isl_coalesce.c: contains: pass isl_coalesce_info instead of basic map
[isl.git] / isl_tab.c
blobfcee1271a388caebdebaf01cd89847fc7d111262
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 #include <isl_ctx_private.h>
13 #include <isl_mat_private.h>
14 #include <isl_vec_private.h>
15 #include "isl_map_private.h"
16 #include "isl_tab.h"
17 #include <isl_seq.h>
18 #include <isl_config.h>
21 * The implementation of tableaus in this file was inspired by Section 8
22 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
23 * prover for program checking".
26 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
27 unsigned n_row, unsigned n_var, unsigned M)
29 int i;
30 struct isl_tab *tab;
31 unsigned off = 2 + M;
33 tab = isl_calloc_type(ctx, struct isl_tab);
34 if (!tab)
35 return NULL;
36 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
37 if (!tab->mat)
38 goto error;
39 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
40 if (n_var && !tab->var)
41 goto error;
42 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
43 if (n_row && !tab->con)
44 goto error;
45 tab->col_var = isl_alloc_array(ctx, int, n_var);
46 if (n_var && !tab->col_var)
47 goto error;
48 tab->row_var = isl_alloc_array(ctx, int, n_row);
49 if (n_row && !tab->row_var)
50 goto error;
51 for (i = 0; i < n_var; ++i) {
52 tab->var[i].index = i;
53 tab->var[i].is_row = 0;
54 tab->var[i].is_nonneg = 0;
55 tab->var[i].is_zero = 0;
56 tab->var[i].is_redundant = 0;
57 tab->var[i].frozen = 0;
58 tab->var[i].negated = 0;
59 tab->col_var[i] = i;
61 tab->n_row = 0;
62 tab->n_con = 0;
63 tab->n_eq = 0;
64 tab->max_con = n_row;
65 tab->n_col = n_var;
66 tab->n_var = n_var;
67 tab->max_var = n_var;
68 tab->n_param = 0;
69 tab->n_div = 0;
70 tab->n_dead = 0;
71 tab->n_redundant = 0;
72 tab->strict_redundant = 0;
73 tab->need_undo = 0;
74 tab->rational = 0;
75 tab->empty = 0;
76 tab->in_undo = 0;
77 tab->M = M;
78 tab->cone = 0;
79 tab->bottom.type = isl_tab_undo_bottom;
80 tab->bottom.next = NULL;
81 tab->top = &tab->bottom;
83 tab->n_zero = 0;
84 tab->n_unbounded = 0;
85 tab->basis = NULL;
87 return tab;
88 error:
89 isl_tab_free(tab);
90 return NULL;
93 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
95 return tab ? isl_mat_get_ctx(tab->mat) : NULL;
98 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
100 unsigned off;
102 if (!tab)
103 return -1;
105 off = 2 + tab->M;
107 if (tab->max_con < tab->n_con + n_new) {
108 struct isl_tab_var *con;
110 con = isl_realloc_array(tab->mat->ctx, tab->con,
111 struct isl_tab_var, tab->max_con + n_new);
112 if (!con)
113 return -1;
114 tab->con = con;
115 tab->max_con += n_new;
117 if (tab->mat->n_row < tab->n_row + n_new) {
118 int *row_var;
120 tab->mat = isl_mat_extend(tab->mat,
121 tab->n_row + n_new, off + tab->n_col);
122 if (!tab->mat)
123 return -1;
124 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
125 int, tab->mat->n_row);
126 if (!row_var)
127 return -1;
128 tab->row_var = row_var;
129 if (tab->row_sign) {
130 enum isl_tab_row_sign *s;
131 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
132 enum isl_tab_row_sign, tab->mat->n_row);
133 if (!s)
134 return -1;
135 tab->row_sign = s;
138 return 0;
141 /* Make room for at least n_new extra variables.
142 * Return -1 if anything went wrong.
144 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
146 struct isl_tab_var *var;
147 unsigned off = 2 + tab->M;
149 if (tab->max_var < tab->n_var + n_new) {
150 var = isl_realloc_array(tab->mat->ctx, tab->var,
151 struct isl_tab_var, tab->n_var + n_new);
152 if (!var)
153 return -1;
154 tab->var = var;
155 tab->max_var += n_new;
158 if (tab->mat->n_col < off + tab->n_col + n_new) {
159 int *p;
161 tab->mat = isl_mat_extend(tab->mat,
162 tab->mat->n_row, off + tab->n_col + n_new);
163 if (!tab->mat)
164 return -1;
165 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
166 int, tab->n_col + n_new);
167 if (!p)
168 return -1;
169 tab->col_var = p;
172 return 0;
175 static void free_undo_record(struct isl_tab_undo *undo)
177 switch (undo->type) {
178 case isl_tab_undo_saved_basis:
179 free(undo->u.col_var);
180 break;
181 default:;
183 free(undo);
186 static void free_undo(struct isl_tab *tab)
188 struct isl_tab_undo *undo, *next;
190 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
191 next = undo->next;
192 free_undo_record(undo);
194 tab->top = undo;
197 void isl_tab_free(struct isl_tab *tab)
199 if (!tab)
200 return;
201 free_undo(tab);
202 isl_mat_free(tab->mat);
203 isl_vec_free(tab->dual);
204 isl_basic_map_free(tab->bmap);
205 free(tab->var);
206 free(tab->con);
207 free(tab->row_var);
208 free(tab->col_var);
209 free(tab->row_sign);
210 isl_mat_free(tab->samples);
211 free(tab->sample_index);
212 isl_mat_free(tab->basis);
213 free(tab);
216 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
218 int i;
219 struct isl_tab *dup;
220 unsigned off;
222 if (!tab)
223 return NULL;
225 off = 2 + tab->M;
226 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
227 if (!dup)
228 return NULL;
229 dup->mat = isl_mat_dup(tab->mat);
230 if (!dup->mat)
231 goto error;
232 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
233 if (tab->max_var && !dup->var)
234 goto error;
235 for (i = 0; i < tab->n_var; ++i)
236 dup->var[i] = tab->var[i];
237 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
238 if (tab->max_con && !dup->con)
239 goto error;
240 for (i = 0; i < tab->n_con; ++i)
241 dup->con[i] = tab->con[i];
242 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
243 if ((tab->mat->n_col - off) && !dup->col_var)
244 goto error;
245 for (i = 0; i < tab->n_col; ++i)
246 dup->col_var[i] = tab->col_var[i];
247 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
248 if (tab->mat->n_row && !dup->row_var)
249 goto error;
250 for (i = 0; i < tab->n_row; ++i)
251 dup->row_var[i] = tab->row_var[i];
252 if (tab->row_sign) {
253 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
254 tab->mat->n_row);
255 if (tab->mat->n_row && !dup->row_sign)
256 goto error;
257 for (i = 0; i < tab->n_row; ++i)
258 dup->row_sign[i] = tab->row_sign[i];
260 if (tab->samples) {
261 dup->samples = isl_mat_dup(tab->samples);
262 if (!dup->samples)
263 goto error;
264 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
265 tab->samples->n_row);
266 if (tab->samples->n_row && !dup->sample_index)
267 goto error;
268 dup->n_sample = tab->n_sample;
269 dup->n_outside = tab->n_outside;
271 dup->n_row = tab->n_row;
272 dup->n_con = tab->n_con;
273 dup->n_eq = tab->n_eq;
274 dup->max_con = tab->max_con;
275 dup->n_col = tab->n_col;
276 dup->n_var = tab->n_var;
277 dup->max_var = tab->max_var;
278 dup->n_param = tab->n_param;
279 dup->n_div = tab->n_div;
280 dup->n_dead = tab->n_dead;
281 dup->n_redundant = tab->n_redundant;
282 dup->rational = tab->rational;
283 dup->empty = tab->empty;
284 dup->strict_redundant = 0;
285 dup->need_undo = 0;
286 dup->in_undo = 0;
287 dup->M = tab->M;
288 tab->cone = tab->cone;
289 dup->bottom.type = isl_tab_undo_bottom;
290 dup->bottom.next = NULL;
291 dup->top = &dup->bottom;
293 dup->n_zero = tab->n_zero;
294 dup->n_unbounded = tab->n_unbounded;
295 dup->basis = isl_mat_dup(tab->basis);
297 return dup;
298 error:
299 isl_tab_free(dup);
300 return NULL;
303 /* Construct the coefficient matrix of the product tableau
304 * of two tableaus.
305 * mat{1,2} is the coefficient matrix of tableau {1,2}
306 * row{1,2} is the number of rows in tableau {1,2}
307 * col{1,2} is the number of columns in tableau {1,2}
308 * off is the offset to the coefficient column (skipping the
309 * denominator, the constant term and the big parameter if any)
310 * r{1,2} is the number of redundant rows in tableau {1,2}
311 * d{1,2} is the number of dead columns in tableau {1,2}
313 * The order of the rows and columns in the result is as explained
314 * in isl_tab_product.
316 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
317 struct isl_mat *mat2, unsigned row1, unsigned row2,
318 unsigned col1, unsigned col2,
319 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
321 int i;
322 struct isl_mat *prod;
323 unsigned n;
325 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
326 off + col1 + col2);
327 if (!prod)
328 return NULL;
330 n = 0;
331 for (i = 0; i < r1; ++i) {
332 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
333 isl_seq_clr(prod->row[n + i] + off + d1, d2);
334 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
335 mat1->row[i] + off + d1, col1 - d1);
336 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
339 n += r1;
340 for (i = 0; i < r2; ++i) {
341 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
342 isl_seq_clr(prod->row[n + i] + off, d1);
343 isl_seq_cpy(prod->row[n + i] + off + d1,
344 mat2->row[i] + off, d2);
345 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
346 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
347 mat2->row[i] + off + d2, col2 - d2);
350 n += r2;
351 for (i = 0; i < row1 - r1; ++i) {
352 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
353 isl_seq_clr(prod->row[n + i] + off + d1, d2);
354 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
355 mat1->row[r1 + i] + off + d1, col1 - d1);
356 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
359 n += row1 - r1;
360 for (i = 0; i < row2 - r2; ++i) {
361 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
362 isl_seq_clr(prod->row[n + i] + off, d1);
363 isl_seq_cpy(prod->row[n + i] + off + d1,
364 mat2->row[r2 + i] + off, d2);
365 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
366 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
367 mat2->row[r2 + i] + off + d2, col2 - d2);
370 return prod;
373 /* Update the row or column index of a variable that corresponds
374 * to a variable in the first input tableau.
376 static void update_index1(struct isl_tab_var *var,
377 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
379 if (var->index == -1)
380 return;
381 if (var->is_row && var->index >= r1)
382 var->index += r2;
383 if (!var->is_row && var->index >= d1)
384 var->index += d2;
387 /* Update the row or column index of a variable that corresponds
388 * to a variable in the second input tableau.
390 static void update_index2(struct isl_tab_var *var,
391 unsigned row1, unsigned col1,
392 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
394 if (var->index == -1)
395 return;
396 if (var->is_row) {
397 if (var->index < r2)
398 var->index += r1;
399 else
400 var->index += row1;
401 } else {
402 if (var->index < d2)
403 var->index += d1;
404 else
405 var->index += col1;
409 /* Create a tableau that represents the Cartesian product of the sets
410 * represented by tableaus tab1 and tab2.
411 * The order of the rows in the product is
412 * - redundant rows of tab1
413 * - redundant rows of tab2
414 * - non-redundant rows of tab1
415 * - non-redundant rows of tab2
416 * The order of the columns is
417 * - denominator
418 * - constant term
419 * - coefficient of big parameter, if any
420 * - dead columns of tab1
421 * - dead columns of tab2
422 * - live columns of tab1
423 * - live columns of tab2
424 * The order of the variables and the constraints is a concatenation
425 * of order in the two input tableaus.
427 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
429 int i;
430 struct isl_tab *prod;
431 unsigned off;
432 unsigned r1, r2, d1, d2;
434 if (!tab1 || !tab2)
435 return NULL;
437 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
438 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
439 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
440 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
441 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
442 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
443 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
444 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
445 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
447 off = 2 + tab1->M;
448 r1 = tab1->n_redundant;
449 r2 = tab2->n_redundant;
450 d1 = tab1->n_dead;
451 d2 = tab2->n_dead;
452 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
453 if (!prod)
454 return NULL;
455 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
456 tab1->n_row, tab2->n_row,
457 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
458 if (!prod->mat)
459 goto error;
460 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
461 tab1->max_var + tab2->max_var);
462 if ((tab1->max_var + tab2->max_var) && !prod->var)
463 goto error;
464 for (i = 0; i < tab1->n_var; ++i) {
465 prod->var[i] = tab1->var[i];
466 update_index1(&prod->var[i], r1, r2, d1, d2);
468 for (i = 0; i < tab2->n_var; ++i) {
469 prod->var[tab1->n_var + i] = tab2->var[i];
470 update_index2(&prod->var[tab1->n_var + i],
471 tab1->n_row, tab1->n_col,
472 r1, r2, d1, d2);
474 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
475 tab1->max_con + tab2->max_con);
476 if ((tab1->max_con + tab2->max_con) && !prod->con)
477 goto error;
478 for (i = 0; i < tab1->n_con; ++i) {
479 prod->con[i] = tab1->con[i];
480 update_index1(&prod->con[i], r1, r2, d1, d2);
482 for (i = 0; i < tab2->n_con; ++i) {
483 prod->con[tab1->n_con + i] = tab2->con[i];
484 update_index2(&prod->con[tab1->n_con + i],
485 tab1->n_row, tab1->n_col,
486 r1, r2, d1, d2);
488 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
489 tab1->n_col + tab2->n_col);
490 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
491 goto error;
492 for (i = 0; i < tab1->n_col; ++i) {
493 int pos = i < d1 ? i : i + d2;
494 prod->col_var[pos] = tab1->col_var[i];
496 for (i = 0; i < tab2->n_col; ++i) {
497 int pos = i < d2 ? d1 + i : tab1->n_col + i;
498 int t = tab2->col_var[i];
499 if (t >= 0)
500 t += tab1->n_var;
501 else
502 t -= tab1->n_con;
503 prod->col_var[pos] = t;
505 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
506 tab1->mat->n_row + tab2->mat->n_row);
507 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
508 goto error;
509 for (i = 0; i < tab1->n_row; ++i) {
510 int pos = i < r1 ? i : i + r2;
511 prod->row_var[pos] = tab1->row_var[i];
513 for (i = 0; i < tab2->n_row; ++i) {
514 int pos = i < r2 ? r1 + i : tab1->n_row + i;
515 int t = tab2->row_var[i];
516 if (t >= 0)
517 t += tab1->n_var;
518 else
519 t -= tab1->n_con;
520 prod->row_var[pos] = t;
522 prod->samples = NULL;
523 prod->sample_index = NULL;
524 prod->n_row = tab1->n_row + tab2->n_row;
525 prod->n_con = tab1->n_con + tab2->n_con;
526 prod->n_eq = 0;
527 prod->max_con = tab1->max_con + tab2->max_con;
528 prod->n_col = tab1->n_col + tab2->n_col;
529 prod->n_var = tab1->n_var + tab2->n_var;
530 prod->max_var = tab1->max_var + tab2->max_var;
531 prod->n_param = 0;
532 prod->n_div = 0;
533 prod->n_dead = tab1->n_dead + tab2->n_dead;
534 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
535 prod->rational = tab1->rational;
536 prod->empty = tab1->empty || tab2->empty;
537 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
538 prod->need_undo = 0;
539 prod->in_undo = 0;
540 prod->M = tab1->M;
541 prod->cone = tab1->cone;
542 prod->bottom.type = isl_tab_undo_bottom;
543 prod->bottom.next = NULL;
544 prod->top = &prod->bottom;
546 prod->n_zero = 0;
547 prod->n_unbounded = 0;
548 prod->basis = NULL;
550 return prod;
551 error:
552 isl_tab_free(prod);
553 return NULL;
556 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
558 if (i >= 0)
559 return &tab->var[i];
560 else
561 return &tab->con[~i];
564 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
566 return var_from_index(tab, tab->row_var[i]);
569 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
571 return var_from_index(tab, tab->col_var[i]);
574 /* Check if there are any upper bounds on column variable "var",
575 * i.e., non-negative rows where var appears with a negative coefficient.
576 * Return 1 if there are no such bounds.
578 static int max_is_manifestly_unbounded(struct isl_tab *tab,
579 struct isl_tab_var *var)
581 int i;
582 unsigned off = 2 + tab->M;
584 if (var->is_row)
585 return 0;
586 for (i = tab->n_redundant; i < tab->n_row; ++i) {
587 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
588 continue;
589 if (isl_tab_var_from_row(tab, i)->is_nonneg)
590 return 0;
592 return 1;
595 /* Check if there are any lower bounds on column variable "var",
596 * i.e., non-negative rows where var appears with a positive coefficient.
597 * Return 1 if there are no such bounds.
599 static int min_is_manifestly_unbounded(struct isl_tab *tab,
600 struct isl_tab_var *var)
602 int i;
603 unsigned off = 2 + tab->M;
605 if (var->is_row)
606 return 0;
607 for (i = tab->n_redundant; i < tab->n_row; ++i) {
608 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
609 continue;
610 if (isl_tab_var_from_row(tab, i)->is_nonneg)
611 return 0;
613 return 1;
616 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
618 unsigned off = 2 + tab->M;
620 if (tab->M) {
621 int s;
622 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
623 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
624 s = isl_int_sgn(t);
625 if (s)
626 return s;
628 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
629 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
630 return isl_int_sgn(t);
633 /* Given the index of a column "c", return the index of a row
634 * that can be used to pivot the column in, with either an increase
635 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
636 * If "var" is not NULL, then the row returned will be different from
637 * the one associated with "var".
639 * Each row in the tableau is of the form
641 * x_r = a_r0 + \sum_i a_ri x_i
643 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
644 * impose any limit on the increase or decrease in the value of x_c
645 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
646 * for the row with the smallest (most stringent) such bound.
647 * Note that the common denominator of each row drops out of the fraction.
648 * To check if row j has a smaller bound than row r, i.e.,
649 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
650 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
651 * where -sign(a_jc) is equal to "sgn".
653 static int pivot_row(struct isl_tab *tab,
654 struct isl_tab_var *var, int sgn, int c)
656 int j, r, tsgn;
657 isl_int t;
658 unsigned off = 2 + tab->M;
660 isl_int_init(t);
661 r = -1;
662 for (j = tab->n_redundant; j < tab->n_row; ++j) {
663 if (var && j == var->index)
664 continue;
665 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
666 continue;
667 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
668 continue;
669 if (r < 0) {
670 r = j;
671 continue;
673 tsgn = sgn * row_cmp(tab, r, j, c, t);
674 if (tsgn < 0 || (tsgn == 0 &&
675 tab->row_var[j] < tab->row_var[r]))
676 r = j;
678 isl_int_clear(t);
679 return r;
682 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
683 * (sgn < 0) the value of row variable var.
684 * If not NULL, then skip_var is a row variable that should be ignored
685 * while looking for a pivot row. It is usually equal to var.
687 * As the given row in the tableau is of the form
689 * x_r = a_r0 + \sum_i a_ri x_i
691 * we need to find a column such that the sign of a_ri is equal to "sgn"
692 * (such that an increase in x_i will have the desired effect) or a
693 * column with a variable that may attain negative values.
694 * If a_ri is positive, then we need to move x_i in the same direction
695 * to obtain the desired effect. Otherwise, x_i has to move in the
696 * opposite direction.
698 static void find_pivot(struct isl_tab *tab,
699 struct isl_tab_var *var, struct isl_tab_var *skip_var,
700 int sgn, int *row, int *col)
702 int j, r, c;
703 isl_int *tr;
705 *row = *col = -1;
707 isl_assert(tab->mat->ctx, var->is_row, return);
708 tr = tab->mat->row[var->index] + 2 + tab->M;
710 c = -1;
711 for (j = tab->n_dead; j < tab->n_col; ++j) {
712 if (isl_int_is_zero(tr[j]))
713 continue;
714 if (isl_int_sgn(tr[j]) != sgn &&
715 var_from_col(tab, j)->is_nonneg)
716 continue;
717 if (c < 0 || tab->col_var[j] < tab->col_var[c])
718 c = j;
720 if (c < 0)
721 return;
723 sgn *= isl_int_sgn(tr[c]);
724 r = pivot_row(tab, skip_var, sgn, c);
725 *row = r < 0 ? var->index : r;
726 *col = c;
729 /* Return 1 if row "row" represents an obviously redundant inequality.
730 * This means
731 * - it represents an inequality or a variable
732 * - that is the sum of a non-negative sample value and a positive
733 * combination of zero or more non-negative constraints.
735 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
737 int i;
738 unsigned off = 2 + tab->M;
740 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
741 return 0;
743 if (isl_int_is_neg(tab->mat->row[row][1]))
744 return 0;
745 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
746 return 0;
747 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
748 return 0;
750 for (i = tab->n_dead; i < tab->n_col; ++i) {
751 if (isl_int_is_zero(tab->mat->row[row][off + i]))
752 continue;
753 if (tab->col_var[i] >= 0)
754 return 0;
755 if (isl_int_is_neg(tab->mat->row[row][off + i]))
756 return 0;
757 if (!var_from_col(tab, i)->is_nonneg)
758 return 0;
760 return 1;
763 static void swap_rows(struct isl_tab *tab, int row1, int row2)
765 int t;
766 enum isl_tab_row_sign s;
768 t = tab->row_var[row1];
769 tab->row_var[row1] = tab->row_var[row2];
770 tab->row_var[row2] = t;
771 isl_tab_var_from_row(tab, row1)->index = row1;
772 isl_tab_var_from_row(tab, row2)->index = row2;
773 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
775 if (!tab->row_sign)
776 return;
777 s = tab->row_sign[row1];
778 tab->row_sign[row1] = tab->row_sign[row2];
779 tab->row_sign[row2] = s;
782 static int push_union(struct isl_tab *tab,
783 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
784 static int push_union(struct isl_tab *tab,
785 enum isl_tab_undo_type type, union isl_tab_undo_val u)
787 struct isl_tab_undo *undo;
789 if (!tab)
790 return -1;
791 if (!tab->need_undo)
792 return 0;
794 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
795 if (!undo)
796 return -1;
797 undo->type = type;
798 undo->u = u;
799 undo->next = tab->top;
800 tab->top = undo;
802 return 0;
805 int isl_tab_push_var(struct isl_tab *tab,
806 enum isl_tab_undo_type type, struct isl_tab_var *var)
808 union isl_tab_undo_val u;
809 if (var->is_row)
810 u.var_index = tab->row_var[var->index];
811 else
812 u.var_index = tab->col_var[var->index];
813 return push_union(tab, type, u);
816 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
818 union isl_tab_undo_val u = { 0 };
819 return push_union(tab, type, u);
822 /* Push a record on the undo stack describing the current basic
823 * variables, so that the this state can be restored during rollback.
825 int isl_tab_push_basis(struct isl_tab *tab)
827 int i;
828 union isl_tab_undo_val u;
830 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
831 if (tab->n_col && !u.col_var)
832 return -1;
833 for (i = 0; i < tab->n_col; ++i)
834 u.col_var[i] = tab->col_var[i];
835 return push_union(tab, isl_tab_undo_saved_basis, u);
838 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
840 union isl_tab_undo_val u;
841 u.callback = callback;
842 return push_union(tab, isl_tab_undo_callback, u);
845 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
847 if (!tab)
848 return NULL;
850 tab->n_sample = 0;
851 tab->n_outside = 0;
852 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
853 if (!tab->samples)
854 goto error;
855 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
856 if (!tab->sample_index)
857 goto error;
858 return tab;
859 error:
860 isl_tab_free(tab);
861 return NULL;
864 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
866 if (!tab || !sample)
867 goto error;
869 if (tab->n_sample + 1 > tab->samples->n_row) {
870 int *t = isl_realloc_array(tab->mat->ctx,
871 tab->sample_index, int, tab->n_sample + 1);
872 if (!t)
873 goto error;
874 tab->sample_index = t;
877 tab->samples = isl_mat_extend(tab->samples,
878 tab->n_sample + 1, tab->samples->n_col);
879 if (!tab->samples)
880 goto error;
882 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
883 isl_vec_free(sample);
884 tab->sample_index[tab->n_sample] = tab->n_sample;
885 tab->n_sample++;
887 return 0;
888 error:
889 isl_vec_free(sample);
890 return -1;
893 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
895 if (s != tab->n_outside) {
896 int t = tab->sample_index[tab->n_outside];
897 tab->sample_index[tab->n_outside] = tab->sample_index[s];
898 tab->sample_index[s] = t;
899 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
901 tab->n_outside++;
902 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
903 isl_tab_free(tab);
904 return NULL;
907 return tab;
910 /* Record the current number of samples so that we can remove newer
911 * samples during a rollback.
913 int isl_tab_save_samples(struct isl_tab *tab)
915 union isl_tab_undo_val u;
917 if (!tab)
918 return -1;
920 u.n = tab->n_sample;
921 return push_union(tab, isl_tab_undo_saved_samples, u);
924 /* Mark row with index "row" as being redundant.
925 * If we may need to undo the operation or if the row represents
926 * a variable of the original problem, the row is kept,
927 * but no longer considered when looking for a pivot row.
928 * Otherwise, the row is simply removed.
930 * The row may be interchanged with some other row. If it
931 * is interchanged with a later row, return 1. Otherwise return 0.
932 * If the rows are checked in order in the calling function,
933 * then a return value of 1 means that the row with the given
934 * row number may now contain a different row that hasn't been checked yet.
936 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
938 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
939 var->is_redundant = 1;
940 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
941 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
942 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
943 var->is_nonneg = 1;
944 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
945 return -1;
947 if (row != tab->n_redundant)
948 swap_rows(tab, row, tab->n_redundant);
949 tab->n_redundant++;
950 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
951 } else {
952 if (row != tab->n_row - 1)
953 swap_rows(tab, row, tab->n_row - 1);
954 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
955 tab->n_row--;
956 return 1;
960 /* Mark "tab" as a rational tableau.
961 * If it wasn't marked as a rational tableau already and if we may
962 * need to undo changes, then arrange for the marking to be undone
963 * during the undo.
965 int isl_tab_mark_rational(struct isl_tab *tab)
967 if (!tab)
968 return -1;
969 if (!tab->rational && tab->need_undo)
970 if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
971 return -1;
972 tab->rational = 1;
973 return 0;
976 int isl_tab_mark_empty(struct isl_tab *tab)
978 if (!tab)
979 return -1;
980 if (!tab->empty && tab->need_undo)
981 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
982 return -1;
983 tab->empty = 1;
984 return 0;
987 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
989 struct isl_tab_var *var;
991 if (!tab)
992 return -1;
994 var = &tab->con[con];
995 if (var->frozen)
996 return 0;
997 if (var->index < 0)
998 return 0;
999 var->frozen = 1;
1001 if (tab->need_undo)
1002 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1004 return 0;
1007 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1008 * the original sign of the pivot element.
1009 * We only keep track of row signs during PILP solving and in this case
1010 * we only pivot a row with negative sign (meaning the value is always
1011 * non-positive) using a positive pivot element.
1013 * For each row j, the new value of the parametric constant is equal to
1015 * a_j0 - a_jc a_r0/a_rc
1017 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1018 * a_r0 is the parametric constant of the pivot row and a_jc is the
1019 * pivot column entry of the row j.
1020 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1021 * remains the same if a_jc has the same sign as the row j or if
1022 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1024 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1026 int i;
1027 struct isl_mat *mat = tab->mat;
1028 unsigned off = 2 + tab->M;
1030 if (!tab->row_sign)
1031 return;
1033 if (tab->row_sign[row] == 0)
1034 return;
1035 isl_assert(mat->ctx, row_sgn > 0, return);
1036 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1037 tab->row_sign[row] = isl_tab_row_pos;
1038 for (i = 0; i < tab->n_row; ++i) {
1039 int s;
1040 if (i == row)
1041 continue;
1042 s = isl_int_sgn(mat->row[i][off + col]);
1043 if (!s)
1044 continue;
1045 if (!tab->row_sign[i])
1046 continue;
1047 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1048 continue;
1049 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1050 continue;
1051 tab->row_sign[i] = isl_tab_row_unknown;
1055 /* Given a row number "row" and a column number "col", pivot the tableau
1056 * such that the associated variables are interchanged.
1057 * The given row in the tableau expresses
1059 * x_r = a_r0 + \sum_i a_ri x_i
1061 * or
1063 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1065 * Substituting this equality into the other rows
1067 * x_j = a_j0 + \sum_i a_ji x_i
1069 * with a_jc \ne 0, we obtain
1071 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1073 * The tableau
1075 * n_rc/d_r n_ri/d_r
1076 * n_jc/d_j n_ji/d_j
1078 * where i is any other column and j is any other row,
1079 * is therefore transformed into
1081 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1082 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1084 * The transformation is performed along the following steps
1086 * d_r/n_rc n_ri/n_rc
1087 * n_jc/d_j n_ji/d_j
1089 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1090 * n_jc/d_j n_ji/d_j
1092 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1093 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1095 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1096 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1098 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1099 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1101 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1102 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1105 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1107 int i, j;
1108 int sgn;
1109 int t;
1110 isl_ctx *ctx;
1111 struct isl_mat *mat = tab->mat;
1112 struct isl_tab_var *var;
1113 unsigned off = 2 + tab->M;
1115 ctx = isl_tab_get_ctx(tab);
1116 if (isl_ctx_next_operation(ctx) < 0)
1117 return -1;
1119 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1120 sgn = isl_int_sgn(mat->row[row][0]);
1121 if (sgn < 0) {
1122 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1123 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1124 } else
1125 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1126 if (j == off - 1 + col)
1127 continue;
1128 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1130 if (!isl_int_is_one(mat->row[row][0]))
1131 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1132 for (i = 0; i < tab->n_row; ++i) {
1133 if (i == row)
1134 continue;
1135 if (isl_int_is_zero(mat->row[i][off + col]))
1136 continue;
1137 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1138 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1139 if (j == off - 1 + col)
1140 continue;
1141 isl_int_mul(mat->row[i][1 + j],
1142 mat->row[i][1 + j], mat->row[row][0]);
1143 isl_int_addmul(mat->row[i][1 + j],
1144 mat->row[i][off + col], mat->row[row][1 + j]);
1146 isl_int_mul(mat->row[i][off + col],
1147 mat->row[i][off + col], mat->row[row][off + col]);
1148 if (!isl_int_is_one(mat->row[i][0]))
1149 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1151 t = tab->row_var[row];
1152 tab->row_var[row] = tab->col_var[col];
1153 tab->col_var[col] = t;
1154 var = isl_tab_var_from_row(tab, row);
1155 var->is_row = 1;
1156 var->index = row;
1157 var = var_from_col(tab, col);
1158 var->is_row = 0;
1159 var->index = col;
1160 update_row_sign(tab, row, col, sgn);
1161 if (tab->in_undo)
1162 return 0;
1163 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1164 if (isl_int_is_zero(mat->row[i][off + col]))
1165 continue;
1166 if (!isl_tab_var_from_row(tab, i)->frozen &&
1167 isl_tab_row_is_redundant(tab, i)) {
1168 int redo = isl_tab_mark_redundant(tab, i);
1169 if (redo < 0)
1170 return -1;
1171 if (redo)
1172 --i;
1175 return 0;
1178 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1179 * or down (sgn < 0) to a row. The variable is assumed not to be
1180 * unbounded in the specified direction.
1181 * If sgn = 0, then the variable is unbounded in both directions,
1182 * and we pivot with any row we can find.
1184 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1185 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1187 int r;
1188 unsigned off = 2 + tab->M;
1190 if (var->is_row)
1191 return 0;
1193 if (sign == 0) {
1194 for (r = tab->n_redundant; r < tab->n_row; ++r)
1195 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1196 break;
1197 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1198 } else {
1199 r = pivot_row(tab, NULL, sign, var->index);
1200 isl_assert(tab->mat->ctx, r >= 0, return -1);
1203 return isl_tab_pivot(tab, r, var->index);
1206 /* Check whether all variables that are marked as non-negative
1207 * also have a non-negative sample value. This function is not
1208 * called from the current code but is useful during debugging.
1210 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1211 static void check_table(struct isl_tab *tab)
1213 int i;
1215 if (tab->empty)
1216 return;
1217 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1218 struct isl_tab_var *var;
1219 var = isl_tab_var_from_row(tab, i);
1220 if (!var->is_nonneg)
1221 continue;
1222 if (tab->M) {
1223 isl_assert(tab->mat->ctx,
1224 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1225 if (isl_int_is_pos(tab->mat->row[i][2]))
1226 continue;
1228 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1229 abort());
1233 /* Return the sign of the maximal value of "var".
1234 * If the sign is not negative, then on return from this function,
1235 * the sample value will also be non-negative.
1237 * If "var" is manifestly unbounded wrt positive values, we are done.
1238 * Otherwise, we pivot the variable up to a row if needed
1239 * Then we continue pivoting down until either
1240 * - no more down pivots can be performed
1241 * - the sample value is positive
1242 * - the variable is pivoted into a manifestly unbounded column
1244 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1246 int row, col;
1248 if (max_is_manifestly_unbounded(tab, var))
1249 return 1;
1250 if (to_row(tab, var, 1) < 0)
1251 return -2;
1252 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1253 find_pivot(tab, var, var, 1, &row, &col);
1254 if (row == -1)
1255 return isl_int_sgn(tab->mat->row[var->index][1]);
1256 if (isl_tab_pivot(tab, row, col) < 0)
1257 return -2;
1258 if (!var->is_row) /* manifestly unbounded */
1259 return 1;
1261 return 1;
1264 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1266 struct isl_tab_var *var;
1268 if (!tab)
1269 return -2;
1271 var = &tab->con[con];
1272 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1273 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1275 return sign_of_max(tab, var);
1278 static int row_is_neg(struct isl_tab *tab, int row)
1280 if (!tab->M)
1281 return isl_int_is_neg(tab->mat->row[row][1]);
1282 if (isl_int_is_pos(tab->mat->row[row][2]))
1283 return 0;
1284 if (isl_int_is_neg(tab->mat->row[row][2]))
1285 return 1;
1286 return isl_int_is_neg(tab->mat->row[row][1]);
1289 static int row_sgn(struct isl_tab *tab, int row)
1291 if (!tab->M)
1292 return isl_int_sgn(tab->mat->row[row][1]);
1293 if (!isl_int_is_zero(tab->mat->row[row][2]))
1294 return isl_int_sgn(tab->mat->row[row][2]);
1295 else
1296 return isl_int_sgn(tab->mat->row[row][1]);
1299 /* Perform pivots until the row variable "var" has a non-negative
1300 * sample value or until no more upward pivots can be performed.
1301 * Return the sign of the sample value after the pivots have been
1302 * performed.
1304 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1306 int row, col;
1308 while (row_is_neg(tab, var->index)) {
1309 find_pivot(tab, var, var, 1, &row, &col);
1310 if (row == -1)
1311 break;
1312 if (isl_tab_pivot(tab, row, col) < 0)
1313 return -2;
1314 if (!var->is_row) /* manifestly unbounded */
1315 return 1;
1317 return row_sgn(tab, var->index);
1320 /* Perform pivots until we are sure that the row variable "var"
1321 * can attain non-negative values. After return from this
1322 * function, "var" is still a row variable, but its sample
1323 * value may not be non-negative, even if the function returns 1.
1325 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1327 int row, col;
1329 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1330 find_pivot(tab, var, var, 1, &row, &col);
1331 if (row == -1)
1332 break;
1333 if (row == var->index) /* manifestly unbounded */
1334 return 1;
1335 if (isl_tab_pivot(tab, row, col) < 0)
1336 return -1;
1338 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1341 /* Return a negative value if "var" can attain negative values.
1342 * Return a non-negative value otherwise.
1344 * If "var" is manifestly unbounded wrt negative values, we are done.
1345 * Otherwise, if var is in a column, we can pivot it down to a row.
1346 * Then we continue pivoting down until either
1347 * - the pivot would result in a manifestly unbounded column
1348 * => we don't perform the pivot, but simply return -1
1349 * - no more down pivots can be performed
1350 * - the sample value is negative
1351 * If the sample value becomes negative and the variable is supposed
1352 * to be nonnegative, then we undo the last pivot.
1353 * However, if the last pivot has made the pivoting variable
1354 * obviously redundant, then it may have moved to another row.
1355 * In that case we look for upward pivots until we reach a non-negative
1356 * value again.
1358 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1360 int row, col;
1361 struct isl_tab_var *pivot_var = NULL;
1363 if (min_is_manifestly_unbounded(tab, var))
1364 return -1;
1365 if (!var->is_row) {
1366 col = var->index;
1367 row = pivot_row(tab, NULL, -1, col);
1368 pivot_var = var_from_col(tab, col);
1369 if (isl_tab_pivot(tab, row, col) < 0)
1370 return -2;
1371 if (var->is_redundant)
1372 return 0;
1373 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1374 if (var->is_nonneg) {
1375 if (!pivot_var->is_redundant &&
1376 pivot_var->index == row) {
1377 if (isl_tab_pivot(tab, row, col) < 0)
1378 return -2;
1379 } else
1380 if (restore_row(tab, var) < -1)
1381 return -2;
1383 return -1;
1386 if (var->is_redundant)
1387 return 0;
1388 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1389 find_pivot(tab, var, var, -1, &row, &col);
1390 if (row == var->index)
1391 return -1;
1392 if (row == -1)
1393 return isl_int_sgn(tab->mat->row[var->index][1]);
1394 pivot_var = var_from_col(tab, col);
1395 if (isl_tab_pivot(tab, row, col) < 0)
1396 return -2;
1397 if (var->is_redundant)
1398 return 0;
1400 if (pivot_var && var->is_nonneg) {
1401 /* pivot back to non-negative value */
1402 if (!pivot_var->is_redundant && pivot_var->index == row) {
1403 if (isl_tab_pivot(tab, row, col) < 0)
1404 return -2;
1405 } else
1406 if (restore_row(tab, var) < -1)
1407 return -2;
1409 return -1;
1412 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1414 if (tab->M) {
1415 if (isl_int_is_pos(tab->mat->row[row][2]))
1416 return 0;
1417 if (isl_int_is_neg(tab->mat->row[row][2]))
1418 return 1;
1420 return isl_int_is_neg(tab->mat->row[row][1]) &&
1421 isl_int_abs_ge(tab->mat->row[row][1],
1422 tab->mat->row[row][0]);
1425 /* Return 1 if "var" can attain values <= -1.
1426 * Return 0 otherwise.
1428 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1429 * then the sample value of "var" is assumed to be non-negative when the
1430 * the function is called. If 1 is returned then the constraint
1431 * is not redundant and the sample value is made non-negative again before
1432 * the function returns.
1434 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1436 int row, col;
1437 struct isl_tab_var *pivot_var;
1439 if (min_is_manifestly_unbounded(tab, var))
1440 return 1;
1441 if (!var->is_row) {
1442 col = var->index;
1443 row = pivot_row(tab, NULL, -1, col);
1444 pivot_var = var_from_col(tab, col);
1445 if (isl_tab_pivot(tab, row, col) < 0)
1446 return -1;
1447 if (var->is_redundant)
1448 return 0;
1449 if (row_at_most_neg_one(tab, var->index)) {
1450 if (var->is_nonneg) {
1451 if (!pivot_var->is_redundant &&
1452 pivot_var->index == row) {
1453 if (isl_tab_pivot(tab, row, col) < 0)
1454 return -1;
1455 } else
1456 if (restore_row(tab, var) < -1)
1457 return -1;
1459 return 1;
1462 if (var->is_redundant)
1463 return 0;
1464 do {
1465 find_pivot(tab, var, var, -1, &row, &col);
1466 if (row == var->index) {
1467 if (var->is_nonneg && restore_row(tab, var) < -1)
1468 return -1;
1469 return 1;
1471 if (row == -1)
1472 return 0;
1473 pivot_var = var_from_col(tab, col);
1474 if (isl_tab_pivot(tab, row, col) < 0)
1475 return -1;
1476 if (var->is_redundant)
1477 return 0;
1478 } while (!row_at_most_neg_one(tab, var->index));
1479 if (var->is_nonneg) {
1480 /* pivot back to non-negative value */
1481 if (!pivot_var->is_redundant && pivot_var->index == row)
1482 if (isl_tab_pivot(tab, row, col) < 0)
1483 return -1;
1484 if (restore_row(tab, var) < -1)
1485 return -1;
1487 return 1;
1490 /* Return 1 if "var" can attain values >= 1.
1491 * Return 0 otherwise.
1493 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1495 int row, col;
1496 isl_int *r;
1498 if (max_is_manifestly_unbounded(tab, var))
1499 return 1;
1500 if (to_row(tab, var, 1) < 0)
1501 return -1;
1502 r = tab->mat->row[var->index];
1503 while (isl_int_lt(r[1], r[0])) {
1504 find_pivot(tab, var, var, 1, &row, &col);
1505 if (row == -1)
1506 return isl_int_ge(r[1], r[0]);
1507 if (row == var->index) /* manifestly unbounded */
1508 return 1;
1509 if (isl_tab_pivot(tab, row, col) < 0)
1510 return -1;
1512 return 1;
1515 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1517 int t;
1518 unsigned off = 2 + tab->M;
1519 t = tab->col_var[col1];
1520 tab->col_var[col1] = tab->col_var[col2];
1521 tab->col_var[col2] = t;
1522 var_from_col(tab, col1)->index = col1;
1523 var_from_col(tab, col2)->index = col2;
1524 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1527 /* Mark column with index "col" as representing a zero variable.
1528 * If we may need to undo the operation the column is kept,
1529 * but no longer considered.
1530 * Otherwise, the column is simply removed.
1532 * The column may be interchanged with some other column. If it
1533 * is interchanged with a later column, return 1. Otherwise return 0.
1534 * If the columns are checked in order in the calling function,
1535 * then a return value of 1 means that the column with the given
1536 * column number may now contain a different column that
1537 * hasn't been checked yet.
1539 int isl_tab_kill_col(struct isl_tab *tab, int col)
1541 var_from_col(tab, col)->is_zero = 1;
1542 if (tab->need_undo) {
1543 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1544 var_from_col(tab, col)) < 0)
1545 return -1;
1546 if (col != tab->n_dead)
1547 swap_cols(tab, col, tab->n_dead);
1548 tab->n_dead++;
1549 return 0;
1550 } else {
1551 if (col != tab->n_col - 1)
1552 swap_cols(tab, col, tab->n_col - 1);
1553 var_from_col(tab, tab->n_col - 1)->index = -1;
1554 tab->n_col--;
1555 return 1;
1559 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1561 unsigned off = 2 + tab->M;
1563 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1564 tab->mat->row[row][0]))
1565 return 0;
1566 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1567 tab->n_col - tab->n_dead) != -1)
1568 return 0;
1570 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1571 tab->mat->row[row][0]);
1574 /* For integer tableaus, check if any of the coordinates are stuck
1575 * at a non-integral value.
1577 static int tab_is_manifestly_empty(struct isl_tab *tab)
1579 int i;
1581 if (tab->empty)
1582 return 1;
1583 if (tab->rational)
1584 return 0;
1586 for (i = 0; i < tab->n_var; ++i) {
1587 if (!tab->var[i].is_row)
1588 continue;
1589 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1590 return 1;
1593 return 0;
1596 /* Row variable "var" is non-negative and cannot attain any values
1597 * larger than zero. This means that the coefficients of the unrestricted
1598 * column variables are zero and that the coefficients of the non-negative
1599 * column variables are zero or negative.
1600 * Each of the non-negative variables with a negative coefficient can
1601 * then also be written as the negative sum of non-negative variables
1602 * and must therefore also be zero.
1604 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1605 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1607 int j;
1608 struct isl_mat *mat = tab->mat;
1609 unsigned off = 2 + tab->M;
1611 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1612 var->is_zero = 1;
1613 if (tab->need_undo)
1614 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1615 return -1;
1616 for (j = tab->n_dead; j < tab->n_col; ++j) {
1617 int recheck;
1618 if (isl_int_is_zero(mat->row[var->index][off + j]))
1619 continue;
1620 isl_assert(tab->mat->ctx,
1621 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1622 recheck = isl_tab_kill_col(tab, j);
1623 if (recheck < 0)
1624 return -1;
1625 if (recheck)
1626 --j;
1628 if (isl_tab_mark_redundant(tab, var->index) < 0)
1629 return -1;
1630 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1631 return -1;
1632 return 0;
1635 /* Add a constraint to the tableau and allocate a row for it.
1636 * Return the index into the constraint array "con".
1638 int isl_tab_allocate_con(struct isl_tab *tab)
1640 int r;
1642 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1643 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1645 r = tab->n_con;
1646 tab->con[r].index = tab->n_row;
1647 tab->con[r].is_row = 1;
1648 tab->con[r].is_nonneg = 0;
1649 tab->con[r].is_zero = 0;
1650 tab->con[r].is_redundant = 0;
1651 tab->con[r].frozen = 0;
1652 tab->con[r].negated = 0;
1653 tab->row_var[tab->n_row] = ~r;
1655 tab->n_row++;
1656 tab->n_con++;
1657 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1658 return -1;
1660 return r;
1663 /* Add a variable to the tableau and allocate a column for it.
1664 * Return the index into the variable array "var".
1666 int isl_tab_allocate_var(struct isl_tab *tab)
1668 int r;
1669 int i;
1670 unsigned off = 2 + tab->M;
1672 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1673 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1675 r = tab->n_var;
1676 tab->var[r].index = tab->n_col;
1677 tab->var[r].is_row = 0;
1678 tab->var[r].is_nonneg = 0;
1679 tab->var[r].is_zero = 0;
1680 tab->var[r].is_redundant = 0;
1681 tab->var[r].frozen = 0;
1682 tab->var[r].negated = 0;
1683 tab->col_var[tab->n_col] = r;
1685 for (i = 0; i < tab->n_row; ++i)
1686 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1688 tab->n_var++;
1689 tab->n_col++;
1690 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1691 return -1;
1693 return r;
1696 /* Add a row to the tableau. The row is given as an affine combination
1697 * of the original variables and needs to be expressed in terms of the
1698 * column variables.
1700 * We add each term in turn.
1701 * If r = n/d_r is the current sum and we need to add k x, then
1702 * if x is a column variable, we increase the numerator of
1703 * this column by k d_r
1704 * if x = f/d_x is a row variable, then the new representation of r is
1706 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1707 * --- + --- = ------------------- = -------------------
1708 * d_r d_r d_r d_x/g m
1710 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1712 * If tab->M is set, then, internally, each variable x is represented
1713 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1715 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1717 int i;
1718 int r;
1719 isl_int *row;
1720 isl_int a, b;
1721 unsigned off = 2 + tab->M;
1723 r = isl_tab_allocate_con(tab);
1724 if (r < 0)
1725 return -1;
1727 isl_int_init(a);
1728 isl_int_init(b);
1729 row = tab->mat->row[tab->con[r].index];
1730 isl_int_set_si(row[0], 1);
1731 isl_int_set(row[1], line[0]);
1732 isl_seq_clr(row + 2, tab->M + tab->n_col);
1733 for (i = 0; i < tab->n_var; ++i) {
1734 if (tab->var[i].is_zero)
1735 continue;
1736 if (tab->var[i].is_row) {
1737 isl_int_lcm(a,
1738 row[0], tab->mat->row[tab->var[i].index][0]);
1739 isl_int_swap(a, row[0]);
1740 isl_int_divexact(a, row[0], a);
1741 isl_int_divexact(b,
1742 row[0], tab->mat->row[tab->var[i].index][0]);
1743 isl_int_mul(b, b, line[1 + i]);
1744 isl_seq_combine(row + 1, a, row + 1,
1745 b, tab->mat->row[tab->var[i].index] + 1,
1746 1 + tab->M + tab->n_col);
1747 } else
1748 isl_int_addmul(row[off + tab->var[i].index],
1749 line[1 + i], row[0]);
1750 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1751 isl_int_submul(row[2], line[1 + i], row[0]);
1753 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1754 isl_int_clear(a);
1755 isl_int_clear(b);
1757 if (tab->row_sign)
1758 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1760 return r;
1763 static int drop_row(struct isl_tab *tab, int row)
1765 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1766 if (row != tab->n_row - 1)
1767 swap_rows(tab, row, tab->n_row - 1);
1768 tab->n_row--;
1769 tab->n_con--;
1770 return 0;
1773 static int drop_col(struct isl_tab *tab, int col)
1775 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1776 if (col != tab->n_col - 1)
1777 swap_cols(tab, col, tab->n_col - 1);
1778 tab->n_col--;
1779 tab->n_var--;
1780 return 0;
1783 /* Add inequality "ineq" and check if it conflicts with the
1784 * previously added constraints or if it is obviously redundant.
1786 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1788 int r;
1789 int sgn;
1790 isl_int cst;
1792 if (!tab)
1793 return -1;
1794 if (tab->bmap) {
1795 struct isl_basic_map *bmap = tab->bmap;
1797 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1798 isl_assert(tab->mat->ctx,
1799 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1800 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1801 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1802 return -1;
1803 if (!tab->bmap)
1804 return -1;
1806 if (tab->cone) {
1807 isl_int_init(cst);
1808 isl_int_swap(ineq[0], cst);
1810 r = isl_tab_add_row(tab, ineq);
1811 if (tab->cone) {
1812 isl_int_swap(ineq[0], cst);
1813 isl_int_clear(cst);
1815 if (r < 0)
1816 return -1;
1817 tab->con[r].is_nonneg = 1;
1818 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1819 return -1;
1820 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1821 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1822 return -1;
1823 return 0;
1826 sgn = restore_row(tab, &tab->con[r]);
1827 if (sgn < -1)
1828 return -1;
1829 if (sgn < 0)
1830 return isl_tab_mark_empty(tab);
1831 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1832 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1833 return -1;
1834 return 0;
1837 /* Pivot a non-negative variable down until it reaches the value zero
1838 * and then pivot the variable into a column position.
1840 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1841 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1843 int i;
1844 int row, col;
1845 unsigned off = 2 + tab->M;
1847 if (!var->is_row)
1848 return 0;
1850 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1851 find_pivot(tab, var, NULL, -1, &row, &col);
1852 isl_assert(tab->mat->ctx, row != -1, return -1);
1853 if (isl_tab_pivot(tab, row, col) < 0)
1854 return -1;
1855 if (!var->is_row)
1856 return 0;
1859 for (i = tab->n_dead; i < tab->n_col; ++i)
1860 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1861 break;
1863 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1864 if (isl_tab_pivot(tab, var->index, i) < 0)
1865 return -1;
1867 return 0;
1870 /* We assume Gaussian elimination has been performed on the equalities.
1871 * The equalities can therefore never conflict.
1872 * Adding the equalities is currently only really useful for a later call
1873 * to isl_tab_ineq_type.
1875 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1877 int i;
1878 int r;
1880 if (!tab)
1881 return NULL;
1882 r = isl_tab_add_row(tab, eq);
1883 if (r < 0)
1884 goto error;
1886 r = tab->con[r].index;
1887 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1888 tab->n_col - tab->n_dead);
1889 isl_assert(tab->mat->ctx, i >= 0, goto error);
1890 i += tab->n_dead;
1891 if (isl_tab_pivot(tab, r, i) < 0)
1892 goto error;
1893 if (isl_tab_kill_col(tab, i) < 0)
1894 goto error;
1895 tab->n_eq++;
1897 return tab;
1898 error:
1899 isl_tab_free(tab);
1900 return NULL;
1903 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1905 unsigned off = 2 + tab->M;
1907 if (!isl_int_is_zero(tab->mat->row[row][1]))
1908 return 0;
1909 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1910 return 0;
1911 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1912 tab->n_col - tab->n_dead) == -1;
1915 /* Add an equality that is known to be valid for the given tableau.
1917 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1919 struct isl_tab_var *var;
1920 int r;
1922 if (!tab)
1923 return -1;
1924 r = isl_tab_add_row(tab, eq);
1925 if (r < 0)
1926 return -1;
1928 var = &tab->con[r];
1929 r = var->index;
1930 if (row_is_manifestly_zero(tab, r)) {
1931 var->is_zero = 1;
1932 if (isl_tab_mark_redundant(tab, r) < 0)
1933 return -1;
1934 return 0;
1937 if (isl_int_is_neg(tab->mat->row[r][1])) {
1938 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1939 1 + tab->n_col);
1940 var->negated = 1;
1942 var->is_nonneg = 1;
1943 if (to_col(tab, var) < 0)
1944 return -1;
1945 var->is_nonneg = 0;
1946 if (isl_tab_kill_col(tab, var->index) < 0)
1947 return -1;
1949 return 0;
1952 static int add_zero_row(struct isl_tab *tab)
1954 int r;
1955 isl_int *row;
1957 r = isl_tab_allocate_con(tab);
1958 if (r < 0)
1959 return -1;
1961 row = tab->mat->row[tab->con[r].index];
1962 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1963 isl_int_set_si(row[0], 1);
1965 return r;
1968 /* Add equality "eq" and check if it conflicts with the
1969 * previously added constraints or if it is obviously redundant.
1971 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1973 struct isl_tab_undo *snap = NULL;
1974 struct isl_tab_var *var;
1975 int r;
1976 int row;
1977 int sgn;
1978 isl_int cst;
1980 if (!tab)
1981 return -1;
1982 isl_assert(tab->mat->ctx, !tab->M, return -1);
1984 if (tab->need_undo)
1985 snap = isl_tab_snap(tab);
1987 if (tab->cone) {
1988 isl_int_init(cst);
1989 isl_int_swap(eq[0], cst);
1991 r = isl_tab_add_row(tab, eq);
1992 if (tab->cone) {
1993 isl_int_swap(eq[0], cst);
1994 isl_int_clear(cst);
1996 if (r < 0)
1997 return -1;
1999 var = &tab->con[r];
2000 row = var->index;
2001 if (row_is_manifestly_zero(tab, row)) {
2002 if (snap)
2003 return isl_tab_rollback(tab, snap);
2004 return drop_row(tab, row);
2007 if (tab->bmap) {
2008 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2009 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2010 return -1;
2011 isl_seq_neg(eq, eq, 1 + tab->n_var);
2012 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2013 isl_seq_neg(eq, eq, 1 + tab->n_var);
2014 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2015 return -1;
2016 if (!tab->bmap)
2017 return -1;
2018 if (add_zero_row(tab) < 0)
2019 return -1;
2022 sgn = isl_int_sgn(tab->mat->row[row][1]);
2024 if (sgn > 0) {
2025 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2026 1 + tab->n_col);
2027 var->negated = 1;
2028 sgn = -1;
2031 if (sgn < 0) {
2032 sgn = sign_of_max(tab, var);
2033 if (sgn < -1)
2034 return -1;
2035 if (sgn < 0) {
2036 if (isl_tab_mark_empty(tab) < 0)
2037 return -1;
2038 return 0;
2042 var->is_nonneg = 1;
2043 if (to_col(tab, var) < 0)
2044 return -1;
2045 var->is_nonneg = 0;
2046 if (isl_tab_kill_col(tab, var->index) < 0)
2047 return -1;
2049 return 0;
2052 /* Construct and return an inequality that expresses an upper bound
2053 * on the given div.
2054 * In particular, if the div is given by
2056 * d = floor(e/m)
2058 * then the inequality expresses
2060 * m d <= e
2062 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2064 unsigned total;
2065 unsigned div_pos;
2066 struct isl_vec *ineq;
2068 if (!bmap)
2069 return NULL;
2071 total = isl_basic_map_total_dim(bmap);
2072 div_pos = 1 + total - bmap->n_div + div;
2074 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2075 if (!ineq)
2076 return NULL;
2078 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2079 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2080 return ineq;
2083 /* For a div d = floor(f/m), add the constraints
2085 * f - m d >= 0
2086 * -(f-(m-1)) + m d >= 0
2088 * Note that the second constraint is the negation of
2090 * f - m d >= m
2092 * If add_ineq is not NULL, then this function is used
2093 * instead of isl_tab_add_ineq to effectively add the inequalities.
2095 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2096 int (*add_ineq)(void *user, isl_int *), void *user)
2098 unsigned total;
2099 unsigned div_pos;
2100 struct isl_vec *ineq;
2102 total = isl_basic_map_total_dim(tab->bmap);
2103 div_pos = 1 + total - tab->bmap->n_div + div;
2105 ineq = ineq_for_div(tab->bmap, div);
2106 if (!ineq)
2107 goto error;
2109 if (add_ineq) {
2110 if (add_ineq(user, ineq->el) < 0)
2111 goto error;
2112 } else {
2113 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2114 goto error;
2117 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2118 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2119 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2120 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2122 if (add_ineq) {
2123 if (add_ineq(user, ineq->el) < 0)
2124 goto error;
2125 } else {
2126 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2127 goto error;
2130 isl_vec_free(ineq);
2132 return 0;
2133 error:
2134 isl_vec_free(ineq);
2135 return -1;
2138 /* Check whether the div described by "div" is obviously non-negative.
2139 * If we are using a big parameter, then we will encode the div
2140 * as div' = M + div, which is always non-negative.
2141 * Otherwise, we check whether div is a non-negative affine combination
2142 * of non-negative variables.
2144 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2146 int i;
2148 if (tab->M)
2149 return 1;
2151 if (isl_int_is_neg(div->el[1]))
2152 return 0;
2154 for (i = 0; i < tab->n_var; ++i) {
2155 if (isl_int_is_neg(div->el[2 + i]))
2156 return 0;
2157 if (isl_int_is_zero(div->el[2 + i]))
2158 continue;
2159 if (!tab->var[i].is_nonneg)
2160 return 0;
2163 return 1;
2166 /* Add an extra div, prescribed by "div" to the tableau and
2167 * the associated bmap (which is assumed to be non-NULL).
2169 * If add_ineq is not NULL, then this function is used instead
2170 * of isl_tab_add_ineq to add the div constraints.
2171 * This complication is needed because the code in isl_tab_pip
2172 * wants to perform some extra processing when an inequality
2173 * is added to the tableau.
2175 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2176 int (*add_ineq)(void *user, isl_int *), void *user)
2178 int r;
2179 int k;
2180 int nonneg;
2182 if (!tab || !div)
2183 return -1;
2185 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2187 nonneg = div_is_nonneg(tab, div);
2189 if (isl_tab_extend_cons(tab, 3) < 0)
2190 return -1;
2191 if (isl_tab_extend_vars(tab, 1) < 0)
2192 return -1;
2193 r = isl_tab_allocate_var(tab);
2194 if (r < 0)
2195 return -1;
2197 if (nonneg)
2198 tab->var[r].is_nonneg = 1;
2200 tab->bmap = isl_basic_map_extend_space(tab->bmap,
2201 isl_basic_map_get_space(tab->bmap), 1, 0, 2);
2202 k = isl_basic_map_alloc_div(tab->bmap);
2203 if (k < 0)
2204 return -1;
2205 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2206 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2207 return -1;
2209 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2210 return -1;
2212 return r;
2215 /* If "track" is set, then we want to keep track of all constraints in tab
2216 * in its bmap field. This field is initialized from a copy of "bmap",
2217 * so we need to make sure that all constraints in "bmap" also appear
2218 * in the constructed tab.
2220 __isl_give struct isl_tab *isl_tab_from_basic_map(
2221 __isl_keep isl_basic_map *bmap, int track)
2223 int i;
2224 struct isl_tab *tab;
2226 if (!bmap)
2227 return NULL;
2228 tab = isl_tab_alloc(bmap->ctx,
2229 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2230 isl_basic_map_total_dim(bmap), 0);
2231 if (!tab)
2232 return NULL;
2233 tab->preserve = track;
2234 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2235 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2236 if (isl_tab_mark_empty(tab) < 0)
2237 goto error;
2238 goto done;
2240 for (i = 0; i < bmap->n_eq; ++i) {
2241 tab = add_eq(tab, bmap->eq[i]);
2242 if (!tab)
2243 return tab;
2245 for (i = 0; i < bmap->n_ineq; ++i) {
2246 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2247 goto error;
2248 if (tab->empty)
2249 goto done;
2251 done:
2252 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2253 goto error;
2254 return tab;
2255 error:
2256 isl_tab_free(tab);
2257 return NULL;
2260 __isl_give struct isl_tab *isl_tab_from_basic_set(
2261 __isl_keep isl_basic_set *bset, int track)
2263 return isl_tab_from_basic_map(bset, track);
2266 /* Construct a tableau corresponding to the recession cone of "bset".
2268 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2269 int parametric)
2271 isl_int cst;
2272 int i;
2273 struct isl_tab *tab;
2274 unsigned offset = 0;
2276 if (!bset)
2277 return NULL;
2278 if (parametric)
2279 offset = isl_basic_set_dim(bset, isl_dim_param);
2280 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2281 isl_basic_set_total_dim(bset) - offset, 0);
2282 if (!tab)
2283 return NULL;
2284 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2285 tab->cone = 1;
2287 isl_int_init(cst);
2288 for (i = 0; i < bset->n_eq; ++i) {
2289 isl_int_swap(bset->eq[i][offset], cst);
2290 if (offset > 0) {
2291 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2292 goto error;
2293 } else
2294 tab = add_eq(tab, bset->eq[i]);
2295 isl_int_swap(bset->eq[i][offset], cst);
2296 if (!tab)
2297 goto done;
2299 for (i = 0; i < bset->n_ineq; ++i) {
2300 int r;
2301 isl_int_swap(bset->ineq[i][offset], cst);
2302 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2303 isl_int_swap(bset->ineq[i][offset], cst);
2304 if (r < 0)
2305 goto error;
2306 tab->con[r].is_nonneg = 1;
2307 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2308 goto error;
2310 done:
2311 isl_int_clear(cst);
2312 return tab;
2313 error:
2314 isl_int_clear(cst);
2315 isl_tab_free(tab);
2316 return NULL;
2319 /* Assuming "tab" is the tableau of a cone, check if the cone is
2320 * bounded, i.e., if it is empty or only contains the origin.
2322 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2324 int i;
2326 if (!tab)
2327 return -1;
2328 if (tab->empty)
2329 return 1;
2330 if (tab->n_dead == tab->n_col)
2331 return 1;
2333 for (;;) {
2334 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2335 struct isl_tab_var *var;
2336 int sgn;
2337 var = isl_tab_var_from_row(tab, i);
2338 if (!var->is_nonneg)
2339 continue;
2340 sgn = sign_of_max(tab, var);
2341 if (sgn < -1)
2342 return -1;
2343 if (sgn != 0)
2344 return 0;
2345 if (close_row(tab, var) < 0)
2346 return -1;
2347 break;
2349 if (tab->n_dead == tab->n_col)
2350 return 1;
2351 if (i == tab->n_row)
2352 return 0;
2356 int isl_tab_sample_is_integer(struct isl_tab *tab)
2358 int i;
2360 if (!tab)
2361 return -1;
2363 for (i = 0; i < tab->n_var; ++i) {
2364 int row;
2365 if (!tab->var[i].is_row)
2366 continue;
2367 row = tab->var[i].index;
2368 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2369 tab->mat->row[row][0]))
2370 return 0;
2372 return 1;
2375 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2377 int i;
2378 struct isl_vec *vec;
2380 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2381 if (!vec)
2382 return NULL;
2384 isl_int_set_si(vec->block.data[0], 1);
2385 for (i = 0; i < tab->n_var; ++i) {
2386 if (!tab->var[i].is_row)
2387 isl_int_set_si(vec->block.data[1 + i], 0);
2388 else {
2389 int row = tab->var[i].index;
2390 isl_int_divexact(vec->block.data[1 + i],
2391 tab->mat->row[row][1], tab->mat->row[row][0]);
2395 return vec;
2398 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2400 int i;
2401 struct isl_vec *vec;
2402 isl_int m;
2404 if (!tab)
2405 return NULL;
2407 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2408 if (!vec)
2409 return NULL;
2411 isl_int_init(m);
2413 isl_int_set_si(vec->block.data[0], 1);
2414 for (i = 0; i < tab->n_var; ++i) {
2415 int row;
2416 if (!tab->var[i].is_row) {
2417 isl_int_set_si(vec->block.data[1 + i], 0);
2418 continue;
2420 row = tab->var[i].index;
2421 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2422 isl_int_divexact(m, tab->mat->row[row][0], m);
2423 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2424 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2425 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2427 vec = isl_vec_normalize(vec);
2429 isl_int_clear(m);
2430 return vec;
2433 /* Update "bmap" based on the results of the tableau "tab".
2434 * In particular, implicit equalities are made explicit, redundant constraints
2435 * are removed and if the sample value happens to be integer, it is stored
2436 * in "bmap" (unless "bmap" already had an integer sample).
2438 * The tableau is assumed to have been created from "bmap" using
2439 * isl_tab_from_basic_map.
2441 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2442 struct isl_tab *tab)
2444 int i;
2445 unsigned n_eq;
2447 if (!bmap)
2448 return NULL;
2449 if (!tab)
2450 return bmap;
2452 n_eq = tab->n_eq;
2453 if (tab->empty)
2454 bmap = isl_basic_map_set_to_empty(bmap);
2455 else
2456 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2457 if (isl_tab_is_equality(tab, n_eq + i))
2458 isl_basic_map_inequality_to_equality(bmap, i);
2459 else if (isl_tab_is_redundant(tab, n_eq + i))
2460 isl_basic_map_drop_inequality(bmap, i);
2462 if (bmap->n_eq != n_eq)
2463 isl_basic_map_gauss(bmap, NULL);
2464 if (!tab->rational &&
2465 !bmap->sample && isl_tab_sample_is_integer(tab))
2466 bmap->sample = extract_integer_sample(tab);
2467 return bmap;
2470 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2471 struct isl_tab *tab)
2473 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2474 (struct isl_basic_map *)bset, tab);
2477 /* Given a non-negative variable "var", add a new non-negative variable
2478 * that is the opposite of "var", ensuring that var can only attain the
2479 * value zero.
2480 * If var = n/d is a row variable, then the new variable = -n/d.
2481 * If var is a column variables, then the new variable = -var.
2482 * If the new variable cannot attain non-negative values, then
2483 * the resulting tableau is empty.
2484 * Otherwise, we know the value will be zero and we close the row.
2486 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2488 unsigned r;
2489 isl_int *row;
2490 int sgn;
2491 unsigned off = 2 + tab->M;
2493 if (var->is_zero)
2494 return 0;
2495 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2496 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2498 if (isl_tab_extend_cons(tab, 1) < 0)
2499 return -1;
2501 r = tab->n_con;
2502 tab->con[r].index = tab->n_row;
2503 tab->con[r].is_row = 1;
2504 tab->con[r].is_nonneg = 0;
2505 tab->con[r].is_zero = 0;
2506 tab->con[r].is_redundant = 0;
2507 tab->con[r].frozen = 0;
2508 tab->con[r].negated = 0;
2509 tab->row_var[tab->n_row] = ~r;
2510 row = tab->mat->row[tab->n_row];
2512 if (var->is_row) {
2513 isl_int_set(row[0], tab->mat->row[var->index][0]);
2514 isl_seq_neg(row + 1,
2515 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2516 } else {
2517 isl_int_set_si(row[0], 1);
2518 isl_seq_clr(row + 1, 1 + tab->n_col);
2519 isl_int_set_si(row[off + var->index], -1);
2522 tab->n_row++;
2523 tab->n_con++;
2524 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2525 return -1;
2527 sgn = sign_of_max(tab, &tab->con[r]);
2528 if (sgn < -1)
2529 return -1;
2530 if (sgn < 0) {
2531 if (isl_tab_mark_empty(tab) < 0)
2532 return -1;
2533 return 0;
2535 tab->con[r].is_nonneg = 1;
2536 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2537 return -1;
2538 /* sgn == 0 */
2539 if (close_row(tab, &tab->con[r]) < 0)
2540 return -1;
2542 return 0;
2545 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2546 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2547 * by r' = r + 1 >= 0.
2548 * If r is a row variable, we simply increase the constant term by one
2549 * (taking into account the denominator).
2550 * If r is a column variable, then we need to modify each row that
2551 * refers to r = r' - 1 by substituting this equality, effectively
2552 * subtracting the coefficient of the column from the constant.
2553 * We should only do this if the minimum is manifestly unbounded,
2554 * however. Otherwise, we may end up with negative sample values
2555 * for non-negative variables.
2556 * So, if r is a column variable with a minimum that is not
2557 * manifestly unbounded, then we need to move it to a row.
2558 * However, the sample value of this row may be negative,
2559 * even after the relaxation, so we need to restore it.
2560 * We therefore prefer to pivot a column up to a row, if possible.
2562 int isl_tab_relax(struct isl_tab *tab, int con)
2564 struct isl_tab_var *var;
2566 if (!tab)
2567 return -1;
2569 var = &tab->con[con];
2571 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2572 isl_die(tab->mat->ctx, isl_error_invalid,
2573 "cannot relax redundant constraint", return -1);
2574 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2575 isl_die(tab->mat->ctx, isl_error_invalid,
2576 "cannot relax dead constraint", return -1);
2578 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2579 if (to_row(tab, var, 1) < 0)
2580 return -1;
2581 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2582 if (to_row(tab, var, -1) < 0)
2583 return -1;
2585 if (var->is_row) {
2586 isl_int_add(tab->mat->row[var->index][1],
2587 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2588 if (restore_row(tab, var) < 0)
2589 return -1;
2590 } else {
2591 int i;
2592 unsigned off = 2 + tab->M;
2594 for (i = 0; i < tab->n_row; ++i) {
2595 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2596 continue;
2597 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2598 tab->mat->row[i][off + var->index]);
2603 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2604 return -1;
2606 return 0;
2609 /* Remove the sign constraint from constraint "con".
2611 * If the constraint variable was originally marked non-negative,
2612 * then we make sure we mark it non-negative again during rollback.
2614 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2616 struct isl_tab_var *var;
2618 if (!tab)
2619 return -1;
2621 var = &tab->con[con];
2622 if (!var->is_nonneg)
2623 return 0;
2625 var->is_nonneg = 0;
2626 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2627 return -1;
2629 return 0;
2632 int isl_tab_select_facet(struct isl_tab *tab, int con)
2634 if (!tab)
2635 return -1;
2637 return cut_to_hyperplane(tab, &tab->con[con]);
2640 static int may_be_equality(struct isl_tab *tab, int row)
2642 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2643 : isl_int_lt(tab->mat->row[row][1],
2644 tab->mat->row[row][0]);
2647 /* Check for (near) equalities among the constraints.
2648 * A constraint is an equality if it is non-negative and if
2649 * its maximal value is either
2650 * - zero (in case of rational tableaus), or
2651 * - strictly less than 1 (in case of integer tableaus)
2653 * We first mark all non-redundant and non-dead variables that
2654 * are not frozen and not obviously not an equality.
2655 * Then we iterate over all marked variables if they can attain
2656 * any values larger than zero or at least one.
2657 * If the maximal value is zero, we mark any column variables
2658 * that appear in the row as being zero and mark the row as being redundant.
2659 * Otherwise, if the maximal value is strictly less than one (and the
2660 * tableau is integer), then we restrict the value to being zero
2661 * by adding an opposite non-negative variable.
2663 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2665 int i;
2666 unsigned n_marked;
2668 if (!tab)
2669 return -1;
2670 if (tab->empty)
2671 return 0;
2672 if (tab->n_dead == tab->n_col)
2673 return 0;
2675 n_marked = 0;
2676 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2677 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2678 var->marked = !var->frozen && var->is_nonneg &&
2679 may_be_equality(tab, i);
2680 if (var->marked)
2681 n_marked++;
2683 for (i = tab->n_dead; i < tab->n_col; ++i) {
2684 struct isl_tab_var *var = var_from_col(tab, i);
2685 var->marked = !var->frozen && var->is_nonneg;
2686 if (var->marked)
2687 n_marked++;
2689 while (n_marked) {
2690 struct isl_tab_var *var;
2691 int sgn;
2692 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2693 var = isl_tab_var_from_row(tab, i);
2694 if (var->marked)
2695 break;
2697 if (i == tab->n_row) {
2698 for (i = tab->n_dead; i < tab->n_col; ++i) {
2699 var = var_from_col(tab, i);
2700 if (var->marked)
2701 break;
2703 if (i == tab->n_col)
2704 break;
2706 var->marked = 0;
2707 n_marked--;
2708 sgn = sign_of_max(tab, var);
2709 if (sgn < 0)
2710 return -1;
2711 if (sgn == 0) {
2712 if (close_row(tab, var) < 0)
2713 return -1;
2714 } else if (!tab->rational && !at_least_one(tab, var)) {
2715 if (cut_to_hyperplane(tab, var) < 0)
2716 return -1;
2717 return isl_tab_detect_implicit_equalities(tab);
2719 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2720 var = isl_tab_var_from_row(tab, i);
2721 if (!var->marked)
2722 continue;
2723 if (may_be_equality(tab, i))
2724 continue;
2725 var->marked = 0;
2726 n_marked--;
2730 return 0;
2733 /* Update the element of row_var or col_var that corresponds to
2734 * constraint tab->con[i] to a move from position "old" to position "i".
2736 static int update_con_after_move(struct isl_tab *tab, int i, int old)
2738 int *p;
2739 int index;
2741 index = tab->con[i].index;
2742 if (index == -1)
2743 return 0;
2744 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
2745 if (p[index] != ~old)
2746 isl_die(tab->mat->ctx, isl_error_internal,
2747 "broken internal state", return -1);
2748 p[index] = ~i;
2750 return 0;
2753 /* Rotate the "n" constraints starting at "first" to the right,
2754 * putting the last constraint in the position of the first constraint.
2756 static int rotate_constraints(struct isl_tab *tab, int first, int n)
2758 int i, last;
2759 struct isl_tab_var var;
2761 if (n <= 1)
2762 return 0;
2764 last = first + n - 1;
2765 var = tab->con[last];
2766 for (i = last; i > first; --i) {
2767 tab->con[i] = tab->con[i - 1];
2768 if (update_con_after_move(tab, i, i - 1) < 0)
2769 return -1;
2771 tab->con[first] = var;
2772 if (update_con_after_move(tab, first, last) < 0)
2773 return -1;
2775 return 0;
2778 /* Make the equalities that are implicit in "bmap" but that have been
2779 * detected in the corresponding "tab" explicit in "bmap" and update
2780 * "tab" to reflect the new order of the constraints.
2782 * In particular, if inequality i is an implicit equality then
2783 * isl_basic_map_inequality_to_equality will move the inequality
2784 * in front of the other equality and it will move the last inequality
2785 * in the position of inequality i.
2786 * In the tableau, the inequalities of "bmap" are stored after the equalities
2787 * and so the original order
2789 * E E E E E A A A I B B B B L
2791 * is changed into
2793 * I E E E E E A A A L B B B B
2795 * where I is the implicit equality, the E are equalities,
2796 * the A inequalities before I, the B inequalities after I and
2797 * L the last inequality.
2798 * We therefore need to rotate to the right two sets of constraints,
2799 * those up to and including I and those after I.
2801 * If "tab" contains any constraints that are not in "bmap" then they
2802 * appear after those in "bmap" and they should be left untouched.
2804 * Note that this function leaves "bmap" in a temporary state
2805 * as it does not call isl_basic_map_gauss. Calling this function
2806 * is the responsibility of the caller.
2808 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
2809 __isl_take isl_basic_map *bmap)
2811 int i;
2813 if (!tab || !bmap)
2814 return isl_basic_map_free(bmap);
2815 if (tab->empty)
2816 return bmap;
2818 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2819 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
2820 continue;
2821 isl_basic_map_inequality_to_equality(bmap, i);
2822 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
2823 return isl_basic_map_free(bmap);
2824 if (rotate_constraints(tab, tab->n_eq + i + 1,
2825 bmap->n_ineq - i) < 0)
2826 return isl_basic_map_free(bmap);
2827 tab->n_eq++;
2830 return bmap;
2833 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2835 if (!tab)
2836 return -1;
2837 if (tab->rational) {
2838 int sgn = sign_of_min(tab, var);
2839 if (sgn < -1)
2840 return -1;
2841 return sgn >= 0;
2842 } else {
2843 int irred = isl_tab_min_at_most_neg_one(tab, var);
2844 if (irred < 0)
2845 return -1;
2846 return !irred;
2850 /* Check for (near) redundant constraints.
2851 * A constraint is redundant if it is non-negative and if
2852 * its minimal value (temporarily ignoring the non-negativity) is either
2853 * - zero (in case of rational tableaus), or
2854 * - strictly larger than -1 (in case of integer tableaus)
2856 * We first mark all non-redundant and non-dead variables that
2857 * are not frozen and not obviously negatively unbounded.
2858 * Then we iterate over all marked variables if they can attain
2859 * any values smaller than zero or at most negative one.
2860 * If not, we mark the row as being redundant (assuming it hasn't
2861 * been detected as being obviously redundant in the mean time).
2863 int isl_tab_detect_redundant(struct isl_tab *tab)
2865 int i;
2866 unsigned n_marked;
2868 if (!tab)
2869 return -1;
2870 if (tab->empty)
2871 return 0;
2872 if (tab->n_redundant == tab->n_row)
2873 return 0;
2875 n_marked = 0;
2876 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2877 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2878 var->marked = !var->frozen && var->is_nonneg;
2879 if (var->marked)
2880 n_marked++;
2882 for (i = tab->n_dead; i < tab->n_col; ++i) {
2883 struct isl_tab_var *var = var_from_col(tab, i);
2884 var->marked = !var->frozen && var->is_nonneg &&
2885 !min_is_manifestly_unbounded(tab, var);
2886 if (var->marked)
2887 n_marked++;
2889 while (n_marked) {
2890 struct isl_tab_var *var;
2891 int red;
2892 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2893 var = isl_tab_var_from_row(tab, i);
2894 if (var->marked)
2895 break;
2897 if (i == tab->n_row) {
2898 for (i = tab->n_dead; i < tab->n_col; ++i) {
2899 var = var_from_col(tab, i);
2900 if (var->marked)
2901 break;
2903 if (i == tab->n_col)
2904 break;
2906 var->marked = 0;
2907 n_marked--;
2908 red = con_is_redundant(tab, var);
2909 if (red < 0)
2910 return -1;
2911 if (red && !var->is_redundant)
2912 if (isl_tab_mark_redundant(tab, var->index) < 0)
2913 return -1;
2914 for (i = tab->n_dead; i < tab->n_col; ++i) {
2915 var = var_from_col(tab, i);
2916 if (!var->marked)
2917 continue;
2918 if (!min_is_manifestly_unbounded(tab, var))
2919 continue;
2920 var->marked = 0;
2921 n_marked--;
2925 return 0;
2928 int isl_tab_is_equality(struct isl_tab *tab, int con)
2930 int row;
2931 unsigned off;
2933 if (!tab)
2934 return -1;
2935 if (tab->con[con].is_zero)
2936 return 1;
2937 if (tab->con[con].is_redundant)
2938 return 0;
2939 if (!tab->con[con].is_row)
2940 return tab->con[con].index < tab->n_dead;
2942 row = tab->con[con].index;
2944 off = 2 + tab->M;
2945 return isl_int_is_zero(tab->mat->row[row][1]) &&
2946 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
2947 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2948 tab->n_col - tab->n_dead) == -1;
2951 /* Return the minimal value of the affine expression "f" with denominator
2952 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2953 * the expression cannot attain arbitrarily small values.
2954 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2955 * The return value reflects the nature of the result (empty, unbounded,
2956 * minimal value returned in *opt).
2958 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2959 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2960 unsigned flags)
2962 int r;
2963 enum isl_lp_result res = isl_lp_ok;
2964 struct isl_tab_var *var;
2965 struct isl_tab_undo *snap;
2967 if (!tab)
2968 return isl_lp_error;
2970 if (tab->empty)
2971 return isl_lp_empty;
2973 snap = isl_tab_snap(tab);
2974 r = isl_tab_add_row(tab, f);
2975 if (r < 0)
2976 return isl_lp_error;
2977 var = &tab->con[r];
2978 for (;;) {
2979 int row, col;
2980 find_pivot(tab, var, var, -1, &row, &col);
2981 if (row == var->index) {
2982 res = isl_lp_unbounded;
2983 break;
2985 if (row == -1)
2986 break;
2987 if (isl_tab_pivot(tab, row, col) < 0)
2988 return isl_lp_error;
2990 isl_int_mul(tab->mat->row[var->index][0],
2991 tab->mat->row[var->index][0], denom);
2992 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2993 int i;
2995 isl_vec_free(tab->dual);
2996 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2997 if (!tab->dual)
2998 return isl_lp_error;
2999 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
3000 for (i = 0; i < tab->n_con; ++i) {
3001 int pos;
3002 if (tab->con[i].is_row) {
3003 isl_int_set_si(tab->dual->el[1 + i], 0);
3004 continue;
3006 pos = 2 + tab->M + tab->con[i].index;
3007 if (tab->con[i].negated)
3008 isl_int_neg(tab->dual->el[1 + i],
3009 tab->mat->row[var->index][pos]);
3010 else
3011 isl_int_set(tab->dual->el[1 + i],
3012 tab->mat->row[var->index][pos]);
3015 if (opt && res == isl_lp_ok) {
3016 if (opt_denom) {
3017 isl_int_set(*opt, tab->mat->row[var->index][1]);
3018 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3019 } else
3020 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
3021 tab->mat->row[var->index][0]);
3023 if (isl_tab_rollback(tab, snap) < 0)
3024 return isl_lp_error;
3025 return res;
3028 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3030 if (!tab)
3031 return -1;
3032 if (tab->con[con].is_zero)
3033 return 0;
3034 if (tab->con[con].is_redundant)
3035 return 1;
3036 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3039 /* Take a snapshot of the tableau that can be restored by s call to
3040 * isl_tab_rollback.
3042 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3044 if (!tab)
3045 return NULL;
3046 tab->need_undo = 1;
3047 return tab->top;
3050 /* Undo the operation performed by isl_tab_relax.
3052 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
3053 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3055 unsigned off = 2 + tab->M;
3057 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3058 if (to_row(tab, var, 1) < 0)
3059 return -1;
3061 if (var->is_row) {
3062 isl_int_sub(tab->mat->row[var->index][1],
3063 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3064 if (var->is_nonneg) {
3065 int sgn = restore_row(tab, var);
3066 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
3068 } else {
3069 int i;
3071 for (i = 0; i < tab->n_row; ++i) {
3072 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3073 continue;
3074 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3075 tab->mat->row[i][off + var->index]);
3080 return 0;
3083 /* Undo the operation performed by isl_tab_unrestrict.
3085 * In particular, mark the variable as being non-negative and make
3086 * sure the sample value respects this constraint.
3088 static int ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3090 var->is_nonneg = 1;
3092 if (var->is_row && restore_row(tab, var) < -1)
3093 return -1;
3095 return 0;
3098 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3099 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3101 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3102 switch (undo->type) {
3103 case isl_tab_undo_nonneg:
3104 var->is_nonneg = 0;
3105 break;
3106 case isl_tab_undo_redundant:
3107 var->is_redundant = 0;
3108 tab->n_redundant--;
3109 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
3110 break;
3111 case isl_tab_undo_freeze:
3112 var->frozen = 0;
3113 break;
3114 case isl_tab_undo_zero:
3115 var->is_zero = 0;
3116 if (!var->is_row)
3117 tab->n_dead--;
3118 break;
3119 case isl_tab_undo_allocate:
3120 if (undo->u.var_index >= 0) {
3121 isl_assert(tab->mat->ctx, !var->is_row, return -1);
3122 return drop_col(tab, var->index);
3124 if (!var->is_row) {
3125 if (!max_is_manifestly_unbounded(tab, var)) {
3126 if (to_row(tab, var, 1) < 0)
3127 return -1;
3128 } else if (!min_is_manifestly_unbounded(tab, var)) {
3129 if (to_row(tab, var, -1) < 0)
3130 return -1;
3131 } else
3132 if (to_row(tab, var, 0) < 0)
3133 return -1;
3135 return drop_row(tab, var->index);
3136 case isl_tab_undo_relax:
3137 return unrelax(tab, var);
3138 case isl_tab_undo_unrestrict:
3139 return ununrestrict(tab, var);
3140 default:
3141 isl_die(tab->mat->ctx, isl_error_internal,
3142 "perform_undo_var called on invalid undo record",
3143 return -1);
3146 return 0;
3149 /* Restore the tableau to the state where the basic variables
3150 * are those in "col_var".
3151 * We first construct a list of variables that are currently in
3152 * the basis, but shouldn't. Then we iterate over all variables
3153 * that should be in the basis and for each one that is currently
3154 * not in the basis, we exchange it with one of the elements of the
3155 * list constructed before.
3156 * We can always find an appropriate variable to pivot with because
3157 * the current basis is mapped to the old basis by a non-singular
3158 * matrix and so we can never end up with a zero row.
3160 static int restore_basis(struct isl_tab *tab, int *col_var)
3162 int i, j;
3163 int n_extra = 0;
3164 int *extra = NULL; /* current columns that contain bad stuff */
3165 unsigned off = 2 + tab->M;
3167 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3168 if (tab->n_col && !extra)
3169 goto error;
3170 for (i = 0; i < tab->n_col; ++i) {
3171 for (j = 0; j < tab->n_col; ++j)
3172 if (tab->col_var[i] == col_var[j])
3173 break;
3174 if (j < tab->n_col)
3175 continue;
3176 extra[n_extra++] = i;
3178 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3179 struct isl_tab_var *var;
3180 int row;
3182 for (j = 0; j < tab->n_col; ++j)
3183 if (col_var[i] == tab->col_var[j])
3184 break;
3185 if (j < tab->n_col)
3186 continue;
3187 var = var_from_index(tab, col_var[i]);
3188 row = var->index;
3189 for (j = 0; j < n_extra; ++j)
3190 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3191 break;
3192 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3193 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3194 goto error;
3195 extra[j] = extra[--n_extra];
3198 free(extra);
3199 return 0;
3200 error:
3201 free(extra);
3202 return -1;
3205 /* Remove all samples with index n or greater, i.e., those samples
3206 * that were added since we saved this number of samples in
3207 * isl_tab_save_samples.
3209 static void drop_samples_since(struct isl_tab *tab, int n)
3211 int i;
3213 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3214 if (tab->sample_index[i] < n)
3215 continue;
3217 if (i != tab->n_sample - 1) {
3218 int t = tab->sample_index[tab->n_sample-1];
3219 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3220 tab->sample_index[i] = t;
3221 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3223 tab->n_sample--;
3227 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3228 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3230 switch (undo->type) {
3231 case isl_tab_undo_rational:
3232 tab->rational = 0;
3233 break;
3234 case isl_tab_undo_empty:
3235 tab->empty = 0;
3236 break;
3237 case isl_tab_undo_nonneg:
3238 case isl_tab_undo_redundant:
3239 case isl_tab_undo_freeze:
3240 case isl_tab_undo_zero:
3241 case isl_tab_undo_allocate:
3242 case isl_tab_undo_relax:
3243 case isl_tab_undo_unrestrict:
3244 return perform_undo_var(tab, undo);
3245 case isl_tab_undo_bmap_eq:
3246 return isl_basic_map_free_equality(tab->bmap, 1);
3247 case isl_tab_undo_bmap_ineq:
3248 return isl_basic_map_free_inequality(tab->bmap, 1);
3249 case isl_tab_undo_bmap_div:
3250 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3251 return -1;
3252 if (tab->samples)
3253 tab->samples->n_col--;
3254 break;
3255 case isl_tab_undo_saved_basis:
3256 if (restore_basis(tab, undo->u.col_var) < 0)
3257 return -1;
3258 break;
3259 case isl_tab_undo_drop_sample:
3260 tab->n_outside--;
3261 break;
3262 case isl_tab_undo_saved_samples:
3263 drop_samples_since(tab, undo->u.n);
3264 break;
3265 case isl_tab_undo_callback:
3266 return undo->u.callback->run(undo->u.callback);
3267 default:
3268 isl_assert(tab->mat->ctx, 0, return -1);
3270 return 0;
3273 /* Return the tableau to the state it was in when the snapshot "snap"
3274 * was taken.
3276 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3278 struct isl_tab_undo *undo, *next;
3280 if (!tab)
3281 return -1;
3283 tab->in_undo = 1;
3284 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3285 next = undo->next;
3286 if (undo == snap)
3287 break;
3288 if (perform_undo(tab, undo) < 0) {
3289 tab->top = undo;
3290 free_undo(tab);
3291 tab->in_undo = 0;
3292 return -1;
3294 free_undo_record(undo);
3296 tab->in_undo = 0;
3297 tab->top = undo;
3298 if (!undo)
3299 return -1;
3300 return 0;
3303 /* The given row "row" represents an inequality violated by all
3304 * points in the tableau. Check for some special cases of such
3305 * separating constraints.
3306 * In particular, if the row has been reduced to the constant -1,
3307 * then we know the inequality is adjacent (but opposite) to
3308 * an equality in the tableau.
3309 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3310 * of the tableau and c a positive constant, then the inequality
3311 * is adjacent (but opposite) to the inequality r'.
3313 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3315 int pos;
3316 unsigned off = 2 + tab->M;
3318 if (tab->rational)
3319 return isl_ineq_separate;
3321 if (!isl_int_is_one(tab->mat->row[row][0]))
3322 return isl_ineq_separate;
3324 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3325 tab->n_col - tab->n_dead);
3326 if (pos == -1) {
3327 if (isl_int_is_negone(tab->mat->row[row][1]))
3328 return isl_ineq_adj_eq;
3329 else
3330 return isl_ineq_separate;
3333 if (!isl_int_eq(tab->mat->row[row][1],
3334 tab->mat->row[row][off + tab->n_dead + pos]))
3335 return isl_ineq_separate;
3337 pos = isl_seq_first_non_zero(
3338 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3339 tab->n_col - tab->n_dead - pos - 1);
3341 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3344 /* Check the effect of inequality "ineq" on the tableau "tab".
3345 * The result may be
3346 * isl_ineq_redundant: satisfied by all points in the tableau
3347 * isl_ineq_separate: satisfied by no point in the tableau
3348 * isl_ineq_cut: satisfied by some by not all points
3349 * isl_ineq_adj_eq: adjacent to an equality
3350 * isl_ineq_adj_ineq: adjacent to an inequality.
3352 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3354 enum isl_ineq_type type = isl_ineq_error;
3355 struct isl_tab_undo *snap = NULL;
3356 int con;
3357 int row;
3359 if (!tab)
3360 return isl_ineq_error;
3362 if (isl_tab_extend_cons(tab, 1) < 0)
3363 return isl_ineq_error;
3365 snap = isl_tab_snap(tab);
3367 con = isl_tab_add_row(tab, ineq);
3368 if (con < 0)
3369 goto error;
3371 row = tab->con[con].index;
3372 if (isl_tab_row_is_redundant(tab, row))
3373 type = isl_ineq_redundant;
3374 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3375 (tab->rational ||
3376 isl_int_abs_ge(tab->mat->row[row][1],
3377 tab->mat->row[row][0]))) {
3378 int nonneg = at_least_zero(tab, &tab->con[con]);
3379 if (nonneg < 0)
3380 goto error;
3381 if (nonneg)
3382 type = isl_ineq_cut;
3383 else
3384 type = separation_type(tab, row);
3385 } else {
3386 int red = con_is_redundant(tab, &tab->con[con]);
3387 if (red < 0)
3388 goto error;
3389 if (!red)
3390 type = isl_ineq_cut;
3391 else
3392 type = isl_ineq_redundant;
3395 if (isl_tab_rollback(tab, snap))
3396 return isl_ineq_error;
3397 return type;
3398 error:
3399 return isl_ineq_error;
3402 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3404 bmap = isl_basic_map_cow(bmap);
3405 if (!tab || !bmap)
3406 goto error;
3408 if (tab->empty) {
3409 bmap = isl_basic_map_set_to_empty(bmap);
3410 if (!bmap)
3411 goto error;
3412 tab->bmap = bmap;
3413 return 0;
3416 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
3417 isl_assert(tab->mat->ctx,
3418 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
3420 tab->bmap = bmap;
3422 return 0;
3423 error:
3424 isl_basic_map_free(bmap);
3425 return -1;
3428 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3430 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3433 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3435 if (!tab)
3436 return NULL;
3438 return (isl_basic_set *)tab->bmap;
3441 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
3442 FILE *out, int indent)
3444 unsigned r, c;
3445 int i;
3447 if (!tab) {
3448 fprintf(out, "%*snull tab\n", indent, "");
3449 return;
3451 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3452 tab->n_redundant, tab->n_dead);
3453 if (tab->rational)
3454 fprintf(out, ", rational");
3455 if (tab->empty)
3456 fprintf(out, ", empty");
3457 fprintf(out, "\n");
3458 fprintf(out, "%*s[", indent, "");
3459 for (i = 0; i < tab->n_var; ++i) {
3460 if (i)
3461 fprintf(out, (i == tab->n_param ||
3462 i == tab->n_var - tab->n_div) ? "; "
3463 : ", ");
3464 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3465 tab->var[i].index,
3466 tab->var[i].is_zero ? " [=0]" :
3467 tab->var[i].is_redundant ? " [R]" : "");
3469 fprintf(out, "]\n");
3470 fprintf(out, "%*s[", indent, "");
3471 for (i = 0; i < tab->n_con; ++i) {
3472 if (i)
3473 fprintf(out, ", ");
3474 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3475 tab->con[i].index,
3476 tab->con[i].is_zero ? " [=0]" :
3477 tab->con[i].is_redundant ? " [R]" : "");
3479 fprintf(out, "]\n");
3480 fprintf(out, "%*s[", indent, "");
3481 for (i = 0; i < tab->n_row; ++i) {
3482 const char *sign = "";
3483 if (i)
3484 fprintf(out, ", ");
3485 if (tab->row_sign) {
3486 if (tab->row_sign[i] == isl_tab_row_unknown)
3487 sign = "?";
3488 else if (tab->row_sign[i] == isl_tab_row_neg)
3489 sign = "-";
3490 else if (tab->row_sign[i] == isl_tab_row_pos)
3491 sign = "+";
3492 else
3493 sign = "+-";
3495 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3496 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3498 fprintf(out, "]\n");
3499 fprintf(out, "%*s[", indent, "");
3500 for (i = 0; i < tab->n_col; ++i) {
3501 if (i)
3502 fprintf(out, ", ");
3503 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3504 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3506 fprintf(out, "]\n");
3507 r = tab->mat->n_row;
3508 tab->mat->n_row = tab->n_row;
3509 c = tab->mat->n_col;
3510 tab->mat->n_col = 2 + tab->M + tab->n_col;
3511 isl_mat_print_internal(tab->mat, out, indent);
3512 tab->mat->n_row = r;
3513 tab->mat->n_col = c;
3514 if (tab->bmap)
3515 isl_basic_map_print_internal(tab->bmap, out, indent);
3518 void isl_tab_dump(__isl_keep struct isl_tab *tab)
3520 isl_tab_print_internal(tab, stderr, 0);