2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
12 #include <isl_aff_private.h>
16 #include <isl_space_private.h>
17 #include <isl_morph.h>
18 #include <isl_vertices_private.h>
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
26 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
27 __isl_take isl_vertices
*vertices
);
29 __isl_give isl_vertices
*isl_vertices_copy(__isl_keep isl_vertices
*vertices
)
38 void isl_vertices_free(__isl_take isl_vertices
*vertices
)
45 if (--vertices
->ref
> 0)
48 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
49 isl_basic_set_free(vertices
->v
[i
].vertex
);
50 isl_basic_set_free(vertices
->v
[i
].dom
);
54 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
55 free(vertices
->c
[i
].vertices
);
56 isl_basic_set_free(vertices
->c
[i
].dom
);
60 isl_basic_set_free(vertices
->bset
);
64 struct isl_vertex_list
{
66 struct isl_vertex_list
*next
;
69 static void free_vertex_list(struct isl_vertex_list
*list
)
71 struct isl_vertex_list
*next
;
73 for (; list
; list
= next
) {
75 isl_basic_set_free(list
->v
.vertex
);
76 isl_basic_set_free(list
->v
.dom
);
81 static __isl_give isl_vertices
*vertices_from_list(__isl_keep isl_basic_set
*bset
,
82 int n_vertices
, struct isl_vertex_list
*list
)
85 struct isl_vertex_list
*next
;
86 isl_vertices
*vertices
;
88 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
92 vertices
->bset
= isl_basic_set_copy(bset
);
93 vertices
->v
= isl_alloc_array(bset
->ctx
, struct isl_vertex
, n_vertices
);
94 if (n_vertices
&& !vertices
->v
)
96 vertices
->n_vertices
= n_vertices
;
98 for (i
= 0; list
; list
= next
, i
++) {
100 vertices
->v
[i
] = list
->v
;
106 isl_vertices_free(vertices
);
107 free_vertex_list(list
);
111 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
112 * Return isl_bool_true if the vertex was actually added and
113 * isl_bool_false otherwise.
114 * In particular, vertices with a lower-dimensional activity domain are
115 * not added to the list because they would not be included in any chamber.
116 * Return isl_bool_error on error.
118 static isl_bool
add_vertex(struct isl_vertex_list
**list
,
119 __isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
122 struct isl_vertex_list
*v
= NULL
;
124 if (isl_tab_detect_implicit_equalities(tab
) < 0)
125 return isl_bool_error
;
127 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
129 v
= isl_calloc_type(tab
->mat
->ctx
, struct isl_vertex_list
);
133 v
->v
.vertex
= isl_basic_set_copy(bset
);
134 v
->v
.vertex
= isl_basic_set_cow(v
->v
.vertex
);
135 v
->v
.vertex
= isl_basic_set_update_from_tab(v
->v
.vertex
, tab
);
136 v
->v
.vertex
= isl_basic_set_simplify(v
->v
.vertex
);
137 v
->v
.vertex
= isl_basic_set_finalize(v
->v
.vertex
);
140 isl_assert(bset
->ctx
, v
->v
.vertex
->n_eq
>= nvar
, goto error
);
141 v
->v
.dom
= isl_basic_set_copy(v
->v
.vertex
);
142 v
->v
.dom
= isl_basic_set_params(v
->v
.dom
);
146 if (v
->v
.dom
->n_eq
> 0) {
148 return isl_bool_false
;
154 return isl_bool_true
;
157 return isl_bool_error
;
160 /* Compute the parametric vertices and the chamber decomposition
161 * of an empty parametric polytope.
163 static __isl_give isl_vertices
*vertices_empty(__isl_keep isl_basic_set
*bset
)
165 isl_vertices
*vertices
;
170 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
173 vertices
->bset
= isl_basic_set_copy(bset
);
176 vertices
->n_vertices
= 0;
177 vertices
->n_chambers
= 0;
182 /* Compute the parametric vertices and the chamber decomposition
183 * of the parametric polytope defined using the same constraints
184 * as "bset" in the 0D case.
185 * There is exactly one 0D vertex and a single chamber containing
188 static __isl_give isl_vertices
*vertices_0D(__isl_keep isl_basic_set
*bset
)
190 isl_vertices
*vertices
;
195 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
199 vertices
->bset
= isl_basic_set_copy(bset
);
201 vertices
->v
= isl_calloc_array(bset
->ctx
, struct isl_vertex
, 1);
204 vertices
->n_vertices
= 1;
205 vertices
->v
[0].vertex
= isl_basic_set_copy(bset
);
206 vertices
->v
[0].dom
= isl_basic_set_params(isl_basic_set_copy(bset
));
207 if (!vertices
->v
[0].vertex
|| !vertices
->v
[0].dom
)
210 vertices
->c
= isl_calloc_array(bset
->ctx
, struct isl_chamber
, 1);
213 vertices
->n_chambers
= 1;
214 vertices
->c
[0].n_vertices
= 1;
215 vertices
->c
[0].vertices
= isl_calloc_array(bset
->ctx
, int, 1);
216 if (!vertices
->c
[0].vertices
)
218 vertices
->c
[0].dom
= isl_basic_set_copy(vertices
->v
[0].dom
);
219 if (!vertices
->c
[0].dom
)
224 isl_vertices_free(vertices
);
228 static int isl_mat_rank(__isl_keep isl_mat
*mat
)
233 H
= isl_mat_left_hermite(isl_mat_copy(mat
), 0, NULL
, NULL
);
237 for (col
= 0; col
< H
->n_col
; ++col
) {
238 for (row
= 0; row
< H
->n_row
; ++row
)
239 if (!isl_int_is_zero(H
->row
[row
][col
]))
250 /* Is the row pointed to by "f" linearly independent of the "n" first
253 static int is_independent(__isl_keep isl_mat
*facets
, int n
, isl_int
*f
)
257 if (isl_seq_first_non_zero(f
, facets
->n_col
) < 0)
260 isl_seq_cpy(facets
->row
[n
], f
, facets
->n_col
);
261 facets
->n_row
= n
+ 1;
262 rank
= isl_mat_rank(facets
);
266 return rank
== n
+ 1;
269 /* Check whether we can select constraint "level", given the current selection
270 * reflected by facets in "tab", the rows of "facets" and the earlier
271 * "selected" elements of "selection".
273 * If the constraint is (strictly) redundant in the tableau, selecting it would
274 * result in an empty tableau, so it can't be selected.
275 * If the set variable part of the constraint is not linearly independent
276 * of the set variable parts of the already selected constraints,
277 * the constraint cannot be selected.
278 * If selecting the constraint results in an empty tableau, the constraint
279 * cannot be selected.
280 * Finally, if selecting the constraint results in some explicitly
281 * deselected constraints turning into equalities, then the corresponding
282 * vertices have already been generated, so the constraint cannot be selected.
284 static int can_select(__isl_keep isl_basic_set
*bset
, int level
,
285 struct isl_tab
*tab
, __isl_keep isl_mat
*facets
, int selected
,
291 struct isl_tab_undo
*snap
;
293 if (isl_tab_is_redundant(tab
, level
))
296 ovar
= isl_space_offset(bset
->dim
, isl_dim_set
);
298 indep
= is_independent(facets
, selected
, bset
->ineq
[level
] + 1 + ovar
);
304 snap
= isl_tab_snap(tab
);
305 if (isl_tab_select_facet(tab
, level
) < 0)
309 if (isl_tab_rollback(tab
, snap
) < 0)
314 for (i
= 0; i
< level
; ++i
) {
317 if (selection
[i
] != DESELECTED
)
320 if (isl_tab_is_equality(tab
, i
))
322 else if (isl_tab_is_redundant(tab
, i
))
325 sgn
= isl_tab_sign_of_max(tab
, i
);
329 if (isl_tab_rollback(tab
, snap
) < 0)
338 /* Compute the parametric vertices and the chamber decomposition
339 * of a parametric polytope that is not full-dimensional.
341 * Simply map the parametric polytope to a lower dimensional space
342 * and map the resulting vertices back.
344 static __isl_give isl_vertices
*lower_dim_vertices(
345 __isl_keep isl_basic_set
*bset
)
348 isl_vertices
*vertices
;
350 bset
= isl_basic_set_copy(bset
);
351 morph
= isl_basic_set_full_compression(bset
);
352 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
354 vertices
= isl_basic_set_compute_vertices(bset
);
355 isl_basic_set_free(bset
);
357 morph
= isl_morph_inverse(morph
);
359 vertices
= isl_morph_vertices(morph
, vertices
);
364 /* Compute the parametric vertices and the chamber decomposition
365 * of the parametric polytope defined using the same constraints
366 * as "bset". "bset" is assumed to have no existentially quantified
369 * The vertices themselves are computed in a fairly simplistic way.
370 * We simply run through all combinations of d constraints,
371 * with d the number of set variables, and check if those d constraints
372 * define a vertex. To avoid the generation of duplicate vertices,
373 * which we may happen if a vertex is defined by more that d constraints,
374 * we make sure we only generate the vertex for the d constraints with
377 * We set up a tableau and keep track of which facets have been
378 * selected. The tableau is marked strict_redundant so that we can be
379 * sure that any constraint that is marked redundant (and that is not
380 * also marked zero) is not an equality.
381 * If a constraint is marked DESELECTED, it means the constraint was
382 * SELECTED before (in combination with the same selection of earlier
383 * constraints). If such a deselected constraint turns out to be an
384 * equality, then any vertex that may still be found with the current
385 * selection has already been generated when the constraint was selected.
386 * A constraint is marked UNSELECTED when there is no way selecting
387 * the constraint could lead to a vertex (in combination with the current
388 * selection of earlier constraints).
390 * The set variable coefficients of the selected constraints are stored
391 * in the facets matrix.
393 __isl_give isl_vertices
*isl_basic_set_compute_vertices(
394 __isl_keep isl_basic_set
*bset
)
400 int *selection
= NULL
;
402 struct isl_tab_undo
**snap
= NULL
;
403 isl_mat
*facets
= NULL
;
404 struct isl_vertex_list
*list
= NULL
;
406 isl_vertices
*vertices
;
411 if (isl_basic_set_plain_is_empty(bset
))
412 return vertices_empty(bset
);
415 return lower_dim_vertices(bset
);
417 isl_assert(bset
->ctx
, isl_basic_set_dim(bset
, isl_dim_div
) == 0,
420 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
421 return vertices_0D(bset
);
423 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
425 bset
= isl_basic_set_copy(bset
);
426 bset
= isl_basic_set_set_rational(bset
);
430 tab
= isl_tab_from_basic_set(bset
, 0);
433 tab
->strict_redundant
= 1;
436 vertices
= vertices_empty(bset
);
437 isl_basic_set_free(bset
);
442 selection
= isl_alloc_array(bset
->ctx
, int, bset
->n_ineq
);
443 snap
= isl_alloc_array(bset
->ctx
, struct isl_tab_undo
*, bset
->n_ineq
);
444 facets
= isl_mat_alloc(bset
->ctx
, nvar
, nvar
);
445 if ((bset
->n_ineq
&& (!selection
|| !snap
)) || !facets
)
453 if (level
>= bset
->n_ineq
||
454 (!init
&& selection
[level
] != SELECTED
)) {
461 snap
[level
] = isl_tab_snap(tab
);
462 ok
= can_select(bset
, level
, tab
, facets
, selected
,
467 selection
[level
] = SELECTED
;
470 selection
[level
] = UNSELECTED
;
472 selection
[level
] = DESELECTED
;
474 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
477 if (selected
== nvar
) {
478 if (tab
->n_dead
== nvar
) {
479 isl_bool added
= add_vertex(&list
, bset
, tab
);
492 isl_mat_free(facets
);
498 vertices
= vertices_from_list(bset
, n_vertices
, list
);
500 vertices
= compute_chambers(bset
, vertices
);
504 free_vertex_list(list
);
505 isl_mat_free(facets
);
509 isl_basic_set_free(bset
);
513 struct isl_chamber_list
{
514 struct isl_chamber c
;
515 struct isl_chamber_list
*next
;
518 static void free_chamber_list(struct isl_chamber_list
*list
)
520 struct isl_chamber_list
*next
;
522 for (; list
; list
= next
) {
524 isl_basic_set_free(list
->c
.dom
);
525 free(list
->c
.vertices
);
530 /* Check whether the basic set "bset" is a superset of the basic set described
531 * by "tab", i.e., check whether all constraints of "bset" are redundant.
533 static isl_bool
bset_covers_tab(__isl_keep isl_basic_set
*bset
,
539 return isl_bool_error
;
541 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
542 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, bset
->ineq
[i
]);
544 case isl_ineq_error
: return isl_bool_error
;
545 case isl_ineq_redundant
: continue;
546 default: return isl_bool_false
;
550 return isl_bool_true
;
553 static __isl_give isl_vertices
*vertices_add_chambers(
554 __isl_take isl_vertices
*vertices
, int n_chambers
,
555 struct isl_chamber_list
*list
)
559 struct isl_chamber_list
*next
;
561 ctx
= isl_vertices_get_ctx(vertices
);
562 vertices
->c
= isl_alloc_array(ctx
, struct isl_chamber
, n_chambers
);
565 vertices
->n_chambers
= n_chambers
;
567 for (i
= 0; list
; list
= next
, i
++) {
569 vertices
->c
[i
] = list
->c
;
575 isl_vertices_free(vertices
);
576 free_chamber_list(list
);
580 /* Can "tab" be intersected with "bset" without resulting in
581 * a lower-dimensional set.
582 * "bset" itself is assumed to be full-dimensional.
584 static isl_bool
can_intersect(struct isl_tab
*tab
,
585 __isl_keep isl_basic_set
*bset
)
588 struct isl_tab_undo
*snap
;
591 isl_die(isl_basic_set_get_ctx(bset
), isl_error_internal
,
592 "expecting full-dimensional input",
593 return isl_bool_error
);
595 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
596 return isl_bool_error
;
598 snap
= isl_tab_snap(tab
);
600 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
601 if (isl_tab_ineq_type(tab
, bset
->ineq
[i
]) == isl_ineq_redundant
)
603 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
604 return isl_bool_error
;
607 if (isl_tab_detect_implicit_equalities(tab
) < 0)
608 return isl_bool_error
;
610 if (isl_tab_rollback(tab
, snap
) < 0)
611 return isl_bool_error
;
612 return isl_bool_false
;
615 return isl_bool_true
;
618 static int add_chamber(struct isl_chamber_list
**list
,
619 __isl_keep isl_vertices
*vertices
, struct isl_tab
*tab
, int *selection
)
624 struct isl_tab_undo
*snap
;
625 struct isl_chamber_list
*c
= NULL
;
627 for (i
= 0; i
< vertices
->n_vertices
; ++i
)
631 snap
= isl_tab_snap(tab
);
633 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
634 tab
->con
[i
].frozen
= 0;
637 if (isl_tab_detect_redundant(tab
) < 0)
640 c
= isl_calloc_type(tab
->mat
->ctx
, struct isl_chamber_list
);
643 c
->c
.vertices
= isl_alloc_array(tab
->mat
->ctx
, int, n_vertices
);
644 if (n_vertices
&& !c
->c
.vertices
)
646 c
->c
.dom
= isl_basic_set_copy(isl_tab_peek_bset(tab
));
647 c
->c
.dom
= isl_basic_set_set_rational(c
->c
.dom
);
648 c
->c
.dom
= isl_basic_set_cow(c
->c
.dom
);
649 c
->c
.dom
= isl_basic_set_update_from_tab(c
->c
.dom
, tab
);
650 c
->c
.dom
= isl_basic_set_simplify(c
->c
.dom
);
651 c
->c
.dom
= isl_basic_set_finalize(c
->c
.dom
);
655 c
->c
.n_vertices
= n_vertices
;
657 for (i
= 0, j
= 0; i
< vertices
->n_vertices
; ++i
)
659 c
->c
.vertices
[j
] = i
;
666 for (i
= 0; i
< n_frozen
; ++i
)
667 tab
->con
[i
].frozen
= 1;
669 if (isl_tab_rollback(tab
, snap
) < 0)
674 free_chamber_list(c
);
678 struct isl_facet_todo
{
679 struct isl_tab
*tab
; /* A tableau representation of the facet */
680 isl_basic_set
*bset
; /* A normalized basic set representation */
681 isl_vec
*constraint
; /* Constraint pointing to the other side */
682 struct isl_facet_todo
*next
;
685 static void free_todo(struct isl_facet_todo
*todo
)
688 struct isl_facet_todo
*next
= todo
->next
;
690 isl_tab_free(todo
->tab
);
691 isl_basic_set_free(todo
->bset
);
692 isl_vec_free(todo
->constraint
);
699 static struct isl_facet_todo
*create_todo(struct isl_tab
*tab
, int con
)
703 struct isl_tab_undo
*snap
;
704 struct isl_facet_todo
*todo
;
706 snap
= isl_tab_snap(tab
);
708 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
709 tab
->con
[i
].frozen
= 0;
712 if (isl_tab_detect_redundant(tab
) < 0)
715 todo
= isl_calloc_type(tab
->mat
->ctx
, struct isl_facet_todo
);
719 todo
->constraint
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
720 if (!todo
->constraint
)
722 isl_seq_neg(todo
->constraint
->el
, tab
->bmap
->ineq
[con
], 1 + tab
->n_var
);
723 todo
->bset
= isl_basic_set_copy(isl_tab_peek_bset(tab
));
724 todo
->bset
= isl_basic_set_set_rational(todo
->bset
);
725 todo
->bset
= isl_basic_set_cow(todo
->bset
);
726 todo
->bset
= isl_basic_set_update_from_tab(todo
->bset
, tab
);
727 todo
->bset
= isl_basic_set_simplify(todo
->bset
);
728 todo
->bset
= isl_basic_set_sort_constraints(todo
->bset
);
731 ISL_F_SET(todo
->bset
, ISL_BASIC_SET_NORMALIZED
);
732 todo
->tab
= isl_tab_dup(tab
);
736 for (i
= 0; i
< n_frozen
; ++i
)
737 tab
->con
[i
].frozen
= 1;
739 if (isl_tab_rollback(tab
, snap
) < 0)
748 /* Create todo items for all interior facets of the chamber represented
749 * by "tab" and collect them in "next".
751 static int init_todo(struct isl_facet_todo
**next
, struct isl_tab
*tab
)
754 struct isl_tab_undo
*snap
;
755 struct isl_facet_todo
*todo
;
757 snap
= isl_tab_snap(tab
);
759 for (i
= 0; i
< tab
->n_con
; ++i
) {
760 if (tab
->con
[i
].frozen
)
762 if (tab
->con
[i
].is_redundant
)
765 if (isl_tab_select_facet(tab
, i
) < 0)
768 todo
= create_todo(tab
, i
);
775 if (isl_tab_rollback(tab
, snap
) < 0)
782 /* Does the linked list contain a todo item that is the opposite of "todo".
783 * If so, return 1 and remove the opposite todo item.
785 static int has_opposite(struct isl_facet_todo
*todo
,
786 struct isl_facet_todo
**list
)
788 for (; *list
; list
= &(*list
)->next
) {
790 eq
= isl_basic_set_plain_is_equal(todo
->bset
, (*list
)->bset
);
805 /* Create todo items for all interior facets of the chamber represented
806 * by "tab" and collect them in first->next, taking care to cancel
807 * opposite todo items.
809 static int update_todo(struct isl_facet_todo
*first
, struct isl_tab
*tab
)
812 struct isl_tab_undo
*snap
;
813 struct isl_facet_todo
*todo
;
815 snap
= isl_tab_snap(tab
);
817 for (i
= 0; i
< tab
->n_con
; ++i
) {
820 if (tab
->con
[i
].frozen
)
822 if (tab
->con
[i
].is_redundant
)
825 if (isl_tab_select_facet(tab
, i
) < 0)
828 todo
= create_todo(tab
, i
);
832 drop
= has_opposite(todo
, &first
->next
);
839 todo
->next
= first
->next
;
843 if (isl_tab_rollback(tab
, snap
) < 0)
850 /* Compute the chamber decomposition of the parametric polytope respresented
851 * by "bset" given the parametric vertices and their activity domains.
853 * We are only interested in full-dimensional chambers.
854 * Each of these chambers is the intersection of the activity domains of
855 * one or more vertices and the union of all chambers is equal to the
856 * projection of the entire parametric polytope onto the parameter space.
858 * We first create an initial chamber by intersecting as many activity
859 * domains as possible without ending up with an empty or lower-dimensional
860 * set. As a minor optimization, we only consider those activity domains
861 * that contain some arbitrary point.
863 * For each of the interior facets of the chamber, we construct a todo item,
864 * containing the facet and a constraint containing the other side of the facet,
865 * for constructing the chamber on the other side.
866 * While their are any todo items left, we pick a todo item and
867 * create the required chamber by intersecting all activity domains
868 * that contain the facet and have a full-dimensional intersection with
869 * the other side of the facet. For each of the interior facets, we
870 * again create todo items, taking care to cancel opposite todo items.
872 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
873 __isl_take isl_vertices
*vertices
)
877 isl_vec
*sample
= NULL
;
878 struct isl_tab
*tab
= NULL
;
879 struct isl_tab_undo
*snap
;
880 int *selection
= NULL
;
882 struct isl_chamber_list
*list
= NULL
;
883 struct isl_facet_todo
*todo
= NULL
;
885 if (!bset
|| !vertices
)
888 ctx
= isl_vertices_get_ctx(vertices
);
889 selection
= isl_alloc_array(ctx
, int, vertices
->n_vertices
);
890 if (vertices
->n_vertices
&& !selection
)
893 bset
= isl_basic_set_params(bset
);
895 tab
= isl_tab_from_basic_set(bset
, 1);
898 for (i
= 0; i
< bset
->n_ineq
; ++i
)
899 if (isl_tab_freeze_constraint(tab
, i
) < 0)
901 isl_basic_set_free(bset
);
903 snap
= isl_tab_snap(tab
);
905 sample
= isl_tab_get_sample_value(tab
);
907 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
908 selection
[i
] = isl_basic_set_contains(vertices
->v
[i
].dom
, sample
);
909 if (selection
[i
] < 0)
913 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
914 if (selection
[i
] < 0)
918 if (isl_tab_detect_redundant(tab
) < 0)
921 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
925 if (init_todo(&todo
, tab
) < 0)
929 struct isl_facet_todo
*next
;
931 if (isl_tab_rollback(tab
, snap
) < 0)
934 if (isl_tab_add_ineq(tab
, todo
->constraint
->el
) < 0)
936 if (isl_tab_freeze_constraint(tab
, tab
->n_con
- 1) < 0)
939 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
940 selection
[i
] = bset_covers_tab(vertices
->v
[i
].dom
,
942 if (selection
[i
] < 0)
946 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
947 if (selection
[i
] < 0)
951 if (isl_tab_detect_redundant(tab
) < 0)
954 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
958 if (update_todo(todo
, tab
) < 0)
967 isl_vec_free(sample
);
972 vertices
= vertices_add_chambers(vertices
, n_chambers
, list
);
974 for (i
= 0; vertices
&& i
< vertices
->n_vertices
; ++i
) {
975 isl_basic_set_free(vertices
->v
[i
].dom
);
976 vertices
->v
[i
].dom
= NULL
;
981 free_chamber_list(list
);
983 isl_vec_free(sample
);
987 isl_basic_set_free(bset
);
988 isl_vertices_free(vertices
);
992 isl_ctx
*isl_vertex_get_ctx(__isl_keep isl_vertex
*vertex
)
994 return vertex
? isl_vertices_get_ctx(vertex
->vertices
) : NULL
;
997 int isl_vertex_get_id(__isl_keep isl_vertex
*vertex
)
999 return vertex
? vertex
->id
: -1;
1002 __isl_give isl_basic_set
*isl_basic_set_set_integral(__isl_take isl_basic_set
*bset
)
1007 if (!ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
1010 bset
= isl_basic_set_cow(bset
);
1014 ISL_F_CLR(bset
, ISL_BASIC_MAP_RATIONAL
);
1016 return isl_basic_set_finalize(bset
);
1019 /* Return the activity domain of the vertex "vertex".
1021 __isl_give isl_basic_set
*isl_vertex_get_domain(__isl_keep isl_vertex
*vertex
)
1023 struct isl_vertex
*v
;
1028 v
= &vertex
->vertices
->v
[vertex
->id
];
1030 v
->dom
= isl_basic_set_copy(v
->vertex
);
1031 v
->dom
= isl_basic_set_params(v
->dom
);
1032 v
->dom
= isl_basic_set_set_integral(v
->dom
);
1035 return isl_basic_set_copy(v
->dom
);
1038 /* Return a multiple quasi-affine expression describing the vertex "vertex"
1039 * in terms of the parameters,
1041 __isl_give isl_multi_aff
*isl_vertex_get_expr(__isl_keep isl_vertex
*vertex
)
1043 struct isl_vertex
*v
;
1044 isl_basic_set
*bset
;
1049 v
= &vertex
->vertices
->v
[vertex
->id
];
1051 bset
= isl_basic_set_copy(v
->vertex
);
1052 return isl_multi_aff_from_basic_set_equalities(bset
);
1055 static __isl_give isl_vertex
*isl_vertex_alloc(__isl_take isl_vertices
*vertices
,
1064 ctx
= isl_vertices_get_ctx(vertices
);
1065 vertex
= isl_alloc_type(ctx
, isl_vertex
);
1069 vertex
->vertices
= vertices
;
1074 isl_vertices_free(vertices
);
1078 void isl_vertex_free(__isl_take isl_vertex
*vertex
)
1082 isl_vertices_free(vertex
->vertices
);
1086 isl_ctx
*isl_cell_get_ctx(__isl_keep isl_cell
*cell
)
1088 return cell
? cell
->dom
->ctx
: NULL
;
1091 __isl_give isl_basic_set
*isl_cell_get_domain(__isl_keep isl_cell
*cell
)
1093 return cell
? isl_basic_set_copy(cell
->dom
) : NULL
;
1096 static __isl_give isl_cell
*isl_cell_alloc(__isl_take isl_vertices
*vertices
,
1097 __isl_take isl_basic_set
*dom
, int id
)
1100 isl_cell
*cell
= NULL
;
1102 if (!vertices
|| !dom
)
1105 cell
= isl_calloc_type(dom
->ctx
, isl_cell
);
1109 cell
->n_vertices
= vertices
->c
[id
].n_vertices
;
1110 cell
->ids
= isl_alloc_array(dom
->ctx
, int, cell
->n_vertices
);
1111 if (cell
->n_vertices
&& !cell
->ids
)
1113 for (i
= 0; i
< cell
->n_vertices
; ++i
)
1114 cell
->ids
[i
] = vertices
->c
[id
].vertices
[i
];
1115 cell
->vertices
= vertices
;
1120 isl_cell_free(cell
);
1121 isl_vertices_free(vertices
);
1122 isl_basic_set_free(dom
);
1126 void isl_cell_free(__isl_take isl_cell
*cell
)
1131 isl_vertices_free(cell
->vertices
);
1133 isl_basic_set_free(cell
->dom
);
1137 /* Create a tableau of the cone obtained by first homogenizing the given
1138 * polytope and then making all inequalities strict by setting the
1139 * constant term to -1.
1141 static struct isl_tab
*tab_for_shifted_cone(__isl_keep isl_basic_set
*bset
)
1145 struct isl_tab
*tab
;
1149 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
+ 1,
1150 1 + isl_basic_set_total_dim(bset
), 0);
1153 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
1154 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_EMPTY
)) {
1155 if (isl_tab_mark_empty(tab
) < 0)
1160 c
= isl_vec_alloc(bset
->ctx
, 1 + 1 + isl_basic_set_total_dim(bset
));
1164 isl_int_set_si(c
->el
[0], 0);
1165 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1166 isl_seq_cpy(c
->el
+ 1, bset
->eq
[i
], c
->size
- 1);
1167 if (isl_tab_add_eq(tab
, c
->el
) < 0)
1171 isl_int_set_si(c
->el
[0], -1);
1172 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1173 isl_seq_cpy(c
->el
+ 1, bset
->ineq
[i
], c
->size
- 1);
1174 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1182 isl_seq_clr(c
->el
+ 1, c
->size
- 1);
1183 isl_int_set_si(c
->el
[1], 1);
1184 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1195 /* Compute an interior point of "bset" by selecting an interior
1196 * point in homogeneous space and projecting the point back down.
1198 static __isl_give isl_vec
*isl_basic_set_interior_point(
1199 __isl_keep isl_basic_set
*bset
)
1202 struct isl_tab
*tab
;
1204 tab
= tab_for_shifted_cone(bset
);
1205 vec
= isl_tab_get_sample_value(tab
);
1210 isl_seq_cpy(vec
->el
, vec
->el
+ 1, vec
->size
- 1);
1216 /* Call "fn" on all chambers of the parametric polytope with the shared
1217 * facets of neighboring chambers only appearing in one of the chambers.
1219 * We pick an interior point from one of the chambers and then make
1220 * all constraints that do not satisfy this point strict.
1221 * For constraints that saturate the interior point, the sign
1222 * of the first non-zero coefficient is used to determine which
1223 * of the two (internal) constraints should be tightened.
1225 isl_stat
isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices
*vertices
,
1226 isl_stat (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1233 return isl_stat_error
;
1235 if (vertices
->n_chambers
== 0)
1238 if (vertices
->n_chambers
== 1) {
1239 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[0].dom
);
1240 dom
= isl_basic_set_set_integral(dom
);
1241 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, 0);
1243 return isl_stat_error
;
1244 return fn(cell
, user
);
1247 vec
= isl_basic_set_interior_point(vertices
->c
[0].dom
);
1249 return isl_stat_error
;
1251 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1253 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1255 dom
= isl_basic_set_tighten_outward(dom
, vec
);
1256 dom
= isl_basic_set_set_integral(dom
);
1257 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1270 return isl_stat_error
;
1273 isl_stat
isl_vertices_foreach_cell(__isl_keep isl_vertices
*vertices
,
1274 isl_stat (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1280 return isl_stat_error
;
1282 if (vertices
->n_chambers
== 0)
1285 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1287 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1289 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1291 return isl_stat_error
;
1295 return isl_stat_error
;
1301 isl_stat
isl_vertices_foreach_vertex(__isl_keep isl_vertices
*vertices
,
1302 isl_stat (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1308 return isl_stat_error
;
1310 if (vertices
->n_vertices
== 0)
1313 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1316 vertex
= isl_vertex_alloc(isl_vertices_copy(vertices
), i
);
1318 return isl_stat_error
;
1320 r
= fn(vertex
, user
);
1322 return isl_stat_error
;
1328 isl_stat
isl_cell_foreach_vertex(__isl_keep isl_cell
*cell
,
1329 isl_stat (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1335 return isl_stat_error
;
1337 if (cell
->n_vertices
== 0)
1340 for (i
= 0; i
< cell
->n_vertices
; ++i
) {
1343 vertex
= isl_vertex_alloc(isl_vertices_copy(cell
->vertices
),
1346 return isl_stat_error
;
1348 r
= fn(vertex
, user
);
1350 return isl_stat_error
;
1356 isl_ctx
*isl_vertices_get_ctx(__isl_keep isl_vertices
*vertices
)
1358 return vertices
? vertices
->bset
->ctx
: NULL
;
1361 int isl_vertices_get_n_vertices(__isl_keep isl_vertices
*vertices
)
1363 return vertices
? vertices
->n_vertices
: -1;
1366 __isl_give isl_vertices
*isl_morph_vertices(__isl_take isl_morph
*morph
,
1367 __isl_take isl_vertices
*vertices
)
1370 isl_morph
*param_morph
= NULL
;
1372 if (!morph
|| !vertices
)
1375 isl_assert(vertices
->bset
->ctx
, vertices
->ref
== 1, goto error
);
1377 param_morph
= isl_morph_copy(morph
);
1378 param_morph
= isl_morph_dom_params(param_morph
);
1379 param_morph
= isl_morph_ran_params(param_morph
);
1381 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1382 vertices
->v
[i
].dom
= isl_morph_basic_set(
1383 isl_morph_copy(param_morph
), vertices
->v
[i
].dom
);
1384 vertices
->v
[i
].vertex
= isl_morph_basic_set(
1385 isl_morph_copy(morph
), vertices
->v
[i
].vertex
);
1386 if (!vertices
->v
[i
].vertex
)
1390 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1391 vertices
->c
[i
].dom
= isl_morph_basic_set(
1392 isl_morph_copy(param_morph
), vertices
->c
[i
].dom
);
1393 if (!vertices
->c
[i
].dom
)
1397 isl_morph_free(param_morph
);
1398 isl_morph_free(morph
);
1401 isl_morph_free(param_morph
);
1402 isl_morph_free(morph
);
1403 isl_vertices_free(vertices
);
1407 /* Construct a simplex isl_cell spanned by the vertices with indices in
1408 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1410 static isl_stat
call_on_simplex(__isl_keep isl_cell
*cell
,
1411 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1412 isl_stat (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1416 struct isl_cell
*simplex
;
1418 ctx
= isl_cell_get_ctx(cell
);
1420 simplex
= isl_calloc_type(ctx
, struct isl_cell
);
1422 return isl_stat_error
;
1423 simplex
->vertices
= isl_vertices_copy(cell
->vertices
);
1424 if (!simplex
->vertices
)
1426 simplex
->dom
= isl_basic_set_copy(cell
->dom
);
1429 simplex
->n_vertices
= n_simplex
+ n_other
;
1430 simplex
->ids
= isl_alloc_array(ctx
, int, simplex
->n_vertices
);
1434 for (i
= 0; i
< n_simplex
; ++i
)
1435 simplex
->ids
[i
] = simplex_ids
[i
];
1436 for (i
= 0; i
< n_other
; ++i
)
1437 simplex
->ids
[n_simplex
+ i
] = other_ids
[i
];
1439 return fn(simplex
, user
);
1441 isl_cell_free(simplex
);
1442 return isl_stat_error
;
1445 /* Check whether the parametric vertex described by "vertex"
1446 * lies on the facet corresponding to constraint "facet" of "bset".
1447 * The isl_vec "v" is a temporary vector than can be used by this function.
1449 * We eliminate the variables from the facet constraint using the
1450 * equalities defining the vertex and check if the result is identical
1453 * It would probably be better to keep track of the constraints defining
1454 * a vertex during the vertex construction so that we could simply look
1457 static int vertex_on_facet(__isl_keep isl_basic_set
*vertex
,
1458 __isl_keep isl_basic_set
*bset
, int facet
, __isl_keep isl_vec
*v
)
1463 isl_seq_cpy(v
->el
, bset
->ineq
[facet
], v
->size
);
1466 for (i
= 0; i
< vertex
->n_eq
; ++i
) {
1467 int k
= isl_seq_last_non_zero(vertex
->eq
[i
], v
->size
);
1468 isl_seq_elim(v
->el
, vertex
->eq
[i
], k
, v
->size
, &m
);
1472 return isl_seq_first_non_zero(v
->el
, v
->size
) == -1;
1475 /* Triangulate the polytope spanned by the vertices with ids
1476 * in "simplex_ids" and "other_ids" and call "fn" on each of
1477 * the resulting simplices.
1478 * If the input polytope is already a simplex, we simply call "fn".
1479 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1480 * Then we consider each facet of "bset" that does not contain the point
1481 * we just picked, but does contain some of the other points in "other_ids"
1482 * and call ourselves recursively on the polytope spanned by the new
1483 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1485 static isl_stat
triangulate(__isl_keep isl_cell
*cell
, __isl_keep isl_vec
*v
,
1486 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1487 isl_stat (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1493 isl_basic_set
*vertex
;
1494 isl_basic_set
*bset
;
1496 ctx
= isl_cell_get_ctx(cell
);
1497 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1498 nparam
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_param
);
1500 if (n_simplex
+ n_other
== d
+ 1)
1501 return call_on_simplex(cell
, simplex_ids
, n_simplex
,
1502 other_ids
, n_other
, fn
, user
);
1504 simplex_ids
[n_simplex
] = other_ids
[0];
1505 vertex
= cell
->vertices
->v
[other_ids
[0]].vertex
;
1506 bset
= cell
->vertices
->bset
;
1508 ids
= isl_alloc_array(ctx
, int, n_other
- 1);
1511 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1512 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + nparam
, d
) == -1)
1514 if (vertex_on_facet(vertex
, bset
, i
, v
))
1517 for (j
= 1, k
= 0; j
< n_other
; ++j
) {
1519 ov
= cell
->vertices
->v
[other_ids
[j
]].vertex
;
1520 if (vertex_on_facet(ov
, bset
, i
, v
))
1521 ids
[k
++] = other_ids
[j
];
1526 if (triangulate(cell
, v
, simplex_ids
, n_simplex
+ 1,
1527 ids
, k
, fn
, user
) < 0)
1535 return isl_stat_error
;
1538 /* Triangulate the given cell and call "fn" on each of the resulting
1541 isl_stat
isl_cell_foreach_simplex(__isl_take isl_cell
*cell
,
1542 isl_stat (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1548 int *simplex_ids
= NULL
;
1551 return isl_stat_error
;
1553 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1554 total
= isl_basic_set_total_dim(cell
->vertices
->bset
);
1556 if (cell
->n_vertices
== d
+ 1)
1557 return fn(cell
, user
);
1559 ctx
= isl_cell_get_ctx(cell
);
1560 simplex_ids
= isl_alloc_array(ctx
, int, d
+ 1);
1564 v
= isl_vec_alloc(ctx
, 1 + total
);
1568 r
= triangulate(cell
, v
, simplex_ids
, 0,
1569 cell
->ids
, cell
->n_vertices
, fn
, user
);
1574 isl_cell_free(cell
);
1580 isl_cell_free(cell
);
1581 return isl_stat_error
;