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3786 empty
= isl_map_is_empty(test
);
3788 if (empty
>= 0 && !empty
) {
3789 isl_map_free(min_first
);
3799 isl_map_free(min_first
);
3801 return i
< n
? -1 : first
;
3804 /* Construct a shifted inverse schedule based on the original inverse schedule,
3805 * the stride and the offset.
3807 * The original inverse schedule is specified as the "map" fields
3808 * of the elements of "domain" indexed by the first "n" elements of "order".
3810 * "stride" and "offset" are such that the difference
3811 * between the values of the current dimension of domain "i"
3812 * and the values of the current dimension for some reference domain are
3815 * stride * integer + offset[i]
3817 * Moreover, 0 <= offset[i] < stride.
3819 * For each domain, we create a map
3821 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3823 * where j refers to the current dimension and the other dimensions are
3824 * unchanged, and apply this map to the original schedule domain.
3826 * For example, for the original schedule
3828 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3830 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3831 * we apply the mapping
3835 * to the schedule of the "A" domain and the mapping
3837 * { [j - 1] -> [j, 1] }
3839 * to the schedule of the "B" domain.
3842 * Note that after the transformation, the differences between pairs
3843 * of values of the current dimension over all domains are multiples
3844 * of stride and that we have therefore exposed the stride.
3847 * To see that the mapping preserves the lexicographic order,
3848 * first note that each of the individual maps above preserves the order.
3849 * If the value of the current iterator is j1 in one domain and j2 in another,
3850 * then if j1 = j2, we know that the same map is applied to both domains
3851 * and the order is preserved.
3852 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3853 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3857 * and the order is preserved.
3858 * If c1 < c2, then we know
3864 * j2 - j1 = n * s + r
3866 * with n >= 0 and 0 <= r < s.
3867 * In other words, r = c2 - c1.
3878 * (j1 - c1, c1) << (j2 - c2, c2)
3880 * with "<<" the lexicographic order, proving that the order is preserved
3883 static __isl_give isl_union_map
*construct_shifted_executed(
3884 struct isl_set_map_pair
*domain
, int *order
, int n
,
3885 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3886 __isl_take isl_ast_build
*build
)
3889 isl_union_map
*executed
;
3895 depth
= isl_ast_build_get_depth(build
);
3896 space
= isl_ast_build_get_space(build
, 1);
3897 executed
= isl_union_map_empty(isl_space_copy(space
));
3898 space
= isl_space_map_from_set(space
);
3899 map
= isl_map_identity(isl_space_copy(space
));
3900 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3901 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3902 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3904 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3905 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3906 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3908 for (i
= 0; i
< n
; ++i
) {
3912 v
= isl_multi_val_get_val(offset
, i
);
3915 map_i
= isl_map_copy(map
);
3916 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3919 c
= isl_constraint_set_constant_val(c
, v
);
3920 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3922 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3924 executed
= isl_union_map_add_map(executed
, map_i
);
3927 isl_constraint_free(c
);
3931 executed
= isl_union_map_free(executed
);
3936 /* Generate code for a single component, after exposing the stride,
3937 * given that the schedule domain is "shifted strided".
3939 * The component inverse schedule is specified as the "map" fields
3940 * of the elements of "domain" indexed by the first "n" elements of "order".
3942 * The schedule domain being "shifted strided" means that the differences
3943 * between the values of the current dimension of domain "i"
3944 * and the values of the current dimension for some reference domain are
3947 * stride * integer + offset[i]
3949 * We first look for the domain with the "smallest" value for the current
3950 * dimension and adjust the offsets such that the offset of the "smallest"
3951 * domain is equal to zero. The other offsets are reduced modulo stride.
3953 * Based on this information, we construct a new inverse schedule in
3954 * construct_shifted_executed that exposes the stride.
3955 * Since this involves the introduction of a new schedule dimension,
3956 * the build needs to be changed accordingly.
3957 * After computing the AST, the newly introduced dimension needs
3958 * to be removed again from the list of grafts. We do this by plugging
3959 * in a mapping that represents the new schedule domain in terms of the
3960 * old schedule domain.
3962 static __isl_give isl_ast_graft_list
*generate_shift_component(
3963 struct isl_set_map_pair
*domain
, int *order
, int n
,
3964 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3965 __isl_take isl_ast_build
*build
)
3967 isl_ast_graft_list
*list
;
3973 isl_multi_aff
*ma
, *zero
;
3974 isl_union_map
*executed
;
3976 depth
= isl_ast_build_get_depth(build
);
3978 first
= first_offset(domain
, order
, n
, build
);
3982 mv
= isl_multi_val_copy(offset
);
3983 val
= isl_multi_val_get_val(offset
, first
);
3984 val
= isl_val_neg(val
);
3985 mv
= isl_multi_val_add_val(mv
, val
);
3986 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
3988 executed
= construct_shifted_executed(domain
, order
, n
, stride
, mv
,
3990 space
= isl_ast_build_get_space(build
, 1);
3991 space
= isl_space_map_from_set(space
);
3992 ma
= isl_multi_aff_identity(isl_space_copy(space
));
3993 space
= isl_space_from_domain(isl_space_domain(space
));
3994 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3995 zero
= isl_multi_aff_zero(space
);
3996 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
3997 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
3998 list
= generate_shifted_component(executed
, build
);
4000 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4002 isl_multi_val_free(mv
);
4006 isl_ast_build_free(build
);
4010 /* Does any node in the schedule tree rooted at the current schedule node
4011 * of "build" depend on outer schedule nodes?
4013 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4015 isl_schedule_node
*node
;
4018 node
= isl_ast_build_get_schedule_node(build
);
4019 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4020 isl_schedule_node_free(node
);
4025 /* Generate code for a single component.
4027 * The component inverse schedule is specified as the "map" fields
4028 * of the elements of "domain" indexed by the first "n" elements of "order".
4030 * This function may modify the "set" fields of "domain".
4032 * Before proceeding with the actual code generation for the component,
4033 * we first check if there are any "shifted" strides, meaning that
4034 * the schedule domains of the individual domains are all strided,
4035 * but that they have different offsets, resulting in the union
4036 * of schedule domains not being strided anymore.
4038 * The simplest example is the schedule
4040 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4042 * Both schedule domains are strided, but their union is not.
4043 * This function detects such cases and then rewrites the schedule to
4045 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4047 * In the new schedule, the schedule domains have the same offset (modulo
4048 * the stride), ensuring that the union of schedule domains is also strided.
4051 * If there is only a single domain in the component, then there is
4052 * nothing to do. Similarly, if the current schedule dimension has
4053 * a fixed value for almost all domains then there is nothing to be done.
4054 * In particular, we need at least two domains where the current schedule
4055 * dimension does not have a fixed value.
4056 * Finally, in case of a schedule map input,
4057 * if any of the options refer to the current schedule dimension,
4058 * then we bail out as well. It would be possible to reformulate the options
4059 * in terms of the new schedule domain, but that would introduce constraints
4060 * that separate the domains in the options and that is something we would
4062 * In the case of a schedule tree input, we bail out if any of
4063 * the descendants of the current schedule node refer to outer
4064 * schedule nodes in any way.
4067 * To see if there is any shifted stride, we look at the differences
4068 * between the values of the current dimension in pairs of domains
4069 * for equal values of outer dimensions. These differences should be
4074 * with "m" the stride and "r" a constant. Note that we cannot perform
4075 * this analysis on individual domains as the lower bound in each domain
4076 * may depend on parameters or outer dimensions and so the current dimension
4077 * itself may not have a fixed remainder on division by the stride.
4079 * In particular, we compare the first domain that does not have an
4080 * obviously fixed value for the current dimension to itself and all
4081 * other domains and collect the offsets and the gcd of the strides.
4082 * If the gcd becomes one, then we failed to find shifted strides.
4083 * If the gcd is zero, then the differences were all fixed, meaning
4084 * that some domains had non-obviously fixed values for the current dimension.
4085 * If all the offsets are the same (for those domains that do not have
4086 * an obviously fixed value for the current dimension), then we do not
4087 * apply the transformation.
4088 * If none of the domains were skipped, then there is nothing to do.
4089 * If some of them were skipped, then if we apply separation, the schedule
4090 * domain should get split in pieces with a (non-shifted) stride.
4092 * Otherwise, we apply a shift to expose the stride in
4093 * generate_shift_component.
4095 static __isl_give isl_ast_graft_list
*generate_component(
4096 struct isl_set_map_pair
*domain
, int *order
, int n
,
4097 __isl_take isl_ast_build
*build
)
4104 isl_val
*gcd
= NULL
;
4108 isl_ast_graft_list
*list
;
4111 depth
= isl_ast_build_get_depth(build
);
4114 if (skip
>= 0 && !skip
)
4115 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4116 if (skip
>= 0 && !skip
) {
4117 if (isl_ast_build_has_schedule_node(build
))
4118 skip
= has_anchored_subtree(build
);
4120 skip
= isl_ast_build_options_involve_depth(build
);
4125 return generate_shifted_component_from_list(domain
,
4128 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4132 ctx
= isl_ast_build_get_ctx(build
);
4134 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4137 for (i
= 0; i
< n
; ++i
) {
4140 map
= isl_map_from_domain_and_range(
4141 isl_set_copy(domain
[order
[base
]].set
),
4142 isl_set_copy(domain
[order
[i
]].set
));
4143 for (d
= 0; d
< depth
; ++d
)
4144 map
= isl_map_equate(map
, isl_dim_in
, d
,
4146 deltas
= isl_map_deltas(map
);
4147 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4148 isl_set_free(deltas
);
4155 gcd
= isl_val_gcd(gcd
, m
);
4156 if (isl_val_is_one(gcd
)) {
4160 mv
= isl_multi_val_set_val(mv
, i
, r
);
4162 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4168 if (fixed
&& i
> base
) {
4170 a
= isl_multi_val_get_val(mv
, i
);
4171 b
= isl_multi_val_get_val(mv
, base
);
4172 if (isl_val_ne(a
, b
))
4179 if (res
< 0 || !gcd
) {
4180 isl_ast_build_free(build
);
4182 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4183 list
= generate_shifted_component_from_list(domain
,
4186 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4191 isl_multi_val_free(mv
);
4195 isl_ast_build_free(build
);
4199 /* Store both "map" itself and its domain in the
4200 * structure pointed to by *next and advance to the next array element.
4202 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4204 struct isl_set_map_pair
**next
= user
;
4206 (*next
)->map
= isl_map_copy(map
);
4207 (*next
)->set
= isl_map_domain(map
);
4213 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4214 __isl_keep isl_schedule_node
*node
);
4216 /* Is any domain element of "umap" scheduled after any of
4217 * the corresponding image elements by the tree rooted at
4218 * the child of "node"?
4220 static int after_in_child(__isl_keep isl_union_map
*umap
,
4221 __isl_keep isl_schedule_node
*node
)
4223 isl_schedule_node
*child
;
4226 child
= isl_schedule_node_get_child(node
, 0);
4227 after
= after_in_tree(umap
, child
);
4228 isl_schedule_node_free(child
);
4233 /* Is any domain element of "umap" scheduled after any of
4234 * the corresponding image elements by the tree rooted at
4235 * the band node "node"?
4237 * We first check if any domain element is scheduled after any
4238 * of the corresponding image elements by the band node itself.
4239 * If not, we restrict "map" to those pairs of element that
4240 * are scheduled together by the band node and continue with
4241 * the child of the band node.
4242 * If there are no such pairs then the map passed to after_in_child
4243 * will be empty causing it to return 0.
4245 static int after_in_band(__isl_keep isl_union_map
*umap
,
4246 __isl_keep isl_schedule_node
*node
)
4248 isl_multi_union_pw_aff
*mupa
;
4249 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4250 isl_union_set
*domain
, *range
;
4255 if (isl_schedule_node_band_n_member(node
) == 0)
4256 return after_in_child(umap
, node
);
4258 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4259 space
= isl_multi_union_pw_aff_get_space(mupa
);
4260 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4261 test
= isl_union_map_copy(umap
);
4262 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4263 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4264 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4265 test
= isl_union_map_intersect(test
, gt
);
4266 empty
= isl_union_map_is_empty(test
);
4267 isl_union_map_free(test
);
4269 if (empty
< 0 || !empty
) {
4270 isl_union_map_free(partial
);
4271 return empty
< 0 ? -1 : 1;
4274 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4275 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4276 range
= isl_union_map_range(universe
);
4277 umap1
= isl_union_map_copy(partial
);
4278 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4279 umap2
= isl_union_map_intersect_domain(partial
, range
);
4280 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4281 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4282 after
= after_in_child(test
, node
);
4283 isl_union_map_free(test
);
4287 /* Is any domain element of "umap" scheduled after any of
4288 * the corresponding image elements by the tree rooted at
4289 * the context node "node"?
4291 * The context constraints apply to the schedule domain,
4292 * so we cannot apply them directly to "umap", which contains
4293 * pairs of statement instances. Instead, we add them
4294 * to the range of the prefix schedule for both domain and
4297 static int after_in_context(__isl_keep isl_union_map
*umap
,
4298 __isl_keep isl_schedule_node
*node
)
4300 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4301 isl_union_set
*domain
, *range
;
4305 umap
= isl_union_map_copy(umap
);
4306 context
= isl_schedule_node_context_get_context(node
);
4307 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4308 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4309 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4310 range
= isl_union_map_range(universe
);
4311 umap1
= isl_union_map_copy(prefix
);
4312 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4313 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4314 umap1
= isl_union_map_intersect_range(umap1
,
4315 isl_union_set_from_set(context
));
4316 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4317 umap
= isl_union_map_intersect(umap
, umap1
);
4319 after
= after_in_child(umap
, node
);
4321 isl_union_map_free(umap
);
4326 /* Is any domain element of "umap" scheduled after any of
4327 * the corresponding image elements by the tree rooted at
4328 * the expansion node "node"?
4330 * We apply the expansion to domain and range of "umap" and
4331 * continue with its child.
4333 static int after_in_expansion(__isl_keep isl_union_map
*umap
,
4334 __isl_keep isl_schedule_node
*node
)
4336 isl_union_map
*expansion
;
4339 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4340 umap
= isl_union_map_copy(umap
);
4341 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4342 umap
= isl_union_map_apply_range(umap
, expansion
);
4344 after
= after_in_child(umap
, node
);
4346 isl_union_map_free(umap
);
4351 /* Is any domain element of "umap" scheduled after any of
4352 * the corresponding image elements by the tree rooted at
4353 * the extension node "node"?
4355 * Since the extension node may add statement instances before or
4356 * after the pairs of statement instances in "umap", we return 1
4357 * to ensure that these pairs are not broken up.
4359 static int after_in_extension(__isl_keep isl_union_map
*umap
,
4360 __isl_keep isl_schedule_node
*node
)
4365 /* Is any domain element of "umap" scheduled after any of
4366 * the corresponding image elements by the tree rooted at
4367 * the filter node "node"?
4369 * We intersect domain and range of "umap" with the filter and
4370 * continue with its child.
4372 static int after_in_filter(__isl_keep isl_union_map
*umap
,
4373 __isl_keep isl_schedule_node
*node
)
4375 isl_union_set
*filter
;
4378 umap
= isl_union_map_copy(umap
);
4379 filter
= isl_schedule_node_filter_get_filter(node
);
4380 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4381 umap
= isl_union_map_intersect_range(umap
, filter
);
4383 after
= after_in_child(umap
, node
);
4385 isl_union_map_free(umap
);
4390 /* Is any domain element of "umap" scheduled after any of
4391 * the corresponding image elements by the tree rooted at
4392 * the set node "node"?
4394 * This is only the case if this condition holds in any
4395 * of the (filter) children of the set node.
4396 * In particular, if the domain and the range of "umap"
4397 * are contained in different children, then the condition
4400 static int after_in_set(__isl_keep isl_union_map
*umap
,
4401 __isl_keep isl_schedule_node
*node
)
4405 n
= isl_schedule_node_n_children(node
);
4406 for (i
= 0; i
< n
; ++i
) {
4407 isl_schedule_node
*child
;
4410 child
= isl_schedule_node_get_child(node
, i
);
4411 after
= after_in_tree(umap
, child
);
4412 isl_schedule_node_free(child
);
4414 if (after
< 0 || after
)
4421 /* Return the filter of child "i" of "node".
4423 static __isl_give isl_union_set
*child_filter(
4424 __isl_keep isl_schedule_node
*node
, int i
)
4426 isl_schedule_node
*child
;
4427 isl_union_set
*filter
;
4429 child
= isl_schedule_node_get_child(node
, i
);
4430 filter
= isl_schedule_node_filter_get_filter(child
);
4431 isl_schedule_node_free(child
);
4436 /* Is any domain element of "umap" scheduled after any of
4437 * the corresponding image elements by the tree rooted at
4438 * the sequence node "node"?
4440 * This happens in particular if any domain element is
4441 * contained in a later child than one containing a range element or
4442 * if the condition holds within a given child in the sequence.
4443 * The later part of the condition is checked by after_in_set.
4445 static int after_in_sequence(__isl_keep isl_union_map
*umap
,
4446 __isl_keep isl_schedule_node
*node
)
4449 isl_union_map
*umap_i
;
4450 int empty
, after
= 0;
4452 n
= isl_schedule_node_n_children(node
);
4453 for (i
= 1; i
< n
; ++i
) {
4454 isl_union_set
*filter_i
;
4456 umap_i
= isl_union_map_copy(umap
);
4457 filter_i
= child_filter(node
, i
);
4458 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4459 empty
= isl_union_map_is_empty(umap_i
);
4463 isl_union_map_free(umap_i
);
4467 for (j
= 0; j
< i
; ++j
) {
4468 isl_union_set
*filter_j
;
4469 isl_union_map
*umap_ij
;
4471 umap_ij
= isl_union_map_copy(umap_i
);
4472 filter_j
= child_filter(node
, j
);
4473 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4475 empty
= isl_union_map_is_empty(umap_ij
);
4476 isl_union_map_free(umap_ij
);
4486 isl_union_map_free(umap_i
);
4491 if (after
< 0 || after
)
4494 return after_in_set(umap
, node
);
4496 isl_union_map_free(umap_i
);
4500 /* Is any domain element of "umap" scheduled after any of
4501 * the corresponding image elements by the tree rooted at "node"?
4503 * If "umap" is empty, then clearly there is no such element.
4504 * Otherwise, consider the different types of nodes separately.
4506 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4507 __isl_keep isl_schedule_node
*node
)
4510 enum isl_schedule_node_type type
;
4512 empty
= isl_union_map_is_empty(umap
);
4520 type
= isl_schedule_node_get_type(node
);
4522 case isl_schedule_node_error
:
4524 case isl_schedule_node_leaf
:
4526 case isl_schedule_node_band
:
4527 return after_in_band(umap
, node
);
4528 case isl_schedule_node_domain
:
4529 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4530 "unexpected internal domain node", return -1);
4531 case isl_schedule_node_context
:
4532 return after_in_context(umap
, node
);
4533 case isl_schedule_node_expansion
:
4534 return after_in_expansion(umap
, node
);
4535 case isl_schedule_node_extension
:
4536 return after_in_extension(umap
, node
);
4537 case isl_schedule_node_filter
:
4538 return after_in_filter(umap
, node
);
4539 case isl_schedule_node_guard
:
4540 case isl_schedule_node_mark
:
4541 return after_in_child(umap
, node
);
4542 case isl_schedule_node_set
:
4543 return after_in_set(umap
, node
);
4544 case isl_schedule_node_sequence
:
4545 return after_in_sequence(umap
, node
);
4551 /* Is any domain element of "map1" scheduled after any domain
4552 * element of "map2" by the subtree underneath the current band node,
4553 * while at the same time being scheduled together by the current
4554 * band node, i.e., by "map1" and "map2?
4556 * If the child of the current band node is a leaf, then
4557 * no element can be scheduled after any other element.
4559 * Otherwise, we construct a relation between domain elements
4560 * of "map1" and domain elements of "map2" that are scheduled
4561 * together and then check if the subtree underneath the current
4562 * band node determines their relative order.
4564 static int after_in_subtree(__isl_keep isl_ast_build
*build
,
4565 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4567 isl_schedule_node
*node
;
4569 isl_union_map
*umap
;
4572 node
= isl_ast_build_get_schedule_node(build
);
4575 node
= isl_schedule_node_child(node
, 0);
4576 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4577 isl_schedule_node_free(node
);
4580 map
= isl_map_copy(map2
);
4581 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4582 umap
= isl_union_map_from_map(map
);
4583 after
= after_in_tree(umap
, node
);
4584 isl_union_map_free(umap
);
4585 isl_schedule_node_free(node
);
4589 /* Internal data for any_scheduled_after.
4591 * "build" is the build in which the AST is constructed.
4592 * "depth" is the number of loops that have already been generated
4593 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4594 * "domain" is an array of set-map pairs corresponding to the different
4595 * iteration domains. The set is the schedule domain, i.e., the domain
4596 * of the inverse schedule, while the map is the inverse schedule itself.
4598 struct isl_any_scheduled_after_data
{
4599 isl_ast_build
*build
;
4601 int group_coscheduled
;
4602 struct isl_set_map_pair
*domain
;
4605 /* Is any element of domain "i" scheduled after any element of domain "j"
4606 * (for a common iteration of the first data->depth loops)?
4608 * data->domain[i].set contains the domain of the inverse schedule
4609 * for domain "i", i.e., elements in the schedule domain.
4611 * If we are inside a band of a schedule tree and there is a pair
4612 * of elements in the two domains that is schedule together by
4613 * the current band, then we check if any element of "i" may be schedule
4614 * after element of "j" by the descendants of the band node.
4616 * If data->group_coscheduled is set, then we also return 1 if there
4617 * is any pair of elements in the two domains that are scheduled together.
4619 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4621 struct isl_any_scheduled_after_data
*data
= user
;
4622 int dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4625 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4628 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4629 data
->domain
[j
].set
, pos
);
4632 return isl_bool_error
;
4634 return isl_bool_true
;
4636 return isl_bool_false
;
4639 if (isl_ast_build_has_schedule_node(data
->build
)) {
4642 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4643 data
->domain
[j
].map
);
4644 if (after
< 0 || after
)
4648 return data
->group_coscheduled
;
4651 /* Look for independent components at the current depth and generate code
4652 * for each component separately. The resulting lists of grafts are
4653 * merged in an attempt to combine grafts with identical guards.
4655 * Code for two domains can be generated separately if all the elements
4656 * of one domain are scheduled before (or together with) all the elements
4657 * of the other domain. We therefore consider the graph with as nodes
4658 * the domains and an edge between two nodes if any element of the first
4659 * node is scheduled after any element of the second node.
4660 * If the ast_build_group_coscheduled is set, then we also add an edge if
4661 * there is any pair of elements in the two domains that are scheduled
4663 * Code is then generated (by generate_component)
4664 * for each of the strongly connected components in this graph
4665 * in their topological order.
4667 * Since the test is performed on the domain of the inverse schedules of
4668 * the different domains, we precompute these domains and store
4669 * them in data.domain.
4671 static __isl_give isl_ast_graft_list
*generate_components(
4672 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4675 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4676 int n
= isl_union_map_n_map(executed
);
4677 struct isl_any_scheduled_after_data data
;
4678 struct isl_set_map_pair
*next
;
4679 struct isl_tarjan_graph
*g
= NULL
;
4680 isl_ast_graft_list
*list
= NULL
;
4683 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4689 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4695 data
.depth
= isl_ast_build_get_depth(build
);
4696 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4697 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4701 list
= isl_ast_graft_list_alloc(ctx
, 0);
4705 isl_ast_graft_list
*list_c
;
4708 if (g
->order
[i
] == -1)
4709 isl_die(ctx
, isl_error_internal
, "cannot happen",
4712 while (g
->order
[i
] != -1) {
4716 list_c
= generate_component(data
.domain
,
4717 g
->order
+ first
, i
- first
,
4718 isl_ast_build_copy(build
));
4719 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4725 error
: list
= isl_ast_graft_list_free(list
);
4726 isl_tarjan_graph_free(g
);
4727 for (i
= 0; i
< n_domain
; ++i
) {
4728 isl_map_free(data
.domain
[i
].map
);
4729 isl_set_free(data
.domain
[i
].set
);
4732 isl_union_map_free(executed
);
4733 isl_ast_build_free(build
);
4738 /* Generate code for the next level (and all inner levels).
4740 * If "executed" is empty, i.e., no code needs to be generated,
4741 * then we return an empty list.
4743 * If we have already generated code for all loop levels, then we pass
4744 * control to generate_inner_level.
4746 * If "executed" lives in a single space, i.e., if code needs to be
4747 * generated for a single domain, then there can only be a single
4748 * component and we go directly to generate_shifted_component.
4749 * Otherwise, we call generate_components to detect the components
4750 * and to call generate_component on each of them separately.
4752 static __isl_give isl_ast_graft_list
*generate_next_level(
4753 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4757 if (!build
|| !executed
)
4760 if (isl_union_map_is_empty(executed
)) {
4761 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4762 isl_union_map_free(executed
);
4763 isl_ast_build_free(build
);
4764 return isl_ast_graft_list_alloc(ctx
, 0);
4767 depth
= isl_ast_build_get_depth(build
);
4768 if (depth
>= isl_ast_build_dim(build
, isl_dim_set
))
4769 return generate_inner_level(executed
, build
);
4771 if (isl_union_map_n_map(executed
) == 1)
4772 return generate_shifted_component(executed
, build
);
4774 return generate_components(executed
, build
);
4776 isl_union_map_free(executed
);
4777 isl_ast_build_free(build
);
4781 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4782 * internal, executed and build are the inputs to generate_code.
4783 * list collects the output.
4785 struct isl_generate_code_data
{
4787 isl_union_map
*executed
;
4788 isl_ast_build
*build
;
4790 isl_ast_graft_list
*list
;
4793 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4797 * with E the external build schedule and S the additional schedule "space",
4798 * reformulate the inverse schedule in terms of the internal schedule domain,
4803 * We first obtain a mapping
4807 * take the inverse and the product with S -> S, resulting in
4809 * [I -> S] -> [E -> S]
4811 * Applying the map to the input produces the desired result.
4813 static __isl_give isl_union_map
*internal_executed(
4814 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4815 __isl_keep isl_ast_build
*build
)
4819 proj
= isl_ast_build_get_schedule_map(build
);
4820 proj
= isl_map_reverse(proj
);
4821 space
= isl_space_map_from_set(isl_space_copy(space
));
4822 id
= isl_map_identity(space
);
4823 proj
= isl_map_product(proj
, id
);
4824 executed
= isl_union_map_apply_domain(executed
,
4825 isl_union_map_from_map(proj
));
4829 /* Generate an AST that visits the elements in the range of data->executed
4830 * in the relative order specified by the corresponding domain element(s)
4831 * for those domain elements that belong to "set".
4832 * Add the result to data->list.
4834 * The caller ensures that "set" is a universe domain.
4835 * "space" is the space of the additional part of the schedule.
4836 * It is equal to the space of "set" if build->domain is parametric.
4837 * Otherwise, it is equal to the range of the wrapped space of "set".
4839 * If the build space is not parametric and
4840 * if isl_ast_build_node_from_schedule_map
4841 * was called from an outside user (data->internal not set), then
4842 * the (inverse) schedule refers to the external build domain and needs to
4843 * be transformed to refer to the internal build domain.
4845 * If the build space is parametric, then we add some of the parameter
4846 * constraints to the executed relation. Adding these constraints
4847 * allows for an earlier detection of conflicts in some cases.
4848 * However, we do not want to divide the executed relation into
4849 * more disjuncts than necessary. We therefore approximate
4850 * the constraints on the parameters by a single disjunct set.
4852 * The build is extended to include the additional part of the schedule.
4853 * If the original build space was not parametric, then the options
4854 * in data->build refer only to the additional part of the schedule
4855 * and they need to be adjusted to refer to the complete AST build
4858 * After having adjusted inverse schedule and build, we start generating
4859 * code with the outer loop of the current code generation
4860 * in generate_next_level.
4862 * If the original build space was not parametric, we undo the embedding
4863 * on the resulting isl_ast_node_list so that it can be used within
4864 * the outer AST build.
4866 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4867 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4869 isl_union_map
*executed
;
4870 isl_ast_build
*build
;
4871 isl_ast_graft_list
*list
;
4874 executed
= isl_union_map_copy(data
->executed
);
4875 executed
= isl_union_map_intersect_domain(executed
,
4876 isl_union_set_from_set(set
));
4878 embed
= !isl_set_is_params(data
->build
->domain
);
4879 if (embed
&& !data
->internal
)
4880 executed
= internal_executed(executed
, space
, data
->build
);
4883 domain
= isl_ast_build_get_domain(data
->build
);
4884 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
4885 executed
= isl_union_map_intersect_params(executed
, domain
);
4888 build
= isl_ast_build_copy(data
->build
);
4889 build
= isl_ast_build_product(build
, space
);
4891 list
= generate_next_level(executed
, build
);
4893 list
= isl_ast_graft_list_unembed(list
, embed
);
4895 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
4900 /* Generate an AST that visits the elements in the range of data->executed
4901 * in the relative order specified by the corresponding domain element(s)
4902 * for those domain elements that belong to "set".
4903 * Add the result to data->list.
4905 * The caller ensures that "set" is a universe domain.
4907 * If the build space S is not parametric, then the space of "set"
4908 * need to be a wrapped relation with S as domain. That is, it needs
4913 * Check this property and pass control to generate_code_in_space
4915 * If the build space is not parametric, then T is the space of "set".
4917 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
4919 struct isl_generate_code_data
*data
= user
;
4920 isl_space
*space
, *build_space
;
4923 space
= isl_set_get_space(set
);
4925 if (isl_set_is_params(data
->build
->domain
))
4926 return generate_code_in_space(data
, set
, space
);
4928 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
4929 space
= isl_space_unwrap(space
);
4930 is_domain
= isl_space_is_domain(build_space
, space
);
4931 isl_space_free(build_space
);
4932 space
= isl_space_range(space
);
4937 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
4938 "invalid nested schedule space", goto error
);
4940 return generate_code_in_space(data
, set
, space
);
4943 isl_space_free(space
);
4944 return isl_stat_error
;
4947 /* Generate an AST that visits the elements in the range of "executed"
4948 * in the relative order specified by the corresponding domain element(s).
4950 * "build" is an isl_ast_build that has either been constructed by
4951 * isl_ast_build_from_context or passed to a callback set by
4952 * isl_ast_build_set_create_leaf.
4953 * In the first case, the space of the isl_ast_build is typically
4954 * a parametric space, although this is currently not enforced.
4955 * In the second case, the space is never a parametric space.
4956 * If the space S is not parametric, then the domain space(s) of "executed"
4957 * need to be wrapped relations with S as domain.
4959 * If the domain of "executed" consists of several spaces, then an AST
4960 * is generated for each of them (in arbitrary order) and the results
4963 * If "internal" is set, then the domain "S" above refers to the internal
4964 * schedule domain representation. Otherwise, it refers to the external
4965 * representation, as returned by isl_ast_build_get_schedule_space.
4967 * We essentially run over all the spaces in the domain of "executed"
4968 * and call generate_code_set on each of them.
4970 static __isl_give isl_ast_graft_list
*generate_code(
4971 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
4975 struct isl_generate_code_data data
= { 0 };
4977 isl_union_set
*schedule_domain
;
4978 isl_union_map
*universe
;
4982 space
= isl_ast_build_get_space(build
, 1);
4983 space
= isl_space_align_params(space
,
4984 isl_union_map_get_space(executed
));
4985 space
= isl_space_align_params(space
,
4986 isl_union_map_get_space(build
->options
));
4987 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
4988 executed
= isl_union_map_align_params(executed
, space
);
4989 if (!executed
|| !build
)
4992 ctx
= isl_ast_build_get_ctx(build
);
4994 data
.internal
= internal
;
4995 data
.executed
= executed
;
4997 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
4999 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
5000 schedule_domain
= isl_union_map_domain(universe
);
5001 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5003 data
.list
= isl_ast_graft_list_free(data
.list
);
5005 isl_union_set_free(schedule_domain
);
5006 isl_union_map_free(executed
);
5008 isl_ast_build_free(build
);
5011 isl_union_map_free(executed
);
5012 isl_ast_build_free(build
);
5016 /* Generate an AST that visits the elements in the domain of "schedule"
5017 * in the relative order specified by the corresponding image element(s).
5019 * "build" is an isl_ast_build that has either been constructed by
5020 * isl_ast_build_from_context or passed to a callback set by
5021 * isl_ast_build_set_create_leaf.
5022 * In the first case, the space of the isl_ast_build is typically
5023 * a parametric space, although this is currently not enforced.
5024 * In the second case, the space is never a parametric space.
5025 * If the space S is not parametric, then the range space(s) of "schedule"
5026 * need to be wrapped relations with S as domain.
5028 * If the range of "schedule" consists of several spaces, then an AST
5029 * is generated for each of them (in arbitrary order) and the results
5032 * We first initialize the local copies of the relevant options.
5033 * We do this here rather than when the isl_ast_build is created
5034 * because the options may have changed between the construction
5035 * of the isl_ast_build and the call to isl_generate_code.
5037 * The main computation is performed on an inverse schedule (with
5038 * the schedule domain in the domain and the elements to be executed
5039 * in the range) called "executed".
5041 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5042 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5044 isl_ast_graft_list
*list
;
5046 isl_union_map
*executed
;
5048 build
= isl_ast_build_copy(build
);
5049 build
= isl_ast_build_set_single_valued(build
, 0);
5050 schedule
= isl_union_map_coalesce(schedule
);
5051 schedule
= isl_union_map_remove_redundancies(schedule
);
5052 executed
= isl_union_map_reverse(schedule
);
5053 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5054 node
= isl_ast_node_from_graft_list(list
, build
);
5055 isl_ast_build_free(build
);
5060 /* The old name for isl_ast_build_node_from_schedule_map.
5061 * It is being kept for backward compatibility, but
5062 * it will be removed in the future.
5064 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5065 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5067 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5070 /* Generate an AST that visits the elements in the domain of "executed"
5071 * in the relative order specified by the band node "node" and its descendants.
5073 * The relation "executed" maps the outer generated loop iterators
5074 * to the domain elements executed by those iterations.
5076 * If the band is empty, we continue with its descendants.
5077 * Otherwise, we extend the build and the inverse schedule with
5078 * the additional space/partial schedule and continue generating
5079 * an AST in generate_next_level.
5080 * As soon as we have extended the inverse schedule with the additional
5081 * partial schedule, we look for equalities that may exists between
5082 * the old and the new part.
5084 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5085 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5086 __isl_take isl_union_map
*executed
)
5089 isl_multi_union_pw_aff
*extra
;
5090 isl_union_map
*extra_umap
;
5091 isl_ast_graft_list
*list
;
5094 if (!build
|| !node
|| !executed
)
5097 if (isl_schedule_node_band_n_member(node
) == 0)
5098 return build_ast_from_child(build
, node
, executed
);
5100 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5101 extra
= isl_multi_union_pw_aff_align_params(extra
,
5102 isl_ast_build_get_space(build
, 1));
5103 space
= isl_multi_union_pw_aff_get_space(extra
);
5105 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5106 extra_umap
= isl_union_map_reverse(extra_umap
);
5108 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5109 executed
= isl_union_map_detect_equalities(executed
);
5111 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5112 build
= isl_ast_build_product(build
, space
);
5113 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5115 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5116 "band node is not allowed to introduce new parameters",
5117 build
= isl_ast_build_free(build
));
5118 build
= isl_ast_build_set_schedule_node(build
, node
);
5120 list
= generate_next_level(executed
, build
);
5122 list
= isl_ast_graft_list_unembed(list
, 1);
5126 isl_schedule_node_free(node
);
5127 isl_union_map_free(executed
);
5128 isl_ast_build_free(build
);
5132 /* Hoist a list of grafts (in practice containing a single graft)
5133 * from "sub_build" (which includes extra context information)
5136 * In particular, project out all additional parameters introduced
5137 * by the context node from the enforced constraints and the guard
5138 * of the single graft.
5140 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5141 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5142 __isl_keep isl_ast_build
*sub_build
)
5144 isl_ast_graft
*graft
;
5145 isl_basic_set
*enforced
;
5147 unsigned n_param
, extra_param
;
5149 if (!build
|| !sub_build
)
5150 return isl_ast_graft_list_free(list
);
5152 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5153 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5155 if (extra_param
== n_param
)
5158 extra_param
-= n_param
;
5159 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5160 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5161 n_param
, extra_param
);
5162 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5163 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5164 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5165 n_param
, extra_param
);
5166 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5167 guard
= isl_set_compute_divs(guard
);
5168 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5170 list
= isl_ast_graft_list_from_ast_graft(graft
);
5175 /* Generate an AST that visits the elements in the domain of "executed"
5176 * in the relative order specified by the context node "node"
5177 * and its descendants.
5179 * The relation "executed" maps the outer generated loop iterators
5180 * to the domain elements executed by those iterations.
5182 * The context node may introduce additional parameters as well as
5183 * constraints on the outer schedule dimensions or original parameters.
5185 * We add the extra parameters to a new build and the context
5186 * constraints to both the build and (as a single disjunct)
5187 * to the domain of "executed". Since the context constraints
5188 * are specified in terms of the input schedule, we first need
5189 * to map them to the internal schedule domain.
5191 * After constructing the AST from the descendants of "node",
5192 * we combine the list of grafts into a single graft within
5193 * the new build, in order to be able to exploit the additional
5194 * context constraints during this combination.
5196 * Additionally, if the current node is the outermost node in
5197 * the schedule tree (apart from the root domain node), we generate
5198 * all pending guards, again to be able to exploit the additional
5199 * context constraints. We currently do not do this for internal
5200 * context nodes since we may still want to hoist conditions
5201 * to outer AST nodes.
5203 * If the context node introduced any new parameters, then they
5204 * are removed from the set of enforced constraints and guard
5205 * in hoist_out_of_context.
5207 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5208 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5209 __isl_take isl_union_map
*executed
)
5213 isl_multi_aff
*internal2input
;
5214 isl_ast_build
*sub_build
;
5215 isl_ast_graft_list
*list
;
5218 depth
= isl_schedule_node_get_tree_depth(node
);
5219 space
= isl_ast_build_get_space(build
, 1);
5220 context
= isl_schedule_node_context_get_context(node
);
5221 context
= isl_set_align_params(context
, space
);
5222 sub_build
= isl_ast_build_copy(build
);
5223 space
= isl_set_get_space(context
);
5224 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5225 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5226 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5227 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5228 isl_set_copy(context
));
5229 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5230 executed
= isl_union_map_intersect_domain(executed
,
5231 isl_union_set_from_set(context
));
5233 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5235 n
= isl_ast_graft_list_n_ast_graft(list
);
5237 list
= isl_ast_graft_list_free(list
);
5239 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5241 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5244 list
= hoist_out_of_context(list
, build
, sub_build
);
5246 isl_ast_build_free(build
);
5247 isl_ast_build_free(sub_build
);
5252 /* Generate an AST that visits the elements in the domain of "executed"
5253 * in the relative order specified by the expansion node "node" and
5256 * The relation "executed" maps the outer generated loop iterators
5257 * to the domain elements executed by those iterations.
5259 * We expand the domain elements by the expansion and
5260 * continue with the descendants of the node.
5262 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5263 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5264 __isl_take isl_union_map
*executed
)
5266 isl_union_map
*expansion
;
5269 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5270 expansion
= isl_union_map_align_params(expansion
,
5271 isl_union_map_get_space(executed
));
5273 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5274 executed
= isl_union_map_apply_range(executed
, expansion
);
5275 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5277 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5278 "expansion node is not allowed to introduce "
5279 "new parameters", goto error
);
5281 return build_ast_from_child(build
, node
, executed
);
5283 isl_ast_build_free(build
);
5284 isl_schedule_node_free(node
);
5285 isl_union_map_free(executed
);
5289 /* Generate an AST that visits the elements in the domain of "executed"
5290 * in the relative order specified by the extension node "node" and
5293 * The relation "executed" maps the outer generated loop iterators
5294 * to the domain elements executed by those iterations.
5296 * Extend the inverse schedule with the extension applied to current
5297 * set of generated constraints. Since the extension if formulated
5298 * in terms of the input schedule, it first needs to be transformed
5299 * to refer to the internal schedule.
5301 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5302 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5303 __isl_take isl_union_map
*executed
)
5305 isl_union_set
*schedule_domain
;
5306 isl_union_map
*extension
;
5309 set
= isl_ast_build_get_generated(build
);
5310 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5311 schedule_domain
= isl_union_set_from_set(set
);
5313 extension
= isl_schedule_node_extension_get_extension(node
);
5315 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5316 isl_multi_aff_copy(build
->internal2input
));
5317 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5318 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5320 executed
= isl_union_map_union(executed
, extension
);
5322 return build_ast_from_child(build
, node
, executed
);
5325 /* Generate an AST that visits the elements in the domain of "executed"
5326 * in the relative order specified by the filter node "node" and
5329 * The relation "executed" maps the outer generated loop iterators
5330 * to the domain elements executed by those iterations.
5332 * We simply intersect the iteration domain (i.e., the range of "executed")
5333 * with the filter and continue with the descendants of the node,
5334 * unless the resulting inverse schedule is empty, in which
5335 * case we return an empty list.
5337 * If the result of the intersection is equal to the original "executed"
5338 * relation, then keep the original representation since the intersection
5339 * may have unnecessarily broken up the relation into a greater number
5342 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5343 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5344 __isl_take isl_union_map
*executed
)
5347 isl_union_set
*filter
;
5348 isl_union_map
*orig
;
5349 isl_ast_graft_list
*list
;
5354 orig
= isl_union_map_copy(executed
);
5355 if (!build
|| !node
|| !executed
)
5358 filter
= isl_schedule_node_filter_get_filter(node
);
5359 filter
= isl_union_set_align_params(filter
,
5360 isl_union_map_get_space(executed
));
5361 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5362 executed
= isl_union_map_intersect_range(executed
, filter
);
5363 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5365 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5366 "filter node is not allowed to introduce "
5367 "new parameters", goto error
);
5369 unchanged
= isl_union_map_is_subset(orig
, executed
);
5370 empty
= isl_union_map_is_empty(executed
);
5371 if (unchanged
< 0 || empty
< 0)
5374 isl_union_map_free(executed
);
5375 return build_ast_from_child(build
, node
, orig
);
5377 isl_union_map_free(orig
);
5379 return build_ast_from_child(build
, node
, executed
);
5381 ctx
= isl_ast_build_get_ctx(build
);
5382 list
= isl_ast_graft_list_alloc(ctx
, 0);
5383 isl_ast_build_free(build
);
5384 isl_schedule_node_free(node
);
5385 isl_union_map_free(executed
);
5388 isl_ast_build_free(build
);
5389 isl_schedule_node_free(node
);
5390 isl_union_map_free(executed
);
5391 isl_union_map_free(orig
);
5395 /* Generate an AST that visits the elements in the domain of "executed"
5396 * in the relative order specified by the guard node "node" and
5399 * The relation "executed" maps the outer generated loop iterators
5400 * to the domain elements executed by those iterations.
5402 * Ensure that the associated guard is enforced by the outer AST
5403 * constructs by adding it to the guard of the graft.
5404 * Since we know that we will enforce the guard, we can also include it
5405 * in the generated constraints used to construct an AST for
5406 * the descendant nodes.
5408 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5409 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5410 __isl_take isl_union_map
*executed
)
5413 isl_set
*guard
, *hoisted
;
5414 isl_basic_set
*enforced
;
5415 isl_ast_build
*sub_build
;
5416 isl_ast_graft
*graft
;
5417 isl_ast_graft_list
*list
;
5420 space
= isl_ast_build_get_space(build
, 1);
5421 guard
= isl_schedule_node_guard_get_guard(node
);
5422 n1
= isl_space_dim(space
, isl_dim_param
);
5423 guard
= isl_set_align_params(guard
, space
);
5424 n2
= isl_set_dim(guard
, isl_dim_param
);
5426 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5427 "guard node is not allowed to introduce "
5428 "new parameters", guard
= isl_set_free(guard
));
5429 guard
= isl_set_preimage_multi_aff(guard
,
5430 isl_multi_aff_copy(build
->internal2input
));
5431 guard
= isl_ast_build_specialize(build
, guard
);
5432 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5434 sub_build
= isl_ast_build_copy(build
);
5435 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5436 isl_set_copy(guard
));
5438 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5441 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5442 if (isl_set_n_basic_set(hoisted
) > 1)
5443 list
= isl_ast_graft_list_gist_guards(list
,
5444 isl_set_copy(hoisted
));
5445 guard
= isl_set_intersect(guard
, hoisted
);
5446 enforced
= extract_shared_enforced(list
, build
);
5447 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5450 isl_ast_build_free(sub_build
);
5451 isl_ast_build_free(build
);
5452 return isl_ast_graft_list_from_ast_graft(graft
);
5455 /* Call the before_each_mark callback, if requested by the user.
5457 * Return 0 on success and -1 on error.
5459 * The caller is responsible for recording the current inverse schedule
5462 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5463 __isl_keep isl_ast_build
*build
)
5466 return isl_stat_error
;
5467 if (!build
->before_each_mark
)
5469 return build
->before_each_mark(mark
, build
,
5470 build
->before_each_mark_user
);
5473 /* Call the after_each_mark callback, if requested by the user.
5475 * The caller is responsible for recording the current inverse schedule
5478 static __isl_give isl_ast_graft
*after_each_mark(
5479 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5481 if (!graft
|| !build
)
5482 return isl_ast_graft_free(graft
);
5483 if (!build
->after_each_mark
)
5485 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5486 build
->after_each_mark_user
);
5488 return isl_ast_graft_free(graft
);
5493 /* Generate an AST that visits the elements in the domain of "executed"
5494 * in the relative order specified by the mark node "node" and
5497 * The relation "executed" maps the outer generated loop iterators
5498 * to the domain elements executed by those iterations.
5500 * Since we may be calling before_each_mark and after_each_mark
5501 * callbacks, we record the current inverse schedule in the build.
5503 * We generate an AST for the child of the mark node, combine
5504 * the graft list into a single graft and then insert the mark
5505 * in the AST of that single graft.
5507 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5508 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5509 __isl_take isl_union_map
*executed
)
5512 isl_ast_graft
*graft
;
5513 isl_ast_graft_list
*list
;
5516 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5518 mark
= isl_schedule_node_mark_get_id(node
);
5519 if (before_each_mark(mark
, build
) < 0)
5520 node
= isl_schedule_node_free(node
);
5522 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5523 list
= isl_ast_graft_list_fuse(list
, build
);
5524 n
= isl_ast_graft_list_n_ast_graft(list
);
5526 list
= isl_ast_graft_list_free(list
);
5530 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5531 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5532 graft
= after_each_mark(graft
, build
);
5533 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5535 isl_ast_build_free(build
);
5540 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5541 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5542 __isl_take isl_union_map
*executed
);
5544 /* Generate an AST that visits the elements in the domain of "executed"
5545 * in the relative order specified by the sequence (or set) node "node" and
5548 * The relation "executed" maps the outer generated loop iterators
5549 * to the domain elements executed by those iterations.
5551 * We simply generate an AST for each of the children and concatenate
5554 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5555 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5556 __isl_take isl_union_map
*executed
)
5560 isl_ast_graft_list
*list
;
5562 ctx
= isl_ast_build_get_ctx(build
);
5563 list
= isl_ast_graft_list_alloc(ctx
, 0);
5565 n
= isl_schedule_node_n_children(node
);
5566 for (i
= 0; i
< n
; ++i
) {
5567 isl_schedule_node
*child
;
5568 isl_ast_graft_list
*list_i
;
5570 child
= isl_schedule_node_get_child(node
, i
);
5571 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5572 child
, isl_union_map_copy(executed
));
5573 list
= isl_ast_graft_list_concat(list
, list_i
);
5575 isl_ast_build_free(build
);
5576 isl_schedule_node_free(node
);
5577 isl_union_map_free(executed
);
5582 /* Generate an AST that visits the elements in the domain of "executed"
5583 * in the relative order specified by the node "node" and its descendants.
5585 * The relation "executed" maps the outer generated loop iterators
5586 * to the domain elements executed by those iterations.
5588 * If the node is a leaf, then we pass control to generate_inner_level.
5589 * Note that the current build does not refer to any band node, so
5590 * that generate_inner_level will not try to visit the child of
5593 * The other node types are handled in separate functions.
5594 * Set nodes are currently treated in the same way as sequence nodes.
5595 * The children of a set node may be executed in any order,
5596 * including the order of the children.
5598 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5599 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5600 __isl_take isl_union_map
*executed
)
5602 enum isl_schedule_node_type type
;
5604 type
= isl_schedule_node_get_type(node
);
5607 case isl_schedule_node_error
:
5609 case isl_schedule_node_leaf
:
5610 isl_schedule_node_free(node
);
5611 return generate_inner_level(executed
, build
);
5612 case isl_schedule_node_band
:
5613 return build_ast_from_band(build
, node
, executed
);
5614 case isl_schedule_node_context
:
5615 return build_ast_from_context(build
, node
, executed
);
5616 case isl_schedule_node_domain
:
5617 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5618 "unexpected internal domain node", goto error
);
5619 case isl_schedule_node_expansion
:
5620 return build_ast_from_expansion(build
, node
, executed
);
5621 case isl_schedule_node_extension
:
5622 return build_ast_from_extension(build
, node
, executed
);
5623 case isl_schedule_node_filter
:
5624 return build_ast_from_filter(build
, node
, executed
);
5625 case isl_schedule_node_guard
:
5626 return build_ast_from_guard(build
, node
, executed
);
5627 case isl_schedule_node_mark
:
5628 return build_ast_from_mark(build
, node
, executed
);
5629 case isl_schedule_node_sequence
:
5630 case isl_schedule_node_set
:
5631 return build_ast_from_sequence(build
, node
, executed
);
5634 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5635 "unhandled type", goto error
);
5637 isl_union_map_free(executed
);
5638 isl_schedule_node_free(node
);
5639 isl_ast_build_free(build
);
5644 /* Generate an AST that visits the elements in the domain of "executed"
5645 * in the relative order specified by the (single) child of "node" and
5648 * The relation "executed" maps the outer generated loop iterators
5649 * to the domain elements executed by those iterations.
5651 * This function is never called on a leaf, set or sequence node,
5652 * so the node always has exactly one child.
5654 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5655 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5656 __isl_take isl_union_map
*executed
)
5658 node
= isl_schedule_node_child(node
, 0);
5659 return build_ast_from_schedule_node(build
, node
, executed
);
5662 /* Generate an AST that visits the elements in the domain of the domain
5663 * node "node" in the relative order specified by its descendants.
5665 * An initial inverse schedule is created that maps a zero-dimensional
5666 * schedule space to the node domain.
5667 * The input "build" is assumed to have a parametric domain and
5668 * is replaced by the same zero-dimensional schedule space.
5670 * We also add some of the parameter constraints in the build domain
5671 * to the executed relation. Adding these constraints
5672 * allows for an earlier detection of conflicts in some cases.
5673 * However, we do not want to divide the executed relation into
5674 * more disjuncts than necessary. We therefore approximate
5675 * the constraints on the parameters by a single disjunct set.
5677 static __isl_give isl_ast_node
*build_ast_from_domain(
5678 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5681 isl_union_set
*domain
, *schedule_domain
;
5682 isl_union_map
*executed
;
5685 isl_ast_graft_list
*list
;
5692 ctx
= isl_ast_build_get_ctx(build
);
5693 space
= isl_ast_build_get_space(build
, 1);
5694 is_params
= isl_space_is_params(space
);
5695 isl_space_free(space
);
5699 isl_die(ctx
, isl_error_unsupported
,
5700 "expecting parametric initial context", goto error
);
5702 domain
= isl_schedule_node_domain_get_domain(node
);
5703 domain
= isl_union_set_coalesce(domain
);
5705 space
= isl_union_set_get_space(domain
);
5706 space
= isl_space_set_from_params(space
);
5707 build
= isl_ast_build_product(build
, space
);
5709 set
= isl_ast_build_get_domain(build
);
5710 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5711 schedule_domain
= isl_union_set_from_set(set
);
5713 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5714 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5715 ast
= isl_ast_node_from_graft_list(list
, build
);
5716 isl_ast_build_free(build
);
5720 isl_schedule_node_free(node
);
5721 isl_ast_build_free(build
);
5725 /* Generate an AST that visits the elements in the domain of "schedule"
5726 * in the relative order specified by the schedule tree.
5728 * "build" is an isl_ast_build that has been created using
5729 * isl_ast_build_alloc or isl_ast_build_from_context based
5730 * on a parametric set.
5732 * The construction starts at the root node of the schedule,
5733 * which is assumed to be a domain node.
5735 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5736 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5739 isl_schedule_node
*node
;
5741 if (!build
|| !schedule
)
5744 ctx
= isl_ast_build_get_ctx(build
);
5746 node
= isl_schedule_get_root(schedule
);
5749 isl_schedule_free(schedule
);
5751 build
= isl_ast_build_copy(build
);
5752 build
= isl_ast_build_set_single_valued(build
, 0);
5753 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5754 isl_die(ctx
, isl_error_unsupported
,
5755 "expecting root domain node",
5756 build
= isl_ast_build_free(build
));
5757 return build_ast_from_domain(build
, node
);
5759 isl_schedule_free(schedule
);