2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
32 case isl_dim_param
: return 0;
33 case isl_dim_in
: return dim
->nparam
;
34 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
39 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
47 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
52 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
54 return (struct isl_upoly_cst
*)up
;
57 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
62 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
64 return (struct isl_upoly_rec
*)up
;
67 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
68 __isl_keep
struct isl_upoly
*up2
)
71 struct isl_upoly_rec
*rec1
, *rec2
;
77 if (up1
->var
!= up2
->var
)
79 if (isl_upoly_is_cst(up1
)) {
80 struct isl_upoly_cst
*cst1
, *cst2
;
81 cst1
= isl_upoly_as_cst(up1
);
82 cst2
= isl_upoly_as_cst(up2
);
85 return isl_int_eq(cst1
->n
, cst2
->n
) &&
86 isl_int_eq(cst1
->d
, cst2
->d
);
89 rec1
= isl_upoly_as_rec(up1
);
90 rec2
= isl_upoly_as_rec(up2
);
94 if (rec1
->n
!= rec2
->n
)
97 for (i
= 0; i
< rec1
->n
; ++i
) {
98 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
106 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
108 struct isl_upoly_cst
*cst
;
112 if (!isl_upoly_is_cst(up
))
115 cst
= isl_upoly_as_cst(up
);
119 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
122 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
124 struct isl_upoly_cst
*cst
;
128 if (!isl_upoly_is_cst(up
))
131 cst
= isl_upoly_as_cst(up
);
135 return isl_int_sgn(cst
->n
);
138 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
140 struct isl_upoly_cst
*cst
;
144 if (!isl_upoly_is_cst(up
))
147 cst
= isl_upoly_as_cst(up
);
151 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
154 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
156 struct isl_upoly_cst
*cst
;
160 if (!isl_upoly_is_cst(up
))
163 cst
= isl_upoly_as_cst(up
);
167 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
170 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
172 struct isl_upoly_cst
*cst
;
176 if (!isl_upoly_is_cst(up
))
179 cst
= isl_upoly_as_cst(up
);
183 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
186 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
188 struct isl_upoly_cst
*cst
;
192 if (!isl_upoly_is_cst(up
))
195 cst
= isl_upoly_as_cst(up
);
199 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
202 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
204 struct isl_upoly_cst
*cst
;
208 if (!isl_upoly_is_cst(up
))
211 cst
= isl_upoly_as_cst(up
);
215 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
218 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
220 struct isl_upoly_cst
*cst
;
222 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
231 isl_int_init(cst
->n
);
232 isl_int_init(cst
->d
);
237 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
239 struct isl_upoly_cst
*cst
;
241 cst
= isl_upoly_cst_alloc(ctx
);
245 isl_int_set_si(cst
->n
, 0);
246 isl_int_set_si(cst
->d
, 1);
251 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
253 struct isl_upoly_cst
*cst
;
255 cst
= isl_upoly_cst_alloc(ctx
);
259 isl_int_set_si(cst
->n
, 1);
260 isl_int_set_si(cst
->d
, 1);
265 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
267 struct isl_upoly_cst
*cst
;
269 cst
= isl_upoly_cst_alloc(ctx
);
273 isl_int_set_si(cst
->n
, 1);
274 isl_int_set_si(cst
->d
, 0);
279 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
281 struct isl_upoly_cst
*cst
;
283 cst
= isl_upoly_cst_alloc(ctx
);
287 isl_int_set_si(cst
->n
, -1);
288 isl_int_set_si(cst
->d
, 0);
293 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
295 struct isl_upoly_cst
*cst
;
297 cst
= isl_upoly_cst_alloc(ctx
);
301 isl_int_set_si(cst
->n
, 0);
302 isl_int_set_si(cst
->d
, 0);
307 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
308 isl_int n
, isl_int d
)
310 struct isl_upoly_cst
*cst
;
312 cst
= isl_upoly_cst_alloc(ctx
);
316 isl_int_set(cst
->n
, n
);
317 isl_int_set(cst
->d
, d
);
322 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
325 struct isl_upoly_rec
*rec
;
327 isl_assert(ctx
, var
>= 0, return NULL
);
328 isl_assert(ctx
, size
>= 0, return NULL
);
329 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
330 sizeof(struct isl_upoly_rec
) +
331 size
* sizeof(struct isl_upoly
*));
346 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
349 qp
= isl_qpolynomial_cow(qp
);
353 isl_space_free(qp
->dim
);
358 isl_qpolynomial_free(qp
);
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
367 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
369 __isl_take isl_space
*domain
)
371 isl_space_free(space
);
372 return isl_qpolynomial_reset_domain_space(qp
, domain
);
375 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
377 return qp
? qp
->dim
->ctx
: NULL
;
380 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial
*qp
)
383 return qp
? isl_space_copy(qp
->dim
) : NULL
;
386 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
391 space
= isl_space_copy(qp
->dim
);
392 space
= isl_space_from_domain(space
);
393 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
401 enum isl_dim_type type
)
405 if (type
== isl_dim_out
)
407 if (type
== isl_dim_in
)
409 return isl_space_dim(qp
->dim
, type
);
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
414 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
419 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
424 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
429 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
434 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
439 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
442 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
444 isl_int_clear(cst
->n
);
445 isl_int_clear(cst
->d
);
448 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
452 for (i
= 0; i
< rec
->n
; ++i
)
453 isl_upoly_free(rec
->p
[i
]);
456 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
465 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
467 struct isl_upoly_cst
*cst
;
468 struct isl_upoly_cst
*dup
;
470 cst
= isl_upoly_as_cst(up
);
474 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
477 isl_int_set(dup
->n
, cst
->n
);
478 isl_int_set(dup
->d
, cst
->d
);
483 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
486 struct isl_upoly_rec
*rec
;
487 struct isl_upoly_rec
*dup
;
489 rec
= isl_upoly_as_rec(up
);
493 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
497 for (i
= 0; i
< rec
->n
; ++i
) {
498 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
506 isl_upoly_free(&dup
->up
);
510 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
515 if (isl_upoly_is_cst(up
))
516 return isl_upoly_dup_cst(up
);
518 return isl_upoly_dup_rec(up
);
521 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
529 return isl_upoly_dup(up
);
532 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
541 upoly_free_cst((struct isl_upoly_cst
*)up
);
543 upoly_free_rec((struct isl_upoly_rec
*)up
);
545 isl_ctx_deref(up
->ctx
);
549 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
554 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
555 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
556 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
557 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
562 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
563 __isl_take
struct isl_upoly
*up2
)
565 struct isl_upoly_cst
*cst1
;
566 struct isl_upoly_cst
*cst2
;
568 up1
= isl_upoly_cow(up1
);
572 cst1
= isl_upoly_as_cst(up1
);
573 cst2
= isl_upoly_as_cst(up2
);
575 if (isl_int_eq(cst1
->d
, cst2
->d
))
576 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
578 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
579 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
580 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
583 isl_upoly_cst_reduce(cst1
);
593 static __isl_give
struct isl_upoly
*replace_by_zero(
594 __isl_take
struct isl_upoly
*up
)
602 return isl_upoly_zero(ctx
);
605 static __isl_give
struct isl_upoly
*replace_by_constant_term(
606 __isl_take
struct isl_upoly
*up
)
608 struct isl_upoly_rec
*rec
;
609 struct isl_upoly
*cst
;
614 rec
= isl_upoly_as_rec(up
);
617 cst
= isl_upoly_copy(rec
->p
[0]);
625 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
626 __isl_take
struct isl_upoly
*up2
)
629 struct isl_upoly_rec
*rec1
, *rec2
;
634 if (isl_upoly_is_nan(up1
)) {
639 if (isl_upoly_is_nan(up2
)) {
644 if (isl_upoly_is_zero(up1
)) {
649 if (isl_upoly_is_zero(up2
)) {
654 if (up1
->var
< up2
->var
)
655 return isl_upoly_sum(up2
, up1
);
657 if (up2
->var
< up1
->var
) {
658 struct isl_upoly_rec
*rec
;
659 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
663 up1
= isl_upoly_cow(up1
);
664 rec
= isl_upoly_as_rec(up1
);
667 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
669 up1
= replace_by_constant_term(up1
);
673 if (isl_upoly_is_cst(up1
))
674 return isl_upoly_sum_cst(up1
, up2
);
676 rec1
= isl_upoly_as_rec(up1
);
677 rec2
= isl_upoly_as_rec(up2
);
681 if (rec1
->n
< rec2
->n
)
682 return isl_upoly_sum(up2
, up1
);
684 up1
= isl_upoly_cow(up1
);
685 rec1
= isl_upoly_as_rec(up1
);
689 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
690 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
691 isl_upoly_copy(rec2
->p
[i
]));
694 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
695 isl_upoly_free(rec1
->p
[i
]);
701 up1
= replace_by_zero(up1
);
702 else if (rec1
->n
== 1)
703 up1
= replace_by_constant_term(up1
);
714 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
715 __isl_take
struct isl_upoly
*up
, isl_int v
)
717 struct isl_upoly_cst
*cst
;
719 up
= isl_upoly_cow(up
);
723 cst
= isl_upoly_as_cst(up
);
725 isl_int_addmul(cst
->n
, cst
->d
, v
);
730 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
731 __isl_take
struct isl_upoly
*up
, isl_int v
)
733 struct isl_upoly_rec
*rec
;
738 if (isl_upoly_is_cst(up
))
739 return isl_upoly_cst_add_isl_int(up
, v
);
741 up
= isl_upoly_cow(up
);
742 rec
= isl_upoly_as_rec(up
);
746 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
756 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
757 __isl_take
struct isl_upoly
*up
, isl_int v
)
759 struct isl_upoly_cst
*cst
;
761 if (isl_upoly_is_zero(up
))
764 up
= isl_upoly_cow(up
);
768 cst
= isl_upoly_as_cst(up
);
770 isl_int_mul(cst
->n
, cst
->n
, v
);
775 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
776 __isl_take
struct isl_upoly
*up
, isl_int v
)
779 struct isl_upoly_rec
*rec
;
784 if (isl_upoly_is_cst(up
))
785 return isl_upoly_cst_mul_isl_int(up
, v
);
787 up
= isl_upoly_cow(up
);
788 rec
= isl_upoly_as_rec(up
);
792 for (i
= 0; i
< rec
->n
; ++i
) {
793 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
804 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
805 __isl_take
struct isl_upoly
*up2
)
807 struct isl_upoly_cst
*cst1
;
808 struct isl_upoly_cst
*cst2
;
810 up1
= isl_upoly_cow(up1
);
814 cst1
= isl_upoly_as_cst(up1
);
815 cst2
= isl_upoly_as_cst(up2
);
817 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
818 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
820 isl_upoly_cst_reduce(cst1
);
830 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
831 __isl_take
struct isl_upoly
*up2
)
833 struct isl_upoly_rec
*rec1
;
834 struct isl_upoly_rec
*rec2
;
835 struct isl_upoly_rec
*res
= NULL
;
839 rec1
= isl_upoly_as_rec(up1
);
840 rec2
= isl_upoly_as_rec(up2
);
843 size
= rec1
->n
+ rec2
->n
- 1;
844 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
848 for (i
= 0; i
< rec1
->n
; ++i
) {
849 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
850 isl_upoly_copy(rec1
->p
[i
]));
855 for (; i
< size
; ++i
) {
856 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
861 for (i
= 0; i
< rec1
->n
; ++i
) {
862 for (j
= 1; j
< rec2
->n
; ++j
) {
863 struct isl_upoly
*up
;
864 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
865 isl_upoly_copy(rec1
->p
[i
]));
866 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
879 isl_upoly_free(&res
->up
);
883 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
884 __isl_take
struct isl_upoly
*up2
)
889 if (isl_upoly_is_nan(up1
)) {
894 if (isl_upoly_is_nan(up2
)) {
899 if (isl_upoly_is_zero(up1
)) {
904 if (isl_upoly_is_zero(up2
)) {
909 if (isl_upoly_is_one(up1
)) {
914 if (isl_upoly_is_one(up2
)) {
919 if (up1
->var
< up2
->var
)
920 return isl_upoly_mul(up2
, up1
);
922 if (up2
->var
< up1
->var
) {
924 struct isl_upoly_rec
*rec
;
925 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
926 isl_ctx
*ctx
= up1
->ctx
;
929 return isl_upoly_nan(ctx
);
931 up1
= isl_upoly_cow(up1
);
932 rec
= isl_upoly_as_rec(up1
);
936 for (i
= 0; i
< rec
->n
; ++i
) {
937 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
938 isl_upoly_copy(up2
));
946 if (isl_upoly_is_cst(up1
))
947 return isl_upoly_mul_cst(up1
, up2
);
949 return isl_upoly_mul_rec(up1
, up2
);
956 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
959 struct isl_upoly
*res
;
967 res
= isl_upoly_copy(up
);
969 res
= isl_upoly_one(up
->ctx
);
971 while (power
>>= 1) {
972 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
974 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
981 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
982 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
984 struct isl_qpolynomial
*qp
= NULL
;
990 if (!isl_space_is_set(dim
))
991 isl_die(isl_space_get_ctx(dim
), isl_error_invalid
,
992 "domain of polynomial should be a set", goto error
);
994 total
= isl_space_dim(dim
, isl_dim_all
);
996 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
1001 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1010 isl_space_free(dim
);
1012 isl_qpolynomial_free(qp
);
1016 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1025 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1027 struct isl_qpolynomial
*dup
;
1032 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1033 isl_upoly_copy(qp
->upoly
));
1036 isl_mat_free(dup
->div
);
1037 dup
->div
= isl_mat_copy(qp
->div
);
1043 isl_qpolynomial_free(dup
);
1047 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1055 return isl_qpolynomial_dup(qp
);
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1066 isl_space_free(qp
->dim
);
1067 isl_mat_free(qp
->div
);
1068 isl_upoly_free(qp
->upoly
);
1074 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1077 struct isl_upoly_rec
*rec
;
1078 struct isl_upoly_cst
*cst
;
1080 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1083 for (i
= 0; i
< 1 + power
; ++i
) {
1084 rec
->p
[i
] = isl_upoly_zero(ctx
);
1089 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1090 isl_int_set_si(cst
->n
, 1);
1094 isl_upoly_free(&rec
->up
);
1098 /* r array maps original positions to new positions.
1100 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1104 struct isl_upoly_rec
*rec
;
1105 struct isl_upoly
*base
;
1106 struct isl_upoly
*res
;
1108 if (isl_upoly_is_cst(up
))
1111 rec
= isl_upoly_as_rec(up
);
1115 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1117 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1118 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1120 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1121 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1122 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1125 isl_upoly_free(base
);
1134 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1139 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1140 div1
->n_col
>= div2
->n_col
, return -1);
1142 if (div1
->n_row
== div2
->n_row
)
1143 return isl_mat_is_equal(div1
, div2
);
1145 n_row
= div1
->n_row
;
1146 n_col
= div1
->n_col
;
1147 div1
->n_row
= div2
->n_row
;
1148 div1
->n_col
= div2
->n_col
;
1150 equal
= isl_mat_is_equal(div1
, div2
);
1152 div1
->n_row
= n_row
;
1153 div1
->n_col
= n_col
;
1158 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1162 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1163 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1168 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1171 struct isl_div_sort_info
{
1176 static int div_sort_cmp(const void *p1
, const void *p2
)
1178 const struct isl_div_sort_info
*i1
, *i2
;
1179 i1
= (const struct isl_div_sort_info
*) p1
;
1180 i2
= (const struct isl_div_sort_info
*) p2
;
1182 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1185 /* Sort divs and remove duplicates.
1187 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1192 struct isl_div_sort_info
*array
= NULL
;
1193 int *pos
= NULL
, *at
= NULL
;
1194 int *reordering
= NULL
;
1199 if (qp
->div
->n_row
<= 1)
1202 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1204 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1206 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1207 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1208 len
= qp
->div
->n_col
- 2;
1209 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1210 if (!array
|| !pos
|| !at
|| !reordering
)
1213 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1214 array
[i
].div
= qp
->div
;
1220 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1223 for (i
= 0; i
< div_pos
; ++i
)
1226 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1227 if (pos
[array
[i
].row
] == i
)
1229 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1230 pos
[at
[i
]] = pos
[array
[i
].row
];
1231 at
[pos
[array
[i
].row
]] = at
[i
];
1232 at
[i
] = array
[i
].row
;
1233 pos
[array
[i
].row
] = i
;
1237 for (i
= 0; i
< len
- div_pos
; ++i
) {
1239 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1240 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1241 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1242 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1243 2 + div_pos
+ i
- skip
);
1244 qp
->div
= isl_mat_drop_cols(qp
->div
,
1245 2 + div_pos
+ i
- skip
, 1);
1248 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1251 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1253 if (!qp
->upoly
|| !qp
->div
)
1267 isl_qpolynomial_free(qp
);
1271 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1272 int *exp
, int first
)
1275 struct isl_upoly_rec
*rec
;
1277 if (isl_upoly_is_cst(up
))
1280 if (up
->var
< first
)
1283 if (exp
[up
->var
- first
] == up
->var
- first
)
1286 up
= isl_upoly_cow(up
);
1290 up
->var
= exp
[up
->var
- first
] + first
;
1292 rec
= isl_upoly_as_rec(up
);
1296 for (i
= 0; i
< rec
->n
; ++i
) {
1297 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1308 static __isl_give isl_qpolynomial
*with_merged_divs(
1309 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1310 __isl_take isl_qpolynomial
*qp2
),
1311 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1315 isl_mat
*div
= NULL
;
1317 qp1
= isl_qpolynomial_cow(qp1
);
1318 qp2
= isl_qpolynomial_cow(qp2
);
1323 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1324 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1326 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1327 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1331 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1335 isl_mat_free(qp1
->div
);
1336 qp1
->div
= isl_mat_copy(div
);
1337 isl_mat_free(qp2
->div
);
1338 qp2
->div
= isl_mat_copy(div
);
1340 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1341 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1343 if (!qp1
->upoly
|| !qp2
->upoly
)
1350 return fn(qp1
, qp2
);
1355 isl_qpolynomial_free(qp1
);
1356 isl_qpolynomial_free(qp2
);
1360 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1361 __isl_take isl_qpolynomial
*qp2
)
1363 qp1
= isl_qpolynomial_cow(qp1
);
1368 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1369 return isl_qpolynomial_add(qp2
, qp1
);
1371 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1372 if (!compatible_divs(qp1
->div
, qp2
->div
))
1373 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1375 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1379 isl_qpolynomial_free(qp2
);
1383 isl_qpolynomial_free(qp1
);
1384 isl_qpolynomial_free(qp2
);
1388 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set
*dom
,
1390 __isl_take isl_qpolynomial
*qp1
,
1391 __isl_take isl_qpolynomial
*qp2
)
1393 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1394 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1398 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1399 __isl_take isl_qpolynomial
*qp2
)
1401 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1404 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1407 if (isl_int_is_zero(v
))
1410 qp
= isl_qpolynomial_cow(qp
);
1414 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1420 isl_qpolynomial_free(qp
);
1425 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1430 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1433 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1436 if (isl_int_is_one(v
))
1439 if (qp
&& isl_int_is_zero(v
)) {
1440 isl_qpolynomial
*zero
;
1441 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1442 isl_qpolynomial_free(qp
);
1446 qp
= isl_qpolynomial_cow(qp
);
1450 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1456 isl_qpolynomial_free(qp
);
1460 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1463 return isl_qpolynomial_mul_isl_int(qp
, v
);
1466 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1467 __isl_take isl_qpolynomial
*qp2
)
1469 qp1
= isl_qpolynomial_cow(qp1
);
1474 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1475 return isl_qpolynomial_mul(qp2
, qp1
);
1477 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1478 if (!compatible_divs(qp1
->div
, qp2
->div
))
1479 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1481 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1485 isl_qpolynomial_free(qp2
);
1489 isl_qpolynomial_free(qp1
);
1490 isl_qpolynomial_free(qp2
);
1494 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1497 qp
= isl_qpolynomial_cow(qp
);
1502 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1508 isl_qpolynomial_free(qp
);
1512 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1520 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1524 for (i
= 0; i
< pwqp
->n
; ++i
) {
1525 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1527 return isl_pw_qpolynomial_free(pwqp
);
1533 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space
*dim
)
1538 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1541 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space
*dim
)
1546 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1549 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space
*dim
)
1554 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1557 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space
*dim
)
1562 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1565 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space
*dim
)
1570 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1573 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space
*dim
,
1577 struct isl_qpolynomial
*qp
;
1578 struct isl_upoly_cst
*cst
;
1583 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1587 cst
= isl_upoly_as_cst(qp
->upoly
);
1588 isl_int_set(cst
->n
, v
);
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1594 isl_int
*n
, isl_int
*d
)
1596 struct isl_upoly_cst
*cst
;
1601 if (!isl_upoly_is_cst(qp
->upoly
))
1604 cst
= isl_upoly_as_cst(qp
->upoly
);
1609 isl_int_set(*n
, cst
->n
);
1611 isl_int_set(*d
, cst
->d
);
1616 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1619 struct isl_upoly_rec
*rec
;
1627 rec
= isl_upoly_as_rec(up
);
1634 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1636 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1642 return isl_upoly_is_affine(rec
->p
[0]);
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1650 if (qp
->div
->n_row
> 0)
1653 return isl_upoly_is_affine(qp
->upoly
);
1656 static void update_coeff(__isl_keep isl_vec
*aff
,
1657 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1662 if (isl_int_is_zero(cst
->n
))
1667 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1668 isl_int_divexact(f
, cst
->d
, gcd
);
1669 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1670 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1671 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1676 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1677 __isl_keep isl_vec
*aff
)
1679 struct isl_upoly_cst
*cst
;
1680 struct isl_upoly_rec
*rec
;
1686 struct isl_upoly_cst
*cst
;
1688 cst
= isl_upoly_as_cst(up
);
1691 update_coeff(aff
, cst
, 0);
1695 rec
= isl_upoly_as_rec(up
);
1698 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1700 cst
= isl_upoly_as_cst(rec
->p
[1]);
1703 update_coeff(aff
, cst
, 1 + up
->var
);
1705 return isl_upoly_update_affine(rec
->p
[0], aff
);
1708 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial
*qp
)
1717 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1718 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1722 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1723 isl_int_set_si(aff
->el
[0], 1);
1725 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1735 __isl_keep isl_qpolynomial
*qp2
)
1742 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
1743 if (equal
< 0 || !equal
)
1746 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1747 if (equal
< 0 || !equal
)
1750 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1753 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1756 struct isl_upoly_rec
*rec
;
1758 if (isl_upoly_is_cst(up
)) {
1759 struct isl_upoly_cst
*cst
;
1760 cst
= isl_upoly_as_cst(up
);
1763 isl_int_lcm(*d
, *d
, cst
->d
);
1767 rec
= isl_upoly_as_rec(up
);
1771 for (i
= 0; i
< rec
->n
; ++i
)
1772 upoly_update_den(rec
->p
[i
], d
);
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1777 isl_int_set_si(*d
, 1);
1780 upoly_update_den(qp
->upoly
, d
);
1783 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space
*dim
, int pos
, int power
)
1786 struct isl_ctx
*ctx
;
1793 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1796 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(__isl_take isl_space
*dim
,
1797 enum isl_dim_type type
, unsigned pos
)
1802 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
1803 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
1805 if (type
== isl_dim_set
)
1806 pos
+= isl_space_dim(dim
, isl_dim_param
);
1808 return isl_qpolynomial_var_pow_on_domain(dim
, pos
, 1);
1810 isl_space_free(dim
);
1814 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1815 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1818 struct isl_upoly_rec
*rec
;
1819 struct isl_upoly
*base
, *res
;
1824 if (isl_upoly_is_cst(up
))
1827 if (up
->var
< first
)
1830 rec
= isl_upoly_as_rec(up
);
1834 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1836 if (up
->var
>= first
+ n
)
1837 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1839 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1841 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1842 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1843 struct isl_upoly
*t
;
1844 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1845 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1846 res
= isl_upoly_sum(res
, t
);
1849 isl_upoly_free(base
);
1858 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1859 isl_int denom
, unsigned len
)
1862 struct isl_upoly
*up
;
1864 isl_assert(ctx
, len
>= 1, return NULL
);
1866 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1867 for (i
= 0; i
< len
- 1; ++i
) {
1868 struct isl_upoly
*t
;
1869 struct isl_upoly
*c
;
1871 if (isl_int_is_zero(f
[1 + i
]))
1874 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1875 t
= isl_upoly_var_pow(ctx
, i
, 1);
1876 t
= isl_upoly_mul(c
, t
);
1877 up
= isl_upoly_sum(up
, t
);
1883 /* Remove common factor of non-constant terms and denominator.
1885 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1887 isl_ctx
*ctx
= qp
->div
->ctx
;
1888 unsigned total
= qp
->div
->n_col
- 2;
1890 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1891 isl_int_gcd(ctx
->normalize_gcd
,
1892 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1893 if (isl_int_is_one(ctx
->normalize_gcd
))
1896 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1897 ctx
->normalize_gcd
, total
);
1898 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1899 ctx
->normalize_gcd
);
1900 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1901 ctx
->normalize_gcd
);
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1908 static __isl_give isl_qpolynomial
*substitute_div(
1909 __isl_take isl_qpolynomial
*qp
,
1910 int div
, __isl_take
struct isl_upoly
*s
)
1919 qp
= isl_qpolynomial_cow(qp
);
1923 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1924 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1928 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1931 for (i
= 0; i
< total
+ div
; ++i
)
1933 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1934 reordering
[i
] = i
- 1;
1935 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1936 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1937 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1940 if (!qp
->upoly
|| !qp
->div
)
1946 isl_qpolynomial_free(qp
);
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1954 static __isl_give isl_qpolynomial
*substitute_non_divs(
1955 __isl_take isl_qpolynomial
*qp
)
1959 struct isl_upoly
*s
;
1964 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1965 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1966 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1968 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1969 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1971 isl_seq_combine(qp
->div
->row
[j
] + 1,
1972 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1973 qp
->div
->row
[j
][2 + total
+ i
],
1974 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1975 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1976 normalize_div(qp
, j
);
1978 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1979 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1980 qp
= substitute_div(qp
, i
, s
);
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1996 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1997 __isl_keep isl_vec
*aff
)
2001 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2004 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2005 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2006 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2008 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2009 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2010 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2011 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2012 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
2013 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2014 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2016 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2017 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2030 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2035 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2036 if (isl_int_is_zero(div
->row
[row
][i
]))
2038 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2039 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2040 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2055 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2056 __isl_keep isl_vec
*aff
)
2058 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2060 isl_seq_neg(qp
->div
->row
[div
] + 1,
2061 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2062 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2063 isl_int_add(qp
->div
->row
[div
][1],
2064 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2065 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2066 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2067 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2068 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2081 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2084 isl_vec
*aff
= NULL
;
2085 struct isl_upoly
*s
;
2091 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2092 aff
= isl_vec_clr(aff
);
2096 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2098 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2099 normalize_div(qp
, i
);
2100 reduce_div(qp
, i
, aff
);
2101 if (needs_invert(qp
->div
, i
)) {
2102 invert_div(qp
, i
, aff
);
2103 reduce_div(qp
, i
, aff
);
2107 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2108 qp
->div
->ctx
->one
, aff
->size
);
2109 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2116 n_div
= qp
->div
->n_row
;
2117 qp
= substitute_non_divs(qp
);
2119 if (qp
&& qp
->div
->n_row
< n_div
)
2120 return reduce_divs(qp
);
2124 isl_qpolynomial_free(qp
);
2129 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space
*dim
, const isl_int n
, const isl_int d
)
2132 struct isl_qpolynomial
*qp
;
2133 struct isl_upoly_cst
*cst
;
2138 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2142 cst
= isl_upoly_as_cst(qp
->upoly
);
2143 isl_int_set(cst
->n
, n
);
2144 isl_int_set(cst
->d
, d
);
2149 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2151 struct isl_upoly_rec
*rec
;
2157 if (isl_upoly_is_cst(up
))
2161 active
[up
->var
] = 1;
2163 rec
= isl_upoly_as_rec(up
);
2164 for (i
= 0; i
< rec
->n
; ++i
)
2165 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2171 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2174 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2179 for (i
= 0; i
< d
; ++i
)
2180 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2181 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2187 return up_set_active(qp
->upoly
, active
, d
);
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2191 enum isl_dim_type type
, unsigned first
, unsigned n
)
2202 isl_assert(qp
->dim
->ctx
,
2203 first
+ n
<= isl_qpolynomial_dim(qp
, type
), return -1);
2204 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2205 type
== isl_dim_in
, return -1);
2207 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2208 isl_space_dim(qp
->dim
, isl_dim_all
));
2209 if (set_active(qp
, active
) < 0)
2212 if (type
== isl_dim_in
)
2213 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2214 for (i
= 0; i
< n
; ++i
)
2215 if (active
[first
+ i
]) {
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2231 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2232 __isl_take isl_qpolynomial
*qp
)
2239 int *reordering
= NULL
;
2246 if (qp
->div
->n_row
== 0)
2249 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2250 len
= qp
->div
->n_col
- 2;
2251 ctx
= isl_qpolynomial_get_ctx(qp
);
2252 active
= isl_calloc_array(ctx
, int, len
);
2256 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2259 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2260 if (!active
[d
+ i
]) {
2264 for (j
= 0; j
< i
; ++j
) {
2265 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2277 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2281 for (i
= 0; i
< d
; ++i
)
2285 n_div
= qp
->div
->n_row
;
2286 for (i
= 0; i
< n_div
; ++i
) {
2287 if (!active
[d
+ i
]) {
2288 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2289 qp
->div
= isl_mat_drop_cols(qp
->div
,
2290 2 + d
+ i
- skip
, 1);
2293 reordering
[d
+ i
] = d
+ i
- skip
;
2296 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2298 if (!qp
->upoly
|| !qp
->div
)
2308 isl_qpolynomial_free(qp
);
2312 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2313 unsigned first
, unsigned n
)
2316 struct isl_upoly_rec
*rec
;
2320 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2322 if (up
->var
< first
+ n
) {
2323 up
= replace_by_constant_term(up
);
2324 return isl_upoly_drop(up
, first
, n
);
2326 up
= isl_upoly_cow(up
);
2330 rec
= isl_upoly_as_rec(up
);
2334 for (i
= 0; i
< rec
->n
; ++i
) {
2335 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2346 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial
*qp
,
2348 enum isl_dim_type type
, unsigned pos
, const char *s
)
2350 qp
= isl_qpolynomial_cow(qp
);
2353 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2358 isl_qpolynomial_free(qp
);
2362 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial
*qp
,
2364 enum isl_dim_type type
, unsigned first
, unsigned n
)
2368 if (type
== isl_dim_out
)
2369 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2370 "cannot drop output/set dimension",
2372 if (type
== isl_dim_in
)
2374 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2377 qp
= isl_qpolynomial_cow(qp
);
2381 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2383 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2384 type
== isl_dim_set
, goto error
);
2386 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2390 if (type
== isl_dim_set
)
2391 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2393 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2397 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2403 isl_qpolynomial_free(qp
);
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2410 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial
*qp
)
2417 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2418 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2420 return isl_qpolynomial_free(qp
);
2422 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp
));
2425 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2426 space
= isl_qpolynomial_get_domain_space(qp
);
2427 space
= isl_space_params(space
);
2428 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2432 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2439 struct isl_upoly
*up
;
2443 if (eq
->n_eq
== 0) {
2444 isl_basic_set_free(eq
);
2448 qp
= isl_qpolynomial_cow(qp
);
2451 qp
->div
= isl_mat_cow(qp
->div
);
2455 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2457 isl_int_init(denom
);
2458 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2459 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2460 if (j
< 0 || j
== 0 || j
>= total
)
2463 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2464 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2466 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2467 &qp
->div
->row
[k
][0]);
2468 normalize_div(qp
, k
);
2471 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2472 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2473 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2474 isl_int_set_si(eq
->eq
[i
][j
], 0);
2476 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2477 eq
->eq
[i
], denom
, total
);
2478 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2481 isl_int_clear(denom
);
2486 isl_basic_set_free(eq
);
2488 qp
= substitute_non_divs(qp
);
2493 isl_basic_set_free(eq
);
2494 isl_qpolynomial_free(qp
);
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2500 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2505 if (qp
->div
->n_row
> 0)
2506 eq
= isl_basic_set_add_dims(eq
, isl_dim_set
, qp
->div
->n_row
);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2509 isl_basic_set_free(eq
);
2510 isl_qpolynomial_free(qp
);
2514 static __isl_give isl_basic_set
*add_div_constraints(
2515 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2523 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2526 total
= isl_basic_set_total_dim(bset
);
2527 for (i
= 0; i
< div
->n_row
; ++i
)
2528 if (isl_basic_set_add_div_constraints_var(bset
,
2529 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2536 isl_basic_set_free(bset
);
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2545 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2552 if (qp
->div
->n_row
> 0) {
2553 isl_basic_set
*bset
;
2554 context
= isl_set_add_dims(context
, isl_dim_set
,
2556 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2557 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2558 context
= isl_set_intersect(context
,
2559 isl_set_from_basic_set(bset
));
2562 aff
= isl_set_affine_hull(context
);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2565 isl_qpolynomial_free(qp
);
2566 isl_set_free(context
);
2570 __isl_give isl_qpolynomial
*isl_qpolynomial_gist_params(
2571 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2573 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
2574 isl_set
*dom_context
= isl_set_universe(space
);
2575 dom_context
= isl_set_intersect_params(dom_context
, context
);
2576 return isl_qpolynomial_gist(qp
, dom_context
);
2579 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2580 __isl_take isl_qpolynomial
*qp
)
2586 if (isl_qpolynomial_is_zero(qp
)) {
2587 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2588 isl_qpolynomial_free(qp
);
2589 return isl_pw_qpolynomial_zero(dim
);
2592 dom
= isl_set_universe(isl_qpolynomial_get_domain_space(qp
));
2593 return isl_pw_qpolynomial_alloc(dom
, qp
);
2597 #define PW isl_pw_qpolynomial
2599 #define EL isl_qpolynomial
2601 #define EL_IS_ZERO is_zero
2605 #define IS_ZERO is_zero
2608 #undef DEFAULT_IS_ZERO
2609 #define DEFAULT_IS_ZERO 1
2613 #include <isl_pw_templ.c>
2616 #define UNION isl_union_pw_qpolynomial
2618 #define PART isl_pw_qpolynomial
2620 #define PARTS pw_qpolynomial
2621 #define ALIGN_DOMAIN
2623 #include <isl_union_templ.c>
2625 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2633 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2636 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2639 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
2640 __isl_take isl_pw_qpolynomial
*pwqp1
,
2641 __isl_take isl_pw_qpolynomial
*pwqp2
)
2643 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
2646 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2647 __isl_take isl_pw_qpolynomial
*pwqp1
,
2648 __isl_take isl_pw_qpolynomial
*pwqp2
)
2651 struct isl_pw_qpolynomial
*res
;
2653 if (!pwqp1
|| !pwqp2
)
2656 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
2659 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2660 isl_pw_qpolynomial_free(pwqp2
);
2664 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2665 isl_pw_qpolynomial_free(pwqp1
);
2669 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2670 isl_pw_qpolynomial_free(pwqp1
);
2674 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2675 isl_pw_qpolynomial_free(pwqp2
);
2679 n
= pwqp1
->n
* pwqp2
->n
;
2680 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
2682 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2683 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2684 struct isl_set
*common
;
2685 struct isl_qpolynomial
*prod
;
2686 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2687 isl_set_copy(pwqp2
->p
[j
].set
));
2688 if (isl_set_plain_is_empty(common
)) {
2689 isl_set_free(common
);
2693 prod
= isl_qpolynomial_mul(
2694 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2695 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2697 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2701 isl_pw_qpolynomial_free(pwqp1
);
2702 isl_pw_qpolynomial_free(pwqp2
);
2706 isl_pw_qpolynomial_free(pwqp1
);
2707 isl_pw_qpolynomial_free(pwqp2
);
2711 __isl_give
struct isl_upoly
*isl_upoly_eval(
2712 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2715 struct isl_upoly_rec
*rec
;
2716 struct isl_upoly
*res
;
2717 struct isl_upoly
*base
;
2719 if (isl_upoly_is_cst(up
)) {
2724 rec
= isl_upoly_as_rec(up
);
2728 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2730 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2732 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2735 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2736 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2737 res
= isl_upoly_sum(res
,
2738 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2739 isl_vec_copy(vec
)));
2742 isl_upoly_free(base
);
2752 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2753 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2756 struct isl_upoly
*up
;
2761 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
2763 if (qp
->div
->n_row
== 0)
2764 ext
= isl_vec_copy(pnt
->vec
);
2767 unsigned dim
= isl_space_dim(qp
->dim
, isl_dim_all
);
2768 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2772 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2773 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2774 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2775 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2776 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2777 qp
->div
->row
[i
][0]);
2781 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2785 dim
= isl_space_copy(qp
->dim
);
2786 isl_qpolynomial_free(qp
);
2787 isl_point_free(pnt
);
2789 return isl_qpolynomial_alloc(dim
, 0, up
);
2791 isl_qpolynomial_free(qp
);
2792 isl_point_free(pnt
);
2796 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2797 __isl_keep
struct isl_upoly_cst
*cst2
)
2802 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2803 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2804 cmp
= isl_int_sgn(t
);
2809 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2810 __isl_keep isl_qpolynomial
*qp2
)
2812 struct isl_upoly_cst
*cst1
, *cst2
;
2816 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2817 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2818 if (isl_qpolynomial_is_nan(qp1
))
2820 if (isl_qpolynomial_is_nan(qp2
))
2822 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2823 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2825 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2828 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2829 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2831 struct isl_upoly_cst
*cst1
, *cst2
;
2836 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2837 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2838 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2839 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2840 cmp
= isl_upoly_cmp(cst1
, cst2
);
2843 isl_qpolynomial_free(qp2
);
2845 isl_qpolynomial_free(qp1
);
2850 isl_qpolynomial_free(qp1
);
2851 isl_qpolynomial_free(qp2
);
2855 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2856 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2858 struct isl_upoly_cst
*cst1
, *cst2
;
2863 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2864 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2865 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2866 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2867 cmp
= isl_upoly_cmp(cst1
, cst2
);
2870 isl_qpolynomial_free(qp2
);
2872 isl_qpolynomial_free(qp1
);
2877 isl_qpolynomial_free(qp1
);
2878 isl_qpolynomial_free(qp2
);
2882 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2883 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2884 unsigned first
, unsigned n
)
2892 if (type
== isl_dim_out
)
2893 isl_die(qp
->div
->ctx
, isl_error_invalid
,
2894 "cannot insert output/set dimensions",
2896 if (type
== isl_dim_in
)
2898 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2901 qp
= isl_qpolynomial_cow(qp
);
2905 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
2908 g_pos
= pos(qp
->dim
, type
) + first
;
2910 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
2914 total
= qp
->div
->n_col
- 2;
2915 if (total
> g_pos
) {
2917 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2920 for (i
= 0; i
< total
- g_pos
; ++i
)
2922 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2928 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
2934 isl_qpolynomial_free(qp
);
2938 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2939 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2943 pos
= isl_qpolynomial_dim(qp
, type
);
2945 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2948 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2949 __isl_take isl_pw_qpolynomial
*pwqp
,
2950 enum isl_dim_type type
, unsigned n
)
2954 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2956 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2959 static int *reordering_move(isl_ctx
*ctx
,
2960 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2965 reordering
= isl_alloc_array(ctx
, int, len
);
2970 for (i
= 0; i
< dst
; ++i
)
2972 for (i
= 0; i
< n
; ++i
)
2973 reordering
[src
+ i
] = dst
+ i
;
2974 for (i
= 0; i
< src
- dst
; ++i
)
2975 reordering
[dst
+ i
] = dst
+ n
+ i
;
2976 for (i
= 0; i
< len
- src
- n
; ++i
)
2977 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2979 for (i
= 0; i
< src
; ++i
)
2981 for (i
= 0; i
< n
; ++i
)
2982 reordering
[src
+ i
] = dst
+ i
;
2983 for (i
= 0; i
< dst
- src
; ++i
)
2984 reordering
[src
+ n
+ i
] = src
+ i
;
2985 for (i
= 0; i
< len
- dst
- n
; ++i
)
2986 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2992 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2993 __isl_take isl_qpolynomial
*qp
,
2994 enum isl_dim_type dst_type
, unsigned dst_pos
,
2995 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
3001 qp
= isl_qpolynomial_cow(qp
);
3005 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
3006 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3007 "cannot move output/set dimension",
3009 if (dst_type
== isl_dim_in
)
3010 dst_type
= isl_dim_set
;
3011 if (src_type
== isl_dim_in
)
3012 src_type
= isl_dim_set
;
3014 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
3017 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3018 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3019 if (dst_type
> src_type
)
3022 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
3029 reordering
= reordering_move(qp
->dim
->ctx
,
3030 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
3034 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3039 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3045 isl_qpolynomial_free(qp
);
3049 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3050 isl_int
*f
, isl_int denom
)
3052 struct isl_upoly
*up
;
3054 dim
= isl_space_domain(dim
);
3058 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3059 1 + isl_space_dim(dim
, isl_dim_all
));
3061 return isl_qpolynomial_alloc(dim
, 0, up
);
3064 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3067 struct isl_upoly
*up
;
3068 isl_qpolynomial
*qp
;
3073 ctx
= isl_aff_get_ctx(aff
);
3074 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3077 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3078 aff
->ls
->div
->n_row
, up
);
3082 isl_mat_free(qp
->div
);
3083 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3084 qp
->div
= isl_mat_cow(qp
->div
);
3089 qp
= reduce_divs(qp
);
3090 qp
= remove_redundant_divs(qp
);
3097 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3098 __isl_take isl_pw_aff
*pwaff
)
3101 isl_pw_qpolynomial
*pwqp
;
3106 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3109 for (i
= 0; i
< pwaff
->n
; ++i
) {
3111 isl_qpolynomial
*qp
;
3113 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3114 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3115 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3118 isl_pw_aff_free(pwaff
);
3122 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3123 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3127 aff
= isl_constraint_get_bound(c
, type
, pos
);
3128 isl_constraint_free(c
);
3129 return isl_qpolynomial_from_aff(aff
);
3132 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3133 * in "qp" by subs[i].
3135 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3136 __isl_take isl_qpolynomial
*qp
,
3137 enum isl_dim_type type
, unsigned first
, unsigned n
,
3138 __isl_keep isl_qpolynomial
**subs
)
3141 struct isl_upoly
**ups
;
3146 qp
= isl_qpolynomial_cow(qp
);
3150 if (type
== isl_dim_out
)
3151 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3152 "cannot substitute output/set dimension",
3154 if (type
== isl_dim_in
)
3157 for (i
= 0; i
< n
; ++i
)
3161 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3164 for (i
= 0; i
< n
; ++i
)
3165 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3168 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3169 for (i
= 0; i
< n
; ++i
)
3170 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3172 first
+= pos(qp
->dim
, type
);
3174 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3177 for (i
= 0; i
< n
; ++i
)
3178 ups
[i
] = subs
[i
]->upoly
;
3180 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3189 isl_qpolynomial_free(qp
);
3193 /* Extend "bset" with extra set dimensions for each integer division
3194 * in "qp" and then call "fn" with the extended bset and the polynomial
3195 * that results from replacing each of the integer divisions by the
3196 * corresponding extra set dimension.
3198 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3199 __isl_keep isl_basic_set
*bset
,
3200 int (*fn
)(__isl_take isl_basic_set
*bset
,
3201 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3205 isl_qpolynomial
*poly
;
3209 if (qp
->div
->n_row
== 0)
3210 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3213 div
= isl_mat_copy(qp
->div
);
3214 dim
= isl_space_copy(qp
->dim
);
3215 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3216 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3217 bset
= isl_basic_set_copy(bset
);
3218 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, qp
->div
->n_row
);
3219 bset
= add_div_constraints(bset
, div
);
3221 return fn(bset
, poly
, user
);
3226 /* Return total degree in variables first (inclusive) up to last (exclusive).
3228 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3232 struct isl_upoly_rec
*rec
;
3236 if (isl_upoly_is_zero(up
))
3238 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3241 rec
= isl_upoly_as_rec(up
);
3245 for (i
= 0; i
< rec
->n
; ++i
) {
3248 if (isl_upoly_is_zero(rec
->p
[i
]))
3250 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3260 /* Return total degree in set variables.
3262 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3270 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3271 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3272 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3275 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3276 unsigned pos
, int deg
)
3279 struct isl_upoly_rec
*rec
;
3284 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3286 return isl_upoly_copy(up
);
3288 return isl_upoly_zero(up
->ctx
);
3291 rec
= isl_upoly_as_rec(up
);
3295 if (up
->var
== pos
) {
3297 return isl_upoly_copy(rec
->p
[deg
]);
3299 return isl_upoly_zero(up
->ctx
);
3302 up
= isl_upoly_copy(up
);
3303 up
= isl_upoly_cow(up
);
3304 rec
= isl_upoly_as_rec(up
);
3308 for (i
= 0; i
< rec
->n
; ++i
) {
3309 struct isl_upoly
*t
;
3310 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3313 isl_upoly_free(rec
->p
[i
]);
3323 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3325 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3326 __isl_keep isl_qpolynomial
*qp
,
3327 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3330 struct isl_upoly
*up
;
3336 if (type
== isl_dim_out
)
3337 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3338 "output/set dimension does not have a coefficient",
3340 if (type
== isl_dim_in
)
3343 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3346 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3347 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3349 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3352 isl_mat_free(c
->div
);
3353 c
->div
= isl_mat_copy(qp
->div
);
3358 isl_qpolynomial_free(c
);
3362 /* Homogenize the polynomial in the variables first (inclusive) up to
3363 * last (exclusive) by inserting powers of variable first.
3364 * Variable first is assumed not to appear in the input.
3366 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3367 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3368 int first
, int last
)
3371 struct isl_upoly_rec
*rec
;
3375 if (isl_upoly_is_zero(up
))
3379 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3380 struct isl_upoly
*hom
;
3382 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3385 rec
= isl_upoly_as_rec(hom
);
3386 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3391 up
= isl_upoly_cow(up
);
3392 rec
= isl_upoly_as_rec(up
);
3396 for (i
= 0; i
< rec
->n
; ++i
) {
3397 if (isl_upoly_is_zero(rec
->p
[i
]))
3399 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3400 up
->var
< last
? deg
+ i
: i
, target
,
3412 /* Homogenize the polynomial in the set variables by introducing
3413 * powers of an extra set variable at position 0.
3415 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3416 __isl_take isl_qpolynomial
*poly
)
3420 int deg
= isl_qpolynomial_degree(poly
);
3425 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3426 poly
= isl_qpolynomial_cow(poly
);
3430 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3431 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3432 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3439 isl_qpolynomial_free(poly
);
3443 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3444 __isl_take isl_mat
*div
)
3452 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3454 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3455 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3462 isl_int_init(term
->n
);
3463 isl_int_init(term
->d
);
3467 isl_space_free(dim
);
3472 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3481 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3490 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3492 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3496 isl_int_set(dup
->n
, term
->n
);
3497 isl_int_set(dup
->d
, term
->d
);
3499 for (i
= 0; i
< total
; ++i
)
3500 dup
->pow
[i
] = term
->pow
[i
];
3505 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3513 return isl_term_dup(term
);
3516 void isl_term_free(__isl_take isl_term
*term
)
3521 if (--term
->ref
> 0)
3524 isl_space_free(term
->dim
);
3525 isl_mat_free(term
->div
);
3526 isl_int_clear(term
->n
);
3527 isl_int_clear(term
->d
);
3531 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3539 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3540 case isl_dim_div
: return term
->div
->n_row
;
3541 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3547 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3549 return term
? term
->dim
->ctx
: NULL
;
3552 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3556 isl_int_set(*n
, term
->n
);
3559 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3563 isl_int_set(*d
, term
->d
);
3566 int isl_term_get_exp(__isl_keep isl_term
*term
,
3567 enum isl_dim_type type
, unsigned pos
)
3572 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3574 if (type
>= isl_dim_set
)
3575 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3576 if (type
>= isl_dim_div
)
3577 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3579 return term
->pow
[pos
];
3582 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3584 isl_local_space
*ls
;
3590 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3593 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
3594 isl_mat_copy(term
->div
));
3595 aff
= isl_aff_alloc(ls
);
3599 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
3601 aff
= isl_aff_normalize(aff
);
3606 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3607 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3608 __isl_take isl_term
*term
, void *user
)
3611 struct isl_upoly_rec
*rec
;
3616 if (isl_upoly_is_zero(up
))
3619 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3620 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3621 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3623 if (isl_upoly_is_cst(up
)) {
3624 struct isl_upoly_cst
*cst
;
3625 cst
= isl_upoly_as_cst(up
);
3628 term
= isl_term_cow(term
);
3631 isl_int_set(term
->n
, cst
->n
);
3632 isl_int_set(term
->d
, cst
->d
);
3633 if (fn(isl_term_copy(term
), user
) < 0)
3638 rec
= isl_upoly_as_rec(up
);
3642 for (i
= 0; i
< rec
->n
; ++i
) {
3643 term
= isl_term_cow(term
);
3646 term
->pow
[up
->var
] = i
;
3647 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3651 term
->pow
[up
->var
] = 0;
3655 isl_term_free(term
);
3659 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3660 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3667 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3671 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3673 isl_term_free(term
);
3675 return term
? 0 : -1;
3678 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3680 struct isl_upoly
*up
;
3681 isl_qpolynomial
*qp
;
3687 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3689 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3690 for (i
= 0; i
< n
; ++i
) {
3693 up
= isl_upoly_mul(up
,
3694 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3697 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3700 isl_mat_free(qp
->div
);
3701 qp
->div
= isl_mat_copy(term
->div
);
3705 isl_term_free(term
);
3708 isl_qpolynomial_free(qp
);
3709 isl_term_free(term
);
3713 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3714 __isl_take isl_space
*dim
)
3723 if (isl_space_is_equal(qp
->dim
, dim
)) {
3724 isl_space_free(dim
);
3728 qp
= isl_qpolynomial_cow(qp
);
3732 extra
= isl_space_dim(dim
, isl_dim_set
) -
3733 isl_space_dim(qp
->dim
, isl_dim_set
);
3734 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
3735 if (qp
->div
->n_row
) {
3738 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3741 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3743 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3748 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3751 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3752 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3754 isl_space_free(qp
->dim
);
3759 isl_space_free(dim
);
3760 isl_qpolynomial_free(qp
);
3764 /* For each parameter or variable that does not appear in qp,
3765 * first eliminate the variable from all constraints and then set it to zero.
3767 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3768 __isl_keep isl_qpolynomial
*qp
)
3779 d
= isl_space_dim(set
->dim
, isl_dim_all
);
3780 active
= isl_calloc_array(set
->ctx
, int, d
);
3781 if (set_active(qp
, active
) < 0)
3784 for (i
= 0; i
< d
; ++i
)
3793 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
3794 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
3795 for (i
= 0; i
< nparam
; ++i
) {
3798 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3799 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3801 for (i
= 0; i
< nvar
; ++i
) {
3802 if (active
[nparam
+ i
])
3804 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3805 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3817 struct isl_opt_data
{
3818 isl_qpolynomial
*qp
;
3820 isl_qpolynomial
*opt
;
3824 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3826 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3827 isl_qpolynomial
*val
;
3829 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3833 } else if (data
->max
) {
3834 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3836 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3842 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3843 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3845 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3850 if (isl_upoly_is_cst(qp
->upoly
)) {
3855 set
= fix_inactive(set
, qp
);
3858 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3862 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
3863 data
.opt
= isl_qpolynomial_zero_on_domain(space
);
3867 isl_qpolynomial_free(qp
);
3871 isl_qpolynomial_free(qp
);
3872 isl_qpolynomial_free(data
.opt
);
3876 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
3877 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
3882 struct isl_upoly
**subs
;
3883 isl_mat
*mat
, *diag
;
3885 qp
= isl_qpolynomial_cow(qp
);
3890 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3892 n_sub
= morph
->inv
->n_row
- 1;
3893 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3894 n_sub
+= qp
->div
->n_row
;
3895 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3899 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3900 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3901 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3902 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3903 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3904 subs
[morph
->inv
->n_row
- 1 + i
] =
3905 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3907 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3909 for (i
= 0; i
< n_sub
; ++i
)
3910 isl_upoly_free(subs
[i
]);
3913 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
3914 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
3915 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
3916 mat
= isl_mat_diagonal(mat
, diag
);
3917 qp
->div
= isl_mat_product(qp
->div
, mat
);
3918 isl_space_free(qp
->dim
);
3919 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
3921 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3924 isl_morph_free(morph
);
3928 isl_qpolynomial_free(qp
);
3929 isl_morph_free(morph
);
3933 static int neg_entry(void **entry
, void *user
)
3935 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3937 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3939 return *pwqp
? 0 : -1;
3942 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3943 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3945 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3949 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3950 &neg_entry
, NULL
) < 0)
3955 isl_union_pw_qpolynomial_free(upwqp
);
3959 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3960 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3961 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3963 return match_bin_op(upwqp1
, upwqp2
, &isl_pw_qpolynomial_mul
);
3966 /* Reorder the columns of the given div definitions according to the
3969 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3970 __isl_take isl_reordering
*r
)
3979 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
3980 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3984 for (i
= 0; i
< div
->n_row
; ++i
) {
3985 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3986 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3987 for (j
= 0; j
< r
->len
; ++j
)
3988 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3989 div
->row
[i
][2 + j
]);
3992 isl_reordering_free(r
);
3996 isl_reordering_free(r
);
4001 /* Reorder the dimension of "qp" according to the given reordering.
4003 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4004 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4006 qp
= isl_qpolynomial_cow(qp
);
4010 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4014 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4018 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4022 qp
= isl_qpolynomial_reset_domain_space(qp
, isl_space_copy(r
->dim
));
4024 isl_reordering_free(r
);
4027 isl_qpolynomial_free(qp
);
4028 isl_reordering_free(r
);
4032 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4033 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4038 if (!isl_space_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4039 isl_reordering
*exp
;
4041 model
= isl_space_drop_dims(model
, isl_dim_in
,
4042 0, isl_space_dim(model
, isl_dim_in
));
4043 model
= isl_space_drop_dims(model
, isl_dim_out
,
4044 0, isl_space_dim(model
, isl_dim_out
));
4045 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4046 exp
= isl_reordering_extend_space(exp
,
4047 isl_qpolynomial_get_domain_space(qp
));
4048 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4051 isl_space_free(model
);
4054 isl_space_free(model
);
4055 isl_qpolynomial_free(qp
);
4059 struct isl_split_periods_data
{
4061 isl_pw_qpolynomial
*res
;
4064 /* Create a slice where the integer division "div" has the fixed value "v".
4065 * In particular, if "div" refers to floor(f/m), then create a slice
4067 * m v <= f <= m v + (m - 1)
4072 * -f + m v + (m - 1) >= 0
4074 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4075 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4078 isl_basic_set
*bset
= NULL
;
4084 total
= isl_space_dim(dim
, isl_dim_all
);
4085 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4087 k
= isl_basic_set_alloc_inequality(bset
);
4090 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4091 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4093 k
= isl_basic_set_alloc_inequality(bset
);
4096 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4097 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4098 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4099 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4101 isl_space_free(dim
);
4102 return isl_set_from_basic_set(bset
);
4104 isl_basic_set_free(bset
);
4105 isl_space_free(dim
);
4109 static int split_periods(__isl_take isl_set
*set
,
4110 __isl_take isl_qpolynomial
*qp
, void *user
);
4112 /* Create a slice of the domain "set" such that integer division "div"
4113 * has the fixed value "v" and add the results to data->res,
4114 * replacing the integer division by "v" in "qp".
4116 static int set_div(__isl_take isl_set
*set
,
4117 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4118 struct isl_split_periods_data
*data
)
4123 struct isl_upoly
*cst
;
4125 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4126 set
= isl_set_intersect(set
, slice
);
4131 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4133 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4134 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4136 isl_int_addmul(qp
->div
->row
[i
][1],
4137 qp
->div
->row
[i
][2 + total
+ div
], v
);
4138 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4141 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4142 qp
= substitute_div(qp
, div
, cst
);
4144 return split_periods(set
, qp
, data
);
4147 isl_qpolynomial_free(qp
);
4151 /* Split the domain "set" such that integer division "div"
4152 * has a fixed value (ranging from "min" to "max") on each slice
4153 * and add the results to data->res.
4155 static int split_div(__isl_take isl_set
*set
,
4156 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4157 struct isl_split_periods_data
*data
)
4159 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4160 isl_set
*set_i
= isl_set_copy(set
);
4161 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4163 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4167 isl_qpolynomial_free(qp
);
4171 isl_qpolynomial_free(qp
);
4175 /* If "qp" refers to any integer division
4176 * that can only attain "max_periods" distinct values on "set"
4177 * then split the domain along those distinct values.
4178 * Add the results (or the original if no splitting occurs)
4181 static int split_periods(__isl_take isl_set
*set
,
4182 __isl_take isl_qpolynomial
*qp
, void *user
)
4185 isl_pw_qpolynomial
*pwqp
;
4186 struct isl_split_periods_data
*data
;
4191 data
= (struct isl_split_periods_data
*)user
;
4196 if (qp
->div
->n_row
== 0) {
4197 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4198 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4204 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4205 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4206 enum isl_lp_result lp_res
;
4208 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4209 qp
->div
->n_row
) != -1)
4212 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4213 set
->ctx
->one
, &min
, NULL
, NULL
);
4214 if (lp_res
== isl_lp_error
)
4216 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4218 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4220 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4221 set
->ctx
->one
, &max
, NULL
, NULL
);
4222 if (lp_res
== isl_lp_error
)
4224 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4226 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4228 isl_int_sub(max
, max
, min
);
4229 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4230 isl_int_add(max
, max
, min
);
4235 if (i
< qp
->div
->n_row
) {
4236 r
= split_div(set
, qp
, i
, min
, max
, data
);
4238 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4239 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4251 isl_qpolynomial_free(qp
);
4255 /* If any quasi-polynomial in pwqp refers to any integer division
4256 * that can only attain "max_periods" distinct values on its domain
4257 * then split the domain along those distinct values.
4259 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4260 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4262 struct isl_split_periods_data data
;
4264 data
.max_periods
= max_periods
;
4265 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4267 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4270 isl_pw_qpolynomial_free(pwqp
);
4274 isl_pw_qpolynomial_free(data
.res
);
4275 isl_pw_qpolynomial_free(pwqp
);
4279 /* Construct a piecewise quasipolynomial that is constant on the given
4280 * domain. In particular, it is
4283 * infinity if cst == -1
4285 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4286 __isl_take isl_basic_set
*bset
, int cst
)
4289 isl_qpolynomial
*qp
;
4294 bset
= isl_basic_set_params(bset
);
4295 dim
= isl_basic_set_get_space(bset
);
4297 qp
= isl_qpolynomial_infty_on_domain(dim
);
4299 qp
= isl_qpolynomial_zero_on_domain(dim
);
4301 qp
= isl_qpolynomial_one_on_domain(dim
);
4302 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4305 /* Factor bset, call fn on each of the factors and return the product.
4307 * If no factors can be found, simply call fn on the input.
4308 * Otherwise, construct the factors based on the factorizer,
4309 * call fn on each factor and compute the product.
4311 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4312 __isl_take isl_basic_set
*bset
,
4313 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4319 isl_qpolynomial
*qp
;
4320 isl_pw_qpolynomial
*pwqp
;
4324 f
= isl_basic_set_factorizer(bset
);
4327 if (f
->n_group
== 0) {
4328 isl_factorizer_free(f
);
4332 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4333 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4335 dim
= isl_basic_set_get_space(bset
);
4336 dim
= isl_space_domain(dim
);
4337 set
= isl_set_universe(isl_space_copy(dim
));
4338 qp
= isl_qpolynomial_one_on_domain(dim
);
4339 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4341 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4343 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4344 isl_basic_set
*bset_i
;
4345 isl_pw_qpolynomial
*pwqp_i
;
4347 bset_i
= isl_basic_set_copy(bset
);
4348 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4349 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4350 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4352 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4353 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4354 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4356 pwqp_i
= fn(bset_i
);
4357 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4362 isl_basic_set_free(bset
);
4363 isl_factorizer_free(f
);
4367 isl_basic_set_free(bset
);
4371 /* Factor bset, call fn on each of the factors and return the product.
4372 * The function is assumed to evaluate to zero on empty domains,
4373 * to one on zero-dimensional domains and to infinity on unbounded domains
4374 * and will not be called explicitly on zero-dimensional or unbounded domains.
4376 * We first check for some special cases and remove all equalities.
4377 * Then we hand over control to compressed_multiplicative_call.
4379 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4380 __isl_take isl_basic_set
*bset
,
4381 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4385 isl_pw_qpolynomial
*pwqp
;
4390 if (isl_basic_set_plain_is_empty(bset
))
4391 return constant_on_domain(bset
, 0);
4393 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4394 return constant_on_domain(bset
, 1);
4396 bounded
= isl_basic_set_is_bounded(bset
);
4400 return constant_on_domain(bset
, -1);
4402 if (bset
->n_eq
== 0)
4403 return compressed_multiplicative_call(bset
, fn
);
4405 morph
= isl_basic_set_full_compression(bset
);
4406 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4408 pwqp
= compressed_multiplicative_call(bset
, fn
);
4410 morph
= isl_morph_dom_params(morph
);
4411 morph
= isl_morph_ran_params(morph
);
4412 morph
= isl_morph_inverse(morph
);
4414 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4418 isl_basic_set_free(bset
);
4422 /* Drop all floors in "qp", turning each integer division [a/m] into
4423 * a rational division a/m. If "down" is set, then the integer division
4424 * is replaces by (a-(m-1))/m instead.
4426 static __isl_give isl_qpolynomial
*qp_drop_floors(
4427 __isl_take isl_qpolynomial
*qp
, int down
)
4430 struct isl_upoly
*s
;
4434 if (qp
->div
->n_row
== 0)
4437 qp
= isl_qpolynomial_cow(qp
);
4441 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4443 isl_int_sub(qp
->div
->row
[i
][1],
4444 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4445 isl_int_add_ui(qp
->div
->row
[i
][1],
4446 qp
->div
->row
[i
][1], 1);
4448 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4449 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4450 qp
= substitute_div(qp
, i
, s
);
4458 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4459 * a rational division a/m.
4461 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4462 __isl_take isl_pw_qpolynomial
*pwqp
)
4469 if (isl_pw_qpolynomial_is_zero(pwqp
))
4472 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4476 for (i
= 0; i
< pwqp
->n
; ++i
) {
4477 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4484 isl_pw_qpolynomial_free(pwqp
);
4488 /* Adjust all the integer divisions in "qp" such that they are at least
4489 * one over the given orthant (identified by "signs"). This ensures
4490 * that they will still be non-negative even after subtracting (m-1)/m.
4492 * In particular, f is replaced by f' + v, changing f = [a/m]
4493 * to f' = [(a - m v)/m].
4494 * If the constant term k in a is smaller than m,
4495 * the constant term of v is set to floor(k/m) - 1.
4496 * For any other term, if the coefficient c and the variable x have
4497 * the same sign, then no changes are needed.
4498 * Otherwise, if the variable is positive (and c is negative),
4499 * then the coefficient of x in v is set to floor(c/m).
4500 * If the variable is negative (and c is positive),
4501 * then the coefficient of x in v is set to ceil(c/m).
4503 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4509 struct isl_upoly
*s
;
4511 qp
= isl_qpolynomial_cow(qp
);
4514 qp
->div
= isl_mat_cow(qp
->div
);
4518 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4519 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4521 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4522 isl_int
*row
= qp
->div
->row
[i
];
4526 if (isl_int_lt(row
[1], row
[0])) {
4527 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4528 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4529 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4531 for (j
= 0; j
< total
; ++j
) {
4532 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4535 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4537 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4538 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4540 for (j
= 0; j
< i
; ++j
) {
4541 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4543 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4544 row
[2 + total
+ j
], row
[0]);
4545 isl_int_submul(row
[2 + total
+ j
],
4546 row
[0], v
->el
[1 + total
+ j
]);
4548 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4549 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4551 isl_seq_combine(qp
->div
->row
[j
] + 1,
4552 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4553 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4555 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4556 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4557 qp
->div
->ctx
->one
, v
->size
);
4558 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4568 isl_qpolynomial_free(qp
);
4572 struct isl_to_poly_data
{
4574 isl_pw_qpolynomial
*res
;
4575 isl_qpolynomial
*qp
;
4578 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4579 * We first make all integer divisions positive and then split the
4580 * quasipolynomials into terms with sign data->sign (the direction
4581 * of the requested approximation) and terms with the opposite sign.
4582 * In the first set of terms, each integer division [a/m] is
4583 * overapproximated by a/m, while in the second it is underapproximated
4586 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4589 struct isl_to_poly_data
*data
= user
;
4590 isl_pw_qpolynomial
*t
;
4591 isl_qpolynomial
*qp
, *up
, *down
;
4593 qp
= isl_qpolynomial_copy(data
->qp
);
4594 qp
= make_divs_pos(qp
, signs
);
4596 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4597 up
= qp_drop_floors(up
, 0);
4598 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4599 down
= qp_drop_floors(down
, 1);
4601 isl_qpolynomial_free(qp
);
4602 qp
= isl_qpolynomial_add(up
, down
);
4604 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4605 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4610 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4611 * the polynomial will be an overapproximation. If "sign" is negative,
4612 * it will be an underapproximation. If "sign" is zero, the approximation
4613 * will lie somewhere in between.
4615 * In particular, is sign == 0, we simply drop the floors, turning
4616 * the integer divisions into rational divisions.
4617 * Otherwise, we split the domains into orthants, make all integer divisions
4618 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4619 * depending on the requested sign and the sign of the term in which
4620 * the integer division appears.
4622 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4623 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4626 struct isl_to_poly_data data
;
4629 return pwqp_drop_floors(pwqp
);
4635 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4637 for (i
= 0; i
< pwqp
->n
; ++i
) {
4638 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4639 isl_pw_qpolynomial
*t
;
4640 t
= isl_pw_qpolynomial_alloc(
4641 isl_set_copy(pwqp
->p
[i
].set
),
4642 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4643 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4646 data
.qp
= pwqp
->p
[i
].qp
;
4647 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4648 &to_polynomial_on_orthant
, &data
) < 0)
4652 isl_pw_qpolynomial_free(pwqp
);
4656 isl_pw_qpolynomial_free(pwqp
);
4657 isl_pw_qpolynomial_free(data
.res
);
4661 static int poly_entry(void **entry
, void *user
)
4664 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4666 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4668 return *pwqp
? 0 : -1;
4671 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4672 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4674 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4678 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4679 &poly_entry
, &sign
) < 0)
4684 isl_union_pw_qpolynomial_free(upwqp
);
4688 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4689 __isl_take isl_qpolynomial
*qp
)
4693 isl_vec
*aff
= NULL
;
4694 isl_basic_map
*bmap
= NULL
;
4700 if (!isl_upoly_is_affine(qp
->upoly
))
4701 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4702 "input quasi-polynomial not affine", goto error
);
4703 aff
= isl_qpolynomial_extract_affine(qp
);
4706 dim
= isl_qpolynomial_get_space(qp
);
4707 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4708 n_div
= qp
->div
->n_row
;
4709 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4711 for (i
= 0; i
< n_div
; ++i
) {
4712 k
= isl_basic_map_alloc_div(bmap
);
4715 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4716 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4717 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4720 k
= isl_basic_map_alloc_equality(bmap
);
4723 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4724 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4725 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4728 isl_qpolynomial_free(qp
);
4729 bmap
= isl_basic_map_finalize(bmap
);
4733 isl_qpolynomial_free(qp
);
4734 isl_basic_map_free(bmap
);