3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that is requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
208 C<isl> is released under the MIT license.
212 Permission is hereby granted, free of charge, to any person obtaining a copy of
213 this software and associated documentation files (the "Software"), to deal in
214 the Software without restriction, including without limitation the rights to
215 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
216 of the Software, and to permit persons to whom the Software is furnished to do
217 so, subject to the following conditions:
219 The above copyright notice and this permission notice shall be included in all
220 copies or substantial portions of the Software.
222 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
223 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
224 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
225 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
226 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
227 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
232 Note that C<isl> currently requires C<GMP>, which is released
233 under the GNU Lesser General Public License (LGPL). This means
234 that code linked against C<isl> is also linked against LGPL code.
238 The source of C<isl> can be obtained either as a tarball
239 or from the git repository. Both are available from
240 L<http://freshmeat.net/projects/isl/>.
241 The installation process depends on how you obtained
244 =head2 Installation from the git repository
248 =item 1 Clone or update the repository
250 The first time the source is obtained, you need to clone
253 git clone git://repo.or.cz/isl.git
255 To obtain updates, you need to pull in the latest changes
259 =item 2 Generate C<configure>
265 After performing the above steps, continue
266 with the L<Common installation instructions>.
268 =head2 Common installation instructions
272 =item 1 Obtain C<GMP>
274 Building C<isl> requires C<GMP>, including its headers files.
275 Your distribution may not provide these header files by default
276 and you may need to install a package called C<gmp-devel> or something
277 similar. Alternatively, C<GMP> can be built from
278 source, available from L<http://gmplib.org/>.
282 C<isl> uses the standard C<autoconf> C<configure> script.
287 optionally followed by some configure options.
288 A complete list of options can be obtained by running
292 Below we discuss some of the more common options.
298 Installation prefix for C<isl>
300 =item C<--with-gmp-prefix>
302 Installation prefix for C<GMP> (architecture-independent files).
304 =item C<--with-gmp-exec-prefix>
306 Installation prefix for C<GMP> (architecture-dependent files).
314 =item 4 Install (optional)
320 =head1 Integer Set Library
322 =head2 Initialization
324 All manipulations of integer sets and relations occur within
325 the context of an C<isl_ctx>.
326 A given C<isl_ctx> can only be used within a single thread.
327 All arguments of a function are required to have been allocated
328 within the same context.
329 There are currently no functions available for moving an object
330 from one C<isl_ctx> to another C<isl_ctx>. This means that
331 there is currently no way of safely moving an object from one
332 thread to another, unless the whole C<isl_ctx> is moved.
334 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
335 freed using C<isl_ctx_free>.
336 All objects allocated within an C<isl_ctx> should be freed
337 before the C<isl_ctx> itself is freed.
339 isl_ctx *isl_ctx_alloc();
340 void isl_ctx_free(isl_ctx *ctx);
342 The user can impose a bound on the number of low-level I<operations>
343 that can be performed by an C<isl_ctx>. This bound can be set and
344 retrieved using the following functions. A bound of zero means that
345 no bound is imposed. The number of operations performed can be
346 reset using C<isl_ctx_reset_operations>. Note that the number
347 of low-level operations needed to perform a high-level computation
348 may differ significantly across different versions
349 of C<isl>, but it should be the same across different platforms
350 for the same version of C<isl>.
352 void isl_ctx_set_max_operations(isl_ctx *ctx,
353 unsigned long max_operations);
354 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
355 void isl_ctx_reset_operations(isl_ctx *ctx);
359 An C<isl_val> represents an integer value, a rational value
360 or one of three special values, infinity, negative infinity and NaN.
361 Some predefined values can be created using the following functions.
364 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
365 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
366 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
367 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
368 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
370 Specific integer values can be created using the following functions.
373 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
375 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
377 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
378 size_t n, size_t size, const void *chunks);
380 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
381 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
382 The least significant digit is assumed to be stored first.
384 Value objects can be copied and freed using the following functions.
387 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
388 void *isl_val_free(__isl_take isl_val *v);
390 They can be inspected using the following functions.
393 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
394 long isl_val_get_num_si(__isl_keep isl_val *v);
395 long isl_val_get_den_si(__isl_keep isl_val *v);
396 double isl_val_get_d(__isl_keep isl_val *v);
397 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
399 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
400 size_t size, void *chunks);
402 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
403 of C<size> bytes needed to store the absolute value of the
405 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
406 which is assumed to have been preallocated by the caller.
407 The least significant digit is stored first.
408 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
409 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
410 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
412 An C<isl_val> can be modified using the following function.
415 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
418 The following unary properties are defined on C<isl_val>s.
421 int isl_val_sgn(__isl_keep isl_val *v);
422 int isl_val_is_zero(__isl_keep isl_val *v);
423 int isl_val_is_one(__isl_keep isl_val *v);
424 int isl_val_is_negone(__isl_keep isl_val *v);
425 int isl_val_is_nonneg(__isl_keep isl_val *v);
426 int isl_val_is_nonpos(__isl_keep isl_val *v);
427 int isl_val_is_pos(__isl_keep isl_val *v);
428 int isl_val_is_neg(__isl_keep isl_val *v);
429 int isl_val_is_int(__isl_keep isl_val *v);
430 int isl_val_is_rat(__isl_keep isl_val *v);
431 int isl_val_is_nan(__isl_keep isl_val *v);
432 int isl_val_is_infty(__isl_keep isl_val *v);
433 int isl_val_is_neginfty(__isl_keep isl_val *v);
435 Note that the sign of NaN is undefined.
437 The following binary properties are defined on pairs of C<isl_val>s.
440 int isl_val_lt(__isl_keep isl_val *v1,
441 __isl_keep isl_val *v2);
442 int isl_val_le(__isl_keep isl_val *v1,
443 __isl_keep isl_val *v2);
444 int isl_val_gt(__isl_keep isl_val *v1,
445 __isl_keep isl_val *v2);
446 int isl_val_ge(__isl_keep isl_val *v1,
447 __isl_keep isl_val *v2);
448 int isl_val_eq(__isl_keep isl_val *v1,
449 __isl_keep isl_val *v2);
450 int isl_val_ne(__isl_keep isl_val *v1,
451 __isl_keep isl_val *v2);
453 For integer C<isl_val>s we additionally have the following binary property.
456 int isl_val_is_divisible_by(__isl_keep isl_val *v1,
457 __isl_keep isl_val *v2);
459 An C<isl_val> can also be compared to an integer using the following
460 function. The result is undefined for NaN.
463 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
465 The following unary operations are available on C<isl_val>s.
468 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
469 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
470 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
471 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
472 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
474 The following binary operations are available on C<isl_val>s.
477 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
478 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
479 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
480 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
481 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
482 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
483 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
484 __isl_take isl_val *v2);
485 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
486 __isl_take isl_val *v2);
487 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
488 __isl_take isl_val *v2);
489 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
491 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
492 __isl_take isl_val *v2);
493 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
495 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
496 __isl_take isl_val *v2);
497 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
499 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
500 __isl_take isl_val *v2);
502 On integer values, we additionally have the following operations.
505 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
506 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
507 __isl_take isl_val *v2);
508 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
509 __isl_take isl_val *v2);
510 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
511 __isl_take isl_val *v2, __isl_give isl_val **x,
512 __isl_give isl_val **y);
514 The function C<isl_val_gcdext> returns the greatest common divisor g
515 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
516 that C<*x> * C<v1> + C<*y> * C<v2> = g.
518 A value can be read from input using
521 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
524 A value can be printed using
527 __isl_give isl_printer *isl_printer_print_val(
528 __isl_take isl_printer *p, __isl_keep isl_val *v);
530 =head3 GMP specific functions
532 These functions are only available if C<isl> has been compiled with C<GMP>
535 Specific integer and rational values can be created from C<GMP> values using
536 the following functions.
538 #include <isl/val_gmp.h>
539 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
541 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
542 const mpz_t n, const mpz_t d);
544 The numerator and denominator of a rational value can be extracted as
545 C<GMP> values using the following functions.
547 #include <isl/val_gmp.h>
548 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
549 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
551 =head2 Sets and Relations
553 C<isl> uses six types of objects for representing sets and relations,
554 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
555 C<isl_union_set> and C<isl_union_map>.
556 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
557 can be described as a conjunction of affine constraints, while
558 C<isl_set> and C<isl_map> represent unions of
559 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
560 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
561 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
562 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
563 where spaces are considered different if they have a different number
564 of dimensions and/or different names (see L<"Spaces">).
565 The difference between sets and relations (maps) is that sets have
566 one set of variables, while relations have two sets of variables,
567 input variables and output variables.
569 =head2 Memory Management
571 Since a high-level operation on sets and/or relations usually involves
572 several substeps and since the user is usually not interested in
573 the intermediate results, most functions that return a new object
574 will also release all the objects passed as arguments.
575 If the user still wants to use one or more of these arguments
576 after the function call, she should pass along a copy of the
577 object rather than the object itself.
578 The user is then responsible for making sure that the original
579 object gets used somewhere else or is explicitly freed.
581 The arguments and return values of all documented functions are
582 annotated to make clear which arguments are released and which
583 arguments are preserved. In particular, the following annotations
590 C<__isl_give> means that a new object is returned.
591 The user should make sure that the returned pointer is
592 used exactly once as a value for an C<__isl_take> argument.
593 In between, it can be used as a value for as many
594 C<__isl_keep> arguments as the user likes.
595 There is one exception, and that is the case where the
596 pointer returned is C<NULL>. Is this case, the user
597 is free to use it as an C<__isl_take> argument or not.
601 C<__isl_take> means that the object the argument points to
602 is taken over by the function and may no longer be used
603 by the user as an argument to any other function.
604 The pointer value must be one returned by a function
605 returning an C<__isl_give> pointer.
606 If the user passes in a C<NULL> value, then this will
607 be treated as an error in the sense that the function will
608 not perform its usual operation. However, it will still
609 make sure that all the other C<__isl_take> arguments
614 C<__isl_keep> means that the function will only use the object
615 temporarily. After the function has finished, the user
616 can still use it as an argument to other functions.
617 A C<NULL> value will be treated in the same way as
618 a C<NULL> value for an C<__isl_take> argument.
622 =head2 Error Handling
624 C<isl> supports different ways to react in case a runtime error is triggered.
625 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
626 with two maps that have incompatible spaces. There are three possible ways
627 to react on error: to warn, to continue or to abort.
629 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
630 the last error in the corresponding C<isl_ctx> and the function in which the
631 error was triggered returns C<NULL>. An error does not corrupt internal state,
632 such that isl can continue to be used. C<isl> also provides functions to
633 read the last error and to reset the memory that stores the last error. The
634 last error is only stored for information purposes. Its presence does not
635 change the behavior of C<isl>. Hence, resetting an error is not required to
636 continue to use isl, but only to observe new errors.
639 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
640 void isl_ctx_reset_error(isl_ctx *ctx);
642 Another option is to continue on error. This is similar to warn on error mode,
643 except that C<isl> does not print any warning. This allows a program to
644 implement its own error reporting.
646 The last option is to directly abort the execution of the program from within
647 the isl library. This makes it obviously impossible to recover from an error,
648 but it allows to directly spot the error location. By aborting on error,
649 debuggers break at the location the error occurred and can provide a stack
650 trace. Other tools that automatically provide stack traces on abort or that do
651 not want to continue execution after an error was triggered may also prefer to
654 The on error behavior of isl can be specified by calling
655 C<isl_options_set_on_error> or by setting the command line option
656 C<--isl-on-error>. Valid arguments for the function call are
657 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
658 choices for the command line option are C<warn>, C<continue> and C<abort>.
659 It is also possible to query the current error mode.
661 #include <isl/options.h>
662 int isl_options_set_on_error(isl_ctx *ctx, int val);
663 int isl_options_get_on_error(isl_ctx *ctx);
667 Identifiers are used to identify both individual dimensions
668 and tuples of dimensions. They consist of an optional name and an optional
669 user pointer. The name and the user pointer cannot both be C<NULL>, however.
670 Identifiers with the same name but different pointer values
671 are considered to be distinct.
672 Similarly, identifiers with different names but the same pointer value
673 are also considered to be distinct.
674 Equal identifiers are represented using the same object.
675 Pairs of identifiers can therefore be tested for equality using the
677 Identifiers can be constructed, copied, freed, inspected and printed
678 using the following functions.
681 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
682 __isl_keep const char *name, void *user);
683 __isl_give isl_id *isl_id_set_free_user(
684 __isl_take isl_id *id,
685 __isl_give void (*free_user)(void *user));
686 __isl_give isl_id *isl_id_copy(isl_id *id);
687 void *isl_id_free(__isl_take isl_id *id);
689 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
690 void *isl_id_get_user(__isl_keep isl_id *id);
691 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
693 __isl_give isl_printer *isl_printer_print_id(
694 __isl_take isl_printer *p, __isl_keep isl_id *id);
696 The callback set by C<isl_id_set_free_user> is called on the user
697 pointer when the last reference to the C<isl_id> is freed.
698 Note that C<isl_id_get_name> returns a pointer to some internal
699 data structure, so the result can only be used while the
700 corresponding C<isl_id> is alive.
704 Whenever a new set, relation or similiar object is created from scratch,
705 the space in which it lives needs to be specified using an C<isl_space>.
706 Each space involves zero or more parameters and zero, one or two
707 tuples of set or input/output dimensions. The parameters and dimensions
708 are identified by an C<isl_dim_type> and a position.
709 The type C<isl_dim_param> refers to parameters,
710 the type C<isl_dim_set> refers to set dimensions (for spaces
711 with a single tuple of dimensions) and the types C<isl_dim_in>
712 and C<isl_dim_out> refer to input and output dimensions
713 (for spaces with two tuples of dimensions).
714 Local spaces (see L</"Local Spaces">) also contain dimensions
715 of type C<isl_dim_div>.
716 Note that parameters are only identified by their position within
717 a given object. Across different objects, parameters are (usually)
718 identified by their names or identifiers. Only unnamed parameters
719 are identified by their positions across objects. The use of unnamed
720 parameters is discouraged.
722 #include <isl/space.h>
723 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
724 unsigned nparam, unsigned n_in, unsigned n_out);
725 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
727 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
728 unsigned nparam, unsigned dim);
729 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
730 void *isl_space_free(__isl_take isl_space *space);
731 unsigned isl_space_dim(__isl_keep isl_space *space,
732 enum isl_dim_type type);
734 The space used for creating a parameter domain
735 needs to be created using C<isl_space_params_alloc>.
736 For other sets, the space
737 needs to be created using C<isl_space_set_alloc>, while
738 for a relation, the space
739 needs to be created using C<isl_space_alloc>.
740 C<isl_space_dim> can be used
741 to find out the number of dimensions of each type in
742 a space, where type may be
743 C<isl_dim_param>, C<isl_dim_in> (only for relations),
744 C<isl_dim_out> (only for relations), C<isl_dim_set>
745 (only for sets) or C<isl_dim_all>.
747 To check whether a given space is that of a set or a map
748 or whether it is a parameter space, use these functions:
750 #include <isl/space.h>
751 int isl_space_is_params(__isl_keep isl_space *space);
752 int isl_space_is_set(__isl_keep isl_space *space);
753 int isl_space_is_map(__isl_keep isl_space *space);
755 Spaces can be compared using the following functions:
757 #include <isl/space.h>
758 int isl_space_is_equal(__isl_keep isl_space *space1,
759 __isl_keep isl_space *space2);
760 int isl_space_is_domain(__isl_keep isl_space *space1,
761 __isl_keep isl_space *space2);
762 int isl_space_is_range(__isl_keep isl_space *space1,
763 __isl_keep isl_space *space2);
765 C<isl_space_is_domain> checks whether the first argument is equal
766 to the domain of the second argument. This requires in particular that
767 the first argument is a set space and that the second argument
770 It is often useful to create objects that live in the
771 same space as some other object. This can be accomplished
772 by creating the new objects
773 (see L<Creating New Sets and Relations> or
774 L<Creating New (Piecewise) Quasipolynomials>) based on the space
775 of the original object.
778 __isl_give isl_space *isl_basic_set_get_space(
779 __isl_keep isl_basic_set *bset);
780 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
782 #include <isl/union_set.h>
783 __isl_give isl_space *isl_union_set_get_space(
784 __isl_keep isl_union_set *uset);
787 __isl_give isl_space *isl_basic_map_get_space(
788 __isl_keep isl_basic_map *bmap);
789 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
791 #include <isl/union_map.h>
792 __isl_give isl_space *isl_union_map_get_space(
793 __isl_keep isl_union_map *umap);
795 #include <isl/constraint.h>
796 __isl_give isl_space *isl_constraint_get_space(
797 __isl_keep isl_constraint *constraint);
799 #include <isl/polynomial.h>
800 __isl_give isl_space *isl_qpolynomial_get_domain_space(
801 __isl_keep isl_qpolynomial *qp);
802 __isl_give isl_space *isl_qpolynomial_get_space(
803 __isl_keep isl_qpolynomial *qp);
804 __isl_give isl_space *isl_qpolynomial_fold_get_space(
805 __isl_keep isl_qpolynomial_fold *fold);
806 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
807 __isl_keep isl_pw_qpolynomial *pwqp);
808 __isl_give isl_space *isl_pw_qpolynomial_get_space(
809 __isl_keep isl_pw_qpolynomial *pwqp);
810 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
811 __isl_keep isl_pw_qpolynomial_fold *pwf);
812 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
813 __isl_keep isl_pw_qpolynomial_fold *pwf);
814 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
815 __isl_keep isl_union_pw_qpolynomial *upwqp);
816 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
817 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
820 __isl_give isl_space *isl_multi_val_get_space(
821 __isl_keep isl_multi_val *mv);
824 __isl_give isl_space *isl_aff_get_domain_space(
825 __isl_keep isl_aff *aff);
826 __isl_give isl_space *isl_aff_get_space(
827 __isl_keep isl_aff *aff);
828 __isl_give isl_space *isl_pw_aff_get_domain_space(
829 __isl_keep isl_pw_aff *pwaff);
830 __isl_give isl_space *isl_pw_aff_get_space(
831 __isl_keep isl_pw_aff *pwaff);
832 __isl_give isl_space *isl_multi_aff_get_domain_space(
833 __isl_keep isl_multi_aff *maff);
834 __isl_give isl_space *isl_multi_aff_get_space(
835 __isl_keep isl_multi_aff *maff);
836 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
837 __isl_keep isl_pw_multi_aff *pma);
838 __isl_give isl_space *isl_pw_multi_aff_get_space(
839 __isl_keep isl_pw_multi_aff *pma);
840 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
841 __isl_keep isl_union_pw_multi_aff *upma);
842 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
843 __isl_keep isl_multi_pw_aff *mpa);
844 __isl_give isl_space *isl_multi_pw_aff_get_space(
845 __isl_keep isl_multi_pw_aff *mpa);
847 #include <isl/point.h>
848 __isl_give isl_space *isl_point_get_space(
849 __isl_keep isl_point *pnt);
851 The identifiers or names of the individual dimensions may be set or read off
852 using the following functions.
854 #include <isl/space.h>
855 __isl_give isl_space *isl_space_set_dim_id(
856 __isl_take isl_space *space,
857 enum isl_dim_type type, unsigned pos,
858 __isl_take isl_id *id);
859 int isl_space_has_dim_id(__isl_keep isl_space *space,
860 enum isl_dim_type type, unsigned pos);
861 __isl_give isl_id *isl_space_get_dim_id(
862 __isl_keep isl_space *space,
863 enum isl_dim_type type, unsigned pos);
864 __isl_give isl_space *isl_space_set_dim_name(
865 __isl_take isl_space *space,
866 enum isl_dim_type type, unsigned pos,
867 __isl_keep const char *name);
868 int isl_space_has_dim_name(__isl_keep isl_space *space,
869 enum isl_dim_type type, unsigned pos);
870 __isl_keep const char *isl_space_get_dim_name(
871 __isl_keep isl_space *space,
872 enum isl_dim_type type, unsigned pos);
874 Note that C<isl_space_get_name> returns a pointer to some internal
875 data structure, so the result can only be used while the
876 corresponding C<isl_space> is alive.
877 Also note that every function that operates on two sets or relations
878 requires that both arguments have the same parameters. This also
879 means that if one of the arguments has named parameters, then the
880 other needs to have named parameters too and the names need to match.
881 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
882 arguments may have different parameters (as long as they are named),
883 in which case the result will have as parameters the union of the parameters of
886 Given the identifier or name of a dimension (typically a parameter),
887 its position can be obtained from the following function.
889 #include <isl/space.h>
890 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
891 enum isl_dim_type type, __isl_keep isl_id *id);
892 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
893 enum isl_dim_type type, const char *name);
895 The identifiers or names of entire spaces may be set or read off
896 using the following functions.
898 #include <isl/space.h>
899 __isl_give isl_space *isl_space_set_tuple_id(
900 __isl_take isl_space *space,
901 enum isl_dim_type type, __isl_take isl_id *id);
902 __isl_give isl_space *isl_space_reset_tuple_id(
903 __isl_take isl_space *space, enum isl_dim_type type);
904 int isl_space_has_tuple_id(__isl_keep isl_space *space,
905 enum isl_dim_type type);
906 __isl_give isl_id *isl_space_get_tuple_id(
907 __isl_keep isl_space *space, enum isl_dim_type type);
908 __isl_give isl_space *isl_space_set_tuple_name(
909 __isl_take isl_space *space,
910 enum isl_dim_type type, const char *s);
911 int isl_space_has_tuple_name(__isl_keep isl_space *space,
912 enum isl_dim_type type);
913 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
914 enum isl_dim_type type);
916 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
917 or C<isl_dim_set>. As with C<isl_space_get_name>,
918 the C<isl_space_get_tuple_name> function returns a pointer to some internal
920 Binary operations require the corresponding spaces of their arguments
921 to have the same name.
923 To keep the names of all parameters and tuples, but reset the user pointers
924 of all the corresponding identifiers, use the following function.
926 __isl_give isl_space *isl_space_reset_user(
927 __isl_take isl_space *space);
929 Spaces can be nested. In particular, the domain of a set or
930 the domain or range of a relation can be a nested relation.
931 The following functions can be used to construct and deconstruct
934 #include <isl/space.h>
935 int isl_space_is_wrapping(__isl_keep isl_space *space);
936 int isl_space_range_is_wrapping(
937 __isl_keep isl_space *space);
938 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
939 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
940 __isl_give isl_space *isl_space_product(__isl_take isl_space *space1,
941 __isl_take isl_space *space2);
942 __isl_give isl_space *isl_space_domain_product(
943 __isl_take isl_space *space1,
944 __isl_take isl_space *space2);
945 __isl_give isl_space *isl_space_range_product(
946 __isl_take isl_space *space1,
947 __isl_take isl_space *space2);
948 __isl_give isl_space *isl_space_range_factor_domain(
949 __isl_take isl_space *space);
950 __isl_give isl_space *isl_space_range_factor_range(
951 __isl_take isl_space *space);
953 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
954 be the space of a set, while that of
955 C<isl_space_range_is_wrapping> and
956 C<isl_space_wrap> should be the space of a relation.
957 Conversely, the output of C<isl_space_unwrap> is the space
958 of a relation, while that of C<isl_space_wrap> is the space of a set.
960 C<isl_space_product>, C<isl_space_domain_product>
961 and C<isl_space_range_product> take pairs or relation spaces and
962 produce a single relations space, where either the domain, the range
963 or both domain and range are wrapped spaces of relations between
964 the domains and/or ranges of the input spaces.
965 If the product is only constructed over the domain or the range
966 then the ranges or the domains of the inputs should be the same.
967 The functions C<isl_space_range_factor_domain> and
968 C<isl_space_range_factor_range> extract the two arguments from
969 the result of a call to C<isl_space_range_product>.
971 Spaces can be created from other spaces
972 using the following functions.
974 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
975 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
976 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
977 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
978 __isl_give isl_space *isl_space_domain_map(
979 __isl_take isl_space *space);
980 __isl_give isl_space *isl_space_range_map(
981 __isl_take isl_space *space);
982 __isl_give isl_space *isl_space_params(
983 __isl_take isl_space *space);
984 __isl_give isl_space *isl_space_set_from_params(
985 __isl_take isl_space *space);
986 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
987 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
988 __isl_take isl_space *right);
989 __isl_give isl_space *isl_space_align_params(
990 __isl_take isl_space *space1, __isl_take isl_space *space2)
991 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
992 enum isl_dim_type type, unsigned pos, unsigned n);
993 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
994 enum isl_dim_type type, unsigned n);
995 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
996 enum isl_dim_type type, unsigned first, unsigned n);
997 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
998 enum isl_dim_type dst_type, unsigned dst_pos,
999 enum isl_dim_type src_type, unsigned src_pos,
1001 __isl_give isl_space *isl_space_map_from_set(
1002 __isl_take isl_space *space);
1003 __isl_give isl_space *isl_space_map_from_domain_and_range(
1004 __isl_take isl_space *domain,
1005 __isl_take isl_space *range);
1006 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
1007 __isl_give isl_space *isl_space_curry(
1008 __isl_take isl_space *space);
1009 __isl_give isl_space *isl_space_uncurry(
1010 __isl_take isl_space *space);
1012 Note that if dimensions are added or removed from a space, then
1013 the name and the internal structure are lost.
1017 A local space is essentially a space with
1018 zero or more existentially quantified variables.
1019 The local space of a (constraint of a) basic set or relation can be obtained
1020 using the following functions.
1022 #include <isl/constraint.h>
1023 __isl_give isl_local_space *isl_constraint_get_local_space(
1024 __isl_keep isl_constraint *constraint);
1026 #include <isl/set.h>
1027 __isl_give isl_local_space *isl_basic_set_get_local_space(
1028 __isl_keep isl_basic_set *bset);
1030 #include <isl/map.h>
1031 __isl_give isl_local_space *isl_basic_map_get_local_space(
1032 __isl_keep isl_basic_map *bmap);
1034 A new local space can be created from a space using
1036 #include <isl/local_space.h>
1037 __isl_give isl_local_space *isl_local_space_from_space(
1038 __isl_take isl_space *space);
1040 They can be inspected, modified, copied and freed using the following functions.
1042 #include <isl/local_space.h>
1043 isl_ctx *isl_local_space_get_ctx(
1044 __isl_keep isl_local_space *ls);
1045 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
1046 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1047 enum isl_dim_type type);
1048 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1049 __isl_take isl_local_space *ls,
1050 enum isl_dim_type type, __isl_take isl_id *id);
1051 int isl_local_space_has_dim_id(
1052 __isl_keep isl_local_space *ls,
1053 enum isl_dim_type type, unsigned pos);
1054 __isl_give isl_id *isl_local_space_get_dim_id(
1055 __isl_keep isl_local_space *ls,
1056 enum isl_dim_type type, unsigned pos);
1057 int isl_local_space_has_dim_name(
1058 __isl_keep isl_local_space *ls,
1059 enum isl_dim_type type, unsigned pos)
1060 const char *isl_local_space_get_dim_name(
1061 __isl_keep isl_local_space *ls,
1062 enum isl_dim_type type, unsigned pos);
1063 __isl_give isl_local_space *isl_local_space_set_dim_name(
1064 __isl_take isl_local_space *ls,
1065 enum isl_dim_type type, unsigned pos, const char *s);
1066 __isl_give isl_local_space *isl_local_space_set_dim_id(
1067 __isl_take isl_local_space *ls,
1068 enum isl_dim_type type, unsigned pos,
1069 __isl_take isl_id *id);
1070 __isl_give isl_space *isl_local_space_get_space(
1071 __isl_keep isl_local_space *ls);
1072 __isl_give isl_aff *isl_local_space_get_div(
1073 __isl_keep isl_local_space *ls, int pos);
1074 __isl_give isl_local_space *isl_local_space_copy(
1075 __isl_keep isl_local_space *ls);
1076 void *isl_local_space_free(__isl_take isl_local_space *ls);
1078 Note that C<isl_local_space_get_div> can only be used on local spaces
1081 Two local spaces can be compared using
1083 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
1084 __isl_keep isl_local_space *ls2);
1086 Local spaces can be created from other local spaces
1087 using the following functions.
1089 __isl_give isl_local_space *isl_local_space_domain(
1090 __isl_take isl_local_space *ls);
1091 __isl_give isl_local_space *isl_local_space_range(
1092 __isl_take isl_local_space *ls);
1093 __isl_give isl_local_space *isl_local_space_from_domain(
1094 __isl_take isl_local_space *ls);
1095 __isl_give isl_local_space *isl_local_space_intersect(
1096 __isl_take isl_local_space *ls1,
1097 __isl_take isl_local_space *ls2);
1098 __isl_give isl_local_space *isl_local_space_add_dims(
1099 __isl_take isl_local_space *ls,
1100 enum isl_dim_type type, unsigned n);
1101 __isl_give isl_local_space *isl_local_space_insert_dims(
1102 __isl_take isl_local_space *ls,
1103 enum isl_dim_type type, unsigned first, unsigned n);
1104 __isl_give isl_local_space *isl_local_space_drop_dims(
1105 __isl_take isl_local_space *ls,
1106 enum isl_dim_type type, unsigned first, unsigned n);
1108 =head2 Input and Output
1110 C<isl> supports its own input/output format, which is similar
1111 to the C<Omega> format, but also supports the C<PolyLib> format
1114 =head3 C<isl> format
1116 The C<isl> format is similar to that of C<Omega>, but has a different
1117 syntax for describing the parameters and allows for the definition
1118 of an existentially quantified variable as the integer division
1119 of an affine expression.
1120 For example, the set of integers C<i> between C<0> and C<n>
1121 such that C<i % 10 <= 6> can be described as
1123 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
1126 A set or relation can have several disjuncts, separated
1127 by the keyword C<or>. Each disjunct is either a conjunction
1128 of constraints or a projection (C<exists>) of a conjunction
1129 of constraints. The constraints are separated by the keyword
1132 =head3 C<PolyLib> format
1134 If the represented set is a union, then the first line
1135 contains a single number representing the number of disjuncts.
1136 Otherwise, a line containing the number C<1> is optional.
1138 Each disjunct is represented by a matrix of constraints.
1139 The first line contains two numbers representing
1140 the number of rows and columns,
1141 where the number of rows is equal to the number of constraints
1142 and the number of columns is equal to two plus the number of variables.
1143 The following lines contain the actual rows of the constraint matrix.
1144 In each row, the first column indicates whether the constraint
1145 is an equality (C<0>) or inequality (C<1>). The final column
1146 corresponds to the constant term.
1148 If the set is parametric, then the coefficients of the parameters
1149 appear in the last columns before the constant column.
1150 The coefficients of any existentially quantified variables appear
1151 between those of the set variables and those of the parameters.
1153 =head3 Extended C<PolyLib> format
1155 The extended C<PolyLib> format is nearly identical to the
1156 C<PolyLib> format. The only difference is that the line
1157 containing the number of rows and columns of a constraint matrix
1158 also contains four additional numbers:
1159 the number of output dimensions, the number of input dimensions,
1160 the number of local dimensions (i.e., the number of existentially
1161 quantified variables) and the number of parameters.
1162 For sets, the number of ``output'' dimensions is equal
1163 to the number of set dimensions, while the number of ``input''
1168 #include <isl/set.h>
1169 __isl_give isl_basic_set *isl_basic_set_read_from_file(
1170 isl_ctx *ctx, FILE *input);
1171 __isl_give isl_basic_set *isl_basic_set_read_from_str(
1172 isl_ctx *ctx, const char *str);
1173 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
1175 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
1178 #include <isl/map.h>
1179 __isl_give isl_basic_map *isl_basic_map_read_from_file(
1180 isl_ctx *ctx, FILE *input);
1181 __isl_give isl_basic_map *isl_basic_map_read_from_str(
1182 isl_ctx *ctx, const char *str);
1183 __isl_give isl_map *isl_map_read_from_file(
1184 isl_ctx *ctx, FILE *input);
1185 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
1188 #include <isl/union_set.h>
1189 __isl_give isl_union_set *isl_union_set_read_from_file(
1190 isl_ctx *ctx, FILE *input);
1191 __isl_give isl_union_set *isl_union_set_read_from_str(
1192 isl_ctx *ctx, const char *str);
1194 #include <isl/union_map.h>
1195 __isl_give isl_union_map *isl_union_map_read_from_file(
1196 isl_ctx *ctx, FILE *input);
1197 __isl_give isl_union_map *isl_union_map_read_from_str(
1198 isl_ctx *ctx, const char *str);
1200 The input format is autodetected and may be either the C<PolyLib> format
1201 or the C<isl> format.
1205 Before anything can be printed, an C<isl_printer> needs to
1208 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
1210 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
1211 void *isl_printer_free(__isl_take isl_printer *printer);
1212 __isl_give char *isl_printer_get_str(
1213 __isl_keep isl_printer *printer);
1215 The printer can be inspected using the following functions.
1217 FILE *isl_printer_get_file(
1218 __isl_keep isl_printer *printer);
1219 int isl_printer_get_output_format(
1220 __isl_keep isl_printer *p);
1222 The behavior of the printer can be modified in various ways
1224 __isl_give isl_printer *isl_printer_set_output_format(
1225 __isl_take isl_printer *p, int output_format);
1226 __isl_give isl_printer *isl_printer_set_indent(
1227 __isl_take isl_printer *p, int indent);
1228 __isl_give isl_printer *isl_printer_indent(
1229 __isl_take isl_printer *p, int indent);
1230 __isl_give isl_printer *isl_printer_set_prefix(
1231 __isl_take isl_printer *p, const char *prefix);
1232 __isl_give isl_printer *isl_printer_set_suffix(
1233 __isl_take isl_printer *p, const char *suffix);
1235 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
1236 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
1237 and defaults to C<ISL_FORMAT_ISL>.
1238 Each line in the output is indented by C<indent> (set by
1239 C<isl_printer_set_indent>) spaces
1240 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
1241 In the C<PolyLib> format output,
1242 the coefficients of the existentially quantified variables
1243 appear between those of the set variables and those
1245 The function C<isl_printer_indent> increases the indentation
1246 by the specified amount (which may be negative).
1248 To actually print something, use
1250 #include <isl/printer.h>
1251 __isl_give isl_printer *isl_printer_print_double(
1252 __isl_take isl_printer *p, double d);
1254 #include <isl/set.h>
1255 __isl_give isl_printer *isl_printer_print_basic_set(
1256 __isl_take isl_printer *printer,
1257 __isl_keep isl_basic_set *bset);
1258 __isl_give isl_printer *isl_printer_print_set(
1259 __isl_take isl_printer *printer,
1260 __isl_keep isl_set *set);
1262 #include <isl/map.h>
1263 __isl_give isl_printer *isl_printer_print_basic_map(
1264 __isl_take isl_printer *printer,
1265 __isl_keep isl_basic_map *bmap);
1266 __isl_give isl_printer *isl_printer_print_map(
1267 __isl_take isl_printer *printer,
1268 __isl_keep isl_map *map);
1270 #include <isl/union_set.h>
1271 __isl_give isl_printer *isl_printer_print_union_set(
1272 __isl_take isl_printer *p,
1273 __isl_keep isl_union_set *uset);
1275 #include <isl/union_map.h>
1276 __isl_give isl_printer *isl_printer_print_union_map(
1277 __isl_take isl_printer *p,
1278 __isl_keep isl_union_map *umap);
1280 When called on a file printer, the following function flushes
1281 the file. When called on a string printer, the buffer is cleared.
1283 __isl_give isl_printer *isl_printer_flush(
1284 __isl_take isl_printer *p);
1286 =head2 Creating New Sets and Relations
1288 C<isl> has functions for creating some standard sets and relations.
1292 =item * Empty sets and relations
1294 __isl_give isl_basic_set *isl_basic_set_empty(
1295 __isl_take isl_space *space);
1296 __isl_give isl_basic_map *isl_basic_map_empty(
1297 __isl_take isl_space *space);
1298 __isl_give isl_set *isl_set_empty(
1299 __isl_take isl_space *space);
1300 __isl_give isl_map *isl_map_empty(
1301 __isl_take isl_space *space);
1302 __isl_give isl_union_set *isl_union_set_empty(
1303 __isl_take isl_space *space);
1304 __isl_give isl_union_map *isl_union_map_empty(
1305 __isl_take isl_space *space);
1307 For C<isl_union_set>s and C<isl_union_map>s, the space
1308 is only used to specify the parameters.
1310 =item * Universe sets and relations
1312 __isl_give isl_basic_set *isl_basic_set_universe(
1313 __isl_take isl_space *space);
1314 __isl_give isl_basic_map *isl_basic_map_universe(
1315 __isl_take isl_space *space);
1316 __isl_give isl_set *isl_set_universe(
1317 __isl_take isl_space *space);
1318 __isl_give isl_map *isl_map_universe(
1319 __isl_take isl_space *space);
1320 __isl_give isl_union_set *isl_union_set_universe(
1321 __isl_take isl_union_set *uset);
1322 __isl_give isl_union_map *isl_union_map_universe(
1323 __isl_take isl_union_map *umap);
1325 The sets and relations constructed by the functions above
1326 contain all integer values, while those constructed by the
1327 functions below only contain non-negative values.
1329 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1330 __isl_take isl_space *space);
1331 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1332 __isl_take isl_space *space);
1333 __isl_give isl_set *isl_set_nat_universe(
1334 __isl_take isl_space *space);
1335 __isl_give isl_map *isl_map_nat_universe(
1336 __isl_take isl_space *space);
1338 =item * Identity relations
1340 __isl_give isl_basic_map *isl_basic_map_identity(
1341 __isl_take isl_space *space);
1342 __isl_give isl_map *isl_map_identity(
1343 __isl_take isl_space *space);
1345 The number of input and output dimensions in C<space> needs
1348 =item * Lexicographic order
1350 __isl_give isl_map *isl_map_lex_lt(
1351 __isl_take isl_space *set_space);
1352 __isl_give isl_map *isl_map_lex_le(
1353 __isl_take isl_space *set_space);
1354 __isl_give isl_map *isl_map_lex_gt(
1355 __isl_take isl_space *set_space);
1356 __isl_give isl_map *isl_map_lex_ge(
1357 __isl_take isl_space *set_space);
1358 __isl_give isl_map *isl_map_lex_lt_first(
1359 __isl_take isl_space *space, unsigned n);
1360 __isl_give isl_map *isl_map_lex_le_first(
1361 __isl_take isl_space *space, unsigned n);
1362 __isl_give isl_map *isl_map_lex_gt_first(
1363 __isl_take isl_space *space, unsigned n);
1364 __isl_give isl_map *isl_map_lex_ge_first(
1365 __isl_take isl_space *space, unsigned n);
1367 The first four functions take a space for a B<set>
1368 and return relations that express that the elements in the domain
1369 are lexicographically less
1370 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1371 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1372 than the elements in the range.
1373 The last four functions take a space for a map
1374 and return relations that express that the first C<n> dimensions
1375 in the domain are lexicographically less
1376 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1377 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1378 than the first C<n> dimensions in the range.
1382 A basic set or relation can be converted to a set or relation
1383 using the following functions.
1385 __isl_give isl_set *isl_set_from_basic_set(
1386 __isl_take isl_basic_set *bset);
1387 __isl_give isl_map *isl_map_from_basic_map(
1388 __isl_take isl_basic_map *bmap);
1390 Sets and relations can be converted to union sets and relations
1391 using the following functions.
1393 __isl_give isl_union_set *isl_union_set_from_basic_set(
1394 __isl_take isl_basic_set *bset);
1395 __isl_give isl_union_map *isl_union_map_from_basic_map(
1396 __isl_take isl_basic_map *bmap);
1397 __isl_give isl_union_set *isl_union_set_from_set(
1398 __isl_take isl_set *set);
1399 __isl_give isl_union_map *isl_union_map_from_map(
1400 __isl_take isl_map *map);
1402 The inverse conversions below can only be used if the input
1403 union set or relation is known to contain elements in exactly one
1406 __isl_give isl_set *isl_set_from_union_set(
1407 __isl_take isl_union_set *uset);
1408 __isl_give isl_map *isl_map_from_union_map(
1409 __isl_take isl_union_map *umap);
1411 A zero-dimensional (basic) set can be constructed on a given parameter domain
1412 using the following function.
1414 __isl_give isl_basic_set *isl_basic_set_from_params(
1415 __isl_take isl_basic_set *bset);
1416 __isl_give isl_set *isl_set_from_params(
1417 __isl_take isl_set *set);
1419 Sets and relations can be copied and freed again using the following
1422 __isl_give isl_basic_set *isl_basic_set_copy(
1423 __isl_keep isl_basic_set *bset);
1424 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1425 __isl_give isl_union_set *isl_union_set_copy(
1426 __isl_keep isl_union_set *uset);
1427 __isl_give isl_basic_map *isl_basic_map_copy(
1428 __isl_keep isl_basic_map *bmap);
1429 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1430 __isl_give isl_union_map *isl_union_map_copy(
1431 __isl_keep isl_union_map *umap);
1432 void *isl_basic_set_free(__isl_take isl_basic_set *bset);
1433 void *isl_set_free(__isl_take isl_set *set);
1434 void *isl_union_set_free(__isl_take isl_union_set *uset);
1435 void *isl_basic_map_free(__isl_take isl_basic_map *bmap);
1436 void *isl_map_free(__isl_take isl_map *map);
1437 void *isl_union_map_free(__isl_take isl_union_map *umap);
1439 Other sets and relations can be constructed by starting
1440 from a universe set or relation, adding equality and/or
1441 inequality constraints and then projecting out the
1442 existentially quantified variables, if any.
1443 Constraints can be constructed, manipulated and
1444 added to (or removed from) (basic) sets and relations
1445 using the following functions.
1447 #include <isl/constraint.h>
1448 __isl_give isl_constraint *isl_equality_alloc(
1449 __isl_take isl_local_space *ls);
1450 __isl_give isl_constraint *isl_inequality_alloc(
1451 __isl_take isl_local_space *ls);
1452 __isl_give isl_constraint *isl_constraint_set_constant_si(
1453 __isl_take isl_constraint *constraint, int v);
1454 __isl_give isl_constraint *isl_constraint_set_constant_val(
1455 __isl_take isl_constraint *constraint,
1456 __isl_take isl_val *v);
1457 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1458 __isl_take isl_constraint *constraint,
1459 enum isl_dim_type type, int pos, int v);
1460 __isl_give isl_constraint *
1461 isl_constraint_set_coefficient_val(
1462 __isl_take isl_constraint *constraint,
1463 enum isl_dim_type type, int pos,
1464 __isl_take isl_val *v);
1465 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1466 __isl_take isl_basic_map *bmap,
1467 __isl_take isl_constraint *constraint);
1468 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1469 __isl_take isl_basic_set *bset,
1470 __isl_take isl_constraint *constraint);
1471 __isl_give isl_map *isl_map_add_constraint(
1472 __isl_take isl_map *map,
1473 __isl_take isl_constraint *constraint);
1474 __isl_give isl_set *isl_set_add_constraint(
1475 __isl_take isl_set *set,
1476 __isl_take isl_constraint *constraint);
1477 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1478 __isl_take isl_basic_set *bset,
1479 __isl_take isl_constraint *constraint);
1481 For example, to create a set containing the even integers
1482 between 10 and 42, you would use the following code.
1485 isl_local_space *ls;
1487 isl_basic_set *bset;
1489 space = isl_space_set_alloc(ctx, 0, 2);
1490 bset = isl_basic_set_universe(isl_space_copy(space));
1491 ls = isl_local_space_from_space(space);
1493 c = isl_equality_alloc(isl_local_space_copy(ls));
1494 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1495 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1496 bset = isl_basic_set_add_constraint(bset, c);
1498 c = isl_inequality_alloc(isl_local_space_copy(ls));
1499 c = isl_constraint_set_constant_si(c, -10);
1500 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1501 bset = isl_basic_set_add_constraint(bset, c);
1503 c = isl_inequality_alloc(ls);
1504 c = isl_constraint_set_constant_si(c, 42);
1505 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1506 bset = isl_basic_set_add_constraint(bset, c);
1508 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1512 isl_basic_set *bset;
1513 bset = isl_basic_set_read_from_str(ctx,
1514 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1516 A basic set or relation can also be constructed from two matrices
1517 describing the equalities and the inequalities.
1519 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1520 __isl_take isl_space *space,
1521 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1522 enum isl_dim_type c1,
1523 enum isl_dim_type c2, enum isl_dim_type c3,
1524 enum isl_dim_type c4);
1525 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1526 __isl_take isl_space *space,
1527 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1528 enum isl_dim_type c1,
1529 enum isl_dim_type c2, enum isl_dim_type c3,
1530 enum isl_dim_type c4, enum isl_dim_type c5);
1532 The C<isl_dim_type> arguments indicate the order in which
1533 different kinds of variables appear in the input matrices
1534 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1535 C<isl_dim_set> and C<isl_dim_div> for sets and
1536 of C<isl_dim_cst>, C<isl_dim_param>,
1537 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1539 A (basic or union) set or relation can also be constructed from a
1540 (union) (piecewise) (multiple) affine expression
1541 or a list of affine expressions
1542 (See L<"Piecewise Quasi Affine Expressions"> and
1543 L<"Piecewise Multiple Quasi Affine Expressions">).
1545 __isl_give isl_basic_map *isl_basic_map_from_aff(
1546 __isl_take isl_aff *aff);
1547 __isl_give isl_map *isl_map_from_aff(
1548 __isl_take isl_aff *aff);
1549 __isl_give isl_set *isl_set_from_pw_aff(
1550 __isl_take isl_pw_aff *pwaff);
1551 __isl_give isl_map *isl_map_from_pw_aff(
1552 __isl_take isl_pw_aff *pwaff);
1553 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1554 __isl_take isl_space *domain_space,
1555 __isl_take isl_aff_list *list);
1556 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1557 __isl_take isl_multi_aff *maff)
1558 __isl_give isl_map *isl_map_from_multi_aff(
1559 __isl_take isl_multi_aff *maff)
1560 __isl_give isl_set *isl_set_from_pw_multi_aff(
1561 __isl_take isl_pw_multi_aff *pma);
1562 __isl_give isl_map *isl_map_from_pw_multi_aff(
1563 __isl_take isl_pw_multi_aff *pma);
1564 __isl_give isl_set *isl_set_from_multi_pw_aff(
1565 __isl_take isl_multi_pw_aff *mpa);
1566 __isl_give isl_map *isl_map_from_multi_pw_aff(
1567 __isl_take isl_multi_pw_aff *mpa);
1568 __isl_give isl_union_map *
1569 isl_union_map_from_union_pw_multi_aff(
1570 __isl_take isl_union_pw_multi_aff *upma);
1572 The C<domain_dim> argument describes the domain of the resulting
1573 basic relation. It is required because the C<list> may consist
1574 of zero affine expressions.
1576 =head2 Inspecting Sets and Relations
1578 Usually, the user should not have to care about the actual constraints
1579 of the sets and maps, but should instead apply the abstract operations
1580 explained in the following sections.
1581 Occasionally, however, it may be required to inspect the individual
1582 coefficients of the constraints. This section explains how to do so.
1583 In these cases, it may also be useful to have C<isl> compute
1584 an explicit representation of the existentially quantified variables.
1586 __isl_give isl_set *isl_set_compute_divs(
1587 __isl_take isl_set *set);
1588 __isl_give isl_map *isl_map_compute_divs(
1589 __isl_take isl_map *map);
1590 __isl_give isl_union_set *isl_union_set_compute_divs(
1591 __isl_take isl_union_set *uset);
1592 __isl_give isl_union_map *isl_union_map_compute_divs(
1593 __isl_take isl_union_map *umap);
1595 This explicit representation defines the existentially quantified
1596 variables as integer divisions of the other variables, possibly
1597 including earlier existentially quantified variables.
1598 An explicitly represented existentially quantified variable therefore
1599 has a unique value when the values of the other variables are known.
1600 If, furthermore, the same existentials, i.e., existentials
1601 with the same explicit representations, should appear in the
1602 same order in each of the disjuncts of a set or map, then the user should call
1603 either of the following functions.
1605 __isl_give isl_set *isl_set_align_divs(
1606 __isl_take isl_set *set);
1607 __isl_give isl_map *isl_map_align_divs(
1608 __isl_take isl_map *map);
1610 Alternatively, the existentially quantified variables can be removed
1611 using the following functions, which compute an overapproximation.
1613 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1614 __isl_take isl_basic_set *bset);
1615 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1616 __isl_take isl_basic_map *bmap);
1617 __isl_give isl_set *isl_set_remove_divs(
1618 __isl_take isl_set *set);
1619 __isl_give isl_map *isl_map_remove_divs(
1620 __isl_take isl_map *map);
1622 It is also possible to only remove those divs that are defined
1623 in terms of a given range of dimensions or only those for which
1624 no explicit representation is known.
1626 __isl_give isl_basic_set *
1627 isl_basic_set_remove_divs_involving_dims(
1628 __isl_take isl_basic_set *bset,
1629 enum isl_dim_type type,
1630 unsigned first, unsigned n);
1631 __isl_give isl_basic_map *
1632 isl_basic_map_remove_divs_involving_dims(
1633 __isl_take isl_basic_map *bmap,
1634 enum isl_dim_type type,
1635 unsigned first, unsigned n);
1636 __isl_give isl_set *isl_set_remove_divs_involving_dims(
1637 __isl_take isl_set *set, enum isl_dim_type type,
1638 unsigned first, unsigned n);
1639 __isl_give isl_map *isl_map_remove_divs_involving_dims(
1640 __isl_take isl_map *map, enum isl_dim_type type,
1641 unsigned first, unsigned n);
1643 __isl_give isl_basic_set *
1644 isl_basic_set_remove_unknown_divs(
1645 __isl_take isl_basic_set *bset);
1646 __isl_give isl_set *isl_set_remove_unknown_divs(
1647 __isl_take isl_set *set);
1648 __isl_give isl_map *isl_map_remove_unknown_divs(
1649 __isl_take isl_map *map);
1651 To iterate over all the sets or maps in a union set or map, use
1653 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1654 int (*fn)(__isl_take isl_set *set, void *user),
1656 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1657 int (*fn)(__isl_take isl_map *map, void *user),
1660 The number of sets or maps in a union set or map can be obtained
1663 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1664 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1666 To extract the set or map in a given space from a union, use
1668 __isl_give isl_set *isl_union_set_extract_set(
1669 __isl_keep isl_union_set *uset,
1670 __isl_take isl_space *space);
1671 __isl_give isl_map *isl_union_map_extract_map(
1672 __isl_keep isl_union_map *umap,
1673 __isl_take isl_space *space);
1675 To iterate over all the basic sets or maps in a set or map, use
1677 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1678 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1680 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1681 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1684 The callback function C<fn> should return 0 if successful and
1685 -1 if an error occurs. In the latter case, or if any other error
1686 occurs, the above functions will return -1.
1688 It should be noted that C<isl> does not guarantee that
1689 the basic sets or maps passed to C<fn> are disjoint.
1690 If this is required, then the user should call one of
1691 the following functions first.
1693 __isl_give isl_set *isl_set_make_disjoint(
1694 __isl_take isl_set *set);
1695 __isl_give isl_map *isl_map_make_disjoint(
1696 __isl_take isl_map *map);
1698 The number of basic sets in a set can be obtained
1701 int isl_set_n_basic_set(__isl_keep isl_set *set);
1703 To iterate over the constraints of a basic set or map, use
1705 #include <isl/constraint.h>
1707 int isl_basic_set_n_constraint(
1708 __isl_keep isl_basic_set *bset);
1709 int isl_basic_set_foreach_constraint(
1710 __isl_keep isl_basic_set *bset,
1711 int (*fn)(__isl_take isl_constraint *c, void *user),
1713 int isl_basic_map_foreach_constraint(
1714 __isl_keep isl_basic_map *bmap,
1715 int (*fn)(__isl_take isl_constraint *c, void *user),
1717 void *isl_constraint_free(__isl_take isl_constraint *c);
1719 Again, the callback function C<fn> should return 0 if successful and
1720 -1 if an error occurs. In the latter case, or if any other error
1721 occurs, the above functions will return -1.
1722 The constraint C<c> represents either an equality or an inequality.
1723 Use the following function to find out whether a constraint
1724 represents an equality. If not, it represents an inequality.
1726 int isl_constraint_is_equality(
1727 __isl_keep isl_constraint *constraint);
1729 The coefficients of the constraints can be inspected using
1730 the following functions.
1732 int isl_constraint_is_lower_bound(
1733 __isl_keep isl_constraint *constraint,
1734 enum isl_dim_type type, unsigned pos);
1735 int isl_constraint_is_upper_bound(
1736 __isl_keep isl_constraint *constraint,
1737 enum isl_dim_type type, unsigned pos);
1738 __isl_give isl_val *isl_constraint_get_constant_val(
1739 __isl_keep isl_constraint *constraint);
1740 __isl_give isl_val *isl_constraint_get_coefficient_val(
1741 __isl_keep isl_constraint *constraint,
1742 enum isl_dim_type type, int pos);
1743 int isl_constraint_involves_dims(
1744 __isl_keep isl_constraint *constraint,
1745 enum isl_dim_type type, unsigned first, unsigned n);
1747 The explicit representations of the existentially quantified
1748 variables can be inspected using the following function.
1749 Note that the user is only allowed to use this function
1750 if the inspected set or map is the result of a call
1751 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1752 The existentially quantified variable is equal to the floor
1753 of the returned affine expression. The affine expression
1754 itself can be inspected using the functions in
1755 L<"Piecewise Quasi Affine Expressions">.
1757 __isl_give isl_aff *isl_constraint_get_div(
1758 __isl_keep isl_constraint *constraint, int pos);
1760 To obtain the constraints of a basic set or map in matrix
1761 form, use the following functions.
1763 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1764 __isl_keep isl_basic_set *bset,
1765 enum isl_dim_type c1, enum isl_dim_type c2,
1766 enum isl_dim_type c3, enum isl_dim_type c4);
1767 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1768 __isl_keep isl_basic_set *bset,
1769 enum isl_dim_type c1, enum isl_dim_type c2,
1770 enum isl_dim_type c3, enum isl_dim_type c4);
1771 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1772 __isl_keep isl_basic_map *bmap,
1773 enum isl_dim_type c1,
1774 enum isl_dim_type c2, enum isl_dim_type c3,
1775 enum isl_dim_type c4, enum isl_dim_type c5);
1776 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1777 __isl_keep isl_basic_map *bmap,
1778 enum isl_dim_type c1,
1779 enum isl_dim_type c2, enum isl_dim_type c3,
1780 enum isl_dim_type c4, enum isl_dim_type c5);
1782 The C<isl_dim_type> arguments dictate the order in which
1783 different kinds of variables appear in the resulting matrix
1784 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1785 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1787 The number of parameters, input, output or set dimensions can
1788 be obtained using the following functions.
1790 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1791 enum isl_dim_type type);
1792 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1793 enum isl_dim_type type);
1794 unsigned isl_set_dim(__isl_keep isl_set *set,
1795 enum isl_dim_type type);
1796 unsigned isl_map_dim(__isl_keep isl_map *map,
1797 enum isl_dim_type type);
1799 To check whether the description of a set or relation depends
1800 on one or more given dimensions, it is not necessary to iterate over all
1801 constraints. Instead the following functions can be used.
1803 int isl_basic_set_involves_dims(
1804 __isl_keep isl_basic_set *bset,
1805 enum isl_dim_type type, unsigned first, unsigned n);
1806 int isl_set_involves_dims(__isl_keep isl_set *set,
1807 enum isl_dim_type type, unsigned first, unsigned n);
1808 int isl_basic_map_involves_dims(
1809 __isl_keep isl_basic_map *bmap,
1810 enum isl_dim_type type, unsigned first, unsigned n);
1811 int isl_map_involves_dims(__isl_keep isl_map *map,
1812 enum isl_dim_type type, unsigned first, unsigned n);
1814 Similarly, the following functions can be used to check whether
1815 a given dimension is involved in any lower or upper bound.
1817 int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
1818 enum isl_dim_type type, unsigned pos);
1819 int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
1820 enum isl_dim_type type, unsigned pos);
1822 Note that these functions return true even if there is a bound on
1823 the dimension on only some of the basic sets of C<set>.
1824 To check if they have a bound for all of the basic sets in C<set>,
1825 use the following functions instead.
1827 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1828 enum isl_dim_type type, unsigned pos);
1829 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1830 enum isl_dim_type type, unsigned pos);
1832 The identifiers or names of the domain and range spaces of a set
1833 or relation can be read off or set using the following functions.
1835 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1836 __isl_take isl_basic_set *bset,
1837 __isl_take isl_id *id);
1838 __isl_give isl_set *isl_set_set_tuple_id(
1839 __isl_take isl_set *set, __isl_take isl_id *id);
1840 __isl_give isl_set *isl_set_reset_tuple_id(
1841 __isl_take isl_set *set);
1842 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1843 __isl_give isl_id *isl_set_get_tuple_id(
1844 __isl_keep isl_set *set);
1845 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1846 __isl_take isl_basic_map *bmap,
1847 enum isl_dim_type type, __isl_take isl_id *id);
1848 __isl_give isl_map *isl_map_set_tuple_id(
1849 __isl_take isl_map *map, enum isl_dim_type type,
1850 __isl_take isl_id *id);
1851 __isl_give isl_map *isl_map_reset_tuple_id(
1852 __isl_take isl_map *map, enum isl_dim_type type);
1853 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1854 enum isl_dim_type type);
1855 __isl_give isl_id *isl_map_get_tuple_id(
1856 __isl_keep isl_map *map, enum isl_dim_type type);
1858 const char *isl_basic_set_get_tuple_name(
1859 __isl_keep isl_basic_set *bset);
1860 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1861 __isl_take isl_basic_set *set, const char *s);
1862 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1863 const char *isl_set_get_tuple_name(
1864 __isl_keep isl_set *set);
1865 const char *isl_basic_map_get_tuple_name(
1866 __isl_keep isl_basic_map *bmap,
1867 enum isl_dim_type type);
1868 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1869 __isl_take isl_basic_map *bmap,
1870 enum isl_dim_type type, const char *s);
1871 int isl_map_has_tuple_name(__isl_keep isl_map *map,
1872 enum isl_dim_type type);
1873 const char *isl_map_get_tuple_name(
1874 __isl_keep isl_map *map,
1875 enum isl_dim_type type);
1877 As with C<isl_space_get_tuple_name>, the value returned points to
1878 an internal data structure.
1879 The identifiers, positions or names of individual dimensions can be
1880 read off using the following functions.
1882 __isl_give isl_id *isl_basic_set_get_dim_id(
1883 __isl_keep isl_basic_set *bset,
1884 enum isl_dim_type type, unsigned pos);
1885 __isl_give isl_set *isl_set_set_dim_id(
1886 __isl_take isl_set *set, enum isl_dim_type type,
1887 unsigned pos, __isl_take isl_id *id);
1888 int isl_set_has_dim_id(__isl_keep isl_set *set,
1889 enum isl_dim_type type, unsigned pos);
1890 __isl_give isl_id *isl_set_get_dim_id(
1891 __isl_keep isl_set *set, enum isl_dim_type type,
1893 int isl_basic_map_has_dim_id(
1894 __isl_keep isl_basic_map *bmap,
1895 enum isl_dim_type type, unsigned pos);
1896 __isl_give isl_map *isl_map_set_dim_id(
1897 __isl_take isl_map *map, enum isl_dim_type type,
1898 unsigned pos, __isl_take isl_id *id);
1899 int isl_map_has_dim_id(__isl_keep isl_map *map,
1900 enum isl_dim_type type, unsigned pos);
1901 __isl_give isl_id *isl_map_get_dim_id(
1902 __isl_keep isl_map *map, enum isl_dim_type type,
1905 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1906 enum isl_dim_type type, __isl_keep isl_id *id);
1907 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1908 enum isl_dim_type type, __isl_keep isl_id *id);
1909 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1910 enum isl_dim_type type, const char *name);
1911 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1912 enum isl_dim_type type, const char *name);
1914 const char *isl_constraint_get_dim_name(
1915 __isl_keep isl_constraint *constraint,
1916 enum isl_dim_type type, unsigned pos);
1917 const char *isl_basic_set_get_dim_name(
1918 __isl_keep isl_basic_set *bset,
1919 enum isl_dim_type type, unsigned pos);
1920 int isl_set_has_dim_name(__isl_keep isl_set *set,
1921 enum isl_dim_type type, unsigned pos);
1922 const char *isl_set_get_dim_name(
1923 __isl_keep isl_set *set,
1924 enum isl_dim_type type, unsigned pos);
1925 const char *isl_basic_map_get_dim_name(
1926 __isl_keep isl_basic_map *bmap,
1927 enum isl_dim_type type, unsigned pos);
1928 int isl_map_has_dim_name(__isl_keep isl_map *map,
1929 enum isl_dim_type type, unsigned pos);
1930 const char *isl_map_get_dim_name(
1931 __isl_keep isl_map *map,
1932 enum isl_dim_type type, unsigned pos);
1934 These functions are mostly useful to obtain the identifiers, positions
1935 or names of the parameters. Identifiers of individual dimensions are
1936 essentially only useful for printing. They are ignored by all other
1937 operations and may not be preserved across those operations.
1939 The user pointers on all parameters and tuples can be reset
1940 using the following functions.
1942 __isl_give isl_set *isl_set_reset_user(
1943 __isl_take isl_set *set);
1944 __isl_give isl_map *isl_map_reset_user(
1945 __isl_take isl_map *map);
1949 =head3 Unary Properties
1955 The following functions test whether the given set or relation
1956 contains any integer points. The ``plain'' variants do not perform
1957 any computations, but simply check if the given set or relation
1958 is already known to be empty.
1960 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1961 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1962 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1963 int isl_set_is_empty(__isl_keep isl_set *set);
1964 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1965 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1966 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1967 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1968 int isl_map_is_empty(__isl_keep isl_map *map);
1969 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1971 =item * Universality
1973 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1974 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1975 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1977 =item * Single-valuedness
1979 int isl_basic_map_is_single_valued(
1980 __isl_keep isl_basic_map *bmap);
1981 int isl_map_plain_is_single_valued(
1982 __isl_keep isl_map *map);
1983 int isl_map_is_single_valued(__isl_keep isl_map *map);
1984 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1988 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1989 int isl_map_is_injective(__isl_keep isl_map *map);
1990 int isl_union_map_plain_is_injective(
1991 __isl_keep isl_union_map *umap);
1992 int isl_union_map_is_injective(
1993 __isl_keep isl_union_map *umap);
1997 int isl_map_is_bijective(__isl_keep isl_map *map);
1998 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
2002 __isl_give isl_val *
2003 isl_basic_map_plain_get_val_if_fixed(
2004 __isl_keep isl_basic_map *bmap,
2005 enum isl_dim_type type, unsigned pos);
2006 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
2007 __isl_keep isl_set *set,
2008 enum isl_dim_type type, unsigned pos);
2009 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
2010 __isl_keep isl_map *map,
2011 enum isl_dim_type type, unsigned pos);
2013 If the set or relation obviously lies on a hyperplane where the given dimension
2014 has a fixed value, then return that value.
2015 Otherwise return NaN.
2019 int isl_set_dim_residue_class_val(
2020 __isl_keep isl_set *set,
2021 int pos, __isl_give isl_val **modulo,
2022 __isl_give isl_val **residue);
2024 Check if the values of the given set dimension are equal to a fixed
2025 value modulo some integer value. If so, assign the modulo to C<*modulo>
2026 and the fixed value to C<*residue>. If the given dimension attains only
2027 a single value, then assign C<0> to C<*modulo> and the fixed value to
2029 If the dimension does not attain only a single value and if no modulo
2030 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
2034 To check whether a set is a parameter domain, use this function:
2036 int isl_set_is_params(__isl_keep isl_set *set);
2037 int isl_union_set_is_params(
2038 __isl_keep isl_union_set *uset);
2042 The following functions check whether the space of the given
2043 (basic) set or relation range is a wrapped relation.
2045 int isl_basic_set_is_wrapping(
2046 __isl_keep isl_basic_set *bset);
2047 int isl_set_is_wrapping(__isl_keep isl_set *set);
2048 int isl_map_range_is_wrapping(
2049 __isl_keep isl_map *map);
2051 =item * Internal Product
2053 int isl_basic_map_can_zip(
2054 __isl_keep isl_basic_map *bmap);
2055 int isl_map_can_zip(__isl_keep isl_map *map);
2057 Check whether the product of domain and range of the given relation
2059 i.e., whether both domain and range are nested relations.
2063 int isl_basic_map_can_curry(
2064 __isl_keep isl_basic_map *bmap);
2065 int isl_map_can_curry(__isl_keep isl_map *map);
2067 Check whether the domain of the (basic) relation is a wrapped relation.
2069 int isl_basic_map_can_uncurry(
2070 __isl_keep isl_basic_map *bmap);
2071 int isl_map_can_uncurry(__isl_keep isl_map *map);
2073 Check whether the range of the (basic) relation is a wrapped relation.
2077 =head3 Binary Properties
2083 int isl_basic_set_plain_is_equal(
2084 __isl_keep isl_basic_set *bset1,
2085 __isl_keep isl_basic_set *bset2);
2086 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
2087 __isl_keep isl_set *set2);
2088 int isl_set_is_equal(__isl_keep isl_set *set1,
2089 __isl_keep isl_set *set2);
2090 int isl_union_set_is_equal(
2091 __isl_keep isl_union_set *uset1,
2092 __isl_keep isl_union_set *uset2);
2093 int isl_basic_map_is_equal(
2094 __isl_keep isl_basic_map *bmap1,
2095 __isl_keep isl_basic_map *bmap2);
2096 int isl_map_is_equal(__isl_keep isl_map *map1,
2097 __isl_keep isl_map *map2);
2098 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
2099 __isl_keep isl_map *map2);
2100 int isl_union_map_is_equal(
2101 __isl_keep isl_union_map *umap1,
2102 __isl_keep isl_union_map *umap2);
2104 =item * Disjointness
2106 int isl_basic_set_is_disjoint(
2107 __isl_keep isl_basic_set *bset1,
2108 __isl_keep isl_basic_set *bset2);
2109 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2110 __isl_keep isl_set *set2);
2111 int isl_set_is_disjoint(__isl_keep isl_set *set1,
2112 __isl_keep isl_set *set2);
2113 int isl_basic_map_is_disjoint(
2114 __isl_keep isl_basic_map *bmap1,
2115 __isl_keep isl_basic_map *bmap2);
2116 int isl_map_is_disjoint(__isl_keep isl_map *map1,
2117 __isl_keep isl_map *map2);
2121 int isl_basic_set_is_subset(
2122 __isl_keep isl_basic_set *bset1,
2123 __isl_keep isl_basic_set *bset2);
2124 int isl_set_is_subset(__isl_keep isl_set *set1,
2125 __isl_keep isl_set *set2);
2126 int isl_set_is_strict_subset(
2127 __isl_keep isl_set *set1,
2128 __isl_keep isl_set *set2);
2129 int isl_union_set_is_subset(
2130 __isl_keep isl_union_set *uset1,
2131 __isl_keep isl_union_set *uset2);
2132 int isl_union_set_is_strict_subset(
2133 __isl_keep isl_union_set *uset1,
2134 __isl_keep isl_union_set *uset2);
2135 int isl_basic_map_is_subset(
2136 __isl_keep isl_basic_map *bmap1,
2137 __isl_keep isl_basic_map *bmap2);
2138 int isl_basic_map_is_strict_subset(
2139 __isl_keep isl_basic_map *bmap1,
2140 __isl_keep isl_basic_map *bmap2);
2141 int isl_map_is_subset(
2142 __isl_keep isl_map *map1,
2143 __isl_keep isl_map *map2);
2144 int isl_map_is_strict_subset(
2145 __isl_keep isl_map *map1,
2146 __isl_keep isl_map *map2);
2147 int isl_union_map_is_subset(
2148 __isl_keep isl_union_map *umap1,
2149 __isl_keep isl_union_map *umap2);
2150 int isl_union_map_is_strict_subset(
2151 __isl_keep isl_union_map *umap1,
2152 __isl_keep isl_union_map *umap2);
2154 Check whether the first argument is a (strict) subset of the
2159 int isl_set_plain_cmp(__isl_keep isl_set *set1,
2160 __isl_keep isl_set *set2);
2162 This function is useful for sorting C<isl_set>s.
2163 The order depends on the internal representation of the inputs.
2164 The order is fixed over different calls to the function (assuming
2165 the internal representation of the inputs has not changed), but may
2166 change over different versions of C<isl>.
2170 =head2 Unary Operations
2176 __isl_give isl_set *isl_set_complement(
2177 __isl_take isl_set *set);
2178 __isl_give isl_map *isl_map_complement(
2179 __isl_take isl_map *map);
2183 __isl_give isl_basic_map *isl_basic_map_reverse(
2184 __isl_take isl_basic_map *bmap);
2185 __isl_give isl_map *isl_map_reverse(
2186 __isl_take isl_map *map);
2187 __isl_give isl_union_map *isl_union_map_reverse(
2188 __isl_take isl_union_map *umap);
2192 __isl_give isl_basic_set *isl_basic_set_project_out(
2193 __isl_take isl_basic_set *bset,
2194 enum isl_dim_type type, unsigned first, unsigned n);
2195 __isl_give isl_basic_map *isl_basic_map_project_out(
2196 __isl_take isl_basic_map *bmap,
2197 enum isl_dim_type type, unsigned first, unsigned n);
2198 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
2199 enum isl_dim_type type, unsigned first, unsigned n);
2200 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
2201 enum isl_dim_type type, unsigned first, unsigned n);
2202 __isl_give isl_basic_set *isl_basic_set_params(
2203 __isl_take isl_basic_set *bset);
2204 __isl_give isl_basic_set *isl_basic_map_domain(
2205 __isl_take isl_basic_map *bmap);
2206 __isl_give isl_basic_set *isl_basic_map_range(
2207 __isl_take isl_basic_map *bmap);
2208 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
2209 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
2210 __isl_give isl_set *isl_map_domain(
2211 __isl_take isl_map *bmap);
2212 __isl_give isl_set *isl_map_range(
2213 __isl_take isl_map *map);
2214 __isl_give isl_set *isl_union_set_params(
2215 __isl_take isl_union_set *uset);
2216 __isl_give isl_set *isl_union_map_params(
2217 __isl_take isl_union_map *umap);
2218 __isl_give isl_union_set *isl_union_map_domain(
2219 __isl_take isl_union_map *umap);
2220 __isl_give isl_union_set *isl_union_map_range(
2221 __isl_take isl_union_map *umap);
2223 __isl_give isl_basic_map *isl_basic_map_domain_map(
2224 __isl_take isl_basic_map *bmap);
2225 __isl_give isl_basic_map *isl_basic_map_range_map(
2226 __isl_take isl_basic_map *bmap);
2227 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
2228 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
2229 __isl_give isl_union_map *isl_union_map_domain_map(
2230 __isl_take isl_union_map *umap);
2231 __isl_give isl_union_map *isl_union_map_range_map(
2232 __isl_take isl_union_map *umap);
2234 The functions above construct a (basic, regular or union) relation
2235 that maps (a wrapped version of) the input relation to its domain or range.
2239 __isl_give isl_basic_set *isl_basic_set_eliminate(
2240 __isl_take isl_basic_set *bset,
2241 enum isl_dim_type type,
2242 unsigned first, unsigned n);
2243 __isl_give isl_set *isl_set_eliminate(
2244 __isl_take isl_set *set, enum isl_dim_type type,
2245 unsigned first, unsigned n);
2246 __isl_give isl_basic_map *isl_basic_map_eliminate(
2247 __isl_take isl_basic_map *bmap,
2248 enum isl_dim_type type,
2249 unsigned first, unsigned n);
2250 __isl_give isl_map *isl_map_eliminate(
2251 __isl_take isl_map *map, enum isl_dim_type type,
2252 unsigned first, unsigned n);
2254 Eliminate the coefficients for the given dimensions from the constraints,
2255 without removing the dimensions.
2259 __isl_give isl_basic_set *isl_basic_set_fix_si(
2260 __isl_take isl_basic_set *bset,
2261 enum isl_dim_type type, unsigned pos, int value);
2262 __isl_give isl_basic_set *isl_basic_set_fix_val(
2263 __isl_take isl_basic_set *bset,
2264 enum isl_dim_type type, unsigned pos,
2265 __isl_take isl_val *v);
2266 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
2267 enum isl_dim_type type, unsigned pos, int value);
2268 __isl_give isl_set *isl_set_fix_val(
2269 __isl_take isl_set *set,
2270 enum isl_dim_type type, unsigned pos,
2271 __isl_take isl_val *v);
2272 __isl_give isl_basic_map *isl_basic_map_fix_si(
2273 __isl_take isl_basic_map *bmap,
2274 enum isl_dim_type type, unsigned pos, int value);
2275 __isl_give isl_basic_map *isl_basic_map_fix_val(
2276 __isl_take isl_basic_map *bmap,
2277 enum isl_dim_type type, unsigned pos,
2278 __isl_take isl_val *v);
2279 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
2280 enum isl_dim_type type, unsigned pos, int value);
2281 __isl_give isl_map *isl_map_fix_val(
2282 __isl_take isl_map *map,
2283 enum isl_dim_type type, unsigned pos,
2284 __isl_take isl_val *v);
2286 Intersect the set or relation with the hyperplane where the given
2287 dimension has the fixed given value.
2289 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
2290 __isl_take isl_basic_map *bmap,
2291 enum isl_dim_type type, unsigned pos, int value);
2292 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
2293 __isl_take isl_basic_map *bmap,
2294 enum isl_dim_type type, unsigned pos, int value);
2295 __isl_give isl_set *isl_set_lower_bound_si(
2296 __isl_take isl_set *set,
2297 enum isl_dim_type type, unsigned pos, int value);
2298 __isl_give isl_set *isl_set_lower_bound_val(
2299 __isl_take isl_set *set,
2300 enum isl_dim_type type, unsigned pos,
2301 __isl_take isl_val *value);
2302 __isl_give isl_map *isl_map_lower_bound_si(
2303 __isl_take isl_map *map,
2304 enum isl_dim_type type, unsigned pos, int value);
2305 __isl_give isl_set *isl_set_upper_bound_si(
2306 __isl_take isl_set *set,
2307 enum isl_dim_type type, unsigned pos, int value);
2308 __isl_give isl_set *isl_set_upper_bound_val(
2309 __isl_take isl_set *set,
2310 enum isl_dim_type type, unsigned pos,
2311 __isl_take isl_val *value);
2312 __isl_give isl_map *isl_map_upper_bound_si(
2313 __isl_take isl_map *map,
2314 enum isl_dim_type type, unsigned pos, int value);
2316 Intersect the set or relation with the half-space where the given
2317 dimension has a value bounded by the fixed given integer value.
2319 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
2320 enum isl_dim_type type1, int pos1,
2321 enum isl_dim_type type2, int pos2);
2322 __isl_give isl_basic_map *isl_basic_map_equate(
2323 __isl_take isl_basic_map *bmap,
2324 enum isl_dim_type type1, int pos1,
2325 enum isl_dim_type type2, int pos2);
2326 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
2327 enum isl_dim_type type1, int pos1,
2328 enum isl_dim_type type2, int pos2);
2330 Intersect the set or relation with the hyperplane where the given
2331 dimensions are equal to each other.
2333 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
2334 enum isl_dim_type type1, int pos1,
2335 enum isl_dim_type type2, int pos2);
2337 Intersect the relation with the hyperplane where the given
2338 dimensions have opposite values.
2340 __isl_give isl_basic_map *isl_basic_map_order_ge(
2341 __isl_take isl_basic_map *bmap,
2342 enum isl_dim_type type1, int pos1,
2343 enum isl_dim_type type2, int pos2);
2344 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
2345 enum isl_dim_type type1, int pos1,
2346 enum isl_dim_type type2, int pos2);
2347 __isl_give isl_basic_map *isl_basic_map_order_gt(
2348 __isl_take isl_basic_map *bmap,
2349 enum isl_dim_type type1, int pos1,
2350 enum isl_dim_type type2, int pos2);
2351 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
2352 enum isl_dim_type type1, int pos1,
2353 enum isl_dim_type type2, int pos2);
2355 Intersect the relation with the half-space where the given
2356 dimensions satisfy the given ordering.
2360 __isl_give isl_map *isl_set_identity(
2361 __isl_take isl_set *set);
2362 __isl_give isl_union_map *isl_union_set_identity(
2363 __isl_take isl_union_set *uset);
2365 Construct an identity relation on the given (union) set.
2369 __isl_give isl_basic_set *isl_basic_map_deltas(
2370 __isl_take isl_basic_map *bmap);
2371 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
2372 __isl_give isl_union_set *isl_union_map_deltas(
2373 __isl_take isl_union_map *umap);
2375 These functions return a (basic) set containing the differences
2376 between image elements and corresponding domain elements in the input.
2378 __isl_give isl_basic_map *isl_basic_map_deltas_map(
2379 __isl_take isl_basic_map *bmap);
2380 __isl_give isl_map *isl_map_deltas_map(
2381 __isl_take isl_map *map);
2382 __isl_give isl_union_map *isl_union_map_deltas_map(
2383 __isl_take isl_union_map *umap);
2385 The functions above construct a (basic, regular or union) relation
2386 that maps (a wrapped version of) the input relation to its delta set.
2390 Simplify the representation of a set or relation by trying
2391 to combine pairs of basic sets or relations into a single
2392 basic set or relation.
2394 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
2395 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
2396 __isl_give isl_union_set *isl_union_set_coalesce(
2397 __isl_take isl_union_set *uset);
2398 __isl_give isl_union_map *isl_union_map_coalesce(
2399 __isl_take isl_union_map *umap);
2401 One of the methods for combining pairs of basic sets or relations
2402 can result in coefficients that are much larger than those that appear
2403 in the constraints of the input. By default, the coefficients are
2404 not allowed to grow larger, but this can be changed by unsetting
2405 the following option.
2407 int isl_options_set_coalesce_bounded_wrapping(
2408 isl_ctx *ctx, int val);
2409 int isl_options_get_coalesce_bounded_wrapping(
2412 =item * Detecting equalities
2414 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
2415 __isl_take isl_basic_set *bset);
2416 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
2417 __isl_take isl_basic_map *bmap);
2418 __isl_give isl_set *isl_set_detect_equalities(
2419 __isl_take isl_set *set);
2420 __isl_give isl_map *isl_map_detect_equalities(
2421 __isl_take isl_map *map);
2422 __isl_give isl_union_set *isl_union_set_detect_equalities(
2423 __isl_take isl_union_set *uset);
2424 __isl_give isl_union_map *isl_union_map_detect_equalities(
2425 __isl_take isl_union_map *umap);
2427 Simplify the representation of a set or relation by detecting implicit
2430 =item * Removing redundant constraints
2432 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
2433 __isl_take isl_basic_set *bset);
2434 __isl_give isl_set *isl_set_remove_redundancies(
2435 __isl_take isl_set *set);
2436 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
2437 __isl_take isl_basic_map *bmap);
2438 __isl_give isl_map *isl_map_remove_redundancies(
2439 __isl_take isl_map *map);
2443 __isl_give isl_basic_set *isl_set_convex_hull(
2444 __isl_take isl_set *set);
2445 __isl_give isl_basic_map *isl_map_convex_hull(
2446 __isl_take isl_map *map);
2448 If the input set or relation has any existentially quantified
2449 variables, then the result of these operations is currently undefined.
2453 __isl_give isl_basic_set *
2454 isl_set_unshifted_simple_hull(
2455 __isl_take isl_set *set);
2456 __isl_give isl_basic_map *
2457 isl_map_unshifted_simple_hull(
2458 __isl_take isl_map *map);
2459 __isl_give isl_basic_set *isl_set_simple_hull(
2460 __isl_take isl_set *set);
2461 __isl_give isl_basic_map *isl_map_simple_hull(
2462 __isl_take isl_map *map);
2463 __isl_give isl_union_map *isl_union_map_simple_hull(
2464 __isl_take isl_union_map *umap);
2466 These functions compute a single basic set or relation
2467 that contains the whole input set or relation.
2468 In particular, the output is described by translates
2469 of the constraints describing the basic sets or relations in the input.
2470 In case of C<isl_set_unshifted_simple_hull>, only the original
2471 constraints are used, without any translation.
2475 (See \autoref{s:simple hull}.)
2481 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2482 __isl_take isl_basic_set *bset);
2483 __isl_give isl_basic_set *isl_set_affine_hull(
2484 __isl_take isl_set *set);
2485 __isl_give isl_union_set *isl_union_set_affine_hull(
2486 __isl_take isl_union_set *uset);
2487 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2488 __isl_take isl_basic_map *bmap);
2489 __isl_give isl_basic_map *isl_map_affine_hull(
2490 __isl_take isl_map *map);
2491 __isl_give isl_union_map *isl_union_map_affine_hull(
2492 __isl_take isl_union_map *umap);
2494 In case of union sets and relations, the affine hull is computed
2497 =item * Polyhedral hull
2499 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2500 __isl_take isl_set *set);
2501 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2502 __isl_take isl_map *map);
2503 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2504 __isl_take isl_union_set *uset);
2505 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2506 __isl_take isl_union_map *umap);
2508 These functions compute a single basic set or relation
2509 not involving any existentially quantified variables
2510 that contains the whole input set or relation.
2511 In case of union sets and relations, the polyhedral hull is computed
2514 =item * Other approximations
2516 __isl_give isl_basic_set *
2517 isl_basic_set_drop_constraints_involving_dims(
2518 __isl_take isl_basic_set *bset,
2519 enum isl_dim_type type,
2520 unsigned first, unsigned n);
2521 __isl_give isl_basic_map *
2522 isl_basic_map_drop_constraints_involving_dims(
2523 __isl_take isl_basic_map *bmap,
2524 enum isl_dim_type type,
2525 unsigned first, unsigned n);
2526 __isl_give isl_basic_set *
2527 isl_basic_set_drop_constraints_not_involving_dims(
2528 __isl_take isl_basic_set *bset,
2529 enum isl_dim_type type,
2530 unsigned first, unsigned n);
2531 __isl_give isl_set *
2532 isl_set_drop_constraints_involving_dims(
2533 __isl_take isl_set *set,
2534 enum isl_dim_type type,
2535 unsigned first, unsigned n);
2536 __isl_give isl_map *
2537 isl_map_drop_constraints_involving_dims(
2538 __isl_take isl_map *map,
2539 enum isl_dim_type type,
2540 unsigned first, unsigned n);
2542 These functions drop any constraints (not) involving the specified dimensions.
2543 Note that the result depends on the representation of the input.
2547 __isl_give isl_basic_set *isl_basic_set_sample(
2548 __isl_take isl_basic_set *bset);
2549 __isl_give isl_basic_set *isl_set_sample(
2550 __isl_take isl_set *set);
2551 __isl_give isl_basic_map *isl_basic_map_sample(
2552 __isl_take isl_basic_map *bmap);
2553 __isl_give isl_basic_map *isl_map_sample(
2554 __isl_take isl_map *map);
2556 If the input (basic) set or relation is non-empty, then return
2557 a singleton subset of the input. Otherwise, return an empty set.
2559 =item * Optimization
2561 #include <isl/ilp.h>
2562 __isl_give isl_val *isl_basic_set_max_val(
2563 __isl_keep isl_basic_set *bset,
2564 __isl_keep isl_aff *obj);
2565 __isl_give isl_val *isl_set_min_val(
2566 __isl_keep isl_set *set,
2567 __isl_keep isl_aff *obj);
2568 __isl_give isl_val *isl_set_max_val(
2569 __isl_keep isl_set *set,
2570 __isl_keep isl_aff *obj);
2572 Compute the minimum or maximum of the integer affine expression C<obj>
2573 over the points in C<set>, returning the result in C<opt>.
2574 The result is C<NULL> in case of an error, the optimal value in case
2575 there is one, negative infinity or infinity if the problem is unbounded and
2576 NaN if the problem is empty.
2578 =item * Parametric optimization
2580 __isl_give isl_pw_aff *isl_set_dim_min(
2581 __isl_take isl_set *set, int pos);
2582 __isl_give isl_pw_aff *isl_set_dim_max(
2583 __isl_take isl_set *set, int pos);
2584 __isl_give isl_pw_aff *isl_map_dim_max(
2585 __isl_take isl_map *map, int pos);
2587 Compute the minimum or maximum of the given set or output dimension
2588 as a function of the parameters (and input dimensions), but independently
2589 of the other set or output dimensions.
2590 For lexicographic optimization, see L<"Lexicographic Optimization">.
2594 The following functions compute either the set of (rational) coefficient
2595 values of valid constraints for the given set or the set of (rational)
2596 values satisfying the constraints with coefficients from the given set.
2597 Internally, these two sets of functions perform essentially the
2598 same operations, except that the set of coefficients is assumed to
2599 be a cone, while the set of values may be any polyhedron.
2600 The current implementation is based on the Farkas lemma and
2601 Fourier-Motzkin elimination, but this may change or be made optional
2602 in future. In particular, future implementations may use different
2603 dualization algorithms or skip the elimination step.
2605 __isl_give isl_basic_set *isl_basic_set_coefficients(
2606 __isl_take isl_basic_set *bset);
2607 __isl_give isl_basic_set *isl_set_coefficients(
2608 __isl_take isl_set *set);
2609 __isl_give isl_union_set *isl_union_set_coefficients(
2610 __isl_take isl_union_set *bset);
2611 __isl_give isl_basic_set *isl_basic_set_solutions(
2612 __isl_take isl_basic_set *bset);
2613 __isl_give isl_basic_set *isl_set_solutions(
2614 __isl_take isl_set *set);
2615 __isl_give isl_union_set *isl_union_set_solutions(
2616 __isl_take isl_union_set *bset);
2620 __isl_give isl_map *isl_map_fixed_power_val(
2621 __isl_take isl_map *map,
2622 __isl_take isl_val *exp);
2623 __isl_give isl_union_map *
2624 isl_union_map_fixed_power_val(
2625 __isl_take isl_union_map *umap,
2626 __isl_take isl_val *exp);
2628 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2629 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2630 of C<map> is computed.
2632 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2634 __isl_give isl_union_map *isl_union_map_power(
2635 __isl_take isl_union_map *umap, int *exact);
2637 Compute a parametric representation for all positive powers I<k> of C<map>.
2638 The result maps I<k> to a nested relation corresponding to the
2639 I<k>th power of C<map>.
2640 The result may be an overapproximation. If the result is known to be exact,
2641 then C<*exact> is set to C<1>.
2643 =item * Transitive closure
2645 __isl_give isl_map *isl_map_transitive_closure(
2646 __isl_take isl_map *map, int *exact);
2647 __isl_give isl_union_map *isl_union_map_transitive_closure(
2648 __isl_take isl_union_map *umap, int *exact);
2650 Compute the transitive closure of C<map>.
2651 The result may be an overapproximation. If the result is known to be exact,
2652 then C<*exact> is set to C<1>.
2654 =item * Reaching path lengths
2656 __isl_give isl_map *isl_map_reaching_path_lengths(
2657 __isl_take isl_map *map, int *exact);
2659 Compute a relation that maps each element in the range of C<map>
2660 to the lengths of all paths composed of edges in C<map> that
2661 end up in the given element.
2662 The result may be an overapproximation. If the result is known to be exact,
2663 then C<*exact> is set to C<1>.
2664 To compute the I<maximal> path length, the resulting relation
2665 should be postprocessed by C<isl_map_lexmax>.
2666 In particular, if the input relation is a dependence relation
2667 (mapping sources to sinks), then the maximal path length corresponds
2668 to the free schedule.
2669 Note, however, that C<isl_map_lexmax> expects the maximum to be
2670 finite, so if the path lengths are unbounded (possibly due to
2671 the overapproximation), then you will get an error message.
2675 __isl_give isl_basic_set *isl_basic_map_wrap(
2676 __isl_take isl_basic_map *bmap);
2677 __isl_give isl_set *isl_map_wrap(
2678 __isl_take isl_map *map);
2679 __isl_give isl_union_set *isl_union_map_wrap(
2680 __isl_take isl_union_map *umap);
2681 __isl_give isl_basic_map *isl_basic_set_unwrap(
2682 __isl_take isl_basic_set *bset);
2683 __isl_give isl_map *isl_set_unwrap(
2684 __isl_take isl_set *set);
2685 __isl_give isl_union_map *isl_union_set_unwrap(
2686 __isl_take isl_union_set *uset);
2690 Remove any internal structure of domain (and range) of the given
2691 set or relation. If there is any such internal structure in the input,
2692 then the name of the space is also removed.
2694 __isl_give isl_basic_set *isl_basic_set_flatten(
2695 __isl_take isl_basic_set *bset);
2696 __isl_give isl_set *isl_set_flatten(
2697 __isl_take isl_set *set);
2698 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2699 __isl_take isl_basic_map *bmap);
2700 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2701 __isl_take isl_basic_map *bmap);
2702 __isl_give isl_map *isl_map_flatten_range(
2703 __isl_take isl_map *map);
2704 __isl_give isl_map *isl_map_flatten_domain(
2705 __isl_take isl_map *map);
2706 __isl_give isl_basic_map *isl_basic_map_flatten(
2707 __isl_take isl_basic_map *bmap);
2708 __isl_give isl_map *isl_map_flatten(
2709 __isl_take isl_map *map);
2711 __isl_give isl_map *isl_set_flatten_map(
2712 __isl_take isl_set *set);
2714 The function above constructs a relation
2715 that maps the input set to a flattened version of the set.
2719 Lift the input set to a space with extra dimensions corresponding
2720 to the existentially quantified variables in the input.
2721 In particular, the result lives in a wrapped map where the domain
2722 is the original space and the range corresponds to the original
2723 existentially quantified variables.
2725 __isl_give isl_basic_set *isl_basic_set_lift(
2726 __isl_take isl_basic_set *bset);
2727 __isl_give isl_set *isl_set_lift(
2728 __isl_take isl_set *set);
2729 __isl_give isl_union_set *isl_union_set_lift(
2730 __isl_take isl_union_set *uset);
2732 Given a local space that contains the existentially quantified
2733 variables of a set, a basic relation that, when applied to
2734 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2735 can be constructed using the following function.
2737 #include <isl/local_space.h>
2738 __isl_give isl_basic_map *isl_local_space_lifting(
2739 __isl_take isl_local_space *ls);
2741 =item * Internal Product
2743 __isl_give isl_basic_map *isl_basic_map_zip(
2744 __isl_take isl_basic_map *bmap);
2745 __isl_give isl_map *isl_map_zip(
2746 __isl_take isl_map *map);
2747 __isl_give isl_union_map *isl_union_map_zip(
2748 __isl_take isl_union_map *umap);
2750 Given a relation with nested relations for domain and range,
2751 interchange the range of the domain with the domain of the range.
2755 __isl_give isl_basic_map *isl_basic_map_curry(
2756 __isl_take isl_basic_map *bmap);
2757 __isl_give isl_basic_map *isl_basic_map_uncurry(
2758 __isl_take isl_basic_map *bmap);
2759 __isl_give isl_map *isl_map_curry(
2760 __isl_take isl_map *map);
2761 __isl_give isl_map *isl_map_uncurry(
2762 __isl_take isl_map *map);
2763 __isl_give isl_union_map *isl_union_map_curry(
2764 __isl_take isl_union_map *umap);
2765 __isl_give isl_union_map *isl_union_map_uncurry(
2766 __isl_take isl_union_map *umap);
2768 Given a relation with a nested relation for domain,
2769 the C<curry> functions
2770 move the range of the nested relation out of the domain
2771 and use it as the domain of a nested relation in the range,
2772 with the original range as range of this nested relation.
2773 The C<uncurry> functions perform the inverse operation.
2775 =item * Aligning parameters
2777 __isl_give isl_basic_set *isl_basic_set_align_params(
2778 __isl_take isl_basic_set *bset,
2779 __isl_take isl_space *model);
2780 __isl_give isl_set *isl_set_align_params(
2781 __isl_take isl_set *set,
2782 __isl_take isl_space *model);
2783 __isl_give isl_basic_map *isl_basic_map_align_params(
2784 __isl_take isl_basic_map *bmap,
2785 __isl_take isl_space *model);
2786 __isl_give isl_map *isl_map_align_params(
2787 __isl_take isl_map *map,
2788 __isl_take isl_space *model);
2790 Change the order of the parameters of the given set or relation
2791 such that the first parameters match those of C<model>.
2792 This may involve the introduction of extra parameters.
2793 All parameters need to be named.
2795 =item * Dimension manipulation
2797 __isl_give isl_basic_set *isl_basic_set_add_dims(
2798 __isl_take isl_basic_set *bset,
2799 enum isl_dim_type type, unsigned n);
2800 __isl_give isl_set *isl_set_add_dims(
2801 __isl_take isl_set *set,
2802 enum isl_dim_type type, unsigned n);
2803 __isl_give isl_map *isl_map_add_dims(
2804 __isl_take isl_map *map,
2805 enum isl_dim_type type, unsigned n);
2806 __isl_give isl_basic_set *isl_basic_set_insert_dims(
2807 __isl_take isl_basic_set *bset,
2808 enum isl_dim_type type, unsigned pos,
2810 __isl_give isl_basic_map *isl_basic_map_insert_dims(
2811 __isl_take isl_basic_map *bmap,
2812 enum isl_dim_type type, unsigned pos,
2814 __isl_give isl_set *isl_set_insert_dims(
2815 __isl_take isl_set *set,
2816 enum isl_dim_type type, unsigned pos, unsigned n);
2817 __isl_give isl_map *isl_map_insert_dims(
2818 __isl_take isl_map *map,
2819 enum isl_dim_type type, unsigned pos, unsigned n);
2820 __isl_give isl_basic_set *isl_basic_set_move_dims(
2821 __isl_take isl_basic_set *bset,
2822 enum isl_dim_type dst_type, unsigned dst_pos,
2823 enum isl_dim_type src_type, unsigned src_pos,
2825 __isl_give isl_basic_map *isl_basic_map_move_dims(
2826 __isl_take isl_basic_map *bmap,
2827 enum isl_dim_type dst_type, unsigned dst_pos,
2828 enum isl_dim_type src_type, unsigned src_pos,
2830 __isl_give isl_set *isl_set_move_dims(
2831 __isl_take isl_set *set,
2832 enum isl_dim_type dst_type, unsigned dst_pos,
2833 enum isl_dim_type src_type, unsigned src_pos,
2835 __isl_give isl_map *isl_map_move_dims(
2836 __isl_take isl_map *map,
2837 enum isl_dim_type dst_type, unsigned dst_pos,
2838 enum isl_dim_type src_type, unsigned src_pos,
2841 It is usually not advisable to directly change the (input or output)
2842 space of a set or a relation as this removes the name and the internal
2843 structure of the space. However, the above functions can be useful
2844 to add new parameters, assuming
2845 C<isl_set_align_params> and C<isl_map_align_params>
2850 =head2 Binary Operations
2852 The two arguments of a binary operation not only need to live
2853 in the same C<isl_ctx>, they currently also need to have
2854 the same (number of) parameters.
2856 =head3 Basic Operations
2860 =item * Intersection
2862 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2863 __isl_take isl_basic_set *bset1,
2864 __isl_take isl_basic_set *bset2);
2865 __isl_give isl_basic_set *isl_basic_set_intersect(
2866 __isl_take isl_basic_set *bset1,
2867 __isl_take isl_basic_set *bset2);
2868 __isl_give isl_set *isl_set_intersect_params(
2869 __isl_take isl_set *set,
2870 __isl_take isl_set *params);
2871 __isl_give isl_set *isl_set_intersect(
2872 __isl_take isl_set *set1,
2873 __isl_take isl_set *set2);
2874 __isl_give isl_union_set *isl_union_set_intersect_params(
2875 __isl_take isl_union_set *uset,
2876 __isl_take isl_set *set);
2877 __isl_give isl_union_map *isl_union_map_intersect_params(
2878 __isl_take isl_union_map *umap,
2879 __isl_take isl_set *set);
2880 __isl_give isl_union_set *isl_union_set_intersect(
2881 __isl_take isl_union_set *uset1,
2882 __isl_take isl_union_set *uset2);
2883 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2884 __isl_take isl_basic_map *bmap,
2885 __isl_take isl_basic_set *bset);
2886 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2887 __isl_take isl_basic_map *bmap,
2888 __isl_take isl_basic_set *bset);
2889 __isl_give isl_basic_map *isl_basic_map_intersect(
2890 __isl_take isl_basic_map *bmap1,
2891 __isl_take isl_basic_map *bmap2);
2892 __isl_give isl_map *isl_map_intersect_params(
2893 __isl_take isl_map *map,
2894 __isl_take isl_set *params);
2895 __isl_give isl_map *isl_map_intersect_domain(
2896 __isl_take isl_map *map,
2897 __isl_take isl_set *set);
2898 __isl_give isl_map *isl_map_intersect_range(
2899 __isl_take isl_map *map,
2900 __isl_take isl_set *set);
2901 __isl_give isl_map *isl_map_intersect(
2902 __isl_take isl_map *map1,
2903 __isl_take isl_map *map2);
2904 __isl_give isl_union_map *isl_union_map_intersect_domain(
2905 __isl_take isl_union_map *umap,
2906 __isl_take isl_union_set *uset);
2907 __isl_give isl_union_map *isl_union_map_intersect_range(
2908 __isl_take isl_union_map *umap,
2909 __isl_take isl_union_set *uset);
2910 __isl_give isl_union_map *isl_union_map_intersect(
2911 __isl_take isl_union_map *umap1,
2912 __isl_take isl_union_map *umap2);
2914 The second argument to the C<_params> functions needs to be
2915 a parametric (basic) set. For the other functions, a parametric set
2916 for either argument is only allowed if the other argument is
2917 a parametric set as well.
2921 __isl_give isl_set *isl_basic_set_union(
2922 __isl_take isl_basic_set *bset1,
2923 __isl_take isl_basic_set *bset2);
2924 __isl_give isl_map *isl_basic_map_union(
2925 __isl_take isl_basic_map *bmap1,
2926 __isl_take isl_basic_map *bmap2);
2927 __isl_give isl_set *isl_set_union(
2928 __isl_take isl_set *set1,
2929 __isl_take isl_set *set2);
2930 __isl_give isl_map *isl_map_union(
2931 __isl_take isl_map *map1,
2932 __isl_take isl_map *map2);
2933 __isl_give isl_union_set *isl_union_set_union(
2934 __isl_take isl_union_set *uset1,
2935 __isl_take isl_union_set *uset2);
2936 __isl_give isl_union_map *isl_union_map_union(
2937 __isl_take isl_union_map *umap1,
2938 __isl_take isl_union_map *umap2);
2940 =item * Set difference
2942 __isl_give isl_set *isl_set_subtract(
2943 __isl_take isl_set *set1,
2944 __isl_take isl_set *set2);
2945 __isl_give isl_map *isl_map_subtract(
2946 __isl_take isl_map *map1,
2947 __isl_take isl_map *map2);
2948 __isl_give isl_map *isl_map_subtract_domain(
2949 __isl_take isl_map *map,
2950 __isl_take isl_set *dom);
2951 __isl_give isl_map *isl_map_subtract_range(
2952 __isl_take isl_map *map,
2953 __isl_take isl_set *dom);
2954 __isl_give isl_union_set *isl_union_set_subtract(
2955 __isl_take isl_union_set *uset1,
2956 __isl_take isl_union_set *uset2);
2957 __isl_give isl_union_map *isl_union_map_subtract(
2958 __isl_take isl_union_map *umap1,
2959 __isl_take isl_union_map *umap2);
2960 __isl_give isl_union_map *isl_union_map_subtract_domain(
2961 __isl_take isl_union_map *umap,
2962 __isl_take isl_union_set *dom);
2963 __isl_give isl_union_map *isl_union_map_subtract_range(
2964 __isl_take isl_union_map *umap,
2965 __isl_take isl_union_set *dom);
2969 __isl_give isl_basic_set *isl_basic_set_apply(
2970 __isl_take isl_basic_set *bset,
2971 __isl_take isl_basic_map *bmap);
2972 __isl_give isl_set *isl_set_apply(
2973 __isl_take isl_set *set,
2974 __isl_take isl_map *map);
2975 __isl_give isl_union_set *isl_union_set_apply(
2976 __isl_take isl_union_set *uset,
2977 __isl_take isl_union_map *umap);
2978 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2979 __isl_take isl_basic_map *bmap1,
2980 __isl_take isl_basic_map *bmap2);
2981 __isl_give isl_basic_map *isl_basic_map_apply_range(
2982 __isl_take isl_basic_map *bmap1,
2983 __isl_take isl_basic_map *bmap2);
2984 __isl_give isl_map *isl_map_apply_domain(
2985 __isl_take isl_map *map1,
2986 __isl_take isl_map *map2);
2987 __isl_give isl_union_map *isl_union_map_apply_domain(
2988 __isl_take isl_union_map *umap1,
2989 __isl_take isl_union_map *umap2);
2990 __isl_give isl_map *isl_map_apply_range(
2991 __isl_take isl_map *map1,
2992 __isl_take isl_map *map2);
2993 __isl_give isl_union_map *isl_union_map_apply_range(
2994 __isl_take isl_union_map *umap1,
2995 __isl_take isl_union_map *umap2);
2999 __isl_give isl_basic_set *
3000 isl_basic_set_preimage_multi_aff(
3001 __isl_take isl_basic_set *bset,
3002 __isl_take isl_multi_aff *ma);
3003 __isl_give isl_set *isl_set_preimage_multi_aff(
3004 __isl_take isl_set *set,
3005 __isl_take isl_multi_aff *ma);
3006 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
3007 __isl_take isl_set *set,
3008 __isl_take isl_pw_multi_aff *pma);
3009 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
3010 __isl_take isl_set *set,
3011 __isl_take isl_multi_pw_aff *mpa);
3012 __isl_give isl_basic_map *
3013 isl_basic_map_preimage_domain_multi_aff(
3014 __isl_take isl_basic_map *bmap,
3015 __isl_take isl_multi_aff *ma);
3016 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
3017 __isl_take isl_map *map,
3018 __isl_take isl_multi_aff *ma);
3019 __isl_give isl_map *
3020 isl_map_preimage_domain_pw_multi_aff(
3021 __isl_take isl_map *map,
3022 __isl_take isl_pw_multi_aff *pma);
3023 __isl_give isl_map *
3024 isl_map_preimage_domain_multi_pw_aff(
3025 __isl_take isl_map *map,
3026 __isl_take isl_multi_pw_aff *mpa);
3027 __isl_give isl_union_map *
3028 isl_union_map_preimage_domain_multi_aff(
3029 __isl_take isl_union_map *umap,
3030 __isl_take isl_multi_aff *ma);
3031 __isl_give isl_basic_map *
3032 isl_basic_map_preimage_range_multi_aff(
3033 __isl_take isl_basic_map *bmap,
3034 __isl_take isl_multi_aff *ma);
3036 These functions compute the preimage of the given set or map domain/range under
3037 the given function. In other words, the expression is plugged
3038 into the set description or into the domain/range of the map.
3039 Objects of types C<isl_multi_aff> and C<isl_pw_multi_aff> are described in
3040 L</"Piecewise Multiple Quasi Affine Expressions">.
3042 =item * Cartesian Product
3044 __isl_give isl_set *isl_set_product(
3045 __isl_take isl_set *set1,
3046 __isl_take isl_set *set2);
3047 __isl_give isl_union_set *isl_union_set_product(
3048 __isl_take isl_union_set *uset1,
3049 __isl_take isl_union_set *uset2);
3050 __isl_give isl_basic_map *isl_basic_map_domain_product(
3051 __isl_take isl_basic_map *bmap1,
3052 __isl_take isl_basic_map *bmap2);
3053 __isl_give isl_basic_map *isl_basic_map_range_product(
3054 __isl_take isl_basic_map *bmap1,
3055 __isl_take isl_basic_map *bmap2);
3056 __isl_give isl_basic_map *isl_basic_map_product(
3057 __isl_take isl_basic_map *bmap1,
3058 __isl_take isl_basic_map *bmap2);
3059 __isl_give isl_map *isl_map_domain_product(
3060 __isl_take isl_map *map1,
3061 __isl_take isl_map *map2);
3062 __isl_give isl_map *isl_map_range_product(
3063 __isl_take isl_map *map1,
3064 __isl_take isl_map *map2);
3065 __isl_give isl_union_map *isl_union_map_domain_product(
3066 __isl_take isl_union_map *umap1,
3067 __isl_take isl_union_map *umap2);
3068 __isl_give isl_union_map *isl_union_map_range_product(
3069 __isl_take isl_union_map *umap1,
3070 __isl_take isl_union_map *umap2);
3071 __isl_give isl_map *isl_map_product(
3072 __isl_take isl_map *map1,
3073 __isl_take isl_map *map2);
3074 __isl_give isl_union_map *isl_union_map_product(
3075 __isl_take isl_union_map *umap1,
3076 __isl_take isl_union_map *umap2);
3078 The above functions compute the cross product of the given
3079 sets or relations. The domains and ranges of the results
3080 are wrapped maps between domains and ranges of the inputs.
3081 To obtain a ``flat'' product, use the following functions
3084 __isl_give isl_basic_set *isl_basic_set_flat_product(
3085 __isl_take isl_basic_set *bset1,
3086 __isl_take isl_basic_set *bset2);
3087 __isl_give isl_set *isl_set_flat_product(
3088 __isl_take isl_set *set1,
3089 __isl_take isl_set *set2);
3090 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
3091 __isl_take isl_basic_map *bmap1,
3092 __isl_take isl_basic_map *bmap2);
3093 __isl_give isl_map *isl_map_flat_domain_product(
3094 __isl_take isl_map *map1,
3095 __isl_take isl_map *map2);
3096 __isl_give isl_map *isl_map_flat_range_product(
3097 __isl_take isl_map *map1,
3098 __isl_take isl_map *map2);
3099 __isl_give isl_union_map *isl_union_map_flat_range_product(
3100 __isl_take isl_union_map *umap1,
3101 __isl_take isl_union_map *umap2);
3102 __isl_give isl_basic_map *isl_basic_map_flat_product(
3103 __isl_take isl_basic_map *bmap1,
3104 __isl_take isl_basic_map *bmap2);
3105 __isl_give isl_map *isl_map_flat_product(
3106 __isl_take isl_map *map1,
3107 __isl_take isl_map *map2);
3109 The arguments of a call to C<isl_map_product> can be extracted
3110 from the result using the following two functions.
3112 __isl_give isl_map *isl_map_range_factor_domain(
3113 __isl_take isl_map *map);
3114 __isl_give isl_map *isl_map_range_factor_range(
3115 __isl_take isl_map *map);
3117 =item * Simplification
3119 __isl_give isl_basic_set *isl_basic_set_gist(
3120 __isl_take isl_basic_set *bset,
3121 __isl_take isl_basic_set *context);
3122 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3123 __isl_take isl_set *context);
3124 __isl_give isl_set *isl_set_gist_params(
3125 __isl_take isl_set *set,
3126 __isl_take isl_set *context);
3127 __isl_give isl_union_set *isl_union_set_gist(
3128 __isl_take isl_union_set *uset,
3129 __isl_take isl_union_set *context);
3130 __isl_give isl_union_set *isl_union_set_gist_params(
3131 __isl_take isl_union_set *uset,
3132 __isl_take isl_set *set);
3133 __isl_give isl_basic_map *isl_basic_map_gist(
3134 __isl_take isl_basic_map *bmap,
3135 __isl_take isl_basic_map *context);
3136 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3137 __isl_take isl_map *context);
3138 __isl_give isl_map *isl_map_gist_params(
3139 __isl_take isl_map *map,
3140 __isl_take isl_set *context);
3141 __isl_give isl_map *isl_map_gist_domain(
3142 __isl_take isl_map *map,
3143 __isl_take isl_set *context);
3144 __isl_give isl_map *isl_map_gist_range(
3145 __isl_take isl_map *map,
3146 __isl_take isl_set *context);
3147 __isl_give isl_union_map *isl_union_map_gist(
3148 __isl_take isl_union_map *umap,
3149 __isl_take isl_union_map *context);
3150 __isl_give isl_union_map *isl_union_map_gist_params(
3151 __isl_take isl_union_map *umap,
3152 __isl_take isl_set *set);
3153 __isl_give isl_union_map *isl_union_map_gist_domain(
3154 __isl_take isl_union_map *umap,
3155 __isl_take isl_union_set *uset);
3156 __isl_give isl_union_map *isl_union_map_gist_range(
3157 __isl_take isl_union_map *umap,
3158 __isl_take isl_union_set *uset);
3160 The gist operation returns a set or relation that has the
3161 same intersection with the context as the input set or relation.
3162 Any implicit equality in the intersection is made explicit in the result,
3163 while all inequalities that are redundant with respect to the intersection
3165 In case of union sets and relations, the gist operation is performed
3170 =head3 Lexicographic Optimization
3172 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
3173 the following functions
3174 compute a set that contains the lexicographic minimum or maximum
3175 of the elements in C<set> (or C<bset>) for those values of the parameters
3176 that satisfy C<dom>.
3177 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
3178 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
3180 In other words, the union of the parameter values
3181 for which the result is non-empty and of C<*empty>
3184 __isl_give isl_set *isl_basic_set_partial_lexmin(
3185 __isl_take isl_basic_set *bset,
3186 __isl_take isl_basic_set *dom,
3187 __isl_give isl_set **empty);
3188 __isl_give isl_set *isl_basic_set_partial_lexmax(
3189 __isl_take isl_basic_set *bset,
3190 __isl_take isl_basic_set *dom,
3191 __isl_give isl_set **empty);
3192 __isl_give isl_set *isl_set_partial_lexmin(
3193 __isl_take isl_set *set, __isl_take isl_set *dom,
3194 __isl_give isl_set **empty);
3195 __isl_give isl_set *isl_set_partial_lexmax(
3196 __isl_take isl_set *set, __isl_take isl_set *dom,
3197 __isl_give isl_set **empty);
3199 Given a (basic) set C<set> (or C<bset>), the following functions simply
3200 return a set containing the lexicographic minimum or maximum
3201 of the elements in C<set> (or C<bset>).
3202 In case of union sets, the optimum is computed per space.
3204 __isl_give isl_set *isl_basic_set_lexmin(
3205 __isl_take isl_basic_set *bset);
3206 __isl_give isl_set *isl_basic_set_lexmax(
3207 __isl_take isl_basic_set *bset);
3208 __isl_give isl_set *isl_set_lexmin(
3209 __isl_take isl_set *set);
3210 __isl_give isl_set *isl_set_lexmax(
3211 __isl_take isl_set *set);
3212 __isl_give isl_union_set *isl_union_set_lexmin(
3213 __isl_take isl_union_set *uset);
3214 __isl_give isl_union_set *isl_union_set_lexmax(
3215 __isl_take isl_union_set *uset);
3217 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
3218 the following functions
3219 compute a relation that maps each element of C<dom>
3220 to the single lexicographic minimum or maximum
3221 of the elements that are associated to that same
3222 element in C<map> (or C<bmap>).
3223 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
3224 that contains the elements in C<dom> that do not map
3225 to any elements in C<map> (or C<bmap>).
3226 In other words, the union of the domain of the result and of C<*empty>
3229 __isl_give isl_map *isl_basic_map_partial_lexmax(
3230 __isl_take isl_basic_map *bmap,
3231 __isl_take isl_basic_set *dom,
3232 __isl_give isl_set **empty);
3233 __isl_give isl_map *isl_basic_map_partial_lexmin(
3234 __isl_take isl_basic_map *bmap,
3235 __isl_take isl_basic_set *dom,
3236 __isl_give isl_set **empty);
3237 __isl_give isl_map *isl_map_partial_lexmax(
3238 __isl_take isl_map *map, __isl_take isl_set *dom,
3239 __isl_give isl_set **empty);
3240 __isl_give isl_map *isl_map_partial_lexmin(
3241 __isl_take isl_map *map, __isl_take isl_set *dom,
3242 __isl_give isl_set **empty);
3244 Given a (basic) map C<map> (or C<bmap>), the following functions simply
3245 return a map mapping each element in the domain of
3246 C<map> (or C<bmap>) to the lexicographic minimum or maximum
3247 of all elements associated to that element.
3248 In case of union relations, the optimum is computed per space.
3250 __isl_give isl_map *isl_basic_map_lexmin(
3251 __isl_take isl_basic_map *bmap);
3252 __isl_give isl_map *isl_basic_map_lexmax(
3253 __isl_take isl_basic_map *bmap);
3254 __isl_give isl_map *isl_map_lexmin(
3255 __isl_take isl_map *map);
3256 __isl_give isl_map *isl_map_lexmax(
3257 __isl_take isl_map *map);
3258 __isl_give isl_union_map *isl_union_map_lexmin(
3259 __isl_take isl_union_map *umap);
3260 __isl_give isl_union_map *isl_union_map_lexmax(
3261 __isl_take isl_union_map *umap);
3263 The following functions return their result in the form of
3264 a piecewise multi-affine expression
3265 (See L<"Piecewise Multiple Quasi Affine Expressions">),
3266 but are otherwise equivalent to the corresponding functions
3267 returning a basic set or relation.
3269 __isl_give isl_pw_multi_aff *
3270 isl_basic_map_lexmin_pw_multi_aff(
3271 __isl_take isl_basic_map *bmap);
3272 __isl_give isl_pw_multi_aff *
3273 isl_basic_set_partial_lexmin_pw_multi_aff(
3274 __isl_take isl_basic_set *bset,
3275 __isl_take isl_basic_set *dom,
3276 __isl_give isl_set **empty);
3277 __isl_give isl_pw_multi_aff *
3278 isl_basic_set_partial_lexmax_pw_multi_aff(
3279 __isl_take isl_basic_set *bset,
3280 __isl_take isl_basic_set *dom,
3281 __isl_give isl_set **empty);
3282 __isl_give isl_pw_multi_aff *
3283 isl_basic_map_partial_lexmin_pw_multi_aff(
3284 __isl_take isl_basic_map *bmap,
3285 __isl_take isl_basic_set *dom,
3286 __isl_give isl_set **empty);
3287 __isl_give isl_pw_multi_aff *
3288 isl_basic_map_partial_lexmax_pw_multi_aff(
3289 __isl_take isl_basic_map *bmap,
3290 __isl_take isl_basic_set *dom,
3291 __isl_give isl_set **empty);
3292 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
3293 __isl_take isl_set *set);
3294 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
3295 __isl_take isl_set *set);
3296 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
3297 __isl_take isl_map *map);
3298 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
3299 __isl_take isl_map *map);
3303 Lists are defined over several element types, including
3304 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_constraint>,
3305 C<isl_basic_set>, C<isl_set>, C<isl_ast_expr> and C<isl_ast_node>.
3306 Here we take lists of C<isl_set>s as an example.
3307 Lists can be created, copied, modified and freed using the following functions.
3309 #include <isl/list.h>
3310 __isl_give isl_set_list *isl_set_list_from_set(
3311 __isl_take isl_set *el);
3312 __isl_give isl_set_list *isl_set_list_alloc(
3313 isl_ctx *ctx, int n);
3314 __isl_give isl_set_list *isl_set_list_copy(
3315 __isl_keep isl_set_list *list);
3316 __isl_give isl_set_list *isl_set_list_insert(
3317 __isl_take isl_set_list *list, unsigned pos,
3318 __isl_take isl_set *el);
3319 __isl_give isl_set_list *isl_set_list_add(
3320 __isl_take isl_set_list *list,
3321 __isl_take isl_set *el);
3322 __isl_give isl_set_list *isl_set_list_drop(
3323 __isl_take isl_set_list *list,
3324 unsigned first, unsigned n);
3325 __isl_give isl_set_list *isl_set_list_set_set(
3326 __isl_take isl_set_list *list, int index,
3327 __isl_take isl_set *set);
3328 __isl_give isl_set_list *isl_set_list_concat(
3329 __isl_take isl_set_list *list1,
3330 __isl_take isl_set_list *list2);
3331 __isl_give isl_set_list *isl_set_list_sort(
3332 __isl_take isl_set_list *list,
3333 int (*cmp)(__isl_keep isl_set *a,
3334 __isl_keep isl_set *b, void *user),
3336 void *isl_set_list_free(__isl_take isl_set_list *list);
3338 C<isl_set_list_alloc> creates an empty list with a capacity for
3339 C<n> elements. C<isl_set_list_from_set> creates a list with a single
3342 Lists can be inspected using the following functions.
3344 #include <isl/list.h>
3345 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
3346 int isl_set_list_n_set(__isl_keep isl_set_list *list);
3347 __isl_give isl_set *isl_set_list_get_set(
3348 __isl_keep isl_set_list *list, int index);
3349 int isl_set_list_foreach(__isl_keep isl_set_list *list,
3350 int (*fn)(__isl_take isl_set *el, void *user),
3352 int isl_set_list_foreach_scc(__isl_keep isl_set_list *list,
3353 int (*follows)(__isl_keep isl_set *a,
3354 __isl_keep isl_set *b, void *user),
3356 int (*fn)(__isl_take isl_set *el, void *user),
3359 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
3360 strongly connected components of the graph with as vertices the elements
3361 of C<list> and a directed edge from vertex C<b> to vertex C<a>
3362 iff C<follows(a, b)> returns C<1>. The callbacks C<follows> and C<fn>
3363 should return C<-1> on error.
3365 Lists can be printed using
3367 #include <isl/list.h>
3368 __isl_give isl_printer *isl_printer_print_set_list(
3369 __isl_take isl_printer *p,
3370 __isl_keep isl_set_list *list);
3372 =head2 Associative arrays
3374 Associative arrays map isl objects of a specific type to isl objects
3375 of some (other) specific type. They are defined for several pairs
3376 of types, including (C<isl_map>, C<isl_basic_set>),
3377 (C<isl_id>, C<isl_ast_expr>) and.
3378 (C<isl_id>, C<isl_pw_aff>).
3379 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
3382 Associative arrays can be created, copied and freed using
3383 the following functions.
3385 #include <isl/id_to_ast_expr.h>
3386 __isl_give id_to_ast_expr *isl_id_to_ast_expr_alloc(
3387 isl_ctx *ctx, int min_size);
3388 __isl_give id_to_ast_expr *isl_id_to_ast_expr_copy(
3389 __isl_keep id_to_ast_expr *id2expr);
3390 void *isl_id_to_ast_expr_free(
3391 __isl_take id_to_ast_expr *id2expr);
3393 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
3394 to specify the expected size of the associative array.
3395 The associative array will be grown automatically as needed.
3397 Associative arrays can be inspected using the following functions.
3399 #include <isl/id_to_ast_expr.h>
3400 isl_ctx *isl_id_to_ast_expr_get_ctx(
3401 __isl_keep id_to_ast_expr *id2expr);
3402 int isl_id_to_ast_expr_has(
3403 __isl_keep id_to_ast_expr *id2expr,
3404 __isl_keep isl_id *key);
3405 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
3406 __isl_keep id_to_ast_expr *id2expr,
3407 __isl_take isl_id *key);
3408 int isl_id_to_ast_expr_foreach(
3409 __isl_keep id_to_ast_expr *id2expr,
3410 int (*fn)(__isl_take isl_id *key,
3411 __isl_take isl_ast_expr *val, void *user),
3414 They can be modified using the following function.
3416 #include <isl/id_to_ast_expr.h>
3417 __isl_give id_to_ast_expr *isl_id_to_ast_expr_set(
3418 __isl_take id_to_ast_expr *id2expr,
3419 __isl_take isl_id *key,
3420 __isl_take isl_ast_expr *val);
3422 Associative arrays can be printed using the following function.
3424 #include <isl/id_to_ast_expr.h>
3425 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
3426 __isl_take isl_printer *p,
3427 __isl_keep id_to_ast_expr *id2expr);
3429 =head2 Multiple Values
3431 An C<isl_multi_val> object represents a sequence of zero or more values,
3432 living in a set space.
3434 An C<isl_multi_val> can be constructed from an C<isl_val_list>
3435 using the following function
3437 #include <isl/val.h>
3438 __isl_give isl_multi_val *isl_multi_val_from_val_list(
3439 __isl_take isl_space *space,
3440 __isl_take isl_val_list *list);
3442 The zero multiple value (with value zero for each set dimension)
3443 can be created using the following function.
3445 #include <isl/val.h>
3446 __isl_give isl_multi_val *isl_multi_val_zero(
3447 __isl_take isl_space *space);
3449 Multiple values can be copied and freed using
3451 #include <isl/val.h>
3452 __isl_give isl_multi_val *isl_multi_val_copy(
3453 __isl_keep isl_multi_val *mv);
3454 void *isl_multi_val_free(__isl_take isl_multi_val *mv);
3456 They can be inspected using
3458 #include <isl/val.h>
3459 isl_ctx *isl_multi_val_get_ctx(
3460 __isl_keep isl_multi_val *mv);
3461 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
3462 enum isl_dim_type type);
3463 __isl_give isl_val *isl_multi_val_get_val(
3464 __isl_keep isl_multi_val *mv, int pos);
3465 int isl_multi_val_find_dim_by_id(
3466 __isl_keep isl_multi_val *mv,
3467 enum isl_dim_type type, __isl_keep isl_id *id);
3468 __isl_give isl_id *isl_multi_val_get_dim_id(
3469 __isl_keep isl_multi_val *mv,
3470 enum isl_dim_type type, unsigned pos);
3471 const char *isl_multi_val_get_tuple_name(
3472 __isl_keep isl_multi_val *mv,
3473 enum isl_dim_type type);
3474 int isl_multi_val_has_tuple_id(__isl_keep isl_multi_val *mv,
3475 enum isl_dim_type type);
3476 __isl_give isl_id *isl_multi_val_get_tuple_id(
3477 __isl_keep isl_multi_val *mv,
3478 enum isl_dim_type type);
3479 int isl_multi_val_range_is_wrapping(
3480 __isl_keep isl_multi_val *mv);
3482 They can be modified using
3484 #include <isl/val.h>
3485 __isl_give isl_multi_val *isl_multi_val_set_val(
3486 __isl_take isl_multi_val *mv, int pos,
3487 __isl_take isl_val *val);
3488 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
3489 __isl_take isl_multi_val *mv,
3490 enum isl_dim_type type, unsigned pos, const char *s);
3491 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
3492 __isl_take isl_multi_val *mv,
3493 enum isl_dim_type type, unsigned pos,
3494 __isl_take isl_id *id);
3495 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
3496 __isl_take isl_multi_val *mv,
3497 enum isl_dim_type type, const char *s);
3498 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
3499 __isl_take isl_multi_val *mv,
3500 enum isl_dim_type type, __isl_take isl_id *id);
3501 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
3502 __isl_take isl_multi_val *mv,
3503 enum isl_dim_type type);
3504 __isl_give isl_multi_val *isl_multi_val_reset_user(
3505 __isl_take isl_multi_val *mv);
3507 __isl_give isl_multi_val *isl_multi_val_insert_dims(
3508 __isl_take isl_multi_val *mv,
3509 enum isl_dim_type type, unsigned first, unsigned n);
3510 __isl_give isl_multi_val *isl_multi_val_add_dims(
3511 __isl_take isl_multi_val *mv,
3512 enum isl_dim_type type, unsigned n);
3513 __isl_give isl_multi_val *isl_multi_val_drop_dims(
3514 __isl_take isl_multi_val *mv,
3515 enum isl_dim_type type, unsigned first, unsigned n);
3519 #include <isl/val.h>
3520 __isl_give isl_multi_val *isl_multi_val_align_params(
3521 __isl_take isl_multi_val *mv,
3522 __isl_take isl_space *model);
3523 __isl_give isl_multi_val *isl_multi_val_from_range(
3524 __isl_take isl_multi_val *mv);
3525 __isl_give isl_multi_val *isl_multi_val_range_splice(
3526 __isl_take isl_multi_val *mv1, unsigned pos,
3527 __isl_take isl_multi_val *mv2);
3528 __isl_give isl_multi_val *isl_multi_val_range_product(
3529 __isl_take isl_multi_val *mv1,
3530 __isl_take isl_multi_val *mv2);
3531 __isl_give isl_multi_val *
3532 isl_multi_val_range_factor_domain(
3533 __isl_take isl_multi_val *mv);
3534 __isl_give isl_multi_val *
3535 isl_multi_val_range_factor_range(
3536 __isl_take isl_multi_val *mv);
3537 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
3538 __isl_take isl_multi_val *mv1,
3539 __isl_take isl_multi_aff *mv2);
3540 __isl_give isl_multi_val *isl_multi_val_product(
3541 __isl_take isl_multi_val *mv1,
3542 __isl_take isl_multi_val *mv2);
3543 __isl_give isl_multi_val *isl_multi_val_add_val(
3544 __isl_take isl_multi_val *mv,
3545 __isl_take isl_val *v);
3546 __isl_give isl_multi_val *isl_multi_val_mod_val(
3547 __isl_take isl_multi_val *mv,
3548 __isl_take isl_val *v);
3549 __isl_give isl_multi_val *isl_multi_val_scale_val(
3550 __isl_take isl_multi_val *mv,
3551 __isl_take isl_val *v);
3552 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
3553 __isl_take isl_multi_val *mv1,
3554 __isl_take isl_multi_val *mv2);
3555 __isl_give isl_multi_val *
3556 isl_multi_val_scale_down_multi_val(
3557 __isl_take isl_multi_val *mv1,
3558 __isl_take isl_multi_val *mv2);
3560 A multiple value can be printed using
3562 __isl_give isl_printer *isl_printer_print_multi_val(
3563 __isl_take isl_printer *p,
3564 __isl_keep isl_multi_val *mv);
3568 Vectors can be created, copied and freed using the following functions.
3570 #include <isl/vec.h>
3571 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
3573 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
3574 void *isl_vec_free(__isl_take isl_vec *vec);
3576 Note that the elements of a newly created vector may have arbitrary values.
3577 The elements can be changed and inspected using the following functions.
3579 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
3580 int isl_vec_size(__isl_keep isl_vec *vec);
3581 __isl_give isl_val *isl_vec_get_element_val(
3582 __isl_keep isl_vec *vec, int pos);
3583 __isl_give isl_vec *isl_vec_set_element_si(
3584 __isl_take isl_vec *vec, int pos, int v);
3585 __isl_give isl_vec *isl_vec_set_element_val(
3586 __isl_take isl_vec *vec, int pos,
3587 __isl_take isl_val *v);
3588 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
3590 __isl_give isl_vec *isl_vec_set_val(
3591 __isl_take isl_vec *vec, __isl_take isl_val *v);
3592 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
3593 __isl_keep isl_vec *vec2, int pos);
3595 C<isl_vec_get_element> will return a negative value if anything went wrong.
3596 In that case, the value of C<*v> is undefined.
3598 The following function can be used to concatenate two vectors.
3600 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
3601 __isl_take isl_vec *vec2);
3605 Matrices can be created, copied and freed using the following functions.
3607 #include <isl/mat.h>
3608 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
3609 unsigned n_row, unsigned n_col);
3610 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
3611 void *isl_mat_free(__isl_take isl_mat *mat);
3613 Note that the elements of a newly created matrix may have arbitrary values.
3614 The elements can be changed and inspected using the following functions.
3616 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
3617 int isl_mat_rows(__isl_keep isl_mat *mat);
3618 int isl_mat_cols(__isl_keep isl_mat *mat);
3619 __isl_give isl_val *isl_mat_get_element_val(
3620 __isl_keep isl_mat *mat, int row, int col);
3621 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
3622 int row, int col, int v);
3623 __isl_give isl_mat *isl_mat_set_element_val(
3624 __isl_take isl_mat *mat, int row, int col,
3625 __isl_take isl_val *v);
3627 C<isl_mat_get_element> will return a negative value if anything went wrong.
3628 In that case, the value of C<*v> is undefined.
3630 The following function can be used to compute the (right) inverse
3631 of a matrix, i.e., a matrix such that the product of the original
3632 and the inverse (in that order) is a multiple of the identity matrix.
3633 The input matrix is assumed to be of full row-rank.
3635 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
3637 The following function can be used to compute the (right) kernel
3638 (or null space) of a matrix, i.e., a matrix such that the product of
3639 the original and the kernel (in that order) is the zero matrix.
3641 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
3643 =head2 Piecewise Quasi Affine Expressions
3645 The zero quasi affine expression or the quasi affine expression
3646 that is equal to a given value or
3647 a specified dimension on a given domain can be created using
3649 __isl_give isl_aff *isl_aff_zero_on_domain(
3650 __isl_take isl_local_space *ls);
3651 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3652 __isl_take isl_local_space *ls);
3653 __isl_give isl_aff *isl_aff_val_on_domain(
3654 __isl_take isl_local_space *ls,
3655 __isl_take isl_val *val);
3656 __isl_give isl_aff *isl_aff_var_on_domain(
3657 __isl_take isl_local_space *ls,
3658 enum isl_dim_type type, unsigned pos);
3659 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3660 __isl_take isl_local_space *ls,
3661 enum isl_dim_type type, unsigned pos);
3663 Note that the space in which the resulting objects live is a map space
3664 with the given space as domain and a one-dimensional range.
3666 An empty piecewise quasi affine expression (one with no cells)
3667 or a piecewise quasi affine expression with a single cell can
3668 be created using the following functions.
3670 #include <isl/aff.h>
3671 __isl_give isl_pw_aff *isl_pw_aff_empty(
3672 __isl_take isl_space *space);
3673 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3674 __isl_take isl_set *set, __isl_take isl_aff *aff);
3675 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
3676 __isl_take isl_aff *aff);
3678 A piecewise quasi affine expression that is equal to 1 on a set
3679 and 0 outside the set can be created using the following function.
3681 #include <isl/aff.h>
3682 __isl_give isl_pw_aff *isl_set_indicator_function(
3683 __isl_take isl_set *set);
3685 Quasi affine expressions can be copied and freed using
3687 #include <isl/aff.h>
3688 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
3689 void *isl_aff_free(__isl_take isl_aff *aff);
3691 __isl_give isl_pw_aff *isl_pw_aff_copy(
3692 __isl_keep isl_pw_aff *pwaff);
3693 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
3695 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
3696 using the following function. The constraint is required to have
3697 a non-zero coefficient for the specified dimension.
3699 #include <isl/constraint.h>
3700 __isl_give isl_aff *isl_constraint_get_bound(
3701 __isl_keep isl_constraint *constraint,
3702 enum isl_dim_type type, int pos);
3704 The entire affine expression of the constraint can also be extracted
3705 using the following function.
3707 #include <isl/constraint.h>
3708 __isl_give isl_aff *isl_constraint_get_aff(
3709 __isl_keep isl_constraint *constraint);
3711 Conversely, an equality constraint equating
3712 the affine expression to zero or an inequality constraint enforcing
3713 the affine expression to be non-negative, can be constructed using
3715 __isl_give isl_constraint *isl_equality_from_aff(
3716 __isl_take isl_aff *aff);
3717 __isl_give isl_constraint *isl_inequality_from_aff(
3718 __isl_take isl_aff *aff);
3720 The expression can be inspected using
3722 #include <isl/aff.h>
3723 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
3724 int isl_aff_dim(__isl_keep isl_aff *aff,
3725 enum isl_dim_type type);
3726 __isl_give isl_local_space *isl_aff_get_domain_local_space(
3727 __isl_keep isl_aff *aff);
3728 __isl_give isl_local_space *isl_aff_get_local_space(
3729 __isl_keep isl_aff *aff);
3730 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
3731 enum isl_dim_type type, unsigned pos);
3732 const char *isl_pw_aff_get_dim_name(
3733 __isl_keep isl_pw_aff *pa,
3734 enum isl_dim_type type, unsigned pos);
3735 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
3736 enum isl_dim_type type, unsigned pos);
3737 __isl_give isl_id *isl_pw_aff_get_dim_id(
3738 __isl_keep isl_pw_aff *pa,
3739 enum isl_dim_type type, unsigned pos);
3740 int isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
3741 enum isl_dim_type type);
3742 __isl_give isl_id *isl_pw_aff_get_tuple_id(
3743 __isl_keep isl_pw_aff *pa,
3744 enum isl_dim_type type);
3745 __isl_give isl_val *isl_aff_get_constant_val(
3746 __isl_keep isl_aff *aff);
3747 __isl_give isl_val *isl_aff_get_coefficient_val(
3748 __isl_keep isl_aff *aff,
3749 enum isl_dim_type type, int pos);
3750 __isl_give isl_val *isl_aff_get_denominator_val(
3751 __isl_keep isl_aff *aff);
3752 __isl_give isl_aff *isl_aff_get_div(
3753 __isl_keep isl_aff *aff, int pos);
3755 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3756 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
3757 int (*fn)(__isl_take isl_set *set,
3758 __isl_take isl_aff *aff,
3759 void *user), void *user);
3761 int isl_aff_is_cst(__isl_keep isl_aff *aff);
3762 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
3764 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
3765 enum isl_dim_type type, unsigned first, unsigned n);
3766 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
3767 enum isl_dim_type type, unsigned first, unsigned n);
3769 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
3770 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
3771 enum isl_dim_type type);
3772 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3774 It can be modified using
3776 #include <isl/aff.h>
3777 __isl_give isl_aff *isl_aff_set_tuple_id(
3778 __isl_take isl_aff *aff,
3779 enum isl_dim_type type, __isl_take isl_id *id);
3780 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
3781 __isl_take isl_pw_aff *pwaff,
3782 enum isl_dim_type type, __isl_take isl_id *id);
3783 __isl_give isl_aff *isl_aff_set_dim_name(
3784 __isl_take isl_aff *aff, enum isl_dim_type type,
3785 unsigned pos, const char *s);
3786 __isl_give isl_aff *isl_aff_set_dim_id(
3787 __isl_take isl_aff *aff, enum isl_dim_type type,
3788 unsigned pos, __isl_take isl_id *id);
3789 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
3790 __isl_take isl_pw_aff *pma,
3791 enum isl_dim_type type, unsigned pos,
3792 __isl_take isl_id *id);
3793 __isl_give isl_aff *isl_aff_set_constant_si(
3794 __isl_take isl_aff *aff, int v);
3795 __isl_give isl_aff *isl_aff_set_constant_val(
3796 __isl_take isl_aff *aff, __isl_take isl_val *v);
3797 __isl_give isl_aff *isl_aff_set_coefficient_si(
3798 __isl_take isl_aff *aff,
3799 enum isl_dim_type type, int pos, int v);
3800 __isl_give isl_aff *isl_aff_set_coefficient_val(
3801 __isl_take isl_aff *aff,
3802 enum isl_dim_type type, int pos,
3803 __isl_take isl_val *v);
3805 __isl_give isl_aff *isl_aff_add_constant_si(
3806 __isl_take isl_aff *aff, int v);
3807 __isl_give isl_aff *isl_aff_add_constant_val(
3808 __isl_take isl_aff *aff, __isl_take isl_val *v);
3809 __isl_give isl_aff *isl_aff_add_constant_num_si(
3810 __isl_take isl_aff *aff, int v);
3811 __isl_give isl_aff *isl_aff_add_coefficient_si(
3812 __isl_take isl_aff *aff,
3813 enum isl_dim_type type, int pos, int v);
3814 __isl_give isl_aff *isl_aff_add_coefficient_val(
3815 __isl_take isl_aff *aff,
3816 enum isl_dim_type type, int pos,
3817 __isl_take isl_val *v);
3819 __isl_give isl_aff *isl_aff_insert_dims(
3820 __isl_take isl_aff *aff,
3821 enum isl_dim_type type, unsigned first, unsigned n);
3822 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
3823 __isl_take isl_pw_aff *pwaff,
3824 enum isl_dim_type type, unsigned first, unsigned n);
3825 __isl_give isl_aff *isl_aff_add_dims(
3826 __isl_take isl_aff *aff,
3827 enum isl_dim_type type, unsigned n);
3828 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
3829 __isl_take isl_pw_aff *pwaff,
3830 enum isl_dim_type type, unsigned n);
3831 __isl_give isl_aff *isl_aff_drop_dims(
3832 __isl_take isl_aff *aff,
3833 enum isl_dim_type type, unsigned first, unsigned n);
3834 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
3835 __isl_take isl_pw_aff *pwaff,
3836 enum isl_dim_type type, unsigned first, unsigned n);
3837 __isl_give isl_aff *isl_aff_move_dims(
3838 __isl_take isl_aff *aff,
3839 enum isl_dim_type dst_type, unsigned dst_pos,
3840 enum isl_dim_type src_type, unsigned src_pos,
3842 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
3843 __isl_take isl_pw_aff *pa,
3844 enum isl_dim_type dst_type, unsigned dst_pos,
3845 enum isl_dim_type src_type, unsigned src_pos,
3848 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
3849 set the I<numerator> of the constant or coefficient, while
3850 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
3851 the constant or coefficient as a whole.
3852 The C<add_constant> and C<add_coefficient> functions add an integer
3853 or rational value to
3854 the possibly rational constant or coefficient.
3855 The C<add_constant_num> functions add an integer value to
3858 To check whether an affine expressions is obviously zero
3859 or (obviously) equal to some other affine expression, use
3861 #include <isl/aff.h>
3862 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3863 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3864 __isl_keep isl_aff *aff2);
3865 int isl_pw_aff_plain_is_equal(
3866 __isl_keep isl_pw_aff *pwaff1,
3867 __isl_keep isl_pw_aff *pwaff2);
3868 int isl_pw_aff_is_equal(__isl_keep isl_pw_aff *pa1,
3869 __isl_keep isl_pw_aff *pa2);
3873 #include <isl/aff.h>
3874 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3875 __isl_take isl_aff *aff2);
3876 __isl_give isl_pw_aff *isl_pw_aff_add(
3877 __isl_take isl_pw_aff *pwaff1,
3878 __isl_take isl_pw_aff *pwaff2);
3879 __isl_give isl_pw_aff *isl_pw_aff_min(
3880 __isl_take isl_pw_aff *pwaff1,
3881 __isl_take isl_pw_aff *pwaff2);
3882 __isl_give isl_pw_aff *isl_pw_aff_max(
3883 __isl_take isl_pw_aff *pwaff1,
3884 __isl_take isl_pw_aff *pwaff2);
3885 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3886 __isl_take isl_aff *aff2);
3887 __isl_give isl_pw_aff *isl_pw_aff_sub(
3888 __isl_take isl_pw_aff *pwaff1,
3889 __isl_take isl_pw_aff *pwaff2);
3890 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3891 __isl_give isl_pw_aff *isl_pw_aff_neg(
3892 __isl_take isl_pw_aff *pwaff);
3893 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3894 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3895 __isl_take isl_pw_aff *pwaff);
3896 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3897 __isl_give isl_pw_aff *isl_pw_aff_floor(
3898 __isl_take isl_pw_aff *pwaff);
3899 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
3900 __isl_take isl_val *mod);
3901 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
3902 __isl_take isl_pw_aff *pa,
3903 __isl_take isl_val *mod);
3904 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
3905 __isl_take isl_val *v);
3906 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
3907 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
3908 __isl_give isl_aff *isl_aff_scale_down_ui(
3909 __isl_take isl_aff *aff, unsigned f);
3910 __isl_give isl_aff *isl_aff_scale_down_val(
3911 __isl_take isl_aff *aff, __isl_take isl_val *v);
3912 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
3913 __isl_take isl_pw_aff *pa,
3914 __isl_take isl_val *f);
3916 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3917 __isl_take isl_pw_aff_list *list);
3918 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3919 __isl_take isl_pw_aff_list *list);
3921 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3922 __isl_take isl_pw_aff *pwqp);
3924 __isl_give isl_aff *isl_aff_align_params(
3925 __isl_take isl_aff *aff,
3926 __isl_take isl_space *model);
3927 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3928 __isl_take isl_pw_aff *pwaff,
3929 __isl_take isl_space *model);
3931 __isl_give isl_aff *isl_aff_project_domain_on_params(
3932 __isl_take isl_aff *aff);
3933 __isl_give isl_pw_aff *isl_pw_aff_from_range(
3934 __isl_take isl_pw_aff *pwa);
3936 __isl_give isl_aff *isl_aff_gist_params(
3937 __isl_take isl_aff *aff,
3938 __isl_take isl_set *context);
3939 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3940 __isl_take isl_set *context);
3941 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3942 __isl_take isl_pw_aff *pwaff,
3943 __isl_take isl_set *context);
3944 __isl_give isl_pw_aff *isl_pw_aff_gist(
3945 __isl_take isl_pw_aff *pwaff,
3946 __isl_take isl_set *context);
3948 __isl_give isl_set *isl_pw_aff_domain(
3949 __isl_take isl_pw_aff *pwaff);
3950 __isl_give isl_set *isl_pw_aff_params(
3951 __isl_take isl_pw_aff *pwa);
3952 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3953 __isl_take isl_pw_aff *pa,
3954 __isl_take isl_set *set);
3955 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3956 __isl_take isl_pw_aff *pa,
3957 __isl_take isl_set *set);
3959 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3960 __isl_take isl_aff *aff2);
3961 __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
3962 __isl_take isl_aff *aff2);
3963 __isl_give isl_pw_aff *isl_pw_aff_mul(
3964 __isl_take isl_pw_aff *pwaff1,
3965 __isl_take isl_pw_aff *pwaff2);
3966 __isl_give isl_pw_aff *isl_pw_aff_div(
3967 __isl_take isl_pw_aff *pa1,
3968 __isl_take isl_pw_aff *pa2);
3969 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
3970 __isl_take isl_pw_aff *pa1,
3971 __isl_take isl_pw_aff *pa2);
3972 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
3973 __isl_take isl_pw_aff *pa1,
3974 __isl_take isl_pw_aff *pa2);
3976 When multiplying two affine expressions, at least one of the two needs
3977 to be a constant. Similarly, when dividing an affine expression by another,
3978 the second expression needs to be a constant.
3979 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
3980 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
3983 #include <isl/aff.h>
3984 __isl_give isl_aff *isl_aff_pullback_aff(
3985 __isl_take isl_aff *aff1,
3986 __isl_take isl_aff *aff2);
3987 __isl_give isl_aff *isl_aff_pullback_multi_aff(
3988 __isl_take isl_aff *aff,
3989 __isl_take isl_multi_aff *ma);
3990 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
3991 __isl_take isl_pw_aff *pa,
3992 __isl_take isl_multi_aff *ma);
3993 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
3994 __isl_take isl_pw_aff *pa,
3995 __isl_take isl_pw_multi_aff *pma);
3997 These functions precompose the input expression by the given
3998 C<isl_aff>, C<isl_multi_aff> or C<isl_pw_multi_aff>. In other words,
3999 the C<isl_aff>, C<isl_multi_aff> or C<isl_pw_multi_aff> is plugged
4000 into the (piecewise) affine expression.
4001 Objects of type C<isl_multi_aff> are described in
4002 L</"Piecewise Multiple Quasi Affine Expressions">.
4004 #include <isl/aff.h>
4005 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4006 __isl_take isl_aff *aff);
4007 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4008 __isl_take isl_aff *aff);
4009 __isl_give isl_basic_set *isl_aff_le_basic_set(
4010 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
4011 __isl_give isl_basic_set *isl_aff_ge_basic_set(
4012 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
4013 __isl_give isl_set *isl_pw_aff_eq_set(
4014 __isl_take isl_pw_aff *pwaff1,
4015 __isl_take isl_pw_aff *pwaff2);
4016 __isl_give isl_set *isl_pw_aff_ne_set(
4017 __isl_take isl_pw_aff *pwaff1,
4018 __isl_take isl_pw_aff *pwaff2);
4019 __isl_give isl_set *isl_pw_aff_le_set(
4020 __isl_take isl_pw_aff *pwaff1,
4021 __isl_take isl_pw_aff *pwaff2);
4022 __isl_give isl_set *isl_pw_aff_lt_set(
4023 __isl_take isl_pw_aff *pwaff1,
4024 __isl_take isl_pw_aff *pwaff2);
4025 __isl_give isl_set *isl_pw_aff_ge_set(
4026 __isl_take isl_pw_aff *pwaff1,
4027 __isl_take isl_pw_aff *pwaff2);
4028 __isl_give isl_set *isl_pw_aff_gt_set(
4029 __isl_take isl_pw_aff *pwaff1,
4030 __isl_take isl_pw_aff *pwaff2);
4032 __isl_give isl_set *isl_pw_aff_list_eq_set(
4033 __isl_take isl_pw_aff_list *list1,
4034 __isl_take isl_pw_aff_list *list2);
4035 __isl_give isl_set *isl_pw_aff_list_ne_set(
4036 __isl_take isl_pw_aff_list *list1,
4037 __isl_take isl_pw_aff_list *list2);
4038 __isl_give isl_set *isl_pw_aff_list_le_set(
4039 __isl_take isl_pw_aff_list *list1,
4040 __isl_take isl_pw_aff_list *list2);
4041 __isl_give isl_set *isl_pw_aff_list_lt_set(
4042 __isl_take isl_pw_aff_list *list1,
4043 __isl_take isl_pw_aff_list *list2);
4044 __isl_give isl_set *isl_pw_aff_list_ge_set(
4045 __isl_take isl_pw_aff_list *list1,
4046 __isl_take isl_pw_aff_list *list2);
4047 __isl_give isl_set *isl_pw_aff_list_gt_set(
4048 __isl_take isl_pw_aff_list *list1,
4049 __isl_take isl_pw_aff_list *list2);
4051 The function C<isl_aff_neg_basic_set> returns a basic set
4052 containing those elements in the domain space
4053 of C<aff> where C<aff> is negative.
4054 The function C<isl_aff_ge_basic_set> returns a basic set
4055 containing those elements in the shared space
4056 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
4057 The function C<isl_pw_aff_ge_set> returns a set
4058 containing those elements in the shared domain
4059 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
4060 The functions operating on C<isl_pw_aff_list> apply the corresponding
4061 C<isl_pw_aff> function to each pair of elements in the two lists.
4063 #include <isl/aff.h>
4064 __isl_give isl_set *isl_pw_aff_nonneg_set(
4065 __isl_take isl_pw_aff *pwaff);
4066 __isl_give isl_set *isl_pw_aff_zero_set(
4067 __isl_take isl_pw_aff *pwaff);
4068 __isl_give isl_set *isl_pw_aff_non_zero_set(
4069 __isl_take isl_pw_aff *pwaff);
4071 The function C<isl_pw_aff_nonneg_set> returns a set
4072 containing those elements in the domain
4073 of C<pwaff> where C<pwaff> is non-negative.
4075 #include <isl/aff.h>
4076 __isl_give isl_pw_aff *isl_pw_aff_cond(
4077 __isl_take isl_pw_aff *cond,
4078 __isl_take isl_pw_aff *pwaff_true,
4079 __isl_take isl_pw_aff *pwaff_false);
4081 The function C<isl_pw_aff_cond> performs a conditional operator
4082 and returns an expression that is equal to C<pwaff_true>
4083 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
4084 where C<cond> is zero.
4086 #include <isl/aff.h>
4087 __isl_give isl_pw_aff *isl_pw_aff_union_min(
4088 __isl_take isl_pw_aff *pwaff1,
4089 __isl_take isl_pw_aff *pwaff2);
4090 __isl_give isl_pw_aff *isl_pw_aff_union_max(
4091 __isl_take isl_pw_aff *pwaff1,
4092 __isl_take isl_pw_aff *pwaff2);
4093 __isl_give isl_pw_aff *isl_pw_aff_union_add(
4094 __isl_take isl_pw_aff *pwaff1,
4095 __isl_take isl_pw_aff *pwaff2);
4097 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
4098 expression with a domain that is the union of those of C<pwaff1> and
4099 C<pwaff2> and such that on each cell, the quasi-affine expression is
4100 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
4101 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
4102 associated expression is the defined one.
4104 An expression can be read from input using
4106 #include <isl/aff.h>
4107 __isl_give isl_aff *isl_aff_read_from_str(
4108 isl_ctx *ctx, const char *str);
4109 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
4110 isl_ctx *ctx, const char *str);
4112 An expression can be printed using
4114 #include <isl/aff.h>
4115 __isl_give isl_printer *isl_printer_print_aff(
4116 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
4118 __isl_give isl_printer *isl_printer_print_pw_aff(
4119 __isl_take isl_printer *p,
4120 __isl_keep isl_pw_aff *pwaff);
4122 =head2 Piecewise Multiple Quasi Affine Expressions
4124 An C<isl_multi_aff> object represents a sequence of
4125 zero or more affine expressions, all defined on the same domain space.
4126 Similarly, an C<isl_multi_pw_aff> object represents a sequence of
4127 zero or more piecewise affine expressions.
4129 An C<isl_multi_aff> can be constructed from a single
4130 C<isl_aff> or an C<isl_aff_list> using the
4131 following functions. Similarly for C<isl_multi_pw_aff>
4132 and C<isl_pw_multi_aff>.
4134 #include <isl/aff.h>
4135 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
4136 __isl_take isl_aff *aff);
4137 __isl_give isl_multi_pw_aff *
4138 isl_multi_pw_aff_from_multi_aff(
4139 __isl_take isl_multi_aff *ma);
4140 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
4141 __isl_take isl_pw_aff *pa);
4142 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
4143 __isl_take isl_pw_aff *pa);
4144 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
4145 __isl_take isl_space *space,
4146 __isl_take isl_aff_list *list);
4148 An C<isl_multi_pw_aff> can be converted to an C<isl_pw_multi_aff>
4149 using the function C<isl_pw_multi_aff_from_multi_pw_aff> below.
4150 Note however that the domain
4151 of the result is the intersection of the domains of the input.
4152 The reverse conversion is exact.
4154 #include <isl/aff.h>
4155 __isl_give isl_pw_multi_aff *
4156 isl_pw_multi_aff_from_multi_pw_aff(
4157 __isl_take isl_multi_pw_aff *mpa);
4158 __isl_give isl_multi_pw_aff *
4159 isl_multi_pw_aff_from_pw_multi_aff(
4160 __isl_take isl_pw_multi_aff *pma);
4162 An empty piecewise multiple quasi affine expression (one with no cells),
4163 the zero piecewise multiple quasi affine expression (with value zero
4164 for each output dimension),
4165 a piecewise multiple quasi affine expression with a single cell (with
4166 either a universe or a specified domain) or
4167 a zero-dimensional piecewise multiple quasi affine expression
4169 can be created using the following functions.
4171 #include <isl/aff.h>
4172 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
4173 __isl_take isl_space *space);
4174 __isl_give isl_multi_aff *isl_multi_aff_zero(
4175 __isl_take isl_space *space);
4176 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
4177 __isl_take isl_space *space);
4178 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
4179 __isl_take isl_space *space);
4180 __isl_give isl_multi_aff *isl_multi_aff_identity(
4181 __isl_take isl_space *space);
4182 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
4183 __isl_take isl_space *space);
4184 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
4185 __isl_take isl_space *space);
4186 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
4187 __isl_take isl_space *space);
4188 __isl_give isl_multi_aff *isl_multi_aff_range_map(
4189 __isl_take isl_space *space);
4190 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
4191 __isl_take isl_space *space,
4192 enum isl_dim_type type,
4193 unsigned first, unsigned n);
4194 __isl_give isl_pw_multi_aff *
4195 isl_pw_multi_aff_project_out_map(
4196 __isl_take isl_space *space,
4197 enum isl_dim_type type,
4198 unsigned first, unsigned n);
4199 __isl_give isl_pw_multi_aff *
4200 isl_pw_multi_aff_from_multi_aff(
4201 __isl_take isl_multi_aff *ma);
4202 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
4203 __isl_take isl_set *set,
4204 __isl_take isl_multi_aff *maff);
4205 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4206 __isl_take isl_set *set);
4208 __isl_give isl_union_pw_multi_aff *
4209 isl_union_pw_multi_aff_empty(
4210 __isl_take isl_space *space);
4211 __isl_give isl_union_pw_multi_aff *
4212 isl_union_pw_multi_aff_add_pw_multi_aff(
4213 __isl_take isl_union_pw_multi_aff *upma,
4214 __isl_take isl_pw_multi_aff *pma);
4215 __isl_give isl_union_pw_multi_aff *
4216 isl_union_pw_multi_aff_from_domain(
4217 __isl_take isl_union_set *uset);
4219 A piecewise multiple quasi affine expression can also be initialized
4220 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4221 and the C<isl_map> is single-valued.
4222 In case of a conversion from an C<isl_union_set> or an C<isl_union_map>
4223 to an C<isl_union_pw_multi_aff>, these properties need to hold in each space.
4225 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4226 __isl_take isl_set *set);
4227 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4228 __isl_take isl_map *map);
4230 __isl_give isl_union_pw_multi_aff *
4231 isl_union_pw_multi_aff_from_union_set(
4232 __isl_take isl_union_set *uset);
4233 __isl_give isl_union_pw_multi_aff *
4234 isl_union_pw_multi_aff_from_union_map(
4235 __isl_take isl_union_map *umap);
4237 Multiple quasi affine expressions can be copied and freed using
4239 #include <isl/aff.h>
4240 __isl_give isl_multi_aff *isl_multi_aff_copy(
4241 __isl_keep isl_multi_aff *maff);
4242 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
4244 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
4245 __isl_keep isl_pw_multi_aff *pma);
4246 void *isl_pw_multi_aff_free(
4247 __isl_take isl_pw_multi_aff *pma);
4249 __isl_give isl_union_pw_multi_aff *
4250 isl_union_pw_multi_aff_copy(
4251 __isl_keep isl_union_pw_multi_aff *upma);
4252 void *isl_union_pw_multi_aff_free(
4253 __isl_take isl_union_pw_multi_aff *upma);
4255 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
4256 __isl_keep isl_multi_pw_aff *mpa);
4257 void *isl_multi_pw_aff_free(
4258 __isl_take isl_multi_pw_aff *mpa);
4260 The expression can be inspected using
4262 #include <isl/aff.h>
4263 isl_ctx *isl_multi_aff_get_ctx(
4264 __isl_keep isl_multi_aff *maff);
4265 isl_ctx *isl_pw_multi_aff_get_ctx(
4266 __isl_keep isl_pw_multi_aff *pma);
4267 isl_ctx *isl_union_pw_multi_aff_get_ctx(
4268 __isl_keep isl_union_pw_multi_aff *upma);
4269 isl_ctx *isl_multi_pw_aff_get_ctx(
4270 __isl_keep isl_multi_pw_aff *mpa);
4271 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
4272 enum isl_dim_type type);
4273 unsigned isl_pw_multi_aff_dim(
4274 __isl_keep isl_pw_multi_aff *pma,
4275 enum isl_dim_type type);
4276 unsigned isl_multi_pw_aff_dim(
4277 __isl_keep isl_multi_pw_aff *mpa,
4278 enum isl_dim_type type);
4279 __isl_give isl_aff *isl_multi_aff_get_aff(
4280 __isl_keep isl_multi_aff *multi, int pos);
4281 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
4282 __isl_keep isl_pw_multi_aff *pma, int pos);
4283 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
4284 __isl_keep isl_multi_pw_aff *mpa, int pos);
4285 int isl_multi_aff_find_dim_by_id(
4286 __isl_keep isl_multi_aff *ma,
4287 enum isl_dim_type type, __isl_keep isl_id *id);
4288 int isl_multi_pw_aff_find_dim_by_id(
4289 __isl_keep isl_multi_pw_aff *mpa,
4290 enum isl_dim_type type, __isl_keep isl_id *id);
4291 const char *isl_pw_multi_aff_get_dim_name(
4292 __isl_keep isl_pw_multi_aff *pma,
4293 enum isl_dim_type type, unsigned pos);
4294 __isl_give isl_id *isl_multi_aff_get_dim_id(
4295 __isl_keep isl_multi_aff *ma,
4296 enum isl_dim_type type, unsigned pos);
4297 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
4298 __isl_keep isl_pw_multi_aff *pma,
4299 enum isl_dim_type type, unsigned pos);
4300 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
4301 __isl_keep isl_multi_pw_aff *mpa,
4302 enum isl_dim_type type, unsigned pos);
4303 const char *isl_multi_aff_get_tuple_name(
4304 __isl_keep isl_multi_aff *multi,
4305 enum isl_dim_type type);
4306 int isl_pw_multi_aff_has_tuple_name(
4307 __isl_keep isl_pw_multi_aff *pma,
4308 enum isl_dim_type type);
4309 const char *isl_pw_multi_aff_get_tuple_name(
4310 __isl_keep isl_pw_multi_aff *pma,
4311 enum isl_dim_type type);
4312 int isl_multi_aff_has_tuple_id(__isl_keep isl_multi_aff *ma,
4313 enum isl_dim_type type);
4314 int isl_pw_multi_aff_has_tuple_id(
4315 __isl_keep isl_pw_multi_aff *pma,
4316 enum isl_dim_type type);
4317 int isl_multi_pw_aff_has_tuple_id(
4318 __isl_keep isl_multi_pw_aff *mpa,
4319 enum isl_dim_type type);
4320 __isl_give isl_id *isl_multi_aff_get_tuple_id(
4321 __isl_keep isl_multi_aff *ma,
4322 enum isl_dim_type type);
4323 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
4324 __isl_keep isl_pw_multi_aff *pma,
4325 enum isl_dim_type type);
4326 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
4327 __isl_keep isl_multi_pw_aff *mpa,
4328 enum isl_dim_type type);
4329 int isl_multi_aff_range_is_wrapping(
4330 __isl_keep isl_multi_aff *ma);
4331 int isl_multi_pw_aff_range_is_wrapping(
4332 __isl_keep isl_multi_pw_aff *mpa);
4334 int isl_pw_multi_aff_foreach_piece(
4335 __isl_keep isl_pw_multi_aff *pma,
4336 int (*fn)(__isl_take isl_set *set,
4337 __isl_take isl_multi_aff *maff,
4338 void *user), void *user);
4340 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
4341 __isl_keep isl_union_pw_multi_aff *upma,
4342 int (*fn)(__isl_take isl_pw_multi_aff *pma,
4343 void *user), void *user);
4345 It can be modified using
4347 #include <isl/aff.h>
4348 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
4349 __isl_take isl_multi_aff *multi, int pos,
4350 __isl_take isl_aff *aff);
4351 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
4352 __isl_take isl_pw_multi_aff *pma, unsigned pos,
4353 __isl_take isl_pw_aff *pa);
4354 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
4355 __isl_take isl_multi_aff *maff,
4356 enum isl_dim_type type, unsigned pos, const char *s);
4357 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
4358 __isl_take isl_multi_aff *maff,
4359 enum isl_dim_type type, unsigned pos,
4360 __isl_take isl_id *id);
4361 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
4362 __isl_take isl_multi_aff *maff,
4363 enum isl_dim_type type, const char *s);
4364 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
4365 __isl_take isl_multi_aff *maff,
4366 enum isl_dim_type type, __isl_take isl_id *id);
4367 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
4368 __isl_take isl_pw_multi_aff *pma,
4369 enum isl_dim_type type, __isl_take isl_id *id);
4370 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
4371 __isl_take isl_multi_aff *ma,
4372 enum isl_dim_type type);
4373 __isl_give isl_multi_pw_aff *
4374 isl_multi_pw_aff_reset_tuple_id(
4375 __isl_take isl_multi_pw_aff *mpa,
4376 enum isl_dim_type type);
4377 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
4378 __isl_take isl_multi_aff *ma);
4379 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
4380 __isl_take isl_multi_pw_aff *mpa);
4382 __isl_give isl_multi_pw_aff *
4383 isl_multi_pw_aff_set_dim_name(
4384 __isl_take isl_multi_pw_aff *mpa,
4385 enum isl_dim_type type, unsigned pos, const char *s);
4386 __isl_give isl_multi_pw_aff *
4387 isl_multi_pw_aff_set_dim_id(
4388 __isl_take isl_multi_pw_aff *mpa,
4389 enum isl_dim_type type, unsigned pos,
4390 __isl_take isl_id *id);
4391 __isl_give isl_multi_pw_aff *
4392 isl_multi_pw_aff_set_tuple_name(
4393 __isl_take isl_multi_pw_aff *mpa,
4394 enum isl_dim_type type, const char *s);
4396 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
4397 __isl_take isl_multi_aff *ma,
4398 enum isl_dim_type type, unsigned first, unsigned n);
4399 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
4400 __isl_take isl_multi_aff *ma,
4401 enum isl_dim_type type, unsigned n);
4402 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
4403 __isl_take isl_multi_aff *maff,
4404 enum isl_dim_type type, unsigned first, unsigned n);
4405 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
4406 __isl_take isl_pw_multi_aff *pma,
4407 enum isl_dim_type type, unsigned first, unsigned n);
4409 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
4410 __isl_take isl_multi_pw_aff *mpa,
4411 enum isl_dim_type type, unsigned first, unsigned n);
4412 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
4413 __isl_take isl_multi_pw_aff *mpa,
4414 enum isl_dim_type type, unsigned n);
4415 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
4416 __isl_take isl_multi_pw_aff *pma,
4417 enum isl_dim_type dst_type, unsigned dst_pos,
4418 enum isl_dim_type src_type, unsigned src_pos,
4421 To check whether two multiple affine expressions are
4422 (obviously) equal to each other, use
4424 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
4425 __isl_keep isl_multi_aff *maff2);
4426 int isl_pw_multi_aff_plain_is_equal(
4427 __isl_keep isl_pw_multi_aff *pma1,
4428 __isl_keep isl_pw_multi_aff *pma2);
4429 int isl_multi_pw_aff_plain_is_equal(
4430 __isl_keep isl_multi_pw_aff *mpa1,
4431 __isl_keep isl_multi_pw_aff *mpa2);
4432 int isl_multi_pw_aff_is_equal(
4433 __isl_keep isl_multi_pw_aff *mpa1,
4434 __isl_keep isl_multi_pw_aff *mpa2);
4438 #include <isl/aff.h>
4439 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
4440 __isl_take isl_pw_multi_aff *pma1,
4441 __isl_take isl_pw_multi_aff *pma2);
4442 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
4443 __isl_take isl_pw_multi_aff *pma1,
4444 __isl_take isl_pw_multi_aff *pma2);
4445 __isl_give isl_multi_aff *isl_multi_aff_add(
4446 __isl_take isl_multi_aff *maff1,
4447 __isl_take isl_multi_aff *maff2);
4448 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
4449 __isl_take isl_pw_multi_aff *pma1,
4450 __isl_take isl_pw_multi_aff *pma2);
4451 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
4452 __isl_take isl_union_pw_multi_aff *upma1,
4453 __isl_take isl_union_pw_multi_aff *upma2);
4454 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
4455 __isl_take isl_pw_multi_aff *pma1,
4456 __isl_take isl_pw_multi_aff *pma2);
4457 __isl_give isl_multi_aff *isl_multi_aff_sub(
4458 __isl_take isl_multi_aff *ma1,
4459 __isl_take isl_multi_aff *ma2);
4460 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
4461 __isl_take isl_pw_multi_aff *pma1,
4462 __isl_take isl_pw_multi_aff *pma2);
4463 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
4464 __isl_take isl_union_pw_multi_aff *upma1,
4465 __isl_take isl_union_pw_multi_aff *upma2);
4467 C<isl_multi_aff_sub> subtracts the second argument from the first.
4469 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
4470 __isl_take isl_multi_aff *ma,
4471 __isl_take isl_val *v);
4472 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
4473 __isl_take isl_pw_multi_aff *pma,
4474 __isl_take isl_val *v);
4475 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
4476 __isl_take isl_multi_pw_aff *mpa,
4477 __isl_take isl_val *v);
4478 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
4479 __isl_take isl_multi_aff *ma,
4480 __isl_take isl_multi_val *mv);
4481 __isl_give isl_pw_multi_aff *
4482 isl_pw_multi_aff_scale_multi_val(
4483 __isl_take isl_pw_multi_aff *pma,
4484 __isl_take isl_multi_val *mv);
4485 __isl_give isl_multi_pw_aff *
4486 isl_multi_pw_aff_scale_multi_val(
4487 __isl_take isl_multi_pw_aff *mpa,
4488 __isl_take isl_multi_val *mv);
4489 __isl_give isl_union_pw_multi_aff *
4490 isl_union_pw_multi_aff_scale_multi_val(
4491 __isl_take isl_union_pw_multi_aff *upma,
4492 __isl_take isl_multi_val *mv);
4493 __isl_give isl_multi_aff *
4494 isl_multi_aff_scale_down_multi_val(
4495 __isl_take isl_multi_aff *ma,
4496 __isl_take isl_multi_val *mv);
4497 __isl_give isl_multi_pw_aff *
4498 isl_multi_pw_aff_scale_down_multi_val(
4499 __isl_take isl_multi_pw_aff *mpa,
4500 __isl_take isl_multi_val *mv);
4502 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
4503 by the corresponding elements of C<mv>.
4505 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
4506 __isl_take isl_pw_multi_aff *pma,
4507 enum isl_dim_type type, unsigned pos, int value);
4508 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
4509 __isl_take isl_pw_multi_aff *pma,
4510 __isl_take isl_set *set);
4511 __isl_give isl_set *isl_multi_pw_aff_domain(
4512 __isl_take isl_multi_pw_aff *mpa);
4513 __isl_give isl_multi_pw_aff *
4514 isl_multi_pw_aff_intersect_params(
4515 __isl_take isl_multi_pw_aff *mpa,
4516 __isl_take isl_set *set);
4517 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
4518 __isl_take isl_pw_multi_aff *pma,
4519 __isl_take isl_set *set);
4520 __isl_give isl_multi_pw_aff *
4521 isl_multi_pw_aff_intersect_domain(
4522 __isl_take isl_multi_pw_aff *mpa,
4523 __isl_take isl_set *domain);
4524 __isl_give isl_union_pw_multi_aff *
4525 isl_union_pw_multi_aff_intersect_domain(
4526 __isl_take isl_union_pw_multi_aff *upma,
4527 __isl_take isl_union_set *uset);
4528 __isl_give isl_multi_aff *isl_multi_aff_lift(
4529 __isl_take isl_multi_aff *maff,
4530 __isl_give isl_local_space **ls);
4531 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4532 __isl_take isl_pw_multi_aff *pma);
4533 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
4534 __isl_take isl_multi_pw_aff *mpa);
4535 __isl_give isl_multi_aff *isl_multi_aff_align_params(
4536 __isl_take isl_multi_aff *multi,
4537 __isl_take isl_space *model);
4538 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
4539 __isl_take isl_pw_multi_aff *pma,
4540 __isl_take isl_space *model);
4541 __isl_give isl_pw_multi_aff *
4542 isl_pw_multi_aff_project_domain_on_params(
4543 __isl_take isl_pw_multi_aff *pma);
4544 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
4545 __isl_take isl_multi_aff *maff,
4546 __isl_take isl_set *context);
4547 __isl_give isl_multi_aff *isl_multi_aff_gist(
4548 __isl_take isl_multi_aff *maff,
4549 __isl_take isl_set *context);
4550 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
4551 __isl_take isl_pw_multi_aff *pma,
4552 __isl_take isl_set *set);
4553 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
4554 __isl_take isl_pw_multi_aff *pma,
4555 __isl_take isl_set *set);
4556 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
4557 __isl_take isl_multi_pw_aff *mpa,
4558 __isl_take isl_set *set);
4559 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
4560 __isl_take isl_multi_pw_aff *mpa,
4561 __isl_take isl_set *set);
4562 __isl_give isl_multi_aff *isl_multi_aff_from_range(
4563 __isl_take isl_multi_aff *ma);
4564 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
4565 __isl_take isl_multi_pw_aff *mpa);
4566 __isl_give isl_set *isl_pw_multi_aff_domain(
4567 __isl_take isl_pw_multi_aff *pma);
4568 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4569 __isl_take isl_union_pw_multi_aff *upma);
4570 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
4571 __isl_take isl_multi_aff *ma1, unsigned pos,
4572 __isl_take isl_multi_aff *ma2);
4573 __isl_give isl_multi_aff *isl_multi_aff_splice(
4574 __isl_take isl_multi_aff *ma1,
4575 unsigned in_pos, unsigned out_pos,
4576 __isl_take isl_multi_aff *ma2);
4577 __isl_give isl_multi_aff *isl_multi_aff_range_product(
4578 __isl_take isl_multi_aff *ma1,
4579 __isl_take isl_multi_aff *ma2);
4580 __isl_give isl_multi_aff *
4581 isl_multi_aff_range_factor_domain(
4582 __isl_take isl_multi_aff *ma);
4583 __isl_give isl_multi_aff *
4584 isl_multi_aff_range_factor_range(
4585 __isl_take isl_multi_aff *ma);
4586 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
4587 __isl_take isl_multi_aff *ma1,
4588 __isl_take isl_multi_aff *ma2);
4589 __isl_give isl_multi_aff *isl_multi_aff_product(
4590 __isl_take isl_multi_aff *ma1,
4591 __isl_take isl_multi_aff *ma2);
4592 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
4593 __isl_take isl_multi_pw_aff *mpa1,
4594 __isl_take isl_multi_pw_aff *mpa2);
4595 __isl_give isl_pw_multi_aff *
4596 isl_pw_multi_aff_range_product(
4597 __isl_take isl_pw_multi_aff *pma1,
4598 __isl_take isl_pw_multi_aff *pma2);
4599 __isl_give isl_multi_pw_aff *
4600 isl_multi_pw_aff_range_factor_domain(
4601 __isl_take isl_multi_pw_aff *mpa);
4602 __isl_give isl_multi_pw_aff *
4603 isl_multi_pw_aff_range_factor_range(
4604 __isl_take isl_multi_pw_aff *mpa);
4605 __isl_give isl_pw_multi_aff *
4606 isl_pw_multi_aff_flat_range_product(
4607 __isl_take isl_pw_multi_aff *pma1,
4608 __isl_take isl_pw_multi_aff *pma2);
4609 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
4610 __isl_take isl_pw_multi_aff *pma1,
4611 __isl_take isl_pw_multi_aff *pma2);
4612 __isl_give isl_union_pw_multi_aff *
4613 isl_union_pw_multi_aff_flat_range_product(
4614 __isl_take isl_union_pw_multi_aff *upma1,
4615 __isl_take isl_union_pw_multi_aff *upma2);
4616 __isl_give isl_multi_pw_aff *
4617 isl_multi_pw_aff_range_splice(
4618 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
4619 __isl_take isl_multi_pw_aff *mpa2);
4620 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
4621 __isl_take isl_multi_pw_aff *mpa1,
4622 unsigned in_pos, unsigned out_pos,
4623 __isl_take isl_multi_pw_aff *mpa2);
4624 __isl_give isl_multi_pw_aff *
4625 isl_multi_pw_aff_range_product(
4626 __isl_take isl_multi_pw_aff *mpa1,
4627 __isl_take isl_multi_pw_aff *mpa2);
4628 __isl_give isl_multi_pw_aff *
4629 isl_multi_pw_aff_flat_range_product(
4630 __isl_take isl_multi_pw_aff *mpa1,
4631 __isl_take isl_multi_pw_aff *mpa2);
4633 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
4634 then it is assigned the local space that lies at the basis of
4635 the lifting applied.
4637 #include <isl/aff.h>
4638 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
4639 __isl_take isl_multi_aff *ma1,
4640 __isl_take isl_multi_aff *ma2);
4641 __isl_give isl_pw_multi_aff *
4642 isl_pw_multi_aff_pullback_multi_aff(
4643 __isl_take isl_pw_multi_aff *pma,
4644 __isl_take isl_multi_aff *ma);
4645 __isl_give isl_multi_pw_aff *
4646 isl_multi_pw_aff_pullback_multi_aff(
4647 __isl_take isl_multi_pw_aff *mpa,
4648 __isl_take isl_multi_aff *ma);
4649 __isl_give isl_pw_multi_aff *
4650 isl_pw_multi_aff_pullback_pw_multi_aff(
4651 __isl_take isl_pw_multi_aff *pma1,
4652 __isl_take isl_pw_multi_aff *pma2);
4653 __isl_give isl_multi_pw_aff *
4654 isl_multi_pw_aff_pullback_pw_multi_aff(
4655 __isl_take isl_multi_pw_aff *mpa,
4656 __isl_take isl_pw_multi_aff *pma);
4657 __isl_give isl_multi_pw_aff *
4658 isl_multi_pw_aff_pullback_multi_pw_aff(
4659 __isl_take isl_multi_pw_aff *mpa1,
4660 __isl_take isl_multi_pw_aff *mpa2);
4662 The function C<isl_multi_aff_pullback_multi_aff> precomposes C<ma1> by C<ma2>.
4663 In other words, C<ma2> is plugged
4666 __isl_give isl_set *isl_multi_aff_lex_le_set(
4667 __isl_take isl_multi_aff *ma1,
4668 __isl_take isl_multi_aff *ma2);
4669 __isl_give isl_set *isl_multi_aff_lex_ge_set(
4670 __isl_take isl_multi_aff *ma1,
4671 __isl_take isl_multi_aff *ma2);
4673 The function C<isl_multi_aff_lex_le_set> returns a set
4674 containing those elements in the shared domain space
4675 where C<ma1> is lexicographically smaller than or
4678 An expression can be read from input using
4680 #include <isl/aff.h>
4681 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
4682 isl_ctx *ctx, const char *str);
4683 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
4684 isl_ctx *ctx, const char *str);
4685 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
4686 isl_ctx *ctx, const char *str);
4687 __isl_give isl_union_pw_multi_aff *
4688 isl_union_pw_multi_aff_read_from_str(
4689 isl_ctx *ctx, const char *str);
4691 An expression can be printed using
4693 #include <isl/aff.h>
4694 __isl_give isl_printer *isl_printer_print_multi_aff(
4695 __isl_take isl_printer *p,
4696 __isl_keep isl_multi_aff *maff);
4697 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
4698 __isl_take isl_printer *p,
4699 __isl_keep isl_pw_multi_aff *pma);
4700 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
4701 __isl_take isl_printer *p,
4702 __isl_keep isl_union_pw_multi_aff *upma);
4703 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
4704 __isl_take isl_printer *p,
4705 __isl_keep isl_multi_pw_aff *mpa);
4709 Points are elements of a set. They can be used to construct
4710 simple sets (boxes) or they can be used to represent the
4711 individual elements of a set.
4712 The zero point (the origin) can be created using
4714 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
4716 The coordinates of a point can be inspected, set and changed
4719 __isl_give isl_val *isl_point_get_coordinate_val(
4720 __isl_keep isl_point *pnt,
4721 enum isl_dim_type type, int pos);
4722 __isl_give isl_point *isl_point_set_coordinate_val(
4723 __isl_take isl_point *pnt,
4724 enum isl_dim_type type, int pos,
4725 __isl_take isl_val *v);
4727 __isl_give isl_point *isl_point_add_ui(
4728 __isl_take isl_point *pnt,
4729 enum isl_dim_type type, int pos, unsigned val);
4730 __isl_give isl_point *isl_point_sub_ui(
4731 __isl_take isl_point *pnt,
4732 enum isl_dim_type type, int pos, unsigned val);
4734 Other properties can be obtained using
4736 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
4738 Points can be copied or freed using
4740 __isl_give isl_point *isl_point_copy(
4741 __isl_keep isl_point *pnt);
4742 void isl_point_free(__isl_take isl_point *pnt);
4744 A singleton set can be created from a point using
4746 __isl_give isl_basic_set *isl_basic_set_from_point(
4747 __isl_take isl_point *pnt);
4748 __isl_give isl_set *isl_set_from_point(
4749 __isl_take isl_point *pnt);
4751 and a box can be created from two opposite extremal points using
4753 __isl_give isl_basic_set *isl_basic_set_box_from_points(
4754 __isl_take isl_point *pnt1,
4755 __isl_take isl_point *pnt2);
4756 __isl_give isl_set *isl_set_box_from_points(
4757 __isl_take isl_point *pnt1,
4758 __isl_take isl_point *pnt2);
4760 All elements of a B<bounded> (union) set can be enumerated using
4761 the following functions.
4763 int isl_set_foreach_point(__isl_keep isl_set *set,
4764 int (*fn)(__isl_take isl_point *pnt, void *user),
4766 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
4767 int (*fn)(__isl_take isl_point *pnt, void *user),
4770 The function C<fn> is called for each integer point in
4771 C<set> with as second argument the last argument of
4772 the C<isl_set_foreach_point> call. The function C<fn>
4773 should return C<0> on success and C<-1> on failure.
4774 In the latter case, C<isl_set_foreach_point> will stop
4775 enumerating and return C<-1> as well.
4776 If the enumeration is performed successfully and to completion,
4777 then C<isl_set_foreach_point> returns C<0>.
4779 To obtain a single point of a (basic) set, use
4781 __isl_give isl_point *isl_basic_set_sample_point(
4782 __isl_take isl_basic_set *bset);
4783 __isl_give isl_point *isl_set_sample_point(
4784 __isl_take isl_set *set);
4786 If C<set> does not contain any (integer) points, then the
4787 resulting point will be ``void'', a property that can be
4790 int isl_point_is_void(__isl_keep isl_point *pnt);
4792 =head2 Piecewise Quasipolynomials
4794 A piecewise quasipolynomial is a particular kind of function that maps
4795 a parametric point to a rational value.
4796 More specifically, a quasipolynomial is a polynomial expression in greatest
4797 integer parts of affine expressions of parameters and variables.
4798 A piecewise quasipolynomial is a subdivision of a given parametric
4799 domain into disjoint cells with a quasipolynomial associated to
4800 each cell. The value of the piecewise quasipolynomial at a given
4801 point is the value of the quasipolynomial associated to the cell
4802 that contains the point. Outside of the union of cells,
4803 the value is assumed to be zero.
4804 For example, the piecewise quasipolynomial
4806 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
4808 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
4809 A given piecewise quasipolynomial has a fixed domain dimension.
4810 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
4811 defined over different domains.
4812 Piecewise quasipolynomials are mainly used by the C<barvinok>
4813 library for representing the number of elements in a parametric set or map.
4814 For example, the piecewise quasipolynomial above represents
4815 the number of points in the map
4817 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
4819 =head3 Input and Output
4821 Piecewise quasipolynomials can be read from input using
4823 __isl_give isl_union_pw_qpolynomial *
4824 isl_union_pw_qpolynomial_read_from_str(
4825 isl_ctx *ctx, const char *str);
4827 Quasipolynomials and piecewise quasipolynomials can be printed
4828 using the following functions.
4830 __isl_give isl_printer *isl_printer_print_qpolynomial(
4831 __isl_take isl_printer *p,
4832 __isl_keep isl_qpolynomial *qp);
4834 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
4835 __isl_take isl_printer *p,
4836 __isl_keep isl_pw_qpolynomial *pwqp);
4838 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
4839 __isl_take isl_printer *p,
4840 __isl_keep isl_union_pw_qpolynomial *upwqp);
4842 The output format of the printer
4843 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
4844 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
4846 In case of printing in C<ISL_FORMAT_C>, the user may want
4847 to set the names of all dimensions
4849 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
4850 __isl_take isl_qpolynomial *qp,
4851 enum isl_dim_type type, unsigned pos,
4853 __isl_give isl_pw_qpolynomial *
4854 isl_pw_qpolynomial_set_dim_name(
4855 __isl_take isl_pw_qpolynomial *pwqp,
4856 enum isl_dim_type type, unsigned pos,
4859 =head3 Creating New (Piecewise) Quasipolynomials
4861 Some simple quasipolynomials can be created using the following functions.
4862 More complicated quasipolynomials can be created by applying
4863 operations such as addition and multiplication
4864 on the resulting quasipolynomials
4866 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
4867 __isl_take isl_space *domain);
4868 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
4869 __isl_take isl_space *domain);
4870 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
4871 __isl_take isl_space *domain);
4872 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
4873 __isl_take isl_space *domain);
4874 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
4875 __isl_take isl_space *domain);
4876 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
4877 __isl_take isl_space *domain,
4878 __isl_take isl_val *val);
4879 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
4880 __isl_take isl_space *domain,
4881 enum isl_dim_type type, unsigned pos);
4882 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
4883 __isl_take isl_aff *aff);
4885 Note that the space in which a quasipolynomial lives is a map space
4886 with a one-dimensional range. The C<domain> argument in some of
4887 the functions above corresponds to the domain of this map space.
4889 The zero piecewise quasipolynomial or a piecewise quasipolynomial
4890 with a single cell can be created using the following functions.
4891 Multiple of these single cell piecewise quasipolynomials can
4892 be combined to create more complicated piecewise quasipolynomials.
4894 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
4895 __isl_take isl_space *space);
4896 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
4897 __isl_take isl_set *set,
4898 __isl_take isl_qpolynomial *qp);
4899 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
4900 __isl_take isl_qpolynomial *qp);
4901 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
4902 __isl_take isl_pw_aff *pwaff);
4904 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
4905 __isl_take isl_space *space);
4906 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
4907 __isl_take isl_pw_qpolynomial *pwqp);
4908 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
4909 __isl_take isl_union_pw_qpolynomial *upwqp,
4910 __isl_take isl_pw_qpolynomial *pwqp);
4912 Quasipolynomials can be copied and freed again using the following
4915 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
4916 __isl_keep isl_qpolynomial *qp);
4917 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
4919 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
4920 __isl_keep isl_pw_qpolynomial *pwqp);
4921 void *isl_pw_qpolynomial_free(
4922 __isl_take isl_pw_qpolynomial *pwqp);
4924 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
4925 __isl_keep isl_union_pw_qpolynomial *upwqp);
4926 void *isl_union_pw_qpolynomial_free(
4927 __isl_take isl_union_pw_qpolynomial *upwqp);
4929 =head3 Inspecting (Piecewise) Quasipolynomials
4931 To iterate over all piecewise quasipolynomials in a union
4932 piecewise quasipolynomial, use the following function
4934 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
4935 __isl_keep isl_union_pw_qpolynomial *upwqp,
4936 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
4939 To extract the piecewise quasipolynomial in a given space from a union, use
4941 __isl_give isl_pw_qpolynomial *
4942 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
4943 __isl_keep isl_union_pw_qpolynomial *upwqp,
4944 __isl_take isl_space *space);
4946 To iterate over the cells in a piecewise quasipolynomial,
4947 use either of the following two functions
4949 int isl_pw_qpolynomial_foreach_piece(
4950 __isl_keep isl_pw_qpolynomial *pwqp,
4951 int (*fn)(__isl_take isl_set *set,
4952 __isl_take isl_qpolynomial *qp,
4953 void *user), void *user);
4954 int isl_pw_qpolynomial_foreach_lifted_piece(
4955 __isl_keep isl_pw_qpolynomial *pwqp,
4956 int (*fn)(__isl_take isl_set *set,
4957 __isl_take isl_qpolynomial *qp,
4958 void *user), void *user);
4960 As usual, the function C<fn> should return C<0> on success
4961 and C<-1> on failure. The difference between
4962 C<isl_pw_qpolynomial_foreach_piece> and
4963 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
4964 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
4965 compute unique representations for all existentially quantified
4966 variables and then turn these existentially quantified variables
4967 into extra set variables, adapting the associated quasipolynomial
4968 accordingly. This means that the C<set> passed to C<fn>
4969 will not have any existentially quantified variables, but that
4970 the dimensions of the sets may be different for different
4971 invocations of C<fn>.
4973 The constant term of a quasipolynomial can be extracted using
4975 __isl_give isl_val *isl_qpolynomial_get_constant_val(
4976 __isl_keep isl_qpolynomial *qp);
4978 To iterate over all terms in a quasipolynomial,
4981 int isl_qpolynomial_foreach_term(
4982 __isl_keep isl_qpolynomial *qp,
4983 int (*fn)(__isl_take isl_term *term,
4984 void *user), void *user);
4986 The terms themselves can be inspected and freed using
4989 unsigned isl_term_dim(__isl_keep isl_term *term,
4990 enum isl_dim_type type);
4991 __isl_give isl_val *isl_term_get_coefficient_val(
4992 __isl_keep isl_term *term);
4993 int isl_term_get_exp(__isl_keep isl_term *term,
4994 enum isl_dim_type type, unsigned pos);
4995 __isl_give isl_aff *isl_term_get_div(
4996 __isl_keep isl_term *term, unsigned pos);
4997 void isl_term_free(__isl_take isl_term *term);
4999 Each term is a product of parameters, set variables and
5000 integer divisions. The function C<isl_term_get_exp>
5001 returns the exponent of a given dimensions in the given term.
5003 =head3 Properties of (Piecewise) Quasipolynomials
5005 To check whether two union piecewise quasipolynomials are
5006 obviously equal, use
5008 int isl_union_pw_qpolynomial_plain_is_equal(
5009 __isl_keep isl_union_pw_qpolynomial *upwqp1,
5010 __isl_keep isl_union_pw_qpolynomial *upwqp2);
5012 =head3 Operations on (Piecewise) Quasipolynomials
5014 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
5015 __isl_take isl_qpolynomial *qp,
5016 __isl_take isl_val *v);
5017 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
5018 __isl_take isl_qpolynomial *qp);
5019 __isl_give isl_qpolynomial *isl_qpolynomial_add(
5020 __isl_take isl_qpolynomial *qp1,
5021 __isl_take isl_qpolynomial *qp2);
5022 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
5023 __isl_take isl_qpolynomial *qp1,
5024 __isl_take isl_qpolynomial *qp2);
5025 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
5026 __isl_take isl_qpolynomial *qp1,
5027 __isl_take isl_qpolynomial *qp2);
5028 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
5029 __isl_take isl_qpolynomial *qp, unsigned exponent);
5031 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
5032 __isl_take isl_pw_qpolynomial *pwqp,
5033 enum isl_dim_type type, unsigned n,
5034 __isl_take isl_val *v);
5035 __isl_give isl_pw_qpolynomial *
5036 isl_pw_qpolynomial_scale_val(
5037 __isl_take isl_pw_qpolynomial *pwqp,
5038 __isl_take isl_val *v);
5039 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
5040 __isl_take isl_pw_qpolynomial *pwqp1,
5041 __isl_take isl_pw_qpolynomial *pwqp2);
5042 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
5043 __isl_take isl_pw_qpolynomial *pwqp1,
5044 __isl_take isl_pw_qpolynomial *pwqp2);
5045 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
5046 __isl_take isl_pw_qpolynomial *pwqp1,
5047 __isl_take isl_pw_qpolynomial *pwqp2);
5048 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
5049 __isl_take isl_pw_qpolynomial *pwqp);
5050 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
5051 __isl_take isl_pw_qpolynomial *pwqp1,
5052 __isl_take isl_pw_qpolynomial *pwqp2);
5053 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
5054 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
5056 __isl_give isl_union_pw_qpolynomial *
5057 isl_union_pw_qpolynomial_scale_val(
5058 __isl_take isl_union_pw_qpolynomial *upwqp,
5059 __isl_take isl_val *v);
5060 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
5061 __isl_take isl_union_pw_qpolynomial *upwqp1,
5062 __isl_take isl_union_pw_qpolynomial *upwqp2);
5063 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
5064 __isl_take isl_union_pw_qpolynomial *upwqp1,
5065 __isl_take isl_union_pw_qpolynomial *upwqp2);
5066 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
5067 __isl_take isl_union_pw_qpolynomial *upwqp1,
5068 __isl_take isl_union_pw_qpolynomial *upwqp2);
5070 __isl_give isl_val *isl_pw_qpolynomial_eval(
5071 __isl_take isl_pw_qpolynomial *pwqp,
5072 __isl_take isl_point *pnt);
5074 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
5075 __isl_take isl_union_pw_qpolynomial *upwqp,
5076 __isl_take isl_point *pnt);
5078 __isl_give isl_set *isl_pw_qpolynomial_domain(
5079 __isl_take isl_pw_qpolynomial *pwqp);
5080 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
5081 __isl_take isl_pw_qpolynomial *pwpq,
5082 __isl_take isl_set *set);
5083 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
5084 __isl_take isl_pw_qpolynomial *pwpq,
5085 __isl_take isl_set *set);
5087 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
5088 __isl_take isl_union_pw_qpolynomial *upwqp);
5089 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
5090 __isl_take isl_union_pw_qpolynomial *upwpq,
5091 __isl_take isl_union_set *uset);
5092 __isl_give isl_union_pw_qpolynomial *
5093 isl_union_pw_qpolynomial_intersect_params(
5094 __isl_take isl_union_pw_qpolynomial *upwpq,
5095 __isl_take isl_set *set);
5097 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
5098 __isl_take isl_qpolynomial *qp,
5099 __isl_take isl_space *model);
5101 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
5102 __isl_take isl_qpolynomial *qp);
5103 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
5104 __isl_take isl_pw_qpolynomial *pwqp);
5106 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
5107 __isl_take isl_union_pw_qpolynomial *upwqp);
5109 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
5110 __isl_take isl_qpolynomial *qp,
5111 __isl_take isl_set *context);
5112 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
5113 __isl_take isl_qpolynomial *qp,
5114 __isl_take isl_set *context);
5116 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
5117 __isl_take isl_pw_qpolynomial *pwqp,
5118 __isl_take isl_set *context);
5119 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
5120 __isl_take isl_pw_qpolynomial *pwqp,
5121 __isl_take isl_set *context);
5123 __isl_give isl_union_pw_qpolynomial *
5124 isl_union_pw_qpolynomial_gist_params(
5125 __isl_take isl_union_pw_qpolynomial *upwqp,
5126 __isl_take isl_set *context);
5127 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
5128 __isl_take isl_union_pw_qpolynomial *upwqp,
5129 __isl_take isl_union_set *context);
5131 The gist operation applies the gist operation to each of
5132 the cells in the domain of the input piecewise quasipolynomial.
5133 The context is also exploited
5134 to simplify the quasipolynomials associated to each cell.
5136 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5137 __isl_take isl_pw_qpolynomial *pwqp, int sign);
5138 __isl_give isl_union_pw_qpolynomial *
5139 isl_union_pw_qpolynomial_to_polynomial(
5140 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
5142 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
5143 the polynomial will be an overapproximation. If C<sign> is negative,
5144 it will be an underapproximation. If C<sign> is zero, the approximation
5145 will lie somewhere in between.
5147 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
5149 A piecewise quasipolynomial reduction is a piecewise
5150 reduction (or fold) of quasipolynomials.
5151 In particular, the reduction can be maximum or a minimum.
5152 The objects are mainly used to represent the result of
5153 an upper or lower bound on a quasipolynomial over its domain,
5154 i.e., as the result of the following function.
5156 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
5157 __isl_take isl_pw_qpolynomial *pwqp,
5158 enum isl_fold type, int *tight);
5160 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
5161 __isl_take isl_union_pw_qpolynomial *upwqp,
5162 enum isl_fold type, int *tight);
5164 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
5165 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
5166 is the returned bound is known be tight, i.e., for each value
5167 of the parameters there is at least
5168 one element in the domain that reaches the bound.
5169 If the domain of C<pwqp> is not wrapping, then the bound is computed
5170 over all elements in that domain and the result has a purely parametric
5171 domain. If the domain of C<pwqp> is wrapping, then the bound is
5172 computed over the range of the wrapped relation. The domain of the
5173 wrapped relation becomes the domain of the result.
5175 A (piecewise) quasipolynomial reduction can be copied or freed using the
5176 following functions.
5178 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
5179 __isl_keep isl_qpolynomial_fold *fold);
5180 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
5181 __isl_keep isl_pw_qpolynomial_fold *pwf);
5182 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
5183 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
5184 void isl_qpolynomial_fold_free(
5185 __isl_take isl_qpolynomial_fold *fold);
5186 void *isl_pw_qpolynomial_fold_free(
5187 __isl_take isl_pw_qpolynomial_fold *pwf);
5188 void *isl_union_pw_qpolynomial_fold_free(
5189 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5191 =head3 Printing Piecewise Quasipolynomial Reductions
5193 Piecewise quasipolynomial reductions can be printed
5194 using the following function.
5196 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
5197 __isl_take isl_printer *p,
5198 __isl_keep isl_pw_qpolynomial_fold *pwf);
5199 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
5200 __isl_take isl_printer *p,
5201 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
5203 For C<isl_printer_print_pw_qpolynomial_fold>,
5204 output format of the printer
5205 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
5206 For C<isl_printer_print_union_pw_qpolynomial_fold>,
5207 output format of the printer
5208 needs to be set to C<ISL_FORMAT_ISL>.
5209 In case of printing in C<ISL_FORMAT_C>, the user may want
5210 to set the names of all dimensions
5212 __isl_give isl_pw_qpolynomial_fold *
5213 isl_pw_qpolynomial_fold_set_dim_name(
5214 __isl_take isl_pw_qpolynomial_fold *pwf,
5215 enum isl_dim_type type, unsigned pos,
5218 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
5220 To iterate over all piecewise quasipolynomial reductions in a union
5221 piecewise quasipolynomial reduction, use the following function
5223 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
5224 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
5225 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
5226 void *user), void *user);
5228 To iterate over the cells in a piecewise quasipolynomial reduction,
5229 use either of the following two functions
5231 int isl_pw_qpolynomial_fold_foreach_piece(
5232 __isl_keep isl_pw_qpolynomial_fold *pwf,
5233 int (*fn)(__isl_take isl_set *set,
5234 __isl_take isl_qpolynomial_fold *fold,
5235 void *user), void *user);
5236 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
5237 __isl_keep isl_pw_qpolynomial_fold *pwf,
5238 int (*fn)(__isl_take isl_set *set,
5239 __isl_take isl_qpolynomial_fold *fold,
5240 void *user), void *user);
5242 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
5243 of the difference between these two functions.
5245 To iterate over all quasipolynomials in a reduction, use
5247 int isl_qpolynomial_fold_foreach_qpolynomial(
5248 __isl_keep isl_qpolynomial_fold *fold,
5249 int (*fn)(__isl_take isl_qpolynomial *qp,
5250 void *user), void *user);
5252 =head3 Properties of Piecewise Quasipolynomial Reductions
5254 To check whether two union piecewise quasipolynomial reductions are
5255 obviously equal, use
5257 int isl_union_pw_qpolynomial_fold_plain_is_equal(
5258 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
5259 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
5261 =head3 Operations on Piecewise Quasipolynomial Reductions
5263 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
5264 __isl_take isl_qpolynomial_fold *fold,
5265 __isl_take isl_val *v);
5266 __isl_give isl_pw_qpolynomial_fold *
5267 isl_pw_qpolynomial_fold_scale_val(
5268 __isl_take isl_pw_qpolynomial_fold *pwf,
5269 __isl_take isl_val *v);
5270 __isl_give isl_union_pw_qpolynomial_fold *
5271 isl_union_pw_qpolynomial_fold_scale_val(
5272 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5273 __isl_take isl_val *v);
5275 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
5276 __isl_take isl_pw_qpolynomial_fold *pwf1,
5277 __isl_take isl_pw_qpolynomial_fold *pwf2);
5279 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
5280 __isl_take isl_pw_qpolynomial_fold *pwf1,
5281 __isl_take isl_pw_qpolynomial_fold *pwf2);
5283 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
5284 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
5285 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
5287 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
5288 __isl_take isl_pw_qpolynomial_fold *pwf,
5289 __isl_take isl_point *pnt);
5291 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
5292 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5293 __isl_take isl_point *pnt);
5295 __isl_give isl_pw_qpolynomial_fold *
5296 isl_pw_qpolynomial_fold_intersect_params(
5297 __isl_take isl_pw_qpolynomial_fold *pwf,
5298 __isl_take isl_set *set);
5300 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
5301 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5302 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
5303 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5304 __isl_take isl_union_set *uset);
5305 __isl_give isl_union_pw_qpolynomial_fold *
5306 isl_union_pw_qpolynomial_fold_intersect_params(
5307 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5308 __isl_take isl_set *set);
5310 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
5311 __isl_take isl_pw_qpolynomial_fold *pwf);
5313 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
5314 __isl_take isl_pw_qpolynomial_fold *pwf);
5316 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
5317 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5319 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
5320 __isl_take isl_qpolynomial_fold *fold,
5321 __isl_take isl_set *context);
5322 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
5323 __isl_take isl_qpolynomial_fold *fold,
5324 __isl_take isl_set *context);
5326 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
5327 __isl_take isl_pw_qpolynomial_fold *pwf,
5328 __isl_take isl_set *context);
5329 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
5330 __isl_take isl_pw_qpolynomial_fold *pwf,
5331 __isl_take isl_set *context);
5333 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
5334 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5335 __isl_take isl_union_set *context);
5336 __isl_give isl_union_pw_qpolynomial_fold *
5337 isl_union_pw_qpolynomial_fold_gist_params(
5338 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5339 __isl_take isl_set *context);
5341 The gist operation applies the gist operation to each of
5342 the cells in the domain of the input piecewise quasipolynomial reduction.
5343 In future, the operation will also exploit the context
5344 to simplify the quasipolynomial reductions associated to each cell.
5346 __isl_give isl_pw_qpolynomial_fold *
5347 isl_set_apply_pw_qpolynomial_fold(
5348 __isl_take isl_set *set,
5349 __isl_take isl_pw_qpolynomial_fold *pwf,
5351 __isl_give isl_pw_qpolynomial_fold *
5352 isl_map_apply_pw_qpolynomial_fold(
5353 __isl_take isl_map *map,
5354 __isl_take isl_pw_qpolynomial_fold *pwf,
5356 __isl_give isl_union_pw_qpolynomial_fold *
5357 isl_union_set_apply_union_pw_qpolynomial_fold(
5358 __isl_take isl_union_set *uset,
5359 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5361 __isl_give isl_union_pw_qpolynomial_fold *
5362 isl_union_map_apply_union_pw_qpolynomial_fold(
5363 __isl_take isl_union_map *umap,
5364 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5367 The functions taking a map
5368 compose the given map with the given piecewise quasipolynomial reduction.
5369 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
5370 over all elements in the intersection of the range of the map
5371 and the domain of the piecewise quasipolynomial reduction
5372 as a function of an element in the domain of the map.
5373 The functions taking a set compute a bound over all elements in the
5374 intersection of the set and the domain of the
5375 piecewise quasipolynomial reduction.
5377 =head2 Parametric Vertex Enumeration
5379 The parametric vertex enumeration described in this section
5380 is mainly intended to be used internally and by the C<barvinok>
5383 #include <isl/vertices.h>
5384 __isl_give isl_vertices *isl_basic_set_compute_vertices(
5385 __isl_keep isl_basic_set *bset);
5387 The function C<isl_basic_set_compute_vertices> performs the
5388 actual computation of the parametric vertices and the chamber
5389 decomposition and store the result in an C<isl_vertices> object.
5390 This information can be queried by either iterating over all
5391 the vertices or iterating over all the chambers or cells
5392 and then iterating over all vertices that are active on the chamber.
5394 int isl_vertices_foreach_vertex(
5395 __isl_keep isl_vertices *vertices,
5396 int (*fn)(__isl_take isl_vertex *vertex, void *user),
5399 int isl_vertices_foreach_cell(
5400 __isl_keep isl_vertices *vertices,
5401 int (*fn)(__isl_take isl_cell *cell, void *user),
5403 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
5404 int (*fn)(__isl_take isl_vertex *vertex, void *user),
5407 Other operations that can be performed on an C<isl_vertices> object are
5410 isl_ctx *isl_vertices_get_ctx(
5411 __isl_keep isl_vertices *vertices);
5412 int isl_vertices_get_n_vertices(
5413 __isl_keep isl_vertices *vertices);
5414 void isl_vertices_free(__isl_take isl_vertices *vertices);
5416 Vertices can be inspected and destroyed using the following functions.
5418 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
5419 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
5420 __isl_give isl_basic_set *isl_vertex_get_domain(
5421 __isl_keep isl_vertex *vertex);
5422 __isl_give isl_basic_set *isl_vertex_get_expr(
5423 __isl_keep isl_vertex *vertex);
5424 void isl_vertex_free(__isl_take isl_vertex *vertex);
5426 C<isl_vertex_get_expr> returns a singleton parametric set describing
5427 the vertex, while C<isl_vertex_get_domain> returns the activity domain
5429 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
5430 B<rational> basic sets, so they should mainly be used for inspection
5431 and should not be mixed with integer sets.
5433 Chambers can be inspected and destroyed using the following functions.
5435 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
5436 __isl_give isl_basic_set *isl_cell_get_domain(
5437 __isl_keep isl_cell *cell);
5438 void isl_cell_free(__isl_take isl_cell *cell);
5440 =head1 Polyhedral Compilation Library
5442 This section collects functionality in C<isl> that has been specifically
5443 designed for use during polyhedral compilation.
5445 =head2 Dependence Analysis
5447 C<isl> contains specialized functionality for performing
5448 array dataflow analysis. That is, given a I<sink> access relation
5449 and a collection of possible I<source> access relations,
5450 C<isl> can compute relations that describe
5451 for each iteration of the sink access, which iteration
5452 of which of the source access relations was the last
5453 to access the same data element before the given iteration
5455 The resulting dependence relations map source iterations
5456 to the corresponding sink iterations.
5457 To compute standard flow dependences, the sink should be
5458 a read, while the sources should be writes.
5459 If any of the source accesses are marked as being I<may>
5460 accesses, then there will be a dependence from the last
5461 I<must> access B<and> from any I<may> access that follows
5462 this last I<must> access.
5463 In particular, if I<all> sources are I<may> accesses,
5464 then memory based dependence analysis is performed.
5465 If, on the other hand, all sources are I<must> accesses,
5466 then value based dependence analysis is performed.
5468 #include <isl/flow.h>
5470 typedef int (*isl_access_level_before)(void *first, void *second);
5472 __isl_give isl_access_info *isl_access_info_alloc(
5473 __isl_take isl_map *sink,
5474 void *sink_user, isl_access_level_before fn,
5476 __isl_give isl_access_info *isl_access_info_add_source(
5477 __isl_take isl_access_info *acc,
5478 __isl_take isl_map *source, int must,
5480 void *isl_access_info_free(__isl_take isl_access_info *acc);
5482 __isl_give isl_flow *isl_access_info_compute_flow(
5483 __isl_take isl_access_info *acc);
5485 int isl_flow_foreach(__isl_keep isl_flow *deps,
5486 int (*fn)(__isl_take isl_map *dep, int must,
5487 void *dep_user, void *user),
5489 __isl_give isl_map *isl_flow_get_no_source(
5490 __isl_keep isl_flow *deps, int must);
5491 void isl_flow_free(__isl_take isl_flow *deps);
5493 The function C<isl_access_info_compute_flow> performs the actual
5494 dependence analysis. The other functions are used to construct
5495 the input for this function or to read off the output.
5497 The input is collected in an C<isl_access_info>, which can
5498 be created through a call to C<isl_access_info_alloc>.
5499 The arguments to this functions are the sink access relation
5500 C<sink>, a token C<sink_user> used to identify the sink
5501 access to the user, a callback function for specifying the
5502 relative order of source and sink accesses, and the number
5503 of source access relations that will be added.
5504 The callback function has type C<int (*)(void *first, void *second)>.
5505 The function is called with two user supplied tokens identifying
5506 either a source or the sink and it should return the shared nesting
5507 level and the relative order of the two accesses.
5508 In particular, let I<n> be the number of loops shared by
5509 the two accesses. If C<first> precedes C<second> textually,
5510 then the function should return I<2 * n + 1>; otherwise,
5511 it should return I<2 * n>.
5512 The sources can be added to the C<isl_access_info> by performing
5513 (at most) C<max_source> calls to C<isl_access_info_add_source>.
5514 C<must> indicates whether the source is a I<must> access
5515 or a I<may> access. Note that a multi-valued access relation
5516 should only be marked I<must> if every iteration in the domain
5517 of the relation accesses I<all> elements in its image.
5518 The C<source_user> token is again used to identify
5519 the source access. The range of the source access relation
5520 C<source> should have the same dimension as the range
5521 of the sink access relation.
5522 The C<isl_access_info_free> function should usually not be
5523 called explicitly, because it is called implicitly by
5524 C<isl_access_info_compute_flow>.
5526 The result of the dependence analysis is collected in an
5527 C<isl_flow>. There may be elements of
5528 the sink access for which no preceding source access could be
5529 found or for which all preceding sources are I<may> accesses.
5530 The relations containing these elements can be obtained through
5531 calls to C<isl_flow_get_no_source>, the first with C<must> set
5532 and the second with C<must> unset.
5533 In the case of standard flow dependence analysis,
5534 with the sink a read and the sources I<must> writes,
5535 the first relation corresponds to the reads from uninitialized
5536 array elements and the second relation is empty.
5537 The actual flow dependences can be extracted using
5538 C<isl_flow_foreach>. This function will call the user-specified
5539 callback function C<fn> for each B<non-empty> dependence between
5540 a source and the sink. The callback function is called
5541 with four arguments, the actual flow dependence relation
5542 mapping source iterations to sink iterations, a boolean that
5543 indicates whether it is a I<must> or I<may> dependence, a token
5544 identifying the source and an additional C<void *> with value
5545 equal to the third argument of the C<isl_flow_foreach> call.
5546 A dependence is marked I<must> if it originates from a I<must>
5547 source and if it is not followed by any I<may> sources.
5549 After finishing with an C<isl_flow>, the user should call
5550 C<isl_flow_free> to free all associated memory.
5552 A higher-level interface to dependence analysis is provided
5553 by the following function.
5555 #include <isl/flow.h>
5557 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
5558 __isl_take isl_union_map *must_source,
5559 __isl_take isl_union_map *may_source,
5560 __isl_take isl_union_map *schedule,
5561 __isl_give isl_union_map **must_dep,
5562 __isl_give isl_union_map **may_dep,
5563 __isl_give isl_union_map **must_no_source,
5564 __isl_give isl_union_map **may_no_source);
5566 The arrays are identified by the tuple names of the ranges
5567 of the accesses. The iteration domains by the tuple names
5568 of the domains of the accesses and of the schedule.
5569 The relative order of the iteration domains is given by the
5570 schedule. The relations returned through C<must_no_source>
5571 and C<may_no_source> are subsets of C<sink>.
5572 Any of C<must_dep>, C<may_dep>, C<must_no_source>
5573 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
5574 any of the other arguments is treated as an error.
5576 =head3 Interaction with Dependence Analysis
5578 During the dependence analysis, we frequently need to perform
5579 the following operation. Given a relation between sink iterations
5580 and potential source iterations from a particular source domain,
5581 what is the last potential source iteration corresponding to each
5582 sink iteration. It can sometimes be convenient to adjust
5583 the set of potential source iterations before or after each such operation.
5584 The prototypical example is fuzzy array dataflow analysis,
5585 where we need to analyze if, based on data-dependent constraints,
5586 the sink iteration can ever be executed without one or more of
5587 the corresponding potential source iterations being executed.
5588 If so, we can introduce extra parameters and select an unknown
5589 but fixed source iteration from the potential source iterations.
5590 To be able to perform such manipulations, C<isl> provides the following
5593 #include <isl/flow.h>
5595 typedef __isl_give isl_restriction *(*isl_access_restrict)(
5596 __isl_keep isl_map *source_map,
5597 __isl_keep isl_set *sink, void *source_user,
5599 __isl_give isl_access_info *isl_access_info_set_restrict(
5600 __isl_take isl_access_info *acc,
5601 isl_access_restrict fn, void *user);
5603 The function C<isl_access_info_set_restrict> should be called
5604 before calling C<isl_access_info_compute_flow> and registers a callback function
5605 that will be called any time C<isl> is about to compute the last
5606 potential source. The first argument is the (reverse) proto-dependence,
5607 mapping sink iterations to potential source iterations.
5608 The second argument represents the sink iterations for which
5609 we want to compute the last source iteration.
5610 The third argument is the token corresponding to the source
5611 and the final argument is the token passed to C<isl_access_info_set_restrict>.
5612 The callback is expected to return a restriction on either the input or
5613 the output of the operation computing the last potential source.
5614 If the input needs to be restricted then restrictions are needed
5615 for both the source and the sink iterations. The sink iterations
5616 and the potential source iterations will be intersected with these sets.
5617 If the output needs to be restricted then only a restriction on the source
5618 iterations is required.
5619 If any error occurs, the callback should return C<NULL>.
5620 An C<isl_restriction> object can be created, freed and inspected
5621 using the following functions.
5623 #include <isl/flow.h>
5625 __isl_give isl_restriction *isl_restriction_input(
5626 __isl_take isl_set *source_restr,
5627 __isl_take isl_set *sink_restr);
5628 __isl_give isl_restriction *isl_restriction_output(
5629 __isl_take isl_set *source_restr);
5630 __isl_give isl_restriction *isl_restriction_none(
5631 __isl_take isl_map *source_map);
5632 __isl_give isl_restriction *isl_restriction_empty(
5633 __isl_take isl_map *source_map);
5634 void *isl_restriction_free(
5635 __isl_take isl_restriction *restr);
5636 isl_ctx *isl_restriction_get_ctx(
5637 __isl_keep isl_restriction *restr);
5639 C<isl_restriction_none> and C<isl_restriction_empty> are special
5640 cases of C<isl_restriction_input>. C<isl_restriction_none>
5641 is essentially equivalent to
5643 isl_restriction_input(isl_set_universe(
5644 isl_space_range(isl_map_get_space(source_map))),
5646 isl_space_domain(isl_map_get_space(source_map))));
5648 whereas C<isl_restriction_empty> is essentially equivalent to
5650 isl_restriction_input(isl_set_empty(
5651 isl_space_range(isl_map_get_space(source_map))),
5653 isl_space_domain(isl_map_get_space(source_map))));
5657 B<The functionality described in this section is fairly new
5658 and may be subject to change.>
5660 #include <isl/schedule.h>
5661 __isl_give isl_schedule *
5662 isl_schedule_constraints_compute_schedule(
5663 __isl_take isl_schedule_constraints *sc);
5664 void *isl_schedule_free(__isl_take isl_schedule *sched);
5666 The function C<isl_schedule_constraints_compute_schedule> can be
5667 used to compute a schedule that satisfy the given schedule constraints.
5668 These schedule constraints include the iteration domain for which
5669 a schedule should be computed and dependences between pairs of
5670 iterations. In particular, these dependences include
5671 I<validity> dependences and I<proximity> dependences.
5672 By default, the algorithm used to construct the schedule is similar
5673 to that of C<Pluto>.
5674 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
5676 The generated schedule respects all validity dependences.
5677 That is, all dependence distances over these dependences in the
5678 scheduled space are lexicographically positive.
5679 The default algorithm tries to ensure that the dependence distances
5680 over coincidence constraints are zero and to minimize the
5681 dependence distances over proximity dependences.
5682 Moreover, it tries to obtain sequences (bands) of schedule dimensions
5683 for groups of domains where the dependence distances over validity
5684 dependences have only non-negative values.
5685 When using Feautrier's algorithm, the coincidence and proximity constraints
5686 are only taken into account during the extension to a
5687 full-dimensional schedule.
5689 An C<isl_schedule_constraints> object can be constructed
5690 and manipulated using the following functions.
5692 #include <isl/schedule.h>
5693 __isl_give isl_schedule_constraints *
5694 isl_schedule_constraints_on_domain(
5695 __isl_take isl_union_set *domain);
5696 isl_ctx *isl_schedule_constraints_get_ctx(
5697 __isl_keep isl_schedule_constraints *sc);
5698 __isl_give isl_schedule_constraints *
5699 isl_schedule_constraints_set_validity(
5700 __isl_take isl_schedule_constraints *sc,
5701 __isl_take isl_union_map *validity);
5702 __isl_give isl_schedule_constraints *
5703 isl_schedule_constraints_set_coincidence(
5704 __isl_take isl_schedule_constraints *sc,
5705 __isl_take isl_union_map *coincidence);
5706 __isl_give isl_schedule_constraints *
5707 isl_schedule_constraints_set_proximity(
5708 __isl_take isl_schedule_constraints *sc,
5709 __isl_take isl_union_map *proximity);
5710 __isl_give isl_schedule_constraints *
5711 isl_schedule_constraints_set_conditional_validity(
5712 __isl_take isl_schedule_constraints *sc,
5713 __isl_take isl_union_map *condition,
5714 __isl_take isl_union_map *validity);
5715 void *isl_schedule_constraints_free(
5716 __isl_take isl_schedule_constraints *sc);
5718 The initial C<isl_schedule_constraints> object created by
5719 C<isl_schedule_constraints_on_domain> does not impose any constraints.
5720 That is, it has an empty set of dependences.
5721 The function C<isl_schedule_constraints_set_validity> replaces the
5722 validity dependences, mapping domain elements I<i> to domain
5723 elements that should be scheduled after I<i>.
5724 The function C<isl_schedule_constraints_set_coincidence> replaces the
5725 coincidence dependences, mapping domain elements I<i> to domain
5726 elements that should be scheduled together with I<I>, if possible.
5727 The function C<isl_schedule_constraints_set_proximity> replaces the
5728 proximity dependences, mapping domain elements I<i> to domain
5729 elements that should be scheduled either before I<I>
5730 or as early as possible after I<i>.
5732 The function C<isl_schedule_constraints_set_conditional_validity>
5733 replaces the conditional validity constraints.
5734 A conditional validity constraint is only imposed when any of the corresponding
5735 conditions is satisfied, i.e., when any of them is non-zero.
5736 That is, the scheduler ensures that within each band if the dependence
5737 distances over the condition constraints are not all zero
5738 then all corresponding conditional validity constraints are respected.
5739 A conditional validity constraint corresponds to a condition
5740 if the two are adjacent, i.e., if the domain of one relation intersect
5741 the range of the other relation.
5742 The typical use case of conditional validity constraints is
5743 to allow order constraints between live ranges to be violated
5744 as long as the live ranges themselves are local to the band.
5745 To allow more fine-grained control over which conditions correspond
5746 to which conditional validity constraints, the domains and ranges
5747 of these relations may include I<tags>. That is, the domains and
5748 ranges of those relation may themselves be wrapped relations
5749 where the iteration domain appears in the domain of those wrapped relations
5750 and the range of the wrapped relations can be arbitrarily chosen
5751 by the user. Conditions and conditional validity constraints are only
5752 considere adjacent to each other if the entire wrapped relation matches.
5753 In particular, a relation with a tag will never be considered adjacent
5754 to a relation without a tag.
5756 The following function computes a schedule directly from
5757 an iteration domain and validity and proximity dependences
5758 and is implemented in terms of the functions described above.
5759 The use of C<isl_union_set_compute_schedule> is discouraged.
5761 #include <isl/schedule.h>
5762 __isl_give isl_schedule *isl_union_set_compute_schedule(
5763 __isl_take isl_union_set *domain,
5764 __isl_take isl_union_map *validity,
5765 __isl_take isl_union_map *proximity);
5767 A mapping from the domains to the scheduled space can be obtained
5768 from an C<isl_schedule> using the following function.
5770 __isl_give isl_union_map *isl_schedule_get_map(
5771 __isl_keep isl_schedule *sched);
5773 A representation of the schedule can be printed using
5775 __isl_give isl_printer *isl_printer_print_schedule(
5776 __isl_take isl_printer *p,
5777 __isl_keep isl_schedule *schedule);
5779 A representation of the schedule as a forest of bands can be obtained
5780 using the following function.
5782 __isl_give isl_band_list *isl_schedule_get_band_forest(
5783 __isl_keep isl_schedule *schedule);
5785 The individual bands can be visited in depth-first post-order
5786 using the following function.
5788 #include <isl/schedule.h>
5789 int isl_schedule_foreach_band(
5790 __isl_keep isl_schedule *sched,
5791 int (*fn)(__isl_keep isl_band *band, void *user),
5794 The list can be manipulated as explained in L<"Lists">.
5795 The bands inside the list can be copied and freed using the following
5798 #include <isl/band.h>
5799 __isl_give isl_band *isl_band_copy(
5800 __isl_keep isl_band *band);
5801 void *isl_band_free(__isl_take isl_band *band);
5803 Each band contains zero or more scheduling dimensions.
5804 These are referred to as the members of the band.
5805 The section of the schedule that corresponds to the band is
5806 referred to as the partial schedule of the band.
5807 For those nodes that participate in a band, the outer scheduling
5808 dimensions form the prefix schedule, while the inner scheduling
5809 dimensions form the suffix schedule.
5810 That is, if we take a cut of the band forest, then the union of
5811 the concatenations of the prefix, partial and suffix schedules of
5812 each band in the cut is equal to the entire schedule (modulo
5813 some possible padding at the end with zero scheduling dimensions).
5814 The properties of a band can be inspected using the following functions.
5816 #include <isl/band.h>
5817 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
5819 int isl_band_has_children(__isl_keep isl_band *band);
5820 __isl_give isl_band_list *isl_band_get_children(
5821 __isl_keep isl_band *band);
5823 __isl_give isl_union_map *isl_band_get_prefix_schedule(
5824 __isl_keep isl_band *band);
5825 __isl_give isl_union_map *isl_band_get_partial_schedule(
5826 __isl_keep isl_band *band);
5827 __isl_give isl_union_map *isl_band_get_suffix_schedule(
5828 __isl_keep isl_band *band);
5830 int isl_band_n_member(__isl_keep isl_band *band);
5831 int isl_band_member_is_coincident(
5832 __isl_keep isl_band *band, int pos);
5834 int isl_band_list_foreach_band(
5835 __isl_keep isl_band_list *list,
5836 int (*fn)(__isl_keep isl_band *band, void *user),
5839 Note that a scheduling dimension is considered to be ``coincident''
5840 if it satisfies the coincidence constraints within its band.
5841 That is, if the dependence distances of the coincidence
5842 constraints are all zero in that direction (for fixed
5843 iterations of outer bands).
5844 Like C<isl_schedule_foreach_band>,
5845 the function C<isl_band_list_foreach_band> calls C<fn> on the bands
5846 in depth-first post-order.
5848 A band can be tiled using the following function.
5850 #include <isl/band.h>
5851 int isl_band_tile(__isl_keep isl_band *band,
5852 __isl_take isl_vec *sizes);
5854 int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
5856 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
5857 int isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
5859 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
5861 The C<isl_band_tile> function tiles the band using the given tile sizes
5862 inside its schedule.
5863 A new child band is created to represent the point loops and it is
5864 inserted between the modified band and its children.
5865 The C<tile_scale_tile_loops> option specifies whether the tile
5866 loops iterators should be scaled by the tile sizes.
5867 If the C<tile_shift_point_loops> option is set, then the point loops
5868 are shifted to start at zero.
5870 A band can be split into two nested bands using the following function.
5872 int isl_band_split(__isl_keep isl_band *band, int pos);
5874 The resulting outer band contains the first C<pos> dimensions of C<band>
5875 while the inner band contains the remaining dimensions.
5877 A representation of the band can be printed using
5879 #include <isl/band.h>
5880 __isl_give isl_printer *isl_printer_print_band(
5881 __isl_take isl_printer *p,
5882 __isl_keep isl_band *band);
5886 #include <isl/schedule.h>
5887 int isl_options_set_schedule_max_coefficient(
5888 isl_ctx *ctx, int val);
5889 int isl_options_get_schedule_max_coefficient(
5891 int isl_options_set_schedule_max_constant_term(
5892 isl_ctx *ctx, int val);
5893 int isl_options_get_schedule_max_constant_term(
5895 int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
5896 int isl_options_get_schedule_fuse(isl_ctx *ctx);
5897 int isl_options_set_schedule_maximize_band_depth(
5898 isl_ctx *ctx, int val);
5899 int isl_options_get_schedule_maximize_band_depth(
5901 int isl_options_set_schedule_outer_coincidence(
5902 isl_ctx *ctx, int val);
5903 int isl_options_get_schedule_outer_coincidence(
5905 int isl_options_set_schedule_split_scaled(
5906 isl_ctx *ctx, int val);
5907 int isl_options_get_schedule_split_scaled(
5909 int isl_options_set_schedule_algorithm(
5910 isl_ctx *ctx, int val);
5911 int isl_options_get_schedule_algorithm(
5913 int isl_options_set_schedule_separate_components(
5914 isl_ctx *ctx, int val);
5915 int isl_options_get_schedule_separate_components(
5920 =item * schedule_max_coefficient
5922 This option enforces that the coefficients for variable and parameter
5923 dimensions in the calculated schedule are not larger than the specified value.
5924 This option can significantly increase the speed of the scheduling calculation
5925 and may also prevent fusing of unrelated dimensions. A value of -1 means that
5926 this option does not introduce bounds on the variable or parameter
5929 =item * schedule_max_constant_term
5931 This option enforces that the constant coefficients in the calculated schedule
5932 are not larger than the maximal constant term. This option can significantly
5933 increase the speed of the scheduling calculation and may also prevent fusing of
5934 unrelated dimensions. A value of -1 means that this option does not introduce
5935 bounds on the constant coefficients.
5937 =item * schedule_fuse
5939 This option controls the level of fusion.
5940 If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
5941 resulting schedule will be distributed as much as possible.
5942 If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
5943 try to fuse loops in the resulting schedule.
5945 =item * schedule_maximize_band_depth
5947 If this option is set, we do not split bands at the point
5948 where we detect splitting is necessary. Instead, we
5949 backtrack and split bands as early as possible. This
5950 reduces the number of splits and maximizes the width of
5951 the bands. Wider bands give more possibilities for tiling.
5952 Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
5953 then bands will be split as early as possible, even if there is no need.
5954 The C<schedule_maximize_band_depth> option therefore has no effect in this case.
5956 =item * schedule_outer_coincidence
5958 If this option is set, then we try to construct schedules
5959 where the outermost scheduling dimension in each band
5960 satisfies the coincidence constraints.
5962 =item * schedule_split_scaled
5964 If this option is set, then we try to construct schedules in which the
5965 constant term is split off from the linear part if the linear parts of
5966 the scheduling rows for all nodes in the graphs have a common non-trivial
5968 The constant term is then placed in a separate band and the linear
5971 =item * schedule_algorithm
5973 Selects the scheduling algorithm to be used.
5974 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
5975 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
5977 =item * schedule_separate_components
5979 If at any point the dependence graph contains any (weakly connected) components,
5980 then these components are scheduled separately.
5981 If this option is not set, then some iterations of the domains
5982 in these components may be scheduled together.
5983 If this option is set, then the components are given consecutive
5988 =head2 AST Generation
5990 This section describes the C<isl> functionality for generating
5991 ASTs that visit all the elements
5992 in a domain in an order specified by a schedule.
5993 In particular, given a C<isl_union_map>, an AST is generated
5994 that visits all the elements in the domain of the C<isl_union_map>
5995 according to the lexicographic order of the corresponding image
5996 element(s). If the range of the C<isl_union_map> consists of
5997 elements in more than one space, then each of these spaces is handled
5998 separately in an arbitrary order.
5999 It should be noted that the image elements only specify the I<order>
6000 in which the corresponding domain elements should be visited.
6001 No direct relation between the image elements and the loop iterators
6002 in the generated AST should be assumed.
6004 Each AST is generated within a build. The initial build
6005 simply specifies the constraints on the parameters (if any)
6006 and can be created, inspected, copied and freed using the following functions.
6008 #include <isl/ast_build.h>
6009 __isl_give isl_ast_build *isl_ast_build_from_context(
6010 __isl_take isl_set *set);
6011 isl_ctx *isl_ast_build_get_ctx(
6012 __isl_keep isl_ast_build *build);
6013 __isl_give isl_ast_build *isl_ast_build_copy(
6014 __isl_keep isl_ast_build *build);
6015 void *isl_ast_build_free(
6016 __isl_take isl_ast_build *build);
6018 The C<set> argument is usually a parameter set with zero or more parameters.
6019 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
6020 and L</"Fine-grained Control over AST Generation">.
6021 Finally, the AST itself can be constructed using the following
6024 #include <isl/ast_build.h>
6025 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
6026 __isl_keep isl_ast_build *build,
6027 __isl_take isl_union_map *schedule);
6029 =head3 Inspecting the AST
6031 The basic properties of an AST node can be obtained as follows.
6033 #include <isl/ast.h>
6034 isl_ctx *isl_ast_node_get_ctx(
6035 __isl_keep isl_ast_node *node);
6036 enum isl_ast_node_type isl_ast_node_get_type(
6037 __isl_keep isl_ast_node *node);
6039 The type of an AST node is one of
6040 C<isl_ast_node_for>,
6042 C<isl_ast_node_block> or
6043 C<isl_ast_node_user>.
6044 An C<isl_ast_node_for> represents a for node.
6045 An C<isl_ast_node_if> represents an if node.
6046 An C<isl_ast_node_block> represents a compound node.
6047 An C<isl_ast_node_user> represents an expression statement.
6048 An expression statement typically corresponds to a domain element, i.e.,
6049 one of the elements that is visited by the AST.
6051 Each type of node has its own additional properties.
6053 #include <isl/ast.h>
6054 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
6055 __isl_keep isl_ast_node *node);
6056 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
6057 __isl_keep isl_ast_node *node);
6058 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
6059 __isl_keep isl_ast_node *node);
6060 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
6061 __isl_keep isl_ast_node *node);
6062 __isl_give isl_ast_node *isl_ast_node_for_get_body(
6063 __isl_keep isl_ast_node *node);
6064 int isl_ast_node_for_is_degenerate(
6065 __isl_keep isl_ast_node *node);
6067 An C<isl_ast_for> is considered degenerate if it is known to execute
6070 #include <isl/ast.h>
6071 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
6072 __isl_keep isl_ast_node *node);
6073 __isl_give isl_ast_node *isl_ast_node_if_get_then(
6074 __isl_keep isl_ast_node *node);
6075 int isl_ast_node_if_has_else(
6076 __isl_keep isl_ast_node *node);
6077 __isl_give isl_ast_node *isl_ast_node_if_get_else(
6078 __isl_keep isl_ast_node *node);
6080 __isl_give isl_ast_node_list *
6081 isl_ast_node_block_get_children(
6082 __isl_keep isl_ast_node *node);
6084 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
6085 __isl_keep isl_ast_node *node);
6087 Each of the returned C<isl_ast_expr>s can in turn be inspected using
6088 the following functions.
6090 #include <isl/ast.h>
6091 isl_ctx *isl_ast_expr_get_ctx(
6092 __isl_keep isl_ast_expr *expr);
6093 enum isl_ast_expr_type isl_ast_expr_get_type(
6094 __isl_keep isl_ast_expr *expr);
6096 The type of an AST expression is one of
6098 C<isl_ast_expr_id> or
6099 C<isl_ast_expr_int>.
6100 An C<isl_ast_expr_op> represents the result of an operation.
6101 An C<isl_ast_expr_id> represents an identifier.
6102 An C<isl_ast_expr_int> represents an integer value.
6104 Each type of expression has its own additional properties.
6106 #include <isl/ast.h>
6107 enum isl_ast_op_type isl_ast_expr_get_op_type(
6108 __isl_keep isl_ast_expr *expr);
6109 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
6110 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
6111 __isl_keep isl_ast_expr *expr, int pos);
6112 int isl_ast_node_foreach_ast_op_type(
6113 __isl_keep isl_ast_node *node,
6114 int (*fn)(enum isl_ast_op_type type, void *user),
6117 C<isl_ast_expr_get_op_type> returns the type of the operation
6118 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
6119 arguments. C<isl_ast_expr_get_op_arg> returns the specified
6121 C<isl_ast_node_foreach_ast_op_type> calls C<fn> for each distinct
6122 C<isl_ast_op_type> that appears in C<node>.
6123 The operation type is one of the following.
6127 =item C<isl_ast_op_and>
6129 Logical I<and> of two arguments.
6130 Both arguments can be evaluated.
6132 =item C<isl_ast_op_and_then>
6134 Logical I<and> of two arguments.
6135 The second argument can only be evaluated if the first evaluates to true.
6137 =item C<isl_ast_op_or>
6139 Logical I<or> of two arguments.
6140 Both arguments can be evaluated.
6142 =item C<isl_ast_op_or_else>
6144 Logical I<or> of two arguments.
6145 The second argument can only be evaluated if the first evaluates to false.
6147 =item C<isl_ast_op_max>
6149 Maximum of two or more arguments.
6151 =item C<isl_ast_op_min>
6153 Minimum of two or more arguments.
6155 =item C<isl_ast_op_minus>
6159 =item C<isl_ast_op_add>
6161 Sum of two arguments.
6163 =item C<isl_ast_op_sub>
6165 Difference of two arguments.
6167 =item C<isl_ast_op_mul>
6169 Product of two arguments.
6171 =item C<isl_ast_op_div>
6173 Exact division. That is, the result is known to be an integer.
6175 =item C<isl_ast_op_fdiv_q>
6177 Result of integer division, rounded towards negative
6180 =item C<isl_ast_op_pdiv_q>
6182 Result of integer division, where dividend is known to be non-negative.
6184 =item C<isl_ast_op_pdiv_r>
6186 Remainder of integer division, where dividend is known to be non-negative.
6188 =item C<isl_ast_op_cond>
6190 Conditional operator defined on three arguments.
6191 If the first argument evaluates to true, then the result
6192 is equal to the second argument. Otherwise, the result
6193 is equal to the third argument.
6194 The second and third argument may only be evaluated if
6195 the first argument evaluates to true and false, respectively.
6196 Corresponds to C<a ? b : c> in C.
6198 =item C<isl_ast_op_select>
6200 Conditional operator defined on three arguments.
6201 If the first argument evaluates to true, then the result
6202 is equal to the second argument. Otherwise, the result
6203 is equal to the third argument.
6204 The second and third argument may be evaluated independently
6205 of the value of the first argument.
6206 Corresponds to C<a * b + (1 - a) * c> in C.
6208 =item C<isl_ast_op_eq>
6212 =item C<isl_ast_op_le>
6214 Less than or equal relation.
6216 =item C<isl_ast_op_lt>
6220 =item C<isl_ast_op_ge>
6222 Greater than or equal relation.
6224 =item C<isl_ast_op_gt>
6226 Greater than relation.
6228 =item C<isl_ast_op_call>
6231 The number of arguments of the C<isl_ast_expr> is one more than
6232 the number of arguments in the function call, the first argument
6233 representing the function being called.
6235 =item C<isl_ast_op_access>
6238 The number of arguments of the C<isl_ast_expr> is one more than
6239 the number of index expressions in the array access, the first argument
6240 representing the array being accessed.
6242 =item C<isl_ast_op_member>
6245 This operation has two arguments, a structure and the name of
6246 the member of the structure being accessed.
6250 #include <isl/ast.h>
6251 __isl_give isl_id *isl_ast_expr_get_id(
6252 __isl_keep isl_ast_expr *expr);
6254 Return the identifier represented by the AST expression.
6256 #include <isl/ast.h>
6257 __isl_give isl_val *isl_ast_expr_get_val(
6258 __isl_keep isl_ast_expr *expr);
6260 Return the integer represented by the AST expression.
6262 =head3 Properties of ASTs
6264 #include <isl/ast.h>
6265 int isl_ast_expr_is_equal(__isl_keep isl_ast_expr *expr1,
6266 __isl_keep isl_ast_expr *expr2);
6268 Check if two C<isl_ast_expr>s are equal to each other.
6270 =head3 Manipulating and printing the AST
6272 AST nodes can be copied and freed using the following functions.
6274 #include <isl/ast.h>
6275 __isl_give isl_ast_node *isl_ast_node_copy(
6276 __isl_keep isl_ast_node *node);
6277 void *isl_ast_node_free(__isl_take isl_ast_node *node);
6279 AST expressions can be copied and freed using the following functions.
6281 #include <isl/ast.h>
6282 __isl_give isl_ast_expr *isl_ast_expr_copy(
6283 __isl_keep isl_ast_expr *expr);
6284 void *isl_ast_expr_free(__isl_take isl_ast_expr *expr);
6286 New AST expressions can be created either directly or within
6287 the context of an C<isl_ast_build>.
6289 #include <isl/ast.h>
6290 __isl_give isl_ast_expr *isl_ast_expr_from_val(
6291 __isl_take isl_val *v);
6292 __isl_give isl_ast_expr *isl_ast_expr_from_id(
6293 __isl_take isl_id *id);
6294 __isl_give isl_ast_expr *isl_ast_expr_neg(
6295 __isl_take isl_ast_expr *expr);
6296 __isl_give isl_ast_expr *isl_ast_expr_add(
6297 __isl_take isl_ast_expr *expr1,
6298 __isl_take isl_ast_expr *expr2);
6299 __isl_give isl_ast_expr *isl_ast_expr_sub(
6300 __isl_take isl_ast_expr *expr1,
6301 __isl_take isl_ast_expr *expr2);
6302 __isl_give isl_ast_expr *isl_ast_expr_mul(
6303 __isl_take isl_ast_expr *expr1,
6304 __isl_take isl_ast_expr *expr2);
6305 __isl_give isl_ast_expr *isl_ast_expr_div(
6306 __isl_take isl_ast_expr *expr1,
6307 __isl_take isl_ast_expr *expr2);
6308 __isl_give isl_ast_expr *isl_ast_expr_and(
6309 __isl_take isl_ast_expr *expr1,
6310 __isl_take isl_ast_expr *expr2)
6311 __isl_give isl_ast_expr *isl_ast_expr_or(
6312 __isl_take isl_ast_expr *expr1,
6313 __isl_take isl_ast_expr *expr2)
6314 __isl_give isl_ast_expr *isl_ast_expr_access(
6315 __isl_take isl_ast_expr *array,
6316 __isl_take isl_ast_expr_list *indices);
6318 #include <isl/ast_build.h>
6319 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
6320 __isl_keep isl_ast_build *build,
6321 __isl_take isl_pw_aff *pa);
6322 __isl_give isl_ast_expr *
6323 isl_ast_build_access_from_pw_multi_aff(
6324 __isl_keep isl_ast_build *build,
6325 __isl_take isl_pw_multi_aff *pma);
6326 __isl_give isl_ast_expr *
6327 isl_ast_build_access_from_multi_pw_aff(
6328 __isl_keep isl_ast_build *build,
6329 __isl_take isl_multi_pw_aff *mpa);
6330 __isl_give isl_ast_expr *
6331 isl_ast_build_call_from_pw_multi_aff(
6332 __isl_keep isl_ast_build *build,
6333 __isl_take isl_pw_multi_aff *pma);
6334 __isl_give isl_ast_expr *
6335 isl_ast_build_call_from_multi_pw_aff(
6336 __isl_keep isl_ast_build *build,
6337 __isl_take isl_multi_pw_aff *mpa);
6339 The domains of C<pa>, C<mpa> and C<pma> should correspond
6340 to the schedule space of C<build>.
6341 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
6342 the function being called.
6343 If the accessed space is a nested relation, then it is taken
6344 to represent an access of the member specified by the range
6345 of this nested relation of the structure specified by the domain
6346 of the nested relation.
6348 The following functions can be used to modify an C<isl_ast_expr>.
6350 #include <isl/ast.h>
6351 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
6352 __isl_take isl_ast_expr *expr, int pos,
6353 __isl_take isl_ast_expr *arg);
6355 Replace the argument of C<expr> at position C<pos> by C<arg>.
6357 #include <isl/ast.h>
6358 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
6359 __isl_take isl_ast_expr *expr,
6360 __isl_take isl_id_to_ast_expr *id2expr);
6362 The function C<isl_ast_expr_substitute_ids> replaces the
6363 subexpressions of C<expr> of type C<isl_ast_expr_id>
6364 by the corresponding expression in C<id2expr>, if there is any.
6367 User specified data can be attached to an C<isl_ast_node> and obtained
6368 from the same C<isl_ast_node> using the following functions.
6370 #include <isl/ast.h>
6371 __isl_give isl_ast_node *isl_ast_node_set_annotation(
6372 __isl_take isl_ast_node *node,
6373 __isl_take isl_id *annotation);
6374 __isl_give isl_id *isl_ast_node_get_annotation(
6375 __isl_keep isl_ast_node *node);
6377 Basic printing can be performed using the following functions.
6379 #include <isl/ast.h>
6380 __isl_give isl_printer *isl_printer_print_ast_expr(
6381 __isl_take isl_printer *p,
6382 __isl_keep isl_ast_expr *expr);
6383 __isl_give isl_printer *isl_printer_print_ast_node(
6384 __isl_take isl_printer *p,
6385 __isl_keep isl_ast_node *node);
6387 More advanced printing can be performed using the following functions.
6389 #include <isl/ast.h>
6390 __isl_give isl_printer *isl_ast_op_type_print_macro(
6391 enum isl_ast_op_type type,
6392 __isl_take isl_printer *p);
6393 __isl_give isl_printer *isl_ast_node_print_macros(
6394 __isl_keep isl_ast_node *node,
6395 __isl_take isl_printer *p);
6396 __isl_give isl_printer *isl_ast_node_print(
6397 __isl_keep isl_ast_node *node,
6398 __isl_take isl_printer *p,
6399 __isl_take isl_ast_print_options *options);
6400 __isl_give isl_printer *isl_ast_node_for_print(
6401 __isl_keep isl_ast_node *node,
6402 __isl_take isl_printer *p,
6403 __isl_take isl_ast_print_options *options);
6404 __isl_give isl_printer *isl_ast_node_if_print(
6405 __isl_keep isl_ast_node *node,
6406 __isl_take isl_printer *p,
6407 __isl_take isl_ast_print_options *options);
6409 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
6410 C<isl> may print out an AST that makes use of macros such
6411 as C<floord>, C<min> and C<max>.
6412 C<isl_ast_op_type_print_macro> prints out the macro
6413 corresponding to a specific C<isl_ast_op_type>.
6414 C<isl_ast_node_print_macros> scans the C<isl_ast_node>
6415 for expressions where these macros would be used and prints
6416 out the required macro definitions.
6417 Essentially, C<isl_ast_node_print_macros> calls
6418 C<isl_ast_node_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
6419 as function argument.
6420 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
6421 C<isl_ast_node_if_print> print an C<isl_ast_node>
6422 in C<ISL_FORMAT_C>, but allow for some extra control
6423 through an C<isl_ast_print_options> object.
6424 This object can be created using the following functions.
6426 #include <isl/ast.h>
6427 __isl_give isl_ast_print_options *
6428 isl_ast_print_options_alloc(isl_ctx *ctx);
6429 __isl_give isl_ast_print_options *
6430 isl_ast_print_options_copy(
6431 __isl_keep isl_ast_print_options *options);
6432 void *isl_ast_print_options_free(
6433 __isl_take isl_ast_print_options *options);
6435 __isl_give isl_ast_print_options *
6436 isl_ast_print_options_set_print_user(
6437 __isl_take isl_ast_print_options *options,
6438 __isl_give isl_printer *(*print_user)(
6439 __isl_take isl_printer *p,
6440 __isl_take isl_ast_print_options *options,
6441 __isl_keep isl_ast_node *node, void *user),
6443 __isl_give isl_ast_print_options *
6444 isl_ast_print_options_set_print_for(
6445 __isl_take isl_ast_print_options *options,
6446 __isl_give isl_printer *(*print_for)(
6447 __isl_take isl_printer *p,
6448 __isl_take isl_ast_print_options *options,
6449 __isl_keep isl_ast_node *node, void *user),
6452 The callback set by C<isl_ast_print_options_set_print_user>
6453 is called whenever a node of type C<isl_ast_node_user> needs to
6455 The callback set by C<isl_ast_print_options_set_print_for>
6456 is called whenever a node of type C<isl_ast_node_for> needs to
6458 Note that C<isl_ast_node_for_print> will I<not> call the
6459 callback set by C<isl_ast_print_options_set_print_for> on the node
6460 on which C<isl_ast_node_for_print> is called, but only on nested
6461 nodes of type C<isl_ast_node_for>. It is therefore safe to
6462 call C<isl_ast_node_for_print> from within the callback set by
6463 C<isl_ast_print_options_set_print_for>.
6465 The following option determines the type to be used for iterators
6466 while printing the AST.
6468 int isl_options_set_ast_iterator_type(
6469 isl_ctx *ctx, const char *val);
6470 const char *isl_options_get_ast_iterator_type(
6475 #include <isl/ast_build.h>
6476 int isl_options_set_ast_build_atomic_upper_bound(
6477 isl_ctx *ctx, int val);
6478 int isl_options_get_ast_build_atomic_upper_bound(
6480 int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
6482 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
6483 int isl_options_set_ast_build_exploit_nested_bounds(
6484 isl_ctx *ctx, int val);
6485 int isl_options_get_ast_build_exploit_nested_bounds(
6487 int isl_options_set_ast_build_group_coscheduled(
6488 isl_ctx *ctx, int val);
6489 int isl_options_get_ast_build_group_coscheduled(
6491 int isl_options_set_ast_build_scale_strides(
6492 isl_ctx *ctx, int val);
6493 int isl_options_get_ast_build_scale_strides(
6495 int isl_options_set_ast_build_allow_else(isl_ctx *ctx,
6497 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
6498 int isl_options_set_ast_build_allow_or(isl_ctx *ctx,
6500 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
6504 =item * ast_build_atomic_upper_bound
6506 Generate loop upper bounds that consist of the current loop iterator,
6507 an operator and an expression not involving the iterator.
6508 If this option is not set, then the current loop iterator may appear
6509 several times in the upper bound.
6510 For example, when this option is turned off, AST generation
6513 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
6517 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
6520 When the option is turned on, the following AST is generated
6522 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
6525 =item * ast_build_prefer_pdiv
6527 If this option is turned off, then the AST generation will
6528 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
6529 operators, but no C<isl_ast_op_pdiv_q> or
6530 C<isl_ast_op_pdiv_r> operators.
6531 If this options is turned on, then C<isl> will try to convert
6532 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
6533 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
6535 =item * ast_build_exploit_nested_bounds
6537 Simplify conditions based on bounds of nested for loops.
6538 In particular, remove conditions that are implied by the fact
6539 that one or more nested loops have at least one iteration,
6540 meaning that the upper bound is at least as large as the lower bound.
6541 For example, when this option is turned off, AST generation
6544 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
6550 for (int c0 = 0; c0 <= N; c0 += 1)
6551 for (int c1 = 0; c1 <= M; c1 += 1)
6554 When the option is turned on, the following AST is generated
6556 for (int c0 = 0; c0 <= N; c0 += 1)
6557 for (int c1 = 0; c1 <= M; c1 += 1)
6560 =item * ast_build_group_coscheduled
6562 If two domain elements are assigned the same schedule point, then
6563 they may be executed in any order and they may even appear in different
6564 loops. If this options is set, then the AST generator will make
6565 sure that coscheduled domain elements do not appear in separate parts
6566 of the AST. This is useful in case of nested AST generation
6567 if the outer AST generation is given only part of a schedule
6568 and the inner AST generation should handle the domains that are
6569 coscheduled by this initial part of the schedule together.
6570 For example if an AST is generated for a schedule
6572 { A[i] -> [0]; B[i] -> [0] }
6574 then the C<isl_ast_build_set_create_leaf> callback described
6575 below may get called twice, once for each domain.
6576 Setting this option ensures that the callback is only called once
6577 on both domains together.
6579 =item * ast_build_separation_bounds
6581 This option specifies which bounds to use during separation.
6582 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
6583 then all (possibly implicit) bounds on the current dimension will
6584 be used during separation.
6585 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
6586 then only those bounds that are explicitly available will
6587 be used during separation.
6589 =item * ast_build_scale_strides
6591 This option specifies whether the AST generator is allowed
6592 to scale down iterators of strided loops.
6594 =item * ast_build_allow_else
6596 This option specifies whether the AST generator is allowed
6597 to construct if statements with else branches.
6599 =item * ast_build_allow_or
6601 This option specifies whether the AST generator is allowed
6602 to construct if conditions with disjunctions.
6606 =head3 Fine-grained Control over AST Generation
6608 Besides specifying the constraints on the parameters,
6609 an C<isl_ast_build> object can be used to control
6610 various aspects of the AST generation process.
6611 The most prominent way of control is through ``options'',
6612 which can be set using the following function.
6614 #include <isl/ast_build.h>
6615 __isl_give isl_ast_build *
6616 isl_ast_build_set_options(
6617 __isl_take isl_ast_build *control,
6618 __isl_take isl_union_map *options);
6620 The options are encoded in an <isl_union_map>.
6621 The domain of this union relation refers to the schedule domain,
6622 i.e., the range of the schedule passed to C<isl_ast_build_ast_from_schedule>.
6623 In the case of nested AST generation (see L</"Nested AST Generation">),
6624 the domain of C<options> should refer to the extra piece of the schedule.
6625 That is, it should be equal to the range of the wrapped relation in the
6626 range of the schedule.
6627 The range of the options can consist of elements in one or more spaces,
6628 the names of which determine the effect of the option.
6629 The values of the range typically also refer to the schedule dimension
6630 to which the option applies. In case of nested AST generation
6631 (see L</"Nested AST Generation">), these values refer to the position
6632 of the schedule dimension within the innermost AST generation.
6633 The constraints on the domain elements of
6634 the option should only refer to this dimension and earlier dimensions.
6635 We consider the following spaces.
6639 =item C<separation_class>
6641 This space is a wrapped relation between two one dimensional spaces.
6642 The input space represents the schedule dimension to which the option
6643 applies and the output space represents the separation class.
6644 While constructing a loop corresponding to the specified schedule
6645 dimension(s), the AST generator will try to generate separate loops
6646 for domain elements that are assigned different classes.
6647 If only some of the elements are assigned a class, then those elements
6648 that are not assigned any class will be treated as belonging to a class
6649 that is separate from the explicitly assigned classes.
6650 The typical use case for this option is to separate full tiles from
6652 The other options, described below, are applied after the separation
6655 As an example, consider the separation into full and partial tiles
6656 of a tiling of a triangular domain.
6657 Take, for example, the domain
6659 { A[i,j] : 0 <= i,j and i + j <= 100 }
6661 and a tiling into tiles of 10 by 10. The input to the AST generator
6662 is then the schedule
6664 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
6667 Without any options, the following AST is generated
6669 for (int c0 = 0; c0 <= 10; c0 += 1)
6670 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
6671 for (int c2 = 10 * c0;
6672 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6674 for (int c3 = 10 * c1;
6675 c3 <= min(10 * c1 + 9, -c2 + 100);
6679 Separation into full and partial tiles can be obtained by assigning
6680 a class, say C<0>, to the full tiles. The full tiles are represented by those
6681 values of the first and second schedule dimensions for which there are
6682 values of the third and fourth dimensions to cover an entire tile.
6683 That is, we need to specify the following option
6685 { [a,b,c,d] -> separation_class[[0]->[0]] :
6686 exists b': 0 <= 10a,10b' and
6687 10a+9+10b'+9 <= 100;
6688 [a,b,c,d] -> separation_class[[1]->[0]] :
6689 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
6693 { [a, b, c, d] -> separation_class[[1] -> [0]] :
6694 a >= 0 and b >= 0 and b <= 8 - a;
6695 [a, b, c, d] -> separation_class[[0] -> [0]] :
6698 With this option, the generated AST is as follows
6701 for (int c0 = 0; c0 <= 8; c0 += 1) {
6702 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
6703 for (int c2 = 10 * c0;
6704 c2 <= 10 * c0 + 9; c2 += 1)
6705 for (int c3 = 10 * c1;
6706 c3 <= 10 * c1 + 9; c3 += 1)
6708 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
6709 for (int c2 = 10 * c0;
6710 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6712 for (int c3 = 10 * c1;
6713 c3 <= min(-c2 + 100, 10 * c1 + 9);
6717 for (int c0 = 9; c0 <= 10; c0 += 1)
6718 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
6719 for (int c2 = 10 * c0;
6720 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6722 for (int c3 = 10 * c1;
6723 c3 <= min(10 * c1 + 9, -c2 + 100);
6730 This is a single-dimensional space representing the schedule dimension(s)
6731 to which ``separation'' should be applied. Separation tries to split
6732 a loop into several pieces if this can avoid the generation of guards
6734 See also the C<atomic> option.
6738 This is a single-dimensional space representing the schedule dimension(s)
6739 for which the domains should be considered ``atomic''. That is, the
6740 AST generator will make sure that any given domain space will only appear
6741 in a single loop at the specified level.
6743 Consider the following schedule
6745 { a[i] -> [i] : 0 <= i < 10;
6746 b[i] -> [i+1] : 0 <= i < 10 }
6748 If the following option is specified
6750 { [i] -> separate[x] }
6752 then the following AST will be generated
6756 for (int c0 = 1; c0 <= 9; c0 += 1) {
6763 If, on the other hand, the following option is specified
6765 { [i] -> atomic[x] }
6767 then the following AST will be generated
6769 for (int c0 = 0; c0 <= 10; c0 += 1) {
6776 If neither C<atomic> nor C<separate> is specified, then the AST generator
6777 may produce either of these two results or some intermediate form.
6781 This is a single-dimensional space representing the schedule dimension(s)
6782 that should be I<completely> unrolled.
6783 To obtain a partial unrolling, the user should apply an additional
6784 strip-mining to the schedule and fully unroll the inner loop.
6788 Additional control is available through the following functions.
6790 #include <isl/ast_build.h>
6791 __isl_give isl_ast_build *
6792 isl_ast_build_set_iterators(
6793 __isl_take isl_ast_build *control,
6794 __isl_take isl_id_list *iterators);
6796 The function C<isl_ast_build_set_iterators> allows the user to
6797 specify a list of iterator C<isl_id>s to be used as iterators.
6798 If the input schedule is injective, then
6799 the number of elements in this list should be as large as the dimension
6800 of the schedule space, but no direct correspondence should be assumed
6801 between dimensions and elements.
6802 If the input schedule is not injective, then an additional number
6803 of C<isl_id>s equal to the largest dimension of the input domains
6805 If the number of provided C<isl_id>s is insufficient, then additional
6806 names are automatically generated.
6808 #include <isl/ast_build.h>
6809 __isl_give isl_ast_build *
6810 isl_ast_build_set_create_leaf(
6811 __isl_take isl_ast_build *control,
6812 __isl_give isl_ast_node *(*fn)(
6813 __isl_take isl_ast_build *build,
6814 void *user), void *user);
6817 C<isl_ast_build_set_create_leaf> function allows for the
6818 specification of a callback that should be called whenever the AST
6819 generator arrives at an element of the schedule domain.
6820 The callback should return an AST node that should be inserted
6821 at the corresponding position of the AST. The default action (when
6822 the callback is not set) is to continue generating parts of the AST to scan
6823 all the domain elements associated to the schedule domain element
6824 and to insert user nodes, ``calling'' the domain element, for each of them.
6825 The C<build> argument contains the current state of the C<isl_ast_build>.
6826 To ease nested AST generation (see L</"Nested AST Generation">),
6827 all control information that is
6828 specific to the current AST generation such as the options and
6829 the callbacks has been removed from this C<isl_ast_build>.
6830 The callback would typically return the result of a nested
6832 user defined node created using the following function.
6834 #include <isl/ast.h>
6835 __isl_give isl_ast_node *isl_ast_node_alloc_user(
6836 __isl_take isl_ast_expr *expr);
6838 #include <isl/ast_build.h>
6839 __isl_give isl_ast_build *
6840 isl_ast_build_set_at_each_domain(
6841 __isl_take isl_ast_build *build,
6842 __isl_give isl_ast_node *(*fn)(
6843 __isl_take isl_ast_node *node,
6844 __isl_keep isl_ast_build *build,
6845 void *user), void *user);
6846 __isl_give isl_ast_build *
6847 isl_ast_build_set_before_each_for(
6848 __isl_take isl_ast_build *build,
6849 __isl_give isl_id *(*fn)(
6850 __isl_keep isl_ast_build *build,
6851 void *user), void *user);
6852 __isl_give isl_ast_build *
6853 isl_ast_build_set_after_each_for(
6854 __isl_take isl_ast_build *build,
6855 __isl_give isl_ast_node *(*fn)(
6856 __isl_take isl_ast_node *node,
6857 __isl_keep isl_ast_build *build,
6858 void *user), void *user);
6860 The callback set by C<isl_ast_build_set_at_each_domain> will
6861 be called for each domain AST node.
6862 The callbacks set by C<isl_ast_build_set_before_each_for>
6863 and C<isl_ast_build_set_after_each_for> will be called
6864 for each for AST node. The first will be called in depth-first
6865 pre-order, while the second will be called in depth-first post-order.
6866 Since C<isl_ast_build_set_before_each_for> is called before the for
6867 node is actually constructed, it is only passed an C<isl_ast_build>.
6868 The returned C<isl_id> will be added as an annotation (using
6869 C<isl_ast_node_set_annotation>) to the constructed for node.
6870 In particular, if the user has also specified an C<after_each_for>
6871 callback, then the annotation can be retrieved from the node passed to
6872 that callback using C<isl_ast_node_get_annotation>.
6873 All callbacks should C<NULL> on failure.
6874 The given C<isl_ast_build> can be used to create new
6875 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
6876 or C<isl_ast_build_call_from_pw_multi_aff>.
6878 =head3 Nested AST Generation
6880 C<isl> allows the user to create an AST within the context
6881 of another AST. These nested ASTs are created using the
6882 same C<isl_ast_build_ast_from_schedule> function that is used to create the
6883 outer AST. The C<build> argument should be an C<isl_ast_build>
6884 passed to a callback set by
6885 C<isl_ast_build_set_create_leaf>.
6886 The space of the range of the C<schedule> argument should refer
6887 to this build. In particular, the space should be a wrapped
6888 relation and the domain of this wrapped relation should be the
6889 same as that of the range of the schedule returned by
6890 C<isl_ast_build_get_schedule> below.
6891 In practice, the new schedule is typically
6892 created by calling C<isl_union_map_range_product> on the old schedule
6893 and some extra piece of the schedule.
6894 The space of the schedule domain is also available from
6895 the C<isl_ast_build>.
6897 #include <isl/ast_build.h>
6898 __isl_give isl_union_map *isl_ast_build_get_schedule(
6899 __isl_keep isl_ast_build *build);
6900 __isl_give isl_space *isl_ast_build_get_schedule_space(
6901 __isl_keep isl_ast_build *build);
6902 __isl_give isl_ast_build *isl_ast_build_restrict(
6903 __isl_take isl_ast_build *build,
6904 __isl_take isl_set *set);
6906 The C<isl_ast_build_get_schedule> function returns a (partial)
6907 schedule for the domains elements for which part of the AST still needs to
6908 be generated in the current build.
6909 In particular, the domain elements are mapped to those iterations of the loops
6910 enclosing the current point of the AST generation inside which
6911 the domain elements are executed.
6912 No direct correspondence between
6913 the input schedule and this schedule should be assumed.
6914 The space obtained from C<isl_ast_build_get_schedule_space> can be used
6915 to create a set for C<isl_ast_build_restrict> to intersect
6916 with the current build. In particular, the set passed to
6917 C<isl_ast_build_restrict> can have additional parameters.
6918 The ids of the set dimensions in the space returned by
6919 C<isl_ast_build_get_schedule_space> correspond to the
6920 iterators of the already generated loops.
6921 The user should not rely on the ids of the output dimensions
6922 of the relations in the union relation returned by
6923 C<isl_ast_build_get_schedule> having any particular value.
6927 Although C<isl> is mainly meant to be used as a library,
6928 it also contains some basic applications that use some
6929 of the functionality of C<isl>.
6930 The input may be specified in either the L<isl format>
6931 or the L<PolyLib format>.
6933 =head2 C<isl_polyhedron_sample>
6935 C<isl_polyhedron_sample> takes a polyhedron as input and prints
6936 an integer element of the polyhedron, if there is any.
6937 The first column in the output is the denominator and is always
6938 equal to 1. If the polyhedron contains no integer points,
6939 then a vector of length zero is printed.
6943 C<isl_pip> takes the same input as the C<example> program
6944 from the C<piplib> distribution, i.e., a set of constraints
6945 on the parameters, a line containing only -1 and finally a set
6946 of constraints on a parametric polyhedron.
6947 The coefficients of the parameters appear in the last columns
6948 (but before the final constant column).
6949 The output is the lexicographic minimum of the parametric polyhedron.
6950 As C<isl> currently does not have its own output format, the output
6951 is just a dump of the internal state.
6953 =head2 C<isl_polyhedron_minimize>
6955 C<isl_polyhedron_minimize> computes the minimum of some linear
6956 or affine objective function over the integer points in a polyhedron.
6957 If an affine objective function
6958 is given, then the constant should appear in the last column.
6960 =head2 C<isl_polytope_scan>
6962 Given a polytope, C<isl_polytope_scan> prints
6963 all integer points in the polytope.
6965 =head2 C<isl_codegen>
6967 Given a schedule, a context set and an options relation,
6968 C<isl_codegen> prints out an AST that scans the domain elements
6969 of the schedule in the order of their image(s) taking into account
6970 the constraints in the context set.