2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl/space.h>
15 #include <isl/constraint.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
30 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
31 __isl_take isl_val
*d
)
33 aff
= isl_aff_neg(aff
);
34 aff
= isl_aff_add_constant_val(aff
, d
);
35 aff
= isl_aff_add_constant_si(aff
, -1);
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "cst" is the constant term of the expression in which the added term
44 * appears. It may be modified by isl_ast_expr_add_term.
46 * "v" is the coefficient of the term that is being constructed and
47 * is set internally by isl_ast_expr_add_term.
49 struct isl_ast_add_term_data
{
55 /* Given the numerator "aff" of the argument of an integer division
56 * with denominator "d", check if it can be made non-negative over
57 * data->build->domain by stealing part of the constant term of
58 * the expression in which the integer division appears.
60 * In particular, the outer expression is of the form
62 * v * floor(aff/d) + cst
64 * We already know that "aff" itself may attain negative values.
65 * Here we check if aff + d*floor(cst/v) is non-negative, such
66 * that we could rewrite the expression to
68 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
70 * Note that aff + d*floor(cst/v) can only possibly be non-negative
71 * if data->cst and data->v have the same sign.
72 * Similarly, if floor(cst/v) is zero, then there is no point in
75 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
76 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
83 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
86 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
87 shift
= isl_val_floor(shift
);
88 is_zero
= isl_val_is_zero(shift
);
89 if (is_zero
< 0 || is_zero
) {
91 return is_zero
< 0 ? -1 : 0;
93 shift
= isl_val_mul(shift
, isl_val_copy(d
));
94 shifted
= isl_aff_copy(aff
);
95 shifted
= isl_aff_add_constant_val(shifted
, shift
);
96 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
97 isl_aff_free(shifted
);
102 /* Given the numerator "aff' of the argument of an integer division
103 * with denominator "d", steal part of the constant term of
104 * the expression in which the integer division appears to make it
105 * non-negative over data->build->domain.
107 * In particular, the outer expression is of the form
109 * v * floor(aff/d) + cst
111 * We know that "aff" itself may attain negative values,
112 * but that aff + d*floor(cst/v) is non-negative.
113 * Find the minimal positive value that we need to add to "aff"
114 * to make it positive and adjust data->cst accordingly.
115 * That is, compute the minimal value "m" of "aff" over
116 * data->build->domain and take
124 * and rewrite the expression to
126 * v * floor((aff + s*d)/d) + (cst - v*s)
128 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
129 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
134 domain
= isl_ast_build_get_domain(data
->build
);
135 shift
= isl_set_min_val(domain
, aff
);
136 isl_set_free(domain
);
138 shift
= isl_val_neg(shift
);
139 shift
= isl_val_div(shift
, isl_val_copy(d
));
140 shift
= isl_val_ceil(shift
);
142 t
= isl_val_copy(shift
);
143 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
144 data
->cst
= isl_val_sub(data
->cst
, t
);
146 shift
= isl_val_mul(shift
, isl_val_copy(d
));
147 return isl_aff_add_constant_val(aff
, shift
);
150 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
151 * The result is simplified in terms of data->build->domain.
152 * This function may change (the sign of) data->v.
154 * "ls" is known to be non-NULL.
156 * Let the div be of the form floor(e/d).
157 * If the ast_build_prefer_pdiv option is set then we check if "e"
158 * is non-negative, so that we can generate
160 * (pdiv_q, expr(e), expr(d))
164 * (fdiv_q, expr(e), expr(d))
166 * If the ast_build_prefer_pdiv option is set and
167 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
168 * If so, we can rewrite
170 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
172 * and still use pdiv_q, while changing the sign of data->v.
174 * Otherwise, we check if
178 * is non-negative and if so, replace floor(e/d) by
180 * floor((e + s*d)/d) - s
182 * with s the minimal shift that makes the argument non-negative.
184 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
185 __isl_keep isl_local_space
*ls
, int pos
)
187 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
189 isl_ast_expr
*num
, *den
;
191 enum isl_ast_op_type type
;
193 aff
= isl_local_space_get_div(ls
, pos
);
194 d
= isl_aff_get_denominator_val(aff
);
195 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
196 den
= isl_ast_expr_from_val(isl_val_copy(d
));
198 type
= isl_ast_op_fdiv_q
;
199 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
200 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
201 if (non_neg
>= 0 && !non_neg
) {
202 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
204 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
205 if (non_neg
>= 0 && non_neg
) {
206 data
->v
= isl_val_neg(data
->v
);
212 if (non_neg
>= 0 && !non_neg
) {
213 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
214 if (non_neg
>= 0 && non_neg
)
215 aff
= steal_from_cst(aff
, d
, data
);
218 aff
= isl_aff_free(aff
);
220 type
= isl_ast_op_pdiv_q
;
224 num
= isl_ast_expr_from_aff(aff
, data
->build
);
225 return isl_ast_expr_alloc_binary(type
, num
, den
);
228 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
229 * The result is simplified in terms of data->build->domain.
230 * This function may change (the sign of) data->v.
232 * The isl_ast_expr is constructed based on the type of the dimension.
233 * - divs are constructed by var_div
234 * - set variables are constructed from the iterator isl_ids in data->build
235 * - parameters are constructed from the isl_ids in "ls"
237 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
238 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
240 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
243 if (type
== isl_dim_div
)
244 return var_div(data
, ls
, pos
);
246 if (type
== isl_dim_set
) {
247 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
248 return isl_ast_expr_from_id(id
);
251 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
252 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
254 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
255 return isl_ast_expr_from_id(id
);
258 /* Does "expr" represent the zero integer?
260 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
264 if (expr
->type
!= isl_ast_expr_int
)
266 return isl_val_is_zero(expr
->u
.v
);
269 /* Create an expression representing the sum of "expr1" and "expr2",
270 * provided neither of the two expressions is identically zero.
272 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
273 __isl_take isl_ast_expr
*expr2
)
275 if (!expr1
|| !expr2
)
278 if (ast_expr_is_zero(expr1
)) {
279 isl_ast_expr_free(expr1
);
283 if (ast_expr_is_zero(expr2
)) {
284 isl_ast_expr_free(expr2
);
288 return isl_ast_expr_add(expr1
, expr2
);
290 isl_ast_expr_free(expr1
);
291 isl_ast_expr_free(expr2
);
295 /* Subtract expr2 from expr1.
297 * If expr2 is zero, we simply return expr1.
298 * If expr1 is zero, we return
300 * (isl_ast_op_minus, expr2)
302 * Otherwise, we return
304 * (isl_ast_op_sub, expr1, expr2)
306 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
307 __isl_take isl_ast_expr
*expr2
)
309 if (!expr1
|| !expr2
)
312 if (ast_expr_is_zero(expr2
)) {
313 isl_ast_expr_free(expr2
);
317 if (ast_expr_is_zero(expr1
)) {
318 isl_ast_expr_free(expr1
);
319 return isl_ast_expr_neg(expr2
);
322 return isl_ast_expr_sub(expr1
, expr2
);
324 isl_ast_expr_free(expr1
);
325 isl_ast_expr_free(expr2
);
329 /* Return an isl_ast_expr that represents
333 * v is assumed to be non-negative.
334 * The result is simplified in terms of build->domain.
336 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
337 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
338 __isl_keep isl_ast_build
*build
)
346 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
348 c
= isl_ast_expr_from_val(isl_val_copy(d
));
349 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
351 if (!isl_val_is_one(v
)) {
352 c
= isl_ast_expr_from_val(isl_val_copy(v
));
353 expr
= isl_ast_expr_mul(c
, expr
);
359 /* Create an isl_ast_expr that scales "expr" by "v".
361 * If v is 1, we simply return expr.
362 * If v is -1, we return
364 * (isl_ast_op_minus, expr)
366 * Otherwise, we return
368 * (isl_ast_op_mul, expr(v), expr)
370 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
371 __isl_take isl_val
*v
)
377 if (isl_val_is_one(v
)) {
382 if (isl_val_is_negone(v
)) {
384 expr
= isl_ast_expr_neg(expr
);
386 c
= isl_ast_expr_from_val(v
);
387 expr
= isl_ast_expr_mul(c
, expr
);
393 isl_ast_expr_free(expr
);
397 /* Add an expression for "*v" times the specified dimension of "ls"
399 * If the dimension is an integer division, then this function
400 * may modify data->cst in order to make the numerator non-negative.
401 * The result is simplified in terms of data->build->domain.
403 * Let e be the expression for the specified dimension,
404 * multiplied by the absolute value of "*v".
405 * If "*v" is negative, we create
407 * (isl_ast_op_sub, expr, e)
409 * except when expr is trivially zero, in which case we create
411 * (isl_ast_op_minus, e)
415 * If "*v" is positive, we simply create
417 * (isl_ast_op_add, expr, e)
420 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
421 __isl_take isl_ast_expr
*expr
,
422 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
423 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
431 term
= var(data
, ls
, type
, pos
);
434 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
436 term
= scale(term
, v
);
437 return ast_expr_sub(expr
, term
);
439 term
= scale(term
, v
);
440 return ast_expr_add(expr
, term
);
444 /* Add an expression for "v" to expr.
446 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
447 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
449 isl_ast_expr
*expr_int
;
454 if (isl_val_is_zero(v
)) {
459 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
461 expr_int
= isl_ast_expr_from_val(v
);
462 return ast_expr_sub(expr
, expr_int
);
464 expr_int
= isl_ast_expr_from_val(v
);
465 return ast_expr_add(expr
, expr_int
);
468 isl_ast_expr_free(expr
);
473 /* Internal data structure used inside extract_modulos.
475 * If any modulo expressions are detected in "aff", then the
476 * expression is removed from "aff" and added to either "pos" or "neg"
477 * depending on the sign of the coefficient of the modulo expression
480 * "add" is an expression that needs to be added to "aff" at the end of
481 * the computation. It is NULL as long as no modulos have been extracted.
483 * "i" is the position in "aff" of the div under investigation
484 * "v" is the coefficient in "aff" of the div
485 * "div" is the argument of the div, with the denominator removed
486 * "d" is the original denominator of the argument of the div
488 * "nonneg" is an affine expression that is non-negative over "build"
489 * and that can be used to extract a modulo expression from "div".
490 * In particular, if "sign" is 1, then the coefficients of "nonneg"
491 * are equal to those of "div" modulo "d". If "sign" is -1, then
492 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
493 * If "sign" is 0, then no such affine expression has been found (yet).
495 struct isl_extract_mod_data
{
496 isl_ast_build
*build
;
513 /* Given that data->v * div_i in data->aff is equal to
515 * f * (term - (arg mod d))
517 * with data->d * f = data->v, add
523 * abs(f) * (arg mod d)
525 * to data->neg or data->pos depending on the sign of -f.
527 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
528 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
533 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
534 s
= isl_val_sgn(data
->v
);
535 data
->v
= isl_val_abs(data
->v
);
536 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
539 data
->neg
= ast_expr_add(data
->neg
, expr
);
541 data
->pos
= ast_expr_add(data
->pos
, expr
);
542 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
543 isl_dim_div
, data
->i
, 0);
545 data
->v
= isl_val_neg(data
->v
);
546 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
551 data
->add
= isl_aff_add(data
->add
, term
);
558 /* Given that data->v * div_i in data->aff is of the form
560 * f * d * floor(div/d)
562 * with div nonnegative on data->build, rewrite it as
564 * f * (div - (div mod d)) = f * div - f * (div mod d)
572 * abs(f) * (div mod d)
574 * to data->neg or data->pos depending on the sign of -f.
576 static int extract_mod(struct isl_extract_mod_data
*data
)
578 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
579 isl_aff_copy(data
->div
));
582 /* Given that data->v * div_i in data->aff is of the form
584 * f * d * floor(div/d) (1)
586 * check if div is non-negative on data->build and, if so,
587 * extract the corresponding modulo from data->aff.
588 * If not, then check if
592 * is non-negative on data->build. If so, replace (1) by
594 * -f * d * floor((-div + d - 1)/d)
596 * and extract the corresponding modulo from data->aff.
598 * This function may modify data->div.
600 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
604 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
608 return extract_mod(data
);
610 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
611 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
615 data
->v
= isl_val_neg(data
->v
);
616 return extract_mod(data
);
621 data
->aff
= isl_aff_free(data
->aff
);
625 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
626 * for use in extracting a modulo expression?
628 * We currently only consider the constant term of the affine expression.
629 * In particular, we prefer the affine expression with the smallest constant
631 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
632 * then we would pick x >= 0
634 * More detailed heuristics could be used if it turns out that there is a need.
636 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
637 __isl_keep isl_constraint
*c
)
645 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
646 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
647 simpler
= isl_val_lt(v1
, v2
);
654 /* Check if the coefficients of "c" are either equal or opposite to those
655 * of data->div modulo data->d. If so, and if "c" is "simpler" than
656 * data->nonneg, then replace data->nonneg by the affine expression of "c"
657 * and set data->sign accordingly.
659 * Both "c" and data->div are assumed not to involve any integer divisions.
661 * Before we start the actual comparison, we first quickly check if
662 * "c" and data->div have the same non-zero coefficients.
663 * If not, then we assume that "c" is not of the desired form.
664 * Note that while the coefficients of data->div can be reasonably expected
665 * not to involve any coefficients that are multiples of d, "c" may
666 * very well involve such coefficients. This means that we may actually
669 * If the constant term is "too large", then the constraint is rejected,
670 * where "too large" is fairly arbitrarily set to 1 << 15.
671 * We do this to avoid picking up constraints that bound a variable
672 * by a very large number, say the largest or smallest possible
673 * variable in the representation of some integer type.
675 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
678 struct isl_extract_mod_data
*data
= user
;
679 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
680 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
683 int parallel
= 1, opposite
= 1;
685 for (t
= 0; t
< 2; ++t
) {
686 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
687 for (i
= 0; i
< n
[t
]; ++i
) {
690 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
691 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
693 parallel
= opposite
= 0;
697 if (parallel
|| opposite
) {
700 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
701 if (isl_val_cmp_si(v
, 1 << 15) > 0)
702 parallel
= opposite
= 0;
706 for (t
= 0; t
< 2; ++t
) {
707 for (i
= 0; i
< n
[t
]; ++i
) {
710 if (!parallel
&& !opposite
)
712 v1
= isl_constraint_get_coefficient_val(c
,
714 v2
= isl_aff_get_coefficient_val(data
->div
,
717 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
718 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
719 v1
= isl_val_add(v1
, isl_val_copy(v2
));
722 v1
= isl_val_add(v1
, isl_val_copy(v2
));
723 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
730 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
731 isl_aff_free(data
->nonneg
);
732 data
->nonneg
= isl_constraint_get_aff(c
);
733 data
->sign
= parallel
? 1 : -1;
736 isl_constraint_free(c
);
738 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
739 return isl_stat_error
;
744 /* Given that data->v * div_i in data->aff is of the form
746 * f * d * floor(div/d) (1)
748 * see if we can find an expression div' that is non-negative over data->build
749 * and that is related to div through
755 * div' = -div + d - 1 + d * e
757 * with e some affine expression.
758 * If so, we write (1) as
760 * f * div + f * (div' mod d)
764 * -f * (-div + d - 1) - f * (div' mod d)
766 * exploiting (in the second case) the fact that
768 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
771 * We first try to find an appropriate expression for div'
772 * from the constraints of data->build->domain (which is therefore
773 * guaranteed to be non-negative on data->build), where we remove
774 * any integer divisions from the constraints and skip this step
775 * if "div" itself involves any integer divisions.
776 * If we cannot find an appropriate expression this way, then
777 * we pass control to extract_nonneg_mod where check
778 * if div or "-div + d -1" themselves happen to be
779 * non-negative on data->build.
781 * While looking for an appropriate constraint in data->build->domain,
782 * we ignore the constant term, so after finding such a constraint,
783 * we still need to fix up the constant term.
784 * In particular, if a is the constant term of "div"
785 * (or d - 1 - the constant term of "div" if data->sign < 0)
786 * and b is the constant term of the constraint, then we need to find
787 * a non-negative constant c such that
789 * b + c \equiv a mod d
795 * and add it to b to obtain the constant term of div'.
796 * If this constant term is "too negative", then we add an appropriate
797 * multiple of d to make it positive.
800 * Note that the above is a only a very simple heuristic for finding an
801 * appropriate expression. We could try a bit harder by also considering
802 * sums of constraints that involve disjoint sets of variables or
803 * we could consider arbitrary linear combinations of constraints,
804 * although that could potentially be much more expensive as it involves
805 * the solution of an LP problem.
807 * In particular, if v_i is a column vector representing constraint i,
808 * w represents div and e_i is the i-th unit vector, then we are looking
809 * for a solution of the constraints
811 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
813 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
814 * If we are not just interested in a non-negative expression, but
815 * also in one with a minimal range, then we don't just want
816 * c = \sum_i lambda_i v_i to be non-negative over the domain,
817 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
818 * that we want to minimize and we now also have to take into account
819 * the constant terms of the constraints.
820 * Alternatively, we could first compute the dual of the domain
821 * and plug in the constraints on the coefficients.
823 static int try_extract_mod(struct isl_extract_mod_data
*data
)
832 n
= isl_aff_dim(data
->div
, isl_dim_div
);
834 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
835 return extract_nonneg_mod(data
);
837 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
838 hull
= isl_basic_set_remove_divs(hull
);
841 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
843 isl_basic_set_free(hull
);
845 if (!data
->sign
|| r
< 0) {
846 isl_aff_free(data
->nonneg
);
849 return extract_nonneg_mod(data
);
852 v1
= isl_aff_get_constant_val(data
->div
);
853 v2
= isl_aff_get_constant_val(data
->nonneg
);
854 if (data
->sign
< 0) {
855 v1
= isl_val_neg(v1
);
856 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
857 v1
= isl_val_sub_ui(v1
, 1);
859 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
860 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
861 v1
= isl_val_add(v1
, v2
);
862 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
863 v2
= isl_val_ceil(v2
);
864 if (isl_val_is_neg(v2
)) {
865 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
866 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
868 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
871 if (data
->sign
< 0) {
872 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
873 data
->v
= isl_val_neg(data
->v
);
876 return extract_term_and_mod(data
,
877 isl_aff_copy(data
->div
), data
->nonneg
);
879 data
->aff
= isl_aff_free(data
->aff
);
883 /* Check if "data->aff" involves any (implicit) modulo computations based
885 * If so, remove them from aff and add expressions corresponding
886 * to those modulo computations to data->pos and/or data->neg.
888 * "aff" is assumed to be an integer affine expression.
890 * In particular, check if (v * div_j) is of the form
892 * f * m * floor(a / m)
894 * and, if so, rewrite it as
896 * f * (a - (a mod m)) = f * a - f * (a mod m)
898 * and extract out -f * (a mod m).
899 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
900 * If f < 0, we add ((-f) * (a mod m)) to *pos.
902 * Note that in order to represent "a mod m" as
904 * (isl_ast_op_pdiv_r, a, m)
906 * we need to make sure that a is non-negative.
907 * If not, we check if "-a + m - 1" is non-negative.
908 * If so, we can rewrite
910 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
912 * and still extract a modulo.
914 static int extract_modulo(struct isl_extract_mod_data
*data
)
916 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
917 data
->d
= isl_aff_get_denominator_val(data
->div
);
918 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
919 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
920 if (try_extract_mod(data
) < 0)
921 data
->aff
= isl_aff_free(data
->aff
);
923 isl_aff_free(data
->div
);
924 isl_val_free(data
->d
);
928 /* Check if "aff" involves any (implicit) modulo computations.
929 * If so, remove them from aff and add expressions corresponding
930 * to those modulo computations to *pos and/or *neg.
931 * We only do this if the option ast_build_prefer_pdiv is set.
933 * "aff" is assumed to be an integer affine expression.
935 * A modulo expression is of the form
937 * a mod m = a - m * floor(a / m)
939 * To detect them in aff, we look for terms of the form
941 * f * m * floor(a / m)
945 * f * (a - (a mod m)) = f * a - f * (a mod m)
947 * and extract out -f * (a mod m).
948 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
949 * If f < 0, we add ((-f) * (a mod m)) to *pos.
951 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
952 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
953 __isl_keep isl_ast_build
*build
)
955 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
962 ctx
= isl_aff_get_ctx(aff
);
963 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
966 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
967 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
968 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
969 isl_dim_div
, data
.i
);
971 return isl_aff_free(aff
);
972 if (isl_val_is_zero(data
.v
) ||
973 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
974 isl_val_free(data
.v
);
977 if (extract_modulo(&data
) < 0)
978 data
.aff
= isl_aff_free(data
.aff
);
979 isl_val_free(data
.v
);
985 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
992 /* Check if aff involves any non-integer coefficients.
993 * If so, split aff into
995 * aff = aff1 + (aff2 / d)
997 * with both aff1 and aff2 having only integer coefficients.
998 * Return aff1 and add (aff2 / d) to *expr.
1000 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
1001 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1004 isl_aff
*rat
= NULL
;
1005 isl_local_space
*ls
= NULL
;
1006 isl_ast_expr
*rat_expr
;
1008 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1009 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1013 d
= isl_aff_get_denominator_val(aff
);
1016 if (isl_val_is_one(d
)) {
1021 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1023 ls
= isl_aff_get_domain_local_space(aff
);
1024 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1026 for (i
= 0; i
< 3; ++i
) {
1027 n
= isl_aff_dim(aff
, t
[i
]);
1028 for (j
= 0; j
< n
; ++j
) {
1031 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1034 if (isl_val_is_divisible_by(v
, d
)) {
1038 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1040 rat_j
= isl_aff_scale_val(rat_j
, v
);
1041 rat
= isl_aff_add(rat
, rat_j
);
1045 v
= isl_aff_get_constant_val(aff
);
1046 if (isl_val_is_divisible_by(v
, d
)) {
1051 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1052 rat
= isl_aff_add(rat
, rat_0
);
1055 isl_local_space_free(ls
);
1057 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1058 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1060 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1061 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1062 *expr
= ast_expr_add(*expr
, rat_expr
);
1067 isl_local_space_free(ls
);
1073 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1074 * The result is simplified in terms of build->domain.
1076 * We first extract hidden modulo computations from the affine expression
1077 * and then add terms for each variable with a non-zero coefficient.
1078 * Finally, if the affine expression has a non-trivial denominator,
1079 * we divide the resulting isl_ast_expr by this denominator.
1081 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1082 __isl_keep isl_ast_build
*build
)
1087 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1088 isl_ast_expr
*expr
, *expr_neg
;
1089 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1090 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1091 isl_local_space
*ls
;
1092 struct isl_ast_add_term_data data
;
1097 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1098 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1100 aff
= extract_rational(aff
, &expr
, build
);
1102 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1103 expr
= ast_expr_sub(expr
, expr_neg
);
1105 ls
= isl_aff_get_domain_local_space(aff
);
1108 data
.cst
= isl_aff_get_constant_val(aff
);
1109 for (i
= 0; i
< 3; ++i
) {
1110 n
= isl_aff_dim(aff
, t
[i
]);
1111 for (j
= 0; j
< n
; ++j
) {
1112 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1114 expr
= isl_ast_expr_free(expr
);
1115 if (isl_val_is_zero(v
)) {
1119 expr
= isl_ast_expr_add_term(expr
,
1120 ls
, l
[i
], j
, v
, &data
);
1124 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1126 isl_local_space_free(ls
);
1131 /* Add terms to "expr" for each variable in "aff" with a coefficient
1132 * with sign equal to "sign".
1133 * The result is simplified in terms of data->build->domain.
1135 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1136 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1140 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1141 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1142 isl_local_space
*ls
;
1144 ls
= isl_aff_get_domain_local_space(aff
);
1146 for (i
= 0; i
< 3; ++i
) {
1147 int n
= isl_aff_dim(aff
, t
[i
]);
1148 for (j
= 0; j
< n
; ++j
) {
1149 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1150 if (sign
* isl_val_sgn(v
) <= 0) {
1155 expr
= isl_ast_expr_add_term(expr
,
1156 ls
, l
[i
], j
, v
, data
);
1160 isl_local_space_free(ls
);
1165 /* Should the constant term "v" be considered positive?
1167 * A positive constant will be added to "pos" by the caller,
1168 * while a negative constant will be added to "neg".
1169 * If either "pos" or "neg" is exactly zero, then we prefer
1170 * to add the constant "v" to that side, irrespective of the sign of "v".
1171 * This results in slightly shorter expressions and may reduce the risk
1174 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1175 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1177 if (ast_expr_is_zero(pos
))
1179 if (ast_expr_is_zero(neg
))
1181 return isl_val_is_pos(v
);
1184 /* Check if the equality
1188 * represents a stride constraint on the integer division "pos".
1190 * In particular, if the integer division "pos" is equal to
1194 * then check if aff is equal to
1200 * If so, the equality is exactly
1204 * Note that in principle we could also accept
1208 * where e and e' differ by a constant.
1210 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1216 div
= isl_aff_get_div(aff
, pos
);
1217 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1218 d
= isl_aff_get_denominator_val(div
);
1219 eq
= isl_val_abs_eq(c
, d
);
1220 if (eq
>= 0 && eq
) {
1221 aff
= isl_aff_copy(aff
);
1222 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1223 div
= isl_aff_scale_val(div
, d
);
1224 if (isl_val_is_pos(c
))
1225 div
= isl_aff_neg(div
);
1226 eq
= isl_aff_plain_is_equal(div
, aff
);
1236 /* Are all coefficients of "aff" (zero or) negative?
1238 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1245 n
= isl_aff_dim(aff
, isl_dim_param
);
1246 for (i
= 0; i
< n
; ++i
)
1247 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1250 n
= isl_aff_dim(aff
, isl_dim_in
);
1251 for (i
= 0; i
< n
; ++i
)
1252 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1258 /* Give an equality of the form
1260 * aff = e - d floor(e/d) = 0
1264 * aff = -e + d floor(e/d) = 0
1266 * with the integer division "pos" equal to floor(e/d),
1267 * construct the AST expression
1269 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1271 * If e only has negative coefficients, then construct
1273 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1277 static __isl_give isl_ast_expr
*extract_stride_constraint(
1278 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1282 isl_ast_expr
*expr
, *cst
;
1287 ctx
= isl_aff_get_ctx(aff
);
1289 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1290 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1292 if (all_negative_coefficients(aff
))
1293 aff
= isl_aff_neg(aff
);
1295 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1296 expr
= isl_ast_expr_from_aff(aff
, build
);
1298 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1299 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1300 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1305 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1306 * The result is simplified in terms of build->domain.
1308 * We first check if the constraint is an equality of the form
1310 * e - d floor(e/d) = 0
1316 * If so, we convert it to
1318 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1320 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1321 * We first extract hidden modulo computations from "a"
1322 * and then collect all the terms with a positive coefficient in cons_pos
1323 * and the terms with a negative coefficient in cons_neg.
1325 * The result is then of the form
1327 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1331 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1333 * However, if the first expression is an integer constant (and the second
1334 * is not), then we swap the two expressions. This ensures that we construct,
1335 * e.g., "i <= 5" rather than "5 >= i".
1337 * Furthermore, is there are no terms with positive coefficients (or no terms
1338 * with negative coefficients), then the constant term is added to "pos"
1339 * (or "neg"), ignoring the sign of the constant term.
1341 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1342 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1346 isl_ast_expr
*expr_pos
;
1347 isl_ast_expr
*expr_neg
;
1351 enum isl_ast_op_type type
;
1352 struct isl_ast_add_term_data data
;
1357 aff
= isl_constraint_get_aff(constraint
);
1358 eq
= isl_constraint_is_equality(constraint
);
1359 isl_constraint_free(constraint
);
1361 n
= isl_aff_dim(aff
, isl_dim_div
);
1363 for (i
= 0; i
< n
; ++i
) {
1365 is_stride
= is_stride_constraint(aff
, i
);
1369 return extract_stride_constraint(aff
, i
, build
);
1372 ctx
= isl_aff_get_ctx(aff
);
1373 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1374 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1376 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1379 data
.cst
= isl_aff_get_constant_val(aff
);
1380 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1381 data
.cst
= isl_val_neg(data
.cst
);
1382 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1383 data
.cst
= isl_val_neg(data
.cst
);
1385 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1386 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1388 data
.cst
= isl_val_neg(data
.cst
);
1389 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1392 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1393 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1394 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1395 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1397 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1398 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1408 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1409 * as a callback to isl_constraint_list_sort.
1410 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1411 * apart, then use isl_constraint_plain_cmp instead.
1413 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1414 __isl_keep isl_constraint
*b
, void *user
)
1418 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1421 return isl_constraint_plain_cmp(a
, b
);
1424 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1425 * The result is simplified in terms of build->domain.
1427 * If "bset" is not bounded by any constraint, then we construct
1428 * the expression "1", i.e., "true".
1430 * Otherwise, we sort the constraints, putting constraints that involve
1431 * integer divisions after those that do not, and construct an "and"
1432 * of the ast expressions of the individual constraints.
1434 * Each constraint is added to the generated constraints of the build
1435 * after it has been converted to an AST expression so that it can be used
1436 * to simplify the following constraints. This may change the truth value
1437 * of subsequent constraints that do not satisfy the earlier constraints,
1438 * but this does not affect the outcome of the conjunction as it is
1439 * only true if all the conjuncts are true (no matter in what order
1440 * they are evaluated). In particular, the constraints that do not
1441 * involve integer divisions may serve to simplify some constraints
1442 * that do involve integer divisions.
1444 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1445 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1449 isl_constraint_list
*list
;
1453 list
= isl_basic_set_get_constraint_list(bset
);
1454 isl_basic_set_free(bset
);
1455 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1458 n
= isl_constraint_list_n_constraint(list
);
1460 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
1461 isl_constraint_list_free(list
);
1462 return isl_ast_expr_alloc_int_si(ctx
, 1);
1465 build
= isl_ast_build_copy(build
);
1467 c
= isl_constraint_list_get_constraint(list
, 0);
1468 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1469 set
= isl_set_from_basic_set(bset
);
1470 res
= isl_ast_expr_from_constraint(c
, build
);
1471 build
= isl_ast_build_restrict_generated(build
, set
);
1473 for (i
= 1; i
< n
; ++i
) {
1476 c
= isl_constraint_list_get_constraint(list
, i
);
1477 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1478 set
= isl_set_from_basic_set(bset
);
1479 expr
= isl_ast_expr_from_constraint(c
, build
);
1480 build
= isl_ast_build_restrict_generated(build
, set
);
1481 res
= isl_ast_expr_and(res
, expr
);
1484 isl_constraint_list_free(list
);
1485 isl_ast_build_free(build
);
1489 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1490 * The result is simplified in terms of build->domain.
1492 * If "set" is an (obviously) empty set, then return the expression "0".
1494 * If there are multiple disjuncts in the description of the set,
1495 * then subsequent disjuncts are simplified in a context where
1496 * the previous disjuncts have been removed from build->domain.
1497 * In particular, constraints that ensure that there is no overlap
1498 * with these previous disjuncts, can be removed.
1499 * This is mostly useful for disjuncts that are only defined by
1500 * a single constraint (relative to the build domain) as the opposite
1501 * of that single constraint can then be removed from the other disjuncts.
1502 * In order not to increase the number of disjuncts in the build domain
1503 * after subtracting the previous disjuncts of "set", the simple hull
1504 * is computed after taking the difference with each of these disjuncts.
1505 * This means that constraints that prevent overlap with a union
1506 * of multiple previous disjuncts are not removed.
1508 * "set" lives in the internal schedule space.
1510 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1511 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1514 isl_basic_set
*bset
;
1515 isl_basic_set_list
*list
;
1519 list
= isl_set_get_basic_set_list(set
);
1524 n
= isl_basic_set_list_n_basic_set(list
);
1526 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1527 isl_basic_set_list_free(list
);
1528 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1531 domain
= isl_ast_build_get_domain(build
);
1533 bset
= isl_basic_set_list_get_basic_set(list
, 0);
1534 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1535 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
1537 for (i
= 1; i
< n
; ++i
) {
1541 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
1542 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
1543 domain
= isl_set_intersect(domain
, rest
);
1544 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1545 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1546 bset
= isl_basic_set_gist(bset
,
1547 isl_set_simple_hull(isl_set_copy(domain
)));
1548 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
1549 res
= isl_ast_expr_or(res
, expr
);
1552 isl_set_free(domain
);
1554 isl_basic_set_list_free(list
);
1558 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1559 * The result is simplified in terms of build->domain.
1561 * If "set" is an (obviously) empty set, then return the expression "0".
1563 * "set" lives in the external schedule space.
1565 * The internal AST expression generation assumes that there are
1566 * no unknown divs, so make sure an explicit representation is available.
1567 * Since the set comes from the outside, it may have constraints that
1568 * are redundant with respect to the build domain. Remove them first.
1570 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1571 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1573 if (isl_ast_build_need_schedule_map(build
)) {
1575 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1576 set
= isl_set_preimage_multi_aff(set
, ma
);
1579 set
= isl_set_compute_divs(set
);
1580 set
= isl_ast_build_compute_gist(build
, set
);
1581 return isl_ast_build_expr_from_set_internal(build
, set
);
1584 /* State of data about previous pieces in
1585 * isl_ast_build_expr_from_pw_aff_internal.
1587 * isl_state_none: no data about previous pieces
1588 * isl_state_single: data about a single previous piece
1589 * isl_state_min: data represents minimum of several pieces
1590 * isl_state_max: data represents maximum of several pieces
1592 enum isl_from_pw_aff_state
{
1599 /* Internal date structure representing a single piece in the input of
1600 * isl_ast_build_expr_from_pw_aff_internal.
1602 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1603 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1604 * single previous subpiece.
1605 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1606 * a sequence of several previous subpieces that are equal to the minimum
1607 * of the entries in "aff_list" over the union of "set_list"
1608 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1609 * a sequence of several previous subpieces that are equal to the maximum
1610 * of the entries in "aff_list" over the union of "set_list"
1612 * During the construction of the pieces, "set" is NULL.
1613 * After the construction, "set" is set to the union of the elements
1614 * in "set_list", at which point "set_list" is set to NULL.
1616 struct isl_from_pw_aff_piece
{
1617 enum isl_from_pw_aff_state state
;
1619 isl_set_list
*set_list
;
1620 isl_aff_list
*aff_list
;
1623 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1625 * "build" specifies the domain against which the result is simplified.
1626 * "dom" is the domain of the entire isl_pw_aff.
1628 * "n" is the number of pieces constructed already.
1629 * In particular, during the construction of the pieces, "n" points to
1630 * the piece that is being constructed. After the construction of the
1631 * pieces, "n" is set to the total number of pieces.
1632 * "max" is the total number of allocated entries.
1633 * "p" contains the individual pieces.
1635 struct isl_from_pw_aff_data
{
1636 isl_ast_build
*build
;
1641 struct isl_from_pw_aff_piece
*p
;
1644 /* Initialize "data" based on "build" and "pa".
1646 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
1647 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
1652 ctx
= isl_pw_aff_get_ctx(pa
);
1653 n
= isl_pw_aff_n_piece(pa
);
1655 isl_die(ctx
, isl_error_invalid
,
1656 "cannot handle void expression", return isl_stat_error
);
1658 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
1660 return isl_stat_error
;
1661 data
->build
= build
;
1662 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1668 /* Free all memory allocated for "data".
1670 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
1674 isl_set_free(data
->dom
);
1678 for (i
= 0; i
< data
->max
; ++i
) {
1679 isl_set_free(data
->p
[i
].set
);
1680 isl_set_list_free(data
->p
[i
].set_list
);
1681 isl_aff_list_free(data
->p
[i
].aff_list
);
1686 /* Initialize the current entry of "data" to an unused piece.
1688 static void set_none(struct isl_from_pw_aff_data
*data
)
1690 data
->p
[data
->n
].state
= isl_state_none
;
1691 data
->p
[data
->n
].set_list
= NULL
;
1692 data
->p
[data
->n
].aff_list
= NULL
;
1695 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1697 static void set_single(struct isl_from_pw_aff_data
*data
,
1698 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1700 data
->p
[data
->n
].state
= isl_state_single
;
1701 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
1702 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
1705 /* Extend the current entry of "data" with "set" and "aff"
1706 * as a minimum expression.
1708 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
1709 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1712 data
->p
[n
].state
= isl_state_min
;
1713 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1714 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1716 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1717 return isl_stat_error
;
1721 /* Extend the current entry of "data" with "set" and "aff"
1722 * as a maximum expression.
1724 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
1725 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1728 data
->p
[n
].state
= isl_state_max
;
1729 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1730 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1732 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1733 return isl_stat_error
;
1737 /* Extend the domain of the current entry of "data", which is assumed
1738 * to contain a single subpiece, with "set". If "replace" is set,
1739 * then also replace the affine function by "aff". Otherwise,
1740 * simply free "aff".
1742 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
1743 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
1748 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
1749 set_n
= isl_set_union(set_n
, set
);
1750 data
->p
[n
].set_list
=
1751 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
1754 data
->p
[n
].aff_list
=
1755 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
1759 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1760 return isl_stat_error
;
1764 /* Construct an isl_ast_expr from "list" within "build".
1765 * If "state" is isl_state_single, then "list" contains a single entry and
1766 * an isl_ast_expr is constructed for that entry.
1767 * Otherwise a min or max expression is constructed from "list"
1768 * depending on "state".
1770 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
1771 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
1772 __isl_keep isl_ast_build
*build
)
1777 enum isl_ast_op_type op_type
;
1779 if (state
== isl_state_single
) {
1780 aff
= isl_aff_list_get_aff(list
, 0);
1781 isl_aff_list_free(list
);
1782 return isl_ast_expr_from_aff(aff
, build
);
1784 n
= isl_aff_list_n_aff(list
);
1785 op_type
= state
== isl_state_min
? isl_ast_op_min
: isl_ast_op_max
;
1786 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
1790 for (i
= 0; i
< n
; ++i
) {
1791 isl_ast_expr
*expr_i
;
1793 aff
= isl_aff_list_get_aff(list
, i
);
1794 expr_i
= isl_ast_expr_from_aff(aff
, build
);
1797 expr
->u
.op
.args
[i
] = expr_i
;
1800 isl_aff_list_free(list
);
1803 isl_aff_list_free(list
);
1804 isl_ast_expr_free(expr
);
1808 /* Extend the expression in "next" to take into account
1809 * the piece at position "pos" in "data", allowing for a further extension
1810 * for the next piece(s).
1811 * In particular, "next" is set to a select operation that selects
1812 * an isl_ast_expr corresponding to data->aff_list on data->set and
1813 * to an expression that will be filled in by later calls.
1814 * Return a pointer to this location.
1815 * Afterwards, the state of "data" is set to isl_state_none.
1817 * The constraints of data->set are added to the generated
1818 * constraints of the build such that they can be exploited to simplify
1819 * the AST expression constructed from data->aff_list.
1821 static isl_ast_expr
**add_intermediate_piece(struct isl_from_pw_aff_data
*data
,
1822 int pos
, isl_ast_expr
**next
)
1825 isl_ast_build
*build
;
1826 isl_ast_expr
*ternary
, *arg
;
1827 isl_set
*set
, *gist
;
1829 set
= data
->p
[pos
].set
;
1830 data
->p
[pos
].set
= NULL
;
1831 ctx
= isl_ast_build_get_ctx(data
->build
);
1832 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1833 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1834 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1835 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1836 build
= isl_ast_build_copy(data
->build
);
1837 build
= isl_ast_build_restrict_generated(build
, set
);
1838 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1839 data
->p
[pos
].state
, build
);
1840 data
->p
[pos
].aff_list
= NULL
;
1841 isl_ast_build_free(build
);
1842 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1843 data
->p
[pos
].state
= isl_state_none
;
1848 return &ternary
->u
.op
.args
[2];
1851 /* Extend the expression in "next" to take into account
1852 * the final piece, located at position "pos" in "data".
1853 * In particular, "next" is set to evaluate data->aff_list
1854 * and the domain is ignored.
1855 * Return isl_stat_ok on success and isl_stat_error on failure.
1857 * The constraints of data->set are however added to the generated
1858 * constraints of the build such that they can be exploited to simplify
1859 * the AST expression constructed from data->aff_list.
1861 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
1862 int pos
, isl_ast_expr
**next
)
1864 isl_ast_build
*build
;
1866 if (data
->p
[pos
].state
== isl_state_none
)
1867 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1868 "cannot handle void expression", return isl_stat_error
);
1870 build
= isl_ast_build_copy(data
->build
);
1871 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
1872 data
->p
[pos
].set
= NULL
;
1873 *next
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1874 data
->p
[pos
].state
, build
);
1875 data
->p
[pos
].aff_list
= NULL
;
1876 isl_ast_build_free(build
);
1877 data
->p
[pos
].state
= isl_state_none
;
1879 return isl_stat_error
;
1884 /* Return -1 if the piece "p1" should be sorted before "p2"
1885 * and 1 if it should be sorted after "p2".
1886 * Return 0 if they do not need to be sorted in a specific order.
1888 * Pieces are sorted according to the number of disjuncts
1891 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
1893 const struct isl_from_pw_aff_piece
*piece1
= p1
;
1894 const struct isl_from_pw_aff_piece
*piece2
= p2
;
1897 n1
= isl_set_n_basic_set(piece1
->set
);
1898 n2
= isl_set_n_basic_set(piece2
->set
);
1903 /* Construct an isl_ast_expr from the pieces in "data".
1904 * Return the result or NULL on failure.
1906 * When this function is called, data->n points to the current piece.
1907 * If this is an effective piece, then first increment data->n such
1908 * that data->n contains the number of pieces.
1909 * The "set_list" fields are subsequently replaced by the corresponding
1910 * "set" fields, after which the pieces are sorted according to
1911 * the number of disjuncts in these "set" fields.
1913 * Construct intermediate AST expressions for the initial pieces and
1914 * finish off with the final pieces.
1916 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
1919 isl_ast_expr
*res
= NULL
;
1920 isl_ast_expr
**next
= &res
;
1922 if (data
->p
[data
->n
].state
!= isl_state_none
)
1925 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1926 "cannot handle void expression", return NULL
);
1928 for (i
= 0; i
< data
->n
; ++i
) {
1929 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
1930 if (data
->p
[i
].state
!= isl_state_single
)
1931 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
1932 data
->p
[i
].set_list
= NULL
;
1935 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
1936 &sort_pieces_cmp
, NULL
) < 0)
1937 return isl_ast_expr_free(res
);
1939 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
1940 next
= add_intermediate_piece(data
, i
, next
);
1942 return isl_ast_expr_free(res
);
1945 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
1946 return isl_ast_expr_free(res
);
1951 /* Is the domain of the current entry of "data", which is assumed
1952 * to contain a single subpiece, a subset of "set"?
1954 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
1955 __isl_keep isl_set
*set
)
1960 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
1961 subset
= isl_set_is_subset(set_n
, set
);
1962 isl_set_free(set_n
);
1967 /* Is "aff" a rational expression, i.e., does it have a denominator
1968 * different from one?
1970 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
1975 den
= isl_aff_get_denominator_val(aff
);
1976 rational
= isl_bool_not(isl_val_is_one(den
));
1982 /* Does "list" consist of a single rational affine expression?
1984 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
1989 if (isl_aff_list_n_aff(list
) != 1)
1990 return isl_bool_false
;
1991 aff
= isl_aff_list_get_aff(list
, 0);
1992 rational
= aff_is_rational(aff
);
1998 /* Can the list of subpieces in the last piece of "data" be extended with
1999 * "set" and "aff" based on "test"?
2000 * In particular, is it the case for each entry (set_i, aff_i) that
2002 * test(aff, aff_i) holds on set_i, and
2003 * test(aff_i, aff) holds on set?
2005 * "test" returns the set of elements where the tests holds, meaning
2006 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2008 * This function is used to detect min/max expressions.
2009 * If the ast_build_detect_min_max option is turned off, then
2010 * do not even try and perform any detection and return false instead.
2012 * Rational affine expressions are not considered for min/max expressions
2013 * since the combined expression will be defined on the union of the domains,
2014 * while a rational expression may only yield integer values
2015 * on its own definition domain.
2017 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2018 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2019 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2020 __isl_take isl_aff
*aff2
))
2023 isl_bool is_rational
;
2027 is_rational
= aff_is_rational(aff
);
2028 if (is_rational
>= 0 && !is_rational
)
2029 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2030 if (is_rational
< 0 || is_rational
)
2031 return isl_bool_not(is_rational
);
2033 ctx
= isl_ast_build_get_ctx(data
->build
);
2034 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2035 return isl_bool_false
;
2037 dom
= isl_ast_build_get_domain(data
->build
);
2038 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2040 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2041 for (i
= 0; i
< n
; ++i
) {
2044 isl_set
*dom
, *required
;
2047 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2048 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2049 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2050 dom
= isl_ast_build_get_domain(data
->build
);
2051 required
= isl_set_intersect(dom
, required
);
2052 is_valid
= isl_set_is_subset(required
, valid
);
2053 isl_set_free(required
);
2054 isl_set_free(valid
);
2055 if (is_valid
< 0 || !is_valid
) {
2060 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2061 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2062 is_valid
= isl_set_is_subset(set
, valid
);
2063 isl_set_free(valid
);
2064 if (is_valid
< 0 || !is_valid
) {
2071 return isl_bool_true
;
2074 /* Can the list of pieces in "data" be extended with "set" and "aff"
2075 * to form/preserve a minimum expression?
2076 * In particular, is it the case for each entry (set_i, aff_i) that
2078 * aff >= aff_i on set_i, and
2079 * aff_i >= aff on set?
2081 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2082 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2084 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2087 /* Can the list of pieces in "data" be extended with "set" and "aff"
2088 * to form/preserve a maximum expression?
2089 * In particular, is it the case for each entry (set_i, aff_i) that
2091 * aff <= aff_i on set_i, and
2092 * aff_i <= aff on set?
2094 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2095 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2097 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2100 /* This function is called during the construction of an isl_ast_expr
2101 * that evaluates an isl_pw_aff.
2102 * If the last piece of "data" contains a single subpiece and
2103 * if its affine function is equal to "aff" on a part of the domain
2104 * that includes either "set" or the domain of that single subpiece,
2105 * then extend the domain of that single subpiece with "set".
2106 * If it was the original domain of the single subpiece where
2107 * the two affine functions are equal, then also replace
2108 * the affine function of the single subpiece by "aff".
2109 * If the last piece of "data" contains either a single subpiece
2110 * or a minimum, then check if this minimum expression can be extended
2112 * If so, extend the sequence and return.
2113 * Perform the same operation for maximum expressions.
2114 * If no such extension can be performed, then move to the next piece
2115 * in "data" (if the current piece contains any data), and then store
2116 * the current subpiece in the current piece of "data" for later handling.
2118 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2119 __isl_take isl_aff
*aff
, void *user
)
2121 struct isl_from_pw_aff_data
*data
= user
;
2123 enum isl_from_pw_aff_state state
;
2125 state
= data
->p
[data
->n
].state
;
2126 if (state
== isl_state_single
) {
2129 isl_bool subset1
, subset2
= isl_bool_false
;
2130 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2131 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2132 subset1
= isl_set_is_subset(set
, eq
);
2133 if (subset1
>= 0 && !subset1
)
2134 subset2
= single_is_subset(data
, eq
);
2136 if (subset1
< 0 || subset2
< 0)
2139 return extend_domain(data
, set
, aff
, 0);
2141 return extend_domain(data
, set
, aff
, 1);
2143 if (state
== isl_state_single
|| state
== isl_state_min
) {
2144 test
= extends_min(data
, set
, aff
);
2148 return extend_min(data
, set
, aff
);
2150 if (state
== isl_state_single
|| state
== isl_state_max
) {
2151 test
= extends_max(data
, set
, aff
);
2155 return extend_max(data
, set
, aff
);
2157 if (state
!= isl_state_none
)
2159 set_single(data
, set
, aff
);
2165 return isl_stat_error
;
2168 /* Construct an isl_ast_expr that evaluates "pa".
2169 * The result is simplified in terms of build->domain.
2171 * The domain of "pa" lives in the internal schedule space.
2173 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2174 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2176 struct isl_from_pw_aff_data data
= { NULL
};
2177 isl_ast_expr
*res
= NULL
;
2179 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2180 pa
= isl_pw_aff_coalesce(pa
);
2184 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2188 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2189 res
= build_pieces(&data
);
2191 isl_pw_aff_free(pa
);
2192 isl_from_pw_aff_data_clear(&data
);
2195 isl_pw_aff_free(pa
);
2196 isl_from_pw_aff_data_clear(&data
);
2200 /* Construct an isl_ast_expr that evaluates "pa".
2201 * The result is simplified in terms of build->domain.
2203 * The domain of "pa" lives in the external schedule space.
2205 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2206 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2210 if (isl_ast_build_need_schedule_map(build
)) {
2212 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2213 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2215 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2219 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2222 * The domain of "mpa" is assumed to live in the internal schedule domain.
2224 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2225 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2229 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2230 for (i
= 0; i
< n
; ++i
) {
2233 id
= isl_ast_build_get_iterator_id(build
, i
);
2234 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2240 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2241 * the remaining arguments derived from "mpa".
2242 * That is, construct a call or access expression that calls/accesses "arg0"
2243 * with arguments/indices specified by "mpa".
2245 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2246 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2247 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2253 ctx
= isl_ast_build_get_ctx(build
);
2255 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2256 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
2257 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2258 for (i
= 0; i
< n
; ++i
) {
2262 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2263 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2264 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
2267 isl_multi_pw_aff_free(mpa
);
2271 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2272 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2273 __isl_take isl_multi_pw_aff
*mpa
);
2275 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2276 * The range of "mpa" is assumed to be wrapped relation.
2277 * The domain of this wrapped relation specifies the structure being
2278 * accessed, while the range of this wrapped relation spacifies the
2279 * member of the structure being accessed.
2281 * The domain of "mpa" is assumed to live in the internal schedule domain.
2283 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2284 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2287 isl_multi_pw_aff
*domain
;
2288 isl_ast_expr
*domain_expr
, *expr
;
2289 enum isl_ast_op_type type
= isl_ast_op_access
;
2291 domain
= isl_multi_pw_aff_copy(mpa
);
2292 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2293 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2295 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2296 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2297 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2298 "missing field name", goto error
);
2299 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2300 expr
= isl_ast_expr_from_id(id
);
2301 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
2302 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2304 isl_multi_pw_aff_free(mpa
);
2308 /* Construct an isl_ast_expr of type "type" that calls or accesses
2309 * the element specified by "mpa".
2310 * The first argument is obtained from the output tuple name.
2311 * The remaining arguments are given by the piecewise affine expressions.
2313 * If the range of "mpa" is a mapped relation, then we assume it
2314 * represents an access to a member of a structure.
2316 * The domain of "mpa" is assumed to live in the internal schedule domain.
2318 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2319 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2320 __isl_take isl_multi_pw_aff
*mpa
)
2329 if (type
== isl_ast_op_access
&&
2330 isl_multi_pw_aff_range_is_wrapping(mpa
))
2331 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2333 mpa
= set_iterator_names(build
, mpa
);
2337 ctx
= isl_ast_build_get_ctx(build
);
2339 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2340 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2342 id
= isl_id_alloc(ctx
, "", NULL
);
2344 expr
= isl_ast_expr_from_id(id
);
2345 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2347 isl_multi_pw_aff_free(mpa
);
2351 /* Construct an isl_ast_expr of type "type" that calls or accesses
2352 * the element specified by "pma".
2353 * The first argument is obtained from the output tuple name.
2354 * The remaining arguments are given by the piecewise affine expressions.
2356 * The domain of "pma" is assumed to live in the internal schedule domain.
2358 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2359 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2360 __isl_take isl_pw_multi_aff
*pma
)
2362 isl_multi_pw_aff
*mpa
;
2364 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2365 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2368 /* Construct an isl_ast_expr of type "type" that calls or accesses
2369 * the element specified by "mpa".
2370 * The first argument is obtained from the output tuple name.
2371 * The remaining arguments are given by the piecewise affine expressions.
2373 * The domain of "mpa" is assumed to live in the external schedule domain.
2375 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2376 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2377 __isl_take isl_multi_pw_aff
*mpa
)
2381 isl_space
*space_build
, *space_mpa
;
2383 space_build
= isl_ast_build_get_space(build
, 0);
2384 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2385 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2386 space_mpa
, isl_dim_in
);
2387 isl_space_free(space_build
);
2388 isl_space_free(space_mpa
);
2392 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2393 "spaces don't match", goto error
);
2395 if (isl_ast_build_need_schedule_map(build
)) {
2397 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2398 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2401 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2404 isl_multi_pw_aff_free(mpa
);
2408 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2409 * The name of the function is obtained from the output tuple name.
2410 * The arguments are given by the piecewise affine expressions.
2412 * The domain of "mpa" is assumed to live in the external schedule domain.
2414 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
2415 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2417 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
2420 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2421 * The name of the array is obtained from the output tuple name.
2422 * The index expressions are given by the piecewise affine expressions.
2424 * The domain of "mpa" is assumed to live in the external schedule domain.
2426 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
2427 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2429 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
2432 /* Construct an isl_ast_expr of type "type" that calls or accesses
2433 * the element specified by "pma".
2434 * The first argument is obtained from the output tuple name.
2435 * The remaining arguments are given by the piecewise affine expressions.
2437 * The domain of "pma" is assumed to live in the external schedule domain.
2439 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
2440 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2441 __isl_take isl_pw_multi_aff
*pma
)
2443 isl_multi_pw_aff
*mpa
;
2445 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2446 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
2449 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2450 * The name of the function is obtained from the output tuple name.
2451 * The arguments are given by the piecewise affine expressions.
2453 * The domain of "pma" is assumed to live in the external schedule domain.
2455 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
2456 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2458 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
2461 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2462 * The name of the array is obtained from the output tuple name.
2463 * The index expressions are given by the piecewise affine expressions.
2465 * The domain of "pma" is assumed to live in the external schedule domain.
2467 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
2468 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2470 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
2473 /* Construct an isl_ast_expr that calls the domain element
2474 * specified by "executed".
2476 * "executed" is assumed to be single-valued, with a domain that lives
2477 * in the internal schedule space.
2479 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
2480 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
2482 isl_pw_multi_aff
*iteration
;
2485 iteration
= isl_pw_multi_aff_from_map(executed
);
2486 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
2487 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
2488 isl_ast_build_get_domain(build
));
2489 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
2491 return isl_ast_node_alloc_user(expr
);