2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
28 struct bernstein_data
{
30 isl_qpolynomial
*poly
;
35 isl_qpolynomial_fold
*fold
;
36 isl_qpolynomial_fold
*fold_tight
;
37 isl_pw_qpolynomial_fold
*pwf
;
38 isl_pw_qpolynomial_fold
*pwf_tight
;
41 static int vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
47 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
48 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
49 for (i
= 0; i
< nvar
; ++i
) {
51 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
52 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
59 static __isl_give isl_qpolynomial
*vertex_coordinate(
60 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_space
*space
)
68 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
69 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
73 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
74 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
76 if (isl_int_is_pos(denom
))
77 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
78 1 + isl_basic_set_total_dim(vertex
));
80 isl_int_neg(denom
, denom
);
82 v
= isl_qpolynomial_from_affine(space
, vertex
->eq
[r
], denom
);
87 isl_space_free(space
);
92 /* Check whether the bound associated to the selection "k" is tight,
93 * which is the case if we select exactly one vertex and if that vertex
94 * is integral for all values of the parameters.
96 static int is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
100 for (i
= 0; i
< n
; ++i
) {
107 v
= cell
->ids
[n
- 1 - i
];
108 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
114 static isl_stat
add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
115 int *k
, int n
, int d
, struct bernstein_data
*data
)
117 isl_qpolynomial_fold
*fold
;
119 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
121 if (data
->check_tight
&& is_tight(k
, n
, d
, data
->cell
))
122 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
123 data
->fold_tight
, fold
);
125 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
130 /* Extract the coefficients of the Bernstein base polynomials and store
131 * them in data->fold and data->fold_tight.
133 * In particular, the coefficient of each monomial
134 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
135 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
137 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
138 * multinom[i] contains the partial multinomial coefficient.
140 static isl_stat
extract_coefficients(isl_qpolynomial
*poly
,
141 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
147 isl_qpolynomial
**c
= NULL
;
150 isl_vec
*multinom
= NULL
;
153 return isl_stat_error
;
155 ctx
= isl_qpolynomial_get_ctx(poly
);
156 n
= isl_qpolynomial_dim(poly
, isl_dim_in
);
157 d
= isl_qpolynomial_degree(poly
);
158 isl_assert(ctx
, n
>= 2, return isl_stat_error
);
160 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
161 k
= isl_alloc_array(ctx
, int, n
);
162 left
= isl_alloc_array(ctx
, int, n
);
163 multinom
= isl_vec_alloc(ctx
, n
);
164 if (!c
|| !k
|| !left
|| !multinom
)
167 isl_int_set_si(multinom
->el
[0], 1);
168 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
170 isl_qpolynomial_free(c
[0]);
171 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_in
, n
- 1, k
[0]);
174 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
181 for (j
= 2; j
<= left
[i
- 1]; ++j
)
182 isl_int_divexact_ui(multinom
->el
[i
],
184 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
185 n
- 1 - i
, left
[i
- 1]);
186 b
= isl_qpolynomial_project_domain_on_params(b
);
187 dim
= isl_qpolynomial_get_domain_space(b
);
188 f
= isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
,
190 b
= isl_qpolynomial_mul(b
, f
);
191 k
[n
- 1] = left
[n
- 2];
192 if (add_fold(b
, dom
, k
, n
, d
, data
) < 0)
197 if (k
[i
] >= left
[i
- 1]) {
203 isl_int_divexact_ui(multinom
->el
[i
],
204 multinom
->el
[i
], k
[i
]);
205 isl_qpolynomial_free(c
[i
]);
206 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
208 left
[i
] = left
[i
- 1] - k
[i
];
210 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
213 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
216 for (i
= 0; i
< n
; ++i
)
217 isl_qpolynomial_free(c
[i
]);
219 isl_vec_free(multinom
);
225 isl_vec_free(multinom
);
229 for (i
= 0; i
< n
; ++i
)
230 isl_qpolynomial_free(c
[i
]);
232 return isl_stat_error
;
235 /* Perform bernstein expansion on the parametric vertices that are active
238 * data->poly has been homogenized in the calling function.
240 * We plug in the barycentric coordinates for the set variables
242 * \vec x = \sum_i \alpha_i v_i(\vec p)
244 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
245 * Next, we extract the coefficients of the Bernstein base polynomials.
247 static isl_stat
bernstein_coefficients_cell(__isl_take isl_cell
*cell
,
251 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
252 isl_space
*space_param
;
253 isl_space
*space_dst
;
254 isl_qpolynomial
*poly
= data
->poly
;
257 isl_qpolynomial
**subs
;
258 isl_pw_qpolynomial_fold
*pwf
;
265 nvar
= isl_qpolynomial_dim(poly
, isl_dim_in
) - 1;
266 n_vertices
= cell
->n_vertices
;
268 ctx
= isl_qpolynomial_get_ctx(poly
);
269 if (n_vertices
> nvar
+ 1 && ctx
->opt
->bernstein_triangulate
)
270 return isl_cell_foreach_simplex(cell
,
271 &bernstein_coefficients_cell
, user
);
273 subs
= isl_alloc_array(ctx
, isl_qpolynomial
*, 1 + nvar
);
277 space_param
= isl_basic_set_get_space(cell
->dom
);
278 space_dst
= isl_qpolynomial_get_domain_space(poly
);
279 space_dst
= isl_space_add_dims(space_dst
, isl_dim_set
, n_vertices
);
281 for (i
= 0; i
< 1 + nvar
; ++i
)
283 isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst
));
285 for (i
= 0; i
< n_vertices
; ++i
) {
287 c
= isl_qpolynomial_var_on_domain(isl_space_copy(space_dst
),
288 isl_dim_set
, 1 + nvar
+ i
);
289 for (j
= 0; j
< nvar
; ++j
) {
290 int k
= cell
->ids
[i
];
292 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
293 isl_space_copy(space_param
));
294 v
= isl_qpolynomial_add_dims(v
, isl_dim_in
,
295 1 + nvar
+ n_vertices
);
296 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
297 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
299 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
301 isl_space_free(space_dst
);
303 poly
= isl_qpolynomial_copy(poly
);
305 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_in
, n_vertices
);
306 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, 0, 1 + nvar
, subs
);
307 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, 1 + nvar
);
310 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
311 data
->fold
= isl_qpolynomial_fold_empty(data
->type
,
312 isl_space_copy(space_param
));
313 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, space_param
);
314 if (extract_coefficients(poly
, dom
, data
) < 0) {
315 data
->fold
= isl_qpolynomial_fold_free(data
->fold
);
316 data
->fold_tight
= isl_qpolynomial_fold_free(data
->fold_tight
);
319 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, isl_set_copy(dom
),
321 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
322 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, data
->fold_tight
);
323 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(data
->pwf_tight
, pwf
);
325 isl_qpolynomial_free(poly
);
327 for (i
= 0; i
< 1 + nvar
; ++i
)
328 isl_qpolynomial_free(subs
[i
]);
333 return isl_stat_error
;
336 /* Base case of applying bernstein expansion.
338 * We compute the chamber decomposition of the parametric polytope "bset"
339 * and then perform bernstein expansion on the parametric vertices
340 * that are active on each chamber.
342 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
343 __isl_take isl_basic_set
*bset
,
344 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
348 isl_pw_qpolynomial_fold
*pwf
;
349 isl_vertices
*vertices
;
352 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
355 isl_qpolynomial_fold
*fold
;
357 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
358 dom
= isl_set_from_basic_set(bset
);
361 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
362 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
365 if (isl_qpolynomial_is_zero(poly
)) {
367 isl_qpolynomial_fold
*fold
;
368 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
369 dom
= isl_set_from_basic_set(bset
);
370 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
373 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
376 space
= isl_basic_set_get_space(bset
);
377 space
= isl_space_params(space
);
378 space
= isl_space_from_domain(space
);
379 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
380 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_space_copy(space
),
382 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(space
, data
->type
);
383 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
384 vertices
= isl_basic_set_compute_vertices(bset
);
385 if (isl_vertices_foreach_disjoint_cell(vertices
,
386 &bernstein_coefficients_cell
, data
) < 0)
387 data
->pwf
= isl_pw_qpolynomial_fold_free(data
->pwf
);
388 isl_vertices_free(vertices
);
389 isl_qpolynomial_free(data
->poly
);
391 isl_basic_set_free(bset
);
392 isl_qpolynomial_free(poly
);
394 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
402 isl_pw_qpolynomial_fold_free(data
->pwf
);
403 return data
->pwf_tight
;
406 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, data
->pwf_tight
);
410 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
411 isl_pw_qpolynomial_fold_free(data
->pwf
);
415 /* Apply bernstein expansion recursively by working in on len[i]
416 * set variables at a time, with i ranging from n_group - 1 to 0.
418 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
419 __isl_take isl_pw_qpolynomial
*pwqp
,
420 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
425 isl_pw_qpolynomial_fold
*pwf
;
430 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
431 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_in
);
433 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
434 isl_dim_in
, 0, nvar
- len
[n_group
- 1]);
435 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
437 for (i
= n_group
- 2; i
>= 0; --i
) {
438 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
439 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_in
, 0,
440 isl_dim_param
, nparam
- len
[i
], len
[i
]);
441 if (tight
&& !*tight
)
443 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
449 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
450 __isl_take isl_basic_set
*bset
,
451 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
455 isl_pw_qpolynomial
*pwqp
;
456 isl_pw_qpolynomial_fold
*pwf
;
458 f
= isl_basic_set_factorizer(bset
);
461 if (f
->n_group
== 0) {
462 isl_factorizer_free(f
);
463 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
466 set
= isl_set_from_basic_set(bset
);
467 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
468 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, isl_morph_copy(f
->morph
));
470 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
473 isl_factorizer_free(f
);
477 isl_basic_set_free(bset
);
478 isl_qpolynomial_free(poly
);
482 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
483 __isl_take isl_basic_set
*bset
,
484 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
489 isl_pw_qpolynomial_fold
*pwf
;
491 isl_pw_qpolynomial
*pwqp
;
496 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
498 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
502 for (i
= 0; i
< nvar
; ++i
)
505 set
= isl_set_from_basic_set(bset
);
506 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
508 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
514 isl_basic_set_free(bset
);
515 isl_qpolynomial_free(poly
);
519 /* Compute a bound on the polynomial defined over the parametric polytope
520 * using bernstein expansion and store the result
521 * in bound->pwf and bound->pwf_tight.
523 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
524 * the polytope can be factorized and apply bernstein expansion recursively
526 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
527 * bernstein expansion recursively on each dimension.
528 * Otherwise, we apply bernstein expansion on the entire polytope.
530 isl_stat
isl_qpolynomial_bound_on_domain_bernstein(
531 __isl_take isl_basic_set
*bset
, __isl_take isl_qpolynomial
*poly
,
532 struct isl_bound
*bound
)
534 struct bernstein_data data
;
535 isl_pw_qpolynomial_fold
*pwf
;
538 int *tp
= bound
->check_tight
? &tight
: NULL
;
543 data
.type
= bound
->type
;
544 data
.check_tight
= bound
->check_tight
;
546 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
548 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
549 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
551 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
552 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
554 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
557 bound
->pwf_tight
= isl_pw_qpolynomial_fold_fold(bound
->pwf_tight
, pwf
);
559 bound
->pwf
= isl_pw_qpolynomial_fold_fold(bound
->pwf
, pwf
);
563 isl_basic_set_free(bset
);
564 isl_qpolynomial_free(poly
);
565 return isl_stat_error
;