isl_scheduler.c: find_node_coalescing: use half of size for detecting coalescing
[isl.git] / isl_scheduler.c
blobe3326a47f79a306cb64e4992ddff0caf2e8f9620
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
29 #include <isl/set.h>
30 #include <isl/union_set.h>
31 #include <isl_seq.h>
32 #include <isl_tab.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
35 #include <isl_sort.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
39 #include <isl/ilp.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
50 * of a schedule.
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
60 * of sched
61 * the rows of "vmap" represent a change of basis for the node
62 * variables; the first rank rows span the linear part of
63 * the schedule rows; the remaining rows are linearly independent
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * start is the first variable in the LP problem in the sequences that
68 * represents the schedule coefficients of this node
69 * nvar is the dimension of the domain
70 * nparam is the number of parameters or 0 if we are not constructing
71 * a parametric schedule
73 * If compressed is set, then hull represents the constraints
74 * that were used to derive the compression, while compress and
75 * decompress map the original space to the compressed space and
76 * vice versa.
78 * scc is the index of SCC (or WCC) this node belongs to
80 * "cluster" is only used inside extract_clusters and identifies
81 * the cluster of SCCs that the node belongs to.
83 * coincident contains a boolean for each of the rows of the schedule,
84 * indicating whether the corresponding scheduling dimension satisfies
85 * the coincidence constraints in the sense that the corresponding
86 * dependence distances are zero.
88 * If the schedule_treat_coalescing option is set, then
89 * "sizes" contains the sizes of the (compressed) instance set
90 * in each direction. If there is no fixed size in a given direction,
91 * then the corresponding size value is set to infinity.
92 * If the schedule_treat_coalescing option or the schedule_max_coefficient
93 * option is set, then "max" contains the maximal values for
94 * schedule coefficients of the (compressed) variables. If no bound
95 * needs to be imposed on a particular variable, then the corresponding
96 * value is negative.
98 struct isl_sched_node {
99 isl_space *space;
100 int compressed;
101 isl_set *hull;
102 isl_multi_aff *compress;
103 isl_multi_aff *decompress;
104 isl_mat *sched;
105 isl_map *sched_map;
106 int rank;
107 isl_mat *indep;
108 isl_mat *vmap;
109 int start;
110 int nvar;
111 int nparam;
113 int scc;
114 int cluster;
116 int *coincident;
118 isl_multi_val *sizes;
119 isl_vec *max;
122 static int node_has_tuples(const void *entry, const void *val)
124 struct isl_sched_node *node = (struct isl_sched_node *)entry;
125 isl_space *space = (isl_space *) val;
127 return isl_space_has_equal_tuples(node->space, space);
130 static int node_scc_exactly(struct isl_sched_node *node, int scc)
132 return node->scc == scc;
135 static int node_scc_at_most(struct isl_sched_node *node, int scc)
137 return node->scc <= scc;
140 static int node_scc_at_least(struct isl_sched_node *node, int scc)
142 return node->scc >= scc;
145 /* An edge in the dependence graph. An edge may be used to
146 * ensure validity of the generated schedule, to minimize the dependence
147 * distance or both
149 * map is the dependence relation, with i -> j in the map if j depends on i
150 * tagged_condition and tagged_validity contain the union of all tagged
151 * condition or conditional validity dependence relations that
152 * specialize the dependence relation "map"; that is,
153 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
154 * or "tagged_validity", then i -> j is an element of "map".
155 * If these fields are NULL, then they represent the empty relation.
156 * src is the source node
157 * dst is the sink node
159 * types is a bit vector containing the types of this edge.
160 * validity is set if the edge is used to ensure correctness
161 * coincidence is used to enforce zero dependence distances
162 * proximity is set if the edge is used to minimize dependence distances
163 * condition is set if the edge represents a condition
164 * for a conditional validity schedule constraint
165 * local can only be set for condition edges and indicates that
166 * the dependence distance over the edge should be zero
167 * conditional_validity is set if the edge is used to conditionally
168 * ensure correctness
170 * For validity edges, start and end mark the sequence of inequality
171 * constraints in the LP problem that encode the validity constraint
172 * corresponding to this edge.
174 * During clustering, an edge may be marked "no_merge" if it should
175 * not be used to merge clusters.
176 * The weight is also only used during clustering and it is
177 * an indication of how many schedule dimensions on either side
178 * of the schedule constraints can be aligned.
179 * If the weight is negative, then this means that this edge was postponed
180 * by has_bounded_distances or any_no_merge. The original weight can
181 * be retrieved by adding 1 + graph->max_weight, with "graph"
182 * the graph containing this edge.
184 struct isl_sched_edge {
185 isl_map *map;
186 isl_union_map *tagged_condition;
187 isl_union_map *tagged_validity;
189 struct isl_sched_node *src;
190 struct isl_sched_node *dst;
192 unsigned types;
194 int start;
195 int end;
197 int no_merge;
198 int weight;
201 /* Is "edge" marked as being of type "type"?
203 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
205 return ISL_FL_ISSET(edge->types, 1 << type);
208 /* Mark "edge" as being of type "type".
210 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 ISL_FL_SET(edge->types, 1 << type);
215 /* No longer mark "edge" as being of type "type"?
217 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_CLR(edge->types, 1 << type);
222 /* Is "edge" marked as a validity edge?
224 static int is_validity(struct isl_sched_edge *edge)
226 return is_type(edge, isl_edge_validity);
229 /* Mark "edge" as a validity edge.
231 static void set_validity(struct isl_sched_edge *edge)
233 set_type(edge, isl_edge_validity);
236 /* Is "edge" marked as a proximity edge?
238 static int is_proximity(struct isl_sched_edge *edge)
240 return is_type(edge, isl_edge_proximity);
243 /* Is "edge" marked as a local edge?
245 static int is_local(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_local);
250 /* Mark "edge" as a local edge.
252 static void set_local(struct isl_sched_edge *edge)
254 set_type(edge, isl_edge_local);
257 /* No longer mark "edge" as a local edge.
259 static void clear_local(struct isl_sched_edge *edge)
261 clear_type(edge, isl_edge_local);
264 /* Is "edge" marked as a coincidence edge?
266 static int is_coincidence(struct isl_sched_edge *edge)
268 return is_type(edge, isl_edge_coincidence);
271 /* Is "edge" marked as a condition edge?
273 static int is_condition(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_condition);
278 /* Is "edge" marked as a conditional validity edge?
280 static int is_conditional_validity(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_conditional_validity);
285 /* Internal information about the dependence graph used during
286 * the construction of the schedule.
288 * intra_hmap is a cache, mapping dependence relations to their dual,
289 * for dependences from a node to itself
290 * inter_hmap is a cache, mapping dependence relations to their dual,
291 * for dependences between distinct nodes
292 * if compression is involved then the key for these maps
293 * is the original, uncompressed dependence relation, while
294 * the value is the dual of the compressed dependence relation.
296 * n is the number of nodes
297 * node is the list of nodes
298 * maxvar is the maximal number of variables over all nodes
299 * max_row is the allocated number of rows in the schedule
300 * n_row is the current (maximal) number of linearly independent
301 * rows in the node schedules
302 * n_total_row is the current number of rows in the node schedules
303 * band_start is the starting row in the node schedules of the current band
304 * root is set if this graph is the original dependence graph,
305 * without any splitting
307 * sorted contains a list of node indices sorted according to the
308 * SCC to which a node belongs
310 * n_edge is the number of edges
311 * edge is the list of edges
312 * max_edge contains the maximal number of edges of each type;
313 * in particular, it contains the number of edges in the inital graph.
314 * edge_table contains pointers into the edge array, hashed on the source
315 * and sink spaces; there is one such table for each type;
316 * a given edge may be referenced from more than one table
317 * if the corresponding relation appears in more than one of the
318 * sets of dependences; however, for each type there is only
319 * a single edge between a given pair of source and sink space
320 * in the entire graph
322 * node_table contains pointers into the node array, hashed on the space tuples
324 * region contains a list of variable sequences that should be non-trivial
326 * lp contains the (I)LP problem used to obtain new schedule rows
328 * src_scc and dst_scc are the source and sink SCCs of an edge with
329 * conflicting constraints
331 * scc represents the number of components
332 * weak is set if the components are weakly connected
334 * max_weight is used during clustering and represents the maximal
335 * weight of the relevant proximity edges.
337 struct isl_sched_graph {
338 isl_map_to_basic_set *intra_hmap;
339 isl_map_to_basic_set *inter_hmap;
341 struct isl_sched_node *node;
342 int n;
343 int maxvar;
344 int max_row;
345 int n_row;
347 int *sorted;
349 int n_total_row;
350 int band_start;
352 int root;
354 struct isl_sched_edge *edge;
355 int n_edge;
356 int max_edge[isl_edge_last + 1];
357 struct isl_hash_table *edge_table[isl_edge_last + 1];
359 struct isl_hash_table *node_table;
360 struct isl_trivial_region *region;
362 isl_basic_set *lp;
364 int src_scc;
365 int dst_scc;
367 int scc;
368 int weak;
370 int max_weight;
373 /* Initialize node_table based on the list of nodes.
375 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
377 int i;
379 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
380 if (!graph->node_table)
381 return -1;
383 for (i = 0; i < graph->n; ++i) {
384 struct isl_hash_table_entry *entry;
385 uint32_t hash;
387 hash = isl_space_get_tuple_hash(graph->node[i].space);
388 entry = isl_hash_table_find(ctx, graph->node_table, hash,
389 &node_has_tuples,
390 graph->node[i].space, 1);
391 if (!entry)
392 return -1;
393 entry->data = &graph->node[i];
396 return 0;
399 /* Return a pointer to the node that lives within the given space,
400 * or NULL if there is no such node.
402 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
403 struct isl_sched_graph *graph, __isl_keep isl_space *space)
405 struct isl_hash_table_entry *entry;
406 uint32_t hash;
408 hash = isl_space_get_tuple_hash(space);
409 entry = isl_hash_table_find(ctx, graph->node_table, hash,
410 &node_has_tuples, space, 0);
412 return entry ? entry->data : NULL;
415 static int edge_has_src_and_dst(const void *entry, const void *val)
417 const struct isl_sched_edge *edge = entry;
418 const struct isl_sched_edge *temp = val;
420 return edge->src == temp->src && edge->dst == temp->dst;
423 /* Add the given edge to graph->edge_table[type].
425 static isl_stat graph_edge_table_add(isl_ctx *ctx,
426 struct isl_sched_graph *graph, enum isl_edge_type type,
427 struct isl_sched_edge *edge)
429 struct isl_hash_table_entry *entry;
430 uint32_t hash;
432 hash = isl_hash_init();
433 hash = isl_hash_builtin(hash, edge->src);
434 hash = isl_hash_builtin(hash, edge->dst);
435 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
436 &edge_has_src_and_dst, edge, 1);
437 if (!entry)
438 return isl_stat_error;
439 entry->data = edge;
441 return isl_stat_ok;
444 /* Allocate the edge_tables based on the maximal number of edges of
445 * each type.
447 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
449 int i;
451 for (i = 0; i <= isl_edge_last; ++i) {
452 graph->edge_table[i] = isl_hash_table_alloc(ctx,
453 graph->max_edge[i]);
454 if (!graph->edge_table[i])
455 return -1;
458 return 0;
461 /* If graph->edge_table[type] contains an edge from the given source
462 * to the given destination, then return the hash table entry of this edge.
463 * Otherwise, return NULL.
465 static struct isl_hash_table_entry *graph_find_edge_entry(
466 struct isl_sched_graph *graph,
467 enum isl_edge_type type,
468 struct isl_sched_node *src, struct isl_sched_node *dst)
470 isl_ctx *ctx = isl_space_get_ctx(src->space);
471 uint32_t hash;
472 struct isl_sched_edge temp = { .src = src, .dst = dst };
474 hash = isl_hash_init();
475 hash = isl_hash_builtin(hash, temp.src);
476 hash = isl_hash_builtin(hash, temp.dst);
477 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
478 &edge_has_src_and_dst, &temp, 0);
482 /* If graph->edge_table[type] contains an edge from the given source
483 * to the given destination, then return this edge.
484 * Otherwise, return NULL.
486 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
487 enum isl_edge_type type,
488 struct isl_sched_node *src, struct isl_sched_node *dst)
490 struct isl_hash_table_entry *entry;
492 entry = graph_find_edge_entry(graph, type, src, dst);
493 if (!entry)
494 return NULL;
496 return entry->data;
499 /* Check whether the dependence graph has an edge of the given type
500 * between the given two nodes.
502 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
503 enum isl_edge_type type,
504 struct isl_sched_node *src, struct isl_sched_node *dst)
506 struct isl_sched_edge *edge;
507 isl_bool empty;
509 edge = graph_find_edge(graph, type, src, dst);
510 if (!edge)
511 return 0;
513 empty = isl_map_plain_is_empty(edge->map);
514 if (empty < 0)
515 return isl_bool_error;
517 return !empty;
520 /* Look for any edge with the same src, dst and map fields as "model".
522 * Return the matching edge if one can be found.
523 * Return "model" if no matching edge is found.
524 * Return NULL on error.
526 static struct isl_sched_edge *graph_find_matching_edge(
527 struct isl_sched_graph *graph, struct isl_sched_edge *model)
529 enum isl_edge_type i;
530 struct isl_sched_edge *edge;
532 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
533 int is_equal;
535 edge = graph_find_edge(graph, i, model->src, model->dst);
536 if (!edge)
537 continue;
538 is_equal = isl_map_plain_is_equal(model->map, edge->map);
539 if (is_equal < 0)
540 return NULL;
541 if (is_equal)
542 return edge;
545 return model;
548 /* Remove the given edge from all the edge_tables that refer to it.
550 static void graph_remove_edge(struct isl_sched_graph *graph,
551 struct isl_sched_edge *edge)
553 isl_ctx *ctx = isl_map_get_ctx(edge->map);
554 enum isl_edge_type i;
556 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
557 struct isl_hash_table_entry *entry;
559 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
560 if (!entry)
561 continue;
562 if (entry->data != edge)
563 continue;
564 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
568 /* Check whether the dependence graph has any edge
569 * between the given two nodes.
571 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
572 struct isl_sched_node *src, struct isl_sched_node *dst)
574 enum isl_edge_type i;
575 isl_bool r;
577 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
578 r = graph_has_edge(graph, i, src, dst);
579 if (r < 0 || r)
580 return r;
583 return r;
586 /* Check whether the dependence graph has a validity edge
587 * between the given two nodes.
589 * Conditional validity edges are essentially validity edges that
590 * can be ignored if the corresponding condition edges are iteration private.
591 * Here, we are only checking for the presence of validity
592 * edges, so we need to consider the conditional validity edges too.
593 * In particular, this function is used during the detection
594 * of strongly connected components and we cannot ignore
595 * conditional validity edges during this detection.
597 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
598 struct isl_sched_node *src, struct isl_sched_node *dst)
600 isl_bool r;
602 r = graph_has_edge(graph, isl_edge_validity, src, dst);
603 if (r < 0 || r)
604 return r;
606 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
609 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
610 int n_node, int n_edge)
612 int i;
614 graph->n = n_node;
615 graph->n_edge = n_edge;
616 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
617 graph->sorted = isl_calloc_array(ctx, int, graph->n);
618 graph->region = isl_alloc_array(ctx,
619 struct isl_trivial_region, graph->n);
620 graph->edge = isl_calloc_array(ctx,
621 struct isl_sched_edge, graph->n_edge);
623 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
626 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
627 !graph->sorted)
628 return -1;
630 for(i = 0; i < graph->n; ++i)
631 graph->sorted[i] = i;
633 return 0;
636 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
638 int i;
640 isl_map_to_basic_set_free(graph->intra_hmap);
641 isl_map_to_basic_set_free(graph->inter_hmap);
643 if (graph->node)
644 for (i = 0; i < graph->n; ++i) {
645 isl_space_free(graph->node[i].space);
646 isl_set_free(graph->node[i].hull);
647 isl_multi_aff_free(graph->node[i].compress);
648 isl_multi_aff_free(graph->node[i].decompress);
649 isl_mat_free(graph->node[i].sched);
650 isl_map_free(graph->node[i].sched_map);
651 isl_mat_free(graph->node[i].indep);
652 isl_mat_free(graph->node[i].vmap);
653 if (graph->root)
654 free(graph->node[i].coincident);
655 isl_multi_val_free(graph->node[i].sizes);
656 isl_vec_free(graph->node[i].max);
658 free(graph->node);
659 free(graph->sorted);
660 if (graph->edge)
661 for (i = 0; i < graph->n_edge; ++i) {
662 isl_map_free(graph->edge[i].map);
663 isl_union_map_free(graph->edge[i].tagged_condition);
664 isl_union_map_free(graph->edge[i].tagged_validity);
666 free(graph->edge);
667 free(graph->region);
668 for (i = 0; i <= isl_edge_last; ++i)
669 isl_hash_table_free(ctx, graph->edge_table[i]);
670 isl_hash_table_free(ctx, graph->node_table);
671 isl_basic_set_free(graph->lp);
674 /* For each "set" on which this function is called, increment
675 * graph->n by one and update graph->maxvar.
677 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
679 struct isl_sched_graph *graph = user;
680 int nvar = isl_set_dim(set, isl_dim_set);
682 graph->n++;
683 if (nvar > graph->maxvar)
684 graph->maxvar = nvar;
686 isl_set_free(set);
688 return isl_stat_ok;
691 /* Compute the number of rows that should be allocated for the schedule.
692 * In particular, we need one row for each variable or one row
693 * for each basic map in the dependences.
694 * Note that it is practically impossible to exhaust both
695 * the number of dependences and the number of variables.
697 static isl_stat compute_max_row(struct isl_sched_graph *graph,
698 __isl_keep isl_schedule_constraints *sc)
700 int n_edge;
701 isl_stat r;
702 isl_union_set *domain;
704 graph->n = 0;
705 graph->maxvar = 0;
706 domain = isl_schedule_constraints_get_domain(sc);
707 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
708 isl_union_set_free(domain);
709 if (r < 0)
710 return isl_stat_error;
711 n_edge = isl_schedule_constraints_n_basic_map(sc);
712 if (n_edge < 0)
713 return isl_stat_error;
714 graph->max_row = n_edge + graph->maxvar;
716 return isl_stat_ok;
719 /* Does "bset" have any defining equalities for its set variables?
721 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
723 int i, n;
725 if (!bset)
726 return isl_bool_error;
728 n = isl_basic_set_dim(bset, isl_dim_set);
729 for (i = 0; i < n; ++i) {
730 isl_bool has;
732 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
733 NULL);
734 if (has < 0 || has)
735 return has;
738 return isl_bool_false;
741 /* Set the entries of node->max to the value of the schedule_max_coefficient
742 * option, if set.
744 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
746 int max;
748 max = isl_options_get_schedule_max_coefficient(ctx);
749 if (max == -1)
750 return isl_stat_ok;
752 node->max = isl_vec_alloc(ctx, node->nvar);
753 node->max = isl_vec_set_si(node->max, max);
754 if (!node->max)
755 return isl_stat_error;
757 return isl_stat_ok;
760 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
761 * option (if set) and half of the minimum of the sizes in the other
762 * dimensions. Round up when computing the half such that
763 * if the minimum of the sizes is one, half of the size is taken to be one
764 * rather than zero.
765 * If the global minimum is unbounded (i.e., if both
766 * the schedule_max_coefficient is not set and the sizes in the other
767 * dimensions are unbounded), then store a negative value.
768 * If the schedule coefficient is close to the size of the instance set
769 * in another dimension, then the schedule may represent a loop
770 * coalescing transformation (especially if the coefficient
771 * in that other dimension is one). Forcing the coefficient to be
772 * smaller than or equal to half the minimal size should avoid this
773 * situation.
775 static isl_stat compute_max_coefficient(isl_ctx *ctx,
776 struct isl_sched_node *node)
778 int max;
779 int i, j;
780 isl_vec *v;
782 max = isl_options_get_schedule_max_coefficient(ctx);
783 v = isl_vec_alloc(ctx, node->nvar);
784 if (!v)
785 return isl_stat_error;
787 for (i = 0; i < node->nvar; ++i) {
788 isl_int_set_si(v->el[i], max);
789 isl_int_mul_si(v->el[i], v->el[i], 2);
792 for (i = 0; i < node->nvar; ++i) {
793 isl_val *size;
795 size = isl_multi_val_get_val(node->sizes, i);
796 if (!size)
797 goto error;
798 if (!isl_val_is_int(size)) {
799 isl_val_free(size);
800 continue;
802 for (j = 0; j < node->nvar; ++j) {
803 if (j == i)
804 continue;
805 if (isl_int_is_neg(v->el[j]) ||
806 isl_int_gt(v->el[j], size->n))
807 isl_int_set(v->el[j], size->n);
809 isl_val_free(size);
812 for (i = 0; i < node->nvar; ++i)
813 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
815 node->max = v;
816 return isl_stat_ok;
817 error:
818 isl_vec_free(v);
819 return isl_stat_error;
822 /* Compute and return the size of "set" in dimension "dim".
823 * The size is taken to be the difference in values for that variable
824 * for fixed values of the other variables.
825 * In particular, the variable is first isolated from the other variables
826 * in the range of a map
828 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
830 * and then duplicated
832 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
834 * The shared variables are then projected out and the maximal value
835 * of i_dim' - i_dim is computed.
837 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
839 isl_map *map;
840 isl_local_space *ls;
841 isl_aff *obj;
842 isl_val *v;
844 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
845 map = isl_map_project_out(map, isl_dim_in, dim, 1);
846 map = isl_map_range_product(map, isl_map_copy(map));
847 map = isl_set_unwrap(isl_map_range(map));
848 set = isl_map_deltas(map);
849 ls = isl_local_space_from_space(isl_set_get_space(set));
850 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
851 v = isl_set_max_val(set, obj);
852 isl_aff_free(obj);
853 isl_set_free(set);
855 return v;
858 /* Compute the size of the instance set "set" of "node", after compression,
859 * as well as bounds on the corresponding coefficients, if needed.
861 * The sizes are needed when the schedule_treat_coalescing option is set.
862 * The bounds are needed when the schedule_treat_coalescing option or
863 * the schedule_max_coefficient option is set.
865 * If the schedule_treat_coalescing option is not set, then at most
866 * the bounds need to be set and this is done in set_max_coefficient.
867 * Otherwise, compress the domain if needed, compute the size
868 * in each direction and store the results in node->size.
869 * Finally, set the bounds on the coefficients based on the sizes
870 * and the schedule_max_coefficient option in compute_max_coefficient.
872 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
873 __isl_take isl_set *set)
875 int j, n;
876 isl_multi_val *mv;
878 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
879 isl_set_free(set);
880 return set_max_coefficient(ctx, node);
883 if (node->compressed)
884 set = isl_set_preimage_multi_aff(set,
885 isl_multi_aff_copy(node->decompress));
886 mv = isl_multi_val_zero(isl_set_get_space(set));
887 n = isl_set_dim(set, isl_dim_set);
888 for (j = 0; j < n; ++j) {
889 isl_val *v;
891 v = compute_size(isl_set_copy(set), j);
892 mv = isl_multi_val_set_val(mv, j, v);
894 node->sizes = mv;
895 isl_set_free(set);
896 if (!node->sizes)
897 return isl_stat_error;
898 return compute_max_coefficient(ctx, node);
901 /* Add a new node to the graph representing the given instance set.
902 * "nvar" is the (possibly compressed) number of variables and
903 * may be smaller than then number of set variables in "set"
904 * if "compressed" is set.
905 * If "compressed" is set, then "hull" represents the constraints
906 * that were used to derive the compression, while "compress" and
907 * "decompress" map the original space to the compressed space and
908 * vice versa.
909 * If "compressed" is not set, then "hull", "compress" and "decompress"
910 * should be NULL.
912 * Compute the size of the instance set and bounds on the coefficients,
913 * if needed.
915 static isl_stat add_node(struct isl_sched_graph *graph,
916 __isl_take isl_set *set, int nvar, int compressed,
917 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
918 __isl_take isl_multi_aff *decompress)
920 int nparam;
921 isl_ctx *ctx;
922 isl_mat *sched;
923 isl_space *space;
924 int *coincident;
925 struct isl_sched_node *node;
927 if (!set)
928 return isl_stat_error;
930 ctx = isl_set_get_ctx(set);
931 nparam = isl_set_dim(set, isl_dim_param);
932 if (!ctx->opt->schedule_parametric)
933 nparam = 0;
934 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
935 node = &graph->node[graph->n];
936 graph->n++;
937 space = isl_set_get_space(set);
938 node->space = space;
939 node->nvar = nvar;
940 node->nparam = nparam;
941 node->sched = sched;
942 node->sched_map = NULL;
943 coincident = isl_calloc_array(ctx, int, graph->max_row);
944 node->coincident = coincident;
945 node->compressed = compressed;
946 node->hull = hull;
947 node->compress = compress;
948 node->decompress = decompress;
949 if (compute_sizes_and_max(ctx, node, set) < 0)
950 return isl_stat_error;
952 if (!space || !sched || (graph->max_row && !coincident))
953 return isl_stat_error;
954 if (compressed && (!hull || !compress || !decompress))
955 return isl_stat_error;
957 return isl_stat_ok;
960 /* Construct an identifier for node "node", which will represent "set".
961 * The name of the identifier is either "compressed" or
962 * "compressed_<name>", with <name> the name of the space of "set".
963 * The user pointer of the identifier points to "node".
965 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
966 struct isl_sched_node *node)
968 isl_bool has_name;
969 isl_ctx *ctx;
970 isl_id *id;
971 isl_printer *p;
972 const char *name;
973 char *id_name;
975 has_name = isl_set_has_tuple_name(set);
976 if (has_name < 0)
977 return NULL;
979 ctx = isl_set_get_ctx(set);
980 if (!has_name)
981 return isl_id_alloc(ctx, "compressed", node);
983 p = isl_printer_to_str(ctx);
984 name = isl_set_get_tuple_name(set);
985 p = isl_printer_print_str(p, "compressed_");
986 p = isl_printer_print_str(p, name);
987 id_name = isl_printer_get_str(p);
988 isl_printer_free(p);
990 id = isl_id_alloc(ctx, id_name, node);
991 free(id_name);
993 return id;
996 /* Add a new node to the graph representing the given set.
998 * If any of the set variables is defined by an equality, then
999 * we perform variable compression such that we can perform
1000 * the scheduling on the compressed domain.
1001 * In this case, an identifier is used that references the new node
1002 * such that each compressed space is unique and
1003 * such that the node can be recovered from the compressed space.
1005 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1007 int nvar;
1008 isl_bool has_equality;
1009 isl_id *id;
1010 isl_basic_set *hull;
1011 isl_set *hull_set;
1012 isl_morph *morph;
1013 isl_multi_aff *compress, *decompress;
1014 struct isl_sched_graph *graph = user;
1016 hull = isl_set_affine_hull(isl_set_copy(set));
1017 hull = isl_basic_set_remove_divs(hull);
1018 nvar = isl_set_dim(set, isl_dim_set);
1019 has_equality = has_any_defining_equality(hull);
1021 if (has_equality < 0)
1022 goto error;
1023 if (!has_equality) {
1024 isl_basic_set_free(hull);
1025 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1028 id = construct_compressed_id(set, &graph->node[graph->n]);
1029 morph = isl_basic_set_variable_compression_with_id(hull,
1030 isl_dim_set, id);
1031 isl_id_free(id);
1032 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1033 compress = isl_morph_get_var_multi_aff(morph);
1034 morph = isl_morph_inverse(morph);
1035 decompress = isl_morph_get_var_multi_aff(morph);
1036 isl_morph_free(morph);
1038 hull_set = isl_set_from_basic_set(hull);
1039 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1040 error:
1041 isl_basic_set_free(hull);
1042 isl_set_free(set);
1043 return isl_stat_error;
1046 struct isl_extract_edge_data {
1047 enum isl_edge_type type;
1048 struct isl_sched_graph *graph;
1051 /* Merge edge2 into edge1, freeing the contents of edge2.
1052 * Return 0 on success and -1 on failure.
1054 * edge1 and edge2 are assumed to have the same value for the map field.
1056 static int merge_edge(struct isl_sched_edge *edge1,
1057 struct isl_sched_edge *edge2)
1059 edge1->types |= edge2->types;
1060 isl_map_free(edge2->map);
1062 if (is_condition(edge2)) {
1063 if (!edge1->tagged_condition)
1064 edge1->tagged_condition = edge2->tagged_condition;
1065 else
1066 edge1->tagged_condition =
1067 isl_union_map_union(edge1->tagged_condition,
1068 edge2->tagged_condition);
1071 if (is_conditional_validity(edge2)) {
1072 if (!edge1->tagged_validity)
1073 edge1->tagged_validity = edge2->tagged_validity;
1074 else
1075 edge1->tagged_validity =
1076 isl_union_map_union(edge1->tagged_validity,
1077 edge2->tagged_validity);
1080 if (is_condition(edge2) && !edge1->tagged_condition)
1081 return -1;
1082 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1083 return -1;
1085 return 0;
1088 /* Insert dummy tags in domain and range of "map".
1090 * In particular, if "map" is of the form
1092 * A -> B
1094 * then return
1096 * [A -> dummy_tag] -> [B -> dummy_tag]
1098 * where the dummy_tags are identical and equal to any dummy tags
1099 * introduced by any other call to this function.
1101 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1103 static char dummy;
1104 isl_ctx *ctx;
1105 isl_id *id;
1106 isl_space *space;
1107 isl_set *domain, *range;
1109 ctx = isl_map_get_ctx(map);
1111 id = isl_id_alloc(ctx, NULL, &dummy);
1112 space = isl_space_params(isl_map_get_space(map));
1113 space = isl_space_set_from_params(space);
1114 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1115 space = isl_space_map_from_set(space);
1117 domain = isl_map_wrap(map);
1118 range = isl_map_wrap(isl_map_universe(space));
1119 map = isl_map_from_domain_and_range(domain, range);
1120 map = isl_map_zip(map);
1122 return map;
1125 /* Given that at least one of "src" or "dst" is compressed, return
1126 * a map between the spaces of these nodes restricted to the affine
1127 * hull that was used in the compression.
1129 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1130 struct isl_sched_node *dst)
1132 isl_set *dom, *ran;
1134 if (src->compressed)
1135 dom = isl_set_copy(src->hull);
1136 else
1137 dom = isl_set_universe(isl_space_copy(src->space));
1138 if (dst->compressed)
1139 ran = isl_set_copy(dst->hull);
1140 else
1141 ran = isl_set_universe(isl_space_copy(dst->space));
1143 return isl_map_from_domain_and_range(dom, ran);
1146 /* Intersect the domains of the nested relations in domain and range
1147 * of "tagged" with "map".
1149 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1150 __isl_keep isl_map *map)
1152 isl_set *set;
1154 tagged = isl_map_zip(tagged);
1155 set = isl_map_wrap(isl_map_copy(map));
1156 tagged = isl_map_intersect_domain(tagged, set);
1157 tagged = isl_map_zip(tagged);
1158 return tagged;
1161 /* Return a pointer to the node that lives in the domain space of "map"
1162 * or NULL if there is no such node.
1164 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1165 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1167 struct isl_sched_node *node;
1168 isl_space *space;
1170 space = isl_space_domain(isl_map_get_space(map));
1171 node = graph_find_node(ctx, graph, space);
1172 isl_space_free(space);
1174 return node;
1177 /* Return a pointer to the node that lives in the range space of "map"
1178 * or NULL if there is no such node.
1180 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1181 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1183 struct isl_sched_node *node;
1184 isl_space *space;
1186 space = isl_space_range(isl_map_get_space(map));
1187 node = graph_find_node(ctx, graph, space);
1188 isl_space_free(space);
1190 return node;
1193 /* Add a new edge to the graph based on the given map
1194 * and add it to data->graph->edge_table[data->type].
1195 * If a dependence relation of a given type happens to be identical
1196 * to one of the dependence relations of a type that was added before,
1197 * then we don't create a new edge, but instead mark the original edge
1198 * as also representing a dependence of the current type.
1200 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1201 * may be specified as "tagged" dependence relations. That is, "map"
1202 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1203 * the dependence on iterations and a and b are tags.
1204 * edge->map is set to the relation containing the elements i -> j,
1205 * while edge->tagged_condition and edge->tagged_validity contain
1206 * the union of all the "map" relations
1207 * for which extract_edge is called that result in the same edge->map.
1209 * If the source or the destination node is compressed, then
1210 * intersect both "map" and "tagged" with the constraints that
1211 * were used to construct the compression.
1212 * This ensures that there are no schedule constraints defined
1213 * outside of these domains, while the scheduler no longer has
1214 * any control over those outside parts.
1216 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1218 isl_ctx *ctx = isl_map_get_ctx(map);
1219 struct isl_extract_edge_data *data = user;
1220 struct isl_sched_graph *graph = data->graph;
1221 struct isl_sched_node *src, *dst;
1222 struct isl_sched_edge *edge;
1223 isl_map *tagged = NULL;
1225 if (data->type == isl_edge_condition ||
1226 data->type == isl_edge_conditional_validity) {
1227 if (isl_map_can_zip(map)) {
1228 tagged = isl_map_copy(map);
1229 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1230 } else {
1231 tagged = insert_dummy_tags(isl_map_copy(map));
1235 src = find_domain_node(ctx, graph, map);
1236 dst = find_range_node(ctx, graph, map);
1238 if (!src || !dst) {
1239 isl_map_free(map);
1240 isl_map_free(tagged);
1241 return isl_stat_ok;
1244 if (src->compressed || dst->compressed) {
1245 isl_map *hull;
1246 hull = extract_hull(src, dst);
1247 if (tagged)
1248 tagged = map_intersect_domains(tagged, hull);
1249 map = isl_map_intersect(map, hull);
1252 graph->edge[graph->n_edge].src = src;
1253 graph->edge[graph->n_edge].dst = dst;
1254 graph->edge[graph->n_edge].map = map;
1255 graph->edge[graph->n_edge].types = 0;
1256 graph->edge[graph->n_edge].tagged_condition = NULL;
1257 graph->edge[graph->n_edge].tagged_validity = NULL;
1258 set_type(&graph->edge[graph->n_edge], data->type);
1259 if (data->type == isl_edge_condition)
1260 graph->edge[graph->n_edge].tagged_condition =
1261 isl_union_map_from_map(tagged);
1262 if (data->type == isl_edge_conditional_validity)
1263 graph->edge[graph->n_edge].tagged_validity =
1264 isl_union_map_from_map(tagged);
1266 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1267 if (!edge) {
1268 graph->n_edge++;
1269 return isl_stat_error;
1271 if (edge == &graph->edge[graph->n_edge])
1272 return graph_edge_table_add(ctx, graph, data->type,
1273 &graph->edge[graph->n_edge++]);
1275 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1276 return -1;
1278 return graph_edge_table_add(ctx, graph, data->type, edge);
1281 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1283 * The context is included in the domain before the nodes of
1284 * the graphs are extracted in order to be able to exploit
1285 * any possible additional equalities.
1286 * Note that this intersection is only performed locally here.
1288 static isl_stat graph_init(struct isl_sched_graph *graph,
1289 __isl_keep isl_schedule_constraints *sc)
1291 isl_ctx *ctx;
1292 isl_union_set *domain;
1293 isl_union_map *c;
1294 struct isl_extract_edge_data data;
1295 enum isl_edge_type i;
1296 isl_stat r;
1298 if (!sc)
1299 return isl_stat_error;
1301 ctx = isl_schedule_constraints_get_ctx(sc);
1303 domain = isl_schedule_constraints_get_domain(sc);
1304 graph->n = isl_union_set_n_set(domain);
1305 isl_union_set_free(domain);
1307 if (graph_alloc(ctx, graph, graph->n,
1308 isl_schedule_constraints_n_map(sc)) < 0)
1309 return isl_stat_error;
1311 if (compute_max_row(graph, sc) < 0)
1312 return isl_stat_error;
1313 graph->root = 1;
1314 graph->n = 0;
1315 domain = isl_schedule_constraints_get_domain(sc);
1316 domain = isl_union_set_intersect_params(domain,
1317 isl_schedule_constraints_get_context(sc));
1318 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1319 isl_union_set_free(domain);
1320 if (r < 0)
1321 return isl_stat_error;
1322 if (graph_init_table(ctx, graph) < 0)
1323 return isl_stat_error;
1324 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1325 c = isl_schedule_constraints_get(sc, i);
1326 graph->max_edge[i] = isl_union_map_n_map(c);
1327 isl_union_map_free(c);
1328 if (!c)
1329 return isl_stat_error;
1331 if (graph_init_edge_tables(ctx, graph) < 0)
1332 return isl_stat_error;
1333 graph->n_edge = 0;
1334 data.graph = graph;
1335 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1336 isl_stat r;
1338 data.type = i;
1339 c = isl_schedule_constraints_get(sc, i);
1340 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1341 isl_union_map_free(c);
1342 if (r < 0)
1343 return isl_stat_error;
1346 return isl_stat_ok;
1349 /* Check whether there is any dependence from node[j] to node[i]
1350 * or from node[i] to node[j].
1352 static isl_bool node_follows_weak(int i, int j, void *user)
1354 isl_bool f;
1355 struct isl_sched_graph *graph = user;
1357 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1358 if (f < 0 || f)
1359 return f;
1360 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1363 /* Check whether there is a (conditional) validity dependence from node[j]
1364 * to node[i], forcing node[i] to follow node[j].
1366 static isl_bool node_follows_strong(int i, int j, void *user)
1368 struct isl_sched_graph *graph = user;
1370 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1373 /* Use Tarjan's algorithm for computing the strongly connected components
1374 * in the dependence graph only considering those edges defined by "follows".
1376 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1377 isl_bool (*follows)(int i, int j, void *user))
1379 int i, n;
1380 struct isl_tarjan_graph *g = NULL;
1382 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1383 if (!g)
1384 return -1;
1386 graph->scc = 0;
1387 i = 0;
1388 n = graph->n;
1389 while (n) {
1390 while (g->order[i] != -1) {
1391 graph->node[g->order[i]].scc = graph->scc;
1392 --n;
1393 ++i;
1395 ++i;
1396 graph->scc++;
1399 isl_tarjan_graph_free(g);
1401 return 0;
1404 /* Apply Tarjan's algorithm to detect the strongly connected components
1405 * in the dependence graph.
1406 * Only consider the (conditional) validity dependences and clear "weak".
1408 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1410 graph->weak = 0;
1411 return detect_ccs(ctx, graph, &node_follows_strong);
1414 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1415 * in the dependence graph.
1416 * Consider all dependences and set "weak".
1418 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1420 graph->weak = 1;
1421 return detect_ccs(ctx, graph, &node_follows_weak);
1424 static int cmp_scc(const void *a, const void *b, void *data)
1426 struct isl_sched_graph *graph = data;
1427 const int *i1 = a;
1428 const int *i2 = b;
1430 return graph->node[*i1].scc - graph->node[*i2].scc;
1433 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1435 static int sort_sccs(struct isl_sched_graph *graph)
1437 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1440 /* Given a dependence relation R from "node" to itself,
1441 * construct the set of coefficients of valid constraints for elements
1442 * in that dependence relation.
1443 * In particular, the result contains tuples of coefficients
1444 * c_0, c_n, c_x such that
1446 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1448 * or, equivalently,
1450 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1452 * We choose here to compute the dual of delta R.
1453 * Alternatively, we could have computed the dual of R, resulting
1454 * in a set of tuples c_0, c_n, c_x, c_y, and then
1455 * plugged in (c_0, c_n, c_x, -c_x).
1457 * If "node" has been compressed, then the dependence relation
1458 * is also compressed before the set of coefficients is computed.
1460 static __isl_give isl_basic_set *intra_coefficients(
1461 struct isl_sched_graph *graph, struct isl_sched_node *node,
1462 __isl_take isl_map *map)
1464 isl_set *delta;
1465 isl_map *key;
1466 isl_basic_set *coef;
1467 isl_maybe_isl_basic_set m;
1469 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1470 if (m.valid < 0 || m.valid) {
1471 isl_map_free(map);
1472 return m.value;
1475 key = isl_map_copy(map);
1476 if (node->compressed) {
1477 map = isl_map_preimage_domain_multi_aff(map,
1478 isl_multi_aff_copy(node->decompress));
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(node->decompress));
1482 delta = isl_set_remove_divs(isl_map_deltas(map));
1483 coef = isl_set_coefficients(delta);
1484 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1485 isl_basic_set_copy(coef));
1487 return coef;
1490 /* Given a dependence relation R, construct the set of coefficients
1491 * of valid constraints for elements in that dependence relation.
1492 * In particular, the result contains tuples of coefficients
1493 * c_0, c_n, c_x, c_y such that
1495 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1497 * If the source or destination nodes of "edge" have been compressed,
1498 * then the dependence relation is also compressed before
1499 * the set of coefficients is computed.
1501 static __isl_give isl_basic_set *inter_coefficients(
1502 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1503 __isl_take isl_map *map)
1505 isl_set *set;
1506 isl_map *key;
1507 isl_basic_set *coef;
1508 isl_maybe_isl_basic_set m;
1510 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1511 if (m.valid < 0 || m.valid) {
1512 isl_map_free(map);
1513 return m.value;
1516 key = isl_map_copy(map);
1517 if (edge->src->compressed)
1518 map = isl_map_preimage_domain_multi_aff(map,
1519 isl_multi_aff_copy(edge->src->decompress));
1520 if (edge->dst->compressed)
1521 map = isl_map_preimage_range_multi_aff(map,
1522 isl_multi_aff_copy(edge->dst->decompress));
1523 set = isl_map_wrap(isl_map_remove_divs(map));
1524 coef = isl_set_coefficients(set);
1525 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1526 isl_basic_set_copy(coef));
1528 return coef;
1531 /* Return the position of the coefficients of the variables in
1532 * the coefficients constraints "coef".
1534 * The space of "coef" is of the form
1536 * { coefficients[[cst, params] -> S] }
1538 * Return the position of S.
1540 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1542 int offset;
1543 isl_space *space;
1545 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1546 offset = isl_space_dim(space, isl_dim_in);
1547 isl_space_free(space);
1549 return offset;
1552 /* Return the offset of the coefficient of the constant term of "node"
1553 * within the (I)LP.
1555 * Within each node, the coefficients have the following order:
1556 * - positive and negative parts of c_i_x
1557 * - c_i_n (if parametric)
1558 * - c_i_0
1560 static int node_cst_coef_offset(struct isl_sched_node *node)
1562 return node->start + 2 * node->nvar + node->nparam;
1565 /* Return the offset of the coefficients of the parameters of "node"
1566 * within the (I)LP.
1568 * Within each node, the coefficients have the following order:
1569 * - positive and negative parts of c_i_x
1570 * - c_i_n (if parametric)
1571 * - c_i_0
1573 static int node_par_coef_offset(struct isl_sched_node *node)
1575 return node->start + 2 * node->nvar;
1578 /* Return the offset of the coefficients of the variables of "node"
1579 * within the (I)LP.
1581 * Within each node, the coefficients have the following order:
1582 * - positive and negative parts of c_i_x
1583 * - c_i_n (if parametric)
1584 * - c_i_0
1586 static int node_var_coef_offset(struct isl_sched_node *node)
1588 return node->start;
1591 /* Return the position of the pair of variables encoding
1592 * coefficient "i" of "node".
1594 * The order of these variable pairs is the opposite of
1595 * that of the coefficients, with 2 variables per coefficient.
1597 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1599 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1602 /* Construct an isl_dim_map for mapping constraints on coefficients
1603 * for "node" to the corresponding positions in graph->lp.
1604 * "offset" is the offset of the coefficients for the variables
1605 * in the input constraints.
1606 * "s" is the sign of the mapping.
1608 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1609 * The mapping produced by this function essentially plugs in
1610 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1611 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1612 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1613 * Furthermore, the order of these pairs is the opposite of that
1614 * of the corresponding coefficients.
1616 * The caller can extend the mapping to also map the other coefficients
1617 * (and therefore not plug in 0).
1619 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1620 struct isl_sched_graph *graph, struct isl_sched_node *node,
1621 int offset, int s)
1623 int pos;
1624 unsigned total;
1625 isl_dim_map *dim_map;
1627 if (!node)
1628 return NULL;
1630 total = isl_basic_set_total_dim(graph->lp);
1631 pos = node_var_coef_pos(node, 0);
1632 dim_map = isl_dim_map_alloc(ctx, total);
1633 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1634 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1636 return dim_map;
1639 /* Construct an isl_dim_map for mapping constraints on coefficients
1640 * for "src" (node i) and "dst" (node j) to the corresponding positions
1641 * in graph->lp.
1642 * "offset" is the offset of the coefficients for the variables of "src"
1643 * in the input constraints.
1644 * "s" is the sign of the mapping.
1646 * The input constraints are given in terms of the coefficients
1647 * (c_0, c_n, c_x, c_y).
1648 * The mapping produced by this function essentially plugs in
1649 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1650 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1651 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1652 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1653 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1654 * Furthermore, the order of these pairs is the opposite of that
1655 * of the corresponding coefficients.
1657 * The caller can further extend the mapping.
1659 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1660 struct isl_sched_graph *graph, struct isl_sched_node *src,
1661 struct isl_sched_node *dst, int offset, int s)
1663 int pos;
1664 unsigned total;
1665 isl_dim_map *dim_map;
1667 if (!src || !dst)
1668 return NULL;
1670 total = isl_basic_set_total_dim(graph->lp);
1671 dim_map = isl_dim_map_alloc(ctx, total);
1673 pos = node_cst_coef_offset(dst);
1674 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1675 pos = node_par_coef_offset(dst);
1676 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1677 pos = node_var_coef_pos(dst, 0);
1678 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1679 dst->nvar, -s);
1680 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1681 dst->nvar, s);
1683 pos = node_cst_coef_offset(src);
1684 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1685 pos = node_par_coef_offset(src);
1686 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1687 pos = node_var_coef_pos(src, 0);
1688 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1689 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1691 return dim_map;
1694 /* Add the constraints from "src" to "dst" using "dim_map",
1695 * after making sure there is enough room in "dst" for the extra constraints.
1697 static __isl_give isl_basic_set *add_constraints_dim_map(
1698 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1699 __isl_take isl_dim_map *dim_map)
1701 int n_eq, n_ineq;
1703 n_eq = isl_basic_set_n_equality(src);
1704 n_ineq = isl_basic_set_n_inequality(src);
1705 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1706 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1707 return dst;
1710 /* Add constraints to graph->lp that force validity for the given
1711 * dependence from a node i to itself.
1712 * That is, add constraints that enforce
1714 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1715 * = c_i_x (y - x) >= 0
1717 * for each (x,y) in R.
1718 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1719 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1720 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1721 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1723 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1724 struct isl_sched_edge *edge)
1726 int offset;
1727 isl_map *map = isl_map_copy(edge->map);
1728 isl_ctx *ctx = isl_map_get_ctx(map);
1729 isl_dim_map *dim_map;
1730 isl_basic_set *coef;
1731 struct isl_sched_node *node = edge->src;
1733 coef = intra_coefficients(graph, node, map);
1735 offset = coef_var_offset(coef);
1737 if (!coef)
1738 return isl_stat_error;
1740 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1741 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1743 return isl_stat_ok;
1746 /* Add constraints to graph->lp that force validity for the given
1747 * dependence from node i to node j.
1748 * That is, add constraints that enforce
1750 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1752 * for each (x,y) in R.
1753 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1754 * of valid constraints for R and then plug in
1755 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1756 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1757 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1759 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1760 struct isl_sched_edge *edge)
1762 int offset;
1763 isl_map *map;
1764 isl_ctx *ctx;
1765 isl_dim_map *dim_map;
1766 isl_basic_set *coef;
1767 struct isl_sched_node *src = edge->src;
1768 struct isl_sched_node *dst = edge->dst;
1770 if (!graph->lp)
1771 return isl_stat_error;
1773 map = isl_map_copy(edge->map);
1774 ctx = isl_map_get_ctx(map);
1775 coef = inter_coefficients(graph, edge, map);
1777 offset = coef_var_offset(coef);
1779 if (!coef)
1780 return isl_stat_error;
1782 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1784 edge->start = graph->lp->n_ineq;
1785 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1786 if (!graph->lp)
1787 return isl_stat_error;
1788 edge->end = graph->lp->n_ineq;
1790 return isl_stat_ok;
1793 /* Add constraints to graph->lp that bound the dependence distance for the given
1794 * dependence from a node i to itself.
1795 * If s = 1, we add the constraint
1797 * c_i_x (y - x) <= m_0 + m_n n
1799 * or
1801 * -c_i_x (y - x) + m_0 + m_n n >= 0
1803 * for each (x,y) in R.
1804 * If s = -1, we add the constraint
1806 * -c_i_x (y - x) <= m_0 + m_n n
1808 * or
1810 * c_i_x (y - x) + m_0 + m_n n >= 0
1812 * for each (x,y) in R.
1813 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1814 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1815 * with each coefficient (except m_0) represented as a pair of non-negative
1816 * coefficients.
1819 * If "local" is set, then we add constraints
1821 * c_i_x (y - x) <= 0
1823 * or
1825 * -c_i_x (y - x) <= 0
1827 * instead, forcing the dependence distance to be (less than or) equal to 0.
1828 * That is, we plug in (0, 0, -s * c_i_x),
1829 * Note that dependences marked local are treated as validity constraints
1830 * by add_all_validity_constraints and therefore also have
1831 * their distances bounded by 0 from below.
1833 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1834 struct isl_sched_edge *edge, int s, int local)
1836 int offset;
1837 unsigned nparam;
1838 isl_map *map = isl_map_copy(edge->map);
1839 isl_ctx *ctx = isl_map_get_ctx(map);
1840 isl_dim_map *dim_map;
1841 isl_basic_set *coef;
1842 struct isl_sched_node *node = edge->src;
1844 coef = intra_coefficients(graph, node, map);
1846 offset = coef_var_offset(coef);
1848 if (!coef)
1849 return isl_stat_error;
1851 nparam = isl_space_dim(node->space, isl_dim_param);
1852 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1854 if (!local) {
1855 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1856 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1857 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1859 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1861 return isl_stat_ok;
1864 /* Add constraints to graph->lp that bound the dependence distance for the given
1865 * dependence from node i to node j.
1866 * If s = 1, we add the constraint
1868 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1869 * <= m_0 + m_n n
1871 * or
1873 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1874 * m_0 + m_n n >= 0
1876 * for each (x,y) in R.
1877 * If s = -1, we add the constraint
1879 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1880 * <= m_0 + m_n n
1882 * or
1884 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1885 * m_0 + m_n n >= 0
1887 * for each (x,y) in R.
1888 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1889 * of valid constraints for R and then plug in
1890 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1891 * s*c_i_x, -s*c_j_x)
1892 * with each coefficient (except m_0, c_*_0 and c_*_n)
1893 * represented as a pair of non-negative coefficients.
1896 * If "local" is set (and s = 1), then we add constraints
1898 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1900 * or
1902 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1904 * instead, forcing the dependence distance to be (less than or) equal to 0.
1905 * That is, we plug in
1906 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1907 * Note that dependences marked local are treated as validity constraints
1908 * by add_all_validity_constraints and therefore also have
1909 * their distances bounded by 0 from below.
1911 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1912 struct isl_sched_edge *edge, int s, int local)
1914 int offset;
1915 unsigned nparam;
1916 isl_map *map = isl_map_copy(edge->map);
1917 isl_ctx *ctx = isl_map_get_ctx(map);
1918 isl_dim_map *dim_map;
1919 isl_basic_set *coef;
1920 struct isl_sched_node *src = edge->src;
1921 struct isl_sched_node *dst = edge->dst;
1923 coef = inter_coefficients(graph, edge, map);
1925 offset = coef_var_offset(coef);
1927 if (!coef)
1928 return isl_stat_error;
1930 nparam = isl_space_dim(src->space, isl_dim_param);
1931 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1933 if (!local) {
1934 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1935 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1936 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1939 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1941 return isl_stat_ok;
1944 /* Add all validity constraints to graph->lp.
1946 * An edge that is forced to be local needs to have its dependence
1947 * distances equal to zero. We take care of bounding them by 0 from below
1948 * here. add_all_proximity_constraints takes care of bounding them by 0
1949 * from above.
1951 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1952 * Otherwise, we ignore them.
1954 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1955 int use_coincidence)
1957 int i;
1959 for (i = 0; i < graph->n_edge; ++i) {
1960 struct isl_sched_edge *edge = &graph->edge[i];
1961 int local;
1963 local = is_local(edge) ||
1964 (is_coincidence(edge) && use_coincidence);
1965 if (!is_validity(edge) && !local)
1966 continue;
1967 if (edge->src != edge->dst)
1968 continue;
1969 if (add_intra_validity_constraints(graph, edge) < 0)
1970 return -1;
1973 for (i = 0; i < graph->n_edge; ++i) {
1974 struct isl_sched_edge *edge = &graph->edge[i];
1975 int local;
1977 local = is_local(edge) ||
1978 (is_coincidence(edge) && use_coincidence);
1979 if (!is_validity(edge) && !local)
1980 continue;
1981 if (edge->src == edge->dst)
1982 continue;
1983 if (add_inter_validity_constraints(graph, edge) < 0)
1984 return -1;
1987 return 0;
1990 /* Add constraints to graph->lp that bound the dependence distance
1991 * for all dependence relations.
1992 * If a given proximity dependence is identical to a validity
1993 * dependence, then the dependence distance is already bounded
1994 * from below (by zero), so we only need to bound the distance
1995 * from above. (This includes the case of "local" dependences
1996 * which are treated as validity dependence by add_all_validity_constraints.)
1997 * Otherwise, we need to bound the distance both from above and from below.
1999 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2000 * Otherwise, we ignore them.
2002 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2003 int use_coincidence)
2005 int i;
2007 for (i = 0; i < graph->n_edge; ++i) {
2008 struct isl_sched_edge *edge = &graph->edge[i];
2009 int local;
2011 local = is_local(edge) ||
2012 (is_coincidence(edge) && use_coincidence);
2013 if (!is_proximity(edge) && !local)
2014 continue;
2015 if (edge->src == edge->dst &&
2016 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2017 return -1;
2018 if (edge->src != edge->dst &&
2019 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2020 return -1;
2021 if (is_validity(edge) || local)
2022 continue;
2023 if (edge->src == edge->dst &&
2024 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2025 return -1;
2026 if (edge->src != edge->dst &&
2027 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2028 return -1;
2031 return 0;
2034 /* Normalize the rows of "indep" such that all rows are lexicographically
2035 * positive and such that each row contains as many final zeros as possible,
2036 * given the choice for the previous rows.
2037 * Do this by performing elementary row operations.
2039 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2041 indep = isl_mat_reverse_gauss(indep);
2042 indep = isl_mat_lexnonneg_rows(indep);
2043 return indep;
2046 /* Compute a basis for the rows in the linear part of the schedule
2047 * and extend this basis to a full basis. The remaining rows
2048 * can then be used to force linear independence from the rows
2049 * in the schedule.
2051 * In particular, given the schedule rows S, we compute
2053 * S = H Q
2054 * S U = H
2056 * with H the Hermite normal form of S. That is, all but the
2057 * first rank columns of H are zero and so each row in S is
2058 * a linear combination of the first rank rows of Q.
2059 * The matrix Q can be used as a variable transformation
2060 * that isolates the directions of S in the first rank rows.
2061 * Transposing S U = H yields
2063 * U^T S^T = H^T
2065 * with all but the first rank rows of H^T zero.
2066 * The last rows of U^T are therefore linear combinations
2067 * of schedule coefficients that are all zero on schedule
2068 * coefficients that are linearly dependent on the rows of S.
2069 * At least one of these combinations is non-zero on
2070 * linearly independent schedule coefficients.
2071 * The rows are normalized to involve as few of the last
2072 * coefficients as possible and to have a positive initial value.
2074 static int node_update_vmap(struct isl_sched_node *node)
2076 isl_mat *H, *U, *Q;
2077 int n_row = isl_mat_rows(node->sched);
2079 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2080 1 + node->nparam, node->nvar);
2082 H = isl_mat_left_hermite(H, 0, &U, &Q);
2083 isl_mat_free(node->indep);
2084 isl_mat_free(node->vmap);
2085 node->vmap = Q;
2086 node->indep = isl_mat_transpose(U);
2087 node->rank = isl_mat_initial_non_zero_cols(H);
2088 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2089 node->indep = normalize_independent(node->indep);
2090 isl_mat_free(H);
2092 if (!node->indep || !node->vmap || node->rank < 0)
2093 return -1;
2094 return 0;
2097 /* Is "edge" marked as a validity or a conditional validity edge?
2099 static int is_any_validity(struct isl_sched_edge *edge)
2101 return is_validity(edge) || is_conditional_validity(edge);
2104 /* How many times should we count the constraints in "edge"?
2106 * We count as follows
2107 * validity -> 1 (>= 0)
2108 * validity+proximity -> 2 (>= 0 and upper bound)
2109 * proximity -> 2 (lower and upper bound)
2110 * local(+any) -> 2 (>= 0 and <= 0)
2112 * If an edge is only marked conditional_validity then it counts
2113 * as zero since it is only checked afterwards.
2115 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2116 * Otherwise, we ignore them.
2118 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2120 if (is_proximity(edge) || is_local(edge))
2121 return 2;
2122 if (use_coincidence && is_coincidence(edge))
2123 return 2;
2124 if (is_validity(edge))
2125 return 1;
2126 return 0;
2129 /* Count the number of equality and inequality constraints
2130 * that will be added for the given map.
2132 * "use_coincidence" is set if we should take into account coincidence edges.
2134 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2135 struct isl_sched_edge *edge, __isl_take isl_map *map,
2136 int *n_eq, int *n_ineq, int use_coincidence)
2138 isl_basic_set *coef;
2139 int f = edge_multiplicity(edge, use_coincidence);
2141 if (f == 0) {
2142 isl_map_free(map);
2143 return isl_stat_ok;
2146 if (edge->src == edge->dst)
2147 coef = intra_coefficients(graph, edge->src, map);
2148 else
2149 coef = inter_coefficients(graph, edge, map);
2150 if (!coef)
2151 return isl_stat_error;
2152 *n_eq += f * isl_basic_set_n_equality(coef);
2153 *n_ineq += f * isl_basic_set_n_inequality(coef);
2154 isl_basic_set_free(coef);
2156 return isl_stat_ok;
2159 /* Count the number of equality and inequality constraints
2160 * that will be added to the main lp problem.
2161 * We count as follows
2162 * validity -> 1 (>= 0)
2163 * validity+proximity -> 2 (>= 0 and upper bound)
2164 * proximity -> 2 (lower and upper bound)
2165 * local(+any) -> 2 (>= 0 and <= 0)
2167 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2168 * Otherwise, we ignore them.
2170 static int count_constraints(struct isl_sched_graph *graph,
2171 int *n_eq, int *n_ineq, int use_coincidence)
2173 int i;
2175 *n_eq = *n_ineq = 0;
2176 for (i = 0; i < graph->n_edge; ++i) {
2177 struct isl_sched_edge *edge = &graph->edge[i];
2178 isl_map *map = isl_map_copy(edge->map);
2180 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2181 use_coincidence) < 0)
2182 return -1;
2185 return 0;
2188 /* Count the number of constraints that will be added by
2189 * add_bound_constant_constraints to bound the values of the constant terms
2190 * and increment *n_eq and *n_ineq accordingly.
2192 * In practice, add_bound_constant_constraints only adds inequalities.
2194 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2195 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2197 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2198 return isl_stat_ok;
2200 *n_ineq += graph->n;
2202 return isl_stat_ok;
2205 /* Add constraints to bound the values of the constant terms in the schedule,
2206 * if requested by the user.
2208 * The maximal value of the constant terms is defined by the option
2209 * "schedule_max_constant_term".
2211 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2212 struct isl_sched_graph *graph)
2214 int i, k;
2215 int max;
2216 int total;
2218 max = isl_options_get_schedule_max_constant_term(ctx);
2219 if (max == -1)
2220 return isl_stat_ok;
2222 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2224 for (i = 0; i < graph->n; ++i) {
2225 struct isl_sched_node *node = &graph->node[i];
2226 int pos;
2228 k = isl_basic_set_alloc_inequality(graph->lp);
2229 if (k < 0)
2230 return isl_stat_error;
2231 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2232 pos = node_cst_coef_offset(node);
2233 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2234 isl_int_set_si(graph->lp->ineq[k][0], max);
2237 return isl_stat_ok;
2240 /* Count the number of constraints that will be added by
2241 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2242 * accordingly.
2244 * In practice, add_bound_coefficient_constraints only adds inequalities.
2246 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2247 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2249 int i;
2251 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2252 !isl_options_get_schedule_treat_coalescing(ctx))
2253 return 0;
2255 for (i = 0; i < graph->n; ++i)
2256 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2258 return 0;
2261 /* Add constraints to graph->lp that bound the values of
2262 * the parameter schedule coefficients of "node" to "max" and
2263 * the variable schedule coefficients to the corresponding entry
2264 * in node->max.
2265 * In either case, a negative value means that no bound needs to be imposed.
2267 * For parameter coefficients, this amounts to adding a constraint
2269 * c_n <= max
2271 * i.e.,
2273 * -c_n + max >= 0
2275 * The variables coefficients are, however, not represented directly.
2276 * Instead, the variable coefficients c_x are written as differences
2277 * c_x = c_x^+ - c_x^-.
2278 * That is,
2280 * -max_i <= c_x_i <= max_i
2282 * is encoded as
2284 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2286 * or
2288 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2289 * c_x_i^+ - c_x_i^- + max_i >= 0
2291 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2292 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2294 int i, j, k;
2295 int total;
2296 isl_vec *ineq;
2298 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2300 for (j = 0; j < node->nparam; ++j) {
2301 int dim;
2303 if (max < 0)
2304 continue;
2306 k = isl_basic_set_alloc_inequality(graph->lp);
2307 if (k < 0)
2308 return isl_stat_error;
2309 dim = 1 + node_par_coef_offset(node) + j;
2310 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2311 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2312 isl_int_set_si(graph->lp->ineq[k][0], max);
2315 ineq = isl_vec_alloc(ctx, 1 + total);
2316 ineq = isl_vec_clr(ineq);
2317 if (!ineq)
2318 return isl_stat_error;
2319 for (i = 0; i < node->nvar; ++i) {
2320 int pos = 1 + node_var_coef_pos(node, i);
2322 if (isl_int_is_neg(node->max->el[i]))
2323 continue;
2325 isl_int_set_si(ineq->el[pos], 1);
2326 isl_int_set_si(ineq->el[pos + 1], -1);
2327 isl_int_set(ineq->el[0], node->max->el[i]);
2329 k = isl_basic_set_alloc_inequality(graph->lp);
2330 if (k < 0)
2331 goto error;
2332 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2334 isl_seq_neg(ineq->el + pos, ineq->el + pos + 2 * i, 2);
2335 k = isl_basic_set_alloc_inequality(graph->lp);
2336 if (k < 0)
2337 goto error;
2338 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2340 isl_vec_free(ineq);
2342 return isl_stat_ok;
2343 error:
2344 isl_vec_free(ineq);
2345 return isl_stat_error;
2348 /* Add constraints that bound the values of the variable and parameter
2349 * coefficients of the schedule.
2351 * The maximal value of the coefficients is defined by the option
2352 * 'schedule_max_coefficient' and the entries in node->max.
2353 * These latter entries are only set if either the schedule_max_coefficient
2354 * option or the schedule_treat_coalescing option is set.
2356 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2357 struct isl_sched_graph *graph)
2359 int i;
2360 int max;
2362 max = isl_options_get_schedule_max_coefficient(ctx);
2364 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2365 return isl_stat_ok;
2367 for (i = 0; i < graph->n; ++i) {
2368 struct isl_sched_node *node = &graph->node[i];
2370 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2371 return isl_stat_error;
2374 return isl_stat_ok;
2377 /* Add a constraint to graph->lp that equates the value at position
2378 * "sum_pos" to the sum of the "n" values starting at "first".
2380 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2381 int sum_pos, int first, int n)
2383 int i, k;
2384 int total;
2386 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2388 k = isl_basic_set_alloc_equality(graph->lp);
2389 if (k < 0)
2390 return isl_stat_error;
2391 isl_seq_clr(graph->lp->eq[k], 1 + total);
2392 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2393 for (i = 0; i < n; ++i)
2394 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2396 return isl_stat_ok;
2399 /* Add a constraint to graph->lp that equates the value at position
2400 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2402 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2403 int sum_pos)
2405 int i, j, k;
2406 int total;
2408 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2410 k = isl_basic_set_alloc_equality(graph->lp);
2411 if (k < 0)
2412 return isl_stat_error;
2413 isl_seq_clr(graph->lp->eq[k], 1 + total);
2414 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2415 for (i = 0; i < graph->n; ++i) {
2416 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2418 for (j = 0; j < graph->node[i].nparam; ++j)
2419 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2422 return isl_stat_ok;
2425 /* Add a constraint to graph->lp that equates the value at position
2426 * "sum_pos" to the sum of the variable coefficients of all nodes.
2428 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2429 int sum_pos)
2431 int i, j, k;
2432 int total;
2434 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2436 k = isl_basic_set_alloc_equality(graph->lp);
2437 if (k < 0)
2438 return isl_stat_error;
2439 isl_seq_clr(graph->lp->eq[k], 1 + total);
2440 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2441 for (i = 0; i < graph->n; ++i) {
2442 struct isl_sched_node *node = &graph->node[i];
2443 int pos = 1 + node_var_coef_offset(node);
2445 for (j = 0; j < 2 * node->nvar; ++j)
2446 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2449 return isl_stat_ok;
2452 /* Construct an ILP problem for finding schedule coefficients
2453 * that result in non-negative, but small dependence distances
2454 * over all dependences.
2455 * In particular, the dependence distances over proximity edges
2456 * are bounded by m_0 + m_n n and we compute schedule coefficients
2457 * with small values (preferably zero) of m_n and m_0.
2459 * All variables of the ILP are non-negative. The actual coefficients
2460 * may be negative, so each coefficient is represented as the difference
2461 * of two non-negative variables. The negative part always appears
2462 * immediately before the positive part.
2463 * Other than that, the variables have the following order
2465 * - sum of positive and negative parts of m_n coefficients
2466 * - m_0
2467 * - sum of all c_n coefficients
2468 * (unconstrained when computing non-parametric schedules)
2469 * - sum of positive and negative parts of all c_x coefficients
2470 * - positive and negative parts of m_n coefficients
2471 * - for each node
2472 * - positive and negative parts of c_i_x, in opposite order
2473 * - c_i_n (if parametric)
2474 * - c_i_0
2476 * The constraints are those from the edges plus two or three equalities
2477 * to express the sums.
2479 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2480 * Otherwise, we ignore them.
2482 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2483 int use_coincidence)
2485 int i;
2486 unsigned nparam;
2487 unsigned total;
2488 isl_space *space;
2489 int parametric;
2490 int param_pos;
2491 int n_eq, n_ineq;
2493 parametric = ctx->opt->schedule_parametric;
2494 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2495 param_pos = 4;
2496 total = param_pos + 2 * nparam;
2497 for (i = 0; i < graph->n; ++i) {
2498 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2499 if (node_update_vmap(node) < 0)
2500 return isl_stat_error;
2501 node->start = total;
2502 total += 1 + node->nparam + 2 * node->nvar;
2505 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2506 return isl_stat_error;
2507 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2508 return isl_stat_error;
2509 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2510 return isl_stat_error;
2512 space = isl_space_set_alloc(ctx, 0, total);
2513 isl_basic_set_free(graph->lp);
2514 n_eq += 2 + parametric;
2516 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2518 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2519 return isl_stat_error;
2520 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2521 return isl_stat_error;
2522 if (add_var_sum_constraint(graph, 3) < 0)
2523 return isl_stat_error;
2524 if (add_bound_constant_constraints(ctx, graph) < 0)
2525 return isl_stat_error;
2526 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2527 return isl_stat_error;
2528 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2529 return isl_stat_error;
2530 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2531 return isl_stat_error;
2533 return isl_stat_ok;
2536 /* Analyze the conflicting constraint found by
2537 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2538 * constraint of one of the edges between distinct nodes, living, moreover
2539 * in distinct SCCs, then record the source and sink SCC as this may
2540 * be a good place to cut between SCCs.
2542 static int check_conflict(int con, void *user)
2544 int i;
2545 struct isl_sched_graph *graph = user;
2547 if (graph->src_scc >= 0)
2548 return 0;
2550 con -= graph->lp->n_eq;
2552 if (con >= graph->lp->n_ineq)
2553 return 0;
2555 for (i = 0; i < graph->n_edge; ++i) {
2556 if (!is_validity(&graph->edge[i]))
2557 continue;
2558 if (graph->edge[i].src == graph->edge[i].dst)
2559 continue;
2560 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2561 continue;
2562 if (graph->edge[i].start > con)
2563 continue;
2564 if (graph->edge[i].end <= con)
2565 continue;
2566 graph->src_scc = graph->edge[i].src->scc;
2567 graph->dst_scc = graph->edge[i].dst->scc;
2570 return 0;
2573 /* Check whether the next schedule row of the given node needs to be
2574 * non-trivial. Lower-dimensional domains may have some trivial rows,
2575 * but as soon as the number of remaining required non-trivial rows
2576 * is as large as the number or remaining rows to be computed,
2577 * all remaining rows need to be non-trivial.
2579 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2581 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2584 /* Construct a non-triviality region with triviality directions
2585 * corresponding to the rows of "indep".
2586 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2587 * while the triviality directions are expressed in terms of
2588 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2589 * before c^+_i. Furthermore,
2590 * the pairs of non-negative variables representing the coefficients
2591 * are stored in the opposite order.
2593 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2595 isl_ctx *ctx;
2596 isl_mat *mat;
2597 int i, j, n, n_var;
2599 if (!indep)
2600 return NULL;
2602 ctx = isl_mat_get_ctx(indep);
2603 n = isl_mat_rows(indep);
2604 n_var = isl_mat_cols(indep);
2605 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2606 if (!mat)
2607 return NULL;
2608 for (i = 0; i < n; ++i) {
2609 for (j = 0; j < n_var; ++j) {
2610 int nj = n_var - 1 - j;
2611 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2612 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2616 return mat;
2619 /* Solve the ILP problem constructed in setup_lp.
2620 * For each node such that all the remaining rows of its schedule
2621 * need to be non-trivial, we construct a non-triviality region.
2622 * This region imposes that the next row is independent of previous rows.
2623 * In particular, the non-triviality region enforces that at least
2624 * one of the linear combinations in the rows of node->indep is non-zero.
2626 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2628 int i;
2629 isl_vec *sol;
2630 isl_basic_set *lp;
2632 for (i = 0; i < graph->n; ++i) {
2633 struct isl_sched_node *node = &graph->node[i];
2634 isl_mat *trivial;
2636 graph->region[i].pos = node_var_coef_offset(node);
2637 if (needs_row(graph, node))
2638 trivial = construct_trivial(node->indep);
2639 else
2640 trivial = isl_mat_zero(ctx, 0, 0);
2641 graph->region[i].trivial = trivial;
2643 lp = isl_basic_set_copy(graph->lp);
2644 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2645 graph->region, &check_conflict, graph);
2646 for (i = 0; i < graph->n; ++i)
2647 isl_mat_free(graph->region[i].trivial);
2648 return sol;
2651 /* Extract the coefficients for the variables of "node" from "sol".
2653 * Each schedule coefficient c_i_x is represented as the difference
2654 * between two non-negative variables c_i_x^+ - c_i_x^-.
2655 * The c_i_x^- appear before their c_i_x^+ counterpart.
2656 * Furthermore, the order of these pairs is the opposite of that
2657 * of the corresponding coefficients.
2659 * Return c_i_x = c_i_x^+ - c_i_x^-
2661 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2662 __isl_keep isl_vec *sol)
2664 int i;
2665 int pos;
2666 isl_vec *csol;
2668 if (!sol)
2669 return NULL;
2670 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2671 if (!csol)
2672 return NULL;
2674 pos = 1 + node_var_coef_offset(node);
2675 for (i = 0; i < node->nvar; ++i)
2676 isl_int_sub(csol->el[node->nvar - 1 - i],
2677 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2679 return csol;
2682 /* Update the schedules of all nodes based on the given solution
2683 * of the LP problem.
2684 * The new row is added to the current band.
2685 * All possibly negative coefficients are encoded as a difference
2686 * of two non-negative variables, so we need to perform the subtraction
2687 * here.
2689 * If coincident is set, then the caller guarantees that the new
2690 * row satisfies the coincidence constraints.
2692 static int update_schedule(struct isl_sched_graph *graph,
2693 __isl_take isl_vec *sol, int coincident)
2695 int i, j;
2696 isl_vec *csol = NULL;
2698 if (!sol)
2699 goto error;
2700 if (sol->size == 0)
2701 isl_die(sol->ctx, isl_error_internal,
2702 "no solution found", goto error);
2703 if (graph->n_total_row >= graph->max_row)
2704 isl_die(sol->ctx, isl_error_internal,
2705 "too many schedule rows", goto error);
2707 for (i = 0; i < graph->n; ++i) {
2708 struct isl_sched_node *node = &graph->node[i];
2709 int pos;
2710 int row = isl_mat_rows(node->sched);
2712 isl_vec_free(csol);
2713 csol = extract_var_coef(node, sol);
2714 if (!csol)
2715 goto error;
2717 isl_map_free(node->sched_map);
2718 node->sched_map = NULL;
2719 node->sched = isl_mat_add_rows(node->sched, 1);
2720 if (!node->sched)
2721 goto error;
2722 pos = node_cst_coef_offset(node);
2723 node->sched = isl_mat_set_element(node->sched,
2724 row, 0, sol->el[1 + pos]);
2725 pos = node_par_coef_offset(node);
2726 for (j = 0; j < node->nparam; ++j)
2727 node->sched = isl_mat_set_element(node->sched,
2728 row, 1 + j, sol->el[1 + pos + j]);
2729 for (j = 0; j < node->nvar; ++j)
2730 node->sched = isl_mat_set_element(node->sched,
2731 row, 1 + node->nparam + j, csol->el[j]);
2732 node->coincident[graph->n_total_row] = coincident;
2734 isl_vec_free(sol);
2735 isl_vec_free(csol);
2737 graph->n_row++;
2738 graph->n_total_row++;
2740 return 0;
2741 error:
2742 isl_vec_free(sol);
2743 isl_vec_free(csol);
2744 return -1;
2747 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2748 * and return this isl_aff.
2750 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2751 struct isl_sched_node *node, int row)
2753 int j;
2754 isl_int v;
2755 isl_aff *aff;
2757 isl_int_init(v);
2759 aff = isl_aff_zero_on_domain(ls);
2760 isl_mat_get_element(node->sched, row, 0, &v);
2761 aff = isl_aff_set_constant(aff, v);
2762 for (j = 0; j < node->nparam; ++j) {
2763 isl_mat_get_element(node->sched, row, 1 + j, &v);
2764 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2766 for (j = 0; j < node->nvar; ++j) {
2767 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2768 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2771 isl_int_clear(v);
2773 return aff;
2776 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2777 * and return this multi_aff.
2779 * The result is defined over the uncompressed node domain.
2781 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2782 struct isl_sched_node *node, int first, int n)
2784 int i;
2785 isl_space *space;
2786 isl_local_space *ls;
2787 isl_aff *aff;
2788 isl_multi_aff *ma;
2789 int nrow;
2791 if (!node)
2792 return NULL;
2793 nrow = isl_mat_rows(node->sched);
2794 if (node->compressed)
2795 space = isl_multi_aff_get_domain_space(node->decompress);
2796 else
2797 space = isl_space_copy(node->space);
2798 ls = isl_local_space_from_space(isl_space_copy(space));
2799 space = isl_space_from_domain(space);
2800 space = isl_space_add_dims(space, isl_dim_out, n);
2801 ma = isl_multi_aff_zero(space);
2803 for (i = first; i < first + n; ++i) {
2804 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2805 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2808 isl_local_space_free(ls);
2810 if (node->compressed)
2811 ma = isl_multi_aff_pullback_multi_aff(ma,
2812 isl_multi_aff_copy(node->compress));
2814 return ma;
2817 /* Convert node->sched into a multi_aff and return this multi_aff.
2819 * The result is defined over the uncompressed node domain.
2821 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2822 struct isl_sched_node *node)
2824 int nrow;
2826 nrow = isl_mat_rows(node->sched);
2827 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2830 /* Convert node->sched into a map and return this map.
2832 * The result is cached in node->sched_map, which needs to be released
2833 * whenever node->sched is updated.
2834 * It is defined over the uncompressed node domain.
2836 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2838 if (!node->sched_map) {
2839 isl_multi_aff *ma;
2841 ma = node_extract_schedule_multi_aff(node);
2842 node->sched_map = isl_map_from_multi_aff(ma);
2845 return isl_map_copy(node->sched_map);
2848 /* Construct a map that can be used to update a dependence relation
2849 * based on the current schedule.
2850 * That is, construct a map expressing that source and sink
2851 * are executed within the same iteration of the current schedule.
2852 * This map can then be intersected with the dependence relation.
2853 * This is not the most efficient way, but this shouldn't be a critical
2854 * operation.
2856 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2857 struct isl_sched_node *dst)
2859 isl_map *src_sched, *dst_sched;
2861 src_sched = node_extract_schedule(src);
2862 dst_sched = node_extract_schedule(dst);
2863 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2866 /* Intersect the domains of the nested relations in domain and range
2867 * of "umap" with "map".
2869 static __isl_give isl_union_map *intersect_domains(
2870 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2872 isl_union_set *uset;
2874 umap = isl_union_map_zip(umap);
2875 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2876 umap = isl_union_map_intersect_domain(umap, uset);
2877 umap = isl_union_map_zip(umap);
2878 return umap;
2881 /* Update the dependence relation of the given edge based
2882 * on the current schedule.
2883 * If the dependence is carried completely by the current schedule, then
2884 * it is removed from the edge_tables. It is kept in the list of edges
2885 * as otherwise all edge_tables would have to be recomputed.
2887 static int update_edge(struct isl_sched_graph *graph,
2888 struct isl_sched_edge *edge)
2890 int empty;
2891 isl_map *id;
2893 id = specializer(edge->src, edge->dst);
2894 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2895 if (!edge->map)
2896 goto error;
2898 if (edge->tagged_condition) {
2899 edge->tagged_condition =
2900 intersect_domains(edge->tagged_condition, id);
2901 if (!edge->tagged_condition)
2902 goto error;
2904 if (edge->tagged_validity) {
2905 edge->tagged_validity =
2906 intersect_domains(edge->tagged_validity, id);
2907 if (!edge->tagged_validity)
2908 goto error;
2911 empty = isl_map_plain_is_empty(edge->map);
2912 if (empty < 0)
2913 goto error;
2914 if (empty)
2915 graph_remove_edge(graph, edge);
2917 isl_map_free(id);
2918 return 0;
2919 error:
2920 isl_map_free(id);
2921 return -1;
2924 /* Does the domain of "umap" intersect "uset"?
2926 static int domain_intersects(__isl_keep isl_union_map *umap,
2927 __isl_keep isl_union_set *uset)
2929 int empty;
2931 umap = isl_union_map_copy(umap);
2932 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2933 empty = isl_union_map_is_empty(umap);
2934 isl_union_map_free(umap);
2936 return empty < 0 ? -1 : !empty;
2939 /* Does the range of "umap" intersect "uset"?
2941 static int range_intersects(__isl_keep isl_union_map *umap,
2942 __isl_keep isl_union_set *uset)
2944 int empty;
2946 umap = isl_union_map_copy(umap);
2947 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2948 empty = isl_union_map_is_empty(umap);
2949 isl_union_map_free(umap);
2951 return empty < 0 ? -1 : !empty;
2954 /* Are the condition dependences of "edge" local with respect to
2955 * the current schedule?
2957 * That is, are domain and range of the condition dependences mapped
2958 * to the same point?
2960 * In other words, is the condition false?
2962 static int is_condition_false(struct isl_sched_edge *edge)
2964 isl_union_map *umap;
2965 isl_map *map, *sched, *test;
2966 int empty, local;
2968 empty = isl_union_map_is_empty(edge->tagged_condition);
2969 if (empty < 0 || empty)
2970 return empty;
2972 umap = isl_union_map_copy(edge->tagged_condition);
2973 umap = isl_union_map_zip(umap);
2974 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2975 map = isl_map_from_union_map(umap);
2977 sched = node_extract_schedule(edge->src);
2978 map = isl_map_apply_domain(map, sched);
2979 sched = node_extract_schedule(edge->dst);
2980 map = isl_map_apply_range(map, sched);
2982 test = isl_map_identity(isl_map_get_space(map));
2983 local = isl_map_is_subset(map, test);
2984 isl_map_free(map);
2985 isl_map_free(test);
2987 return local;
2990 /* For each conditional validity constraint that is adjacent
2991 * to a condition with domain in condition_source or range in condition_sink,
2992 * turn it into an unconditional validity constraint.
2994 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2995 __isl_take isl_union_set *condition_source,
2996 __isl_take isl_union_set *condition_sink)
2998 int i;
3000 condition_source = isl_union_set_coalesce(condition_source);
3001 condition_sink = isl_union_set_coalesce(condition_sink);
3003 for (i = 0; i < graph->n_edge; ++i) {
3004 int adjacent;
3005 isl_union_map *validity;
3007 if (!is_conditional_validity(&graph->edge[i]))
3008 continue;
3009 if (is_validity(&graph->edge[i]))
3010 continue;
3012 validity = graph->edge[i].tagged_validity;
3013 adjacent = domain_intersects(validity, condition_sink);
3014 if (adjacent >= 0 && !adjacent)
3015 adjacent = range_intersects(validity, condition_source);
3016 if (adjacent < 0)
3017 goto error;
3018 if (!adjacent)
3019 continue;
3021 set_validity(&graph->edge[i]);
3024 isl_union_set_free(condition_source);
3025 isl_union_set_free(condition_sink);
3026 return 0;
3027 error:
3028 isl_union_set_free(condition_source);
3029 isl_union_set_free(condition_sink);
3030 return -1;
3033 /* Update the dependence relations of all edges based on the current schedule
3034 * and enforce conditional validity constraints that are adjacent
3035 * to satisfied condition constraints.
3037 * First check if any of the condition constraints are satisfied
3038 * (i.e., not local to the outer schedule) and keep track of
3039 * their domain and range.
3040 * Then update all dependence relations (which removes the non-local
3041 * constraints).
3042 * Finally, if any condition constraints turned out to be satisfied,
3043 * then turn all adjacent conditional validity constraints into
3044 * unconditional validity constraints.
3046 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3048 int i;
3049 int any = 0;
3050 isl_union_set *source, *sink;
3052 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3053 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3054 for (i = 0; i < graph->n_edge; ++i) {
3055 int local;
3056 isl_union_set *uset;
3057 isl_union_map *umap;
3059 if (!is_condition(&graph->edge[i]))
3060 continue;
3061 if (is_local(&graph->edge[i]))
3062 continue;
3063 local = is_condition_false(&graph->edge[i]);
3064 if (local < 0)
3065 goto error;
3066 if (local)
3067 continue;
3069 any = 1;
3071 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3072 uset = isl_union_map_domain(umap);
3073 source = isl_union_set_union(source, uset);
3075 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3076 uset = isl_union_map_range(umap);
3077 sink = isl_union_set_union(sink, uset);
3080 for (i = graph->n_edge - 1; i >= 0; --i) {
3081 if (update_edge(graph, &graph->edge[i]) < 0)
3082 goto error;
3085 if (any)
3086 return unconditionalize_adjacent_validity(graph, source, sink);
3088 isl_union_set_free(source);
3089 isl_union_set_free(sink);
3090 return 0;
3091 error:
3092 isl_union_set_free(source);
3093 isl_union_set_free(sink);
3094 return -1;
3097 static void next_band(struct isl_sched_graph *graph)
3099 graph->band_start = graph->n_total_row;
3102 /* Return the union of the universe domains of the nodes in "graph"
3103 * that satisfy "pred".
3105 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3106 struct isl_sched_graph *graph,
3107 int (*pred)(struct isl_sched_node *node, int data), int data)
3109 int i;
3110 isl_set *set;
3111 isl_union_set *dom;
3113 for (i = 0; i < graph->n; ++i)
3114 if (pred(&graph->node[i], data))
3115 break;
3117 if (i >= graph->n)
3118 isl_die(ctx, isl_error_internal,
3119 "empty component", return NULL);
3121 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3122 dom = isl_union_set_from_set(set);
3124 for (i = i + 1; i < graph->n; ++i) {
3125 if (!pred(&graph->node[i], data))
3126 continue;
3127 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3128 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3131 return dom;
3134 /* Return a list of unions of universe domains, where each element
3135 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3137 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3138 struct isl_sched_graph *graph)
3140 int i;
3141 isl_union_set_list *filters;
3143 filters = isl_union_set_list_alloc(ctx, graph->scc);
3144 for (i = 0; i < graph->scc; ++i) {
3145 isl_union_set *dom;
3147 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3148 filters = isl_union_set_list_add(filters, dom);
3151 return filters;
3154 /* Return a list of two unions of universe domains, one for the SCCs up
3155 * to and including graph->src_scc and another for the other SCCs.
3157 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3158 struct isl_sched_graph *graph)
3160 isl_union_set *dom;
3161 isl_union_set_list *filters;
3163 filters = isl_union_set_list_alloc(ctx, 2);
3164 dom = isl_sched_graph_domain(ctx, graph,
3165 &node_scc_at_most, graph->src_scc);
3166 filters = isl_union_set_list_add(filters, dom);
3167 dom = isl_sched_graph_domain(ctx, graph,
3168 &node_scc_at_least, graph->src_scc + 1);
3169 filters = isl_union_set_list_add(filters, dom);
3171 return filters;
3174 /* Copy nodes that satisfy node_pred from the src dependence graph
3175 * to the dst dependence graph.
3177 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3178 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3180 int i;
3182 dst->n = 0;
3183 for (i = 0; i < src->n; ++i) {
3184 int j;
3186 if (!node_pred(&src->node[i], data))
3187 continue;
3189 j = dst->n;
3190 dst->node[j].space = isl_space_copy(src->node[i].space);
3191 dst->node[j].compressed = src->node[i].compressed;
3192 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3193 dst->node[j].compress =
3194 isl_multi_aff_copy(src->node[i].compress);
3195 dst->node[j].decompress =
3196 isl_multi_aff_copy(src->node[i].decompress);
3197 dst->node[j].nvar = src->node[i].nvar;
3198 dst->node[j].nparam = src->node[i].nparam;
3199 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3200 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3201 dst->node[j].coincident = src->node[i].coincident;
3202 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3203 dst->node[j].max = isl_vec_copy(src->node[i].max);
3204 dst->n++;
3206 if (!dst->node[j].space || !dst->node[j].sched)
3207 return -1;
3208 if (dst->node[j].compressed &&
3209 (!dst->node[j].hull || !dst->node[j].compress ||
3210 !dst->node[j].decompress))
3211 return -1;
3214 return 0;
3217 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3218 * to the dst dependence graph.
3219 * If the source or destination node of the edge is not in the destination
3220 * graph, then it must be a backward proximity edge and it should simply
3221 * be ignored.
3223 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3224 struct isl_sched_graph *src,
3225 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3227 int i;
3228 enum isl_edge_type t;
3230 dst->n_edge = 0;
3231 for (i = 0; i < src->n_edge; ++i) {
3232 struct isl_sched_edge *edge = &src->edge[i];
3233 isl_map *map;
3234 isl_union_map *tagged_condition;
3235 isl_union_map *tagged_validity;
3236 struct isl_sched_node *dst_src, *dst_dst;
3238 if (!edge_pred(edge, data))
3239 continue;
3241 if (isl_map_plain_is_empty(edge->map))
3242 continue;
3244 dst_src = graph_find_node(ctx, dst, edge->src->space);
3245 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3246 if (!dst_src || !dst_dst) {
3247 if (is_validity(edge) || is_conditional_validity(edge))
3248 isl_die(ctx, isl_error_internal,
3249 "backward (conditional) validity edge",
3250 return -1);
3251 continue;
3254 map = isl_map_copy(edge->map);
3255 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3256 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3258 dst->edge[dst->n_edge].src = dst_src;
3259 dst->edge[dst->n_edge].dst = dst_dst;
3260 dst->edge[dst->n_edge].map = map;
3261 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3262 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3263 dst->edge[dst->n_edge].types = edge->types;
3264 dst->n_edge++;
3266 if (edge->tagged_condition && !tagged_condition)
3267 return -1;
3268 if (edge->tagged_validity && !tagged_validity)
3269 return -1;
3271 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3272 if (edge !=
3273 graph_find_edge(src, t, edge->src, edge->dst))
3274 continue;
3275 if (graph_edge_table_add(ctx, dst, t,
3276 &dst->edge[dst->n_edge - 1]) < 0)
3277 return -1;
3281 return 0;
3284 /* Compute the maximal number of variables over all nodes.
3285 * This is the maximal number of linearly independent schedule
3286 * rows that we need to compute.
3287 * Just in case we end up in a part of the dependence graph
3288 * with only lower-dimensional domains, we make sure we will
3289 * compute the required amount of extra linearly independent rows.
3291 static int compute_maxvar(struct isl_sched_graph *graph)
3293 int i;
3295 graph->maxvar = 0;
3296 for (i = 0; i < graph->n; ++i) {
3297 struct isl_sched_node *node = &graph->node[i];
3298 int nvar;
3300 if (node_update_vmap(node) < 0)
3301 return -1;
3302 nvar = node->nvar + graph->n_row - node->rank;
3303 if (nvar > graph->maxvar)
3304 graph->maxvar = nvar;
3307 return 0;
3310 /* Extract the subgraph of "graph" that consists of the node satisfying
3311 * "node_pred" and the edges satisfying "edge_pred" and store
3312 * the result in "sub".
3314 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3315 int (*node_pred)(struct isl_sched_node *node, int data),
3316 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3317 int data, struct isl_sched_graph *sub)
3319 int i, n = 0, n_edge = 0;
3320 int t;
3322 for (i = 0; i < graph->n; ++i)
3323 if (node_pred(&graph->node[i], data))
3324 ++n;
3325 for (i = 0; i < graph->n_edge; ++i)
3326 if (edge_pred(&graph->edge[i], data))
3327 ++n_edge;
3328 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3329 return -1;
3330 if (copy_nodes(sub, graph, node_pred, data) < 0)
3331 return -1;
3332 if (graph_init_table(ctx, sub) < 0)
3333 return -1;
3334 for (t = 0; t <= isl_edge_last; ++t)
3335 sub->max_edge[t] = graph->max_edge[t];
3336 if (graph_init_edge_tables(ctx, sub) < 0)
3337 return -1;
3338 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3339 return -1;
3340 sub->n_row = graph->n_row;
3341 sub->max_row = graph->max_row;
3342 sub->n_total_row = graph->n_total_row;
3343 sub->band_start = graph->band_start;
3345 return 0;
3348 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3349 struct isl_sched_graph *graph);
3350 static __isl_give isl_schedule_node *compute_schedule_wcc(
3351 isl_schedule_node *node, struct isl_sched_graph *graph);
3353 /* Compute a schedule for a subgraph of "graph". In particular, for
3354 * the graph composed of nodes that satisfy node_pred and edges that
3355 * that satisfy edge_pred.
3356 * If the subgraph is known to consist of a single component, then wcc should
3357 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3358 * Otherwise, we call compute_schedule, which will check whether the subgraph
3359 * is connected.
3361 * The schedule is inserted at "node" and the updated schedule node
3362 * is returned.
3364 static __isl_give isl_schedule_node *compute_sub_schedule(
3365 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3366 struct isl_sched_graph *graph,
3367 int (*node_pred)(struct isl_sched_node *node, int data),
3368 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3369 int data, int wcc)
3371 struct isl_sched_graph split = { 0 };
3373 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3374 &split) < 0)
3375 goto error;
3377 if (wcc)
3378 node = compute_schedule_wcc(node, &split);
3379 else
3380 node = compute_schedule(node, &split);
3382 graph_free(ctx, &split);
3383 return node;
3384 error:
3385 graph_free(ctx, &split);
3386 return isl_schedule_node_free(node);
3389 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3391 return edge->src->scc == scc && edge->dst->scc == scc;
3394 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3396 return edge->dst->scc <= scc;
3399 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3401 return edge->src->scc >= scc;
3404 /* Reset the current band by dropping all its schedule rows.
3406 static int reset_band(struct isl_sched_graph *graph)
3408 int i;
3409 int drop;
3411 drop = graph->n_total_row - graph->band_start;
3412 graph->n_total_row -= drop;
3413 graph->n_row -= drop;
3415 for (i = 0; i < graph->n; ++i) {
3416 struct isl_sched_node *node = &graph->node[i];
3418 isl_map_free(node->sched_map);
3419 node->sched_map = NULL;
3421 node->sched = isl_mat_drop_rows(node->sched,
3422 graph->band_start, drop);
3424 if (!node->sched)
3425 return -1;
3428 return 0;
3431 /* Split the current graph into two parts and compute a schedule for each
3432 * part individually. In particular, one part consists of all SCCs up
3433 * to and including graph->src_scc, while the other part contains the other
3434 * SCCs. The split is enforced by a sequence node inserted at position "node"
3435 * in the schedule tree. Return the updated schedule node.
3436 * If either of these two parts consists of a sequence, then it is spliced
3437 * into the sequence containing the two parts.
3439 * The current band is reset. It would be possible to reuse
3440 * the previously computed rows as the first rows in the next
3441 * band, but recomputing them may result in better rows as we are looking
3442 * at a smaller part of the dependence graph.
3444 static __isl_give isl_schedule_node *compute_split_schedule(
3445 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3447 int is_seq;
3448 isl_ctx *ctx;
3449 isl_union_set_list *filters;
3451 if (!node)
3452 return NULL;
3454 if (reset_band(graph) < 0)
3455 return isl_schedule_node_free(node);
3457 next_band(graph);
3459 ctx = isl_schedule_node_get_ctx(node);
3460 filters = extract_split(ctx, graph);
3461 node = isl_schedule_node_insert_sequence(node, filters);
3462 node = isl_schedule_node_child(node, 1);
3463 node = isl_schedule_node_child(node, 0);
3465 node = compute_sub_schedule(node, ctx, graph,
3466 &node_scc_at_least, &edge_src_scc_at_least,
3467 graph->src_scc + 1, 0);
3468 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3469 node = isl_schedule_node_parent(node);
3470 node = isl_schedule_node_parent(node);
3471 if (is_seq)
3472 node = isl_schedule_node_sequence_splice_child(node, 1);
3473 node = isl_schedule_node_child(node, 0);
3474 node = isl_schedule_node_child(node, 0);
3475 node = compute_sub_schedule(node, ctx, graph,
3476 &node_scc_at_most, &edge_dst_scc_at_most,
3477 graph->src_scc, 0);
3478 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3479 node = isl_schedule_node_parent(node);
3480 node = isl_schedule_node_parent(node);
3481 if (is_seq)
3482 node = isl_schedule_node_sequence_splice_child(node, 0);
3484 return node;
3487 /* Insert a band node at position "node" in the schedule tree corresponding
3488 * to the current band in "graph". Mark the band node permutable
3489 * if "permutable" is set.
3490 * The partial schedules and the coincidence property are extracted
3491 * from the graph nodes.
3492 * Return the updated schedule node.
3494 static __isl_give isl_schedule_node *insert_current_band(
3495 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3496 int permutable)
3498 int i;
3499 int start, end, n;
3500 isl_multi_aff *ma;
3501 isl_multi_pw_aff *mpa;
3502 isl_multi_union_pw_aff *mupa;
3504 if (!node)
3505 return NULL;
3507 if (graph->n < 1)
3508 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3509 "graph should have at least one node",
3510 return isl_schedule_node_free(node));
3512 start = graph->band_start;
3513 end = graph->n_total_row;
3514 n = end - start;
3516 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3517 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3518 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3520 for (i = 1; i < graph->n; ++i) {
3521 isl_multi_union_pw_aff *mupa_i;
3523 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3524 start, n);
3525 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3526 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3527 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3529 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3531 for (i = 0; i < n; ++i)
3532 node = isl_schedule_node_band_member_set_coincident(node, i,
3533 graph->node[0].coincident[start + i]);
3534 node = isl_schedule_node_band_set_permutable(node, permutable);
3536 return node;
3539 /* Update the dependence relations based on the current schedule,
3540 * add the current band to "node" and then continue with the computation
3541 * of the next band.
3542 * Return the updated schedule node.
3544 static __isl_give isl_schedule_node *compute_next_band(
3545 __isl_take isl_schedule_node *node,
3546 struct isl_sched_graph *graph, int permutable)
3548 isl_ctx *ctx;
3550 if (!node)
3551 return NULL;
3553 ctx = isl_schedule_node_get_ctx(node);
3554 if (update_edges(ctx, graph) < 0)
3555 return isl_schedule_node_free(node);
3556 node = insert_current_band(node, graph, permutable);
3557 next_band(graph);
3559 node = isl_schedule_node_child(node, 0);
3560 node = compute_schedule(node, graph);
3561 node = isl_schedule_node_parent(node);
3563 return node;
3566 /* Add the constraints "coef" derived from an edge from "node" to itself
3567 * to graph->lp in order to respect the dependences and to try and carry them.
3568 * "pos" is the sequence number of the edge that needs to be carried.
3569 * "coef" represents general constraints on coefficients (c_0, c_n, c_x)
3570 * of valid constraints for (y - x) with x and y instances of the node.
3572 * The constraints added to graph->lp need to enforce
3574 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3575 * = c_j_x (y - x) >= e_i
3577 * for each (x,y) in the dependence relation of the edge.
3578 * That is, (-e_i, 0, c_j_x) needs to be plugged in for (c_0, c_n, c_x),
3579 * taking into account that each coefficient in c_j_x is represented
3580 * as a pair of non-negative coefficients.
3582 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3583 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3585 int offset;
3586 isl_ctx *ctx;
3587 isl_dim_map *dim_map;
3589 if (!coef)
3590 return isl_stat_error;
3592 ctx = isl_basic_set_get_ctx(coef);
3593 offset = coef_var_offset(coef);
3594 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3595 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3596 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3598 return isl_stat_ok;
3601 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3602 * to graph->lp in order to respect the dependences and to try and carry them.
3603 * "pos" is the sequence number of the edge that needs to be carried.
3604 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3605 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3607 * The constraints added to graph->lp need to enforce
3609 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3611 * for each (x,y) in the dependence relation of the edge.
3612 * That is,
3613 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3614 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3615 * taking into account that each coefficient in c_j_x and c_k_x is represented
3616 * as a pair of non-negative coefficients.
3618 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3619 struct isl_sched_node *src, struct isl_sched_node *dst,
3620 __isl_take isl_basic_set *coef, int pos)
3622 int offset;
3623 isl_ctx *ctx;
3624 isl_dim_map *dim_map;
3626 if (!coef)
3627 return isl_stat_error;
3629 ctx = isl_basic_set_get_ctx(coef);
3630 offset = coef_var_offset(coef);
3631 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3632 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3633 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3635 return isl_stat_ok;
3638 /* Data structure collecting information used during the construction
3639 * of an LP for carrying dependences.
3641 * "intra" is a sequence of coefficient constraints for intra-node edges.
3642 * "inter" is a sequence of coefficient constraints for inter-node edges.
3644 struct isl_carry {
3645 isl_basic_set_list *intra;
3646 isl_basic_set_list *inter;
3649 /* Free all the data stored in "carry".
3651 static void isl_carry_clear(struct isl_carry *carry)
3653 isl_basic_set_list_free(carry->intra);
3654 isl_basic_set_list_free(carry->inter);
3657 /* Return a pointer to the node in "graph" that lives in "space".
3658 * If the requested node has been compressed, then "space"
3659 * corresponds to the compressed space.
3661 * First try and see if "space" is the space of an uncompressed node.
3662 * If so, return that node.
3663 * Otherwise, "space" was constructed by construct_compressed_id and
3664 * contains a user pointer pointing to the node in the tuple id.
3666 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3667 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3669 isl_id *id;
3670 struct isl_sched_node *node;
3672 if (!space)
3673 return NULL;
3675 node = graph_find_node(ctx, graph, space);
3676 if (node)
3677 return node;
3679 id = isl_space_get_tuple_id(space, isl_dim_set);
3680 node = isl_id_get_user(id);
3681 isl_id_free(id);
3683 if (!node)
3684 return NULL;
3686 if (!(node >= &graph->node[0] && node < &graph->node[graph->n]))
3687 isl_die(ctx, isl_error_internal,
3688 "space points to invalid node", return NULL);
3690 return node;
3693 /* Internal data structure for add_all_constraints.
3695 * "graph" is the schedule constraint graph for which an LP problem
3696 * is being constructed.
3697 * "pos" is the position of the next edge that needs to be carried.
3699 struct isl_add_all_constraints_data {
3700 isl_ctx *ctx;
3701 struct isl_sched_graph *graph;
3702 int pos;
3705 /* Add the constraints "coef" derived from an edge from a node to itself
3706 * to data->graph->lp in order to respect the dependences and
3707 * to try and carry them.
3709 * The space of "coef" is of the form
3711 * coefficients[[c_cst, c_n] -> S[c_x]]
3713 * with S[c_x] the (compressed) space of the node.
3714 * Extract the node from the space and call add_intra_constraints.
3716 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
3718 struct isl_add_all_constraints_data *data = user;
3719 isl_space *space;
3720 struct isl_sched_node *node;
3722 space = isl_basic_set_get_space(coef);
3723 space = isl_space_range(isl_space_unwrap(space));
3724 node = graph_find_compressed_node(data->ctx, data->graph, space);
3725 isl_space_free(space);
3726 return add_intra_constraints(data->graph, node, coef, data->pos++);
3729 /* Add the constraints "coef" derived from an edge from a node j
3730 * to a node k to data->graph->lp in order to respect the dependences and
3731 * to try and carry them.
3733 * The space of "coef" is of the form
3735 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
3737 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
3738 * Extract the nodes from the space and call add_inter_constraints.
3740 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
3742 struct isl_add_all_constraints_data *data = user;
3743 isl_space *space, *dom;
3744 struct isl_sched_node *src, *dst;
3746 space = isl_basic_set_get_space(coef);
3747 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
3748 dom = isl_space_domain(isl_space_copy(space));
3749 src = graph_find_compressed_node(data->ctx, data->graph, dom);
3750 isl_space_free(dom);
3751 space = isl_space_range(space);
3752 dst = graph_find_compressed_node(data->ctx, data->graph, space);
3753 isl_space_free(space);
3755 return add_inter_constraints(data->graph, src, dst, coef, data->pos++);
3758 /* Add constraints to graph->lp that force all (conditional) validity
3759 * dependences to be respected and attempt to carry them.
3760 * "intra" is the sequence of coefficient constraints for intra-node edges.
3761 * "inter" is the sequence of coefficient constraints for inter-node edges.
3763 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
3764 __isl_keep isl_basic_set_list *intra,
3765 __isl_keep isl_basic_set_list *inter)
3767 struct isl_add_all_constraints_data data = { ctx, graph };
3769 data.pos = 0;
3770 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
3771 return isl_stat_error;
3772 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
3773 return isl_stat_error;
3774 return isl_stat_ok;
3777 /* Internal data structure for count_all_constraints
3778 * for keeping track of the number of equality and inequality constraints.
3780 struct isl_sched_count {
3781 int n_eq;
3782 int n_ineq;
3785 /* Add the number of equality and inequality constraints of "bset"
3786 * to data->n_eq and data->n_ineq.
3788 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
3790 struct isl_sched_count *data = user;
3792 data->n_eq += isl_basic_set_n_equality(bset);
3793 data->n_ineq += isl_basic_set_n_inequality(bset);
3794 isl_basic_set_free(bset);
3796 return isl_stat_ok;
3799 /* Count the number of equality and inequality constraints
3800 * that will be added to the carry_lp problem.
3801 * We count each edge exactly once.
3802 * "intra" is the sequence of coefficient constraints for intra-node edges.
3803 * "inter" is the sequence of coefficient constraints for inter-node edges.
3805 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
3806 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
3808 struct isl_sched_count data;
3810 data.n_eq = data.n_ineq = 0;
3811 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
3812 return isl_stat_error;
3813 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
3814 return isl_stat_error;
3816 *n_eq = data.n_eq;
3817 *n_ineq = data.n_ineq;
3819 return isl_stat_ok;
3822 /* Construct an LP problem for finding schedule coefficients
3823 * such that the schedule carries as many validity dependences as possible.
3824 * In particular, for each dependence i, we bound the dependence distance
3825 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3826 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3827 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3828 * "intra" is the sequence of coefficient constraints for intra-node edges.
3829 * "inter" is the sequence of coefficient constraints for inter-node edges.
3830 * "n_edge" is the total number of edges.
3832 * All variables of the LP are non-negative. The actual coefficients
3833 * may be negative, so each coefficient is represented as the difference
3834 * of two non-negative variables. The negative part always appears
3835 * immediately before the positive part.
3836 * Other than that, the variables have the following order
3838 * - sum of (1 - e_i) over all edges
3839 * - sum of all c_n coefficients
3840 * (unconstrained when computing non-parametric schedules)
3841 * - sum of positive and negative parts of all c_x coefficients
3842 * - for each edge
3843 * - e_i
3844 * - for each node
3845 * - positive and negative parts of c_i_x, in opposite order
3846 * - c_i_n (if parametric)
3847 * - c_i_0
3849 * The constraints are those from the (validity) edges plus three equalities
3850 * to express the sums and n_edge inequalities to express e_i <= 1.
3852 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3853 int n_edge, __isl_keep isl_basic_set_list *intra,
3854 __isl_keep isl_basic_set_list *inter)
3856 int i;
3857 int k;
3858 isl_space *dim;
3859 unsigned total;
3860 int n_eq, n_ineq;
3862 total = 3 + n_edge;
3863 for (i = 0; i < graph->n; ++i) {
3864 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3865 node->start = total;
3866 total += 1 + node->nparam + 2 * node->nvar;
3869 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
3870 return isl_stat_error;
3872 dim = isl_space_set_alloc(ctx, 0, total);
3873 isl_basic_set_free(graph->lp);
3874 n_eq += 3;
3875 n_ineq += n_edge;
3876 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3877 graph->lp = isl_basic_set_set_rational(graph->lp);
3879 k = isl_basic_set_alloc_equality(graph->lp);
3880 if (k < 0)
3881 return isl_stat_error;
3882 isl_seq_clr(graph->lp->eq[k], 1 + total);
3883 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3884 isl_int_set_si(graph->lp->eq[k][1], 1);
3885 for (i = 0; i < n_edge; ++i)
3886 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3888 if (add_param_sum_constraint(graph, 1) < 0)
3889 return isl_stat_error;
3890 if (add_var_sum_constraint(graph, 2) < 0)
3891 return isl_stat_error;
3893 for (i = 0; i < n_edge; ++i) {
3894 k = isl_basic_set_alloc_inequality(graph->lp);
3895 if (k < 0)
3896 return isl_stat_error;
3897 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3898 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3899 isl_int_set_si(graph->lp->ineq[k][0], 1);
3902 if (add_all_constraints(ctx, graph, intra, inter) < 0)
3903 return isl_stat_error;
3905 return isl_stat_ok;
3908 static __isl_give isl_schedule_node *compute_component_schedule(
3909 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3910 int wcc);
3912 /* If the schedule_split_scaled option is set and if the linear
3913 * parts of the scheduling rows for all nodes in the graphs have
3914 * a non-trivial common divisor, then remove this
3915 * common divisor from the linear part.
3916 * Otherwise, insert a band node directly and continue with
3917 * the construction of the schedule.
3919 * If a non-trivial common divisor is found, then
3920 * the linear part is reduced and the remainder is ignored.
3921 * The pieces of the graph that are assigned different remainders
3922 * form (groups of) strongly connected components within
3923 * the scaled down band. If needed, they can therefore
3924 * be ordered along this remainder in a sequence node.
3925 * However, this ordering is not enforced here in order to allow
3926 * the scheduler to combine some of the strongly connected components.
3928 static __isl_give isl_schedule_node *split_scaled(
3929 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3931 int i;
3932 int row;
3933 isl_ctx *ctx;
3934 isl_int gcd, gcd_i;
3936 if (!node)
3937 return NULL;
3939 ctx = isl_schedule_node_get_ctx(node);
3940 if (!ctx->opt->schedule_split_scaled)
3941 return compute_next_band(node, graph, 0);
3942 if (graph->n <= 1)
3943 return compute_next_band(node, graph, 0);
3945 isl_int_init(gcd);
3946 isl_int_init(gcd_i);
3948 isl_int_set_si(gcd, 0);
3950 row = isl_mat_rows(graph->node[0].sched) - 1;
3952 for (i = 0; i < graph->n; ++i) {
3953 struct isl_sched_node *node = &graph->node[i];
3954 int cols = isl_mat_cols(node->sched);
3956 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3957 isl_int_gcd(gcd, gcd, gcd_i);
3960 isl_int_clear(gcd_i);
3962 if (isl_int_cmp_si(gcd, 1) <= 0) {
3963 isl_int_clear(gcd);
3964 return compute_next_band(node, graph, 0);
3967 for (i = 0; i < graph->n; ++i) {
3968 struct isl_sched_node *node = &graph->node[i];
3970 isl_int_fdiv_q(node->sched->row[row][0],
3971 node->sched->row[row][0], gcd);
3972 isl_int_mul(node->sched->row[row][0],
3973 node->sched->row[row][0], gcd);
3974 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3975 if (!node->sched)
3976 goto error;
3979 isl_int_clear(gcd);
3981 return compute_next_band(node, graph, 0);
3982 error:
3983 isl_int_clear(gcd);
3984 return isl_schedule_node_free(node);
3987 /* Is the schedule row "sol" trivial on node "node"?
3988 * That is, is the solution zero on the dimensions linearly independent of
3989 * the previously found solutions?
3990 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3992 * Each coefficient is represented as the difference between
3993 * two non-negative values in "sol".
3994 * We construct the schedule row s and check if it is linearly
3995 * independent of previously computed schedule rows
3996 * by computing T s, with T the linear combinations that are zero
3997 * on linearly dependent schedule rows.
3998 * If the result consists of all zeros, then the solution is trivial.
4000 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4002 int trivial;
4003 isl_vec *node_sol;
4005 if (!sol)
4006 return -1;
4007 if (node->nvar == node->rank)
4008 return 0;
4010 node_sol = extract_var_coef(node, sol);
4011 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4012 if (!node_sol)
4013 return -1;
4015 trivial = isl_seq_first_non_zero(node_sol->el,
4016 node->nvar - node->rank) == -1;
4018 isl_vec_free(node_sol);
4020 return trivial;
4023 /* Is the schedule row "sol" trivial on any node where it should
4024 * not be trivial?
4025 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4027 static int is_any_trivial(struct isl_sched_graph *graph,
4028 __isl_keep isl_vec *sol)
4030 int i;
4032 for (i = 0; i < graph->n; ++i) {
4033 struct isl_sched_node *node = &graph->node[i];
4034 int trivial;
4036 if (!needs_row(graph, node))
4037 continue;
4038 trivial = is_trivial(node, sol);
4039 if (trivial < 0 || trivial)
4040 return trivial;
4043 return 0;
4046 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4047 * If so, return the position of the coalesced dimension.
4048 * Otherwise, return node->nvar or -1 on error.
4050 * In particular, look for pairs of coefficients c_i and c_j such that
4051 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4052 * If any such pair is found, then return i.
4053 * If size_i is infinity, then no check on c_i needs to be performed.
4055 static int find_node_coalescing(struct isl_sched_node *node,
4056 __isl_keep isl_vec *sol)
4058 int i, j;
4059 isl_int max;
4060 isl_vec *csol;
4062 if (node->nvar <= 1)
4063 return node->nvar;
4065 csol = extract_var_coef(node, sol);
4066 if (!csol)
4067 return -1;
4068 isl_int_init(max);
4069 for (i = 0; i < node->nvar; ++i) {
4070 isl_val *v;
4072 if (isl_int_is_zero(csol->el[i]))
4073 continue;
4074 v = isl_multi_val_get_val(node->sizes, i);
4075 if (!v)
4076 goto error;
4077 if (!isl_val_is_int(v)) {
4078 isl_val_free(v);
4079 continue;
4081 v = isl_val_div_ui(v, 2);
4082 v = isl_val_ceil(v);
4083 if (!v)
4084 goto error;
4085 isl_int_mul(max, v->n, csol->el[i]);
4086 isl_val_free(v);
4088 for (j = 0; j < node->nvar; ++j) {
4089 if (j == i)
4090 continue;
4091 if (isl_int_abs_gt(csol->el[j], max))
4092 break;
4094 if (j < node->nvar)
4095 break;
4098 isl_int_clear(max);
4099 isl_vec_free(csol);
4100 return i;
4101 error:
4102 isl_int_clear(max);
4103 isl_vec_free(csol);
4104 return -1;
4107 /* Force the schedule coefficient at position "pos" of "node" to be zero
4108 * in "tl".
4109 * The coefficient is encoded as the difference between two non-negative
4110 * variables. Force these two variables to have the same value.
4112 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4113 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4115 int dim;
4116 isl_ctx *ctx;
4117 isl_vec *eq;
4119 ctx = isl_space_get_ctx(node->space);
4120 dim = isl_tab_lexmin_dim(tl);
4121 if (dim < 0)
4122 return isl_tab_lexmin_free(tl);
4123 eq = isl_vec_alloc(ctx, 1 + dim);
4124 eq = isl_vec_clr(eq);
4125 if (!eq)
4126 return isl_tab_lexmin_free(tl);
4128 pos = 1 + node_var_coef_pos(node, pos);
4129 isl_int_set_si(eq->el[pos], 1);
4130 isl_int_set_si(eq->el[pos + 1], -1);
4131 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4132 isl_vec_free(eq);
4134 return tl;
4137 /* Return the lexicographically smallest rational point in the basic set
4138 * from which "tl" was constructed, double checking that this input set
4139 * was not empty.
4141 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4143 isl_vec *sol;
4145 sol = isl_tab_lexmin_get_solution(tl);
4146 if (!sol)
4147 return NULL;
4148 if (sol->size == 0)
4149 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4150 "error in schedule construction",
4151 return isl_vec_free(sol));
4152 return sol;
4155 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4156 * carry any of the "n_edge" groups of dependences?
4157 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4158 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4159 * by the edge are carried by the solution.
4160 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4161 * one of those is carried.
4163 * Note that despite the fact that the problem is solved using a rational
4164 * solver, the solution is guaranteed to be integral.
4165 * Specifically, the dependence distance lower bounds e_i (and therefore
4166 * also their sum) are integers. See Lemma 5 of [1].
4168 * Any potential denominator of the sum is cleared by this function.
4169 * The denominator is not relevant for any of the other elements
4170 * in the solution.
4172 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4173 * Problem, Part II: Multi-Dimensional Time.
4174 * In Intl. Journal of Parallel Programming, 1992.
4176 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4178 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4179 isl_int_set_si(sol->el[0], 1);
4180 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4183 /* Return the lexicographically smallest rational point in "lp",
4184 * assuming that all variables are non-negative and performing some
4185 * additional sanity checks.
4186 * If "want_integral" is set, then compute the lexicographically smallest
4187 * integer point instead.
4188 * In particular, "lp" should not be empty by construction.
4189 * Double check that this is the case.
4190 * If dependences are not carried for any of the "n_edge" edges,
4191 * then return an empty vector.
4193 * If the schedule_treat_coalescing option is set and
4194 * if the computed schedule performs loop coalescing on a given node,
4195 * i.e., if it is of the form
4197 * c_i i + c_j j + ...
4199 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4200 * to cut out this solution. Repeat this process until no more loop
4201 * coalescing occurs or until no more dependences can be carried.
4202 * In the latter case, revert to the previously computed solution.
4204 * If the caller requests an integral solution and if coalescing should
4205 * be treated, then perform the coalescing treatment first as
4206 * an integral solution computed before coalescing treatment
4207 * would carry the same number of edges and would therefore probably
4208 * also be coalescing.
4210 * To allow the coalescing treatment to be performed first,
4211 * the initial solution is allowed to be rational and it is only
4212 * cut out (if needed) in the next iteration, if no coalescing measures
4213 * were taken.
4215 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4216 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4218 int i, pos, cut;
4219 isl_ctx *ctx;
4220 isl_tab_lexmin *tl;
4221 isl_vec *sol, *prev = NULL;
4222 int treat_coalescing;
4224 if (!lp)
4225 return NULL;
4226 ctx = isl_basic_set_get_ctx(lp);
4227 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4228 tl = isl_tab_lexmin_from_basic_set(lp);
4230 cut = 0;
4231 do {
4232 int integral;
4234 if (cut)
4235 tl = isl_tab_lexmin_cut_to_integer(tl);
4236 sol = non_empty_solution(tl);
4237 if (!sol)
4238 goto error;
4240 integral = isl_int_is_one(sol->el[0]);
4241 if (!carries_dependences(sol, n_edge)) {
4242 if (!prev)
4243 prev = isl_vec_alloc(ctx, 0);
4244 isl_vec_free(sol);
4245 sol = prev;
4246 break;
4248 prev = isl_vec_free(prev);
4249 cut = want_integral && !integral;
4250 if (cut)
4251 prev = sol;
4252 if (!treat_coalescing)
4253 continue;
4254 for (i = 0; i < graph->n; ++i) {
4255 struct isl_sched_node *node = &graph->node[i];
4257 pos = find_node_coalescing(node, sol);
4258 if (pos < 0)
4259 goto error;
4260 if (pos < node->nvar)
4261 break;
4263 if (i < graph->n) {
4264 prev = sol;
4265 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4266 cut = 0;
4268 } while (prev);
4270 isl_tab_lexmin_free(tl);
4272 return sol;
4273 error:
4274 isl_tab_lexmin_free(tl);
4275 isl_vec_free(prev);
4276 isl_vec_free(sol);
4277 return NULL;
4280 /* If "edge" is an edge from a node to itself, then add the corresponding
4281 * dependence relation to "umap".
4282 * If "node" has been compressed, then the dependence relation
4283 * is also compressed first.
4285 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4286 struct isl_sched_edge *edge)
4288 isl_map *map;
4289 struct isl_sched_node *node = edge->src;
4291 if (edge->src != edge->dst)
4292 return umap;
4294 map = isl_map_copy(edge->map);
4295 if (node->compressed) {
4296 map = isl_map_preimage_domain_multi_aff(map,
4297 isl_multi_aff_copy(node->decompress));
4298 map = isl_map_preimage_range_multi_aff(map,
4299 isl_multi_aff_copy(node->decompress));
4301 umap = isl_union_map_add_map(umap, map);
4302 return umap;
4305 /* If "edge" is an edge from a node to another node, then add the corresponding
4306 * dependence relation to "umap".
4307 * If the source or destination nodes of "edge" have been compressed,
4308 * then the dependence relation is also compressed first.
4310 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4311 struct isl_sched_edge *edge)
4313 isl_map *map;
4315 if (edge->src == edge->dst)
4316 return umap;
4318 map = isl_map_copy(edge->map);
4319 if (edge->src->compressed)
4320 map = isl_map_preimage_domain_multi_aff(map,
4321 isl_multi_aff_copy(edge->src->decompress));
4322 if (edge->dst->compressed)
4323 map = isl_map_preimage_range_multi_aff(map,
4324 isl_multi_aff_copy(edge->dst->decompress));
4325 umap = isl_union_map_add_map(umap, map);
4326 return umap;
4329 /* For each (conditional) validity edge in "graph",
4330 * add the corresponding dependence relation using "add"
4331 * to a collection of dependence relations and return the result.
4332 * If "coincidence" is set, then coincidence edges are considered as well.
4334 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4335 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4336 struct isl_sched_edge *edge), int coincidence)
4338 int i;
4339 isl_space *space;
4340 isl_union_map *umap;
4342 space = isl_space_copy(graph->node[0].space);
4343 umap = isl_union_map_empty(space);
4345 for (i = 0; i < graph->n_edge; ++i) {
4346 struct isl_sched_edge *edge = &graph->edge[i];
4348 if (!is_any_validity(edge) &&
4349 (!coincidence || !is_coincidence(edge)))
4350 continue;
4352 umap = add(umap, edge);
4355 return umap;
4358 /* For each dependence relation on a (conditional) validity edge
4359 * from a node to itself,
4360 * construct the set of coefficients of valid constraints for elements
4361 * in that dependence relation and collect the results.
4362 * If "coincidence" is set, then coincidence edges are considered as well.
4364 * In particular, for each dependence relation R, constraints
4365 * on coefficients (c_0, c_n, c_x) are constructed such that
4367 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4369 * This computation is essentially the same as that performed
4370 * by intra_coefficients, except that it operates on multiple
4371 * edges together.
4373 * Note that if a dependence relation is a union of basic maps,
4374 * then each basic map needs to be treated individually as it may only
4375 * be possible to carry the dependences expressed by some of those
4376 * basic maps and not all of them.
4377 * The collected validity constraints are therefore not coalesced and
4378 * it is assumed that they are not coalesced automatically.
4379 * Duplicate basic maps can be removed, however.
4380 * In particular, if the same basic map appears as a disjunct
4381 * in multiple edges, then it only needs to be carried once.
4383 static __isl_give isl_basic_set_list *collect_intra_validity(
4384 struct isl_sched_graph *graph, int coincidence)
4386 isl_union_map *intra;
4387 isl_union_set *delta;
4388 isl_basic_set_list *list;
4390 intra = collect_validity(graph, &add_intra, coincidence);
4391 delta = isl_union_map_deltas(intra);
4392 delta = isl_union_set_remove_divs(delta);
4393 list = isl_union_set_get_basic_set_list(delta);
4394 isl_union_set_free(delta);
4396 return isl_basic_set_list_coefficients(list);
4399 /* For each dependence relation on a (conditional) validity edge
4400 * from a node to some other node,
4401 * construct the set of coefficients of valid constraints for elements
4402 * in that dependence relation and collect the results.
4403 * If "coincidence" is set, then coincidence edges are considered as well.
4405 * In particular, for each dependence relation R, constraints
4406 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4408 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4410 * This computation is essentially the same as that performed
4411 * by inter_coefficients, except that it operates on multiple
4412 * edges together.
4414 * Note that if a dependence relation is a union of basic maps,
4415 * then each basic map needs to be treated individually as it may only
4416 * be possible to carry the dependences expressed by some of those
4417 * basic maps and not all of them.
4418 * The collected validity constraints are therefore not coalesced and
4419 * it is assumed that they are not coalesced automatically.
4420 * Duplicate basic maps can be removed, however.
4421 * In particular, if the same basic map appears as a disjunct
4422 * in multiple edges, then it only needs to be carried once.
4424 static __isl_give isl_basic_set_list *collect_inter_validity(
4425 struct isl_sched_graph *graph, int coincidence)
4427 isl_union_map *inter;
4428 isl_union_set *wrap;
4429 isl_basic_set_list *list;
4431 inter = collect_validity(graph, &add_inter, coincidence);
4432 inter = isl_union_map_remove_divs(inter);
4433 wrap = isl_union_map_wrap(inter);
4434 list = isl_union_set_get_basic_set_list(wrap);
4435 isl_union_set_free(wrap);
4436 return isl_basic_set_list_coefficients(list);
4439 /* Construct an LP problem for finding schedule coefficients
4440 * such that the schedule carries as many of the validity dependences
4441 * as possible and
4442 * return the lexicographically smallest non-trivial solution.
4443 * If "fallback" is set, then the carrying is performed as a fallback
4444 * for the Pluto-like scheduler.
4445 * If "coincidence" is set, then try and carry coincidence edges as well.
4447 * The variable "n_edge" stores the number of groups that should be carried.
4448 * If none of the "n_edge" groups can be carried
4449 * then return an empty vector.
4450 * If, moreover, "n_edge" is zero, then the LP problem does not even
4451 * need to be constructed.
4453 * If a fallback solution is being computed, then compute an integral solution
4454 * for the coefficients rather than using the numerators
4455 * of a rational solution.
4457 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
4458 struct isl_sched_graph *graph, int fallback, int coincidence)
4460 int n_intra, n_inter;
4461 int n_edge;
4462 isl_basic_set *lp;
4463 struct isl_carry carry = { 0 };
4465 carry.intra = collect_intra_validity(graph, coincidence);
4466 carry.inter = collect_inter_validity(graph, coincidence);
4467 if (!carry.intra || !carry.inter)
4468 goto error;
4469 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
4470 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
4471 n_edge = n_intra + n_inter;
4472 if (n_edge == 0) {
4473 isl_carry_clear(&carry);
4474 return isl_vec_alloc(ctx, 0);
4477 if (setup_carry_lp(ctx, graph, n_edge, carry.intra, carry.inter) < 0)
4478 goto error;
4480 isl_carry_clear(&carry);
4481 lp = isl_basic_set_copy(graph->lp);
4482 return non_neg_lexmin(graph, lp, n_edge, fallback);
4483 error:
4484 isl_carry_clear(&carry);
4485 return NULL;
4488 /* Construct a schedule row for each node such that as many validity dependences
4489 * as possible are carried and then continue with the next band.
4490 * If "fallback" is set, then the carrying is performed as a fallback
4491 * for the Pluto-like scheduler.
4492 * If "coincidence" is set, then try and carry coincidence edges as well.
4494 * If there are no validity dependences, then no dependence can be carried and
4495 * the procedure is guaranteed to fail. If there is more than one component,
4496 * then try computing a schedule on each component separately
4497 * to prevent or at least postpone this failure.
4499 * If a schedule row is computed, then check that dependences are carried
4500 * for at least one of the edges.
4502 * If the computed schedule row turns out to be trivial on one or
4503 * more nodes where it should not be trivial, then we throw it away
4504 * and try again on each component separately.
4506 * If there is only one component, then we accept the schedule row anyway,
4507 * but we do not consider it as a complete row and therefore do not
4508 * increment graph->n_row. Note that the ranks of the nodes that
4509 * do get a non-trivial schedule part will get updated regardless and
4510 * graph->maxvar is computed based on these ranks. The test for
4511 * whether more schedule rows are required in compute_schedule_wcc
4512 * is therefore not affected.
4514 * Insert a band corresponding to the schedule row at position "node"
4515 * of the schedule tree and continue with the construction of the schedule.
4516 * This insertion and the continued construction is performed by split_scaled
4517 * after optionally checking for non-trivial common divisors.
4519 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
4520 struct isl_sched_graph *graph, int fallback, int coincidence)
4522 int trivial;
4523 isl_ctx *ctx;
4524 isl_vec *sol;
4526 if (!node)
4527 return NULL;
4529 ctx = isl_schedule_node_get_ctx(node);
4530 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
4531 if (!sol)
4532 return isl_schedule_node_free(node);
4533 if (sol->size == 0) {
4534 isl_vec_free(sol);
4535 if (graph->scc > 1)
4536 return compute_component_schedule(node, graph, 1);
4537 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
4538 return isl_schedule_node_free(node));
4541 trivial = is_any_trivial(graph, sol);
4542 if (trivial < 0) {
4543 sol = isl_vec_free(sol);
4544 } else if (trivial && graph->scc > 1) {
4545 isl_vec_free(sol);
4546 return compute_component_schedule(node, graph, 1);
4549 if (update_schedule(graph, sol, 0) < 0)
4550 return isl_schedule_node_free(node);
4551 if (trivial)
4552 graph->n_row--;
4554 return split_scaled(node, graph);
4557 /* Construct a schedule row for each node such that as many validity dependences
4558 * as possible are carried and then continue with the next band.
4559 * Do so as a fallback for the Pluto-like scheduler.
4560 * If "coincidence" is set, then try and carry coincidence edges as well.
4562 static __isl_give isl_schedule_node *carry_fallback(
4563 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4564 int coincidence)
4566 return carry(node, graph, 1, coincidence);
4569 /* Construct a schedule row for each node such that as many validity dependences
4570 * as possible are carried and then continue with the next band.
4571 * Do so for the case where the Feautrier scheduler was selected
4572 * by the user.
4574 static __isl_give isl_schedule_node *carry_feautrier(
4575 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4577 return carry(node, graph, 0, 0);
4580 /* Construct a schedule row for each node such that as many validity dependences
4581 * as possible are carried and then continue with the next band.
4582 * Do so as a fallback for the Pluto-like scheduler.
4584 static __isl_give isl_schedule_node *carry_dependences(
4585 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4587 return carry_fallback(node, graph, 0);
4590 /* Construct a schedule row for each node such that as many validity or
4591 * coincidence dependences as possible are carried and
4592 * then continue with the next band.
4593 * Do so as a fallback for the Pluto-like scheduler.
4595 static __isl_give isl_schedule_node *carry_coincidence(
4596 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4598 return carry_fallback(node, graph, 1);
4601 /* Topologically sort statements mapped to the same schedule iteration
4602 * and add insert a sequence node in front of "node"
4603 * corresponding to this order.
4604 * If "initialized" is set, then it may be assumed that compute_maxvar
4605 * has been called on the current band. Otherwise, call
4606 * compute_maxvar if and before carry_dependences gets called.
4608 * If it turns out to be impossible to sort the statements apart,
4609 * because different dependences impose different orderings
4610 * on the statements, then we extend the schedule such that
4611 * it carries at least one more dependence.
4613 static __isl_give isl_schedule_node *sort_statements(
4614 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4615 int initialized)
4617 isl_ctx *ctx;
4618 isl_union_set_list *filters;
4620 if (!node)
4621 return NULL;
4623 ctx = isl_schedule_node_get_ctx(node);
4624 if (graph->n < 1)
4625 isl_die(ctx, isl_error_internal,
4626 "graph should have at least one node",
4627 return isl_schedule_node_free(node));
4629 if (graph->n == 1)
4630 return node;
4632 if (update_edges(ctx, graph) < 0)
4633 return isl_schedule_node_free(node);
4635 if (graph->n_edge == 0)
4636 return node;
4638 if (detect_sccs(ctx, graph) < 0)
4639 return isl_schedule_node_free(node);
4641 next_band(graph);
4642 if (graph->scc < graph->n) {
4643 if (!initialized && compute_maxvar(graph) < 0)
4644 return isl_schedule_node_free(node);
4645 return carry_dependences(node, graph);
4648 filters = extract_sccs(ctx, graph);
4649 node = isl_schedule_node_insert_sequence(node, filters);
4651 return node;
4654 /* Are there any (non-empty) (conditional) validity edges in the graph?
4656 static int has_validity_edges(struct isl_sched_graph *graph)
4658 int i;
4660 for (i = 0; i < graph->n_edge; ++i) {
4661 int empty;
4663 empty = isl_map_plain_is_empty(graph->edge[i].map);
4664 if (empty < 0)
4665 return -1;
4666 if (empty)
4667 continue;
4668 if (is_any_validity(&graph->edge[i]))
4669 return 1;
4672 return 0;
4675 /* Should we apply a Feautrier step?
4676 * That is, did the user request the Feautrier algorithm and are
4677 * there any validity dependences (left)?
4679 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4681 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4682 return 0;
4684 return has_validity_edges(graph);
4687 /* Compute a schedule for a connected dependence graph using Feautrier's
4688 * multi-dimensional scheduling algorithm and return the updated schedule node.
4690 * The original algorithm is described in [1].
4691 * The main idea is to minimize the number of scheduling dimensions, by
4692 * trying to satisfy as many dependences as possible per scheduling dimension.
4694 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4695 * Problem, Part II: Multi-Dimensional Time.
4696 * In Intl. Journal of Parallel Programming, 1992.
4698 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4699 isl_schedule_node *node, struct isl_sched_graph *graph)
4701 return carry_feautrier(node, graph);
4704 /* Turn off the "local" bit on all (condition) edges.
4706 static void clear_local_edges(struct isl_sched_graph *graph)
4708 int i;
4710 for (i = 0; i < graph->n_edge; ++i)
4711 if (is_condition(&graph->edge[i]))
4712 clear_local(&graph->edge[i]);
4715 /* Does "graph" have both condition and conditional validity edges?
4717 static int need_condition_check(struct isl_sched_graph *graph)
4719 int i;
4720 int any_condition = 0;
4721 int any_conditional_validity = 0;
4723 for (i = 0; i < graph->n_edge; ++i) {
4724 if (is_condition(&graph->edge[i]))
4725 any_condition = 1;
4726 if (is_conditional_validity(&graph->edge[i]))
4727 any_conditional_validity = 1;
4730 return any_condition && any_conditional_validity;
4733 /* Does "graph" contain any coincidence edge?
4735 static int has_any_coincidence(struct isl_sched_graph *graph)
4737 int i;
4739 for (i = 0; i < graph->n_edge; ++i)
4740 if (is_coincidence(&graph->edge[i]))
4741 return 1;
4743 return 0;
4746 /* Extract the final schedule row as a map with the iteration domain
4747 * of "node" as domain.
4749 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4751 isl_multi_aff *ma;
4752 int row;
4754 row = isl_mat_rows(node->sched) - 1;
4755 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4756 return isl_map_from_multi_aff(ma);
4759 /* Is the conditional validity dependence in the edge with index "edge_index"
4760 * violated by the latest (i.e., final) row of the schedule?
4761 * That is, is i scheduled after j
4762 * for any conditional validity dependence i -> j?
4764 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4766 isl_map *src_sched, *dst_sched, *map;
4767 struct isl_sched_edge *edge = &graph->edge[edge_index];
4768 int empty;
4770 src_sched = final_row(edge->src);
4771 dst_sched = final_row(edge->dst);
4772 map = isl_map_copy(edge->map);
4773 map = isl_map_apply_domain(map, src_sched);
4774 map = isl_map_apply_range(map, dst_sched);
4775 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4776 empty = isl_map_is_empty(map);
4777 isl_map_free(map);
4779 if (empty < 0)
4780 return -1;
4782 return !empty;
4785 /* Does "graph" have any satisfied condition edges that
4786 * are adjacent to the conditional validity constraint with
4787 * domain "conditional_source" and range "conditional_sink"?
4789 * A satisfied condition is one that is not local.
4790 * If a condition was forced to be local already (i.e., marked as local)
4791 * then there is no need to check if it is in fact local.
4793 * Additionally, mark all adjacent condition edges found as local.
4795 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4796 __isl_keep isl_union_set *conditional_source,
4797 __isl_keep isl_union_set *conditional_sink)
4799 int i;
4800 int any = 0;
4802 for (i = 0; i < graph->n_edge; ++i) {
4803 int adjacent, local;
4804 isl_union_map *condition;
4806 if (!is_condition(&graph->edge[i]))
4807 continue;
4808 if (is_local(&graph->edge[i]))
4809 continue;
4811 condition = graph->edge[i].tagged_condition;
4812 adjacent = domain_intersects(condition, conditional_sink);
4813 if (adjacent >= 0 && !adjacent)
4814 adjacent = range_intersects(condition,
4815 conditional_source);
4816 if (adjacent < 0)
4817 return -1;
4818 if (!adjacent)
4819 continue;
4821 set_local(&graph->edge[i]);
4823 local = is_condition_false(&graph->edge[i]);
4824 if (local < 0)
4825 return -1;
4826 if (!local)
4827 any = 1;
4830 return any;
4833 /* Are there any violated conditional validity dependences with
4834 * adjacent condition dependences that are not local with respect
4835 * to the current schedule?
4836 * That is, is the conditional validity constraint violated?
4838 * Additionally, mark all those adjacent condition dependences as local.
4839 * We also mark those adjacent condition dependences that were not marked
4840 * as local before, but just happened to be local already. This ensures
4841 * that they remain local if the schedule is recomputed.
4843 * We first collect domain and range of all violated conditional validity
4844 * dependences and then check if there are any adjacent non-local
4845 * condition dependences.
4847 static int has_violated_conditional_constraint(isl_ctx *ctx,
4848 struct isl_sched_graph *graph)
4850 int i;
4851 int any = 0;
4852 isl_union_set *source, *sink;
4854 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4855 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4856 for (i = 0; i < graph->n_edge; ++i) {
4857 isl_union_set *uset;
4858 isl_union_map *umap;
4859 int violated;
4861 if (!is_conditional_validity(&graph->edge[i]))
4862 continue;
4864 violated = is_violated(graph, i);
4865 if (violated < 0)
4866 goto error;
4867 if (!violated)
4868 continue;
4870 any = 1;
4872 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4873 uset = isl_union_map_domain(umap);
4874 source = isl_union_set_union(source, uset);
4875 source = isl_union_set_coalesce(source);
4877 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4878 uset = isl_union_map_range(umap);
4879 sink = isl_union_set_union(sink, uset);
4880 sink = isl_union_set_coalesce(sink);
4883 if (any)
4884 any = has_adjacent_true_conditions(graph, source, sink);
4886 isl_union_set_free(source);
4887 isl_union_set_free(sink);
4888 return any;
4889 error:
4890 isl_union_set_free(source);
4891 isl_union_set_free(sink);
4892 return -1;
4895 /* Examine the current band (the rows between graph->band_start and
4896 * graph->n_total_row), deciding whether to drop it or add it to "node"
4897 * and then continue with the computation of the next band, if any.
4898 * If "initialized" is set, then it may be assumed that compute_maxvar
4899 * has been called on the current band. Otherwise, call
4900 * compute_maxvar if and before carry_dependences gets called.
4902 * The caller keeps looking for a new row as long as
4903 * graph->n_row < graph->maxvar. If the latest attempt to find
4904 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4905 * then we either
4906 * - split between SCCs and start over (assuming we found an interesting
4907 * pair of SCCs between which to split)
4908 * - continue with the next band (assuming the current band has at least
4909 * one row)
4910 * - if there is more than one SCC left, then split along all SCCs
4911 * - if outer coincidence needs to be enforced, then try to carry as many
4912 * validity or coincidence dependences as possible and
4913 * continue with the next band
4914 * - try to carry as many validity dependences as possible and
4915 * continue with the next band
4916 * In each case, we first insert a band node in the schedule tree
4917 * if any rows have been computed.
4919 * If the caller managed to complete the schedule, we insert a band node
4920 * (if any schedule rows were computed) and we finish off by topologically
4921 * sorting the statements based on the remaining dependences.
4923 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4924 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4925 int initialized)
4927 int insert;
4929 if (!node)
4930 return NULL;
4932 if (graph->n_row < graph->maxvar) {
4933 isl_ctx *ctx;
4934 int empty = graph->n_total_row == graph->band_start;
4936 ctx = isl_schedule_node_get_ctx(node);
4937 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4938 return compute_next_band(node, graph, 1);
4939 if (graph->src_scc >= 0)
4940 return compute_split_schedule(node, graph);
4941 if (!empty)
4942 return compute_next_band(node, graph, 1);
4943 if (graph->scc > 1)
4944 return compute_component_schedule(node, graph, 1);
4945 if (!initialized && compute_maxvar(graph) < 0)
4946 return isl_schedule_node_free(node);
4947 if (isl_options_get_schedule_outer_coincidence(ctx))
4948 return carry_coincidence(node, graph);
4949 return carry_dependences(node, graph);
4952 insert = graph->n_total_row > graph->band_start;
4953 if (insert) {
4954 node = insert_current_band(node, graph, 1);
4955 node = isl_schedule_node_child(node, 0);
4957 node = sort_statements(node, graph, initialized);
4958 if (insert)
4959 node = isl_schedule_node_parent(node);
4961 return node;
4964 /* Construct a band of schedule rows for a connected dependence graph.
4965 * The caller is responsible for determining the strongly connected
4966 * components and calling compute_maxvar first.
4968 * We try to find a sequence of as many schedule rows as possible that result
4969 * in non-negative dependence distances (independent of the previous rows
4970 * in the sequence, i.e., such that the sequence is tilable), with as
4971 * many of the initial rows as possible satisfying the coincidence constraints.
4972 * The computation stops if we can't find any more rows or if we have found
4973 * all the rows we wanted to find.
4975 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4976 * outermost dimension to satisfy the coincidence constraints. If this
4977 * turns out to be impossible, we fall back on the general scheme above
4978 * and try to carry as many dependences as possible.
4980 * If "graph" contains both condition and conditional validity dependences,
4981 * then we need to check that that the conditional schedule constraint
4982 * is satisfied, i.e., there are no violated conditional validity dependences
4983 * that are adjacent to any non-local condition dependences.
4984 * If there are, then we mark all those adjacent condition dependences
4985 * as local and recompute the current band. Those dependences that
4986 * are marked local will then be forced to be local.
4987 * The initial computation is performed with no dependences marked as local.
4988 * If we are lucky, then there will be no violated conditional validity
4989 * dependences adjacent to any non-local condition dependences.
4990 * Otherwise, we mark some additional condition dependences as local and
4991 * recompute. We continue this process until there are no violations left or
4992 * until we are no longer able to compute a schedule.
4993 * Since there are only a finite number of dependences,
4994 * there will only be a finite number of iterations.
4996 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4997 struct isl_sched_graph *graph)
4999 int has_coincidence;
5000 int use_coincidence;
5001 int force_coincidence = 0;
5002 int check_conditional;
5004 if (sort_sccs(graph) < 0)
5005 return isl_stat_error;
5007 clear_local_edges(graph);
5008 check_conditional = need_condition_check(graph);
5009 has_coincidence = has_any_coincidence(graph);
5011 if (ctx->opt->schedule_outer_coincidence)
5012 force_coincidence = 1;
5014 use_coincidence = has_coincidence;
5015 while (graph->n_row < graph->maxvar) {
5016 isl_vec *sol;
5017 int violated;
5018 int coincident;
5020 graph->src_scc = -1;
5021 graph->dst_scc = -1;
5023 if (setup_lp(ctx, graph, use_coincidence) < 0)
5024 return isl_stat_error;
5025 sol = solve_lp(ctx, graph);
5026 if (!sol)
5027 return isl_stat_error;
5028 if (sol->size == 0) {
5029 int empty = graph->n_total_row == graph->band_start;
5031 isl_vec_free(sol);
5032 if (use_coincidence && (!force_coincidence || !empty)) {
5033 use_coincidence = 0;
5034 continue;
5036 return isl_stat_ok;
5038 coincident = !has_coincidence || use_coincidence;
5039 if (update_schedule(graph, sol, coincident) < 0)
5040 return isl_stat_error;
5042 if (!check_conditional)
5043 continue;
5044 violated = has_violated_conditional_constraint(ctx, graph);
5045 if (violated < 0)
5046 return isl_stat_error;
5047 if (!violated)
5048 continue;
5049 if (reset_band(graph) < 0)
5050 return isl_stat_error;
5051 use_coincidence = has_coincidence;
5054 return isl_stat_ok;
5057 /* Compute a schedule for a connected dependence graph by considering
5058 * the graph as a whole and return the updated schedule node.
5060 * The actual schedule rows of the current band are computed by
5061 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5062 * care of integrating the band into "node" and continuing
5063 * the computation.
5065 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5066 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5068 isl_ctx *ctx;
5070 if (!node)
5071 return NULL;
5073 ctx = isl_schedule_node_get_ctx(node);
5074 if (compute_schedule_wcc_band(ctx, graph) < 0)
5075 return isl_schedule_node_free(node);
5077 return compute_schedule_finish_band(node, graph, 1);
5080 /* Clustering information used by compute_schedule_wcc_clustering.
5082 * "n" is the number of SCCs in the original dependence graph
5083 * "scc" is an array of "n" elements, each representing an SCC
5084 * of the original dependence graph. All entries in the same cluster
5085 * have the same number of schedule rows.
5086 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5087 * where each cluster is represented by the index of the first SCC
5088 * in the cluster. Initially, each SCC belongs to a cluster containing
5089 * only that SCC.
5091 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5092 * track of which SCCs need to be merged.
5094 * "cluster" contains the merged clusters of SCCs after the clustering
5095 * has completed.
5097 * "scc_node" is a temporary data structure used inside copy_partial.
5098 * For each SCC, it keeps track of the number of nodes in the SCC
5099 * that have already been copied.
5101 struct isl_clustering {
5102 int n;
5103 struct isl_sched_graph *scc;
5104 struct isl_sched_graph *cluster;
5105 int *scc_cluster;
5106 int *scc_node;
5107 int *scc_in_merge;
5110 /* Initialize the clustering data structure "c" from "graph".
5112 * In particular, allocate memory, extract the SCCs from "graph"
5113 * into c->scc, initialize scc_cluster and construct
5114 * a band of schedule rows for each SCC.
5115 * Within each SCC, there is only one SCC by definition.
5116 * Each SCC initially belongs to a cluster containing only that SCC.
5118 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5119 struct isl_sched_graph *graph)
5121 int i;
5123 c->n = graph->scc;
5124 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5125 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5126 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5127 c->scc_node = isl_calloc_array(ctx, int, c->n);
5128 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5129 if (!c->scc || !c->cluster ||
5130 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5131 return isl_stat_error;
5133 for (i = 0; i < c->n; ++i) {
5134 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5135 &edge_scc_exactly, i, &c->scc[i]) < 0)
5136 return isl_stat_error;
5137 c->scc[i].scc = 1;
5138 if (compute_maxvar(&c->scc[i]) < 0)
5139 return isl_stat_error;
5140 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5141 return isl_stat_error;
5142 c->scc_cluster[i] = i;
5145 return isl_stat_ok;
5148 /* Free all memory allocated for "c".
5150 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5152 int i;
5154 if (c->scc)
5155 for (i = 0; i < c->n; ++i)
5156 graph_free(ctx, &c->scc[i]);
5157 free(c->scc);
5158 if (c->cluster)
5159 for (i = 0; i < c->n; ++i)
5160 graph_free(ctx, &c->cluster[i]);
5161 free(c->cluster);
5162 free(c->scc_cluster);
5163 free(c->scc_node);
5164 free(c->scc_in_merge);
5167 /* Should we refrain from merging the cluster in "graph" with
5168 * any other cluster?
5169 * In particular, is its current schedule band empty and incomplete.
5171 static int bad_cluster(struct isl_sched_graph *graph)
5173 return graph->n_row < graph->maxvar &&
5174 graph->n_total_row == graph->band_start;
5177 /* Is "edge" a proximity edge with a non-empty dependence relation?
5179 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5181 if (!is_proximity(edge))
5182 return isl_bool_false;
5183 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5186 /* Return the index of an edge in "graph" that can be used to merge
5187 * two clusters in "c".
5188 * Return graph->n_edge if no such edge can be found.
5189 * Return -1 on error.
5191 * In particular, return a proximity edge between two clusters
5192 * that is not marked "no_merge" and such that neither of the
5193 * two clusters has an incomplete, empty band.
5195 * If there are multiple such edges, then try and find the most
5196 * appropriate edge to use for merging. In particular, pick the edge
5197 * with the greatest weight. If there are multiple of those,
5198 * then pick one with the shortest distance between
5199 * the two cluster representatives.
5201 static int find_proximity(struct isl_sched_graph *graph,
5202 struct isl_clustering *c)
5204 int i, best = graph->n_edge, best_dist, best_weight;
5206 for (i = 0; i < graph->n_edge; ++i) {
5207 struct isl_sched_edge *edge = &graph->edge[i];
5208 int dist, weight;
5209 isl_bool prox;
5211 prox = is_non_empty_proximity(edge);
5212 if (prox < 0)
5213 return -1;
5214 if (!prox)
5215 continue;
5216 if (edge->no_merge)
5217 continue;
5218 if (bad_cluster(&c->scc[edge->src->scc]) ||
5219 bad_cluster(&c->scc[edge->dst->scc]))
5220 continue;
5221 dist = c->scc_cluster[edge->dst->scc] -
5222 c->scc_cluster[edge->src->scc];
5223 if (dist == 0)
5224 continue;
5225 weight = edge->weight;
5226 if (best < graph->n_edge) {
5227 if (best_weight > weight)
5228 continue;
5229 if (best_weight == weight && best_dist <= dist)
5230 continue;
5232 best = i;
5233 best_dist = dist;
5234 best_weight = weight;
5237 return best;
5240 /* Internal data structure used in mark_merge_sccs.
5242 * "graph" is the dependence graph in which a strongly connected
5243 * component is constructed.
5244 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5245 * "src" and "dst" are the indices of the nodes that are being merged.
5247 struct isl_mark_merge_sccs_data {
5248 struct isl_sched_graph *graph;
5249 int *scc_cluster;
5250 int src;
5251 int dst;
5254 /* Check whether the cluster containing node "i" depends on the cluster
5255 * containing node "j". If "i" and "j" belong to the same cluster,
5256 * then they are taken to depend on each other to ensure that
5257 * the resulting strongly connected component consists of complete
5258 * clusters. Furthermore, if "i" and "j" are the two nodes that
5259 * are being merged, then they are taken to depend on each other as well.
5260 * Otherwise, check if there is a (conditional) validity dependence
5261 * from node[j] to node[i], forcing node[i] to follow node[j].
5263 static isl_bool cluster_follows(int i, int j, void *user)
5265 struct isl_mark_merge_sccs_data *data = user;
5266 struct isl_sched_graph *graph = data->graph;
5267 int *scc_cluster = data->scc_cluster;
5269 if (data->src == i && data->dst == j)
5270 return isl_bool_true;
5271 if (data->src == j && data->dst == i)
5272 return isl_bool_true;
5273 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5274 return isl_bool_true;
5276 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5279 /* Mark all SCCs that belong to either of the two clusters in "c"
5280 * connected by the edge in "graph" with index "edge", or to any
5281 * of the intermediate clusters.
5282 * The marking is recorded in c->scc_in_merge.
5284 * The given edge has been selected for merging two clusters,
5285 * meaning that there is at least a proximity edge between the two nodes.
5286 * However, there may also be (indirect) validity dependences
5287 * between the two nodes. When merging the two clusters, all clusters
5288 * containing one or more of the intermediate nodes along the
5289 * indirect validity dependences need to be merged in as well.
5291 * First collect all such nodes by computing the strongly connected
5292 * component (SCC) containing the two nodes connected by the edge, where
5293 * the two nodes are considered to depend on each other to make
5294 * sure they end up in the same SCC. Similarly, each node is considered
5295 * to depend on every other node in the same cluster to ensure
5296 * that the SCC consists of complete clusters.
5298 * Then the original SCCs that contain any of these nodes are marked
5299 * in c->scc_in_merge.
5301 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5302 int edge, struct isl_clustering *c)
5304 struct isl_mark_merge_sccs_data data;
5305 struct isl_tarjan_graph *g;
5306 int i;
5308 for (i = 0; i < c->n; ++i)
5309 c->scc_in_merge[i] = 0;
5311 data.graph = graph;
5312 data.scc_cluster = c->scc_cluster;
5313 data.src = graph->edge[edge].src - graph->node;
5314 data.dst = graph->edge[edge].dst - graph->node;
5316 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5317 &cluster_follows, &data);
5318 if (!g)
5319 goto error;
5321 i = g->op;
5322 if (i < 3)
5323 isl_die(ctx, isl_error_internal,
5324 "expecting at least two nodes in component",
5325 goto error);
5326 if (g->order[--i] != -1)
5327 isl_die(ctx, isl_error_internal,
5328 "expecting end of component marker", goto error);
5330 for (--i; i >= 0 && g->order[i] != -1; --i) {
5331 int scc = graph->node[g->order[i]].scc;
5332 c->scc_in_merge[scc] = 1;
5335 isl_tarjan_graph_free(g);
5336 return isl_stat_ok;
5337 error:
5338 isl_tarjan_graph_free(g);
5339 return isl_stat_error;
5342 /* Construct the identifier "cluster_i".
5344 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5346 char name[40];
5348 snprintf(name, sizeof(name), "cluster_%d", i);
5349 return isl_id_alloc(ctx, name, NULL);
5352 /* Construct the space of the cluster with index "i" containing
5353 * the strongly connected component "scc".
5355 * In particular, construct a space called cluster_i with dimension equal
5356 * to the number of schedule rows in the current band of "scc".
5358 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5360 int nvar;
5361 isl_space *space;
5362 isl_id *id;
5364 nvar = scc->n_total_row - scc->band_start;
5365 space = isl_space_copy(scc->node[0].space);
5366 space = isl_space_params(space);
5367 space = isl_space_set_from_params(space);
5368 space = isl_space_add_dims(space, isl_dim_set, nvar);
5369 id = cluster_id(isl_space_get_ctx(space), i);
5370 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5372 return space;
5375 /* Collect the domain of the graph for merging clusters.
5377 * In particular, for each cluster with first SCC "i", construct
5378 * a set in the space called cluster_i with dimension equal
5379 * to the number of schedule rows in the current band of the cluster.
5381 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5382 struct isl_sched_graph *graph, struct isl_clustering *c)
5384 int i;
5385 isl_space *space;
5386 isl_union_set *domain;
5388 space = isl_space_params_alloc(ctx, 0);
5389 domain = isl_union_set_empty(space);
5391 for (i = 0; i < graph->scc; ++i) {
5392 isl_space *space;
5394 if (!c->scc_in_merge[i])
5395 continue;
5396 if (c->scc_cluster[i] != i)
5397 continue;
5398 space = cluster_space(&c->scc[i], i);
5399 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5402 return domain;
5405 /* Construct a map from the original instances to the corresponding
5406 * cluster instance in the current bands of the clusters in "c".
5408 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5409 struct isl_sched_graph *graph, struct isl_clustering *c)
5411 int i, j;
5412 isl_space *space;
5413 isl_union_map *cluster_map;
5415 space = isl_space_params_alloc(ctx, 0);
5416 cluster_map = isl_union_map_empty(space);
5417 for (i = 0; i < graph->scc; ++i) {
5418 int start, n;
5419 isl_id *id;
5421 if (!c->scc_in_merge[i])
5422 continue;
5424 id = cluster_id(ctx, c->scc_cluster[i]);
5425 start = c->scc[i].band_start;
5426 n = c->scc[i].n_total_row - start;
5427 for (j = 0; j < c->scc[i].n; ++j) {
5428 isl_multi_aff *ma;
5429 isl_map *map;
5430 struct isl_sched_node *node = &c->scc[i].node[j];
5432 ma = node_extract_partial_schedule_multi_aff(node,
5433 start, n);
5434 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5435 isl_id_copy(id));
5436 map = isl_map_from_multi_aff(ma);
5437 cluster_map = isl_union_map_add_map(cluster_map, map);
5439 isl_id_free(id);
5442 return cluster_map;
5445 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5446 * that are not isl_edge_condition or isl_edge_conditional_validity.
5448 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5449 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5450 __isl_take isl_schedule_constraints *sc)
5452 enum isl_edge_type t;
5454 if (!sc)
5455 return NULL;
5457 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5458 if (t == isl_edge_condition ||
5459 t == isl_edge_conditional_validity)
5460 continue;
5461 if (!is_type(edge, t))
5462 continue;
5463 sc = isl_schedule_constraints_add(sc, t,
5464 isl_union_map_copy(umap));
5467 return sc;
5470 /* Add schedule constraints of types isl_edge_condition and
5471 * isl_edge_conditional_validity to "sc" by applying "umap" to
5472 * the domains of the wrapped relations in domain and range
5473 * of the corresponding tagged constraints of "edge".
5475 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5476 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5477 __isl_take isl_schedule_constraints *sc)
5479 enum isl_edge_type t;
5480 isl_union_map *tagged;
5482 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5483 if (!is_type(edge, t))
5484 continue;
5485 if (t == isl_edge_condition)
5486 tagged = isl_union_map_copy(edge->tagged_condition);
5487 else
5488 tagged = isl_union_map_copy(edge->tagged_validity);
5489 tagged = isl_union_map_zip(tagged);
5490 tagged = isl_union_map_apply_domain(tagged,
5491 isl_union_map_copy(umap));
5492 tagged = isl_union_map_zip(tagged);
5493 sc = isl_schedule_constraints_add(sc, t, tagged);
5494 if (!sc)
5495 return NULL;
5498 return sc;
5501 /* Given a mapping "cluster_map" from the original instances to
5502 * the cluster instances, add schedule constraints on the clusters
5503 * to "sc" corresponding to the original constraints represented by "edge".
5505 * For non-tagged dependence constraints, the cluster constraints
5506 * are obtained by applying "cluster_map" to the edge->map.
5508 * For tagged dependence constraints, "cluster_map" needs to be applied
5509 * to the domains of the wrapped relations in domain and range
5510 * of the tagged dependence constraints. Pick out the mappings
5511 * from these domains from "cluster_map" and construct their product.
5512 * This mapping can then be applied to the pair of domains.
5514 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5515 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5516 __isl_take isl_schedule_constraints *sc)
5518 isl_union_map *umap;
5519 isl_space *space;
5520 isl_union_set *uset;
5521 isl_union_map *umap1, *umap2;
5523 if (!sc)
5524 return NULL;
5526 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5527 umap = isl_union_map_apply_domain(umap,
5528 isl_union_map_copy(cluster_map));
5529 umap = isl_union_map_apply_range(umap,
5530 isl_union_map_copy(cluster_map));
5531 sc = add_non_conditional_constraints(edge, umap, sc);
5532 isl_union_map_free(umap);
5534 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5535 return sc;
5537 space = isl_space_domain(isl_map_get_space(edge->map));
5538 uset = isl_union_set_from_set(isl_set_universe(space));
5539 umap1 = isl_union_map_copy(cluster_map);
5540 umap1 = isl_union_map_intersect_domain(umap1, uset);
5541 space = isl_space_range(isl_map_get_space(edge->map));
5542 uset = isl_union_set_from_set(isl_set_universe(space));
5543 umap2 = isl_union_map_copy(cluster_map);
5544 umap2 = isl_union_map_intersect_domain(umap2, uset);
5545 umap = isl_union_map_product(umap1, umap2);
5547 sc = add_conditional_constraints(edge, umap, sc);
5549 isl_union_map_free(umap);
5550 return sc;
5553 /* Given a mapping "cluster_map" from the original instances to
5554 * the cluster instances, add schedule constraints on the clusters
5555 * to "sc" corresponding to all edges in "graph" between nodes that
5556 * belong to SCCs that are marked for merging in "scc_in_merge".
5558 static __isl_give isl_schedule_constraints *collect_constraints(
5559 struct isl_sched_graph *graph, int *scc_in_merge,
5560 __isl_keep isl_union_map *cluster_map,
5561 __isl_take isl_schedule_constraints *sc)
5563 int i;
5565 for (i = 0; i < graph->n_edge; ++i) {
5566 struct isl_sched_edge *edge = &graph->edge[i];
5568 if (!scc_in_merge[edge->src->scc])
5569 continue;
5570 if (!scc_in_merge[edge->dst->scc])
5571 continue;
5572 sc = collect_edge_constraints(edge, cluster_map, sc);
5575 return sc;
5578 /* Construct a dependence graph for scheduling clusters with respect
5579 * to each other and store the result in "merge_graph".
5580 * In particular, the nodes of the graph correspond to the schedule
5581 * dimensions of the current bands of those clusters that have been
5582 * marked for merging in "c".
5584 * First construct an isl_schedule_constraints object for this domain
5585 * by transforming the edges in "graph" to the domain.
5586 * Then initialize a dependence graph for scheduling from these
5587 * constraints.
5589 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5590 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5592 isl_union_set *domain;
5593 isl_union_map *cluster_map;
5594 isl_schedule_constraints *sc;
5595 isl_stat r;
5597 domain = collect_domain(ctx, graph, c);
5598 sc = isl_schedule_constraints_on_domain(domain);
5599 if (!sc)
5600 return isl_stat_error;
5601 cluster_map = collect_cluster_map(ctx, graph, c);
5602 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5603 isl_union_map_free(cluster_map);
5605 r = graph_init(merge_graph, sc);
5607 isl_schedule_constraints_free(sc);
5609 return r;
5612 /* Compute the maximal number of remaining schedule rows that still need
5613 * to be computed for the nodes that belong to clusters with the maximal
5614 * dimension for the current band (i.e., the band that is to be merged).
5615 * Only clusters that are about to be merged are considered.
5616 * "maxvar" is the maximal dimension for the current band.
5617 * "c" contains information about the clusters.
5619 * Return the maximal number of remaining schedule rows or -1 on error.
5621 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5623 int i, j;
5624 int max_slack;
5626 max_slack = 0;
5627 for (i = 0; i < c->n; ++i) {
5628 int nvar;
5629 struct isl_sched_graph *scc;
5631 if (!c->scc_in_merge[i])
5632 continue;
5633 scc = &c->scc[i];
5634 nvar = scc->n_total_row - scc->band_start;
5635 if (nvar != maxvar)
5636 continue;
5637 for (j = 0; j < scc->n; ++j) {
5638 struct isl_sched_node *node = &scc->node[j];
5639 int slack;
5641 if (node_update_vmap(node) < 0)
5642 return -1;
5643 slack = node->nvar - node->rank;
5644 if (slack > max_slack)
5645 max_slack = slack;
5649 return max_slack;
5652 /* If there are any clusters where the dimension of the current band
5653 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5654 * if there are any nodes in such a cluster where the number
5655 * of remaining schedule rows that still need to be computed
5656 * is greater than "max_slack", then return the smallest current band
5657 * dimension of all these clusters. Otherwise return the original value
5658 * of "maxvar". Return -1 in case of any error.
5659 * Only clusters that are about to be merged are considered.
5660 * "c" contains information about the clusters.
5662 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5663 struct isl_clustering *c)
5665 int i, j;
5667 for (i = 0; i < c->n; ++i) {
5668 int nvar;
5669 struct isl_sched_graph *scc;
5671 if (!c->scc_in_merge[i])
5672 continue;
5673 scc = &c->scc[i];
5674 nvar = scc->n_total_row - scc->band_start;
5675 if (nvar >= maxvar)
5676 continue;
5677 for (j = 0; j < scc->n; ++j) {
5678 struct isl_sched_node *node = &scc->node[j];
5679 int slack;
5681 if (node_update_vmap(node) < 0)
5682 return -1;
5683 slack = node->nvar - node->rank;
5684 if (slack > max_slack) {
5685 maxvar = nvar;
5686 break;
5691 return maxvar;
5694 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5695 * that still need to be computed. In particular, if there is a node
5696 * in a cluster where the dimension of the current band is smaller
5697 * than merge_graph->maxvar, but the number of remaining schedule rows
5698 * is greater than that of any node in a cluster with the maximal
5699 * dimension for the current band (i.e., merge_graph->maxvar),
5700 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5701 * of those clusters. Without this adjustment, the total number of
5702 * schedule dimensions would be increased, resulting in a skewed view
5703 * of the number of coincident dimensions.
5704 * "c" contains information about the clusters.
5706 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5707 * then there is no point in attempting any merge since it will be rejected
5708 * anyway. Set merge_graph->maxvar to zero in such cases.
5710 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5711 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5713 int max_slack, maxvar;
5715 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5716 if (max_slack < 0)
5717 return isl_stat_error;
5718 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5719 if (maxvar < 0)
5720 return isl_stat_error;
5722 if (maxvar < merge_graph->maxvar) {
5723 if (isl_options_get_schedule_maximize_band_depth(ctx))
5724 merge_graph->maxvar = 0;
5725 else
5726 merge_graph->maxvar = maxvar;
5729 return isl_stat_ok;
5732 /* Return the number of coincident dimensions in the current band of "graph",
5733 * where the nodes of "graph" are assumed to be scheduled by a single band.
5735 static int get_n_coincident(struct isl_sched_graph *graph)
5737 int i;
5739 for (i = graph->band_start; i < graph->n_total_row; ++i)
5740 if (!graph->node[0].coincident[i])
5741 break;
5743 return i - graph->band_start;
5746 /* Should the clusters be merged based on the cluster schedule
5747 * in the current (and only) band of "merge_graph", given that
5748 * coincidence should be maximized?
5750 * If the number of coincident schedule dimensions in the merged band
5751 * would be less than the maximal number of coincident schedule dimensions
5752 * in any of the merged clusters, then the clusters should not be merged.
5754 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5755 struct isl_sched_graph *merge_graph)
5757 int i;
5758 int n_coincident;
5759 int max_coincident;
5761 max_coincident = 0;
5762 for (i = 0; i < c->n; ++i) {
5763 if (!c->scc_in_merge[i])
5764 continue;
5765 n_coincident = get_n_coincident(&c->scc[i]);
5766 if (n_coincident > max_coincident)
5767 max_coincident = n_coincident;
5770 n_coincident = get_n_coincident(merge_graph);
5772 return n_coincident >= max_coincident;
5775 /* Return the transformation on "node" expressed by the current (and only)
5776 * band of "merge_graph" applied to the clusters in "c".
5778 * First find the representation of "node" in its SCC in "c" and
5779 * extract the transformation expressed by the current band.
5780 * Then extract the transformation applied by "merge_graph"
5781 * to the cluster to which this SCC belongs.
5782 * Combine the two to obtain the complete transformation on the node.
5784 * Note that the range of the first transformation is an anonymous space,
5785 * while the domain of the second is named "cluster_X". The range
5786 * of the former therefore needs to be adjusted before the two
5787 * can be combined.
5789 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5790 struct isl_sched_node *node, struct isl_clustering *c,
5791 struct isl_sched_graph *merge_graph)
5793 struct isl_sched_node *scc_node, *cluster_node;
5794 int start, n;
5795 isl_id *id;
5796 isl_space *space;
5797 isl_multi_aff *ma, *ma2;
5799 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5800 start = c->scc[node->scc].band_start;
5801 n = c->scc[node->scc].n_total_row - start;
5802 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5803 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5804 cluster_node = graph_find_node(ctx, merge_graph, space);
5805 if (space && !cluster_node)
5806 isl_die(ctx, isl_error_internal, "unable to find cluster",
5807 space = isl_space_free(space));
5808 id = isl_space_get_tuple_id(space, isl_dim_set);
5809 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5810 isl_space_free(space);
5811 n = merge_graph->n_total_row;
5812 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5813 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5815 return isl_map_from_multi_aff(ma);
5818 /* Give a set of distances "set", are they bounded by a small constant
5819 * in direction "pos"?
5820 * In practice, check if they are bounded by 2 by checking that there
5821 * are no elements with a value greater than or equal to 3 or
5822 * smaller than or equal to -3.
5824 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5826 isl_bool bounded;
5827 isl_set *test;
5829 if (!set)
5830 return isl_bool_error;
5832 test = isl_set_copy(set);
5833 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5834 bounded = isl_set_is_empty(test);
5835 isl_set_free(test);
5837 if (bounded < 0 || !bounded)
5838 return bounded;
5840 test = isl_set_copy(set);
5841 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5842 bounded = isl_set_is_empty(test);
5843 isl_set_free(test);
5845 return bounded;
5848 /* Does the set "set" have a fixed (but possible parametric) value
5849 * at dimension "pos"?
5851 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5853 int n;
5854 isl_bool single;
5856 if (!set)
5857 return isl_bool_error;
5858 set = isl_set_copy(set);
5859 n = isl_set_dim(set, isl_dim_set);
5860 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5861 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5862 single = isl_set_is_singleton(set);
5863 isl_set_free(set);
5865 return single;
5868 /* Does "map" have a fixed (but possible parametric) value
5869 * at dimension "pos" of either its domain or its range?
5871 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5873 isl_set *set;
5874 isl_bool single;
5876 set = isl_map_domain(isl_map_copy(map));
5877 single = has_single_value(set, pos);
5878 isl_set_free(set);
5880 if (single < 0 || single)
5881 return single;
5883 set = isl_map_range(isl_map_copy(map));
5884 single = has_single_value(set, pos);
5885 isl_set_free(set);
5887 return single;
5890 /* Does the edge "edge" from "graph" have bounded dependence distances
5891 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5893 * Extract the complete transformations of the source and destination
5894 * nodes of the edge, apply them to the edge constraints and
5895 * compute the differences. Finally, check if these differences are bounded
5896 * in each direction.
5898 * If the dimension of the band is greater than the number of
5899 * dimensions that can be expected to be optimized by the edge
5900 * (based on its weight), then also allow the differences to be unbounded
5901 * in the remaining dimensions, but only if either the source or
5902 * the destination has a fixed value in that direction.
5903 * This allows a statement that produces values that are used by
5904 * several instances of another statement to be merged with that
5905 * other statement.
5906 * However, merging such clusters will introduce an inherently
5907 * large proximity distance inside the merged cluster, meaning
5908 * that proximity distances will no longer be optimized in
5909 * subsequent merges. These merges are therefore only allowed
5910 * after all other possible merges have been tried.
5911 * The first time such a merge is encountered, the weight of the edge
5912 * is replaced by a negative weight. The second time (i.e., after
5913 * all merges over edges with a non-negative weight have been tried),
5914 * the merge is allowed.
5916 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5917 struct isl_sched_graph *graph, struct isl_clustering *c,
5918 struct isl_sched_graph *merge_graph)
5920 int i, n, n_slack;
5921 isl_bool bounded;
5922 isl_map *map, *t;
5923 isl_set *dist;
5925 map = isl_map_copy(edge->map);
5926 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5927 map = isl_map_apply_domain(map, t);
5928 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5929 map = isl_map_apply_range(map, t);
5930 dist = isl_map_deltas(isl_map_copy(map));
5932 bounded = isl_bool_true;
5933 n = isl_set_dim(dist, isl_dim_set);
5934 n_slack = n - edge->weight;
5935 if (edge->weight < 0)
5936 n_slack -= graph->max_weight + 1;
5937 for (i = 0; i < n; ++i) {
5938 isl_bool bounded_i, singular_i;
5940 bounded_i = distance_is_bounded(dist, i);
5941 if (bounded_i < 0)
5942 goto error;
5943 if (bounded_i)
5944 continue;
5945 if (edge->weight >= 0)
5946 bounded = isl_bool_false;
5947 n_slack--;
5948 if (n_slack < 0)
5949 break;
5950 singular_i = has_singular_src_or_dst(map, i);
5951 if (singular_i < 0)
5952 goto error;
5953 if (singular_i)
5954 continue;
5955 bounded = isl_bool_false;
5956 break;
5958 if (!bounded && i >= n && edge->weight >= 0)
5959 edge->weight -= graph->max_weight + 1;
5960 isl_map_free(map);
5961 isl_set_free(dist);
5963 return bounded;
5964 error:
5965 isl_map_free(map);
5966 isl_set_free(dist);
5967 return isl_bool_error;
5970 /* Should the clusters be merged based on the cluster schedule
5971 * in the current (and only) band of "merge_graph"?
5972 * "graph" is the original dependence graph, while "c" records
5973 * which SCCs are involved in the latest merge.
5975 * In particular, is there at least one proximity constraint
5976 * that is optimized by the merge?
5978 * A proximity constraint is considered to be optimized
5979 * if the dependence distances are small.
5981 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5982 struct isl_sched_graph *graph, struct isl_clustering *c,
5983 struct isl_sched_graph *merge_graph)
5985 int i;
5987 for (i = 0; i < graph->n_edge; ++i) {
5988 struct isl_sched_edge *edge = &graph->edge[i];
5989 isl_bool bounded;
5991 if (!is_proximity(edge))
5992 continue;
5993 if (!c->scc_in_merge[edge->src->scc])
5994 continue;
5995 if (!c->scc_in_merge[edge->dst->scc])
5996 continue;
5997 if (c->scc_cluster[edge->dst->scc] ==
5998 c->scc_cluster[edge->src->scc])
5999 continue;
6000 bounded = has_bounded_distances(ctx, edge, graph, c,
6001 merge_graph);
6002 if (bounded < 0 || bounded)
6003 return bounded;
6006 return isl_bool_false;
6009 /* Should the clusters be merged based on the cluster schedule
6010 * in the current (and only) band of "merge_graph"?
6011 * "graph" is the original dependence graph, while "c" records
6012 * which SCCs are involved in the latest merge.
6014 * If the current band is empty, then the clusters should not be merged.
6016 * If the band depth should be maximized and the merge schedule
6017 * is incomplete (meaning that the dimension of some of the schedule
6018 * bands in the original schedule will be reduced), then the clusters
6019 * should not be merged.
6021 * If the schedule_maximize_coincidence option is set, then check that
6022 * the number of coincident schedule dimensions is not reduced.
6024 * Finally, only allow the merge if at least one proximity
6025 * constraint is optimized.
6027 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6028 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6030 if (merge_graph->n_total_row == merge_graph->band_start)
6031 return isl_bool_false;
6033 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6034 merge_graph->n_total_row < merge_graph->maxvar)
6035 return isl_bool_false;
6037 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6038 isl_bool ok;
6040 ok = ok_to_merge_coincident(c, merge_graph);
6041 if (ok < 0 || !ok)
6042 return ok;
6045 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6048 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6049 * of the schedule in "node" and return the result.
6051 * That is, essentially compute
6053 * T * N(first:first+n-1)
6055 * taking into account the constant term and the parameter coefficients
6056 * in "t_node".
6058 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6059 struct isl_sched_node *t_node, struct isl_sched_node *node,
6060 int first, int n)
6062 int i, j;
6063 isl_mat *t;
6064 int n_row, n_col, n_param, n_var;
6066 n_param = node->nparam;
6067 n_var = node->nvar;
6068 n_row = isl_mat_rows(t_node->sched);
6069 n_col = isl_mat_cols(node->sched);
6070 t = isl_mat_alloc(ctx, n_row, n_col);
6071 if (!t)
6072 return NULL;
6073 for (i = 0; i < n_row; ++i) {
6074 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6075 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6076 for (j = 0; j < n; ++j)
6077 isl_seq_addmul(t->row[i],
6078 t_node->sched->row[i][1 + n_param + j],
6079 node->sched->row[first + j],
6080 1 + n_param + n_var);
6082 return t;
6085 /* Apply the cluster schedule in "t_node" to the current band
6086 * schedule of the nodes in "graph".
6088 * In particular, replace the rows starting at band_start
6089 * by the result of applying the cluster schedule in "t_node"
6090 * to the original rows.
6092 * The coincidence of the schedule is determined by the coincidence
6093 * of the cluster schedule.
6095 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6096 struct isl_sched_node *t_node)
6098 int i, j;
6099 int n_new;
6100 int start, n;
6102 start = graph->band_start;
6103 n = graph->n_total_row - start;
6105 n_new = isl_mat_rows(t_node->sched);
6106 for (i = 0; i < graph->n; ++i) {
6107 struct isl_sched_node *node = &graph->node[i];
6108 isl_mat *t;
6110 t = node_transformation(ctx, t_node, node, start, n);
6111 node->sched = isl_mat_drop_rows(node->sched, start, n);
6112 node->sched = isl_mat_concat(node->sched, t);
6113 node->sched_map = isl_map_free(node->sched_map);
6114 if (!node->sched)
6115 return isl_stat_error;
6116 for (j = 0; j < n_new; ++j)
6117 node->coincident[start + j] = t_node->coincident[j];
6119 graph->n_total_row -= n;
6120 graph->n_row -= n;
6121 graph->n_total_row += n_new;
6122 graph->n_row += n_new;
6124 return isl_stat_ok;
6127 /* Merge the clusters marked for merging in "c" into a single
6128 * cluster using the cluster schedule in the current band of "merge_graph".
6129 * The representative SCC for the new cluster is the SCC with
6130 * the smallest index.
6132 * The current band schedule of each SCC in the new cluster is obtained
6133 * by applying the schedule of the corresponding original cluster
6134 * to the original band schedule.
6135 * All SCCs in the new cluster have the same number of schedule rows.
6137 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6138 struct isl_sched_graph *merge_graph)
6140 int i;
6141 int cluster = -1;
6142 isl_space *space;
6144 for (i = 0; i < c->n; ++i) {
6145 struct isl_sched_node *node;
6147 if (!c->scc_in_merge[i])
6148 continue;
6149 if (cluster < 0)
6150 cluster = i;
6151 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6152 if (!space)
6153 return isl_stat_error;
6154 node = graph_find_node(ctx, merge_graph, space);
6155 isl_space_free(space);
6156 if (!node)
6157 isl_die(ctx, isl_error_internal,
6158 "unable to find cluster",
6159 return isl_stat_error);
6160 if (transform(ctx, &c->scc[i], node) < 0)
6161 return isl_stat_error;
6162 c->scc_cluster[i] = cluster;
6165 return isl_stat_ok;
6168 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6169 * by scheduling the current cluster bands with respect to each other.
6171 * Construct a dependence graph with a space for each cluster and
6172 * with the coordinates of each space corresponding to the schedule
6173 * dimensions of the current band of that cluster.
6174 * Construct a cluster schedule in this cluster dependence graph and
6175 * apply it to the current cluster bands if it is applicable
6176 * according to ok_to_merge.
6178 * If the number of remaining schedule dimensions in a cluster
6179 * with a non-maximal current schedule dimension is greater than
6180 * the number of remaining schedule dimensions in clusters
6181 * with a maximal current schedule dimension, then restrict
6182 * the number of rows to be computed in the cluster schedule
6183 * to the minimal such non-maximal current schedule dimension.
6184 * Do this by adjusting merge_graph.maxvar.
6186 * Return isl_bool_true if the clusters have effectively been merged
6187 * into a single cluster.
6189 * Note that since the standard scheduling algorithm minimizes the maximal
6190 * distance over proximity constraints, the proximity constraints between
6191 * the merged clusters may not be optimized any further than what is
6192 * sufficient to bring the distances within the limits of the internal
6193 * proximity constraints inside the individual clusters.
6194 * It may therefore make sense to perform an additional translation step
6195 * to bring the clusters closer to each other, while maintaining
6196 * the linear part of the merging schedule found using the standard
6197 * scheduling algorithm.
6199 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6200 struct isl_clustering *c)
6202 struct isl_sched_graph merge_graph = { 0 };
6203 isl_bool merged;
6205 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6206 goto error;
6208 if (compute_maxvar(&merge_graph) < 0)
6209 goto error;
6210 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6211 goto error;
6212 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6213 goto error;
6214 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6215 if (merged && merge(ctx, c, &merge_graph) < 0)
6216 goto error;
6218 graph_free(ctx, &merge_graph);
6219 return merged;
6220 error:
6221 graph_free(ctx, &merge_graph);
6222 return isl_bool_error;
6225 /* Is there any edge marked "no_merge" between two SCCs that are
6226 * about to be merged (i.e., that are set in "scc_in_merge")?
6227 * "merge_edge" is the proximity edge along which the clusters of SCCs
6228 * are going to be merged.
6230 * If there is any edge between two SCCs with a negative weight,
6231 * while the weight of "merge_edge" is non-negative, then this
6232 * means that the edge was postponed. "merge_edge" should then
6233 * also be postponed since merging along the edge with negative weight should
6234 * be postponed until all edges with non-negative weight have been tried.
6235 * Replace the weight of "merge_edge" by a negative weight as well and
6236 * tell the caller not to attempt a merge.
6238 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6239 struct isl_sched_edge *merge_edge)
6241 int i;
6243 for (i = 0; i < graph->n_edge; ++i) {
6244 struct isl_sched_edge *edge = &graph->edge[i];
6246 if (!scc_in_merge[edge->src->scc])
6247 continue;
6248 if (!scc_in_merge[edge->dst->scc])
6249 continue;
6250 if (edge->no_merge)
6251 return 1;
6252 if (merge_edge->weight >= 0 && edge->weight < 0) {
6253 merge_edge->weight -= graph->max_weight + 1;
6254 return 1;
6258 return 0;
6261 /* Merge the two clusters in "c" connected by the edge in "graph"
6262 * with index "edge" into a single cluster.
6263 * If it turns out to be impossible to merge these two clusters,
6264 * then mark the edge as "no_merge" such that it will not be
6265 * considered again.
6267 * First mark all SCCs that need to be merged. This includes the SCCs
6268 * in the two clusters, but it may also include the SCCs
6269 * of intermediate clusters.
6270 * If there is already a no_merge edge between any pair of such SCCs,
6271 * then simply mark the current edge as no_merge as well.
6272 * Likewise, if any of those edges was postponed by has_bounded_distances,
6273 * then postpone the current edge as well.
6274 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6275 * if the clusters did not end up getting merged, unless the non-merge
6276 * is due to the fact that the edge was postponed. This postponement
6277 * can be recognized by a change in weight (from non-negative to negative).
6279 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6280 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6282 isl_bool merged;
6283 int edge_weight = graph->edge[edge].weight;
6285 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6286 return isl_stat_error;
6288 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6289 merged = isl_bool_false;
6290 else
6291 merged = try_merge(ctx, graph, c);
6292 if (merged < 0)
6293 return isl_stat_error;
6294 if (!merged && edge_weight == graph->edge[edge].weight)
6295 graph->edge[edge].no_merge = 1;
6297 return isl_stat_ok;
6300 /* Does "node" belong to the cluster identified by "cluster"?
6302 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6304 return node->cluster == cluster;
6307 /* Does "edge" connect two nodes belonging to the cluster
6308 * identified by "cluster"?
6310 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6312 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6315 /* Swap the schedule of "node1" and "node2".
6316 * Both nodes have been derived from the same node in a common parent graph.
6317 * Since the "coincident" field is shared with that node
6318 * in the parent graph, there is no need to also swap this field.
6320 static void swap_sched(struct isl_sched_node *node1,
6321 struct isl_sched_node *node2)
6323 isl_mat *sched;
6324 isl_map *sched_map;
6326 sched = node1->sched;
6327 node1->sched = node2->sched;
6328 node2->sched = sched;
6330 sched_map = node1->sched_map;
6331 node1->sched_map = node2->sched_map;
6332 node2->sched_map = sched_map;
6335 /* Copy the current band schedule from the SCCs that form the cluster
6336 * with index "pos" to the actual cluster at position "pos".
6337 * By construction, the index of the first SCC that belongs to the cluster
6338 * is also "pos".
6340 * The order of the nodes inside both the SCCs and the cluster
6341 * is assumed to be same as the order in the original "graph".
6343 * Since the SCC graphs will no longer be used after this function,
6344 * the schedules are actually swapped rather than copied.
6346 static isl_stat copy_partial(struct isl_sched_graph *graph,
6347 struct isl_clustering *c, int pos)
6349 int i, j;
6351 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6352 c->cluster[pos].n_row = c->scc[pos].n_row;
6353 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6354 j = 0;
6355 for (i = 0; i < graph->n; ++i) {
6356 int k;
6357 int s;
6359 if (graph->node[i].cluster != pos)
6360 continue;
6361 s = graph->node[i].scc;
6362 k = c->scc_node[s]++;
6363 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6364 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6365 c->cluster[pos].maxvar = c->scc[s].maxvar;
6366 ++j;
6369 return isl_stat_ok;
6372 /* Is there a (conditional) validity dependence from node[j] to node[i],
6373 * forcing node[i] to follow node[j] or do the nodes belong to the same
6374 * cluster?
6376 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6378 struct isl_sched_graph *graph = user;
6380 if (graph->node[i].cluster == graph->node[j].cluster)
6381 return isl_bool_true;
6382 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6385 /* Extract the merged clusters of SCCs in "graph", sort them, and
6386 * store them in c->clusters. Update c->scc_cluster accordingly.
6388 * First keep track of the cluster containing the SCC to which a node
6389 * belongs in the node itself.
6390 * Then extract the clusters into c->clusters, copying the current
6391 * band schedule from the SCCs that belong to the cluster.
6392 * Do this only once per cluster.
6394 * Finally, topologically sort the clusters and update c->scc_cluster
6395 * to match the new scc numbering. While the SCCs were originally
6396 * sorted already, some SCCs that depend on some other SCCs may
6397 * have been merged with SCCs that appear before these other SCCs.
6398 * A reordering may therefore be required.
6400 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6401 struct isl_clustering *c)
6403 int i;
6405 for (i = 0; i < graph->n; ++i)
6406 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6408 for (i = 0; i < graph->scc; ++i) {
6409 if (c->scc_cluster[i] != i)
6410 continue;
6411 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6412 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6413 return isl_stat_error;
6414 c->cluster[i].src_scc = -1;
6415 c->cluster[i].dst_scc = -1;
6416 if (copy_partial(graph, c, i) < 0)
6417 return isl_stat_error;
6420 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6421 return isl_stat_error;
6422 for (i = 0; i < graph->n; ++i)
6423 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6425 return isl_stat_ok;
6428 /* Compute weights on the proximity edges of "graph" that can
6429 * be used by find_proximity to find the most appropriate
6430 * proximity edge to use to merge two clusters in "c".
6431 * The weights are also used by has_bounded_distances to determine
6432 * whether the merge should be allowed.
6433 * Store the maximum of the computed weights in graph->max_weight.
6435 * The computed weight is a measure for the number of remaining schedule
6436 * dimensions that can still be completely aligned.
6437 * In particular, compute the number of equalities between
6438 * input dimensions and output dimensions in the proximity constraints.
6439 * The directions that are already handled by outer schedule bands
6440 * are projected out prior to determining this number.
6442 * Edges that will never be considered by find_proximity are ignored.
6444 static isl_stat compute_weights(struct isl_sched_graph *graph,
6445 struct isl_clustering *c)
6447 int i;
6449 graph->max_weight = 0;
6451 for (i = 0; i < graph->n_edge; ++i) {
6452 struct isl_sched_edge *edge = &graph->edge[i];
6453 struct isl_sched_node *src = edge->src;
6454 struct isl_sched_node *dst = edge->dst;
6455 isl_basic_map *hull;
6456 isl_bool prox;
6457 int n_in, n_out;
6459 prox = is_non_empty_proximity(edge);
6460 if (prox < 0)
6461 return isl_stat_error;
6462 if (!prox)
6463 continue;
6464 if (bad_cluster(&c->scc[edge->src->scc]) ||
6465 bad_cluster(&c->scc[edge->dst->scc]))
6466 continue;
6467 if (c->scc_cluster[edge->dst->scc] ==
6468 c->scc_cluster[edge->src->scc])
6469 continue;
6471 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6472 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6473 isl_mat_copy(src->vmap));
6474 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6475 isl_mat_copy(dst->vmap));
6476 hull = isl_basic_map_project_out(hull,
6477 isl_dim_in, 0, src->rank);
6478 hull = isl_basic_map_project_out(hull,
6479 isl_dim_out, 0, dst->rank);
6480 hull = isl_basic_map_remove_divs(hull);
6481 n_in = isl_basic_map_dim(hull, isl_dim_in);
6482 n_out = isl_basic_map_dim(hull, isl_dim_out);
6483 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6484 isl_dim_in, 0, n_in);
6485 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6486 isl_dim_out, 0, n_out);
6487 if (!hull)
6488 return isl_stat_error;
6489 edge->weight = isl_basic_map_n_equality(hull);
6490 isl_basic_map_free(hull);
6492 if (edge->weight > graph->max_weight)
6493 graph->max_weight = edge->weight;
6496 return isl_stat_ok;
6499 /* Call compute_schedule_finish_band on each of the clusters in "c"
6500 * in their topological order. This order is determined by the scc
6501 * fields of the nodes in "graph".
6502 * Combine the results in a sequence expressing the topological order.
6504 * If there is only one cluster left, then there is no need to introduce
6505 * a sequence node. Also, in this case, the cluster necessarily contains
6506 * the SCC at position 0 in the original graph and is therefore also
6507 * stored in the first cluster of "c".
6509 static __isl_give isl_schedule_node *finish_bands_clustering(
6510 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6511 struct isl_clustering *c)
6513 int i;
6514 isl_ctx *ctx;
6515 isl_union_set_list *filters;
6517 if (graph->scc == 1)
6518 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6520 ctx = isl_schedule_node_get_ctx(node);
6522 filters = extract_sccs(ctx, graph);
6523 node = isl_schedule_node_insert_sequence(node, filters);
6525 for (i = 0; i < graph->scc; ++i) {
6526 int j = c->scc_cluster[i];
6527 node = isl_schedule_node_child(node, i);
6528 node = isl_schedule_node_child(node, 0);
6529 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6530 node = isl_schedule_node_parent(node);
6531 node = isl_schedule_node_parent(node);
6534 return node;
6537 /* Compute a schedule for a connected dependence graph by first considering
6538 * each strongly connected component (SCC) in the graph separately and then
6539 * incrementally combining them into clusters.
6540 * Return the updated schedule node.
6542 * Initially, each cluster consists of a single SCC, each with its
6543 * own band schedule. The algorithm then tries to merge pairs
6544 * of clusters along a proximity edge until no more suitable
6545 * proximity edges can be found. During this merging, the schedule
6546 * is maintained in the individual SCCs.
6547 * After the merging is completed, the full resulting clusters
6548 * are extracted and in finish_bands_clustering,
6549 * compute_schedule_finish_band is called on each of them to integrate
6550 * the band into "node" and to continue the computation.
6552 * compute_weights initializes the weights that are used by find_proximity.
6554 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6555 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6557 isl_ctx *ctx;
6558 struct isl_clustering c;
6559 int i;
6561 ctx = isl_schedule_node_get_ctx(node);
6563 if (clustering_init(ctx, &c, graph) < 0)
6564 goto error;
6566 if (compute_weights(graph, &c) < 0)
6567 goto error;
6569 for (;;) {
6570 i = find_proximity(graph, &c);
6571 if (i < 0)
6572 goto error;
6573 if (i >= graph->n_edge)
6574 break;
6575 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6576 goto error;
6579 if (extract_clusters(ctx, graph, &c) < 0)
6580 goto error;
6582 node = finish_bands_clustering(node, graph, &c);
6584 clustering_free(ctx, &c);
6585 return node;
6586 error:
6587 clustering_free(ctx, &c);
6588 return isl_schedule_node_free(node);
6591 /* Compute a schedule for a connected dependence graph and return
6592 * the updated schedule node.
6594 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6595 * as many validity dependences as possible. When all validity dependences
6596 * are satisfied we extend the schedule to a full-dimensional schedule.
6598 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6599 * depending on whether the user has selected the option to try and
6600 * compute a schedule for the entire (weakly connected) component first.
6601 * If there is only a single strongly connected component (SCC), then
6602 * there is no point in trying to combine SCCs
6603 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6604 * is called instead.
6606 static __isl_give isl_schedule_node *compute_schedule_wcc(
6607 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6609 isl_ctx *ctx;
6611 if (!node)
6612 return NULL;
6614 ctx = isl_schedule_node_get_ctx(node);
6615 if (detect_sccs(ctx, graph) < 0)
6616 return isl_schedule_node_free(node);
6618 if (compute_maxvar(graph) < 0)
6619 return isl_schedule_node_free(node);
6621 if (need_feautrier_step(ctx, graph))
6622 return compute_schedule_wcc_feautrier(node, graph);
6624 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6625 return compute_schedule_wcc_whole(node, graph);
6626 else
6627 return compute_schedule_wcc_clustering(node, graph);
6630 /* Compute a schedule for each group of nodes identified by node->scc
6631 * separately and then combine them in a sequence node (or as set node
6632 * if graph->weak is set) inserted at position "node" of the schedule tree.
6633 * Return the updated schedule node.
6635 * If "wcc" is set then each of the groups belongs to a single
6636 * weakly connected component in the dependence graph so that
6637 * there is no need for compute_sub_schedule to look for weakly
6638 * connected components.
6640 static __isl_give isl_schedule_node *compute_component_schedule(
6641 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6642 int wcc)
6644 int component;
6645 isl_ctx *ctx;
6646 isl_union_set_list *filters;
6648 if (!node)
6649 return NULL;
6650 ctx = isl_schedule_node_get_ctx(node);
6652 filters = extract_sccs(ctx, graph);
6653 if (graph->weak)
6654 node = isl_schedule_node_insert_set(node, filters);
6655 else
6656 node = isl_schedule_node_insert_sequence(node, filters);
6658 for (component = 0; component < graph->scc; ++component) {
6659 node = isl_schedule_node_child(node, component);
6660 node = isl_schedule_node_child(node, 0);
6661 node = compute_sub_schedule(node, ctx, graph,
6662 &node_scc_exactly,
6663 &edge_scc_exactly, component, wcc);
6664 node = isl_schedule_node_parent(node);
6665 node = isl_schedule_node_parent(node);
6668 return node;
6671 /* Compute a schedule for the given dependence graph and insert it at "node".
6672 * Return the updated schedule node.
6674 * We first check if the graph is connected (through validity and conditional
6675 * validity dependences) and, if not, compute a schedule
6676 * for each component separately.
6677 * If the schedule_serialize_sccs option is set, then we check for strongly
6678 * connected components instead and compute a separate schedule for
6679 * each such strongly connected component.
6681 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6682 struct isl_sched_graph *graph)
6684 isl_ctx *ctx;
6686 if (!node)
6687 return NULL;
6689 ctx = isl_schedule_node_get_ctx(node);
6690 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6691 if (detect_sccs(ctx, graph) < 0)
6692 return isl_schedule_node_free(node);
6693 } else {
6694 if (detect_wccs(ctx, graph) < 0)
6695 return isl_schedule_node_free(node);
6698 if (graph->scc > 1)
6699 return compute_component_schedule(node, graph, 1);
6701 return compute_schedule_wcc(node, graph);
6704 /* Compute a schedule on sc->domain that respects the given schedule
6705 * constraints.
6707 * In particular, the schedule respects all the validity dependences.
6708 * If the default isl scheduling algorithm is used, it tries to minimize
6709 * the dependence distances over the proximity dependences.
6710 * If Feautrier's scheduling algorithm is used, the proximity dependence
6711 * distances are only minimized during the extension to a full-dimensional
6712 * schedule.
6714 * If there are any condition and conditional validity dependences,
6715 * then the conditional validity dependences may be violated inside
6716 * a tilable band, provided they have no adjacent non-local
6717 * condition dependences.
6719 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6720 __isl_take isl_schedule_constraints *sc)
6722 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6723 struct isl_sched_graph graph = { 0 };
6724 isl_schedule *sched;
6725 isl_schedule_node *node;
6726 isl_union_set *domain;
6728 sc = isl_schedule_constraints_align_params(sc);
6730 domain = isl_schedule_constraints_get_domain(sc);
6731 if (isl_union_set_n_set(domain) == 0) {
6732 isl_schedule_constraints_free(sc);
6733 return isl_schedule_from_domain(domain);
6736 if (graph_init(&graph, sc) < 0)
6737 domain = isl_union_set_free(domain);
6739 node = isl_schedule_node_from_domain(domain);
6740 node = isl_schedule_node_child(node, 0);
6741 if (graph.n > 0)
6742 node = compute_schedule(node, &graph);
6743 sched = isl_schedule_node_get_schedule(node);
6744 isl_schedule_node_free(node);
6746 graph_free(ctx, &graph);
6747 isl_schedule_constraints_free(sc);
6749 return sched;
6752 /* Compute a schedule for the given union of domains that respects
6753 * all the validity dependences and minimizes
6754 * the dependence distances over the proximity dependences.
6756 * This function is kept for backward compatibility.
6758 __isl_give isl_schedule *isl_union_set_compute_schedule(
6759 __isl_take isl_union_set *domain,
6760 __isl_take isl_union_map *validity,
6761 __isl_take isl_union_map *proximity)
6763 isl_schedule_constraints *sc;
6765 sc = isl_schedule_constraints_on_domain(domain);
6766 sc = isl_schedule_constraints_set_validity(sc, validity);
6767 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6769 return isl_schedule_constraints_compute_schedule(sc);