3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
102 =item * The C<isl_dim> type has been renamed to C<isl_space>
103 along with the associated functions.
104 Some of the old names have been kept for backward compatibility,
105 but they will be removed in the future.
107 =item * Spaces of maps, sets and parameter domains are now
108 treated differently. The distinction between map spaces and set spaces
109 has always been made on a conceptual level, but proper use of such spaces
110 was never checked. Furthermore, up until isl-0.07 there was no way
111 of explicitly creating a parameter space. These can now be created
112 directly using C<isl_space_params_alloc> or from other spaces using
115 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
116 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
117 objects live is now a map space
118 instead of a set space. This means, for example, that the dimensions
119 of the domain of an C<isl_aff> are now considered to be of type
120 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
121 added to obtain the domain space. Some of the constructors still
122 take a domain space and have therefore been renamed.
124 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
125 now take an C<isl_local_space> instead of an C<isl_space>.
126 An C<isl_local_space> can be created from an C<isl_space>
127 using C<isl_local_space_from_space>.
129 =item * The C<isl_div> type has been removed. Functions that used
130 to return an C<isl_div> now return an C<isl_aff>.
131 Note that the space of an C<isl_aff> is that of relation.
132 When replacing a call to C<isl_div_get_coefficient> by a call to
133 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
134 to be replaced by C<isl_dim_in>.
135 A call to C<isl_aff_from_div> can be replaced by a call
137 A call to C<isl_qpolynomial_div(div)> call be replaced by
140 isl_qpolynomial_from_aff(isl_aff_floor(div))
142 The function C<isl_constraint_div> has also been renamed
143 to C<isl_constraint_get_div>.
145 =item * The C<nparam> argument has been removed from
146 C<isl_map_read_from_str> and similar functions.
147 When reading input in the original PolyLib format,
148 the result will have no parameters.
149 If parameters are expected, the caller may want to perform
150 dimension manipulation on the result.
156 The source of C<isl> can be obtained either as a tarball
157 or from the git repository. Both are available from
158 L<http://freshmeat.net/projects/isl/>.
159 The installation process depends on how you obtained
162 =head2 Installation from the git repository
166 =item 1 Clone or update the repository
168 The first time the source is obtained, you need to clone
171 git clone git://repo.or.cz/isl.git
173 To obtain updates, you need to pull in the latest changes
177 =item 2 Generate C<configure>
183 After performing the above steps, continue
184 with the L<Common installation instructions>.
186 =head2 Common installation instructions
190 =item 1 Obtain C<GMP>
192 Building C<isl> requires C<GMP>, including its headers files.
193 Your distribution may not provide these header files by default
194 and you may need to install a package called C<gmp-devel> or something
195 similar. Alternatively, C<GMP> can be built from
196 source, available from L<http://gmplib.org/>.
200 C<isl> uses the standard C<autoconf> C<configure> script.
205 optionally followed by some configure options.
206 A complete list of options can be obtained by running
210 Below we discuss some of the more common options.
212 C<isl> can optionally use C<piplib>, but no
213 C<piplib> functionality is currently used by default.
214 The C<--with-piplib> option can
215 be used to specify which C<piplib>
216 library to use, either an installed version (C<system>),
217 an externally built version (C<build>)
218 or no version (C<no>). The option C<build> is mostly useful
219 in C<configure> scripts of larger projects that bundle both C<isl>
226 Installation prefix for C<isl>
228 =item C<--with-gmp-prefix>
230 Installation prefix for C<GMP> (architecture-independent files).
232 =item C<--with-gmp-exec-prefix>
234 Installation prefix for C<GMP> (architecture-dependent files).
236 =item C<--with-piplib>
238 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
240 =item C<--with-piplib-prefix>
242 Installation prefix for C<system> C<piplib> (architecture-independent files).
244 =item C<--with-piplib-exec-prefix>
246 Installation prefix for C<system> C<piplib> (architecture-dependent files).
248 =item C<--with-piplib-builddir>
250 Location where C<build> C<piplib> was built.
258 =item 4 Install (optional)
266 =head2 Initialization
268 All manipulations of integer sets and relations occur within
269 the context of an C<isl_ctx>.
270 A given C<isl_ctx> can only be used within a single thread.
271 All arguments of a function are required to have been allocated
272 within the same context.
273 There are currently no functions available for moving an object
274 from one C<isl_ctx> to another C<isl_ctx>. This means that
275 there is currently no way of safely moving an object from one
276 thread to another, unless the whole C<isl_ctx> is moved.
278 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
279 freed using C<isl_ctx_free>.
280 All objects allocated within an C<isl_ctx> should be freed
281 before the C<isl_ctx> itself is freed.
283 isl_ctx *isl_ctx_alloc();
284 void isl_ctx_free(isl_ctx *ctx);
288 All operations on integers, mainly the coefficients
289 of the constraints describing the sets and relations,
290 are performed in exact integer arithmetic using C<GMP>.
291 However, to allow future versions of C<isl> to optionally
292 support fixed integer arithmetic, all calls to C<GMP>
293 are wrapped inside C<isl> specific macros.
294 The basic type is C<isl_int> and the operations below
295 are available on this type.
296 The meanings of these operations are essentially the same
297 as their C<GMP> C<mpz_> counterparts.
298 As always with C<GMP> types, C<isl_int>s need to be
299 initialized with C<isl_int_init> before they can be used
300 and they need to be released with C<isl_int_clear>
302 The user should not assume that an C<isl_int> is represented
303 as a C<mpz_t>, but should instead explicitly convert between
304 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
305 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
309 =item isl_int_init(i)
311 =item isl_int_clear(i)
313 =item isl_int_set(r,i)
315 =item isl_int_set_si(r,i)
317 =item isl_int_set_gmp(r,g)
319 =item isl_int_get_gmp(i,g)
321 =item isl_int_abs(r,i)
323 =item isl_int_neg(r,i)
325 =item isl_int_swap(i,j)
327 =item isl_int_swap_or_set(i,j)
329 =item isl_int_add_ui(r,i,j)
331 =item isl_int_sub_ui(r,i,j)
333 =item isl_int_add(r,i,j)
335 =item isl_int_sub(r,i,j)
337 =item isl_int_mul(r,i,j)
339 =item isl_int_mul_ui(r,i,j)
341 =item isl_int_addmul(r,i,j)
343 =item isl_int_submul(r,i,j)
345 =item isl_int_gcd(r,i,j)
347 =item isl_int_lcm(r,i,j)
349 =item isl_int_divexact(r,i,j)
351 =item isl_int_cdiv_q(r,i,j)
353 =item isl_int_fdiv_q(r,i,j)
355 =item isl_int_fdiv_r(r,i,j)
357 =item isl_int_fdiv_q_ui(r,i,j)
359 =item isl_int_read(r,s)
361 =item isl_int_print(out,i,width)
365 =item isl_int_cmp(i,j)
367 =item isl_int_cmp_si(i,si)
369 =item isl_int_eq(i,j)
371 =item isl_int_ne(i,j)
373 =item isl_int_lt(i,j)
375 =item isl_int_le(i,j)
377 =item isl_int_gt(i,j)
379 =item isl_int_ge(i,j)
381 =item isl_int_abs_eq(i,j)
383 =item isl_int_abs_ne(i,j)
385 =item isl_int_abs_lt(i,j)
387 =item isl_int_abs_gt(i,j)
389 =item isl_int_abs_ge(i,j)
391 =item isl_int_is_zero(i)
393 =item isl_int_is_one(i)
395 =item isl_int_is_negone(i)
397 =item isl_int_is_pos(i)
399 =item isl_int_is_neg(i)
401 =item isl_int_is_nonpos(i)
403 =item isl_int_is_nonneg(i)
405 =item isl_int_is_divisible_by(i,j)
409 =head2 Sets and Relations
411 C<isl> uses six types of objects for representing sets and relations,
412 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
413 C<isl_union_set> and C<isl_union_map>.
414 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
415 can be described as a conjunction of affine constraints, while
416 C<isl_set> and C<isl_map> represent unions of
417 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
418 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
419 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
420 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
421 where spaces are considered different if they have a different number
422 of dimensions and/or different names (see L<"Spaces">).
423 The difference between sets and relations (maps) is that sets have
424 one set of variables, while relations have two sets of variables,
425 input variables and output variables.
427 =head2 Memory Management
429 Since a high-level operation on sets and/or relations usually involves
430 several substeps and since the user is usually not interested in
431 the intermediate results, most functions that return a new object
432 will also release all the objects passed as arguments.
433 If the user still wants to use one or more of these arguments
434 after the function call, she should pass along a copy of the
435 object rather than the object itself.
436 The user is then responsible for making sure that the original
437 object gets used somewhere else or is explicitly freed.
439 The arguments and return values of all documented functions are
440 annotated to make clear which arguments are released and which
441 arguments are preserved. In particular, the following annotations
448 C<__isl_give> means that a new object is returned.
449 The user should make sure that the returned pointer is
450 used exactly once as a value for an C<__isl_take> argument.
451 In between, it can be used as a value for as many
452 C<__isl_keep> arguments as the user likes.
453 There is one exception, and that is the case where the
454 pointer returned is C<NULL>. Is this case, the user
455 is free to use it as an C<__isl_take> argument or not.
459 C<__isl_take> means that the object the argument points to
460 is taken over by the function and may no longer be used
461 by the user as an argument to any other function.
462 The pointer value must be one returned by a function
463 returning an C<__isl_give> pointer.
464 If the user passes in a C<NULL> value, then this will
465 be treated as an error in the sense that the function will
466 not perform its usual operation. However, it will still
467 make sure that all the other C<__isl_take> arguments
472 C<__isl_keep> means that the function will only use the object
473 temporarily. After the function has finished, the user
474 can still use it as an argument to other functions.
475 A C<NULL> value will be treated in the same way as
476 a C<NULL> value for an C<__isl_take> argument.
482 Identifiers are used to identify both individual dimensions
483 and tuples of dimensions. They consist of a name and an optional
484 pointer. Identifiers with the same name but different pointer values
485 are considered to be distinct.
486 Identifiers can be constructed, copied, freed, inspected and printed
487 using the following functions.
490 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
491 __isl_keep const char *name, void *user);
492 __isl_give isl_id *isl_id_copy(isl_id *id);
493 void *isl_id_free(__isl_take isl_id *id);
495 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
496 void *isl_id_get_user(__isl_keep isl_id *id);
497 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
499 __isl_give isl_printer *isl_printer_print_id(
500 __isl_take isl_printer *p, __isl_keep isl_id *id);
502 Note that C<isl_id_get_name> returns a pointer to some internal
503 data structure, so the result can only be used while the
504 corresponding C<isl_id> is alive.
508 Whenever a new set or relation is created from scratch,
509 the space in which it lives needs to be specified using an C<isl_space>.
511 #include <isl/space.h>
512 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
513 unsigned nparam, unsigned n_in, unsigned n_out);
514 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
516 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
517 unsigned nparam, unsigned dim);
518 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
519 void isl_space_free(__isl_take isl_space *space);
520 unsigned isl_space_dim(__isl_keep isl_space *space,
521 enum isl_dim_type type);
523 The space used for creating a parameter domain
524 needs to be created using C<isl_space_params_alloc>.
525 For other sets, the space
526 needs to be created using C<isl_space_set_alloc>, while
527 for a relation, the space
528 needs to be created using C<isl_space_alloc>.
529 C<isl_space_dim> can be used
530 to find out the number of dimensions of each type in
531 a space, where type may be
532 C<isl_dim_param>, C<isl_dim_in> (only for relations),
533 C<isl_dim_out> (only for relations), C<isl_dim_set>
534 (only for sets) or C<isl_dim_all>.
536 To check whether a given space is that of a set or a map
537 or whether it is a parameter space, use these functions:
539 #include <isl/space.h>
540 int isl_space_is_params(__isl_keep isl_space *space);
541 int isl_space_is_set(__isl_keep isl_space *space);
543 It is often useful to create objects that live in the
544 same space as some other object. This can be accomplished
545 by creating the new objects
546 (see L<Creating New Sets and Relations> or
547 L<Creating New (Piecewise) Quasipolynomials>) based on the space
548 of the original object.
551 __isl_give isl_space *isl_basic_set_get_space(
552 __isl_keep isl_basic_set *bset);
553 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
555 #include <isl/union_set.h>
556 __isl_give isl_space *isl_union_set_get_space(
557 __isl_keep isl_union_set *uset);
560 __isl_give isl_space *isl_basic_map_get_space(
561 __isl_keep isl_basic_map *bmap);
562 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
564 #include <isl/union_map.h>
565 __isl_give isl_space *isl_union_map_get_space(
566 __isl_keep isl_union_map *umap);
568 #include <isl/constraint.h>
569 __isl_give isl_space *isl_constraint_get_space(
570 __isl_keep isl_constraint *constraint);
572 #include <isl/polynomial.h>
573 __isl_give isl_space *isl_qpolynomial_get_domain_space(
574 __isl_keep isl_qpolynomial *qp);
575 __isl_give isl_space *isl_qpolynomial_get_space(
576 __isl_keep isl_qpolynomial *qp);
577 __isl_give isl_space *isl_qpolynomial_fold_get_space(
578 __isl_keep isl_qpolynomial_fold *fold);
579 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
580 __isl_keep isl_pw_qpolynomial *pwqp);
581 __isl_give isl_space *isl_pw_qpolynomial_get_space(
582 __isl_keep isl_pw_qpolynomial *pwqp);
583 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
584 __isl_keep isl_pw_qpolynomial_fold *pwf);
585 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
586 __isl_keep isl_pw_qpolynomial_fold *pwf);
587 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
588 __isl_keep isl_union_pw_qpolynomial *upwqp);
589 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
590 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
593 __isl_give isl_space *isl_aff_get_domain_space(
594 __isl_keep isl_aff *aff);
595 __isl_give isl_space *isl_aff_get_space(
596 __isl_keep isl_aff *aff);
597 __isl_give isl_space *isl_pw_aff_get_domain_space(
598 __isl_keep isl_pw_aff *pwaff);
599 __isl_give isl_space *isl_pw_aff_get_space(
600 __isl_keep isl_pw_aff *pwaff);
602 #include <isl/point.h>
603 __isl_give isl_space *isl_point_get_space(
604 __isl_keep isl_point *pnt);
606 The identifiers or names of the individual dimensions may be set or read off
607 using the following functions.
609 #include <isl/space.h>
610 __isl_give isl_space *isl_space_set_dim_id(
611 __isl_take isl_space *space,
612 enum isl_dim_type type, unsigned pos,
613 __isl_take isl_id *id);
614 int isl_space_has_dim_id(__isl_keep isl_space *space,
615 enum isl_dim_type type, unsigned pos);
616 __isl_give isl_id *isl_space_get_dim_id(
617 __isl_keep isl_space *space,
618 enum isl_dim_type type, unsigned pos);
619 __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *space,
620 enum isl_dim_type type, unsigned pos,
621 __isl_keep const char *name);
622 __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *space,
623 enum isl_dim_type type, unsigned pos);
625 Note that C<isl_space_get_name> returns a pointer to some internal
626 data structure, so the result can only be used while the
627 corresponding C<isl_space> is alive.
628 Also note that every function that operates on two sets or relations
629 requires that both arguments have the same parameters. This also
630 means that if one of the arguments has named parameters, then the
631 other needs to have named parameters too and the names need to match.
632 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
633 arguments may have different parameters (as long as they are named),
634 in which case the result will have as parameters the union of the parameters of
637 Given the identifier or name of a dimension (typically a parameter),
638 its position can be obtained from the following function.
640 #include <isl/space.h>
641 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
642 enum isl_dim_type type, __isl_keep isl_id *id);
643 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
644 enum isl_dim_type type, const char *name);
646 The identifiers or names of entire spaces may be set or read off
647 using the following functions.
649 #include <isl/space.h>
650 __isl_give isl_space *isl_space_set_tuple_id(
651 __isl_take isl_space *space,
652 enum isl_dim_type type, __isl_take isl_id *id);
653 __isl_give isl_space *isl_space_reset_tuple_id(
654 __isl_take isl_space *space, enum isl_dim_type type);
655 int isl_space_has_tuple_id(__isl_keep isl_space *space,
656 enum isl_dim_type type);
657 __isl_give isl_id *isl_space_get_tuple_id(
658 __isl_keep isl_space *space, enum isl_dim_type type);
659 __isl_give isl_space *isl_space_set_tuple_name(
660 __isl_take isl_space *space,
661 enum isl_dim_type type, const char *s);
662 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
663 enum isl_dim_type type);
665 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
666 or C<isl_dim_set>. As with C<isl_space_get_name>,
667 the C<isl_space_get_tuple_name> function returns a pointer to some internal
669 Binary operations require the corresponding spaces of their arguments
670 to have the same name.
672 Spaces can be nested. In particular, the domain of a set or
673 the domain or range of a relation can be a nested relation.
674 The following functions can be used to construct and deconstruct
677 #include <isl/space.h>
678 int isl_space_is_wrapping(__isl_keep isl_space *space);
679 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
680 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
682 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
683 be the space of a set, while that of
684 C<isl_space_wrap> should be the space of a relation.
685 Conversely, the output of C<isl_space_unwrap> is the space
686 of a relation, while that of C<isl_space_wrap> is the space of a set.
688 Spaces can be created from other spaces
689 using the following functions.
691 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
692 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
693 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
694 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
695 __isl_give isl_space *isl_space_params(
696 __isl_take isl_space *space);
697 __isl_give isl_space *isl_space_set_from_params(
698 __isl_take isl_space *space);
699 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
700 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
701 __isl_take isl_space *right);
702 __isl_give isl_space *isl_space_align_params(
703 __isl_take isl_space *space1, __isl_take isl_space *space2)
704 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
705 enum isl_dim_type type, unsigned pos, unsigned n);
706 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
707 enum isl_dim_type type, unsigned n);
708 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
709 enum isl_dim_type type, unsigned first, unsigned n);
710 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
711 enum isl_dim_type dst_type, unsigned dst_pos,
712 enum isl_dim_type src_type, unsigned src_pos,
714 __isl_give isl_space *isl_space_map_from_set(
715 __isl_take isl_space *space);
716 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
718 Note that if dimensions are added or removed from a space, then
719 the name and the internal structure are lost.
723 A local space is essentially a space with
724 zero or more existentially quantified variables.
725 The local space of a basic set or relation can be obtained
726 using the following functions.
729 __isl_give isl_local_space *isl_basic_set_get_local_space(
730 __isl_keep isl_basic_set *bset);
733 __isl_give isl_local_space *isl_basic_map_get_local_space(
734 __isl_keep isl_basic_map *bmap);
736 A new local space can be created from a space using
738 #include <isl/local_space.h>
739 __isl_give isl_local_space *isl_local_space_from_space(
740 __isl_take isl_space *space);
742 They can be inspected, copied and freed using the following functions.
744 #include <isl/local_space.h>
745 isl_ctx *isl_local_space_get_ctx(
746 __isl_keep isl_local_space *ls);
747 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
748 int isl_local_space_dim(__isl_keep isl_local_space *ls,
749 enum isl_dim_type type);
750 const char *isl_local_space_get_dim_name(
751 __isl_keep isl_local_space *ls,
752 enum isl_dim_type type, unsigned pos);
753 __isl_give isl_local_space *isl_local_space_set_dim_name(
754 __isl_take isl_local_space *ls,
755 enum isl_dim_type type, unsigned pos, const char *s);
756 __isl_give isl_space *isl_local_space_get_space(
757 __isl_keep isl_local_space *ls);
758 __isl_give isl_aff *isl_local_space_get_div(
759 __isl_keep isl_local_space *ls, int pos);
760 __isl_give isl_local_space *isl_local_space_copy(
761 __isl_keep isl_local_space *ls);
762 void *isl_local_space_free(__isl_take isl_local_space *ls);
764 Two local spaces can be compared using
766 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
767 __isl_keep isl_local_space *ls2);
769 Local spaces can be created from other local spaces
770 using the following functions.
772 __isl_give isl_local_space *isl_local_space_domain(
773 __isl_take isl_local_space *ls);
774 __isl_give isl_local_space *isl_local_space_from_domain(
775 __isl_take isl_local_space *ls);
776 __isl_give isl_local_space *isl_local_space_add_dims(
777 __isl_take isl_local_space *ls,
778 enum isl_dim_type type, unsigned n);
779 __isl_give isl_local_space *isl_local_space_insert_dims(
780 __isl_take isl_local_space *ls,
781 enum isl_dim_type type, unsigned first, unsigned n);
782 __isl_give isl_local_space *isl_local_space_drop_dims(
783 __isl_take isl_local_space *ls,
784 enum isl_dim_type type, unsigned first, unsigned n);
786 =head2 Input and Output
788 C<isl> supports its own input/output format, which is similar
789 to the C<Omega> format, but also supports the C<PolyLib> format
794 The C<isl> format is similar to that of C<Omega>, but has a different
795 syntax for describing the parameters and allows for the definition
796 of an existentially quantified variable as the integer division
797 of an affine expression.
798 For example, the set of integers C<i> between C<0> and C<n>
799 such that C<i % 10 <= 6> can be described as
801 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
804 A set or relation can have several disjuncts, separated
805 by the keyword C<or>. Each disjunct is either a conjunction
806 of constraints or a projection (C<exists>) of a conjunction
807 of constraints. The constraints are separated by the keyword
810 =head3 C<PolyLib> format
812 If the represented set is a union, then the first line
813 contains a single number representing the number of disjuncts.
814 Otherwise, a line containing the number C<1> is optional.
816 Each disjunct is represented by a matrix of constraints.
817 The first line contains two numbers representing
818 the number of rows and columns,
819 where the number of rows is equal to the number of constraints
820 and the number of columns is equal to two plus the number of variables.
821 The following lines contain the actual rows of the constraint matrix.
822 In each row, the first column indicates whether the constraint
823 is an equality (C<0>) or inequality (C<1>). The final column
824 corresponds to the constant term.
826 If the set is parametric, then the coefficients of the parameters
827 appear in the last columns before the constant column.
828 The coefficients of any existentially quantified variables appear
829 between those of the set variables and those of the parameters.
831 =head3 Extended C<PolyLib> format
833 The extended C<PolyLib> format is nearly identical to the
834 C<PolyLib> format. The only difference is that the line
835 containing the number of rows and columns of a constraint matrix
836 also contains four additional numbers:
837 the number of output dimensions, the number of input dimensions,
838 the number of local dimensions (i.e., the number of existentially
839 quantified variables) and the number of parameters.
840 For sets, the number of ``output'' dimensions is equal
841 to the number of set dimensions, while the number of ``input''
847 __isl_give isl_basic_set *isl_basic_set_read_from_file(
848 isl_ctx *ctx, FILE *input);
849 __isl_give isl_basic_set *isl_basic_set_read_from_str(
850 isl_ctx *ctx, const char *str);
851 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
853 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
857 __isl_give isl_basic_map *isl_basic_map_read_from_file(
858 isl_ctx *ctx, FILE *input);
859 __isl_give isl_basic_map *isl_basic_map_read_from_str(
860 isl_ctx *ctx, const char *str);
861 __isl_give isl_map *isl_map_read_from_file(
862 isl_ctx *ctx, FILE *input);
863 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
866 #include <isl/union_set.h>
867 __isl_give isl_union_set *isl_union_set_read_from_file(
868 isl_ctx *ctx, FILE *input);
869 __isl_give isl_union_set *isl_union_set_read_from_str(
870 isl_ctx *ctx, const char *str);
872 #include <isl/union_map.h>
873 __isl_give isl_union_map *isl_union_map_read_from_file(
874 isl_ctx *ctx, FILE *input);
875 __isl_give isl_union_map *isl_union_map_read_from_str(
876 isl_ctx *ctx, const char *str);
878 The input format is autodetected and may be either the C<PolyLib> format
879 or the C<isl> format.
883 Before anything can be printed, an C<isl_printer> needs to
886 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
888 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
889 void isl_printer_free(__isl_take isl_printer *printer);
890 __isl_give char *isl_printer_get_str(
891 __isl_keep isl_printer *printer);
893 The behavior of the printer can be modified in various ways
895 __isl_give isl_printer *isl_printer_set_output_format(
896 __isl_take isl_printer *p, int output_format);
897 __isl_give isl_printer *isl_printer_set_indent(
898 __isl_take isl_printer *p, int indent);
899 __isl_give isl_printer *isl_printer_indent(
900 __isl_take isl_printer *p, int indent);
901 __isl_give isl_printer *isl_printer_set_prefix(
902 __isl_take isl_printer *p, const char *prefix);
903 __isl_give isl_printer *isl_printer_set_suffix(
904 __isl_take isl_printer *p, const char *suffix);
906 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
907 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
908 and defaults to C<ISL_FORMAT_ISL>.
909 Each line in the output is indented by C<indent> (set by
910 C<isl_printer_set_indent>) spaces
911 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
912 In the C<PolyLib> format output,
913 the coefficients of the existentially quantified variables
914 appear between those of the set variables and those
916 The function C<isl_printer_indent> increases the indentation
917 by the specified amount (which may be negative).
919 To actually print something, use
922 __isl_give isl_printer *isl_printer_print_basic_set(
923 __isl_take isl_printer *printer,
924 __isl_keep isl_basic_set *bset);
925 __isl_give isl_printer *isl_printer_print_set(
926 __isl_take isl_printer *printer,
927 __isl_keep isl_set *set);
930 __isl_give isl_printer *isl_printer_print_basic_map(
931 __isl_take isl_printer *printer,
932 __isl_keep isl_basic_map *bmap);
933 __isl_give isl_printer *isl_printer_print_map(
934 __isl_take isl_printer *printer,
935 __isl_keep isl_map *map);
937 #include <isl/union_set.h>
938 __isl_give isl_printer *isl_printer_print_union_set(
939 __isl_take isl_printer *p,
940 __isl_keep isl_union_set *uset);
942 #include <isl/union_map.h>
943 __isl_give isl_printer *isl_printer_print_union_map(
944 __isl_take isl_printer *p,
945 __isl_keep isl_union_map *umap);
947 When called on a file printer, the following function flushes
948 the file. When called on a string printer, the buffer is cleared.
950 __isl_give isl_printer *isl_printer_flush(
951 __isl_take isl_printer *p);
953 =head2 Creating New Sets and Relations
955 C<isl> has functions for creating some standard sets and relations.
959 =item * Empty sets and relations
961 __isl_give isl_basic_set *isl_basic_set_empty(
962 __isl_take isl_space *space);
963 __isl_give isl_basic_map *isl_basic_map_empty(
964 __isl_take isl_space *space);
965 __isl_give isl_set *isl_set_empty(
966 __isl_take isl_space *space);
967 __isl_give isl_map *isl_map_empty(
968 __isl_take isl_space *space);
969 __isl_give isl_union_set *isl_union_set_empty(
970 __isl_take isl_space *space);
971 __isl_give isl_union_map *isl_union_map_empty(
972 __isl_take isl_space *space);
974 For C<isl_union_set>s and C<isl_union_map>s, the space
975 is only used to specify the parameters.
977 =item * Universe sets and relations
979 __isl_give isl_basic_set *isl_basic_set_universe(
980 __isl_take isl_space *space);
981 __isl_give isl_basic_map *isl_basic_map_universe(
982 __isl_take isl_space *space);
983 __isl_give isl_set *isl_set_universe(
984 __isl_take isl_space *space);
985 __isl_give isl_map *isl_map_universe(
986 __isl_take isl_space *space);
987 __isl_give isl_union_set *isl_union_set_universe(
988 __isl_take isl_union_set *uset);
989 __isl_give isl_union_map *isl_union_map_universe(
990 __isl_take isl_union_map *umap);
992 The sets and relations constructed by the functions above
993 contain all integer values, while those constructed by the
994 functions below only contain non-negative values.
996 __isl_give isl_basic_set *isl_basic_set_nat_universe(
997 __isl_take isl_space *space);
998 __isl_give isl_basic_map *isl_basic_map_nat_universe(
999 __isl_take isl_space *space);
1000 __isl_give isl_set *isl_set_nat_universe(
1001 __isl_take isl_space *space);
1002 __isl_give isl_map *isl_map_nat_universe(
1003 __isl_take isl_space *space);
1005 =item * Identity relations
1007 __isl_give isl_basic_map *isl_basic_map_identity(
1008 __isl_take isl_space *space);
1009 __isl_give isl_map *isl_map_identity(
1010 __isl_take isl_space *space);
1012 The number of input and output dimensions in C<space> needs
1015 =item * Lexicographic order
1017 __isl_give isl_map *isl_map_lex_lt(
1018 __isl_take isl_space *set_space);
1019 __isl_give isl_map *isl_map_lex_le(
1020 __isl_take isl_space *set_space);
1021 __isl_give isl_map *isl_map_lex_gt(
1022 __isl_take isl_space *set_space);
1023 __isl_give isl_map *isl_map_lex_ge(
1024 __isl_take isl_space *set_space);
1025 __isl_give isl_map *isl_map_lex_lt_first(
1026 __isl_take isl_space *space, unsigned n);
1027 __isl_give isl_map *isl_map_lex_le_first(
1028 __isl_take isl_space *space, unsigned n);
1029 __isl_give isl_map *isl_map_lex_gt_first(
1030 __isl_take isl_space *space, unsigned n);
1031 __isl_give isl_map *isl_map_lex_ge_first(
1032 __isl_take isl_space *space, unsigned n);
1034 The first four functions take a space for a B<set>
1035 and return relations that express that the elements in the domain
1036 are lexicographically less
1037 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1038 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1039 than the elements in the range.
1040 The last four functions take a space for a map
1041 and return relations that express that the first C<n> dimensions
1042 in the domain are lexicographically less
1043 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1044 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1045 than the first C<n> dimensions in the range.
1049 A basic set or relation can be converted to a set or relation
1050 using the following functions.
1052 __isl_give isl_set *isl_set_from_basic_set(
1053 __isl_take isl_basic_set *bset);
1054 __isl_give isl_map *isl_map_from_basic_map(
1055 __isl_take isl_basic_map *bmap);
1057 Sets and relations can be converted to union sets and relations
1058 using the following functions.
1060 __isl_give isl_union_map *isl_union_map_from_map(
1061 __isl_take isl_map *map);
1062 __isl_give isl_union_set *isl_union_set_from_set(
1063 __isl_take isl_set *set);
1065 The inverse conversions below can only be used if the input
1066 union set or relation is known to contain elements in exactly one
1069 __isl_give isl_set *isl_set_from_union_set(
1070 __isl_take isl_union_set *uset);
1071 __isl_give isl_map *isl_map_from_union_map(
1072 __isl_take isl_union_map *umap);
1074 A zero-dimensional set can be constructed on a given parameter domain
1075 using the following function.
1077 __isl_give isl_set *isl_set_from_params(
1078 __isl_take isl_set *set);
1080 Sets and relations can be copied and freed again using the following
1083 __isl_give isl_basic_set *isl_basic_set_copy(
1084 __isl_keep isl_basic_set *bset);
1085 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1086 __isl_give isl_union_set *isl_union_set_copy(
1087 __isl_keep isl_union_set *uset);
1088 __isl_give isl_basic_map *isl_basic_map_copy(
1089 __isl_keep isl_basic_map *bmap);
1090 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1091 __isl_give isl_union_map *isl_union_map_copy(
1092 __isl_keep isl_union_map *umap);
1093 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1094 void isl_set_free(__isl_take isl_set *set);
1095 void *isl_union_set_free(__isl_take isl_union_set *uset);
1096 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1097 void isl_map_free(__isl_take isl_map *map);
1098 void *isl_union_map_free(__isl_take isl_union_map *umap);
1100 Other sets and relations can be constructed by starting
1101 from a universe set or relation, adding equality and/or
1102 inequality constraints and then projecting out the
1103 existentially quantified variables, if any.
1104 Constraints can be constructed, manipulated and
1105 added to (or removed from) (basic) sets and relations
1106 using the following functions.
1108 #include <isl/constraint.h>
1109 __isl_give isl_constraint *isl_equality_alloc(
1110 __isl_take isl_local_space *ls);
1111 __isl_give isl_constraint *isl_inequality_alloc(
1112 __isl_take isl_local_space *ls);
1113 __isl_give isl_constraint *isl_constraint_set_constant(
1114 __isl_take isl_constraint *constraint, isl_int v);
1115 __isl_give isl_constraint *isl_constraint_set_constant_si(
1116 __isl_take isl_constraint *constraint, int v);
1117 __isl_give isl_constraint *isl_constraint_set_coefficient(
1118 __isl_take isl_constraint *constraint,
1119 enum isl_dim_type type, int pos, isl_int v);
1120 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1121 __isl_take isl_constraint *constraint,
1122 enum isl_dim_type type, int pos, int v);
1123 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1124 __isl_take isl_basic_map *bmap,
1125 __isl_take isl_constraint *constraint);
1126 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1127 __isl_take isl_basic_set *bset,
1128 __isl_take isl_constraint *constraint);
1129 __isl_give isl_map *isl_map_add_constraint(
1130 __isl_take isl_map *map,
1131 __isl_take isl_constraint *constraint);
1132 __isl_give isl_set *isl_set_add_constraint(
1133 __isl_take isl_set *set,
1134 __isl_take isl_constraint *constraint);
1135 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1136 __isl_take isl_basic_set *bset,
1137 __isl_take isl_constraint *constraint);
1139 For example, to create a set containing the even integers
1140 between 10 and 42, you would use the following code.
1143 isl_local_space *ls;
1145 isl_basic_set *bset;
1147 space = isl_space_set_alloc(ctx, 0, 2);
1148 bset = isl_basic_set_universe(isl_space_copy(space));
1149 ls = isl_local_space_from_space(space);
1151 c = isl_equality_alloc(isl_local_space_copy(ls));
1152 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1153 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1154 bset = isl_basic_set_add_constraint(bset, c);
1156 c = isl_inequality_alloc(isl_local_space_copy(ls));
1157 c = isl_constraint_set_constant_si(c, -10);
1158 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1159 bset = isl_basic_set_add_constraint(bset, c);
1161 c = isl_inequality_alloc(ls);
1162 c = isl_constraint_set_constant_si(c, 42);
1163 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1164 bset = isl_basic_set_add_constraint(bset, c);
1166 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1170 isl_basic_set *bset;
1171 bset = isl_basic_set_read_from_str(ctx,
1172 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1174 A basic set or relation can also be constructed from two matrices
1175 describing the equalities and the inequalities.
1177 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1178 __isl_take isl_space *space,
1179 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1180 enum isl_dim_type c1,
1181 enum isl_dim_type c2, enum isl_dim_type c3,
1182 enum isl_dim_type c4);
1183 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1184 __isl_take isl_space *space,
1185 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1186 enum isl_dim_type c1,
1187 enum isl_dim_type c2, enum isl_dim_type c3,
1188 enum isl_dim_type c4, enum isl_dim_type c5);
1190 The C<isl_dim_type> arguments indicate the order in which
1191 different kinds of variables appear in the input matrices
1192 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1193 C<isl_dim_set> and C<isl_dim_div> for sets and
1194 of C<isl_dim_cst>, C<isl_dim_param>,
1195 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1197 A (basic) set or relation can also be constructed from a (piecewise)
1199 or a list of affine expressions (See L<"Piecewise Quasi Affine Expressions">).
1201 __isl_give isl_basic_map *isl_basic_map_from_aff(
1202 __isl_take isl_aff *aff);
1203 __isl_give isl_set *isl_set_from_pw_aff(
1204 __isl_take isl_pw_aff *pwaff);
1205 __isl_give isl_map *isl_map_from_pw_aff(
1206 __isl_take isl_pw_aff *pwaff);
1207 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1208 __isl_take isl_space *domain_space,
1209 __isl_take isl_aff_list *list);
1211 The C<domain_dim> argument describes the domain of the resulting
1212 basic relation. It is required because the C<list> may consist
1213 of zero affine expressions.
1215 =head2 Inspecting Sets and Relations
1217 Usually, the user should not have to care about the actual constraints
1218 of the sets and maps, but should instead apply the abstract operations
1219 explained in the following sections.
1220 Occasionally, however, it may be required to inspect the individual
1221 coefficients of the constraints. This section explains how to do so.
1222 In these cases, it may also be useful to have C<isl> compute
1223 an explicit representation of the existentially quantified variables.
1225 __isl_give isl_set *isl_set_compute_divs(
1226 __isl_take isl_set *set);
1227 __isl_give isl_map *isl_map_compute_divs(
1228 __isl_take isl_map *map);
1229 __isl_give isl_union_set *isl_union_set_compute_divs(
1230 __isl_take isl_union_set *uset);
1231 __isl_give isl_union_map *isl_union_map_compute_divs(
1232 __isl_take isl_union_map *umap);
1234 This explicit representation defines the existentially quantified
1235 variables as integer divisions of the other variables, possibly
1236 including earlier existentially quantified variables.
1237 An explicitly represented existentially quantified variable therefore
1238 has a unique value when the values of the other variables are known.
1239 If, furthermore, the same existentials, i.e., existentials
1240 with the same explicit representations, should appear in the
1241 same order in each of the disjuncts of a set or map, then the user should call
1242 either of the following functions.
1244 __isl_give isl_set *isl_set_align_divs(
1245 __isl_take isl_set *set);
1246 __isl_give isl_map *isl_map_align_divs(
1247 __isl_take isl_map *map);
1249 Alternatively, the existentially quantified variables can be removed
1250 using the following functions, which compute an overapproximation.
1252 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1253 __isl_take isl_basic_set *bset);
1254 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1255 __isl_take isl_basic_map *bmap);
1256 __isl_give isl_set *isl_set_remove_divs(
1257 __isl_take isl_set *set);
1258 __isl_give isl_map *isl_map_remove_divs(
1259 __isl_take isl_map *map);
1261 To iterate over all the sets or maps in a union set or map, use
1263 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1264 int (*fn)(__isl_take isl_set *set, void *user),
1266 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1267 int (*fn)(__isl_take isl_map *map, void *user),
1270 The number of sets or maps in a union set or map can be obtained
1273 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1274 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1276 To extract the set or map in a given space from a union, use
1278 __isl_give isl_set *isl_union_set_extract_set(
1279 __isl_keep isl_union_set *uset,
1280 __isl_take isl_space *space);
1281 __isl_give isl_map *isl_union_map_extract_map(
1282 __isl_keep isl_union_map *umap,
1283 __isl_take isl_space *space);
1285 To iterate over all the basic sets or maps in a set or map, use
1287 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1288 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1290 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1291 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1294 The callback function C<fn> should return 0 if successful and
1295 -1 if an error occurs. In the latter case, or if any other error
1296 occurs, the above functions will return -1.
1298 It should be noted that C<isl> does not guarantee that
1299 the basic sets or maps passed to C<fn> are disjoint.
1300 If this is required, then the user should call one of
1301 the following functions first.
1303 __isl_give isl_set *isl_set_make_disjoint(
1304 __isl_take isl_set *set);
1305 __isl_give isl_map *isl_map_make_disjoint(
1306 __isl_take isl_map *map);
1308 The number of basic sets in a set can be obtained
1311 int isl_set_n_basic_set(__isl_keep isl_set *set);
1313 To iterate over the constraints of a basic set or map, use
1315 #include <isl/constraint.h>
1317 int isl_basic_map_foreach_constraint(
1318 __isl_keep isl_basic_map *bmap,
1319 int (*fn)(__isl_take isl_constraint *c, void *user),
1321 void *isl_constraint_free(__isl_take isl_constraint *c);
1323 Again, the callback function C<fn> should return 0 if successful and
1324 -1 if an error occurs. In the latter case, or if any other error
1325 occurs, the above functions will return -1.
1326 The constraint C<c> represents either an equality or an inequality.
1327 Use the following function to find out whether a constraint
1328 represents an equality. If not, it represents an inequality.
1330 int isl_constraint_is_equality(
1331 __isl_keep isl_constraint *constraint);
1333 The coefficients of the constraints can be inspected using
1334 the following functions.
1336 void isl_constraint_get_constant(
1337 __isl_keep isl_constraint *constraint, isl_int *v);
1338 void isl_constraint_get_coefficient(
1339 __isl_keep isl_constraint *constraint,
1340 enum isl_dim_type type, int pos, isl_int *v);
1341 int isl_constraint_involves_dims(
1342 __isl_keep isl_constraint *constraint,
1343 enum isl_dim_type type, unsigned first, unsigned n);
1345 The explicit representations of the existentially quantified
1346 variables can be inspected using the following function.
1347 Note that the user is only allowed to use this function
1348 if the inspected set or map is the result of a call
1349 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1350 The existentially quantified variable is equal to the floor
1351 of the returned affine expression. The affine expression
1352 itself can be inspected using the functions in
1353 L<"Piecewise Quasi Affine Expressions">.
1355 __isl_give isl_aff *isl_constraint_get_div(
1356 __isl_keep isl_constraint *constraint, int pos);
1358 To obtain the constraints of a basic set or map in matrix
1359 form, use the following functions.
1361 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1362 __isl_keep isl_basic_set *bset,
1363 enum isl_dim_type c1, enum isl_dim_type c2,
1364 enum isl_dim_type c3, enum isl_dim_type c4);
1365 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1366 __isl_keep isl_basic_set *bset,
1367 enum isl_dim_type c1, enum isl_dim_type c2,
1368 enum isl_dim_type c3, enum isl_dim_type c4);
1369 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1370 __isl_keep isl_basic_map *bmap,
1371 enum isl_dim_type c1,
1372 enum isl_dim_type c2, enum isl_dim_type c3,
1373 enum isl_dim_type c4, enum isl_dim_type c5);
1374 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1375 __isl_keep isl_basic_map *bmap,
1376 enum isl_dim_type c1,
1377 enum isl_dim_type c2, enum isl_dim_type c3,
1378 enum isl_dim_type c4, enum isl_dim_type c5);
1380 The C<isl_dim_type> arguments dictate the order in which
1381 different kinds of variables appear in the resulting matrix
1382 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1383 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1385 The number of parameters, input, output or set dimensions can
1386 be obtained using the following functions.
1388 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1389 enum isl_dim_type type);
1390 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1391 enum isl_dim_type type);
1392 unsigned isl_set_dim(__isl_keep isl_set *set,
1393 enum isl_dim_type type);
1394 unsigned isl_map_dim(__isl_keep isl_map *map,
1395 enum isl_dim_type type);
1397 To check whether the description of a set or relation depends
1398 on one or more given dimensions, it is not necessary to iterate over all
1399 constraints. Instead the following functions can be used.
1401 int isl_basic_set_involves_dims(
1402 __isl_keep isl_basic_set *bset,
1403 enum isl_dim_type type, unsigned first, unsigned n);
1404 int isl_set_involves_dims(__isl_keep isl_set *set,
1405 enum isl_dim_type type, unsigned first, unsigned n);
1406 int isl_basic_map_involves_dims(
1407 __isl_keep isl_basic_map *bmap,
1408 enum isl_dim_type type, unsigned first, unsigned n);
1409 int isl_map_involves_dims(__isl_keep isl_map *map,
1410 enum isl_dim_type type, unsigned first, unsigned n);
1412 Similarly, the following functions can be used to check whether
1413 a given dimension is involved in any lower or upper bound.
1415 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1416 enum isl_dim_type type, unsigned pos);
1417 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1418 enum isl_dim_type type, unsigned pos);
1420 The identifiers or names of the domain and range spaces of a set
1421 or relation can be read off or set using the following functions.
1423 __isl_give isl_set *isl_set_set_tuple_id(
1424 __isl_take isl_set *set, __isl_take isl_id *id);
1425 __isl_give isl_set *isl_set_reset_tuple_id(
1426 __isl_take isl_set *set);
1427 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1428 __isl_give isl_id *isl_set_get_tuple_id(
1429 __isl_keep isl_set *set);
1430 __isl_give isl_map *isl_map_set_tuple_id(
1431 __isl_take isl_map *map, enum isl_dim_type type,
1432 __isl_take isl_id *id);
1433 __isl_give isl_map *isl_map_reset_tuple_id(
1434 __isl_take isl_map *map, enum isl_dim_type type);
1435 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1436 enum isl_dim_type type);
1437 __isl_give isl_id *isl_map_get_tuple_id(
1438 __isl_keep isl_map *map, enum isl_dim_type type);
1440 const char *isl_basic_set_get_tuple_name(
1441 __isl_keep isl_basic_set *bset);
1442 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1443 __isl_take isl_basic_set *set, const char *s);
1444 const char *isl_set_get_tuple_name(
1445 __isl_keep isl_set *set);
1446 const char *isl_basic_map_get_tuple_name(
1447 __isl_keep isl_basic_map *bmap,
1448 enum isl_dim_type type);
1449 const char *isl_map_get_tuple_name(
1450 __isl_keep isl_map *map,
1451 enum isl_dim_type type);
1453 As with C<isl_space_get_tuple_name>, the value returned points to
1454 an internal data structure.
1455 The identifiers, positions or names of individual dimensions can be
1456 read off using the following functions.
1458 __isl_give isl_set *isl_set_set_dim_id(
1459 __isl_take isl_set *set, enum isl_dim_type type,
1460 unsigned pos, __isl_take isl_id *id);
1461 int isl_set_has_dim_id(__isl_keep isl_set *set,
1462 enum isl_dim_type type, unsigned pos);
1463 __isl_give isl_id *isl_set_get_dim_id(
1464 __isl_keep isl_set *set, enum isl_dim_type type,
1466 __isl_give isl_map *isl_map_set_dim_id(
1467 __isl_take isl_map *map, enum isl_dim_type type,
1468 unsigned pos, __isl_take isl_id *id);
1469 int isl_map_has_dim_id(__isl_keep isl_map *map,
1470 enum isl_dim_type type, unsigned pos);
1471 __isl_give isl_id *isl_map_get_dim_id(
1472 __isl_keep isl_map *map, enum isl_dim_type type,
1475 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1476 enum isl_dim_type type, __isl_keep isl_id *id);
1477 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1478 enum isl_dim_type type, __isl_keep isl_id *id);
1479 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1480 enum isl_dim_type type, const char *name);
1482 const char *isl_constraint_get_dim_name(
1483 __isl_keep isl_constraint *constraint,
1484 enum isl_dim_type type, unsigned pos);
1485 const char *isl_basic_set_get_dim_name(
1486 __isl_keep isl_basic_set *bset,
1487 enum isl_dim_type type, unsigned pos);
1488 const char *isl_set_get_dim_name(
1489 __isl_keep isl_set *set,
1490 enum isl_dim_type type, unsigned pos);
1491 const char *isl_basic_map_get_dim_name(
1492 __isl_keep isl_basic_map *bmap,
1493 enum isl_dim_type type, unsigned pos);
1494 const char *isl_map_get_dim_name(
1495 __isl_keep isl_map *map,
1496 enum isl_dim_type type, unsigned pos);
1498 These functions are mostly useful to obtain the identifiers, positions
1499 or names of the parameters. Identifiers of individual dimensions are
1500 essentially only useful for printing. They are ignored by all other
1501 operations and may not be preserved across those operations.
1505 =head3 Unary Properties
1511 The following functions test whether the given set or relation
1512 contains any integer points. The ``plain'' variants do not perform
1513 any computations, but simply check if the given set or relation
1514 is already known to be empty.
1516 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1517 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1518 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1519 int isl_set_is_empty(__isl_keep isl_set *set);
1520 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1521 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1522 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1523 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1524 int isl_map_is_empty(__isl_keep isl_map *map);
1525 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1527 =item * Universality
1529 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1530 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1531 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1533 =item * Single-valuedness
1535 int isl_map_is_single_valued(__isl_keep isl_map *map);
1536 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1540 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1541 int isl_map_is_injective(__isl_keep isl_map *map);
1542 int isl_union_map_plain_is_injective(
1543 __isl_keep isl_union_map *umap);
1544 int isl_union_map_is_injective(
1545 __isl_keep isl_union_map *umap);
1549 int isl_map_is_bijective(__isl_keep isl_map *map);
1550 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1554 int isl_basic_map_plain_is_fixed(
1555 __isl_keep isl_basic_map *bmap,
1556 enum isl_dim_type type, unsigned pos,
1558 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1559 enum isl_dim_type type, unsigned pos,
1561 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1562 enum isl_dim_type type, unsigned pos,
1565 Check if the relation obviously lies on a hyperplane where the given dimension
1566 has a fixed value and if so, return that value in C<*val>.
1570 To check whether a set is a parameter domain, use this function:
1572 int isl_set_is_params(__isl_keep isl_set *set);
1576 The following functions check whether the domain of the given
1577 (basic) set is a wrapped relation.
1579 int isl_basic_set_is_wrapping(
1580 __isl_keep isl_basic_set *bset);
1581 int isl_set_is_wrapping(__isl_keep isl_set *set);
1583 =item * Internal Product
1585 int isl_basic_map_can_zip(
1586 __isl_keep isl_basic_map *bmap);
1587 int isl_map_can_zip(__isl_keep isl_map *map);
1589 Check whether the product of domain and range of the given relation
1591 i.e., whether both domain and range are nested relations.
1595 =head3 Binary Properties
1601 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1602 __isl_keep isl_set *set2);
1603 int isl_set_is_equal(__isl_keep isl_set *set1,
1604 __isl_keep isl_set *set2);
1605 int isl_union_set_is_equal(
1606 __isl_keep isl_union_set *uset1,
1607 __isl_keep isl_union_set *uset2);
1608 int isl_basic_map_is_equal(
1609 __isl_keep isl_basic_map *bmap1,
1610 __isl_keep isl_basic_map *bmap2);
1611 int isl_map_is_equal(__isl_keep isl_map *map1,
1612 __isl_keep isl_map *map2);
1613 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1614 __isl_keep isl_map *map2);
1615 int isl_union_map_is_equal(
1616 __isl_keep isl_union_map *umap1,
1617 __isl_keep isl_union_map *umap2);
1619 =item * Disjointness
1621 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1622 __isl_keep isl_set *set2);
1626 int isl_set_is_subset(__isl_keep isl_set *set1,
1627 __isl_keep isl_set *set2);
1628 int isl_set_is_strict_subset(
1629 __isl_keep isl_set *set1,
1630 __isl_keep isl_set *set2);
1631 int isl_union_set_is_subset(
1632 __isl_keep isl_union_set *uset1,
1633 __isl_keep isl_union_set *uset2);
1634 int isl_union_set_is_strict_subset(
1635 __isl_keep isl_union_set *uset1,
1636 __isl_keep isl_union_set *uset2);
1637 int isl_basic_map_is_subset(
1638 __isl_keep isl_basic_map *bmap1,
1639 __isl_keep isl_basic_map *bmap2);
1640 int isl_basic_map_is_strict_subset(
1641 __isl_keep isl_basic_map *bmap1,
1642 __isl_keep isl_basic_map *bmap2);
1643 int isl_map_is_subset(
1644 __isl_keep isl_map *map1,
1645 __isl_keep isl_map *map2);
1646 int isl_map_is_strict_subset(
1647 __isl_keep isl_map *map1,
1648 __isl_keep isl_map *map2);
1649 int isl_union_map_is_subset(
1650 __isl_keep isl_union_map *umap1,
1651 __isl_keep isl_union_map *umap2);
1652 int isl_union_map_is_strict_subset(
1653 __isl_keep isl_union_map *umap1,
1654 __isl_keep isl_union_map *umap2);
1658 =head2 Unary Operations
1664 __isl_give isl_set *isl_set_complement(
1665 __isl_take isl_set *set);
1669 __isl_give isl_basic_map *isl_basic_map_reverse(
1670 __isl_take isl_basic_map *bmap);
1671 __isl_give isl_map *isl_map_reverse(
1672 __isl_take isl_map *map);
1673 __isl_give isl_union_map *isl_union_map_reverse(
1674 __isl_take isl_union_map *umap);
1678 __isl_give isl_basic_set *isl_basic_set_project_out(
1679 __isl_take isl_basic_set *bset,
1680 enum isl_dim_type type, unsigned first, unsigned n);
1681 __isl_give isl_basic_map *isl_basic_map_project_out(
1682 __isl_take isl_basic_map *bmap,
1683 enum isl_dim_type type, unsigned first, unsigned n);
1684 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1685 enum isl_dim_type type, unsigned first, unsigned n);
1686 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1687 enum isl_dim_type type, unsigned first, unsigned n);
1688 __isl_give isl_basic_set *isl_basic_set_params(
1689 __isl_take isl_basic_set *bset);
1690 __isl_give isl_basic_set *isl_basic_map_domain(
1691 __isl_take isl_basic_map *bmap);
1692 __isl_give isl_basic_set *isl_basic_map_range(
1693 __isl_take isl_basic_map *bmap);
1694 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1695 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1696 __isl_give isl_set *isl_map_domain(
1697 __isl_take isl_map *bmap);
1698 __isl_give isl_set *isl_map_range(
1699 __isl_take isl_map *map);
1700 __isl_give isl_union_set *isl_union_map_domain(
1701 __isl_take isl_union_map *umap);
1702 __isl_give isl_union_set *isl_union_map_range(
1703 __isl_take isl_union_map *umap);
1705 __isl_give isl_basic_map *isl_basic_map_domain_map(
1706 __isl_take isl_basic_map *bmap);
1707 __isl_give isl_basic_map *isl_basic_map_range_map(
1708 __isl_take isl_basic_map *bmap);
1709 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1710 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1711 __isl_give isl_union_map *isl_union_map_domain_map(
1712 __isl_take isl_union_map *umap);
1713 __isl_give isl_union_map *isl_union_map_range_map(
1714 __isl_take isl_union_map *umap);
1716 The functions above construct a (basic, regular or union) relation
1717 that maps (a wrapped version of) the input relation to its domain or range.
1721 __isl_give isl_set *isl_set_eliminate(
1722 __isl_take isl_set *set, enum isl_dim_type type,
1723 unsigned first, unsigned n);
1725 Eliminate the coefficients for the given dimensions from the constraints,
1726 without removing the dimensions.
1730 __isl_give isl_basic_set *isl_basic_set_fix(
1731 __isl_take isl_basic_set *bset,
1732 enum isl_dim_type type, unsigned pos,
1734 __isl_give isl_basic_set *isl_basic_set_fix_si(
1735 __isl_take isl_basic_set *bset,
1736 enum isl_dim_type type, unsigned pos, int value);
1737 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1738 enum isl_dim_type type, unsigned pos,
1740 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1741 enum isl_dim_type type, unsigned pos, int value);
1742 __isl_give isl_basic_map *isl_basic_map_fix_si(
1743 __isl_take isl_basic_map *bmap,
1744 enum isl_dim_type type, unsigned pos, int value);
1745 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1746 enum isl_dim_type type, unsigned pos, int value);
1748 Intersect the set or relation with the hyperplane where the given
1749 dimension has the fixed given value.
1751 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1752 enum isl_dim_type type1, int pos1,
1753 enum isl_dim_type type2, int pos2);
1754 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1755 enum isl_dim_type type1, int pos1,
1756 enum isl_dim_type type2, int pos2);
1758 Intersect the set or relation with the hyperplane where the given
1759 dimensions are equal to each other.
1761 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1762 enum isl_dim_type type1, int pos1,
1763 enum isl_dim_type type2, int pos2);
1765 Intersect the relation with the hyperplane where the given
1766 dimensions have opposite values.
1770 __isl_give isl_map *isl_set_identity(
1771 __isl_take isl_set *set);
1772 __isl_give isl_union_map *isl_union_set_identity(
1773 __isl_take isl_union_set *uset);
1775 Construct an identity relation on the given (union) set.
1779 __isl_give isl_basic_set *isl_basic_map_deltas(
1780 __isl_take isl_basic_map *bmap);
1781 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1782 __isl_give isl_union_set *isl_union_map_deltas(
1783 __isl_take isl_union_map *umap);
1785 These functions return a (basic) set containing the differences
1786 between image elements and corresponding domain elements in the input.
1788 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1789 __isl_take isl_basic_map *bmap);
1790 __isl_give isl_map *isl_map_deltas_map(
1791 __isl_take isl_map *map);
1792 __isl_give isl_union_map *isl_union_map_deltas_map(
1793 __isl_take isl_union_map *umap);
1795 The functions above construct a (basic, regular or union) relation
1796 that maps (a wrapped version of) the input relation to its delta set.
1800 Simplify the representation of a set or relation by trying
1801 to combine pairs of basic sets or relations into a single
1802 basic set or relation.
1804 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1805 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1806 __isl_give isl_union_set *isl_union_set_coalesce(
1807 __isl_take isl_union_set *uset);
1808 __isl_give isl_union_map *isl_union_map_coalesce(
1809 __isl_take isl_union_map *umap);
1811 =item * Detecting equalities
1813 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1814 __isl_take isl_basic_set *bset);
1815 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1816 __isl_take isl_basic_map *bmap);
1817 __isl_give isl_set *isl_set_detect_equalities(
1818 __isl_take isl_set *set);
1819 __isl_give isl_map *isl_map_detect_equalities(
1820 __isl_take isl_map *map);
1821 __isl_give isl_union_set *isl_union_set_detect_equalities(
1822 __isl_take isl_union_set *uset);
1823 __isl_give isl_union_map *isl_union_map_detect_equalities(
1824 __isl_take isl_union_map *umap);
1826 Simplify the representation of a set or relation by detecting implicit
1829 =item * Removing redundant constraints
1831 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1832 __isl_take isl_basic_set *bset);
1833 __isl_give isl_set *isl_set_remove_redundancies(
1834 __isl_take isl_set *set);
1835 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1836 __isl_take isl_basic_map *bmap);
1837 __isl_give isl_map *isl_map_remove_redundancies(
1838 __isl_take isl_map *map);
1842 __isl_give isl_basic_set *isl_set_convex_hull(
1843 __isl_take isl_set *set);
1844 __isl_give isl_basic_map *isl_map_convex_hull(
1845 __isl_take isl_map *map);
1847 If the input set or relation has any existentially quantified
1848 variables, then the result of these operations is currently undefined.
1852 __isl_give isl_basic_set *isl_set_simple_hull(
1853 __isl_take isl_set *set);
1854 __isl_give isl_basic_map *isl_map_simple_hull(
1855 __isl_take isl_map *map);
1856 __isl_give isl_union_map *isl_union_map_simple_hull(
1857 __isl_take isl_union_map *umap);
1859 These functions compute a single basic set or relation
1860 that contains the whole input set or relation.
1861 In particular, the output is described by translates
1862 of the constraints describing the basic sets or relations in the input.
1866 (See \autoref{s:simple hull}.)
1872 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1873 __isl_take isl_basic_set *bset);
1874 __isl_give isl_basic_set *isl_set_affine_hull(
1875 __isl_take isl_set *set);
1876 __isl_give isl_union_set *isl_union_set_affine_hull(
1877 __isl_take isl_union_set *uset);
1878 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1879 __isl_take isl_basic_map *bmap);
1880 __isl_give isl_basic_map *isl_map_affine_hull(
1881 __isl_take isl_map *map);
1882 __isl_give isl_union_map *isl_union_map_affine_hull(
1883 __isl_take isl_union_map *umap);
1885 In case of union sets and relations, the affine hull is computed
1888 =item * Polyhedral hull
1890 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1891 __isl_take isl_set *set);
1892 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1893 __isl_take isl_map *map);
1894 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1895 __isl_take isl_union_set *uset);
1896 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1897 __isl_take isl_union_map *umap);
1899 These functions compute a single basic set or relation
1900 not involving any existentially quantified variables
1901 that contains the whole input set or relation.
1902 In case of union sets and relations, the polyhedral hull is computed
1905 =item * Optimization
1907 #include <isl/ilp.h>
1908 enum isl_lp_result isl_basic_set_max(
1909 __isl_keep isl_basic_set *bset,
1910 __isl_keep isl_aff *obj, isl_int *opt)
1911 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
1912 __isl_keep isl_aff *obj, isl_int *opt);
1913 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
1914 __isl_keep isl_aff *obj, isl_int *opt);
1916 Compute the minimum or maximum of the integer affine expression C<obj>
1917 over the points in C<set>, returning the result in C<opt>.
1918 The return value may be one of C<isl_lp_error>,
1919 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
1921 =item * Parametric optimization
1923 __isl_give isl_pw_aff *isl_set_dim_min(
1924 __isl_take isl_set *set, int pos);
1925 __isl_give isl_pw_aff *isl_set_dim_max(
1926 __isl_take isl_set *set, int pos);
1928 Compute the minimum or maximum of the given set dimension as a function of the
1929 parameters, but independently of the other set dimensions.
1930 For lexicographic optimization, see L<"Lexicographic Optimization">.
1934 The following functions compute either the set of (rational) coefficient
1935 values of valid constraints for the given set or the set of (rational)
1936 values satisfying the constraints with coefficients from the given set.
1937 Internally, these two sets of functions perform essentially the
1938 same operations, except that the set of coefficients is assumed to
1939 be a cone, while the set of values may be any polyhedron.
1940 The current implementation is based on the Farkas lemma and
1941 Fourier-Motzkin elimination, but this may change or be made optional
1942 in future. In particular, future implementations may use different
1943 dualization algorithms or skip the elimination step.
1945 __isl_give isl_basic_set *isl_basic_set_coefficients(
1946 __isl_take isl_basic_set *bset);
1947 __isl_give isl_basic_set *isl_set_coefficients(
1948 __isl_take isl_set *set);
1949 __isl_give isl_union_set *isl_union_set_coefficients(
1950 __isl_take isl_union_set *bset);
1951 __isl_give isl_basic_set *isl_basic_set_solutions(
1952 __isl_take isl_basic_set *bset);
1953 __isl_give isl_basic_set *isl_set_solutions(
1954 __isl_take isl_set *set);
1955 __isl_give isl_union_set *isl_union_set_solutions(
1956 __isl_take isl_union_set *bset);
1960 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1962 __isl_give isl_union_map *isl_union_map_power(
1963 __isl_take isl_union_map *umap, int *exact);
1965 Compute a parametric representation for all positive powers I<k> of C<map>.
1966 The result maps I<k> to a nested relation corresponding to the
1967 I<k>th power of C<map>.
1968 The result may be an overapproximation. If the result is known to be exact,
1969 then C<*exact> is set to C<1>.
1971 =item * Transitive closure
1973 __isl_give isl_map *isl_map_transitive_closure(
1974 __isl_take isl_map *map, int *exact);
1975 __isl_give isl_union_map *isl_union_map_transitive_closure(
1976 __isl_take isl_union_map *umap, int *exact);
1978 Compute the transitive closure of C<map>.
1979 The result may be an overapproximation. If the result is known to be exact,
1980 then C<*exact> is set to C<1>.
1982 =item * Reaching path lengths
1984 __isl_give isl_map *isl_map_reaching_path_lengths(
1985 __isl_take isl_map *map, int *exact);
1987 Compute a relation that maps each element in the range of C<map>
1988 to the lengths of all paths composed of edges in C<map> that
1989 end up in the given element.
1990 The result may be an overapproximation. If the result is known to be exact,
1991 then C<*exact> is set to C<1>.
1992 To compute the I<maximal> path length, the resulting relation
1993 should be postprocessed by C<isl_map_lexmax>.
1994 In particular, if the input relation is a dependence relation
1995 (mapping sources to sinks), then the maximal path length corresponds
1996 to the free schedule.
1997 Note, however, that C<isl_map_lexmax> expects the maximum to be
1998 finite, so if the path lengths are unbounded (possibly due to
1999 the overapproximation), then you will get an error message.
2003 __isl_give isl_basic_set *isl_basic_map_wrap(
2004 __isl_take isl_basic_map *bmap);
2005 __isl_give isl_set *isl_map_wrap(
2006 __isl_take isl_map *map);
2007 __isl_give isl_union_set *isl_union_map_wrap(
2008 __isl_take isl_union_map *umap);
2009 __isl_give isl_basic_map *isl_basic_set_unwrap(
2010 __isl_take isl_basic_set *bset);
2011 __isl_give isl_map *isl_set_unwrap(
2012 __isl_take isl_set *set);
2013 __isl_give isl_union_map *isl_union_set_unwrap(
2014 __isl_take isl_union_set *uset);
2018 Remove any internal structure of domain (and range) of the given
2019 set or relation. If there is any such internal structure in the input,
2020 then the name of the space is also removed.
2022 __isl_give isl_basic_set *isl_basic_set_flatten(
2023 __isl_take isl_basic_set *bset);
2024 __isl_give isl_set *isl_set_flatten(
2025 __isl_take isl_set *set);
2026 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2027 __isl_take isl_basic_map *bmap);
2028 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2029 __isl_take isl_basic_map *bmap);
2030 __isl_give isl_map *isl_map_flatten_range(
2031 __isl_take isl_map *map);
2032 __isl_give isl_map *isl_map_flatten_domain(
2033 __isl_take isl_map *map);
2034 __isl_give isl_basic_map *isl_basic_map_flatten(
2035 __isl_take isl_basic_map *bmap);
2036 __isl_give isl_map *isl_map_flatten(
2037 __isl_take isl_map *map);
2039 __isl_give isl_map *isl_set_flatten_map(
2040 __isl_take isl_set *set);
2042 The function above constructs a relation
2043 that maps the input set to a flattened version of the set.
2047 Lift the input set to a space with extra dimensions corresponding
2048 to the existentially quantified variables in the input.
2049 In particular, the result lives in a wrapped map where the domain
2050 is the original space and the range corresponds to the original
2051 existentially quantified variables.
2053 __isl_give isl_basic_set *isl_basic_set_lift(
2054 __isl_take isl_basic_set *bset);
2055 __isl_give isl_set *isl_set_lift(
2056 __isl_take isl_set *set);
2057 __isl_give isl_union_set *isl_union_set_lift(
2058 __isl_take isl_union_set *uset);
2060 =item * Internal Product
2062 __isl_give isl_basic_map *isl_basic_map_zip(
2063 __isl_take isl_basic_map *bmap);
2064 __isl_give isl_map *isl_map_zip(
2065 __isl_take isl_map *map);
2066 __isl_give isl_union_map *isl_union_map_zip(
2067 __isl_take isl_union_map *umap);
2069 Given a relation with nested relations for domain and range,
2070 interchange the range of the domain with the domain of the range.
2072 =item * Aligning parameters
2074 __isl_give isl_set *isl_set_align_params(
2075 __isl_take isl_set *set,
2076 __isl_take isl_space *model);
2077 __isl_give isl_map *isl_map_align_params(
2078 __isl_take isl_map *map,
2079 __isl_take isl_space *model);
2081 Change the order of the parameters of the given set or relation
2082 such that the first parameters match those of C<model>.
2083 This may involve the introduction of extra parameters.
2084 All parameters need to be named.
2086 =item * Dimension manipulation
2088 __isl_give isl_set *isl_set_add_dims(
2089 __isl_take isl_set *set,
2090 enum isl_dim_type type, unsigned n);
2091 __isl_give isl_map *isl_map_add_dims(
2092 __isl_take isl_map *map,
2093 enum isl_dim_type type, unsigned n);
2094 __isl_give isl_set *isl_set_insert_dims(
2095 __isl_take isl_set *set,
2096 enum isl_dim_type type, unsigned pos, unsigned n);
2097 __isl_give isl_map *isl_map_insert_dims(
2098 __isl_take isl_map *map,
2099 enum isl_dim_type type, unsigned pos, unsigned n);
2100 __isl_give isl_basic_set *isl_basic_set_move_dims(
2101 __isl_take isl_basic_set *bset,
2102 enum isl_dim_type dst_type, unsigned dst_pos,
2103 enum isl_dim_type src_type, unsigned src_pos,
2105 __isl_give isl_basic_map *isl_basic_map_move_dims(
2106 __isl_take isl_basic_map *bmap,
2107 enum isl_dim_type dst_type, unsigned dst_pos,
2108 enum isl_dim_type src_type, unsigned src_pos,
2110 __isl_give isl_set *isl_set_move_dims(
2111 __isl_take isl_set *set,
2112 enum isl_dim_type dst_type, unsigned dst_pos,
2113 enum isl_dim_type src_type, unsigned src_pos,
2115 __isl_give isl_map *isl_map_move_dims(
2116 __isl_take isl_map *map,
2117 enum isl_dim_type dst_type, unsigned dst_pos,
2118 enum isl_dim_type src_type, unsigned src_pos,
2121 It is usually not advisable to directly change the (input or output)
2122 space of a set or a relation as this removes the name and the internal
2123 structure of the space. However, the above functions can be useful
2124 to add new parameters, assuming
2125 C<isl_set_align_params> and C<isl_map_align_params>
2130 =head2 Binary Operations
2132 The two arguments of a binary operation not only need to live
2133 in the same C<isl_ctx>, they currently also need to have
2134 the same (number of) parameters.
2136 =head3 Basic Operations
2140 =item * Intersection
2142 __isl_give isl_basic_set *isl_basic_set_intersect(
2143 __isl_take isl_basic_set *bset1,
2144 __isl_take isl_basic_set *bset2);
2145 __isl_give isl_set *isl_set_intersect_params(
2146 __isl_take isl_set *set,
2147 __isl_take isl_set *params);
2148 __isl_give isl_set *isl_set_intersect(
2149 __isl_take isl_set *set1,
2150 __isl_take isl_set *set2);
2151 __isl_give isl_union_set *isl_union_set_intersect(
2152 __isl_take isl_union_set *uset1,
2153 __isl_take isl_union_set *uset2);
2154 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2155 __isl_take isl_basic_map *bmap,
2156 __isl_take isl_basic_set *bset);
2157 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2158 __isl_take isl_basic_map *bmap,
2159 __isl_take isl_basic_set *bset);
2160 __isl_give isl_basic_map *isl_basic_map_intersect(
2161 __isl_take isl_basic_map *bmap1,
2162 __isl_take isl_basic_map *bmap2);
2163 __isl_give isl_map *isl_map_intersect_params(
2164 __isl_take isl_map *map,
2165 __isl_take isl_set *params);
2166 __isl_give isl_map *isl_map_intersect_domain(
2167 __isl_take isl_map *map,
2168 __isl_take isl_set *set);
2169 __isl_give isl_map *isl_map_intersect_range(
2170 __isl_take isl_map *map,
2171 __isl_take isl_set *set);
2172 __isl_give isl_map *isl_map_intersect(
2173 __isl_take isl_map *map1,
2174 __isl_take isl_map *map2);
2175 __isl_give isl_union_map *isl_union_map_intersect_domain(
2176 __isl_take isl_union_map *umap,
2177 __isl_take isl_union_set *uset);
2178 __isl_give isl_union_map *isl_union_map_intersect_range(
2179 __isl_take isl_union_map *umap,
2180 __isl_take isl_union_set *uset);
2181 __isl_give isl_union_map *isl_union_map_intersect(
2182 __isl_take isl_union_map *umap1,
2183 __isl_take isl_union_map *umap2);
2187 __isl_give isl_set *isl_basic_set_union(
2188 __isl_take isl_basic_set *bset1,
2189 __isl_take isl_basic_set *bset2);
2190 __isl_give isl_map *isl_basic_map_union(
2191 __isl_take isl_basic_map *bmap1,
2192 __isl_take isl_basic_map *bmap2);
2193 __isl_give isl_set *isl_set_union(
2194 __isl_take isl_set *set1,
2195 __isl_take isl_set *set2);
2196 __isl_give isl_map *isl_map_union(
2197 __isl_take isl_map *map1,
2198 __isl_take isl_map *map2);
2199 __isl_give isl_union_set *isl_union_set_union(
2200 __isl_take isl_union_set *uset1,
2201 __isl_take isl_union_set *uset2);
2202 __isl_give isl_union_map *isl_union_map_union(
2203 __isl_take isl_union_map *umap1,
2204 __isl_take isl_union_map *umap2);
2206 =item * Set difference
2208 __isl_give isl_set *isl_set_subtract(
2209 __isl_take isl_set *set1,
2210 __isl_take isl_set *set2);
2211 __isl_give isl_map *isl_map_subtract(
2212 __isl_take isl_map *map1,
2213 __isl_take isl_map *map2);
2214 __isl_give isl_union_set *isl_union_set_subtract(
2215 __isl_take isl_union_set *uset1,
2216 __isl_take isl_union_set *uset2);
2217 __isl_give isl_union_map *isl_union_map_subtract(
2218 __isl_take isl_union_map *umap1,
2219 __isl_take isl_union_map *umap2);
2223 __isl_give isl_basic_set *isl_basic_set_apply(
2224 __isl_take isl_basic_set *bset,
2225 __isl_take isl_basic_map *bmap);
2226 __isl_give isl_set *isl_set_apply(
2227 __isl_take isl_set *set,
2228 __isl_take isl_map *map);
2229 __isl_give isl_union_set *isl_union_set_apply(
2230 __isl_take isl_union_set *uset,
2231 __isl_take isl_union_map *umap);
2232 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2233 __isl_take isl_basic_map *bmap1,
2234 __isl_take isl_basic_map *bmap2);
2235 __isl_give isl_basic_map *isl_basic_map_apply_range(
2236 __isl_take isl_basic_map *bmap1,
2237 __isl_take isl_basic_map *bmap2);
2238 __isl_give isl_map *isl_map_apply_domain(
2239 __isl_take isl_map *map1,
2240 __isl_take isl_map *map2);
2241 __isl_give isl_union_map *isl_union_map_apply_domain(
2242 __isl_take isl_union_map *umap1,
2243 __isl_take isl_union_map *umap2);
2244 __isl_give isl_map *isl_map_apply_range(
2245 __isl_take isl_map *map1,
2246 __isl_take isl_map *map2);
2247 __isl_give isl_union_map *isl_union_map_apply_range(
2248 __isl_take isl_union_map *umap1,
2249 __isl_take isl_union_map *umap2);
2251 =item * Cartesian Product
2253 __isl_give isl_set *isl_set_product(
2254 __isl_take isl_set *set1,
2255 __isl_take isl_set *set2);
2256 __isl_give isl_union_set *isl_union_set_product(
2257 __isl_take isl_union_set *uset1,
2258 __isl_take isl_union_set *uset2);
2259 __isl_give isl_basic_map *isl_basic_map_domain_product(
2260 __isl_take isl_basic_map *bmap1,
2261 __isl_take isl_basic_map *bmap2);
2262 __isl_give isl_basic_map *isl_basic_map_range_product(
2263 __isl_take isl_basic_map *bmap1,
2264 __isl_take isl_basic_map *bmap2);
2265 __isl_give isl_map *isl_map_domain_product(
2266 __isl_take isl_map *map1,
2267 __isl_take isl_map *map2);
2268 __isl_give isl_map *isl_map_range_product(
2269 __isl_take isl_map *map1,
2270 __isl_take isl_map *map2);
2271 __isl_give isl_union_map *isl_union_map_range_product(
2272 __isl_take isl_union_map *umap1,
2273 __isl_take isl_union_map *umap2);
2274 __isl_give isl_map *isl_map_product(
2275 __isl_take isl_map *map1,
2276 __isl_take isl_map *map2);
2277 __isl_give isl_union_map *isl_union_map_product(
2278 __isl_take isl_union_map *umap1,
2279 __isl_take isl_union_map *umap2);
2281 The above functions compute the cross product of the given
2282 sets or relations. The domains and ranges of the results
2283 are wrapped maps between domains and ranges of the inputs.
2284 To obtain a ``flat'' product, use the following functions
2287 __isl_give isl_basic_set *isl_basic_set_flat_product(
2288 __isl_take isl_basic_set *bset1,
2289 __isl_take isl_basic_set *bset2);
2290 __isl_give isl_set *isl_set_flat_product(
2291 __isl_take isl_set *set1,
2292 __isl_take isl_set *set2);
2293 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2294 __isl_take isl_basic_map *bmap1,
2295 __isl_take isl_basic_map *bmap2);
2296 __isl_give isl_map *isl_map_flat_domain_product(
2297 __isl_take isl_map *map1,
2298 __isl_take isl_map *map2);
2299 __isl_give isl_map *isl_map_flat_range_product(
2300 __isl_take isl_map *map1,
2301 __isl_take isl_map *map2);
2302 __isl_give isl_union_map *isl_union_map_flat_range_product(
2303 __isl_take isl_union_map *umap1,
2304 __isl_take isl_union_map *umap2);
2305 __isl_give isl_basic_map *isl_basic_map_flat_product(
2306 __isl_take isl_basic_map *bmap1,
2307 __isl_take isl_basic_map *bmap2);
2308 __isl_give isl_map *isl_map_flat_product(
2309 __isl_take isl_map *map1,
2310 __isl_take isl_map *map2);
2312 =item * Simplification
2314 __isl_give isl_basic_set *isl_basic_set_gist(
2315 __isl_take isl_basic_set *bset,
2316 __isl_take isl_basic_set *context);
2317 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2318 __isl_take isl_set *context);
2319 __isl_give isl_set *isl_set_gist_params(
2320 __isl_take isl_set *set,
2321 __isl_take isl_set *context);
2322 __isl_give isl_union_set *isl_union_set_gist(
2323 __isl_take isl_union_set *uset,
2324 __isl_take isl_union_set *context);
2325 __isl_give isl_basic_map *isl_basic_map_gist(
2326 __isl_take isl_basic_map *bmap,
2327 __isl_take isl_basic_map *context);
2328 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2329 __isl_take isl_map *context);
2330 __isl_give isl_map *isl_map_gist_params(
2331 __isl_take isl_map *map,
2332 __isl_take isl_set *context);
2333 __isl_give isl_union_map *isl_union_map_gist(
2334 __isl_take isl_union_map *umap,
2335 __isl_take isl_union_map *context);
2337 The gist operation returns a set or relation that has the
2338 same intersection with the context as the input set or relation.
2339 Any implicit equality in the intersection is made explicit in the result,
2340 while all inequalities that are redundant with respect to the intersection
2342 In case of union sets and relations, the gist operation is performed
2347 =head3 Lexicographic Optimization
2349 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2350 the following functions
2351 compute a set that contains the lexicographic minimum or maximum
2352 of the elements in C<set> (or C<bset>) for those values of the parameters
2353 that satisfy C<dom>.
2354 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2355 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2357 In other words, the union of the parameter values
2358 for which the result is non-empty and of C<*empty>
2361 __isl_give isl_set *isl_basic_set_partial_lexmin(
2362 __isl_take isl_basic_set *bset,
2363 __isl_take isl_basic_set *dom,
2364 __isl_give isl_set **empty);
2365 __isl_give isl_set *isl_basic_set_partial_lexmax(
2366 __isl_take isl_basic_set *bset,
2367 __isl_take isl_basic_set *dom,
2368 __isl_give isl_set **empty);
2369 __isl_give isl_set *isl_set_partial_lexmin(
2370 __isl_take isl_set *set, __isl_take isl_set *dom,
2371 __isl_give isl_set **empty);
2372 __isl_give isl_set *isl_set_partial_lexmax(
2373 __isl_take isl_set *set, __isl_take isl_set *dom,
2374 __isl_give isl_set **empty);
2376 Given a (basic) set C<set> (or C<bset>), the following functions simply
2377 return a set containing the lexicographic minimum or maximum
2378 of the elements in C<set> (or C<bset>).
2379 In case of union sets, the optimum is computed per space.
2381 __isl_give isl_set *isl_basic_set_lexmin(
2382 __isl_take isl_basic_set *bset);
2383 __isl_give isl_set *isl_basic_set_lexmax(
2384 __isl_take isl_basic_set *bset);
2385 __isl_give isl_set *isl_set_lexmin(
2386 __isl_take isl_set *set);
2387 __isl_give isl_set *isl_set_lexmax(
2388 __isl_take isl_set *set);
2389 __isl_give isl_union_set *isl_union_set_lexmin(
2390 __isl_take isl_union_set *uset);
2391 __isl_give isl_union_set *isl_union_set_lexmax(
2392 __isl_take isl_union_set *uset);
2394 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2395 the following functions
2396 compute a relation that maps each element of C<dom>
2397 to the single lexicographic minimum or maximum
2398 of the elements that are associated to that same
2399 element in C<map> (or C<bmap>).
2400 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2401 that contains the elements in C<dom> that do not map
2402 to any elements in C<map> (or C<bmap>).
2403 In other words, the union of the domain of the result and of C<*empty>
2406 __isl_give isl_map *isl_basic_map_partial_lexmax(
2407 __isl_take isl_basic_map *bmap,
2408 __isl_take isl_basic_set *dom,
2409 __isl_give isl_set **empty);
2410 __isl_give isl_map *isl_basic_map_partial_lexmin(
2411 __isl_take isl_basic_map *bmap,
2412 __isl_take isl_basic_set *dom,
2413 __isl_give isl_set **empty);
2414 __isl_give isl_map *isl_map_partial_lexmax(
2415 __isl_take isl_map *map, __isl_take isl_set *dom,
2416 __isl_give isl_set **empty);
2417 __isl_give isl_map *isl_map_partial_lexmin(
2418 __isl_take isl_map *map, __isl_take isl_set *dom,
2419 __isl_give isl_set **empty);
2421 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2422 return a map mapping each element in the domain of
2423 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2424 of all elements associated to that element.
2425 In case of union relations, the optimum is computed per space.
2427 __isl_give isl_map *isl_basic_map_lexmin(
2428 __isl_take isl_basic_map *bmap);
2429 __isl_give isl_map *isl_basic_map_lexmax(
2430 __isl_take isl_basic_map *bmap);
2431 __isl_give isl_map *isl_map_lexmin(
2432 __isl_take isl_map *map);
2433 __isl_give isl_map *isl_map_lexmax(
2434 __isl_take isl_map *map);
2435 __isl_give isl_union_map *isl_union_map_lexmin(
2436 __isl_take isl_union_map *umap);
2437 __isl_give isl_union_map *isl_union_map_lexmax(
2438 __isl_take isl_union_map *umap);
2442 Lists are defined over several element types, including
2443 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2444 Here we take lists of C<isl_set>s as an example.
2445 Lists can be created, copied and freed using the following functions.
2447 #include <isl/list.h>
2448 __isl_give isl_set_list *isl_set_list_from_set(
2449 __isl_take isl_set *el);
2450 __isl_give isl_set_list *isl_set_list_alloc(
2451 isl_ctx *ctx, int n);
2452 __isl_give isl_set_list *isl_set_list_copy(
2453 __isl_keep isl_set_list *list);
2454 __isl_give isl_set_list *isl_set_list_add(
2455 __isl_take isl_set_list *list,
2456 __isl_take isl_set *el);
2457 __isl_give isl_set_list *isl_set_list_concat(
2458 __isl_take isl_set_list *list1,
2459 __isl_take isl_set_list *list2);
2460 void *isl_set_list_free(__isl_take isl_set_list *list);
2462 C<isl_set_list_alloc> creates an empty list with a capacity for
2463 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2466 Lists can be inspected using the following functions.
2468 #include <isl/list.h>
2469 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2470 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2471 __isl_give isl_set *isl_set_list_get_set(
2472 __isl_keep isl_set_list *list, int index);
2473 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2474 int (*fn)(__isl_take isl_set *el, void *user),
2477 Lists can be printed using
2479 #include <isl/list.h>
2480 __isl_give isl_printer *isl_printer_print_set_list(
2481 __isl_take isl_printer *p,
2482 __isl_keep isl_set_list *list);
2486 Matrices can be created, copied and freed using the following functions.
2488 #include <isl/mat.h>
2489 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2490 unsigned n_row, unsigned n_col);
2491 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2492 void isl_mat_free(__isl_take isl_mat *mat);
2494 Note that the elements of a newly created matrix may have arbitrary values.
2495 The elements can be changed and inspected using the following functions.
2497 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2498 int isl_mat_rows(__isl_keep isl_mat *mat);
2499 int isl_mat_cols(__isl_keep isl_mat *mat);
2500 int isl_mat_get_element(__isl_keep isl_mat *mat,
2501 int row, int col, isl_int *v);
2502 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2503 int row, int col, isl_int v);
2504 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2505 int row, int col, int v);
2507 C<isl_mat_get_element> will return a negative value if anything went wrong.
2508 In that case, the value of C<*v> is undefined.
2510 The following function can be used to compute the (right) inverse
2511 of a matrix, i.e., a matrix such that the product of the original
2512 and the inverse (in that order) is a multiple of the identity matrix.
2513 The input matrix is assumed to be of full row-rank.
2515 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2517 The following function can be used to compute the (right) kernel
2518 (or null space) of a matrix, i.e., a matrix such that the product of
2519 the original and the kernel (in that order) is the zero matrix.
2521 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2523 =head2 Piecewise Quasi Affine Expressions
2525 The zero quasi affine expression on a given domain can be created using
2527 __isl_give isl_aff *isl_aff_zero_on_domain(
2528 __isl_take isl_local_space *ls);
2530 Note that the space in which the resulting object lives is a map space
2531 with the given space as domain and a one-dimensional range.
2533 An empty piecewise quasi affine expression (one with no cells)
2534 or a piecewise quasi affine expression with a single cell can
2535 be created using the following functions.
2537 #include <isl/aff.h>
2538 __isl_give isl_pw_aff *isl_pw_aff_empty(
2539 __isl_take isl_space *space);
2540 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2541 __isl_take isl_set *set, __isl_take isl_aff *aff);
2542 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2543 __isl_take isl_aff *aff);
2545 Quasi affine expressions can be copied and freed using
2547 #include <isl/aff.h>
2548 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2549 void *isl_aff_free(__isl_take isl_aff *aff);
2551 __isl_give isl_pw_aff *isl_pw_aff_copy(
2552 __isl_keep isl_pw_aff *pwaff);
2553 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2555 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2556 using the following function. The constraint is required to have
2557 a non-zero coefficient for the specified dimension.
2559 #include <isl/constraint.h>
2560 __isl_give isl_aff *isl_constraint_get_bound(
2561 __isl_keep isl_constraint *constraint,
2562 enum isl_dim_type type, int pos);
2564 The entire affine expression of the constraint can also be extracted
2565 using the following function.
2567 #include <isl/constraint.h>
2568 __isl_give isl_aff *isl_constraint_get_aff(
2569 __isl_keep isl_constraint *constraint);
2571 Conversely, an equality constraint equating
2572 the affine expression to zero or an inequality constraint enforcing
2573 the affine expression to be non-negative, can be constructed using
2575 __isl_give isl_constraint *isl_equality_from_aff(
2576 __isl_take isl_aff *aff);
2577 __isl_give isl_constraint *isl_inequality_from_aff(
2578 __isl_take isl_aff *aff);
2580 The expression can be inspected using
2582 #include <isl/aff.h>
2583 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2584 int isl_aff_dim(__isl_keep isl_aff *aff,
2585 enum isl_dim_type type);
2586 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2587 __isl_keep isl_aff *aff);
2588 __isl_give isl_local_space *isl_aff_get_local_space(
2589 __isl_keep isl_aff *aff);
2590 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2591 enum isl_dim_type type, unsigned pos);
2592 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2594 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2595 enum isl_dim_type type, int pos, isl_int *v);
2596 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2598 __isl_give isl_aff *isl_aff_get_div(
2599 __isl_keep isl_aff *aff, int pos);
2601 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2602 int (*fn)(__isl_take isl_set *set,
2603 __isl_take isl_aff *aff,
2604 void *user), void *user);
2606 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2607 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2609 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2610 enum isl_dim_type type, unsigned first, unsigned n);
2611 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2612 enum isl_dim_type type, unsigned first, unsigned n);
2614 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2615 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2616 enum isl_dim_type type);
2617 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2619 It can be modified using
2621 #include <isl/aff.h>
2622 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2623 __isl_take isl_pw_aff *pwaff,
2624 enum isl_dim_type type, __isl_take isl_id *id);
2625 __isl_give isl_aff *isl_aff_set_dim_name(
2626 __isl_take isl_aff *aff, enum isl_dim_type type,
2627 unsigned pos, const char *s);
2628 __isl_give isl_aff *isl_aff_set_constant(
2629 __isl_take isl_aff *aff, isl_int v);
2630 __isl_give isl_aff *isl_aff_set_constant_si(
2631 __isl_take isl_aff *aff, int v);
2632 __isl_give isl_aff *isl_aff_set_coefficient(
2633 __isl_take isl_aff *aff,
2634 enum isl_dim_type type, int pos, isl_int v);
2635 __isl_give isl_aff *isl_aff_set_coefficient_si(
2636 __isl_take isl_aff *aff,
2637 enum isl_dim_type type, int pos, int v);
2638 __isl_give isl_aff *isl_aff_set_denominator(
2639 __isl_take isl_aff *aff, isl_int v);
2641 __isl_give isl_aff *isl_aff_add_constant(
2642 __isl_take isl_aff *aff, isl_int v);
2643 __isl_give isl_aff *isl_aff_add_constant_si(
2644 __isl_take isl_aff *aff, int v);
2645 __isl_give isl_aff *isl_aff_add_coefficient(
2646 __isl_take isl_aff *aff,
2647 enum isl_dim_type type, int pos, isl_int v);
2648 __isl_give isl_aff *isl_aff_add_coefficient_si(
2649 __isl_take isl_aff *aff,
2650 enum isl_dim_type type, int pos, int v);
2652 __isl_give isl_aff *isl_aff_insert_dims(
2653 __isl_take isl_aff *aff,
2654 enum isl_dim_type type, unsigned first, unsigned n);
2655 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2656 __isl_take isl_pw_aff *pwaff,
2657 enum isl_dim_type type, unsigned first, unsigned n);
2658 __isl_give isl_aff *isl_aff_add_dims(
2659 __isl_take isl_aff *aff,
2660 enum isl_dim_type type, unsigned n);
2661 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2662 __isl_take isl_pw_aff *pwaff,
2663 enum isl_dim_type type, unsigned n);
2664 __isl_give isl_aff *isl_aff_drop_dims(
2665 __isl_take isl_aff *aff,
2666 enum isl_dim_type type, unsigned first, unsigned n);
2667 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2668 __isl_take isl_pw_aff *pwaff,
2669 enum isl_dim_type type, unsigned first, unsigned n);
2671 Note that the C<set_constant> and C<set_coefficient> functions
2672 set the I<numerator> of the constant or coefficient, while
2673 C<add_constant> and C<add_coefficient> add an integer value to
2674 the possibly rational constant or coefficient.
2676 To check whether an affine expressions is obviously zero
2677 or obviously equal to some other affine expression, use
2679 #include <isl/aff.h>
2680 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2681 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2682 __isl_keep isl_aff *aff2);
2683 int isl_pw_aff_plain_is_equal(
2684 __isl_keep isl_pw_aff *pwaff1,
2685 __isl_keep isl_pw_aff *pwaff2);
2689 #include <isl/aff.h>
2690 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2691 __isl_take isl_aff *aff2);
2692 __isl_give isl_pw_aff *isl_pw_aff_add(
2693 __isl_take isl_pw_aff *pwaff1,
2694 __isl_take isl_pw_aff *pwaff2);
2695 __isl_give isl_pw_aff *isl_pw_aff_min(
2696 __isl_take isl_pw_aff *pwaff1,
2697 __isl_take isl_pw_aff *pwaff2);
2698 __isl_give isl_pw_aff *isl_pw_aff_max(
2699 __isl_take isl_pw_aff *pwaff1,
2700 __isl_take isl_pw_aff *pwaff2);
2701 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2702 __isl_take isl_aff *aff2);
2703 __isl_give isl_pw_aff *isl_pw_aff_sub(
2704 __isl_take isl_pw_aff *pwaff1,
2705 __isl_take isl_pw_aff *pwaff2);
2706 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2707 __isl_give isl_pw_aff *isl_pw_aff_neg(
2708 __isl_take isl_pw_aff *pwaff);
2709 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2710 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2711 __isl_take isl_pw_aff *pwaff);
2712 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2713 __isl_give isl_pw_aff *isl_pw_aff_floor(
2714 __isl_take isl_pw_aff *pwaff);
2715 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2717 __isl_give isl_pw_aff *isl_pw_aff_mod(
2718 __isl_take isl_pw_aff *pwaff, isl_int mod);
2719 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2721 __isl_give isl_pw_aff *isl_pw_aff_scale(
2722 __isl_take isl_pw_aff *pwaff, isl_int f);
2723 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2725 __isl_give isl_aff *isl_aff_scale_down_ui(
2726 __isl_take isl_aff *aff, unsigned f);
2727 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2728 __isl_take isl_pw_aff *pwaff, isl_int f);
2730 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2731 __isl_take isl_pw_aff_list *list);
2732 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2733 __isl_take isl_pw_aff_list *list);
2735 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2736 __isl_take isl_pw_aff *pwqp);
2738 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2739 __isl_take isl_pw_aff *pwaff,
2740 __isl_take isl_space *model);
2742 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2743 __isl_take isl_set *context);
2744 __isl_give isl_pw_aff *isl_pw_aff_gist(
2745 __isl_take isl_pw_aff *pwaff,
2746 __isl_take isl_set *context);
2748 __isl_give isl_set *isl_pw_aff_domain(
2749 __isl_take isl_pw_aff *pwaff);
2750 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
2751 __isl_take isl_pw_aff *pa,
2752 __isl_take isl_set *set);
2754 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2755 __isl_take isl_aff *aff2);
2756 __isl_give isl_pw_aff *isl_pw_aff_mul(
2757 __isl_take isl_pw_aff *pwaff1,
2758 __isl_take isl_pw_aff *pwaff2);
2760 When multiplying two affine expressions, at least one of the two needs
2763 #include <isl/aff.h>
2764 __isl_give isl_basic_set *isl_aff_le_basic_set(
2765 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2766 __isl_give isl_basic_set *isl_aff_ge_basic_set(
2767 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2768 __isl_give isl_set *isl_pw_aff_eq_set(
2769 __isl_take isl_pw_aff *pwaff1,
2770 __isl_take isl_pw_aff *pwaff2);
2771 __isl_give isl_set *isl_pw_aff_ne_set(
2772 __isl_take isl_pw_aff *pwaff1,
2773 __isl_take isl_pw_aff *pwaff2);
2774 __isl_give isl_set *isl_pw_aff_le_set(
2775 __isl_take isl_pw_aff *pwaff1,
2776 __isl_take isl_pw_aff *pwaff2);
2777 __isl_give isl_set *isl_pw_aff_lt_set(
2778 __isl_take isl_pw_aff *pwaff1,
2779 __isl_take isl_pw_aff *pwaff2);
2780 __isl_give isl_set *isl_pw_aff_ge_set(
2781 __isl_take isl_pw_aff *pwaff1,
2782 __isl_take isl_pw_aff *pwaff2);
2783 __isl_give isl_set *isl_pw_aff_gt_set(
2784 __isl_take isl_pw_aff *pwaff1,
2785 __isl_take isl_pw_aff *pwaff2);
2787 __isl_give isl_set *isl_pw_aff_list_eq_set(
2788 __isl_take isl_pw_aff_list *list1,
2789 __isl_take isl_pw_aff_list *list2);
2790 __isl_give isl_set *isl_pw_aff_list_ne_set(
2791 __isl_take isl_pw_aff_list *list1,
2792 __isl_take isl_pw_aff_list *list2);
2793 __isl_give isl_set *isl_pw_aff_list_le_set(
2794 __isl_take isl_pw_aff_list *list1,
2795 __isl_take isl_pw_aff_list *list2);
2796 __isl_give isl_set *isl_pw_aff_list_lt_set(
2797 __isl_take isl_pw_aff_list *list1,
2798 __isl_take isl_pw_aff_list *list2);
2799 __isl_give isl_set *isl_pw_aff_list_ge_set(
2800 __isl_take isl_pw_aff_list *list1,
2801 __isl_take isl_pw_aff_list *list2);
2802 __isl_give isl_set *isl_pw_aff_list_gt_set(
2803 __isl_take isl_pw_aff_list *list1,
2804 __isl_take isl_pw_aff_list *list2);
2806 The function C<isl_aff_ge_basic_set> returns a basic set
2807 containing those elements in the shared space
2808 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
2809 The function C<isl_aff_ge_set> returns a set
2810 containing those elements in the shared domain
2811 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
2812 The functions operating on C<isl_pw_aff_list> apply the corresponding
2813 C<isl_pw_aff> function to each pair of elements in the two lists.
2815 #include <isl/aff.h>
2816 __isl_give isl_set *isl_pw_aff_nonneg_set(
2817 __isl_take isl_pw_aff *pwaff);
2818 __isl_give isl_set *isl_pw_aff_zero_set(
2819 __isl_take isl_pw_aff *pwaff);
2820 __isl_give isl_set *isl_pw_aff_non_zero_set(
2821 __isl_take isl_pw_aff *pwaff);
2823 The function C<isl_pw_aff_nonneg_set> returns a set
2824 containing those elements in the domain
2825 of C<pwaff> where C<pwaff> is non-negative.
2827 #include <isl/aff.h>
2828 __isl_give isl_pw_aff *isl_pw_aff_cond(
2829 __isl_take isl_set *cond,
2830 __isl_take isl_pw_aff *pwaff_true,
2831 __isl_take isl_pw_aff *pwaff_false);
2833 The function C<isl_pw_aff_cond> performs a conditional operator
2834 and returns an expression that is equal to C<pwaff_true>
2835 for elements in C<cond> and equal to C<pwaff_false> for elements
2838 #include <isl/aff.h>
2839 __isl_give isl_pw_aff *isl_pw_aff_union_min(
2840 __isl_take isl_pw_aff *pwaff1,
2841 __isl_take isl_pw_aff *pwaff2);
2842 __isl_give isl_pw_aff *isl_pw_aff_union_max(
2843 __isl_take isl_pw_aff *pwaff1,
2844 __isl_take isl_pw_aff *pwaff2);
2846 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
2847 expression with a domain that is the union of those of C<pwaff1> and
2848 C<pwaff2> and such that on each cell, the quasi-affine expression is
2849 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
2850 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
2851 associated expression is the defined one.
2853 An expression can be printed using
2855 #include <isl/aff.h>
2856 __isl_give isl_printer *isl_printer_print_aff(
2857 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
2859 __isl_give isl_printer *isl_printer_print_pw_aff(
2860 __isl_take isl_printer *p,
2861 __isl_keep isl_pw_aff *pwaff);
2865 Points are elements of a set. They can be used to construct
2866 simple sets (boxes) or they can be used to represent the
2867 individual elements of a set.
2868 The zero point (the origin) can be created using
2870 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2872 The coordinates of a point can be inspected, set and changed
2875 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
2876 enum isl_dim_type type, int pos, isl_int *v);
2877 __isl_give isl_point *isl_point_set_coordinate(
2878 __isl_take isl_point *pnt,
2879 enum isl_dim_type type, int pos, isl_int v);
2881 __isl_give isl_point *isl_point_add_ui(
2882 __isl_take isl_point *pnt,
2883 enum isl_dim_type type, int pos, unsigned val);
2884 __isl_give isl_point *isl_point_sub_ui(
2885 __isl_take isl_point *pnt,
2886 enum isl_dim_type type, int pos, unsigned val);
2888 Other properties can be obtained using
2890 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
2892 Points can be copied or freed using
2894 __isl_give isl_point *isl_point_copy(
2895 __isl_keep isl_point *pnt);
2896 void isl_point_free(__isl_take isl_point *pnt);
2898 A singleton set can be created from a point using
2900 __isl_give isl_basic_set *isl_basic_set_from_point(
2901 __isl_take isl_point *pnt);
2902 __isl_give isl_set *isl_set_from_point(
2903 __isl_take isl_point *pnt);
2905 and a box can be created from two opposite extremal points using
2907 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2908 __isl_take isl_point *pnt1,
2909 __isl_take isl_point *pnt2);
2910 __isl_give isl_set *isl_set_box_from_points(
2911 __isl_take isl_point *pnt1,
2912 __isl_take isl_point *pnt2);
2914 All elements of a B<bounded> (union) set can be enumerated using
2915 the following functions.
2917 int isl_set_foreach_point(__isl_keep isl_set *set,
2918 int (*fn)(__isl_take isl_point *pnt, void *user),
2920 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
2921 int (*fn)(__isl_take isl_point *pnt, void *user),
2924 The function C<fn> is called for each integer point in
2925 C<set> with as second argument the last argument of
2926 the C<isl_set_foreach_point> call. The function C<fn>
2927 should return C<0> on success and C<-1> on failure.
2928 In the latter case, C<isl_set_foreach_point> will stop
2929 enumerating and return C<-1> as well.
2930 If the enumeration is performed successfully and to completion,
2931 then C<isl_set_foreach_point> returns C<0>.
2933 To obtain a single point of a (basic) set, use
2935 __isl_give isl_point *isl_basic_set_sample_point(
2936 __isl_take isl_basic_set *bset);
2937 __isl_give isl_point *isl_set_sample_point(
2938 __isl_take isl_set *set);
2940 If C<set> does not contain any (integer) points, then the
2941 resulting point will be ``void'', a property that can be
2944 int isl_point_is_void(__isl_keep isl_point *pnt);
2946 =head2 Piecewise Quasipolynomials
2948 A piecewise quasipolynomial is a particular kind of function that maps
2949 a parametric point to a rational value.
2950 More specifically, a quasipolynomial is a polynomial expression in greatest
2951 integer parts of affine expressions of parameters and variables.
2952 A piecewise quasipolynomial is a subdivision of a given parametric
2953 domain into disjoint cells with a quasipolynomial associated to
2954 each cell. The value of the piecewise quasipolynomial at a given
2955 point is the value of the quasipolynomial associated to the cell
2956 that contains the point. Outside of the union of cells,
2957 the value is assumed to be zero.
2958 For example, the piecewise quasipolynomial
2960 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2962 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
2963 A given piecewise quasipolynomial has a fixed domain dimension.
2964 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
2965 defined over different domains.
2966 Piecewise quasipolynomials are mainly used by the C<barvinok>
2967 library for representing the number of elements in a parametric set or map.
2968 For example, the piecewise quasipolynomial above represents
2969 the number of points in the map
2971 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2973 =head3 Printing (Piecewise) Quasipolynomials
2975 Quasipolynomials and piecewise quasipolynomials can be printed
2976 using the following functions.
2978 __isl_give isl_printer *isl_printer_print_qpolynomial(
2979 __isl_take isl_printer *p,
2980 __isl_keep isl_qpolynomial *qp);
2982 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
2983 __isl_take isl_printer *p,
2984 __isl_keep isl_pw_qpolynomial *pwqp);
2986 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
2987 __isl_take isl_printer *p,
2988 __isl_keep isl_union_pw_qpolynomial *upwqp);
2990 The output format of the printer
2991 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2992 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
2994 In case of printing in C<ISL_FORMAT_C>, the user may want
2995 to set the names of all dimensions
2997 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2998 __isl_take isl_qpolynomial *qp,
2999 enum isl_dim_type type, unsigned pos,
3001 __isl_give isl_pw_qpolynomial *
3002 isl_pw_qpolynomial_set_dim_name(
3003 __isl_take isl_pw_qpolynomial *pwqp,
3004 enum isl_dim_type type, unsigned pos,
3007 =head3 Creating New (Piecewise) Quasipolynomials
3009 Some simple quasipolynomials can be created using the following functions.
3010 More complicated quasipolynomials can be created by applying
3011 operations such as addition and multiplication
3012 on the resulting quasipolynomials
3014 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3015 __isl_take isl_space *domain);
3016 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3017 __isl_take isl_space *domain);
3018 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3019 __isl_take isl_space *domain);
3020 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3021 __isl_take isl_space *domain);
3022 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3023 __isl_take isl_space *domain);
3024 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3025 __isl_take isl_space *domain,
3026 const isl_int n, const isl_int d);
3027 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3028 __isl_take isl_space *domain,
3029 enum isl_dim_type type, unsigned pos);
3030 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3031 __isl_take isl_aff *aff);
3033 Note that the space in which a quasipolynomial lives is a map space
3034 with a one-dimensional range. The C<domain> argument in some of
3035 the functions above corresponds to the domain of this map space.
3037 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3038 with a single cell can be created using the following functions.
3039 Multiple of these single cell piecewise quasipolynomials can
3040 be combined to create more complicated piecewise quasipolynomials.
3042 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3043 __isl_take isl_space *space);
3044 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3045 __isl_take isl_set *set,
3046 __isl_take isl_qpolynomial *qp);
3047 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3048 __isl_take isl_qpolynomial *qp);
3049 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3050 __isl_take isl_pw_aff *pwaff);
3052 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3053 __isl_take isl_space *space);
3054 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3055 __isl_take isl_pw_qpolynomial *pwqp);
3056 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3057 __isl_take isl_union_pw_qpolynomial *upwqp,
3058 __isl_take isl_pw_qpolynomial *pwqp);
3060 Quasipolynomials can be copied and freed again using the following
3063 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3064 __isl_keep isl_qpolynomial *qp);
3065 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3067 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3068 __isl_keep isl_pw_qpolynomial *pwqp);
3069 void *isl_pw_qpolynomial_free(
3070 __isl_take isl_pw_qpolynomial *pwqp);
3072 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3073 __isl_keep isl_union_pw_qpolynomial *upwqp);
3074 void isl_union_pw_qpolynomial_free(
3075 __isl_take isl_union_pw_qpolynomial *upwqp);
3077 =head3 Inspecting (Piecewise) Quasipolynomials
3079 To iterate over all piecewise quasipolynomials in a union
3080 piecewise quasipolynomial, use the following function
3082 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3083 __isl_keep isl_union_pw_qpolynomial *upwqp,
3084 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3087 To extract the piecewise quasipolynomial in a given space from a union, use
3089 __isl_give isl_pw_qpolynomial *
3090 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3091 __isl_keep isl_union_pw_qpolynomial *upwqp,
3092 __isl_take isl_space *space);
3094 To iterate over the cells in a piecewise quasipolynomial,
3095 use either of the following two functions
3097 int isl_pw_qpolynomial_foreach_piece(
3098 __isl_keep isl_pw_qpolynomial *pwqp,
3099 int (*fn)(__isl_take isl_set *set,
3100 __isl_take isl_qpolynomial *qp,
3101 void *user), void *user);
3102 int isl_pw_qpolynomial_foreach_lifted_piece(
3103 __isl_keep isl_pw_qpolynomial *pwqp,
3104 int (*fn)(__isl_take isl_set *set,
3105 __isl_take isl_qpolynomial *qp,
3106 void *user), void *user);
3108 As usual, the function C<fn> should return C<0> on success
3109 and C<-1> on failure. The difference between
3110 C<isl_pw_qpolynomial_foreach_piece> and
3111 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3112 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3113 compute unique representations for all existentially quantified
3114 variables and then turn these existentially quantified variables
3115 into extra set variables, adapting the associated quasipolynomial
3116 accordingly. This means that the C<set> passed to C<fn>
3117 will not have any existentially quantified variables, but that
3118 the dimensions of the sets may be different for different
3119 invocations of C<fn>.
3121 To iterate over all terms in a quasipolynomial,
3124 int isl_qpolynomial_foreach_term(
3125 __isl_keep isl_qpolynomial *qp,
3126 int (*fn)(__isl_take isl_term *term,
3127 void *user), void *user);
3129 The terms themselves can be inspected and freed using
3132 unsigned isl_term_dim(__isl_keep isl_term *term,
3133 enum isl_dim_type type);
3134 void isl_term_get_num(__isl_keep isl_term *term,
3136 void isl_term_get_den(__isl_keep isl_term *term,
3138 int isl_term_get_exp(__isl_keep isl_term *term,
3139 enum isl_dim_type type, unsigned pos);
3140 __isl_give isl_aff *isl_term_get_div(
3141 __isl_keep isl_term *term, unsigned pos);
3142 void isl_term_free(__isl_take isl_term *term);
3144 Each term is a product of parameters, set variables and
3145 integer divisions. The function C<isl_term_get_exp>
3146 returns the exponent of a given dimensions in the given term.
3147 The C<isl_int>s in the arguments of C<isl_term_get_num>
3148 and C<isl_term_get_den> need to have been initialized
3149 using C<isl_int_init> before calling these functions.
3151 =head3 Properties of (Piecewise) Quasipolynomials
3153 To check whether a quasipolynomial is actually a constant,
3154 use the following function.
3156 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3157 isl_int *n, isl_int *d);
3159 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3160 then the numerator and denominator of the constant
3161 are returned in C<*n> and C<*d>, respectively.
3163 To check whether two union piecewise quasipolynomials are
3164 obviously equal, use
3166 int isl_union_pw_qpolynomial_plain_is_equal(
3167 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3168 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3170 =head3 Operations on (Piecewise) Quasipolynomials
3172 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3173 __isl_take isl_qpolynomial *qp, isl_int v);
3174 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3175 __isl_take isl_qpolynomial *qp);
3176 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3177 __isl_take isl_qpolynomial *qp1,
3178 __isl_take isl_qpolynomial *qp2);
3179 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3180 __isl_take isl_qpolynomial *qp1,
3181 __isl_take isl_qpolynomial *qp2);
3182 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3183 __isl_take isl_qpolynomial *qp1,
3184 __isl_take isl_qpolynomial *qp2);
3185 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3186 __isl_take isl_qpolynomial *qp, unsigned exponent);
3188 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3189 __isl_take isl_pw_qpolynomial *pwqp1,
3190 __isl_take isl_pw_qpolynomial *pwqp2);
3191 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3192 __isl_take isl_pw_qpolynomial *pwqp1,
3193 __isl_take isl_pw_qpolynomial *pwqp2);
3194 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3195 __isl_take isl_pw_qpolynomial *pwqp1,
3196 __isl_take isl_pw_qpolynomial *pwqp2);
3197 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3198 __isl_take isl_pw_qpolynomial *pwqp);
3199 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3200 __isl_take isl_pw_qpolynomial *pwqp1,
3201 __isl_take isl_pw_qpolynomial *pwqp2);
3202 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3203 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3205 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3206 __isl_take isl_union_pw_qpolynomial *upwqp1,
3207 __isl_take isl_union_pw_qpolynomial *upwqp2);
3208 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3209 __isl_take isl_union_pw_qpolynomial *upwqp1,
3210 __isl_take isl_union_pw_qpolynomial *upwqp2);
3211 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3212 __isl_take isl_union_pw_qpolynomial *upwqp1,
3213 __isl_take isl_union_pw_qpolynomial *upwqp2);
3215 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3216 __isl_take isl_pw_qpolynomial *pwqp,
3217 __isl_take isl_point *pnt);
3219 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3220 __isl_take isl_union_pw_qpolynomial *upwqp,
3221 __isl_take isl_point *pnt);
3223 __isl_give isl_set *isl_pw_qpolynomial_domain(
3224 __isl_take isl_pw_qpolynomial *pwqp);
3225 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3226 __isl_take isl_pw_qpolynomial *pwpq,
3227 __isl_take isl_set *set);
3229 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3230 __isl_take isl_union_pw_qpolynomial *upwqp);
3231 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3232 __isl_take isl_union_pw_qpolynomial *upwpq,
3233 __isl_take isl_union_set *uset);
3235 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3236 __isl_take isl_qpolynomial *qp,
3237 __isl_take isl_space *model);
3239 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3240 __isl_take isl_qpolynomial *qp);
3241 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3242 __isl_take isl_pw_qpolynomial *pwqp);
3244 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3245 __isl_take isl_union_pw_qpolynomial *upwqp);
3247 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3248 __isl_take isl_qpolynomial *qp,
3249 __isl_take isl_set *context);
3251 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3252 __isl_take isl_pw_qpolynomial *pwqp,
3253 __isl_take isl_set *context);
3255 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3256 __isl_take isl_union_pw_qpolynomial *upwqp,
3257 __isl_take isl_union_set *context);
3259 The gist operation applies the gist operation to each of
3260 the cells in the domain of the input piecewise quasipolynomial.
3261 The context is also exploited
3262 to simplify the quasipolynomials associated to each cell.
3264 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3265 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3266 __isl_give isl_union_pw_qpolynomial *
3267 isl_union_pw_qpolynomial_to_polynomial(
3268 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3270 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3271 the polynomial will be an overapproximation. If C<sign> is negative,
3272 it will be an underapproximation. If C<sign> is zero, the approximation
3273 will lie somewhere in between.
3275 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3277 A piecewise quasipolynomial reduction is a piecewise
3278 reduction (or fold) of quasipolynomials.
3279 In particular, the reduction can be maximum or a minimum.
3280 The objects are mainly used to represent the result of
3281 an upper or lower bound on a quasipolynomial over its domain,
3282 i.e., as the result of the following function.
3284 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3285 __isl_take isl_pw_qpolynomial *pwqp,
3286 enum isl_fold type, int *tight);
3288 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3289 __isl_take isl_union_pw_qpolynomial *upwqp,
3290 enum isl_fold type, int *tight);
3292 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3293 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3294 is the returned bound is known be tight, i.e., for each value
3295 of the parameters there is at least
3296 one element in the domain that reaches the bound.
3297 If the domain of C<pwqp> is not wrapping, then the bound is computed
3298 over all elements in that domain and the result has a purely parametric
3299 domain. If the domain of C<pwqp> is wrapping, then the bound is
3300 computed over the range of the wrapped relation. The domain of the
3301 wrapped relation becomes the domain of the result.
3303 A (piecewise) quasipolynomial reduction can be copied or freed using the
3304 following functions.
3306 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3307 __isl_keep isl_qpolynomial_fold *fold);
3308 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3309 __isl_keep isl_pw_qpolynomial_fold *pwf);
3310 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3311 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3312 void isl_qpolynomial_fold_free(
3313 __isl_take isl_qpolynomial_fold *fold);
3314 void *isl_pw_qpolynomial_fold_free(
3315 __isl_take isl_pw_qpolynomial_fold *pwf);
3316 void isl_union_pw_qpolynomial_fold_free(
3317 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3319 =head3 Printing Piecewise Quasipolynomial Reductions
3321 Piecewise quasipolynomial reductions can be printed
3322 using the following function.
3324 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3325 __isl_take isl_printer *p,
3326 __isl_keep isl_pw_qpolynomial_fold *pwf);
3327 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3328 __isl_take isl_printer *p,
3329 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3331 For C<isl_printer_print_pw_qpolynomial_fold>,
3332 output format of the printer
3333 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3334 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3335 output format of the printer
3336 needs to be set to C<ISL_FORMAT_ISL>.
3337 In case of printing in C<ISL_FORMAT_C>, the user may want
3338 to set the names of all dimensions
3340 __isl_give isl_pw_qpolynomial_fold *
3341 isl_pw_qpolynomial_fold_set_dim_name(
3342 __isl_take isl_pw_qpolynomial_fold *pwf,
3343 enum isl_dim_type type, unsigned pos,
3346 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3348 To iterate over all piecewise quasipolynomial reductions in a union
3349 piecewise quasipolynomial reduction, use the following function
3351 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3352 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3353 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3354 void *user), void *user);
3356 To iterate over the cells in a piecewise quasipolynomial reduction,
3357 use either of the following two functions
3359 int isl_pw_qpolynomial_fold_foreach_piece(
3360 __isl_keep isl_pw_qpolynomial_fold *pwf,
3361 int (*fn)(__isl_take isl_set *set,
3362 __isl_take isl_qpolynomial_fold *fold,
3363 void *user), void *user);
3364 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3365 __isl_keep isl_pw_qpolynomial_fold *pwf,
3366 int (*fn)(__isl_take isl_set *set,
3367 __isl_take isl_qpolynomial_fold *fold,
3368 void *user), void *user);
3370 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3371 of the difference between these two functions.
3373 To iterate over all quasipolynomials in a reduction, use
3375 int isl_qpolynomial_fold_foreach_qpolynomial(
3376 __isl_keep isl_qpolynomial_fold *fold,
3377 int (*fn)(__isl_take isl_qpolynomial *qp,
3378 void *user), void *user);
3380 =head3 Properties of Piecewise Quasipolynomial Reductions
3382 To check whether two union piecewise quasipolynomial reductions are
3383 obviously equal, use
3385 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3386 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3387 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3389 =head3 Operations on Piecewise Quasipolynomial Reductions
3391 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3392 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3394 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3395 __isl_take isl_pw_qpolynomial_fold *pwf1,
3396 __isl_take isl_pw_qpolynomial_fold *pwf2);
3398 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3399 __isl_take isl_pw_qpolynomial_fold *pwf1,
3400 __isl_take isl_pw_qpolynomial_fold *pwf2);
3402 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3403 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3404 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3406 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3407 __isl_take isl_pw_qpolynomial_fold *pwf,
3408 __isl_take isl_point *pnt);
3410 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3411 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3412 __isl_take isl_point *pnt);
3414 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3415 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3416 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3417 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3418 __isl_take isl_union_set *uset);
3420 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3421 __isl_take isl_pw_qpolynomial_fold *pwf);
3423 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3424 __isl_take isl_pw_qpolynomial_fold *pwf);
3426 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3427 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3429 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3430 __isl_take isl_pw_qpolynomial_fold *pwf,
3431 __isl_take isl_set *context);
3433 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3434 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3435 __isl_take isl_union_set *context);
3437 The gist operation applies the gist operation to each of
3438 the cells in the domain of the input piecewise quasipolynomial reduction.
3439 In future, the operation will also exploit the context
3440 to simplify the quasipolynomial reductions associated to each cell.
3442 __isl_give isl_pw_qpolynomial_fold *
3443 isl_set_apply_pw_qpolynomial_fold(
3444 __isl_take isl_set *set,
3445 __isl_take isl_pw_qpolynomial_fold *pwf,
3447 __isl_give isl_pw_qpolynomial_fold *
3448 isl_map_apply_pw_qpolynomial_fold(
3449 __isl_take isl_map *map,
3450 __isl_take isl_pw_qpolynomial_fold *pwf,
3452 __isl_give isl_union_pw_qpolynomial_fold *
3453 isl_union_set_apply_union_pw_qpolynomial_fold(
3454 __isl_take isl_union_set *uset,
3455 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3457 __isl_give isl_union_pw_qpolynomial_fold *
3458 isl_union_map_apply_union_pw_qpolynomial_fold(
3459 __isl_take isl_union_map *umap,
3460 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3463 The functions taking a map
3464 compose the given map with the given piecewise quasipolynomial reduction.
3465 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3466 over all elements in the intersection of the range of the map
3467 and the domain of the piecewise quasipolynomial reduction
3468 as a function of an element in the domain of the map.
3469 The functions taking a set compute a bound over all elements in the
3470 intersection of the set and the domain of the
3471 piecewise quasipolynomial reduction.
3473 =head2 Dependence Analysis
3475 C<isl> contains specialized functionality for performing
3476 array dataflow analysis. That is, given a I<sink> access relation
3477 and a collection of possible I<source> access relations,
3478 C<isl> can compute relations that describe
3479 for each iteration of the sink access, which iteration
3480 of which of the source access relations was the last
3481 to access the same data element before the given iteration
3483 To compute standard flow dependences, the sink should be
3484 a read, while the sources should be writes.
3485 If any of the source accesses are marked as being I<may>
3486 accesses, then there will be a dependence to the last
3487 I<must> access B<and> to any I<may> access that follows
3488 this last I<must> access.
3489 In particular, if I<all> sources are I<may> accesses,
3490 then memory based dependence analysis is performed.
3491 If, on the other hand, all sources are I<must> accesses,
3492 then value based dependence analysis is performed.
3494 #include <isl/flow.h>
3496 typedef int (*isl_access_level_before)(void *first, void *second);
3498 __isl_give isl_access_info *isl_access_info_alloc(
3499 __isl_take isl_map *sink,
3500 void *sink_user, isl_access_level_before fn,
3502 __isl_give isl_access_info *isl_access_info_add_source(
3503 __isl_take isl_access_info *acc,
3504 __isl_take isl_map *source, int must,
3506 void isl_access_info_free(__isl_take isl_access_info *acc);
3508 __isl_give isl_flow *isl_access_info_compute_flow(
3509 __isl_take isl_access_info *acc);
3511 int isl_flow_foreach(__isl_keep isl_flow *deps,
3512 int (*fn)(__isl_take isl_map *dep, int must,
3513 void *dep_user, void *user),
3515 __isl_give isl_map *isl_flow_get_no_source(
3516 __isl_keep isl_flow *deps, int must);
3517 void isl_flow_free(__isl_take isl_flow *deps);
3519 The function C<isl_access_info_compute_flow> performs the actual
3520 dependence analysis. The other functions are used to construct
3521 the input for this function or to read off the output.
3523 The input is collected in an C<isl_access_info>, which can
3524 be created through a call to C<isl_access_info_alloc>.
3525 The arguments to this functions are the sink access relation
3526 C<sink>, a token C<sink_user> used to identify the sink
3527 access to the user, a callback function for specifying the
3528 relative order of source and sink accesses, and the number
3529 of source access relations that will be added.
3530 The callback function has type C<int (*)(void *first, void *second)>.
3531 The function is called with two user supplied tokens identifying
3532 either a source or the sink and it should return the shared nesting
3533 level and the relative order of the two accesses.
3534 In particular, let I<n> be the number of loops shared by
3535 the two accesses. If C<first> precedes C<second> textually,
3536 then the function should return I<2 * n + 1>; otherwise,
3537 it should return I<2 * n>.
3538 The sources can be added to the C<isl_access_info> by performing
3539 (at most) C<max_source> calls to C<isl_access_info_add_source>.
3540 C<must> indicates whether the source is a I<must> access
3541 or a I<may> access. Note that a multi-valued access relation
3542 should only be marked I<must> if every iteration in the domain
3543 of the relation accesses I<all> elements in its image.
3544 The C<source_user> token is again used to identify
3545 the source access. The range of the source access relation
3546 C<source> should have the same dimension as the range
3547 of the sink access relation.
3548 The C<isl_access_info_free> function should usually not be
3549 called explicitly, because it is called implicitly by
3550 C<isl_access_info_compute_flow>.
3552 The result of the dependence analysis is collected in an
3553 C<isl_flow>. There may be elements of
3554 the sink access for which no preceding source access could be
3555 found or for which all preceding sources are I<may> accesses.
3556 The relations containing these elements can be obtained through
3557 calls to C<isl_flow_get_no_source>, the first with C<must> set
3558 and the second with C<must> unset.
3559 In the case of standard flow dependence analysis,
3560 with the sink a read and the sources I<must> writes,
3561 the first relation corresponds to the reads from uninitialized
3562 array elements and the second relation is empty.
3563 The actual flow dependences can be extracted using
3564 C<isl_flow_foreach>. This function will call the user-specified
3565 callback function C<fn> for each B<non-empty> dependence between
3566 a source and the sink. The callback function is called
3567 with four arguments, the actual flow dependence relation
3568 mapping source iterations to sink iterations, a boolean that
3569 indicates whether it is a I<must> or I<may> dependence, a token
3570 identifying the source and an additional C<void *> with value
3571 equal to the third argument of the C<isl_flow_foreach> call.
3572 A dependence is marked I<must> if it originates from a I<must>
3573 source and if it is not followed by any I<may> sources.
3575 After finishing with an C<isl_flow>, the user should call
3576 C<isl_flow_free> to free all associated memory.
3578 A higher-level interface to dependence analysis is provided
3579 by the following function.
3581 #include <isl/flow.h>
3583 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3584 __isl_take isl_union_map *must_source,
3585 __isl_take isl_union_map *may_source,
3586 __isl_take isl_union_map *schedule,
3587 __isl_give isl_union_map **must_dep,
3588 __isl_give isl_union_map **may_dep,
3589 __isl_give isl_union_map **must_no_source,
3590 __isl_give isl_union_map **may_no_source);
3592 The arrays are identified by the tuple names of the ranges
3593 of the accesses. The iteration domains by the tuple names
3594 of the domains of the accesses and of the schedule.
3595 The relative order of the iteration domains is given by the
3596 schedule. The relations returned through C<must_no_source>
3597 and C<may_no_source> are subsets of C<sink>.
3598 Any of C<must_dep>, C<may_dep>, C<must_no_source>
3599 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
3600 any of the other arguments is treated as an error.
3604 B<The functionality described in this section is fairly new
3605 and may be subject to change.>
3607 The following function can be used to compute a schedule
3608 for a union of domains. The generated schedule respects
3609 all C<validity> dependences. That is, all dependence distances
3610 over these dependences in the scheduled space are lexicographically
3611 positive. The generated schedule schedule also tries to minimize
3612 the dependence distances over C<proximity> dependences.
3613 Moreover, it tries to obtain sequences (bands) of schedule dimensions
3614 for groups of domains where the dependence distances have only
3615 non-negative values.
3616 The algorithm used to construct the schedule is similar to that
3619 #include <isl/schedule.h>
3620 __isl_give isl_schedule *isl_union_set_compute_schedule(
3621 __isl_take isl_union_set *domain,
3622 __isl_take isl_union_map *validity,
3623 __isl_take isl_union_map *proximity);
3624 void *isl_schedule_free(__isl_take isl_schedule *sched);
3626 A mapping from the domains to the scheduled space can be obtained
3627 from an C<isl_schedule> using the following function.
3629 __isl_give isl_union_map *isl_schedule_get_map(
3630 __isl_keep isl_schedule *sched);
3632 A representation of the schedule can be printed using
3634 __isl_give isl_printer *isl_printer_print_schedule(
3635 __isl_take isl_printer *p,
3636 __isl_keep isl_schedule *schedule);
3638 A representation of the schedule as a forest of bands can be obtained
3639 using the following function.
3641 __isl_give isl_band_list *isl_schedule_get_band_forest(
3642 __isl_keep isl_schedule *schedule);
3644 The list can be manipulated as explained in L<"Lists">.
3645 The bands inside the list can be copied and freed using the following
3648 #include <isl/band.h>
3649 __isl_give isl_band *isl_band_copy(
3650 __isl_keep isl_band *band);
3651 void *isl_band_free(__isl_take isl_band *band);
3653 Each band contains zero or more scheduling dimensions.
3654 These are referred to as the members of the band.
3655 The section of the schedule that corresponds to the band is
3656 referred to as the partial schedule of the band.
3657 For those nodes that participate in a band, the outer scheduling
3658 dimensions form the prefix schedule, while the inner scheduling
3659 dimensions form the suffix schedule.
3660 That is, if we take a cut of the band forest, then the union of
3661 the concatenations of the prefix, partial and suffix schedules of
3662 each band in the cut is equal to the entire schedule (modulo
3663 some possible padding at the end with zero scheduling dimensions).
3664 The properties of a band can be inspected using the following functions.
3666 #include <isl/band.h>
3667 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
3669 int isl_band_has_children(__isl_keep isl_band *band);
3670 __isl_give isl_band_list *isl_band_get_children(
3671 __isl_keep isl_band *band);
3673 __isl_give isl_union_map *isl_band_get_prefix_schedule(
3674 __isl_keep isl_band *band);
3675 __isl_give isl_union_map *isl_band_get_partial_schedule(
3676 __isl_keep isl_band *band);
3677 __isl_give isl_union_map *isl_band_get_suffix_schedule(
3678 __isl_keep isl_band *band);
3680 int isl_band_n_member(__isl_keep isl_band *band);
3681 int isl_band_member_is_zero_distance(
3682 __isl_keep isl_band *band, int pos);
3684 Note that a scheduling dimension is considered to be ``zero
3685 distance'' if it does not carry any proximity dependences
3687 That is, if the dependence distances of the proximity
3688 dependences are all zero in that direction (for fixed
3689 iterations of outer bands).
3691 A representation of the band can be printed using
3693 #include <isl/band.h>
3694 __isl_give isl_printer *isl_printer_print_band(
3695 __isl_take isl_printer *p,
3696 __isl_keep isl_band *band);
3698 =head2 Parametric Vertex Enumeration
3700 The parametric vertex enumeration described in this section
3701 is mainly intended to be used internally and by the C<barvinok>
3704 #include <isl/vertices.h>
3705 __isl_give isl_vertices *isl_basic_set_compute_vertices(
3706 __isl_keep isl_basic_set *bset);
3708 The function C<isl_basic_set_compute_vertices> performs the
3709 actual computation of the parametric vertices and the chamber
3710 decomposition and store the result in an C<isl_vertices> object.
3711 This information can be queried by either iterating over all
3712 the vertices or iterating over all the chambers or cells
3713 and then iterating over all vertices that are active on the chamber.
3715 int isl_vertices_foreach_vertex(
3716 __isl_keep isl_vertices *vertices,
3717 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3720 int isl_vertices_foreach_cell(
3721 __isl_keep isl_vertices *vertices,
3722 int (*fn)(__isl_take isl_cell *cell, void *user),
3724 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
3725 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3728 Other operations that can be performed on an C<isl_vertices> object are
3731 isl_ctx *isl_vertices_get_ctx(
3732 __isl_keep isl_vertices *vertices);
3733 int isl_vertices_get_n_vertices(
3734 __isl_keep isl_vertices *vertices);
3735 void isl_vertices_free(__isl_take isl_vertices *vertices);
3737 Vertices can be inspected and destroyed using the following functions.
3739 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
3740 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
3741 __isl_give isl_basic_set *isl_vertex_get_domain(
3742 __isl_keep isl_vertex *vertex);
3743 __isl_give isl_basic_set *isl_vertex_get_expr(
3744 __isl_keep isl_vertex *vertex);
3745 void isl_vertex_free(__isl_take isl_vertex *vertex);
3747 C<isl_vertex_get_expr> returns a singleton parametric set describing
3748 the vertex, while C<isl_vertex_get_domain> returns the activity domain
3750 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
3751 B<rational> basic sets, so they should mainly be used for inspection
3752 and should not be mixed with integer sets.
3754 Chambers can be inspected and destroyed using the following functions.
3756 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
3757 __isl_give isl_basic_set *isl_cell_get_domain(
3758 __isl_keep isl_cell *cell);
3759 void isl_cell_free(__isl_take isl_cell *cell);
3763 Although C<isl> is mainly meant to be used as a library,
3764 it also contains some basic applications that use some
3765 of the functionality of C<isl>.
3766 The input may be specified in either the L<isl format>
3767 or the L<PolyLib format>.
3769 =head2 C<isl_polyhedron_sample>
3771 C<isl_polyhedron_sample> takes a polyhedron as input and prints
3772 an integer element of the polyhedron, if there is any.
3773 The first column in the output is the denominator and is always
3774 equal to 1. If the polyhedron contains no integer points,
3775 then a vector of length zero is printed.
3779 C<isl_pip> takes the same input as the C<example> program
3780 from the C<piplib> distribution, i.e., a set of constraints
3781 on the parameters, a line containing only -1 and finally a set
3782 of constraints on a parametric polyhedron.
3783 The coefficients of the parameters appear in the last columns
3784 (but before the final constant column).
3785 The output is the lexicographic minimum of the parametric polyhedron.
3786 As C<isl> currently does not have its own output format, the output
3787 is just a dump of the internal state.
3789 =head2 C<isl_polyhedron_minimize>
3791 C<isl_polyhedron_minimize> computes the minimum of some linear
3792 or affine objective function over the integer points in a polyhedron.
3793 If an affine objective function
3794 is given, then the constant should appear in the last column.
3796 =head2 C<isl_polytope_scan>
3798 Given a polytope, C<isl_polytope_scan> prints
3799 all integer points in the polytope.