2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
17 #include <isl/options.h>
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
22 #define STATUS_ERROR -1
23 #define STATUS_REDUNDANT 1
24 #define STATUS_VALID 2
25 #define STATUS_SEPARATE 3
27 #define STATUS_ADJ_EQ 5
28 #define STATUS_ADJ_INEQ 6
30 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
32 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
35 case isl_ineq_error
: return STATUS_ERROR
;
36 case isl_ineq_redundant
: return STATUS_VALID
;
37 case isl_ineq_separate
: return STATUS_SEPARATE
;
38 case isl_ineq_cut
: return STATUS_CUT
;
39 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
40 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
44 /* Compute the position of the equalities of basic map "bmap_i"
45 * with respect to the basic map represented by "tab_j".
46 * The resulting array has twice as many entries as the number
47 * of equalities corresponding to the two inequalties to which
48 * each equality corresponds.
50 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
51 struct isl_tab
*tab_j
)
54 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
60 dim
= isl_basic_map_total_dim(bmap_i
);
61 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
62 for (l
= 0; l
< 2; ++l
) {
63 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
64 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
65 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
68 if (eq
[2 * k
] == STATUS_SEPARATE
||
69 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
79 /* Compute the position of the inequalities of basic map "bmap_i"
80 * (also represented by "tab_i", if not NULL) with respect to the basic map
81 * represented by "tab_j".
83 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
84 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
87 unsigned n_eq
= bmap_i
->n_eq
;
88 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
93 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
94 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
95 ineq
[k
] = STATUS_REDUNDANT
;
98 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
99 if (ineq
[k
] == STATUS_ERROR
)
101 if (ineq
[k
] == STATUS_SEPARATE
)
111 static int any(int *con
, unsigned len
, int status
)
115 for (i
= 0; i
< len
; ++i
)
116 if (con
[i
] == status
)
121 static int count(int *con
, unsigned len
, int status
)
126 for (i
= 0; i
< len
; ++i
)
127 if (con
[i
] == status
)
132 static int all(int *con
, unsigned len
, int status
)
136 for (i
= 0; i
< len
; ++i
) {
137 if (con
[i
] == STATUS_REDUNDANT
)
139 if (con
[i
] != status
)
145 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
147 isl_basic_map_free(map
->p
[i
]);
148 isl_tab_free(tabs
[i
]);
150 if (i
!= map
->n
- 1) {
151 map
->p
[i
] = map
->p
[map
->n
- 1];
152 tabs
[i
] = tabs
[map
->n
- 1];
154 tabs
[map
->n
- 1] = NULL
;
158 /* Replace the pair of basic maps i and j by the basic map bounded
159 * by the valid constraints in both basic maps and the constraint
160 * in extra (if not NULL).
162 static int fuse(struct isl_map
*map
, int i
, int j
,
163 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
164 __isl_keep isl_mat
*extra
)
167 struct isl_basic_map
*fused
= NULL
;
168 struct isl_tab
*fused_tab
= NULL
;
169 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
170 unsigned extra_rows
= extra
? extra
->n_row
: 0;
172 fused
= isl_basic_map_alloc_space(isl_space_copy(map
->p
[i
]->dim
),
174 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
175 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
+ extra_rows
);
179 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
180 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
181 eq_i
[2 * k
+ 1] != STATUS_VALID
))
183 l
= isl_basic_map_alloc_equality(fused
);
186 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
189 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
190 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
191 eq_j
[2 * k
+ 1] != STATUS_VALID
))
193 l
= isl_basic_map_alloc_equality(fused
);
196 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
199 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
200 if (ineq_i
[k
] != STATUS_VALID
)
202 l
= isl_basic_map_alloc_inequality(fused
);
205 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
208 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
209 if (ineq_j
[k
] != STATUS_VALID
)
211 l
= isl_basic_map_alloc_inequality(fused
);
214 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
217 for (k
= 0; k
< map
->p
[i
]->n_div
; ++k
) {
218 int l
= isl_basic_map_alloc_div(fused
);
221 isl_seq_cpy(fused
->div
[l
], map
->p
[i
]->div
[k
], 1 + 1 + total
);
224 for (k
= 0; k
< extra_rows
; ++k
) {
225 l
= isl_basic_map_alloc_inequality(fused
);
228 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
231 fused
= isl_basic_map_gauss(fused
, NULL
);
232 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
233 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
234 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
235 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
237 fused_tab
= isl_tab_from_basic_map(fused
, 0);
238 if (isl_tab_detect_redundant(fused_tab
) < 0)
241 isl_basic_map_free(map
->p
[i
]);
243 isl_tab_free(tabs
[i
]);
249 isl_tab_free(fused_tab
);
250 isl_basic_map_free(fused
);
254 /* Given a pair of basic maps i and j such that all constraints are either
255 * "valid" or "cut", check if the facets corresponding to the "cut"
256 * constraints of i lie entirely within basic map j.
257 * If so, replace the pair by the basic map consisting of the valid
258 * constraints in both basic maps.
260 * To see that we are not introducing any extra points, call the
261 * two basic maps A and B and the resulting map U and let x
262 * be an element of U \setminus ( A \cup B ).
263 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
264 * violates them. Let X be the intersection of U with the opposites
265 * of these constraints. Then x \in X.
266 * The facet corresponding to c_1 contains the corresponding facet of A.
267 * This facet is entirely contained in B, so c_2 is valid on the facet.
268 * However, since it is also (part of) a facet of X, -c_2 is also valid
269 * on the facet. This means c_2 is saturated on the facet, so c_1 and
270 * c_2 must be opposites of each other, but then x could not violate
273 static int check_facets(struct isl_map
*map
, int i
, int j
,
274 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
277 struct isl_tab_undo
*snap
;
278 unsigned n_eq
= map
->p
[i
]->n_eq
;
280 snap
= isl_tab_snap(tabs
[i
]);
282 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
283 if (ineq_i
[k
] != STATUS_CUT
)
285 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
287 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
289 if (ineq_j
[l
] != STATUS_CUT
)
291 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
292 if (stat
!= STATUS_VALID
)
295 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
297 if (l
< map
->p
[j
]->n_ineq
)
301 if (k
< map
->p
[i
]->n_ineq
)
304 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
307 /* Check if basic map "i" contains the basic map represented
308 * by the tableau "tab".
310 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
316 dim
= isl_basic_map_total_dim(map
->p
[i
]);
317 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
318 for (l
= 0; l
< 2; ++l
) {
320 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
321 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
322 if (stat
!= STATUS_VALID
)
327 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
329 if (ineq_i
[k
] == STATUS_REDUNDANT
)
331 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
332 if (stat
!= STATUS_VALID
)
338 /* Basic map "i" has an inequality (say "k") that is adjacent
339 * to some inequality of basic map "j". All the other inequalities
341 * Check if basic map "j" forms an extension of basic map "i".
343 * Note that this function is only called if some of the equalities or
344 * inequalities of basic map "j" do cut basic map "i". The function is
345 * correct even if there are no such cut constraints, but in that case
346 * the additional checks performed by this function are overkill.
348 * In particular, we replace constraint k, say f >= 0, by constraint
349 * f <= -1, add the inequalities of "j" that are valid for "i"
350 * and check if the result is a subset of basic map "j".
351 * If so, then we know that this result is exactly equal to basic map "j"
352 * since all its constraints are valid for basic map "j".
353 * By combining the valid constraints of "i" (all equalities and all
354 * inequalities except "k") and the valid constraints of "j" we therefore
355 * obtain a basic map that is equal to their union.
356 * In this case, there is no need to perform a rollback of the tableau
357 * since it is going to be destroyed in fuse().
363 * |_______| _ |_________\
375 static int is_adj_ineq_extension(__isl_keep isl_map
*map
, int i
, int j
,
376 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
379 struct isl_tab_undo
*snap
;
380 unsigned n_eq
= map
->p
[i
]->n_eq
;
381 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
384 if (isl_tab_extend_cons(tabs
[i
], 1 + map
->p
[j
]->n_ineq
) < 0)
387 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
388 if (ineq_i
[k
] == STATUS_ADJ_INEQ
)
390 if (k
>= map
->p
[i
]->n_ineq
)
391 isl_die(isl_map_get_ctx(map
), isl_error_internal
,
392 "ineq_i should have exactly one STATUS_ADJ_INEQ",
395 snap
= isl_tab_snap(tabs
[i
]);
397 if (isl_tab_unrestrict(tabs
[i
], n_eq
+ k
) < 0)
400 isl_seq_neg(map
->p
[i
]->ineq
[k
], map
->p
[i
]->ineq
[k
], 1 + total
);
401 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
402 r
= isl_tab_add_ineq(tabs
[i
], map
->p
[i
]->ineq
[k
]);
403 isl_seq_neg(map
->p
[i
]->ineq
[k
], map
->p
[i
]->ineq
[k
], 1 + total
);
404 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
408 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
409 if (ineq_j
[k
] != STATUS_VALID
)
411 if (isl_tab_add_ineq(tabs
[i
], map
->p
[j
]->ineq
[k
]) < 0)
415 if (contains(map
, j
, ineq_j
, tabs
[i
]))
416 return fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, NULL
);
418 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
425 /* Both basic maps have at least one inequality with and adjacent
426 * (but opposite) inequality in the other basic map.
427 * Check that there are no cut constraints and that there is only
428 * a single pair of adjacent inequalities.
429 * If so, we can replace the pair by a single basic map described
430 * by all but the pair of adjacent inequalities.
431 * Any additional points introduced lie strictly between the two
432 * adjacent hyperplanes and can therefore be integral.
441 * The test for a single pair of adjancent inequalities is important
442 * for avoiding the combination of two basic maps like the following
452 * If there are some cut constraints on one side, then we may
453 * still be able to fuse the two basic maps, but we need to perform
454 * some additional checks in is_adj_ineq_extension.
456 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
457 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
459 int count_i
, count_j
;
462 count_i
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
);
463 count_j
= count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
);
465 if (count_i
!= 1 && count_j
!= 1)
468 cut_i
= any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) ||
469 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
470 cut_j
= any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
) ||
471 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
);
473 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
474 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
476 if (count_i
== 1 && !cut_i
)
477 return is_adj_ineq_extension(map
, i
, j
, tabs
,
478 eq_i
, ineq_i
, eq_j
, ineq_j
);
480 if (count_j
== 1 && !cut_j
)
481 return is_adj_ineq_extension(map
, j
, i
, tabs
,
482 eq_j
, ineq_j
, eq_i
, ineq_i
);
487 /* Basic map "i" has an inequality "k" that is adjacent to some equality
488 * of basic map "j". All the other inequalities are valid for "j".
489 * Check if basic map "j" forms an extension of basic map "i".
491 * In particular, we relax constraint "k", compute the corresponding
492 * facet and check whether it is included in the other basic map.
493 * If so, we know that relaxing the constraint extends the basic
494 * map with exactly the other basic map (we already know that this
495 * other basic map is included in the extension, because there
496 * were no "cut" inequalities in "i") and we can replace the
497 * two basic maps by this extension.
505 static int is_adj_eq_extension(struct isl_map
*map
, int i
, int j
, int k
,
506 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
510 struct isl_tab_undo
*snap
, *snap2
;
511 unsigned n_eq
= map
->p
[i
]->n_eq
;
513 if (isl_tab_is_equality(tabs
[i
], n_eq
+ k
))
516 snap
= isl_tab_snap(tabs
[i
]);
517 tabs
[i
] = isl_tab_relax(tabs
[i
], n_eq
+ k
);
518 snap2
= isl_tab_snap(tabs
[i
]);
519 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
521 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
523 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
525 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
528 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
529 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
533 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
539 /* Data structure that keeps track of the wrapping constraints
540 * and of information to bound the coefficients of those constraints.
542 * bound is set if we want to apply a bound on the coefficients
543 * mat contains the wrapping constraints
544 * max is the bound on the coefficients (if bound is set)
552 /* Update wraps->max to be greater than or equal to the coefficients
553 * in the equalities and inequalities of bmap that can be removed if we end up
556 static void wraps_update_max(struct isl_wraps
*wraps
,
557 __isl_keep isl_basic_map
*bmap
, int *eq
, int *ineq
)
561 unsigned total
= isl_basic_map_total_dim(bmap
);
565 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
566 if (eq
[2 * k
] == STATUS_VALID
&&
567 eq
[2 * k
+ 1] == STATUS_VALID
)
569 isl_seq_abs_max(bmap
->eq
[k
] + 1, total
, &max_k
);
570 if (isl_int_abs_gt(max_k
, wraps
->max
))
571 isl_int_set(wraps
->max
, max_k
);
574 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
575 if (ineq
[k
] == STATUS_VALID
|| ineq
[k
] == STATUS_REDUNDANT
)
577 isl_seq_abs_max(bmap
->ineq
[k
] + 1, total
, &max_k
);
578 if (isl_int_abs_gt(max_k
, wraps
->max
))
579 isl_int_set(wraps
->max
, max_k
);
582 isl_int_clear(max_k
);
585 /* Initialize the isl_wraps data structure.
586 * If we want to bound the coefficients of the wrapping constraints,
587 * we set wraps->max to the largest coefficient
588 * in the equalities and inequalities that can be removed if we end up
591 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
592 __isl_keep isl_map
*map
, int i
, int j
,
593 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
601 ctx
= isl_mat_get_ctx(mat
);
602 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
605 isl_int_init(wraps
->max
);
606 isl_int_set_si(wraps
->max
, 0);
607 wraps_update_max(wraps
, map
->p
[i
], eq_i
, ineq_i
);
608 wraps_update_max(wraps
, map
->p
[j
], eq_j
, ineq_j
);
611 /* Free the contents of the isl_wraps data structure.
613 static void wraps_free(struct isl_wraps
*wraps
)
615 isl_mat_free(wraps
->mat
);
617 isl_int_clear(wraps
->max
);
620 /* Is the wrapping constraint in row "row" allowed?
622 * If wraps->bound is set, we check that none of the coefficients
623 * is greater than wraps->max.
625 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
632 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
633 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
639 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
640 * wrap the constraint around "bound" such that it includes the whole
641 * set "set" and append the resulting constraint to "wraps".
642 * "wraps" is assumed to have been pre-allocated to the appropriate size.
643 * wraps->n_row is the number of actual wrapped constraints that have
645 * If any of the wrapping problems results in a constraint that is
646 * identical to "bound", then this means that "set" is unbounded in such
647 * way that no wrapping is possible. If this happens then wraps->n_row
649 * Similarly, if we want to bound the coefficients of the wrapping
650 * constraints and a newly added wrapping constraint does not
651 * satisfy the bound, then wraps->n_row is also reset to zero.
653 static int add_wraps(struct isl_wraps
*wraps
, __isl_keep isl_basic_map
*bmap
,
654 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
658 unsigned total
= isl_basic_map_total_dim(bmap
);
660 w
= wraps
->mat
->n_row
;
662 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
663 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
665 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
667 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
670 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
671 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->ineq
[l
]))
673 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
675 if (!allow_wrap(wraps
, w
))
679 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
680 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
682 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
685 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
686 isl_seq_neg(wraps
->mat
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
687 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
],
688 wraps
->mat
->row
[w
+ 1]))
690 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
692 if (!allow_wrap(wraps
, w
))
696 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
697 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->eq
[l
]))
699 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
701 if (!allow_wrap(wraps
, w
))
706 wraps
->mat
->n_row
= w
;
709 wraps
->mat
->n_row
= 0;
713 /* Check if the constraints in "wraps" from "first" until the last
714 * are all valid for the basic set represented by "tab".
715 * If not, wraps->n_row is set to zero.
717 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
722 for (i
= first
; i
< wraps
->n_row
; ++i
) {
723 enum isl_ineq_type type
;
724 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
725 if (type
== isl_ineq_error
)
727 if (type
== isl_ineq_redundant
)
736 /* Return a set that corresponds to the non-redudant constraints
737 * (as recorded in tab) of bmap.
739 * It's important to remove the redundant constraints as some
740 * of the other constraints may have been modified after the
741 * constraints were marked redundant.
742 * In particular, a constraint may have been relaxed.
743 * Redundant constraints are ignored when a constraint is relaxed
744 * and should therefore continue to be ignored ever after.
745 * Otherwise, the relaxation might be thwarted by some of
748 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
751 bmap
= isl_basic_map_copy(bmap
);
752 bmap
= isl_basic_map_cow(bmap
);
753 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
754 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap
));
757 /* Given a basic set i with a constraint k that is adjacent to either the
758 * whole of basic set j or a facet of basic set j, check if we can wrap
759 * both the facet corresponding to k and the facet of j (or the whole of j)
760 * around their ridges to include the other set.
761 * If so, replace the pair of basic sets by their union.
763 * All constraints of i (except k) are assumed to be valid for j.
765 * However, the constraints of j may not be valid for i and so
766 * we have to check that the wrapping constraints for j are valid for i.
768 * In the case where j has a facet adjacent to i, tab[j] is assumed
769 * to have been restricted to this facet, so that the non-redundant
770 * constraints in tab[j] are the ridges of the facet.
771 * Note that for the purpose of wrapping, it does not matter whether
772 * we wrap the ridges of i around the whole of j or just around
773 * the facet since all the other constraints are assumed to be valid for j.
774 * In practice, we wrap to include the whole of j.
783 static int can_wrap_in_facet(struct isl_map
*map
, int i
, int j
, int k
,
784 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
787 struct isl_wraps wraps
;
789 struct isl_set
*set_i
= NULL
;
790 struct isl_set
*set_j
= NULL
;
791 struct isl_vec
*bound
= NULL
;
792 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
793 struct isl_tab_undo
*snap
;
796 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
797 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
798 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
799 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
801 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
802 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
803 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
806 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
807 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
809 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
810 wraps
.mat
->n_row
= 1;
812 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
814 if (!wraps
.mat
->n_row
)
817 snap
= isl_tab_snap(tabs
[i
]);
819 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ k
) < 0)
821 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
824 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
826 n
= wraps
.mat
->n_row
;
827 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
830 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
832 if (check_wraps(wraps
.mat
, n
, tabs
[i
]) < 0)
834 if (!wraps
.mat
->n_row
)
837 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
856 /* Set the is_redundant property of the "n" constraints in "cuts",
858 * This is a fairly tricky operation as it bypasses isl_tab.c.
859 * The reason we want to temporarily mark some constraints redundant
860 * is that we want to ignore them in add_wraps.
862 * Initially all cut constraints are non-redundant, but the
863 * selection of a facet right before the call to this function
864 * may have made some of them redundant.
865 * Likewise, the same constraints are marked non-redundant
866 * in the second call to this function, before they are officially
867 * made non-redundant again in the subsequent rollback.
869 static void set_is_redundant(struct isl_tab
*tab
, unsigned n_eq
,
870 int *cuts
, int n
, int k
, int v
)
874 for (l
= 0; l
< n
; ++l
) {
877 tab
->con
[n_eq
+ cuts
[l
]].is_redundant
= v
;
881 /* Given a pair of basic maps i and j such that j sticks out
882 * of i at n cut constraints, each time by at most one,
883 * try to compute wrapping constraints and replace the two
884 * basic maps by a single basic map.
885 * The other constraints of i are assumed to be valid for j.
887 * The facets of i corresponding to the cut constraints are
888 * wrapped around their ridges, except those ridges determined
889 * by any of the other cut constraints.
890 * The intersections of cut constraints need to be ignored
891 * as the result of wrapping one cut constraint around another
892 * would result in a constraint cutting the union.
893 * In each case, the facets are wrapped to include the union
894 * of the two basic maps.
896 * The pieces of j that lie at an offset of exactly one from
897 * one of the cut constraints of i are wrapped around their edges.
898 * Here, there is no need to ignore intersections because we
899 * are wrapping around the union of the two basic maps.
901 * If any wrapping fails, i.e., if we cannot wrap to touch
902 * the union, then we give up.
903 * Otherwise, the pair of basic maps is replaced by their union.
905 static int wrap_in_facets(struct isl_map
*map
, int i
, int j
,
906 int *cuts
, int n
, struct isl_tab
**tabs
,
907 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
910 struct isl_wraps wraps
;
913 isl_vec
*bound
= NULL
;
914 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
917 struct isl_tab_undo
*snap_i
, *snap_j
;
919 if (isl_tab_extend_cons(tabs
[j
], 1) < 0)
922 max_wrap
= 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
923 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
;
926 set
= isl_set_union(set_from_updated_bmap(map
->p
[i
], tabs
[i
]),
927 set_from_updated_bmap(map
->p
[j
], tabs
[j
]));
928 mat
= isl_mat_alloc(map
->ctx
, max_wrap
, 1 + total
);
929 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
930 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
931 if (!set
|| !wraps
.mat
|| !bound
)
934 snap_i
= isl_tab_snap(tabs
[i
]);
935 snap_j
= isl_tab_snap(tabs
[j
]);
937 wraps
.mat
->n_row
= 0;
939 for (k
= 0; k
< n
; ++k
) {
940 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ cuts
[k
]) < 0)
942 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
944 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 1);
946 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
947 if (!tabs
[i
]->empty
&&
948 add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set
) < 0)
951 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 0);
952 if (isl_tab_rollback(tabs
[i
], snap_i
) < 0)
957 if (!wraps
.mat
->n_row
)
960 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
961 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
962 if (isl_tab_add_eq(tabs
[j
], bound
->el
) < 0)
964 if (isl_tab_detect_redundant(tabs
[j
]) < 0)
967 if (!tabs
[j
]->empty
&&
968 add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set
) < 0)
971 if (isl_tab_rollback(tabs
[j
], snap_j
) < 0)
974 if (!wraps
.mat
->n_row
)
979 changed
= fuse(map
, i
, j
, tabs
,
980 eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
994 /* Given two basic sets i and j such that i has no cut equalities,
995 * check if relaxing all the cut inequalities of i by one turns
996 * them into valid constraint for j and check if we can wrap in
997 * the bits that are sticking out.
998 * If so, replace the pair by their union.
1000 * We first check if all relaxed cut inequalities of i are valid for j
1001 * and then try to wrap in the intersections of the relaxed cut inequalities
1004 * During this wrapping, we consider the points of j that lie at a distance
1005 * of exactly 1 from i. In particular, we ignore the points that lie in
1006 * between this lower-dimensional space and the basic map i.
1007 * We can therefore only apply this to integer maps.
1033 * Wrapping can fail if the result of wrapping one of the facets
1034 * around its edges does not produce any new facet constraint.
1035 * In particular, this happens when we try to wrap in unbounded sets.
1037 * _______________________________________________________________________
1041 * |_| |_________________________________________________________________
1044 * The following is not an acceptable result of coalescing the above two
1045 * sets as it includes extra integer points.
1046 * _______________________________________________________________________
1051 * \______________________________________________________________________
1053 static int can_wrap_in_set(struct isl_map
*map
, int i
, int j
,
1054 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1061 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) ||
1062 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
1065 n
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
1069 cuts
= isl_alloc_array(map
->ctx
, int, n
);
1073 for (k
= 0, m
= 0; m
< n
; ++k
) {
1074 enum isl_ineq_type type
;
1076 if (ineq_i
[k
] != STATUS_CUT
)
1079 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
1080 type
= isl_tab_ineq_type(tabs
[j
], map
->p
[i
]->ineq
[k
]);
1081 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
1082 if (type
== isl_ineq_error
)
1084 if (type
!= isl_ineq_redundant
)
1091 changed
= wrap_in_facets(map
, i
, j
, cuts
, n
, tabs
,
1092 eq_i
, ineq_i
, eq_j
, ineq_j
);
1102 /* Check if either i or j has a single cut constraint that can
1103 * be used to wrap in (a facet of) the other basic set.
1104 * if so, replace the pair by their union.
1106 static int check_wrap(struct isl_map
*map
, int i
, int j
,
1107 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1111 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1112 changed
= can_wrap_in_set(map
, i
, j
, tabs
,
1113 eq_i
, ineq_i
, eq_j
, ineq_j
);
1117 if (!any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1118 changed
= can_wrap_in_set(map
, j
, i
, tabs
,
1119 eq_j
, ineq_j
, eq_i
, ineq_i
);
1123 /* At least one of the basic maps has an equality that is adjacent
1124 * to inequality. Make sure that only one of the basic maps has
1125 * such an equality and that the other basic map has exactly one
1126 * inequality adjacent to an equality.
1127 * We call the basic map that has the inequality "i" and the basic
1128 * map that has the equality "j".
1129 * If "i" has any "cut" (in)equality, then relaxing the inequality
1130 * by one would not result in a basic map that contains the other
1133 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
1134 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1139 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
1140 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
1141 /* ADJ EQ TOO MANY */
1144 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
1145 return check_adj_eq(map
, j
, i
, tabs
,
1146 eq_j
, ineq_j
, eq_i
, ineq_i
);
1148 /* j has an equality adjacent to an inequality in i */
1150 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
1152 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
1155 if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
1156 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
1157 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1158 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
1159 /* ADJ EQ TOO MANY */
1162 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
1163 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
1166 changed
= is_adj_eq_extension(map
, i
, j
, k
, tabs
,
1167 eq_i
, ineq_i
, eq_j
, ineq_j
);
1171 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1)
1174 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1179 /* The two basic maps lie on adjacent hyperplanes. In particular,
1180 * basic map "i" has an equality that lies parallel to basic map "j".
1181 * Check if we can wrap the facets around the parallel hyperplanes
1182 * to include the other set.
1184 * We perform basically the same operations as can_wrap_in_facet,
1185 * except that we don't need to select a facet of one of the sets.
1191 * We only allow one equality of "i" to be adjacent to an equality of "j"
1192 * to avoid coalescing
1194 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1195 * x <= 10 and y <= 10;
1196 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1197 * y >= 5 and y <= 15 }
1201 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1202 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1203 * y2 <= 1 + x + y - x2 and y2 >= y and
1204 * y2 >= 1 + x + y - x2 }
1206 static int check_eq_adj_eq(struct isl_map
*map
, int i
, int j
,
1207 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1211 struct isl_wraps wraps
;
1213 struct isl_set
*set_i
= NULL
;
1214 struct isl_set
*set_j
= NULL
;
1215 struct isl_vec
*bound
= NULL
;
1216 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
1218 if (count(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) != 1)
1221 for (k
= 0; k
< 2 * map
->p
[i
]->n_eq
; ++k
)
1222 if (eq_i
[k
] == STATUS_ADJ_EQ
)
1225 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
1226 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
1227 mat
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
1228 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
1230 wraps_init(&wraps
, mat
, map
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1231 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
1232 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1236 isl_seq_neg(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1238 isl_seq_cpy(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
1239 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1241 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1242 wraps
.mat
->n_row
= 1;
1244 if (add_wraps(&wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
1246 if (!wraps
.mat
->n_row
)
1249 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1250 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1252 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1255 if (add_wraps(&wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
1257 if (!wraps
.mat
->n_row
)
1260 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
);
1263 error
: changed
= -1;
1268 isl_set_free(set_i
);
1269 isl_set_free(set_j
);
1270 isl_vec_free(bound
);
1275 /* Check if the union of the given pair of basic maps
1276 * can be represented by a single basic map.
1277 * If so, replace the pair by the single basic map and return 1.
1278 * Otherwise, return 0;
1279 * The two basic maps are assumed to live in the same local space.
1281 * We first check the effect of each constraint of one basic map
1282 * on the other basic map.
1283 * The constraint may be
1284 * redundant the constraint is redundant in its own
1285 * basic map and should be ignore and removed
1287 * valid all (integer) points of the other basic map
1288 * satisfy the constraint
1289 * separate no (integer) point of the other basic map
1290 * satisfies the constraint
1291 * cut some but not all points of the other basic map
1292 * satisfy the constraint
1293 * adj_eq the given constraint is adjacent (on the outside)
1294 * to an equality of the other basic map
1295 * adj_ineq the given constraint is adjacent (on the outside)
1296 * to an inequality of the other basic map
1298 * We consider seven cases in which we can replace the pair by a single
1299 * basic map. We ignore all "redundant" constraints.
1301 * 1. all constraints of one basic map are valid
1302 * => the other basic map is a subset and can be removed
1304 * 2. all constraints of both basic maps are either "valid" or "cut"
1305 * and the facets corresponding to the "cut" constraints
1306 * of one of the basic maps lies entirely inside the other basic map
1307 * => the pair can be replaced by a basic map consisting
1308 * of the valid constraints in both basic maps
1310 * 3. there is a single pair of adjacent inequalities
1311 * (all other constraints are "valid")
1312 * => the pair can be replaced by a basic map consisting
1313 * of the valid constraints in both basic maps
1315 * 4. one basic map has a single adjacent inequality, while the other
1316 * constraints are "valid". The other basic map has some
1317 * "cut" constraints, but replacing the adjacent inequality by
1318 * its opposite and adding the valid constraints of the other
1319 * basic map results in a subset of the other basic map
1320 * => the pair can be replaced by a basic map consisting
1321 * of the valid constraints in both basic maps
1323 * 5. there is a single adjacent pair of an inequality and an equality,
1324 * the other constraints of the basic map containing the inequality are
1325 * "valid". Moreover, if the inequality the basic map is relaxed
1326 * and then turned into an equality, then resulting facet lies
1327 * entirely inside the other basic map
1328 * => the pair can be replaced by the basic map containing
1329 * the inequality, with the inequality relaxed.
1331 * 6. there is a single adjacent pair of an inequality and an equality,
1332 * the other constraints of the basic map containing the inequality are
1333 * "valid". Moreover, the facets corresponding to both
1334 * the inequality and the equality can be wrapped around their
1335 * ridges to include the other basic map
1336 * => the pair can be replaced by a basic map consisting
1337 * of the valid constraints in both basic maps together
1338 * with all wrapping constraints
1340 * 7. one of the basic maps extends beyond the other by at most one.
1341 * Moreover, the facets corresponding to the cut constraints and
1342 * the pieces of the other basic map at offset one from these cut
1343 * constraints can be wrapped around their ridges to include
1344 * the union of the two basic maps
1345 * => the pair can be replaced by a basic map consisting
1346 * of the valid constraints in both basic maps together
1347 * with all wrapping constraints
1349 * 8. the two basic maps live in adjacent hyperplanes. In principle
1350 * such sets can always be combined through wrapping, but we impose
1351 * that there is only one such pair, to avoid overeager coalescing.
1353 * Throughout the computation, we maintain a collection of tableaus
1354 * corresponding to the basic maps. When the basic maps are dropped
1355 * or combined, the tableaus are modified accordingly.
1357 static int coalesce_local_pair(__isl_keep isl_map
*map
, int i
, int j
,
1358 struct isl_tab
**tabs
)
1366 eq_i
= eq_status_in(map
->p
[i
], tabs
[j
]);
1367 if (map
->p
[i
]->n_eq
&& !eq_i
)
1369 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
1371 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
1374 eq_j
= eq_status_in(map
->p
[j
], tabs
[i
]);
1375 if (map
->p
[j
]->n_eq
&& !eq_j
)
1377 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
1379 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
1382 ineq_i
= ineq_status_in(map
->p
[i
], tabs
[i
], tabs
[j
]);
1383 if (map
->p
[i
]->n_ineq
&& !ineq_i
)
1385 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
1387 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
1390 ineq_j
= ineq_status_in(map
->p
[j
], tabs
[j
], tabs
[i
]);
1391 if (map
->p
[j
]->n_ineq
&& !ineq_j
)
1393 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
1395 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
1398 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1399 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1402 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
1403 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
1406 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
)) {
1407 changed
= check_eq_adj_eq(map
, i
, j
, tabs
,
1408 eq_i
, ineq_i
, eq_j
, ineq_j
);
1409 } else if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
1410 changed
= check_eq_adj_eq(map
, j
, i
, tabs
,
1411 eq_j
, ineq_j
, eq_i
, ineq_i
);
1412 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
1413 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
1414 changed
= check_adj_eq(map
, i
, j
, tabs
,
1415 eq_i
, ineq_i
, eq_j
, ineq_j
);
1416 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
1417 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
1420 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1421 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
1422 changed
= check_adj_ineq(map
, i
, j
, tabs
,
1423 eq_i
, ineq_i
, eq_j
, ineq_j
);
1425 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1426 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1427 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
1429 changed
= check_wrap(map
, i
, j
, tabs
,
1430 eq_i
, ineq_i
, eq_j
, ineq_j
);
1447 /* Do the two basic maps live in the same local space, i.e.,
1448 * do they have the same (known) divs?
1449 * If either basic map has any unknown divs, then we can only assume
1450 * that they do not live in the same local space.
1452 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
1453 __isl_keep isl_basic_map
*bmap2
)
1459 if (!bmap1
|| !bmap2
)
1461 if (bmap1
->n_div
!= bmap2
->n_div
)
1464 if (bmap1
->n_div
== 0)
1467 known
= isl_basic_map_divs_known(bmap1
);
1468 if (known
< 0 || !known
)
1470 known
= isl_basic_map_divs_known(bmap2
);
1471 if (known
< 0 || !known
)
1474 total
= isl_basic_map_total_dim(bmap1
);
1475 for (i
= 0; i
< bmap1
->n_div
; ++i
)
1476 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
1482 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1483 * of those of "j", check if basic map "j" is a subset of basic map "i"
1484 * and, if so, drop basic map "j".
1486 * We first expand the divs of basic map "i" to match those of basic map "j",
1487 * using the divs and expansion computed by the caller.
1488 * Then we check if all constraints of the expanded "i" are valid for "j".
1490 static int coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1491 struct isl_tab
**tabs
, __isl_keep isl_mat
*div
, int *exp
)
1493 isl_basic_map
*bmap
;
1498 bmap
= isl_basic_map_copy(map
->p
[i
]);
1499 bmap
= isl_basic_set_expand_divs(bmap
, isl_mat_copy(div
), exp
);
1504 eq_i
= eq_status_in(bmap
, tabs
[j
]);
1505 if (bmap
->n_eq
&& !eq_i
)
1507 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_ERROR
))
1509 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
1512 ineq_i
= ineq_status_in(bmap
, NULL
, tabs
[j
]);
1513 if (bmap
->n_ineq
&& !ineq_i
)
1515 if (any(ineq_i
, bmap
->n_ineq
, STATUS_ERROR
))
1517 if (any(ineq_i
, bmap
->n_ineq
, STATUS_SEPARATE
))
1520 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1521 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1527 isl_basic_map_free(bmap
);
1532 isl_basic_map_free(bmap
);
1538 /* Check if the basic map "j" is a subset of basic map "i",
1539 * assuming that "i" has fewer divs that "j".
1540 * If not, then we change the order.
1542 * If the two basic maps have the same number of divs, then
1543 * they must necessarily be different. Otherwise, we would have
1544 * called coalesce_local_pair. We therefore don't try anything
1547 * We first check if the divs of "i" are all known and form a subset
1548 * of those of "j". If so, we pass control over to coalesce_subset.
1550 static int check_coalesce_subset(__isl_keep isl_map
*map
, int i
, int j
,
1551 struct isl_tab
**tabs
)
1554 isl_mat
*div_i
, *div_j
, *div
;
1560 if (map
->p
[i
]->n_div
== map
->p
[j
]->n_div
)
1562 if (map
->p
[j
]->n_div
< map
->p
[i
]->n_div
)
1563 return check_coalesce_subset(map
, j
, i
, tabs
);
1565 known
= isl_basic_map_divs_known(map
->p
[i
]);
1566 if (known
< 0 || !known
)
1569 ctx
= isl_map_get_ctx(map
);
1571 div_i
= isl_basic_map_get_divs(map
->p
[i
]);
1572 div_j
= isl_basic_map_get_divs(map
->p
[j
]);
1574 if (!div_i
|| !div_j
)
1577 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
1578 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
1579 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
1582 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
1586 if (div
->n_row
== div_j
->n_row
)
1587 subset
= coalesce_subset(map
, i
, j
, tabs
, div
, exp1
);
1593 isl_mat_free(div_i
);
1594 isl_mat_free(div_j
);
1601 isl_mat_free(div_i
);
1602 isl_mat_free(div_j
);
1608 /* Check if the union of the given pair of basic maps
1609 * can be represented by a single basic map.
1610 * If so, replace the pair by the single basic map and return 1.
1611 * Otherwise, return 0;
1613 * We first check if the two basic maps live in the same local space.
1614 * If so, we do the complete check. Otherwise, we check if one is
1615 * an obvious subset of the other.
1617 static int coalesce_pair(__isl_keep isl_map
*map
, int i
, int j
,
1618 struct isl_tab
**tabs
)
1622 same
= same_divs(map
->p
[i
], map
->p
[j
]);
1626 return coalesce_local_pair(map
, i
, j
, tabs
);
1628 return check_coalesce_subset(map
, i
, j
, tabs
);
1631 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
1635 for (i
= map
->n
- 2; i
>= 0; --i
)
1637 for (j
= i
+ 1; j
< map
->n
; ++j
) {
1639 changed
= coalesce_pair(map
, i
, j
, tabs
);
1651 /* For each pair of basic maps in the map, check if the union of the two
1652 * can be represented by a single basic map.
1653 * If so, replace the pair by the single basic map and start over.
1655 * Since we are constructing the tableaus of the basic maps anyway,
1656 * we exploit them to detect implicit equalities and redundant constraints.
1657 * This also helps the coalescing as it can ignore the redundant constraints.
1658 * In order to avoid confusion, we make all implicit equalities explicit
1659 * in the basic maps. We don't call isl_basic_map_gauss, though,
1660 * as that may affect the number of constraints.
1661 * This means that we have to call isl_basic_map_gauss at the end
1662 * of the computation to ensure that the basic maps are not left
1663 * in an unexpected state.
1665 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
1669 struct isl_tab
**tabs
= NULL
;
1671 map
= isl_map_remove_empty_parts(map
);
1678 map
= isl_map_sort_divs(map
);
1679 map
= isl_map_cow(map
);
1681 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
1686 for (i
= 0; i
< map
->n
; ++i
) {
1687 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
], 0);
1690 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
1691 if (isl_tab_detect_implicit_equalities(tabs
[i
]) < 0)
1693 map
->p
[i
] = isl_tab_make_equalities_explicit(tabs
[i
],
1697 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
1698 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
1701 for (i
= map
->n
- 1; i
>= 0; --i
)
1705 map
= coalesce(map
, tabs
);
1708 for (i
= 0; i
< map
->n
; ++i
) {
1709 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
1711 map
->p
[i
] = isl_basic_map_gauss(map
->p
[i
], NULL
);
1712 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1715 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
1716 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
1719 for (i
= 0; i
< n
; ++i
)
1720 isl_tab_free(tabs
[i
]);
1727 for (i
= 0; i
< n
; ++i
)
1728 isl_tab_free(tabs
[i
]);
1734 /* For each pair of basic sets in the set, check if the union of the two
1735 * can be represented by a single basic set.
1736 * If so, replace the pair by the single basic set and start over.
1738 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
1740 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);