2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 __isl_give isl_basic_map
*isl_basic_map_normalize_constraints(
48 __isl_take isl_basic_map
*bmap
)
52 unsigned total
= isl_basic_map_total_dim(bmap
);
58 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
59 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
60 if (isl_int_is_zero(gcd
)) {
61 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
62 bmap
= isl_basic_map_set_to_empty(bmap
);
65 isl_basic_map_drop_equality(bmap
, i
);
68 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
69 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
70 if (isl_int_is_one(gcd
))
72 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
73 bmap
= isl_basic_map_set_to_empty(bmap
);
76 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
79 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
80 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
81 if (isl_int_is_zero(gcd
)) {
82 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
83 bmap
= isl_basic_map_set_to_empty(bmap
);
86 isl_basic_map_drop_inequality(bmap
, i
);
89 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
90 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
91 if (isl_int_is_one(gcd
))
93 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
94 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
101 struct isl_basic_set
*isl_basic_set_normalize_constraints(
102 struct isl_basic_set
*bset
)
104 isl_basic_map
*bmap
= bset_to_bmap(bset
);
105 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
108 /* Reduce the coefficient of the variable at position "pos"
109 * in integer division "div", such that it lies in the half-open
110 * interval (1/2,1/2], extracting any excess value from this integer division.
111 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
112 * corresponds to the constant term.
114 * That is, the integer division is of the form
116 * floor((... + (c * d + r) * x_pos + ...)/d)
118 * with -d < 2 * r <= d.
121 * floor((... + r * x_pos + ...)/d) + c * x_pos
123 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
124 * Otherwise, c = floor((c * d + r)/d) + 1.
126 * This is the same normalization that is performed by isl_aff_floor.
128 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
129 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
135 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
136 isl_int_mul_ui(shift
, shift
, 2);
137 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
138 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
140 isl_int_add_ui(shift
, shift
, 1);
141 isl_int_neg(shift
, shift
);
142 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
143 isl_int_clear(shift
);
148 /* Does the coefficient of the variable at position "pos"
149 * in integer division "div" need to be reduced?
150 * That is, does it lie outside the half-open interval (1/2,1/2]?
151 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
154 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
159 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
160 return isl_bool_false
;
162 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
163 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
164 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
165 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
166 bmap
->div
[div
][1 + pos
], 2);
171 /* Reduce the coefficients (including the constant term) of
172 * integer division "div", if needed.
173 * In particular, make sure all coefficients lie in
174 * the half-open interval (1/2,1/2].
176 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
177 __isl_take isl_basic_map
*bmap
, int div
)
180 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
182 for (i
= 0; i
< total
; ++i
) {
185 reduce
= needs_reduction(bmap
, div
, i
);
187 return isl_basic_map_free(bmap
);
190 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
198 /* Reduce the coefficients (including the constant term) of
199 * the known integer divisions, if needed
200 * In particular, make sure all coefficients lie in
201 * the half-open interval (1/2,1/2].
203 static __isl_give isl_basic_map
*reduce_div_coefficients(
204 __isl_take isl_basic_map
*bmap
)
210 if (bmap
->n_div
== 0)
213 for (i
= 0; i
< bmap
->n_div
; ++i
) {
214 if (isl_int_is_zero(bmap
->div
[i
][0]))
216 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
224 /* Remove any common factor in numerator and denominator of the div expression,
225 * not taking into account the constant term.
226 * That is, if the div is of the form
228 * floor((a + m f(x))/(m d))
232 * floor((floor(a/m) + f(x))/d)
234 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
235 * and can therefore not influence the result of the floor.
237 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
239 unsigned total
= isl_basic_map_total_dim(bmap
);
240 isl_ctx
*ctx
= bmap
->ctx
;
242 if (isl_int_is_zero(bmap
->div
[div
][0]))
244 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
245 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
246 if (isl_int_is_one(ctx
->normalize_gcd
))
248 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
250 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
252 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
253 ctx
->normalize_gcd
, total
);
256 /* Remove any common factor in numerator and denominator of a div expression,
257 * not taking into account the constant term.
258 * That is, look for any div of the form
260 * floor((a + m f(x))/(m d))
264 * floor((floor(a/m) + f(x))/d)
266 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
267 * and can therefore not influence the result of the floor.
269 static __isl_give isl_basic_map
*normalize_div_expressions(
270 __isl_take isl_basic_map
*bmap
)
276 if (bmap
->n_div
== 0)
279 for (i
= 0; i
< bmap
->n_div
; ++i
)
280 normalize_div_expression(bmap
, i
);
285 /* Assumes divs have been ordered if keep_divs is set.
287 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
288 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
291 unsigned space_total
;
295 total
= isl_basic_map_total_dim(bmap
);
296 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
297 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
298 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
299 if (bmap
->eq
[k
] == eq
)
301 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
305 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
306 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
309 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
310 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
314 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
315 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
316 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
319 for (k
= 0; k
< bmap
->n_div
; ++k
) {
320 if (isl_int_is_zero(bmap
->div
[k
][0]))
322 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
326 /* We need to be careful about circular definitions,
327 * so for now we just remove the definition of div k
328 * if the equality contains any divs.
329 * If keep_divs is set, then the divs have been ordered
330 * and we can keep the definition as long as the result
333 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
334 isl_seq_elim(bmap
->div
[k
]+1, eq
,
335 1+pos
, 1+total
, &bmap
->div
[k
][0]);
336 normalize_div_expression(bmap
, k
);
338 isl_seq_clr(bmap
->div
[k
], 1 + total
);
339 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
343 /* Assumes divs have been ordered if keep_divs is set.
345 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
346 isl_int
*eq
, unsigned div
, int keep_divs
)
348 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
350 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
352 bmap
= isl_basic_map_drop_div(bmap
, div
);
357 /* Check if elimination of div "div" using equality "eq" would not
358 * result in a div depending on a later div.
360 static isl_bool
ok_to_eliminate_div(__isl_keep isl_basic_map
*bmap
, isl_int
*eq
,
365 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
366 unsigned pos
= space_total
+ div
;
368 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
369 if (last_div
< 0 || last_div
<= div
)
370 return isl_bool_true
;
372 for (k
= 0; k
<= last_div
; ++k
) {
373 if (isl_int_is_zero(bmap
->div
[k
][0]))
375 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
376 return isl_bool_false
;
379 return isl_bool_true
;
382 /* Eliminate divs based on equalities
384 static __isl_give isl_basic_map
*eliminate_divs_eq(
385 __isl_take isl_basic_map
*bmap
, int *progress
)
392 bmap
= isl_basic_map_order_divs(bmap
);
397 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
399 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
400 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
403 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
404 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
406 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
408 return isl_basic_map_free(bmap
);
413 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
414 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
415 return isl_basic_map_free(bmap
);
420 return eliminate_divs_eq(bmap
, progress
);
424 /* Eliminate divs based on inequalities
426 static __isl_give isl_basic_map
*eliminate_divs_ineq(
427 __isl_take isl_basic_map
*bmap
, int *progress
)
438 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
440 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
441 for (i
= 0; i
< bmap
->n_eq
; ++i
)
442 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
446 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
447 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
449 if (i
< bmap
->n_ineq
)
452 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
453 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
455 bmap
= isl_basic_map_drop_div(bmap
, d
);
462 /* Does the equality constraint at position "eq" in "bmap" involve
463 * any local variables in the range [first, first + n)
464 * that are not marked as having an explicit representation?
466 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
467 int eq
, unsigned first
, unsigned n
)
473 return isl_bool_error
;
475 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
476 for (i
= 0; i
< n
; ++i
) {
479 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
481 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
483 return isl_bool_error
;
485 return isl_bool_true
;
488 return isl_bool_false
;
491 /* The last local variable involved in the equality constraint
492 * at position "eq" in "bmap" is the local variable at position "div".
493 * It can therefore be used to extract an explicit representation
495 * Do so unless the local variable already has an explicit representation or
496 * the explicit representation would involve any other local variables
497 * that in turn do not have an explicit representation.
498 * An equality constraint involving local variables without an explicit
499 * representation can be used in isl_basic_map_drop_redundant_divs
500 * to separate out an independent local variable. Introducing
501 * an explicit representation here would block this transformation,
502 * while the partial explicit representation in itself is not very useful.
503 * Set *progress if anything is changed.
505 * The equality constraint is of the form
509 * with n a positive number. The explicit representation derived from
514 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
515 int div
, int eq
, int *progress
)
517 unsigned total
, o_div
;
523 if (!isl_int_is_zero(bmap
->div
[div
][0]))
526 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
528 return isl_basic_map_free(bmap
);
532 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
533 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
534 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
535 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
536 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
539 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
544 __isl_give isl_basic_map
*isl_basic_map_gauss(__isl_take isl_basic_map
*bmap
,
553 bmap
= isl_basic_map_order_divs(bmap
);
558 total
= isl_basic_map_total_dim(bmap
);
559 total_var
= total
- bmap
->n_div
;
561 last_var
= total
- 1;
562 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
563 for (; last_var
>= 0; --last_var
) {
564 for (k
= done
; k
< bmap
->n_eq
; ++k
)
565 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
573 swap_equality(bmap
, k
, done
);
574 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
575 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
577 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
580 if (last_var
>= total_var
)
581 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
586 if (done
== bmap
->n_eq
)
588 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
589 if (isl_int_is_zero(bmap
->eq
[k
][0]))
591 return isl_basic_map_set_to_empty(bmap
);
593 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
597 struct isl_basic_set
*isl_basic_set_gauss(
598 struct isl_basic_set
*bset
, int *progress
)
600 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
605 static unsigned int round_up(unsigned int v
)
616 /* Hash table of inequalities in a basic map.
617 * "index" is an array of addresses of inequalities in the basic map, some
618 * of which are NULL. The inequalities are hashed on the coefficients
619 * except the constant term.
620 * "size" is the number of elements in the array and is always a power of two
621 * "bits" is the number of bits need to represent an index into the array.
622 * "total" is the total dimension of the basic map.
624 struct isl_constraint_index
{
631 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
633 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
634 __isl_keep isl_basic_map
*bmap
)
640 return isl_stat_error
;
641 ci
->total
= isl_basic_set_total_dim(bmap
);
642 if (bmap
->n_ineq
== 0)
644 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
645 ci
->bits
= ffs(ci
->size
) - 1;
646 ctx
= isl_basic_map_get_ctx(bmap
);
647 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
649 return isl_stat_error
;
654 /* Free the memory allocated by create_constraint_index.
656 static void constraint_index_free(struct isl_constraint_index
*ci
)
661 /* Return the position in ci->index that contains the address of
662 * an inequality that is equal to *ineq up to the constant term,
663 * provided this address is not identical to "ineq".
664 * If there is no such inequality, then return the position where
665 * such an inequality should be inserted.
667 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
670 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
671 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
672 if (ineq
!= ci
->index
[h
] &&
673 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
678 /* Return the position in ci->index that contains the address of
679 * an inequality that is equal to the k'th inequality of "bmap"
680 * up to the constant term, provided it does not point to the very
682 * If there is no such inequality, then return the position where
683 * such an inequality should be inserted.
685 static int hash_index(struct isl_constraint_index
*ci
,
686 __isl_keep isl_basic_map
*bmap
, int k
)
688 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
691 static int set_hash_index(struct isl_constraint_index
*ci
,
692 __isl_keep isl_basic_set
*bset
, int k
)
694 return hash_index(ci
, bset
, k
);
697 /* Fill in the "ci" data structure with the inequalities of "bset".
699 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
700 __isl_keep isl_basic_set
*bset
)
704 if (create_constraint_index(ci
, bset
) < 0)
705 return isl_stat_error
;
707 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
708 h
= set_hash_index(ci
, bset
, k
);
709 ci
->index
[h
] = &bset
->ineq
[k
];
715 /* Is the inequality ineq (obviously) redundant with respect
716 * to the constraints in "ci"?
718 * Look for an inequality in "ci" with the same coefficients and then
719 * check if the contant term of "ineq" is greater than or equal
720 * to the constant term of that inequality. If so, "ineq" is clearly
723 * Note that hash_index_ineq ignores a stored constraint if it has
724 * the same address as the passed inequality. It is ok to pass
725 * the address of a local variable here since it will never be
726 * the same as the address of a constraint in "ci".
728 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
733 h
= hash_index_ineq(ci
, &ineq
);
735 return isl_bool_false
;
736 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
739 /* If we can eliminate more than one div, then we need to make
740 * sure we do it from last div to first div, in order not to
741 * change the position of the other divs that still need to
744 static __isl_give isl_basic_map
*remove_duplicate_divs(
745 __isl_take isl_basic_map
*bmap
, int *progress
)
757 bmap
= isl_basic_map_order_divs(bmap
);
758 if (!bmap
|| bmap
->n_div
<= 1)
761 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
762 total
= total_var
+ bmap
->n_div
;
765 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
766 if (!isl_int_is_zero(bmap
->div
[k
][0]))
771 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
774 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
775 bits
= ffs(size
) - 1;
776 index
= isl_calloc_array(ctx
, int, size
);
777 if (!elim_for
|| !index
)
779 eq
= isl_blk_alloc(ctx
, 1+total
);
780 if (isl_blk_is_error(eq
))
783 isl_seq_clr(eq
.data
, 1+total
);
784 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
785 for (--k
; k
>= 0; --k
) {
788 if (isl_int_is_zero(bmap
->div
[k
][0]))
791 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
792 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
793 if (isl_seq_eq(bmap
->div
[k
],
794 bmap
->div
[index
[h
]-1], 2+total
))
803 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
807 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
808 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
809 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
812 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
813 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
816 isl_blk_free(ctx
, eq
);
823 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
828 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
829 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
830 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
834 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
840 /* Normalize divs that appear in equalities.
842 * In particular, we assume that bmap contains some equalities
847 * and we want to replace the set of e_i by a minimal set and
848 * such that the new e_i have a canonical representation in terms
850 * If any of the equalities involves more than one divs, then
851 * we currently simply bail out.
853 * Let us first additionally assume that all equalities involve
854 * a div. The equalities then express modulo constraints on the
855 * remaining variables and we can use "parameter compression"
856 * to find a minimal set of constraints. The result is a transformation
858 * x = T(x') = x_0 + G x'
860 * with G a lower-triangular matrix with all elements below the diagonal
861 * non-negative and smaller than the diagonal element on the same row.
862 * We first normalize x_0 by making the same property hold in the affine
864 * The rows i of G with a 1 on the diagonal do not impose any modulo
865 * constraint and simply express x_i = x'_i.
866 * For each of the remaining rows i, we introduce a div and a corresponding
867 * equality. In particular
869 * g_ii e_j = x_i - g_i(x')
871 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
872 * corresponding div (if g_kk != 1).
874 * If there are any equalities not involving any div, then we
875 * first apply a variable compression on the variables x:
877 * x = C x'' x'' = C_2 x
879 * and perform the above parameter compression on A C instead of on A.
880 * The resulting compression is then of the form
882 * x'' = T(x') = x_0 + G x'
884 * and in constructing the new divs and the corresponding equalities,
885 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
886 * by the corresponding row from C_2.
888 static __isl_give isl_basic_map
*normalize_divs(__isl_take isl_basic_map
*bmap
,
896 struct isl_mat
*T
= NULL
;
897 struct isl_mat
*C
= NULL
;
898 struct isl_mat
*C2
= NULL
;
906 if (bmap
->n_div
== 0)
912 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
915 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
916 div_eq
= n_pure_div_eq(bmap
);
920 if (div_eq
< bmap
->n_eq
) {
921 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
922 bmap
->n_eq
- div_eq
, 0, 1 + total
);
923 C
= isl_mat_variable_compression(B
, &C2
);
927 bmap
= isl_basic_map_set_to_empty(bmap
);
934 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
937 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
938 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
940 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
942 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
945 B
= isl_mat_product(B
, C
);
949 T
= isl_mat_parameter_compression(B
, d
);
953 bmap
= isl_basic_map_set_to_empty(bmap
);
959 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
960 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
961 if (isl_int_is_zero(v
))
963 isl_mat_col_submul(T
, 0, v
, 1 + i
);
966 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
969 /* We have to be careful because dropping equalities may reorder them */
971 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
972 for (i
= 0; i
< bmap
->n_eq
; ++i
)
973 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
975 if (i
< bmap
->n_eq
) {
976 bmap
= isl_basic_map_drop_div(bmap
, j
);
977 isl_basic_map_drop_equality(bmap
, i
);
983 for (i
= 1; i
< T
->n_row
; ++i
) {
984 if (isl_int_is_one(T
->row
[i
][i
]))
989 if (needed
> dropped
) {
990 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
995 for (i
= 1; i
< T
->n_row
; ++i
) {
996 if (isl_int_is_one(T
->row
[i
][i
]))
998 k
= isl_basic_map_alloc_div(bmap
);
999 pos
[i
] = 1 + total
+ k
;
1000 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1001 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1003 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1005 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1006 for (j
= 0; j
< i
; ++j
) {
1007 if (isl_int_is_zero(T
->row
[i
][j
]))
1009 if (pos
[j
] < T
->n_row
&& C2
)
1010 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1011 C2
->row
[pos
[j
]], 1 + total
);
1013 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1016 j
= isl_basic_map_alloc_equality(bmap
);
1017 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1018 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1027 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1038 static __isl_give isl_basic_map
*set_div_from_lower_bound(
1039 __isl_take isl_basic_map
*bmap
, int div
, int ineq
)
1041 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1043 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1044 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1045 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1046 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1047 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1052 /* Check whether it is ok to define a div based on an inequality.
1053 * To avoid the introduction of circular definitions of divs, we
1054 * do not allow such a definition if the resulting expression would refer to
1055 * any other undefined divs or if any known div is defined in
1056 * terms of the unknown div.
1058 static isl_bool
ok_to_set_div_from_bound(__isl_keep isl_basic_map
*bmap
,
1062 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1064 /* Not defined in terms of unknown divs */
1065 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1068 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1070 if (isl_int_is_zero(bmap
->div
[j
][0]))
1071 return isl_bool_false
;
1074 /* No other div defined in terms of this one => avoid loops */
1075 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1078 if (isl_int_is_zero(bmap
->div
[j
][0]))
1080 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1081 return isl_bool_false
;
1084 return isl_bool_true
;
1087 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1088 * be a better expression than the current one?
1090 * If we do not have any expression yet, then any expression would be better.
1091 * Otherwise we check if the last variable involved in the inequality
1092 * (disregarding the div that it would define) is in an earlier position
1093 * than the last variable involved in the current div expression.
1095 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1098 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1102 if (isl_int_is_zero(bmap
->div
[div
][0]))
1103 return isl_bool_true
;
1105 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1106 bmap
->n_div
- (div
+ 1)) >= 0)
1107 return isl_bool_false
;
1109 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1110 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1111 total
+ bmap
->n_div
);
1113 return last_ineq
< last_div
;
1116 /* Given two constraints "k" and "l" that are opposite to each other,
1117 * except for the constant term, check if we can use them
1118 * to obtain an expression for one of the hitherto unknown divs or
1119 * a "better" expression for a div for which we already have an expression.
1120 * "sum" is the sum of the constant terms of the constraints.
1121 * If this sum is strictly smaller than the coefficient of one
1122 * of the divs, then this pair can be used define the div.
1123 * To avoid the introduction of circular definitions of divs, we
1124 * do not use the pair if the resulting expression would refer to
1125 * any other undefined divs or if any known div is defined in
1126 * terms of the unknown div.
1128 static __isl_give isl_basic_map
*check_for_div_constraints(
1129 __isl_take isl_basic_map
*bmap
, int k
, int l
, isl_int sum
,
1133 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1135 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1138 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1140 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1142 set_div
= better_div_constraint(bmap
, i
, k
);
1143 if (set_div
>= 0 && set_div
)
1144 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1146 return isl_basic_map_free(bmap
);
1149 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1150 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1152 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1160 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1161 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1163 struct isl_constraint_index ci
;
1165 unsigned total
= isl_basic_map_total_dim(bmap
);
1168 if (!bmap
|| bmap
->n_ineq
<= 1)
1171 if (create_constraint_index(&ci
, bmap
) < 0)
1174 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1175 ci
.index
[h
] = &bmap
->ineq
[0];
1176 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1177 h
= hash_index(&ci
, bmap
, k
);
1179 ci
.index
[h
] = &bmap
->ineq
[k
];
1184 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1185 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1186 swap_inequality(bmap
, k
, l
);
1187 isl_basic_map_drop_inequality(bmap
, k
);
1191 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1192 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1193 h
= hash_index(&ci
, bmap
, k
);
1194 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1197 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1198 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1199 if (isl_int_is_pos(sum
)) {
1201 bmap
= check_for_div_constraints(bmap
, k
, l
,
1205 if (isl_int_is_zero(sum
)) {
1206 /* We need to break out of the loop after these
1207 * changes since the contents of the hash
1208 * will no longer be valid.
1209 * Plus, we probably we want to regauss first.
1213 isl_basic_map_drop_inequality(bmap
, l
);
1214 isl_basic_map_inequality_to_equality(bmap
, k
);
1216 bmap
= isl_basic_map_set_to_empty(bmap
);
1221 constraint_index_free(&ci
);
1225 /* Detect all pairs of inequalities that form an equality.
1227 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1228 * Call it repeatedly while it is making progress.
1230 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1231 __isl_take isl_basic_map
*bmap
, int *progress
)
1237 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1239 if (progress
&& duplicate
)
1241 } while (duplicate
);
1246 /* Eliminate knowns divs from constraints where they appear with
1247 * a (positive or negative) unit coefficient.
1251 * floor(e/m) + f >= 0
1259 * -floor(e/m) + f >= 0
1263 * -e + m f + m - 1 >= 0
1265 * The first conversion is valid because floor(e/m) >= -f is equivalent
1266 * to e/m >= -f because -f is an integral expression.
1267 * The second conversion follows from the fact that
1269 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1272 * Note that one of the div constraints may have been eliminated
1273 * due to being redundant with respect to the constraint that is
1274 * being modified by this function. The modified constraint may
1275 * no longer imply this div constraint, so we add it back to make
1276 * sure we do not lose any information.
1278 * We skip integral divs, i.e., those with denominator 1, as we would
1279 * risk eliminating the div from the div constraints. We do not need
1280 * to handle those divs here anyway since the div constraints will turn
1281 * out to form an equality and this equality can then be used to eliminate
1282 * the div from all constraints.
1284 static __isl_give isl_basic_map
*eliminate_unit_divs(
1285 __isl_take isl_basic_map
*bmap
, int *progress
)
1294 ctx
= isl_basic_map_get_ctx(bmap
);
1295 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1297 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1298 if (isl_int_is_zero(bmap
->div
[i
][0]))
1300 if (isl_int_is_one(bmap
->div
[i
][0]))
1302 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1305 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1306 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1311 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1312 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1314 isl_seq_combine(bmap
->ineq
[j
],
1315 ctx
->negone
, bmap
->div
[i
] + 1,
1316 bmap
->div
[i
][0], bmap
->ineq
[j
],
1317 total
+ bmap
->n_div
);
1319 isl_seq_combine(bmap
->ineq
[j
],
1320 ctx
->one
, bmap
->div
[i
] + 1,
1321 bmap
->div
[i
][0], bmap
->ineq
[j
],
1322 total
+ bmap
->n_div
);
1324 isl_int_add(bmap
->ineq
[j
][0],
1325 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1326 isl_int_sub_ui(bmap
->ineq
[j
][0],
1327 bmap
->ineq
[j
][0], 1);
1330 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1331 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1332 return isl_basic_map_free(bmap
);
1339 __isl_give isl_basic_map
*isl_basic_map_simplify(__isl_take isl_basic_map
*bmap
)
1348 empty
= isl_basic_map_plain_is_empty(bmap
);
1350 return isl_basic_map_free(bmap
);
1353 bmap
= isl_basic_map_normalize_constraints(bmap
);
1354 bmap
= reduce_div_coefficients(bmap
);
1355 bmap
= normalize_div_expressions(bmap
);
1356 bmap
= remove_duplicate_divs(bmap
, &progress
);
1357 bmap
= eliminate_unit_divs(bmap
, &progress
);
1358 bmap
= eliminate_divs_eq(bmap
, &progress
);
1359 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1360 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1361 /* requires equalities in normal form */
1362 bmap
= normalize_divs(bmap
, &progress
);
1363 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1365 if (bmap
&& progress
)
1366 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1371 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1373 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1377 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1378 isl_int
*constraint
, unsigned div
)
1383 return isl_bool_error
;
1385 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1387 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1389 isl_int_sub(bmap
->div
[div
][1],
1390 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1391 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1392 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1393 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1394 isl_int_add(bmap
->div
[div
][1],
1395 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1397 return isl_bool_false
;
1398 if (isl_seq_first_non_zero(constraint
+pos
+1,
1399 bmap
->n_div
-div
-1) != -1)
1400 return isl_bool_false
;
1401 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1402 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1403 return isl_bool_false
;
1404 if (isl_seq_first_non_zero(constraint
+pos
+1,
1405 bmap
->n_div
-div
-1) != -1)
1406 return isl_bool_false
;
1408 return isl_bool_false
;
1410 return isl_bool_true
;
1413 isl_bool
isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1414 isl_int
*constraint
, unsigned div
)
1416 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1420 /* If the only constraints a div d=floor(f/m)
1421 * appears in are its two defining constraints
1424 * -(f - (m - 1)) + m d >= 0
1426 * then it can safely be removed.
1428 static isl_bool
div_is_redundant(__isl_keep isl_basic_map
*bmap
, int div
)
1431 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1433 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1434 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1435 return isl_bool_false
;
1437 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1440 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1442 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1443 if (red
< 0 || !red
)
1447 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1448 if (isl_int_is_zero(bmap
->div
[i
][0]))
1450 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1451 return isl_bool_false
;
1454 return isl_bool_true
;
1458 * Remove divs that don't occur in any of the constraints or other divs.
1459 * These can arise when dropping constraints from a basic map or
1460 * when the divs of a basic map have been temporarily aligned
1461 * with the divs of another basic map.
1463 static __isl_give isl_basic_map
*remove_redundant_divs(
1464 __isl_take isl_basic_map
*bmap
)
1471 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1474 redundant
= div_is_redundant(bmap
, i
);
1476 return isl_basic_map_free(bmap
);
1479 bmap
= isl_basic_map_drop_div(bmap
, i
);
1484 /* Mark "bmap" as final, without checking for obviously redundant
1485 * integer divisions. This function should be used when "bmap"
1486 * is known not to involve any such integer divisions.
1488 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1489 __isl_take isl_basic_map
*bmap
)
1493 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1497 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1499 __isl_give isl_basic_map
*isl_basic_map_finalize(__isl_take isl_basic_map
*bmap
)
1501 bmap
= remove_redundant_divs(bmap
);
1502 bmap
= isl_basic_map_mark_final(bmap
);
1506 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1508 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1511 /* Remove definition of any div that is defined in terms of the given variable.
1512 * The div itself is not removed. Functions such as
1513 * eliminate_divs_ineq depend on the other divs remaining in place.
1515 static __isl_give isl_basic_map
*remove_dependent_vars(
1516 __isl_take isl_basic_map
*bmap
, int pos
)
1523 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1524 if (isl_int_is_zero(bmap
->div
[i
][0]))
1526 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1528 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1535 /* Eliminate the specified variables from the constraints using
1536 * Fourier-Motzkin. The variables themselves are not removed.
1538 __isl_give isl_basic_map
*isl_basic_map_eliminate_vars(
1539 __isl_take isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1550 total
= isl_basic_map_total_dim(bmap
);
1552 bmap
= isl_basic_map_cow(bmap
);
1553 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1554 bmap
= remove_dependent_vars(bmap
, d
);
1558 for (d
= pos
+ n
- 1;
1559 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1560 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1561 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1562 int n_lower
, n_upper
;
1565 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1566 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1568 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1569 isl_basic_map_drop_equality(bmap
, i
);
1577 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1578 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1580 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1583 bmap
= isl_basic_map_extend_constraints(bmap
,
1584 0, n_lower
* n_upper
);
1587 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1589 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1592 for (j
= 0; j
< i
; ++j
) {
1593 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1596 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1597 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1599 k
= isl_basic_map_alloc_inequality(bmap
);
1602 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1604 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1605 1+d
, 1+total
, NULL
);
1607 isl_basic_map_drop_inequality(bmap
, i
);
1610 if (n_lower
> 0 && n_upper
> 0) {
1611 bmap
= isl_basic_map_normalize_constraints(bmap
);
1612 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1614 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1615 bmap
= isl_basic_map_remove_redundancies(bmap
);
1619 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1623 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1625 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1628 isl_basic_map_free(bmap
);
1632 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1633 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1635 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1639 /* Eliminate the specified n dimensions starting at first from the
1640 * constraints, without removing the dimensions from the space.
1641 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1642 * Otherwise, they are projected out and the original space is restored.
1644 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1645 __isl_take isl_basic_map
*bmap
,
1646 enum isl_dim_type type
, unsigned first
, unsigned n
)
1655 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1656 isl_die(bmap
->ctx
, isl_error_invalid
,
1657 "index out of bounds", goto error
);
1659 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1660 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1661 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1662 return isl_basic_map_finalize(bmap
);
1665 space
= isl_basic_map_get_space(bmap
);
1666 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1667 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1668 bmap
= isl_basic_map_reset_space(bmap
, space
);
1671 isl_basic_map_free(bmap
);
1675 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1676 __isl_take isl_basic_set
*bset
,
1677 enum isl_dim_type type
, unsigned first
, unsigned n
)
1679 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1682 /* Remove all constraints from "bmap" that reference any unknown local
1683 * variables (directly or indirectly).
1685 * Dropping all constraints on a local variable will make it redundant,
1686 * so it will get removed implicitly by
1687 * isl_basic_map_drop_constraints_involving_dims. Some other local
1688 * variables may also end up becoming redundant if they only appear
1689 * in constraints together with the unknown local variable.
1690 * Therefore, start over after calling
1691 * isl_basic_map_drop_constraints_involving_dims.
1693 __isl_give isl_basic_map
*isl_basic_map_drop_constraint_involving_unknown_divs(
1694 __isl_take isl_basic_map
*bmap
)
1697 int i
, n_div
, o_div
;
1699 known
= isl_basic_map_divs_known(bmap
);
1701 return isl_basic_map_free(bmap
);
1705 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1706 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
1708 for (i
= 0; i
< n_div
; ++i
) {
1709 known
= isl_basic_map_div_is_known(bmap
, i
);
1711 return isl_basic_map_free(bmap
);
1714 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
1715 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
1719 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1726 /* Remove all constraints from "map" that reference any unknown local
1727 * variables (directly or indirectly).
1729 * Since constraints may get dropped from the basic maps,
1730 * they may no longer be disjoint from each other.
1732 __isl_give isl_map
*isl_map_drop_constraint_involving_unknown_divs(
1733 __isl_take isl_map
*map
)
1738 known
= isl_map_divs_known(map
);
1740 return isl_map_free(map
);
1744 map
= isl_map_cow(map
);
1748 for (i
= 0; i
< map
->n
; ++i
) {
1750 isl_basic_map_drop_constraint_involving_unknown_divs(
1753 return isl_map_free(map
);
1757 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
1762 /* Don't assume equalities are in order, because align_divs
1763 * may have changed the order of the divs.
1765 static void compute_elimination_index(__isl_keep isl_basic_map
*bmap
, int *elim
)
1770 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1771 for (d
= 0; d
< total
; ++d
)
1773 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1774 for (d
= total
- 1; d
>= 0; --d
) {
1775 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1783 static void set_compute_elimination_index(__isl_keep isl_basic_set
*bset
,
1786 compute_elimination_index(bset_to_bmap(bset
), elim
);
1789 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1790 __isl_keep isl_basic_map
*bmap
, int *elim
)
1796 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1797 for (d
= total
- 1; d
>= 0; --d
) {
1798 if (isl_int_is_zero(src
[1+d
]))
1803 isl_seq_cpy(dst
, src
, 1 + total
);
1806 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1811 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1812 __isl_keep isl_basic_set
*bset
, int *elim
)
1814 return reduced_using_equalities(dst
, src
,
1815 bset_to_bmap(bset
), elim
);
1818 static __isl_give isl_basic_set
*isl_basic_set_reduce_using_equalities(
1819 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
1824 if (!bset
|| !context
)
1827 if (context
->n_eq
== 0) {
1828 isl_basic_set_free(context
);
1832 bset
= isl_basic_set_cow(bset
);
1836 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1839 set_compute_elimination_index(context
, elim
);
1840 for (i
= 0; i
< bset
->n_eq
; ++i
)
1841 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1843 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1844 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1846 isl_basic_set_free(context
);
1848 bset
= isl_basic_set_simplify(bset
);
1849 bset
= isl_basic_set_finalize(bset
);
1852 isl_basic_set_free(bset
);
1853 isl_basic_set_free(context
);
1857 /* For each inequality in "ineq" that is a shifted (more relaxed)
1858 * copy of an inequality in "context", mark the corresponding entry
1860 * If an inequality only has a non-negative constant term, then
1863 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
1864 __isl_keep isl_basic_set
*context
, int *row
)
1866 struct isl_constraint_index ci
;
1871 if (!ineq
|| !context
)
1872 return isl_stat_error
;
1873 if (context
->n_ineq
== 0)
1875 if (setup_constraint_index(&ci
, context
) < 0)
1876 return isl_stat_error
;
1878 n_ineq
= isl_mat_rows(ineq
);
1879 total
= isl_mat_cols(ineq
) - 1;
1880 for (k
= 0; k
< n_ineq
; ++k
) {
1884 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
1885 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
1889 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
1896 constraint_index_free(&ci
);
1899 constraint_index_free(&ci
);
1900 return isl_stat_error
;
1903 static __isl_give isl_basic_set
*remove_shifted_constraints(
1904 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*context
)
1906 struct isl_constraint_index ci
;
1909 if (!bset
|| !context
)
1912 if (context
->n_ineq
== 0)
1914 if (setup_constraint_index(&ci
, context
) < 0)
1917 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1920 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
1925 bset
= isl_basic_set_cow(bset
);
1928 isl_basic_set_drop_inequality(bset
, k
);
1931 constraint_index_free(&ci
);
1934 constraint_index_free(&ci
);
1938 /* Remove constraints from "bmap" that are identical to constraints
1939 * in "context" or that are more relaxed (greater constant term).
1941 * We perform the test for shifted copies on the pure constraints
1942 * in remove_shifted_constraints.
1944 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
1945 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
1947 isl_basic_set
*bset
, *bset_context
;
1949 if (!bmap
|| !context
)
1952 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
1953 isl_basic_map_free(context
);
1957 context
= isl_basic_map_align_divs(context
, bmap
);
1958 bmap
= isl_basic_map_align_divs(bmap
, context
);
1960 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1961 bset_context
= isl_basic_map_underlying_set(context
);
1962 bset
= remove_shifted_constraints(bset
, bset_context
);
1963 isl_basic_set_free(bset_context
);
1965 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
1969 isl_basic_map_free(bmap
);
1970 isl_basic_map_free(context
);
1974 /* Does the (linear part of a) constraint "c" involve any of the "len"
1975 * "relevant" dimensions?
1977 static int is_related(isl_int
*c
, int len
, int *relevant
)
1981 for (i
= 0; i
< len
; ++i
) {
1984 if (!isl_int_is_zero(c
[i
]))
1991 /* Drop constraints from "bmap" that do not involve any of
1992 * the dimensions marked "relevant".
1994 static __isl_give isl_basic_map
*drop_unrelated_constraints(
1995 __isl_take isl_basic_map
*bmap
, int *relevant
)
1999 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2000 for (i
= 0; i
< dim
; ++i
)
2006 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2007 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2008 bmap
= isl_basic_map_cow(bmap
);
2009 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2010 return isl_basic_map_free(bmap
);
2013 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2014 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2015 bmap
= isl_basic_map_cow(bmap
);
2016 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2017 return isl_basic_map_free(bmap
);
2023 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2025 * In particular, for any variable involved in the constraint,
2026 * find the actual group id from before and replace the group
2027 * of the corresponding variable by the minimal group of all
2028 * the variables involved in the constraint considered so far
2029 * (if this minimum is smaller) or replace the minimum by this group
2030 * (if the minimum is larger).
2032 * At the end, all the variables in "c" will (indirectly) point
2033 * to the minimal of the groups that they referred to originally.
2035 static void update_groups(int dim
, int *group
, isl_int
*c
)
2040 for (j
= 0; j
< dim
; ++j
) {
2041 if (isl_int_is_zero(c
[j
]))
2043 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2044 group
[j
] = group
[group
[j
]];
2045 if (group
[j
] == min
)
2047 if (group
[j
] < min
) {
2048 if (min
>= 0 && min
< dim
)
2049 group
[min
] = group
[j
];
2052 group
[group
[j
]] = min
;
2056 /* Allocate an array of groups of variables, one for each variable
2057 * in "context", initialized to zero.
2059 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2064 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2065 ctx
= isl_basic_set_get_ctx(context
);
2066 return isl_calloc_array(ctx
, int, dim
);
2069 /* Drop constraints from "bmap" that only involve variables that are
2070 * not related to any of the variables marked with a "-1" in "group".
2072 * We construct groups of variables that collect variables that
2073 * (indirectly) appear in some common constraint of "bmap".
2074 * Each group is identified by the first variable in the group,
2075 * except for the special group of variables that was already identified
2076 * in the input as -1 (or are related to those variables).
2077 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2078 * otherwise the group of i is the group of group[i].
2080 * We first initialize groups for the remaining variables.
2081 * Then we iterate over the constraints of "bmap" and update the
2082 * group of the variables in the constraint by the smallest group.
2083 * Finally, we resolve indirect references to groups by running over
2086 * After computing the groups, we drop constraints that do not involve
2087 * any variables in the -1 group.
2089 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2090 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2099 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2102 for (i
= 0; i
< dim
; ++i
)
2104 last
= group
[i
] = i
;
2110 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2111 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2112 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2113 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2115 for (i
= 0; i
< dim
; ++i
)
2117 group
[i
] = group
[group
[i
]];
2119 for (i
= 0; i
< dim
; ++i
)
2120 group
[i
] = group
[i
] == -1;
2122 bmap
= drop_unrelated_constraints(bmap
, group
);
2128 /* Drop constraints from "context" that are irrelevant for computing
2129 * the gist of "bset".
2131 * In particular, drop constraints in variables that are not related
2132 * to any of the variables involved in the constraints of "bset"
2133 * in the sense that there is no sequence of constraints that connects them.
2135 * We first mark all variables that appear in "bset" as belonging
2136 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2138 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2139 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2145 if (!context
|| !bset
)
2146 return isl_basic_set_free(context
);
2148 group
= alloc_groups(context
);
2151 return isl_basic_set_free(context
);
2153 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2154 for (i
= 0; i
< dim
; ++i
) {
2155 for (j
= 0; j
< bset
->n_eq
; ++j
)
2156 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2158 if (j
< bset
->n_eq
) {
2162 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2163 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2165 if (j
< bset
->n_ineq
)
2169 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2172 /* Drop constraints from "context" that are irrelevant for computing
2173 * the gist of the inequalities "ineq".
2174 * Inequalities in "ineq" for which the corresponding element of row
2175 * is set to -1 have already been marked for removal and should be ignored.
2177 * In particular, drop constraints in variables that are not related
2178 * to any of the variables involved in "ineq"
2179 * in the sense that there is no sequence of constraints that connects them.
2181 * We first mark all variables that appear in "bset" as belonging
2182 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2184 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2185 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2191 if (!context
|| !ineq
)
2192 return isl_basic_set_free(context
);
2194 group
= alloc_groups(context
);
2197 return isl_basic_set_free(context
);
2199 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2200 n
= isl_mat_rows(ineq
);
2201 for (i
= 0; i
< dim
; ++i
) {
2202 for (j
= 0; j
< n
; ++j
) {
2205 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2212 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2215 /* Do all "n" entries of "row" contain a negative value?
2217 static int all_neg(int *row
, int n
)
2221 for (i
= 0; i
< n
; ++i
)
2228 /* Update the inequalities in "bset" based on the information in "row"
2231 * In particular, the array "row" contains either -1, meaning that
2232 * the corresponding inequality of "bset" is redundant, or the index
2233 * of an inequality in "tab".
2235 * If the row entry is -1, then drop the inequality.
2236 * Otherwise, if the constraint is marked redundant in the tableau,
2237 * then drop the inequality. Similarly, if it is marked as an equality
2238 * in the tableau, then turn the inequality into an equality and
2239 * perform Gaussian elimination.
2241 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2242 __isl_keep
int *row
, struct isl_tab
*tab
)
2247 int found_equality
= 0;
2251 if (tab
&& tab
->empty
)
2252 return isl_basic_set_set_to_empty(bset
);
2254 n_ineq
= bset
->n_ineq
;
2255 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2257 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2258 return isl_basic_set_free(bset
);
2264 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2265 isl_basic_map_inequality_to_equality(bset
, i
);
2267 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2268 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2269 return isl_basic_set_free(bset
);
2274 bset
= isl_basic_set_gauss(bset
, NULL
);
2275 bset
= isl_basic_set_finalize(bset
);
2279 /* Update the inequalities in "bset" based on the information in "row"
2280 * and "tab" and free all arguments (other than "bset").
2282 static __isl_give isl_basic_set
*update_ineq_free(
2283 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2284 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2285 struct isl_tab
*tab
)
2288 isl_basic_set_free(context
);
2290 bset
= update_ineq(bset
, row
, tab
);
2297 /* Remove all information from bset that is redundant in the context
2299 * "ineq" contains the (possibly transformed) inequalities of "bset",
2300 * in the same order.
2301 * The (explicit) equalities of "bset" are assumed to have been taken
2302 * into account by the transformation such that only the inequalities
2304 * "context" is assumed not to be empty.
2306 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2307 * A value of -1 means that the inequality is obviously redundant and may
2308 * not even appear in "tab".
2310 * We first mark the inequalities of "bset"
2311 * that are obviously redundant with respect to some inequality in "context".
2312 * Then we remove those constraints from "context" that have become
2313 * irrelevant for computing the gist of "bset".
2314 * Note that this removal of constraints cannot be replaced by
2315 * a factorization because factors in "bset" may still be connected
2316 * to each other through constraints in "context".
2318 * If there are any inequalities left, we construct a tableau for
2319 * the context and then add the inequalities of "bset".
2320 * Before adding these inequalities, we freeze all constraints such that
2321 * they won't be considered redundant in terms of the constraints of "bset".
2322 * Then we detect all redundant constraints (among the
2323 * constraints that weren't frozen), first by checking for redundancy in the
2324 * the tableau and then by checking if replacing a constraint by its negation
2325 * would lead to an empty set. This last step is fairly expensive
2326 * and could be optimized by more reuse of the tableau.
2327 * Finally, we update bset according to the results.
2329 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2330 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2335 isl_basic_set
*combined
= NULL
;
2336 struct isl_tab
*tab
= NULL
;
2337 unsigned n_eq
, context_ineq
;
2339 if (!bset
|| !ineq
|| !context
)
2342 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2343 isl_basic_set_free(context
);
2348 ctx
= isl_basic_set_get_ctx(context
);
2349 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2353 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2355 if (all_neg(row
, bset
->n_ineq
))
2356 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2358 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2361 if (isl_basic_set_plain_is_universe(context
))
2362 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2364 n_eq
= context
->n_eq
;
2365 context_ineq
= context
->n_ineq
;
2366 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2367 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2368 tab
= isl_tab_from_basic_set(combined
, 0);
2369 for (i
= 0; i
< context_ineq
; ++i
)
2370 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2372 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2375 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2378 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2379 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2383 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2385 if (isl_tab_detect_redundant(tab
) < 0)
2387 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2388 isl_basic_set
*test
;
2394 if (tab
->con
[n_eq
+ r
].is_redundant
)
2396 test
= isl_basic_set_dup(combined
);
2397 if (isl_inequality_negate(test
, r
) < 0)
2398 test
= isl_basic_set_free(test
);
2399 test
= isl_basic_set_update_from_tab(test
, tab
);
2400 is_empty
= isl_basic_set_is_empty(test
);
2401 isl_basic_set_free(test
);
2405 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2407 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2409 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2410 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2413 isl_basic_set_free(combined
);
2419 isl_basic_set_free(combined
);
2420 isl_basic_set_free(context
);
2421 isl_basic_set_free(bset
);
2425 /* Extract the inequalities of "bset" as an isl_mat.
2427 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2436 ctx
= isl_basic_set_get_ctx(bset
);
2437 total
= isl_basic_set_total_dim(bset
);
2438 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2444 /* Remove all information from "bset" that is redundant in the context
2445 * of "context", for the case where both "bset" and "context" are
2448 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2449 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2453 ineq
= extract_ineq(bset
);
2454 return uset_gist_full(bset
, ineq
, context
);
2457 /* Remove all information from "bset" that is redundant in the context
2458 * of "context", for the case where the combined equalities of
2459 * "bset" and "context" allow for a compression that can be obtained
2460 * by preapplication of "T".
2462 * "bset" itself is not transformed by "T". Instead, the inequalities
2463 * are extracted from "bset" and those are transformed by "T".
2464 * uset_gist_full then determines which of the transformed inequalities
2465 * are redundant with respect to the transformed "context" and removes
2466 * the corresponding inequalities from "bset".
2468 * After preapplying "T" to the inequalities, any common factor is
2469 * removed from the coefficients. If this results in a tightening
2470 * of the constant term, then the same tightening is applied to
2471 * the corresponding untransformed inequality in "bset".
2472 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2476 * with 0 <= r < g, then it is equivalent to
2480 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2481 * subspace compressed by T since the latter would be transformed to
2485 static __isl_give isl_basic_set
*uset_gist_compressed(
2486 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2487 __isl_take isl_mat
*T
)
2491 int i
, n_row
, n_col
;
2494 ineq
= extract_ineq(bset
);
2495 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2496 context
= isl_basic_set_preimage(context
, T
);
2498 if (!ineq
|| !context
)
2500 if (isl_basic_set_plain_is_empty(context
)) {
2502 isl_basic_set_free(context
);
2503 return isl_basic_set_set_to_empty(bset
);
2506 ctx
= isl_mat_get_ctx(ineq
);
2507 n_row
= isl_mat_rows(ineq
);
2508 n_col
= isl_mat_cols(ineq
);
2510 for (i
= 0; i
< n_row
; ++i
) {
2511 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2512 if (isl_int_is_zero(ctx
->normalize_gcd
))
2514 if (isl_int_is_one(ctx
->normalize_gcd
))
2516 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2517 ctx
->normalize_gcd
, n_col
- 1);
2518 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2519 isl_int_fdiv_q(ineq
->row
[i
][0],
2520 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2521 if (isl_int_is_zero(rem
))
2523 bset
= isl_basic_set_cow(bset
);
2526 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2530 return uset_gist_full(bset
, ineq
, context
);
2533 isl_basic_set_free(context
);
2534 isl_basic_set_free(bset
);
2538 /* Project "bset" onto the variables that are involved in "template".
2540 static __isl_give isl_basic_set
*project_onto_involved(
2541 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2545 if (!bset
|| !template)
2546 return isl_basic_set_free(bset
);
2548 n
= isl_basic_set_dim(template, isl_dim_set
);
2550 for (i
= 0; i
< n
; ++i
) {
2553 involved
= isl_basic_set_involves_dims(template,
2556 return isl_basic_set_free(bset
);
2559 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2565 /* Remove all information from bset that is redundant in the context
2566 * of context. In particular, equalities that are linear combinations
2567 * of those in context are removed. Then the inequalities that are
2568 * redundant in the context of the equalities and inequalities of
2569 * context are removed.
2571 * First of all, we drop those constraints from "context"
2572 * that are irrelevant for computing the gist of "bset".
2573 * Alternatively, we could factorize the intersection of "context" and "bset".
2575 * We first compute the intersection of the integer affine hulls
2576 * of "bset" and "context",
2577 * compute the gist inside this intersection and then reduce
2578 * the constraints with respect to the equalities of the context
2579 * that only involve variables already involved in the input.
2581 * If two constraints are mutually redundant, then uset_gist_full
2582 * will remove the second of those constraints. We therefore first
2583 * sort the constraints so that constraints not involving existentially
2584 * quantified variables are given precedence over those that do.
2585 * We have to perform this sorting before the variable compression,
2586 * because that may effect the order of the variables.
2588 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2589 __isl_take isl_basic_set
*context
)
2594 isl_basic_set
*aff_context
;
2597 if (!bset
|| !context
)
2600 context
= drop_irrelevant_constraints(context
, bset
);
2602 bset
= isl_basic_set_detect_equalities(bset
);
2603 aff
= isl_basic_set_copy(bset
);
2604 aff
= isl_basic_set_plain_affine_hull(aff
);
2605 context
= isl_basic_set_detect_equalities(context
);
2606 aff_context
= isl_basic_set_copy(context
);
2607 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2608 aff
= isl_basic_set_intersect(aff
, aff_context
);
2611 if (isl_basic_set_plain_is_empty(aff
)) {
2612 isl_basic_set_free(bset
);
2613 isl_basic_set_free(context
);
2616 bset
= isl_basic_set_sort_constraints(bset
);
2617 if (aff
->n_eq
== 0) {
2618 isl_basic_set_free(aff
);
2619 return uset_gist_uncompressed(bset
, context
);
2621 total
= isl_basic_set_total_dim(bset
);
2622 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2623 eq
= isl_mat_cow(eq
);
2624 T
= isl_mat_variable_compression(eq
, NULL
);
2625 isl_basic_set_free(aff
);
2626 if (T
&& T
->n_col
== 0) {
2628 isl_basic_set_free(context
);
2629 return isl_basic_set_set_to_empty(bset
);
2632 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2633 aff_context
= project_onto_involved(aff_context
, bset
);
2635 bset
= uset_gist_compressed(bset
, context
, T
);
2636 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2639 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2640 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2645 isl_basic_set_free(bset
);
2646 isl_basic_set_free(context
);
2650 /* Return the number of equality constraints in "bmap" that involve
2651 * local variables. This function assumes that Gaussian elimination
2652 * has been applied to the equality constraints.
2654 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2662 if (bmap
->n_eq
== 0)
2665 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2666 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2669 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2670 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2677 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2678 * The constraints are assumed not to involve any local variables.
2680 static __isl_give isl_basic_map
*basic_map_from_equalities(
2681 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2684 isl_basic_map
*bmap
= NULL
;
2689 if (1 + isl_space_dim(space
, isl_dim_all
) != eq
->n_col
)
2690 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
2691 "unexpected number of columns", goto error
);
2693 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
2695 for (i
= 0; i
< eq
->n_row
; ++i
) {
2696 k
= isl_basic_map_alloc_equality(bmap
);
2699 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
2702 isl_space_free(space
);
2706 isl_space_free(space
);
2708 isl_basic_map_free(bmap
);
2712 /* Construct and return a variable compression based on the equality
2713 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2714 * "n1" is the number of (initial) equality constraints in "bmap1"
2715 * that do involve local variables.
2716 * "n2" is the number of (initial) equality constraints in "bmap2"
2717 * that do involve local variables.
2718 * "total" is the total number of other variables.
2719 * This function assumes that Gaussian elimination
2720 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2721 * such that the equality constraints not involving local variables
2722 * are those that start at "n1" or "n2".
2724 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2725 * then simply compute the compression based on the equality constraints
2726 * in the other basic map.
2727 * Otherwise, combine the equality constraints from both into a new
2728 * basic map such that Gaussian elimination can be applied to this combination
2729 * and then construct a variable compression from the resulting
2730 * equality constraints.
2732 static __isl_give isl_mat
*combined_variable_compression(
2733 __isl_keep isl_basic_map
*bmap1
, int n1
,
2734 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
2737 isl_mat
*E1
, *E2
, *V
;
2738 isl_basic_map
*bmap
;
2740 ctx
= isl_basic_map_get_ctx(bmap1
);
2741 if (bmap1
->n_eq
== n1
) {
2742 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2743 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2744 return isl_mat_variable_compression(E2
, NULL
);
2746 if (bmap2
->n_eq
== n2
) {
2747 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2748 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2749 return isl_mat_variable_compression(E1
, NULL
);
2751 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2752 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2753 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2754 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2755 E1
= isl_mat_concat(E1
, E2
);
2756 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
2757 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2760 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
2761 V
= isl_mat_variable_compression(E1
, NULL
);
2762 isl_basic_map_free(bmap
);
2767 /* Extract the stride constraints from "bmap", compressed
2768 * with respect to both the stride constraints in "context" and
2769 * the remaining equality constraints in both "bmap" and "context".
2770 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2771 * "context_n_eq" is the number of (initial) stride constraints in "context".
2773 * Let x be all variables in "bmap" (and "context") other than the local
2774 * variables. First compute a variable compression
2778 * based on the non-stride equality constraints in "bmap" and "context".
2779 * Consider the stride constraints of "context",
2783 * with y the local variables and plug in the variable compression,
2786 * A(V x') + B(y) = 0
2788 * Use these constraints to compute a parameter compression on x'
2792 * Now consider the stride constraints of "bmap"
2796 * and plug in x = V*T x''.
2797 * That is, return A = [C*V*T D].
2799 static __isl_give isl_mat
*extract_compressed_stride_constraints(
2800 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
2801 __isl_keep isl_basic_map
*context
, int context_n_eq
)
2805 isl_mat
*A
, *B
, *T
, *V
;
2807 total
= isl_basic_map_dim(context
, isl_dim_all
);
2808 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
2811 ctx
= isl_basic_map_get_ctx(bmap
);
2813 V
= combined_variable_compression(bmap
, bmap_n_eq
,
2814 context
, context_n_eq
, total
);
2816 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
2817 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
2818 0, context_n_eq
, 1 + total
, n_div
);
2819 A
= isl_mat_product(A
, isl_mat_copy(V
));
2820 T
= isl_mat_parameter_compression_ext(A
, B
);
2821 T
= isl_mat_product(V
, T
);
2823 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2824 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
2826 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
2827 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
2828 A
= isl_mat_product(A
, T
);
2833 /* Remove the prime factors from *g that have an exponent that
2834 * is strictly smaller than the exponent in "c".
2835 * All exponents in *g are known to be smaller than or equal
2838 * That is, if *g is equal to
2840 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
2842 * and "c" is equal to
2844 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
2848 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
2849 * p_n^{e_n * (e_n = f_n)}
2851 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
2852 * neither does the gcd of *g and c / *g.
2853 * If e_i < f_i, then the gcd of *g and c / *g has a positive
2854 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
2855 * Dividing *g by this gcd therefore strictly reduces the exponent
2856 * of the prime factors that need to be removed, while leaving the
2857 * other prime factors untouched.
2858 * Repeating this process until gcd(*g, c / *g) = 1 therefore
2859 * removes all undesired factors, without removing any others.
2861 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
2867 isl_int_divexact(t
, c
, *g
);
2868 isl_int_gcd(t
, t
, *g
);
2869 if (isl_int_is_one(t
))
2871 isl_int_divexact(*g
, *g
, t
);
2876 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
2877 * of the same stride constraints in a compressed space that exploits
2878 * all equalities in the context and the other equalities in "bmap".
2880 * If the stride constraints of "bmap" are of the form
2884 * then A is of the form
2888 * If any of these constraints involves only a single local variable y,
2889 * then the constraint appears as
2899 * Let g be the gcd of m and the coefficients of h.
2900 * Then, in particular, g is a divisor of the coefficients of h and
2904 * is known to be a multiple of g.
2905 * If some prime factor in m appears with the same exponent in g,
2906 * then it can be removed from m because f(x) is already known
2907 * to be a multiple of g and therefore in particular of this power
2908 * of the prime factors.
2909 * Prime factors that appear with a smaller exponent in g cannot
2910 * be removed from m.
2911 * Let g' be the divisor of g containing all prime factors that
2912 * appear with the same exponent in m and g, then
2916 * can be replaced by
2918 * f(x) + m/g' y_i' = 0
2920 * Note that (if g' != 1) this changes the explicit representation
2921 * of y_i to that of y_i', so the integer division at position i
2922 * is marked unknown and later recomputed by a call to
2923 * isl_basic_map_gauss.
2925 static __isl_give isl_basic_map
*reduce_stride_constraints(
2926 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
2934 return isl_basic_map_free(bmap
);
2936 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2937 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2941 for (i
= 0; i
< n
; ++i
) {
2944 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
2946 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
2947 "equality constraints modified unexpectedly",
2949 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
2950 n_div
- div
- 1) != -1)
2952 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
2954 if (isl_int_is_one(gcd
))
2956 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
2957 if (isl_int_is_one(gcd
))
2959 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
2960 bmap
->eq
[i
][1 + total
+ div
], gcd
);
2961 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
2969 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2974 isl_basic_map_free(bmap
);
2978 /* Simplify the stride constraints in "bmap" based on
2979 * the remaining equality constraints in "bmap" and all equality
2980 * constraints in "context".
2981 * Only do this if both "bmap" and "context" have stride constraints.
2983 * First extract a copy of the stride constraints in "bmap" in a compressed
2984 * space exploiting all the other equality constraints and then
2985 * use this compressed copy to simplify the original stride constraints.
2987 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
2988 __isl_keep isl_basic_map
*context
)
2990 int bmap_n_eq
, context_n_eq
;
2993 if (!bmap
|| !context
)
2994 return isl_basic_map_free(bmap
);
2996 bmap_n_eq
= n_div_eq(bmap
);
2997 context_n_eq
= n_div_eq(context
);
2999 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3000 return isl_basic_map_free(bmap
);
3001 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3004 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3005 context
, context_n_eq
);
3006 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3013 /* Return a basic map that has the same intersection with "context" as "bmap"
3014 * and that is as "simple" as possible.
3016 * The core computation is performed on the pure constraints.
3017 * When we add back the meaning of the integer divisions, we need
3018 * to (re)introduce the div constraints. If we happen to have
3019 * discovered that some of these integer divisions are equal to
3020 * some affine combination of other variables, then these div
3021 * constraints may end up getting simplified in terms of the equalities,
3022 * resulting in extra inequalities on the other variables that
3023 * may have been removed already or that may not even have been
3024 * part of the input. We try and remove those constraints of
3025 * this form that are most obviously redundant with respect to
3026 * the context. We also remove those div constraints that are
3027 * redundant with respect to the other constraints in the result.
3029 * The stride constraints among the equality constraints in "bmap" are
3030 * also simplified with respecting to the other equality constraints
3031 * in "bmap" and with respect to all equality constraints in "context".
3033 __isl_give isl_basic_map
*isl_basic_map_gist(__isl_take isl_basic_map
*bmap
,
3034 __isl_take isl_basic_map
*context
)
3036 isl_basic_set
*bset
, *eq
;
3037 isl_basic_map
*eq_bmap
;
3038 unsigned total
, n_div
, extra
, n_eq
, n_ineq
;
3040 if (!bmap
|| !context
)
3043 if (isl_basic_map_plain_is_universe(bmap
)) {
3044 isl_basic_map_free(context
);
3047 if (isl_basic_map_plain_is_empty(context
)) {
3048 isl_space
*space
= isl_basic_map_get_space(bmap
);
3049 isl_basic_map_free(bmap
);
3050 isl_basic_map_free(context
);
3051 return isl_basic_map_universe(space
);
3053 if (isl_basic_map_plain_is_empty(bmap
)) {
3054 isl_basic_map_free(context
);
3058 bmap
= isl_basic_map_remove_redundancies(bmap
);
3059 context
= isl_basic_map_remove_redundancies(context
);
3063 context
= isl_basic_map_align_divs(context
, bmap
);
3064 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3065 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3066 extra
= n_div
- isl_basic_map_dim(bmap
, isl_dim_div
);
3068 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3069 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3070 bset
= uset_gist(bset
,
3071 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3072 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3074 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3075 isl_basic_set_plain_is_empty(bset
)) {
3076 isl_basic_map_free(context
);
3077 return isl_basic_map_overlying_set(bset
, bmap
);
3081 n_ineq
= bset
->n_ineq
;
3082 eq
= isl_basic_set_copy(bset
);
3083 eq
= isl_basic_set_cow(eq
);
3084 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
3085 eq
= isl_basic_set_free(eq
);
3086 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
3087 bset
= isl_basic_set_free(bset
);
3089 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3090 eq_bmap
= gist_strides(eq_bmap
, context
);
3091 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3092 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3093 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3094 bmap
= isl_basic_map_remove_redundancies(bmap
);
3098 isl_basic_map_free(bmap
);
3099 isl_basic_map_free(context
);
3104 * Assumes context has no implicit divs.
3106 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3107 __isl_take isl_basic_map
*context
)
3111 if (!map
|| !context
)
3114 if (isl_basic_map_plain_is_empty(context
)) {
3115 isl_space
*space
= isl_map_get_space(map
);
3117 isl_basic_map_free(context
);
3118 return isl_map_universe(space
);
3121 context
= isl_basic_map_remove_redundancies(context
);
3122 map
= isl_map_cow(map
);
3123 if (!map
|| !context
)
3125 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
3126 map
= isl_map_compute_divs(map
);
3129 for (i
= map
->n
- 1; i
>= 0; --i
) {
3130 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3131 isl_basic_map_copy(context
));
3134 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3135 isl_basic_map_free(map
->p
[i
]);
3136 if (i
!= map
->n
- 1)
3137 map
->p
[i
] = map
->p
[map
->n
- 1];
3141 isl_basic_map_free(context
);
3142 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3146 isl_basic_map_free(context
);
3150 /* Drop all inequalities from "bmap" that also appear in "context".
3151 * "context" is assumed to have only known local variables and
3152 * the initial local variables of "bmap" are assumed to be the same
3153 * as those of "context".
3154 * The constraints of both "bmap" and "context" are assumed
3155 * to have been sorted using isl_basic_map_sort_constraints.
3157 * Run through the inequality constraints of "bmap" and "context"
3159 * If a constraint of "bmap" involves variables not in "context",
3160 * then it cannot appear in "context".
3161 * If a matching constraint is found, it is removed from "bmap".
3163 static __isl_give isl_basic_map
*drop_inequalities(
3164 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3167 unsigned total
, extra
;
3169 if (!bmap
|| !context
)
3170 return isl_basic_map_free(bmap
);
3172 total
= isl_basic_map_total_dim(context
);
3173 extra
= isl_basic_map_total_dim(bmap
) - total
;
3175 i1
= bmap
->n_ineq
- 1;
3176 i2
= context
->n_ineq
- 1;
3177 while (bmap
&& i1
>= 0 && i2
>= 0) {
3180 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3185 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3195 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3196 bmap
= isl_basic_map_cow(bmap
);
3197 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3198 bmap
= isl_basic_map_free(bmap
);
3207 /* Drop all equalities from "bmap" that also appear in "context".
3208 * "context" is assumed to have only known local variables and
3209 * the initial local variables of "bmap" are assumed to be the same
3210 * as those of "context".
3212 * Run through the equality constraints of "bmap" and "context"
3214 * If a constraint of "bmap" involves variables not in "context",
3215 * then it cannot appear in "context".
3216 * If a matching constraint is found, it is removed from "bmap".
3218 static __isl_give isl_basic_map
*drop_equalities(
3219 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3222 unsigned total
, extra
;
3224 if (!bmap
|| !context
)
3225 return isl_basic_map_free(bmap
);
3227 total
= isl_basic_map_total_dim(context
);
3228 extra
= isl_basic_map_total_dim(bmap
) - total
;
3230 i1
= bmap
->n_eq
- 1;
3231 i2
= context
->n_eq
- 1;
3233 while (bmap
&& i1
>= 0 && i2
>= 0) {
3236 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3239 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3240 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3241 if (last1
> last2
) {
3245 if (last1
< last2
) {
3249 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3250 bmap
= isl_basic_map_cow(bmap
);
3251 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3252 bmap
= isl_basic_map_free(bmap
);
3261 /* Remove the constraints in "context" from "bmap".
3262 * "context" is assumed to have explicit representations
3263 * for all local variables.
3265 * First align the divs of "bmap" to those of "context" and
3266 * sort the constraints. Then drop all constraints from "bmap"
3267 * that appear in "context".
3269 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3270 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3272 isl_bool done
, known
;
3274 done
= isl_basic_map_plain_is_universe(context
);
3275 if (done
== isl_bool_false
)
3276 done
= isl_basic_map_plain_is_universe(bmap
);
3277 if (done
== isl_bool_false
)
3278 done
= isl_basic_map_plain_is_empty(context
);
3279 if (done
== isl_bool_false
)
3280 done
= isl_basic_map_plain_is_empty(bmap
);
3284 isl_basic_map_free(context
);
3287 known
= isl_basic_map_divs_known(context
);
3291 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3292 "context has unknown divs", goto error
);
3294 bmap
= isl_basic_map_align_divs(bmap
, context
);
3295 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3296 bmap
= isl_basic_map_sort_constraints(bmap
);
3297 context
= isl_basic_map_sort_constraints(context
);
3299 bmap
= drop_inequalities(bmap
, context
);
3300 bmap
= drop_equalities(bmap
, context
);
3302 isl_basic_map_free(context
);
3303 bmap
= isl_basic_map_finalize(bmap
);
3306 isl_basic_map_free(bmap
);
3307 isl_basic_map_free(context
);
3311 /* Replace "map" by the disjunct at position "pos" and free "context".
3313 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3314 int pos
, __isl_take isl_basic_map
*context
)
3316 isl_basic_map
*bmap
;
3318 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3320 isl_basic_map_free(context
);
3321 return isl_map_from_basic_map(bmap
);
3324 /* Remove the constraints in "context" from "map".
3325 * If any of the disjuncts in the result turns out to be the universe,
3326 * then return this universe.
3327 * "context" is assumed to have explicit representations
3328 * for all local variables.
3330 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3331 __isl_take isl_basic_map
*context
)
3334 isl_bool univ
, known
;
3336 univ
= isl_basic_map_plain_is_universe(context
);
3340 isl_basic_map_free(context
);
3343 known
= isl_basic_map_divs_known(context
);
3347 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3348 "context has unknown divs", goto error
);
3350 map
= isl_map_cow(map
);
3353 for (i
= 0; i
< map
->n
; ++i
) {
3354 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3355 isl_basic_map_copy(context
));
3356 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3359 if (univ
&& map
->n
> 1)
3360 return replace_by_disjunct(map
, i
, context
);
3363 isl_basic_map_free(context
);
3364 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3366 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3370 isl_basic_map_free(context
);
3374 /* Remove the constraints in "context" from "set".
3375 * If any of the disjuncts in the result turns out to be the universe,
3376 * then return this universe.
3377 * "context" is assumed to have explicit representations
3378 * for all local variables.
3380 __isl_give isl_set
*isl_set_plain_gist_basic_set(__isl_take isl_set
*set
,
3381 __isl_take isl_basic_set
*context
)
3383 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set
),
3384 bset_to_bmap(context
)));
3387 /* Remove the constraints in "context" from "map".
3388 * If any of the disjuncts in the result turns out to be the universe,
3389 * then return this universe.
3390 * "context" is assumed to consist of a single disjunct and
3391 * to have explicit representations for all local variables.
3393 __isl_give isl_map
*isl_map_plain_gist(__isl_take isl_map
*map
,
3394 __isl_take isl_map
*context
)
3396 isl_basic_map
*hull
;
3398 hull
= isl_map_unshifted_simple_hull(context
);
3399 return isl_map_plain_gist_basic_map(map
, hull
);
3402 /* Replace "map" by a universe map in the same space and free "drop".
3404 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3405 __isl_take isl_map
*drop
)
3409 res
= isl_map_universe(isl_map_get_space(map
));
3415 /* Return a map that has the same intersection with "context" as "map"
3416 * and that is as "simple" as possible.
3418 * If "map" is already the universe, then we cannot make it any simpler.
3419 * Similarly, if "context" is the universe, then we cannot exploit it
3421 * If "map" and "context" are identical to each other, then we can
3422 * return the corresponding universe.
3424 * If either "map" or "context" consists of multiple disjuncts,
3425 * then check if "context" happens to be a subset of "map",
3426 * in which case all constraints can be removed.
3427 * In case of multiple disjuncts, the standard procedure
3428 * may not be able to detect that all constraints can be removed.
3430 * If none of these cases apply, we have to work a bit harder.
3431 * During this computation, we make use of a single disjunct context,
3432 * so if the original context consists of more than one disjunct
3433 * then we need to approximate the context by a single disjunct set.
3434 * Simply taking the simple hull may drop constraints that are
3435 * only implicitly available in each disjunct. We therefore also
3436 * look for constraints among those defining "map" that are valid
3437 * for the context. These can then be used to simplify away
3438 * the corresponding constraints in "map".
3440 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
3441 __isl_take isl_map
*context
)
3445 int single_disjunct_map
, single_disjunct_context
;
3447 isl_basic_map
*hull
;
3449 is_universe
= isl_map_plain_is_universe(map
);
3450 if (is_universe
>= 0 && !is_universe
)
3451 is_universe
= isl_map_plain_is_universe(context
);
3452 if (is_universe
< 0)
3455 isl_map_free(context
);
3459 equal
= isl_map_plain_is_equal(map
, context
);
3463 return replace_by_universe(map
, context
);
3465 single_disjunct_map
= isl_map_n_basic_map(map
) == 1;
3466 single_disjunct_context
= isl_map_n_basic_map(context
) == 1;
3467 if (!single_disjunct_map
|| !single_disjunct_context
) {
3468 subset
= isl_map_is_subset(context
, map
);
3472 return replace_by_universe(map
, context
);
3475 context
= isl_map_compute_divs(context
);
3478 if (single_disjunct_context
) {
3479 hull
= isl_map_simple_hull(context
);
3484 ctx
= isl_map_get_ctx(map
);
3485 list
= isl_map_list_alloc(ctx
, 2);
3486 list
= isl_map_list_add(list
, isl_map_copy(context
));
3487 list
= isl_map_list_add(list
, isl_map_copy(map
));
3488 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3491 return isl_map_gist_basic_map(map
, hull
);
3494 isl_map_free(context
);
3498 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3499 __isl_take isl_map
*context
)
3501 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
3504 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
3505 struct isl_basic_set
*context
)
3507 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3508 bset_to_bmap(context
)));
3511 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3512 __isl_take isl_basic_set
*context
)
3514 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3515 bset_to_bmap(context
)));
3518 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3519 __isl_take isl_basic_set
*context
)
3521 isl_space
*space
= isl_set_get_space(set
);
3522 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3523 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3524 return isl_set_gist_basic_set(set
, dom_context
);
3527 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3528 __isl_take isl_set
*context
)
3530 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3533 /* Compute the gist of "bmap" with respect to the constraints "context"
3536 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3537 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3539 isl_space
*space
= isl_basic_map_get_space(bmap
);
3540 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3542 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3543 return isl_basic_map_gist(bmap
, bmap_context
);
3546 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3547 __isl_take isl_set
*context
)
3549 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3550 map_context
= isl_map_intersect_domain(map_context
, context
);
3551 return isl_map_gist(map
, map_context
);
3554 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3555 __isl_take isl_set
*context
)
3557 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3558 map_context
= isl_map_intersect_range(map_context
, context
);
3559 return isl_map_gist(map
, map_context
);
3562 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3563 __isl_take isl_set
*context
)
3565 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3566 map_context
= isl_map_intersect_params(map_context
, context
);
3567 return isl_map_gist(map
, map_context
);
3570 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3571 __isl_take isl_set
*context
)
3573 return isl_map_gist_params(set
, context
);
3576 /* Quick check to see if two basic maps are disjoint.
3577 * In particular, we reduce the equalities and inequalities of
3578 * one basic map in the context of the equalities of the other
3579 * basic map and check if we get a contradiction.
3581 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3582 __isl_keep isl_basic_map
*bmap2
)
3584 struct isl_vec
*v
= NULL
;
3589 if (!bmap1
|| !bmap2
)
3590 return isl_bool_error
;
3591 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
3592 return isl_bool_error
);
3593 if (bmap1
->n_div
|| bmap2
->n_div
)
3594 return isl_bool_false
;
3595 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3596 return isl_bool_false
;
3598 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3600 return isl_bool_false
;
3601 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3604 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3607 compute_elimination_index(bmap1
, elim
);
3608 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3610 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3612 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3613 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3616 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3618 reduced
= reduced_using_equalities(v
->block
.data
,
3619 bmap2
->ineq
[i
], bmap1
, elim
);
3620 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3621 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3624 compute_elimination_index(bmap2
, elim
);
3625 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3627 reduced
= reduced_using_equalities(v
->block
.data
,
3628 bmap1
->ineq
[i
], bmap2
, elim
);
3629 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3630 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3635 return isl_bool_false
;
3639 return isl_bool_true
;
3643 return isl_bool_error
;
3646 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3647 __isl_keep isl_basic_set
*bset2
)
3649 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3650 bset_to_bmap(bset2
));
3653 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3655 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3656 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3657 __isl_keep isl_basic_map
*bmap2
))
3662 return isl_bool_error
;
3664 for (i
= 0; i
< map1
->n
; ++i
) {
3665 for (j
= 0; j
< map2
->n
; ++j
) {
3666 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3667 if (d
!= isl_bool_true
)
3672 return isl_bool_true
;
3675 /* Are "map1" and "map2" obviously disjoint, based on information
3676 * that can be derived without looking at the individual basic maps?
3678 * In particular, if one of them is empty or if they live in different spaces
3679 * (ignoring parameters), then they are clearly disjoint.
3681 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3682 __isl_keep isl_map
*map2
)
3688 return isl_bool_error
;
3690 disjoint
= isl_map_plain_is_empty(map1
);
3691 if (disjoint
< 0 || disjoint
)
3694 disjoint
= isl_map_plain_is_empty(map2
);
3695 if (disjoint
< 0 || disjoint
)
3698 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
3699 map2
->dim
, isl_dim_in
);
3700 if (match
< 0 || !match
)
3701 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3703 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
3704 map2
->dim
, isl_dim_out
);
3705 if (match
< 0 || !match
)
3706 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3708 return isl_bool_false
;
3711 /* Are "map1" and "map2" obviously disjoint?
3713 * If one of them is empty or if they live in different spaces (ignoring
3714 * parameters), then they are clearly disjoint.
3715 * This is checked by isl_map_plain_is_disjoint_global.
3717 * If they have different parameters, then we skip any further tests.
3719 * If they are obviously equal, but not obviously empty, then we will
3720 * not be able to detect if they are disjoint.
3722 * Otherwise we check if each basic map in "map1" is obviously disjoint
3723 * from each basic map in "map2".
3725 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
3726 __isl_keep isl_map
*map2
)
3732 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3733 if (disjoint
< 0 || disjoint
)
3736 match
= isl_map_has_equal_params(map1
, map2
);
3737 if (match
< 0 || !match
)
3738 return match
< 0 ? isl_bool_error
: isl_bool_false
;
3740 intersect
= isl_map_plain_is_equal(map1
, map2
);
3741 if (intersect
< 0 || intersect
)
3742 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3744 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
3747 /* Are "map1" and "map2" disjoint?
3749 * They are disjoint if they are "obviously disjoint" or if one of them
3750 * is empty. Otherwise, they are not disjoint if one of them is universal.
3751 * If the two inputs are (obviously) equal and not empty, then they are
3753 * If none of these cases apply, then check if all pairs of basic maps
3756 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
3761 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3762 if (disjoint
< 0 || disjoint
)
3765 disjoint
= isl_map_is_empty(map1
);
3766 if (disjoint
< 0 || disjoint
)
3769 disjoint
= isl_map_is_empty(map2
);
3770 if (disjoint
< 0 || disjoint
)
3773 intersect
= isl_map_plain_is_universe(map1
);
3774 if (intersect
< 0 || intersect
)
3775 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3777 intersect
= isl_map_plain_is_universe(map2
);
3778 if (intersect
< 0 || intersect
)
3779 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3781 intersect
= isl_map_plain_is_equal(map1
, map2
);
3782 if (intersect
< 0 || intersect
)
3783 return isl_bool_not(intersect
);
3785 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
3788 /* Are "bmap1" and "bmap2" disjoint?
3790 * They are disjoint if they are "obviously disjoint" or if one of them
3791 * is empty. Otherwise, they are not disjoint if one of them is universal.
3792 * If none of these cases apply, we compute the intersection and see if
3793 * the result is empty.
3795 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3796 __isl_keep isl_basic_map
*bmap2
)
3800 isl_basic_map
*test
;
3802 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
3803 if (disjoint
< 0 || disjoint
)
3806 disjoint
= isl_basic_map_is_empty(bmap1
);
3807 if (disjoint
< 0 || disjoint
)
3810 disjoint
= isl_basic_map_is_empty(bmap2
);
3811 if (disjoint
< 0 || disjoint
)
3814 intersect
= isl_basic_map_plain_is_universe(bmap1
);
3815 if (intersect
< 0 || intersect
)
3816 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3818 intersect
= isl_basic_map_plain_is_universe(bmap2
);
3819 if (intersect
< 0 || intersect
)
3820 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3822 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
3823 isl_basic_map_copy(bmap2
));
3824 disjoint
= isl_basic_map_is_empty(test
);
3825 isl_basic_map_free(test
);
3830 /* Are "bset1" and "bset2" disjoint?
3832 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3833 __isl_keep isl_basic_set
*bset2
)
3835 return isl_basic_map_is_disjoint(bset1
, bset2
);
3838 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
3839 __isl_keep isl_set
*set2
)
3841 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
3844 /* Are "set1" and "set2" disjoint?
3846 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
3848 return isl_map_is_disjoint(set1
, set2
);
3851 /* Is "v" equal to 0, 1 or -1?
3853 static int is_zero_or_one(isl_int v
)
3855 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
3858 /* Check if we can combine a given div with lower bound l and upper
3859 * bound u with some other div and if so return that other div.
3860 * Otherwise return -1.
3862 * We first check that
3863 * - the bounds are opposites of each other (except for the constant
3865 * - the bounds do not reference any other div
3866 * - no div is defined in terms of this div
3868 * Let m be the size of the range allowed on the div by the bounds.
3869 * That is, the bounds are of the form
3871 * e <= a <= e + m - 1
3873 * with e some expression in the other variables.
3874 * We look for another div b such that no third div is defined in terms
3875 * of this second div b and such that in any constraint that contains
3876 * a (except for the given lower and upper bound), also contains b
3877 * with a coefficient that is m times that of b.
3878 * That is, all constraints (except for the lower and upper bound)
3881 * e + f (a + m b) >= 0
3883 * Furthermore, in the constraints that only contain b, the coefficient
3884 * of b should be equal to 1 or -1.
3885 * If so, we return b so that "a + m b" can be replaced by
3886 * a single div "c = a + m b".
3888 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
3889 unsigned div
, unsigned l
, unsigned u
)
3895 if (bmap
->n_div
<= 1)
3897 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3898 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
3900 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
3901 bmap
->n_div
- div
- 1) != -1)
3903 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
3907 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3908 if (isl_int_is_zero(bmap
->div
[i
][0]))
3910 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
3914 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3915 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
3916 isl_int_sub(bmap
->ineq
[l
][0],
3917 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3918 bmap
= isl_basic_map_copy(bmap
);
3919 bmap
= isl_basic_map_set_to_empty(bmap
);
3920 isl_basic_map_free(bmap
);
3923 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
3924 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3929 for (j
= 0; j
< bmap
->n_div
; ++j
) {
3930 if (isl_int_is_zero(bmap
->div
[j
][0]))
3932 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
3935 if (j
< bmap
->n_div
)
3937 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3939 if (j
== l
|| j
== u
)
3941 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
])) {
3942 if (is_zero_or_one(bmap
->ineq
[j
][1 + dim
+ i
]))
3946 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
3948 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
3949 bmap
->ineq
[j
][1 + dim
+ div
],
3951 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
3952 bmap
->ineq
[j
][1 + dim
+ i
]);
3953 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
3954 bmap
->ineq
[j
][1 + dim
+ div
],
3959 if (j
< bmap
->n_ineq
)
3964 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
3965 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3969 /* Internal data structure used during the construction and/or evaluation of
3970 * an inequality that ensures that a pair of bounds always allows
3971 * for an integer value.
3973 * "tab" is the tableau in which the inequality is evaluated. It may
3974 * be NULL until it is actually needed.
3975 * "v" contains the inequality coefficients.
3976 * "g", "fl" and "fu" are temporary scalars used during the construction and
3979 struct test_ineq_data
{
3980 struct isl_tab
*tab
;
3987 /* Free all the memory allocated by the fields of "data".
3989 static void test_ineq_data_clear(struct test_ineq_data
*data
)
3991 isl_tab_free(data
->tab
);
3992 isl_vec_free(data
->v
);
3993 isl_int_clear(data
->g
);
3994 isl_int_clear(data
->fl
);
3995 isl_int_clear(data
->fu
);
3998 /* Is the inequality stored in data->v satisfied by "bmap"?
3999 * That is, does it only attain non-negative values?
4000 * data->tab is a tableau corresponding to "bmap".
4002 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4003 struct test_ineq_data
*data
)
4006 enum isl_lp_result res
;
4008 ctx
= isl_basic_map_get_ctx(bmap
);
4010 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4011 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4012 if (res
== isl_lp_error
)
4013 return isl_bool_error
;
4014 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4017 /* Given a lower and an upper bound on div i, do they always allow
4018 * for an integer value of the given div?
4019 * Determine this property by constructing an inequality
4020 * such that the property is guaranteed when the inequality is nonnegative.
4021 * The lower bound is inequality l, while the upper bound is inequality u.
4022 * The constructed inequality is stored in data->v.
4024 * Let the upper bound be
4028 * and the lower bound
4032 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4035 * - f_u e_l <= f_u f_l g a <= f_l e_u
4037 * Since all variables are integer valued, this is equivalent to
4039 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4041 * If this interval is at least f_u f_l g, then it contains at least
4042 * one integer value for a.
4043 * That is, the test constraint is
4045 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4049 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4051 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4052 * then the constraint can be scaled down by a factor g',
4053 * with the constant term replaced by
4054 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4055 * Note that the result of applying Fourier-Motzkin to this pair
4058 * f_l e_u + f_u e_l >= 0
4060 * If the constant term of the scaled down version of this constraint,
4061 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4062 * term of the scaled down test constraint, then the test constraint
4063 * is known to hold and no explicit evaluation is required.
4064 * This is essentially the Omega test.
4066 * If the test constraint consists of only a constant term, then
4067 * it is sufficient to look at the sign of this constant term.
4069 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4070 int l
, int u
, struct test_ineq_data
*data
)
4072 unsigned offset
, n_div
;
4073 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4074 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4076 isl_int_gcd(data
->g
,
4077 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4078 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4079 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4080 isl_int_neg(data
->fu
, data
->fu
);
4081 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4082 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4083 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4084 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4085 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4086 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4087 isl_int_add_ui(data
->g
, data
->g
, 1);
4088 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4090 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4091 if (isl_int_is_zero(data
->g
))
4092 return isl_int_is_nonneg(data
->fl
);
4093 if (isl_int_is_one(data
->g
)) {
4094 isl_int_set(data
->v
->el
[0], data
->fl
);
4095 return test_ineq_is_satisfied(bmap
, data
);
4097 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4098 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4099 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4100 return isl_bool_true
;
4101 isl_int_set(data
->v
->el
[0], data
->fl
);
4102 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4103 offset
- 1 + n_div
);
4105 return test_ineq_is_satisfied(bmap
, data
);
4108 /* Remove more kinds of divs that are not strictly needed.
4109 * In particular, if all pairs of lower and upper bounds on a div
4110 * are such that they allow at least one integer value of the div,
4111 * then we can eliminate the div using Fourier-Motzkin without
4112 * introducing any spurious solutions.
4114 * If at least one of the two constraints has a unit coefficient for the div,
4115 * then the presence of such a value is guaranteed so there is no need to check.
4116 * In particular, the value attained by the bound with unit coefficient
4117 * can serve as this intermediate value.
4119 static __isl_give isl_basic_map
*drop_more_redundant_divs(
4120 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int n
)
4123 struct test_ineq_data data
= { NULL
, NULL
};
4124 unsigned off
, n_div
;
4127 isl_int_init(data
.g
);
4128 isl_int_init(data
.fl
);
4129 isl_int_init(data
.fu
);
4134 ctx
= isl_basic_map_get_ctx(bmap
);
4135 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4136 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4137 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4146 for (i
= 0; i
< n_div
; ++i
) {
4149 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4155 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4156 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4158 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4160 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4161 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4163 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4165 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4169 if (data
.tab
&& data
.tab
->empty
)
4174 if (u
< bmap
->n_ineq
)
4177 if (data
.tab
&& data
.tab
->empty
) {
4178 bmap
= isl_basic_map_set_to_empty(bmap
);
4181 if (l
== bmap
->n_ineq
) {
4189 test_ineq_data_clear(&data
);
4196 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4197 return isl_basic_map_drop_redundant_divs(bmap
);
4200 isl_basic_map_free(bmap
);
4201 test_ineq_data_clear(&data
);
4205 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4206 * and the upper bound u, div1 always occurs together with div2 in the form
4207 * (div1 + m div2), where m is the constant range on the variable div1
4208 * allowed by l and u, replace the pair div1 and div2 by a single
4209 * div that is equal to div1 + m div2.
4211 * The new div will appear in the location that contains div2.
4212 * We need to modify all constraints that contain
4213 * div2 = (div - div1) / m
4214 * The coefficient of div2 is known to be equal to 1 or -1.
4215 * (If a constraint does not contain div2, it will also not contain div1.)
4216 * If the constraint also contains div1, then we know they appear
4217 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4218 * i.e., the coefficient of div is f.
4220 * Otherwise, we first need to introduce div1 into the constraint.
4229 * A lower bound on div2
4233 * can be replaced by
4235 * m div2 + div1 + m t + f >= 0
4241 * can be replaced by
4243 * -(m div2 + div1) + m t + f' >= 0
4245 * These constraint are those that we would obtain from eliminating
4246 * div1 using Fourier-Motzkin.
4248 * After all constraints have been modified, we drop the lower and upper
4249 * bound and then drop div1.
4250 * Since the new div is only placed in the same location that used
4251 * to store div2, but otherwise has a different meaning, any possible
4252 * explicit representation of the original div2 is removed.
4254 static __isl_give isl_basic_map
*coalesce_divs(__isl_take isl_basic_map
*bmap
,
4255 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4259 unsigned dim
, total
;
4262 ctx
= isl_basic_map_get_ctx(bmap
);
4264 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4265 total
= 1 + dim
+ bmap
->n_div
;
4268 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4269 isl_int_add_ui(m
, m
, 1);
4271 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4272 if (i
== l
|| i
== u
)
4274 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
4276 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
4277 if (isl_int_is_pos(bmap
->ineq
[i
][1 + dim
+ div2
]))
4278 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4279 ctx
->one
, bmap
->ineq
[l
], total
);
4281 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4282 ctx
->one
, bmap
->ineq
[u
], total
);
4284 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
4285 bmap
->ineq
[i
][1 + dim
+ div1
]);
4286 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
4291 isl_basic_map_drop_inequality(bmap
, l
);
4292 isl_basic_map_drop_inequality(bmap
, u
);
4294 isl_basic_map_drop_inequality(bmap
, u
);
4295 isl_basic_map_drop_inequality(bmap
, l
);
4297 bmap
= isl_basic_map_mark_div_unknown(bmap
, div2
);
4298 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4302 /* First check if we can coalesce any pair of divs and
4303 * then continue with dropping more redundant divs.
4305 * We loop over all pairs of lower and upper bounds on a div
4306 * with coefficient 1 and -1, respectively, check if there
4307 * is any other div "c" with which we can coalesce the div
4308 * and if so, perform the coalescing.
4310 static __isl_give isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4311 __isl_take isl_basic_map
*bmap
, int *pairs
, int n
)
4316 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4318 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4321 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4322 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
4324 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4327 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
4329 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4333 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4334 return isl_basic_map_drop_redundant_divs(bmap
);
4339 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4344 return drop_more_redundant_divs(bmap
, pairs
, n
);
4347 /* Are the "n" coefficients starting at "first" of inequality constraints
4348 * "i" and "j" of "bmap" equal to each other?
4350 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4353 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4356 /* Are the "n" coefficients starting at "first" of inequality constraints
4357 * "i" and "j" of "bmap" opposite to each other?
4359 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4362 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4365 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4366 * apart from the constant term?
4368 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4372 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4373 return is_opposite_part(bmap
, i
, j
, 1, total
);
4376 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4377 * apart from the constant term and the coefficient at position "pos"?
4379 static int is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4384 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4385 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4386 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4389 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4390 * apart from the constant term and the coefficient at position "pos"?
4392 static int is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4397 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4398 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4399 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4402 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4403 * been modified, simplying it if "simplify" is set.
4404 * Free the temporary data structure "pairs" that was associated
4405 * to the old version of "bmap".
4407 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4408 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4411 bmap
= isl_basic_map_simplify(bmap
);
4413 return isl_basic_map_drop_redundant_divs(bmap
);
4416 /* Is "div" the single unknown existentially quantified variable
4417 * in inequality constraint "ineq" of "bmap"?
4418 * "div" is known to have a non-zero coefficient in "ineq".
4420 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4424 unsigned n_div
, o_div
;
4427 known
= isl_basic_map_div_is_known(bmap
, div
);
4428 if (known
< 0 || known
)
4429 return isl_bool_not(known
);
4430 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4432 return isl_bool_true
;
4433 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4434 for (i
= 0; i
< n_div
; ++i
) {
4439 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4441 known
= isl_basic_map_div_is_known(bmap
, i
);
4442 if (known
< 0 || !known
)
4446 return isl_bool_true
;
4449 /* Does integer division "div" have coefficient 1 in inequality constraint
4452 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4456 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4457 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4458 return isl_bool_true
;
4460 return isl_bool_false
;
4463 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4464 * then try and drop redundant divs again,
4465 * freeing the temporary data structure "pairs" that was associated
4466 * to the old version of "bmap".
4468 static __isl_give isl_basic_map
*set_eq_and_try_again(
4469 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4471 bmap
= isl_basic_map_cow(bmap
);
4472 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4473 return drop_redundant_divs_again(bmap
, pairs
, 1);
4476 /* Drop the integer division at position "div", along with the two
4477 * inequality constraints "ineq1" and "ineq2" in which it appears
4478 * from "bmap" and then try and drop redundant divs again,
4479 * freeing the temporary data structure "pairs" that was associated
4480 * to the old version of "bmap".
4482 static __isl_give isl_basic_map
*drop_div_and_try_again(
4483 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4484 __isl_take
int *pairs
)
4486 if (ineq1
> ineq2
) {
4487 isl_basic_map_drop_inequality(bmap
, ineq1
);
4488 isl_basic_map_drop_inequality(bmap
, ineq2
);
4490 isl_basic_map_drop_inequality(bmap
, ineq2
);
4491 isl_basic_map_drop_inequality(bmap
, ineq1
);
4493 bmap
= isl_basic_map_drop_div(bmap
, div
);
4494 return drop_redundant_divs_again(bmap
, pairs
, 0);
4497 /* Given two inequality constraints
4499 * f(x) + n d + c >= 0, (ineq)
4501 * with d the variable at position "pos", and
4503 * f(x) + c0 >= 0, (lower)
4505 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4506 * determined by the first constraint.
4513 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4514 int ineq
, int lower
, int pos
, isl_int
*l
)
4516 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4517 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4518 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4521 /* Given two inequality constraints
4523 * f(x) + n d + c >= 0, (ineq)
4525 * with d the variable at position "pos", and
4527 * -f(x) - c0 >= 0, (upper)
4529 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4530 * determined by the first constraint.
4537 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4538 int ineq
, int upper
, int pos
, isl_int
*u
)
4540 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4541 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4542 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4545 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4546 * does the corresponding lower bound have a fixed value in "bmap"?
4548 * In particular, "ineq" is of the form
4550 * f(x) + n d + c >= 0
4552 * with n > 0, c the constant term and
4553 * d the existentially quantified variable "div".
4554 * That is, the lower bound is
4556 * ceil((-f(x) - c)/n)
4558 * Look for a pair of constraints
4563 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4564 * That is, check that
4566 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4568 * If so, return the index of inequality f(x) + c0 >= 0.
4569 * Otherwise, return -1.
4571 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4574 int lower
= -1, upper
= -1;
4579 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4580 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4583 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4586 is_parallel_except(bmap
, ineq
, i
, o_div
+ div
)) {
4591 is_opposite_except(bmap
, ineq
, i
, o_div
+ div
)) {
4596 if (lower
< 0 || upper
< 0)
4602 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4603 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4605 equal
= isl_int_eq(l
, u
);
4610 return equal
? lower
: -1;
4613 /* Given a lower bound constraint "ineq" on the existentially quantified
4614 * variable "div", such that the corresponding lower bound has
4615 * a fixed value in "bmap", assign this fixed value to the variable and
4616 * then try and drop redundant divs again,
4617 * freeing the temporary data structure "pairs" that was associated
4618 * to the old version of "bmap".
4619 * "lower" determines the constant value for the lower bound.
4621 * In particular, "ineq" is of the form
4623 * f(x) + n d + c >= 0,
4625 * while "lower" is of the form
4629 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4630 * is ceil((c0 - c)/n).
4632 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4633 int div
, int ineq
, int lower
, int *pairs
)
4640 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4641 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4642 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4647 return isl_basic_map_drop_redundant_divs(bmap
);
4650 /* Remove divs that are not strictly needed based on the inequality
4652 * In particular, if a div only occurs positively (or negatively)
4653 * in constraints, then it can simply be dropped.
4654 * Also, if a div occurs in only two constraints and if moreover
4655 * those two constraints are opposite to each other, except for the constant
4656 * term and if the sum of the constant terms is such that for any value
4657 * of the other values, there is always at least one integer value of the
4658 * div, i.e., if one plus this sum is greater than or equal to
4659 * the (absolute value) of the coefficient of the div in the constraints,
4660 * then we can also simply drop the div.
4662 * If an existentially quantified variable does not have an explicit
4663 * representation, appears in only a single lower bound that does not
4664 * involve any other such existentially quantified variables and appears
4665 * in this lower bound with coefficient 1,
4666 * then fix the variable to the value of the lower bound. That is,
4667 * turn the inequality into an equality.
4668 * If for any value of the other variables, there is any value
4669 * for the existentially quantified variable satisfying the constraints,
4670 * then this lower bound also satisfies the constraints.
4671 * It is therefore safe to pick this lower bound.
4673 * The same reasoning holds even if the coefficient is not one.
4674 * However, fixing the variable to the value of the lower bound may
4675 * in general introduce an extra integer division, in which case
4676 * it may be better to pick another value.
4677 * If this integer division has a known constant value, then plugging
4678 * in this constant value removes the existentially quantified variable
4679 * completely. In particular, if the lower bound is of the form
4680 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4681 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4682 * then the existentially quantified variable can be assigned this
4685 * We skip divs that appear in equalities or in the definition of other divs.
4686 * Divs that appear in the definition of other divs usually occur in at least
4687 * 4 constraints, but the constraints may have been simplified.
4689 * If any divs are left after these simple checks then we move on
4690 * to more complicated cases in drop_more_redundant_divs.
4692 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
4693 __isl_take isl_basic_map
*bmap
)
4702 if (bmap
->n_div
== 0)
4705 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4706 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
4710 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4712 int last_pos
, last_neg
;
4715 isl_bool opp
, set_div
;
4717 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
4718 for (j
= i
; j
< bmap
->n_div
; ++j
)
4719 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
4721 if (j
< bmap
->n_div
)
4723 for (j
= 0; j
< bmap
->n_eq
; ++j
)
4724 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
4730 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4731 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
4735 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
4740 pairs
[i
] = pos
* neg
;
4741 if (pairs
[i
] == 0) {
4742 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
4743 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
4744 isl_basic_map_drop_inequality(bmap
, j
);
4745 bmap
= isl_basic_map_drop_div(bmap
, i
);
4746 return drop_redundant_divs_again(bmap
, pairs
, 0);
4749 opp
= isl_bool_false
;
4751 opp
= is_opposite(bmap
, last_pos
, last_neg
);
4756 isl_bool single
, one
;
4760 single
= single_unknown(bmap
, last_pos
, i
);
4765 one
= has_coef_one(bmap
, i
, last_pos
);
4769 return set_eq_and_try_again(bmap
, last_pos
,
4771 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
4773 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
4778 isl_int_add(bmap
->ineq
[last_pos
][0],
4779 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4780 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
4781 bmap
->ineq
[last_pos
][0], 1);
4782 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
4783 bmap
->ineq
[last_pos
][1+off
+i
]);
4784 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
4785 bmap
->ineq
[last_pos
][0], 1);
4786 isl_int_sub(bmap
->ineq
[last_pos
][0],
4787 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4789 return drop_div_and_try_again(bmap
, i
,
4790 last_pos
, last_neg
, pairs
);
4792 set_div
= isl_bool_false
;
4794 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
4796 return isl_basic_map_free(bmap
);
4798 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
4799 return drop_redundant_divs_again(bmap
, pairs
, 1);
4806 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
4812 isl_basic_map_free(bmap
);
4816 /* Consider the coefficients at "c" as a row vector and replace
4817 * them with their product with "T". "T" is assumed to be a square matrix.
4819 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
4826 return isl_stat_error
;
4827 n
= isl_mat_rows(T
);
4828 if (isl_seq_first_non_zero(c
, n
) == -1)
4830 ctx
= isl_mat_get_ctx(T
);
4831 v
= isl_vec_alloc(ctx
, n
);
4833 return isl_stat_error
;
4834 isl_seq_swp_or_cpy(v
->el
, c
, n
);
4835 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
4837 return isl_stat_error
;
4838 isl_seq_swp_or_cpy(c
, v
->el
, n
);
4844 /* Plug in T for the variables in "bmap" starting at "pos".
4845 * T is a linear unimodular matrix, i.e., without constant term.
4847 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
4848 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
4853 bmap
= isl_basic_map_cow(bmap
);
4857 n
= isl_mat_cols(T
);
4858 if (n
!= isl_mat_rows(T
))
4859 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
4860 "expecting square matrix", goto error
);
4862 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4863 if (pos
+ n
> total
|| pos
+ n
< pos
)
4864 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
4865 "invalid range", goto error
);
4867 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4868 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
4870 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
4871 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
4873 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4874 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
4876 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
4883 isl_basic_map_free(bmap
);
4888 /* Remove divs that are not strictly needed.
4890 * First look for an equality constraint involving two or more
4891 * existentially quantified variables without an explicit
4892 * representation. Replace the combination that appears
4893 * in the equality constraint by a single existentially quantified
4894 * variable such that the equality can be used to derive
4895 * an explicit representation for the variable.
4896 * If there are no more such equality constraints, then continue
4897 * with isl_basic_map_drop_redundant_divs_ineq.
4899 * In particular, if the equality constraint is of the form
4901 * f(x) + \sum_i c_i a_i = 0
4903 * with a_i existentially quantified variable without explicit
4904 * representation, then apply a transformation on the existentially
4905 * quantified variables to turn the constraint into
4909 * with g the gcd of the c_i.
4910 * In order to easily identify which existentially quantified variables
4911 * have a complete explicit representation, i.e., without being defined
4912 * in terms of other existentially quantified variables without
4913 * an explicit representation, the existentially quantified variables
4916 * The variable transformation is computed by extending the row
4917 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
4919 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
4924 * with [c_1/g ... c_n/g] representing the first row of U.
4925 * The inverse of U is then plugged into the original constraints.
4926 * The call to isl_basic_map_simplify makes sure the explicit
4927 * representation for a_1' is extracted from the equality constraint.
4929 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
4930 __isl_take isl_basic_map
*bmap
)
4934 unsigned o_div
, n_div
;
4941 if (isl_basic_map_divs_known(bmap
))
4942 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
4943 if (bmap
->n_eq
== 0)
4944 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
4945 bmap
= isl_basic_map_sort_divs(bmap
);
4949 first
= isl_basic_map_first_unknown_div(bmap
);
4951 return isl_basic_map_free(bmap
);
4953 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4954 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4956 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
4957 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
4962 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
4963 n_div
- (l
+ 1)) == -1)
4967 if (i
>= bmap
->n_eq
)
4968 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
4970 ctx
= isl_basic_map_get_ctx(bmap
);
4971 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
4973 return isl_basic_map_free(bmap
);
4974 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
4975 T
= isl_mat_normalize_row(T
, 0);
4976 T
= isl_mat_unimodular_complete(T
, 1);
4977 T
= isl_mat_right_inverse(T
);
4979 for (i
= l
; i
< n_div
; ++i
)
4980 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
4981 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
4982 bmap
= isl_basic_map_simplify(bmap
);
4984 return isl_basic_map_drop_redundant_divs(bmap
);
4987 /* Does "bmap" satisfy any equality that involves more than 2 variables
4988 * and/or has coefficients different from -1 and 1?
4990 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
4995 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4997 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5000 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5003 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5004 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5008 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5012 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5013 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5017 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5025 /* Remove any common factor g from the constraint coefficients in "v".
5026 * The constant term is stored in the first position and is replaced
5027 * by floor(c/g). If any common factor is removed and if this results
5028 * in a tightening of the constraint, then set *tightened.
5030 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5037 ctx
= isl_vec_get_ctx(v
);
5038 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5039 if (isl_int_is_zero(ctx
->normalize_gcd
))
5041 if (isl_int_is_one(ctx
->normalize_gcd
))
5046 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5048 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5049 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5054 /* If "bmap" is an integer set that satisfies any equality involving
5055 * more than 2 variables and/or has coefficients different from -1 and 1,
5056 * then use variable compression to reduce the coefficients by removing
5057 * any (hidden) common factor.
5058 * In particular, apply the variable compression to each constraint,
5059 * factor out any common factor in the non-constant coefficients and
5060 * then apply the inverse of the compression.
5061 * At the end, we mark the basic map as having reduced constants.
5062 * If this flag is still set on the next invocation of this function,
5063 * then we skip the computation.
5065 * Removing a common factor may result in a tightening of some of
5066 * the constraints. If this happens, then we may end up with two
5067 * opposite inequalities that can be replaced by an equality.
5068 * We therefore call isl_basic_map_detect_inequality_pairs,
5069 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5070 * and isl_basic_map_gauss if such a pair was found.
5072 * Note that this function may leave the result in an inconsistent state.
5073 * In particular, the constraints may not be gaussed.
5074 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5075 * for some of the test cases to pass successfully.
5076 * Any potential modification of the representation is therefore only
5077 * performed on a single copy of the basic map.
5079 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5080 __isl_take isl_basic_map
*bmap
)
5085 isl_mat
*eq
, *T
, *T2
;
5091 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5093 if (isl_basic_map_is_rational(bmap
))
5095 if (bmap
->n_eq
== 0)
5097 if (!has_multiple_var_equality(bmap
))
5100 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5101 ctx
= isl_basic_map_get_ctx(bmap
);
5102 v
= isl_vec_alloc(ctx
, 1 + total
);
5104 return isl_basic_map_free(bmap
);
5106 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5107 T
= isl_mat_variable_compression(eq
, &T2
);
5110 if (T
->n_col
== 0) {
5114 return isl_basic_map_set_to_empty(bmap
);
5117 bmap
= isl_basic_map_cow(bmap
);
5122 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5123 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5124 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5125 v
= normalize_constraint(v
, &tightened
);
5126 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5129 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5136 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5141 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5143 bmap
= eliminate_divs_eq(bmap
, &progress
);
5144 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5153 return isl_basic_map_free(bmap
);
5156 /* Shift the integer division at position "div" of "bmap"
5157 * by "shift" times the variable at position "pos".
5158 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5159 * corresponds to the constant term.
5161 * That is, if the integer division has the form
5165 * then replace it by
5167 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5169 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5170 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5175 if (isl_int_is_zero(shift
))
5180 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5181 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
5183 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5185 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5186 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5188 isl_int_submul(bmap
->eq
[i
][pos
],
5189 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5191 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5192 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5194 isl_int_submul(bmap
->ineq
[i
][pos
],
5195 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5197 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5198 if (isl_int_is_zero(bmap
->div
[i
][0]))
5200 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5202 isl_int_submul(bmap
->div
[i
][1 + pos
],
5203 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);