2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
31 #include <isl_union_set_private.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node
{
108 isl_multi_aff
*compress
;
109 isl_multi_aff
*decompress
;
124 isl_multi_val
*sizes
;
125 isl_basic_set
*bounds
;
129 static int node_has_tuples(const void *entry
, const void *val
)
131 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
132 isl_space
*space
= (isl_space
*) val
;
134 return isl_space_has_equal_tuples(node
->space
, space
);
137 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
139 return node
->scc
== scc
;
142 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
144 return node
->scc
<= scc
;
147 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
149 return node
->scc
>= scc
;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge
{
193 isl_union_map
*tagged_condition
;
194 isl_union_map
*tagged_validity
;
196 struct isl_sched_node
*src
;
197 struct isl_sched_node
*dst
;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
212 return ISL_FL_ISSET(edge
->types
, 1 << type
);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
219 ISL_FL_SET(edge
->types
, 1 << type
);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
226 ISL_FL_CLR(edge
->types
, 1 << type
);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge
*edge
)
233 return is_type(edge
, isl_edge_validity
);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge
*edge
)
240 set_type(edge
, isl_edge_validity
);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge
*edge
)
247 return is_type(edge
, isl_edge_proximity
);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge
*edge
)
254 return is_type(edge
, isl_edge_local
);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge
*edge
)
261 set_type(edge
, isl_edge_local
);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge
*edge
)
268 clear_type(edge
, isl_edge_local
);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge
*edge
)
275 return is_type(edge
, isl_edge_coincidence
);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge
*edge
)
282 return is_type(edge
, isl_edge_condition
);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge
*edge
)
289 return is_type(edge
, isl_edge_conditional_validity
);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
299 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
301 return is_condition(edge
) || is_conditional_validity(edge
);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph
{
362 isl_map_to_basic_set
*intra_hmap
;
363 isl_map_to_basic_set
*intra_hmap_param
;
364 isl_map_to_basic_set
*inter_hmap
;
366 struct isl_sched_node
*node
;
377 struct isl_sched_graph
*root
;
379 struct isl_sched_edge
*edge
;
381 int max_edge
[isl_edge_last
+ 1];
382 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
384 struct isl_hash_table
*node_table
;
385 struct isl_trivial_region
*region
;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
404 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
405 if (!graph
->node_table
)
408 for (i
= 0; i
< graph
->n
; ++i
) {
409 struct isl_hash_table_entry
*entry
;
412 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
413 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
415 graph
->node
[i
].space
, 1);
418 entry
->data
= &graph
->node
[i
];
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
428 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
430 struct isl_hash_table_entry
*entry
;
436 hash
= isl_space_get_tuple_hash(space
);
437 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
438 &node_has_tuples
, space
, 0);
440 return entry
? entry
->data
: graph
->node
+ graph
->n
;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph
*graph
,
446 struct isl_sched_node
*node
)
448 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
451 static int edge_has_src_and_dst(const void *entry
, const void *val
)
453 const struct isl_sched_edge
*edge
= entry
;
454 const struct isl_sched_edge
*temp
= val
;
456 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
462 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
463 struct isl_sched_edge
*edge
)
465 struct isl_hash_table_entry
*entry
;
468 hash
= isl_hash_init();
469 hash
= isl_hash_builtin(hash
, edge
->src
);
470 hash
= isl_hash_builtin(hash
, edge
->dst
);
471 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
472 &edge_has_src_and_dst
, edge
, 1);
474 return isl_stat_error
;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
484 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
486 enum isl_edge_type t
;
488 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
489 if (!is_type(edge
, t
))
491 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
492 return isl_stat_error
;
498 /* Allocate the edge_tables based on the maximal number of edges of
501 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
505 for (i
= 0; i
<= isl_edge_last
; ++i
) {
506 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
508 if (!graph
->edge_table
[i
])
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry
*graph_find_edge_entry(
520 struct isl_sched_graph
*graph
,
521 enum isl_edge_type type
,
522 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
524 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
526 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
528 hash
= isl_hash_init();
529 hash
= isl_hash_builtin(hash
, temp
.src
);
530 hash
= isl_hash_builtin(hash
, temp
.dst
);
531 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
532 &edge_has_src_and_dst
, &temp
, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
541 enum isl_edge_type type
,
542 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
544 struct isl_hash_table_entry
*entry
;
546 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
557 enum isl_edge_type type
,
558 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
560 struct isl_sched_edge
*edge
;
563 edge
= graph_find_edge(graph
, type
, src
, dst
);
567 empty
= isl_map_plain_is_empty(edge
->map
);
569 return isl_bool_error
;
574 /* Look for any edge with the same src, dst and map fields as "model".
576 * Return the matching edge if one can be found.
577 * Return "model" if no matching edge is found.
578 * Return NULL on error.
580 static struct isl_sched_edge
*graph_find_matching_edge(
581 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
583 enum isl_edge_type i
;
584 struct isl_sched_edge
*edge
;
586 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
589 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
592 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
602 /* Remove the given edge from all the edge_tables that refer to it.
604 static void graph_remove_edge(struct isl_sched_graph
*graph
,
605 struct isl_sched_edge
*edge
)
607 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
608 enum isl_edge_type i
;
610 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
611 struct isl_hash_table_entry
*entry
;
613 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
616 if (entry
->data
!= edge
)
618 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
622 /* Check whether the dependence graph has any edge
623 * between the given two nodes.
625 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
626 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
628 enum isl_edge_type i
;
631 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
632 r
= graph_has_edge(graph
, i
, src
, dst
);
640 /* Check whether the dependence graph has a validity edge
641 * between the given two nodes.
643 * Conditional validity edges are essentially validity edges that
644 * can be ignored if the corresponding condition edges are iteration private.
645 * Here, we are only checking for the presence of validity
646 * edges, so we need to consider the conditional validity edges too.
647 * In particular, this function is used during the detection
648 * of strongly connected components and we cannot ignore
649 * conditional validity edges during this detection.
651 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
652 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
656 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
660 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
663 /* Perform all the required memory allocations for a schedule graph "graph"
664 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
667 static isl_stat
graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
668 int n_node
, int n_edge
)
673 graph
->n_edge
= n_edge
;
674 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
675 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
676 graph
->region
= isl_alloc_array(ctx
,
677 struct isl_trivial_region
, graph
->n
);
678 graph
->edge
= isl_calloc_array(ctx
,
679 struct isl_sched_edge
, graph
->n_edge
);
681 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
682 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
683 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
685 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
687 return isl_stat_error
;
689 for(i
= 0; i
< graph
->n
; ++i
)
690 graph
->sorted
[i
] = i
;
695 /* Free the memory associated to node "node" in "graph".
696 * The "coincident" field is shared by nodes in a graph and its subgraph.
697 * It therefore only needs to be freed for the original dependence graph,
698 * i.e., one that is not the result of splitting.
700 static void clear_node(struct isl_sched_graph
*graph
,
701 struct isl_sched_node
*node
)
703 isl_space_free(node
->space
);
704 isl_set_free(node
->hull
);
705 isl_multi_aff_free(node
->compress
);
706 isl_multi_aff_free(node
->decompress
);
707 isl_mat_free(node
->sched
);
708 isl_map_free(node
->sched_map
);
709 isl_mat_free(node
->indep
);
710 isl_mat_free(node
->vmap
);
711 if (graph
->root
== graph
)
712 free(node
->coincident
);
713 isl_multi_val_free(node
->sizes
);
714 isl_basic_set_free(node
->bounds
);
715 isl_vec_free(node
->max
);
718 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
722 isl_map_to_basic_set_free(graph
->intra_hmap
);
723 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
724 isl_map_to_basic_set_free(graph
->inter_hmap
);
727 for (i
= 0; i
< graph
->n
; ++i
)
728 clear_node(graph
, &graph
->node
[i
]);
732 for (i
= 0; i
< graph
->n_edge
; ++i
) {
733 isl_map_free(graph
->edge
[i
].map
);
734 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
735 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
739 for (i
= 0; i
<= isl_edge_last
; ++i
)
740 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
741 isl_hash_table_free(ctx
, graph
->node_table
);
742 isl_basic_set_free(graph
->lp
);
745 /* For each "set" on which this function is called, increment
746 * graph->n by one and update graph->maxvar.
748 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
750 struct isl_sched_graph
*graph
= user
;
751 int nvar
= isl_set_dim(set
, isl_dim_set
);
754 if (nvar
> graph
->maxvar
)
755 graph
->maxvar
= nvar
;
762 /* Compute the number of rows that should be allocated for the schedule.
763 * In particular, we need one row for each variable or one row
764 * for each basic map in the dependences.
765 * Note that it is practically impossible to exhaust both
766 * the number of dependences and the number of variables.
768 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
769 __isl_keep isl_schedule_constraints
*sc
)
773 isl_union_set
*domain
;
777 domain
= isl_schedule_constraints_get_domain(sc
);
778 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
779 isl_union_set_free(domain
);
781 return isl_stat_error
;
782 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
784 return isl_stat_error
;
785 graph
->max_row
= n_edge
+ graph
->maxvar
;
790 /* Does "bset" have any defining equalities for its set variables?
792 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
797 return isl_bool_error
;
799 n
= isl_basic_set_dim(bset
, isl_dim_set
);
800 for (i
= 0; i
< n
; ++i
) {
803 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
809 return isl_bool_false
;
812 /* Set the entries of node->max to the value of the schedule_max_coefficient
815 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
819 max
= isl_options_get_schedule_max_coefficient(ctx
);
823 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
824 node
->max
= isl_vec_set_si(node
->max
, max
);
826 return isl_stat_error
;
831 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
832 * option (if set) and half of the minimum of the sizes in the other
833 * dimensions. Round up when computing the half such that
834 * if the minimum of the sizes is one, half of the size is taken to be one
836 * If the global minimum is unbounded (i.e., if both
837 * the schedule_max_coefficient is not set and the sizes in the other
838 * dimensions are unbounded), then store a negative value.
839 * If the schedule coefficient is close to the size of the instance set
840 * in another dimension, then the schedule may represent a loop
841 * coalescing transformation (especially if the coefficient
842 * in that other dimension is one). Forcing the coefficient to be
843 * smaller than or equal to half the minimal size should avoid this
846 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
847 struct isl_sched_node
*node
)
853 max
= isl_options_get_schedule_max_coefficient(ctx
);
854 v
= isl_vec_alloc(ctx
, node
->nvar
);
856 return isl_stat_error
;
858 for (i
= 0; i
< node
->nvar
; ++i
) {
859 isl_int_set_si(v
->el
[i
], max
);
860 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
863 for (i
= 0; i
< node
->nvar
; ++i
) {
866 size
= isl_multi_val_get_val(node
->sizes
, i
);
869 if (!isl_val_is_int(size
)) {
873 for (j
= 0; j
< node
->nvar
; ++j
) {
876 if (isl_int_is_neg(v
->el
[j
]) ||
877 isl_int_gt(v
->el
[j
], size
->n
))
878 isl_int_set(v
->el
[j
], size
->n
);
883 for (i
= 0; i
< node
->nvar
; ++i
)
884 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
890 return isl_stat_error
;
893 /* Compute and return the size of "set" in dimension "dim".
894 * The size is taken to be the difference in values for that variable
895 * for fixed values of the other variables.
896 * This assumes that "set" is convex.
897 * In particular, the variable is first isolated from the other variables
898 * in the range of a map
900 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
902 * and then duplicated
904 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
906 * The shared variables are then projected out and the maximal value
907 * of i_dim' - i_dim is computed.
909 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
916 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
917 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
918 map
= isl_map_range_product(map
, isl_map_copy(map
));
919 map
= isl_set_unwrap(isl_map_range(map
));
920 set
= isl_map_deltas(map
);
921 ls
= isl_local_space_from_space(isl_set_get_space(set
));
922 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
923 v
= isl_set_max_val(set
, obj
);
930 /* Compute the size of the instance set "set" of "node", after compression,
931 * as well as bounds on the corresponding coefficients, if needed.
933 * The sizes are needed when the schedule_treat_coalescing option is set.
934 * The bounds are needed when the schedule_treat_coalescing option or
935 * the schedule_max_coefficient option is set.
937 * If the schedule_treat_coalescing option is not set, then at most
938 * the bounds need to be set and this is done in set_max_coefficient.
939 * Otherwise, compress the domain if needed, compute the size
940 * in each direction and store the results in node->size.
941 * If the domain is not convex, then the sizes are computed
942 * on a convex superset in order to avoid picking up sizes
943 * that are valid for the individual disjuncts, but not for
944 * the domain as a whole.
945 * Finally, set the bounds on the coefficients based on the sizes
946 * and the schedule_max_coefficient option in compute_max_coefficient.
948 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
949 __isl_take isl_set
*set
)
954 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
956 return set_max_coefficient(ctx
, node
);
959 if (node
->compressed
)
960 set
= isl_set_preimage_multi_aff(set
,
961 isl_multi_aff_copy(node
->decompress
));
962 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
963 mv
= isl_multi_val_zero(isl_set_get_space(set
));
964 n
= isl_set_dim(set
, isl_dim_set
);
965 for (j
= 0; j
< n
; ++j
) {
968 v
= compute_size(isl_set_copy(set
), j
);
969 mv
= isl_multi_val_set_val(mv
, j
, v
);
974 return isl_stat_error
;
975 return compute_max_coefficient(ctx
, node
);
978 /* Add a new node to the graph representing the given instance set.
979 * "nvar" is the (possibly compressed) number of variables and
980 * may be smaller than then number of set variables in "set"
981 * if "compressed" is set.
982 * If "compressed" is set, then "hull" represents the constraints
983 * that were used to derive the compression, while "compress" and
984 * "decompress" map the original space to the compressed space and
986 * If "compressed" is not set, then "hull", "compress" and "decompress"
989 * Compute the size of the instance set and bounds on the coefficients,
992 static isl_stat
add_node(struct isl_sched_graph
*graph
,
993 __isl_take isl_set
*set
, int nvar
, int compressed
,
994 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
995 __isl_take isl_multi_aff
*decompress
)
1002 struct isl_sched_node
*node
;
1005 return isl_stat_error
;
1007 ctx
= isl_set_get_ctx(set
);
1008 nparam
= isl_set_dim(set
, isl_dim_param
);
1009 if (!ctx
->opt
->schedule_parametric
)
1011 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
1012 node
= &graph
->node
[graph
->n
];
1014 space
= isl_set_get_space(set
);
1015 node
->space
= space
;
1017 node
->nparam
= nparam
;
1018 node
->sched
= sched
;
1019 node
->sched_map
= NULL
;
1020 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1021 node
->coincident
= coincident
;
1022 node
->compressed
= compressed
;
1024 node
->compress
= compress
;
1025 node
->decompress
= decompress
;
1026 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1027 return isl_stat_error
;
1029 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1030 return isl_stat_error
;
1031 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1032 return isl_stat_error
;
1037 /* Construct an identifier for node "node", which will represent "set".
1038 * The name of the identifier is either "compressed" or
1039 * "compressed_<name>", with <name> the name of the space of "set".
1040 * The user pointer of the identifier points to "node".
1042 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
1043 struct isl_sched_node
*node
)
1052 has_name
= isl_set_has_tuple_name(set
);
1056 ctx
= isl_set_get_ctx(set
);
1058 return isl_id_alloc(ctx
, "compressed", node
);
1060 p
= isl_printer_to_str(ctx
);
1061 name
= isl_set_get_tuple_name(set
);
1062 p
= isl_printer_print_str(p
, "compressed_");
1063 p
= isl_printer_print_str(p
, name
);
1064 id_name
= isl_printer_get_str(p
);
1065 isl_printer_free(p
);
1067 id
= isl_id_alloc(ctx
, id_name
, node
);
1073 /* Add a new node to the graph representing the given set.
1075 * If any of the set variables is defined by an equality, then
1076 * we perform variable compression such that we can perform
1077 * the scheduling on the compressed domain.
1078 * In this case, an identifier is used that references the new node
1079 * such that each compressed space is unique and
1080 * such that the node can be recovered from the compressed space.
1082 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1085 isl_bool has_equality
;
1087 isl_basic_set
*hull
;
1090 isl_multi_aff
*compress
, *decompress
;
1091 struct isl_sched_graph
*graph
= user
;
1093 hull
= isl_set_affine_hull(isl_set_copy(set
));
1094 hull
= isl_basic_set_remove_divs(hull
);
1095 nvar
= isl_set_dim(set
, isl_dim_set
);
1096 has_equality
= has_any_defining_equality(hull
);
1098 if (has_equality
< 0)
1100 if (!has_equality
) {
1101 isl_basic_set_free(hull
);
1102 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1105 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1106 morph
= isl_basic_set_variable_compression_with_id(hull
,
1109 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1110 compress
= isl_morph_get_var_multi_aff(morph
);
1111 morph
= isl_morph_inverse(morph
);
1112 decompress
= isl_morph_get_var_multi_aff(morph
);
1113 isl_morph_free(morph
);
1115 hull_set
= isl_set_from_basic_set(hull
);
1116 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1118 isl_basic_set_free(hull
);
1120 return isl_stat_error
;
1123 struct isl_extract_edge_data
{
1124 enum isl_edge_type type
;
1125 struct isl_sched_graph
*graph
;
1128 /* Merge edge2 into edge1, freeing the contents of edge2.
1129 * Return 0 on success and -1 on failure.
1131 * edge1 and edge2 are assumed to have the same value for the map field.
1133 static int merge_edge(struct isl_sched_edge
*edge1
,
1134 struct isl_sched_edge
*edge2
)
1136 edge1
->types
|= edge2
->types
;
1137 isl_map_free(edge2
->map
);
1139 if (is_condition(edge2
)) {
1140 if (!edge1
->tagged_condition
)
1141 edge1
->tagged_condition
= edge2
->tagged_condition
;
1143 edge1
->tagged_condition
=
1144 isl_union_map_union(edge1
->tagged_condition
,
1145 edge2
->tagged_condition
);
1148 if (is_conditional_validity(edge2
)) {
1149 if (!edge1
->tagged_validity
)
1150 edge1
->tagged_validity
= edge2
->tagged_validity
;
1152 edge1
->tagged_validity
=
1153 isl_union_map_union(edge1
->tagged_validity
,
1154 edge2
->tagged_validity
);
1157 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1159 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1165 /* Insert dummy tags in domain and range of "map".
1167 * In particular, if "map" is of the form
1173 * [A -> dummy_tag] -> [B -> dummy_tag]
1175 * where the dummy_tags are identical and equal to any dummy tags
1176 * introduced by any other call to this function.
1178 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1184 isl_set
*domain
, *range
;
1186 ctx
= isl_map_get_ctx(map
);
1188 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1189 space
= isl_space_params(isl_map_get_space(map
));
1190 space
= isl_space_set_from_params(space
);
1191 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1192 space
= isl_space_map_from_set(space
);
1194 domain
= isl_map_wrap(map
);
1195 range
= isl_map_wrap(isl_map_universe(space
));
1196 map
= isl_map_from_domain_and_range(domain
, range
);
1197 map
= isl_map_zip(map
);
1202 /* Given that at least one of "src" or "dst" is compressed, return
1203 * a map between the spaces of these nodes restricted to the affine
1204 * hull that was used in the compression.
1206 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1207 struct isl_sched_node
*dst
)
1211 if (src
->compressed
)
1212 dom
= isl_set_copy(src
->hull
);
1214 dom
= isl_set_universe(isl_space_copy(src
->space
));
1215 if (dst
->compressed
)
1216 ran
= isl_set_copy(dst
->hull
);
1218 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1220 return isl_map_from_domain_and_range(dom
, ran
);
1223 /* Intersect the domains of the nested relations in domain and range
1224 * of "tagged" with "map".
1226 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1227 __isl_keep isl_map
*map
)
1231 tagged
= isl_map_zip(tagged
);
1232 set
= isl_map_wrap(isl_map_copy(map
));
1233 tagged
= isl_map_intersect_domain(tagged
, set
);
1234 tagged
= isl_map_zip(tagged
);
1238 /* Return a pointer to the node that lives in the domain space of "map",
1239 * an invalid node if there is no such node, or NULL in case of error.
1241 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1242 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1244 struct isl_sched_node
*node
;
1247 space
= isl_space_domain(isl_map_get_space(map
));
1248 node
= graph_find_node(ctx
, graph
, space
);
1249 isl_space_free(space
);
1254 /* Return a pointer to the node that lives in the range space of "map",
1255 * an invalid node if there is no such node, or NULL in case of error.
1257 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1258 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1260 struct isl_sched_node
*node
;
1263 space
= isl_space_range(isl_map_get_space(map
));
1264 node
= graph_find_node(ctx
, graph
, space
);
1265 isl_space_free(space
);
1270 /* Refrain from adding a new edge based on "map".
1271 * Instead, just free the map.
1272 * "tagged" is either a copy of "map" with additional tags or NULL.
1274 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1277 isl_map_free(tagged
);
1282 /* Add a new edge to the graph based on the given map
1283 * and add it to data->graph->edge_table[data->type].
1284 * If a dependence relation of a given type happens to be identical
1285 * to one of the dependence relations of a type that was added before,
1286 * then we don't create a new edge, but instead mark the original edge
1287 * as also representing a dependence of the current type.
1289 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1290 * may be specified as "tagged" dependence relations. That is, "map"
1291 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1292 * the dependence on iterations and a and b are tags.
1293 * edge->map is set to the relation containing the elements i -> j,
1294 * while edge->tagged_condition and edge->tagged_validity contain
1295 * the union of all the "map" relations
1296 * for which extract_edge is called that result in the same edge->map.
1298 * If the source or the destination node is compressed, then
1299 * intersect both "map" and "tagged" with the constraints that
1300 * were used to construct the compression.
1301 * This ensures that there are no schedule constraints defined
1302 * outside of these domains, while the scheduler no longer has
1303 * any control over those outside parts.
1305 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1308 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1309 struct isl_extract_edge_data
*data
= user
;
1310 struct isl_sched_graph
*graph
= data
->graph
;
1311 struct isl_sched_node
*src
, *dst
;
1312 struct isl_sched_edge
*edge
;
1313 isl_map
*tagged
= NULL
;
1315 if (data
->type
== isl_edge_condition
||
1316 data
->type
== isl_edge_conditional_validity
) {
1317 if (isl_map_can_zip(map
)) {
1318 tagged
= isl_map_copy(map
);
1319 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1321 tagged
= insert_dummy_tags(isl_map_copy(map
));
1325 src
= find_domain_node(ctx
, graph
, map
);
1326 dst
= find_range_node(ctx
, graph
, map
);
1330 if (!is_node(graph
, src
) || !is_node(graph
, dst
))
1331 return skip_edge(map
, tagged
);
1333 if (src
->compressed
|| dst
->compressed
) {
1335 hull
= extract_hull(src
, dst
);
1337 tagged
= map_intersect_domains(tagged
, hull
);
1338 map
= isl_map_intersect(map
, hull
);
1341 empty
= isl_map_plain_is_empty(map
);
1345 return skip_edge(map
, tagged
);
1347 graph
->edge
[graph
->n_edge
].src
= src
;
1348 graph
->edge
[graph
->n_edge
].dst
= dst
;
1349 graph
->edge
[graph
->n_edge
].map
= map
;
1350 graph
->edge
[graph
->n_edge
].types
= 0;
1351 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1352 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1353 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1354 if (data
->type
== isl_edge_condition
)
1355 graph
->edge
[graph
->n_edge
].tagged_condition
=
1356 isl_union_map_from_map(tagged
);
1357 if (data
->type
== isl_edge_conditional_validity
)
1358 graph
->edge
[graph
->n_edge
].tagged_validity
=
1359 isl_union_map_from_map(tagged
);
1361 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1364 return isl_stat_error
;
1366 if (edge
== &graph
->edge
[graph
->n_edge
])
1367 return graph_edge_table_add(ctx
, graph
, data
->type
,
1368 &graph
->edge
[graph
->n_edge
++]);
1370 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1371 return isl_stat_error
;
1373 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1376 isl_map_free(tagged
);
1377 return isl_stat_error
;
1380 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1382 * The context is included in the domain before the nodes of
1383 * the graphs are extracted in order to be able to exploit
1384 * any possible additional equalities.
1385 * Note that this intersection is only performed locally here.
1387 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1388 __isl_keep isl_schedule_constraints
*sc
)
1391 isl_union_set
*domain
;
1393 struct isl_extract_edge_data data
;
1394 enum isl_edge_type i
;
1398 return isl_stat_error
;
1400 ctx
= isl_schedule_constraints_get_ctx(sc
);
1402 domain
= isl_schedule_constraints_get_domain(sc
);
1403 graph
->n
= isl_union_set_n_set(domain
);
1404 isl_union_set_free(domain
);
1406 if (graph_alloc(ctx
, graph
, graph
->n
,
1407 isl_schedule_constraints_n_map(sc
)) < 0)
1408 return isl_stat_error
;
1410 if (compute_max_row(graph
, sc
) < 0)
1411 return isl_stat_error
;
1412 graph
->root
= graph
;
1414 domain
= isl_schedule_constraints_get_domain(sc
);
1415 domain
= isl_union_set_intersect_params(domain
,
1416 isl_schedule_constraints_get_context(sc
));
1417 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1418 isl_union_set_free(domain
);
1420 return isl_stat_error
;
1421 if (graph_init_table(ctx
, graph
) < 0)
1422 return isl_stat_error
;
1423 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1424 c
= isl_schedule_constraints_get(sc
, i
);
1425 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1426 isl_union_map_free(c
);
1428 return isl_stat_error
;
1430 if (graph_init_edge_tables(ctx
, graph
) < 0)
1431 return isl_stat_error
;
1434 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1438 c
= isl_schedule_constraints_get(sc
, i
);
1439 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1440 isl_union_map_free(c
);
1442 return isl_stat_error
;
1448 /* Check whether there is any dependence from node[j] to node[i]
1449 * or from node[i] to node[j].
1451 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1454 struct isl_sched_graph
*graph
= user
;
1456 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1459 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1462 /* Check whether there is a (conditional) validity dependence from node[j]
1463 * to node[i], forcing node[i] to follow node[j].
1465 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1467 struct isl_sched_graph
*graph
= user
;
1469 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1472 /* Use Tarjan's algorithm for computing the strongly connected components
1473 * in the dependence graph only considering those edges defined by "follows".
1475 static isl_stat
detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1476 isl_bool (*follows
)(int i
, int j
, void *user
))
1479 struct isl_tarjan_graph
*g
= NULL
;
1481 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1483 return isl_stat_error
;
1489 while (g
->order
[i
] != -1) {
1490 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1498 isl_tarjan_graph_free(g
);
1503 /* Apply Tarjan's algorithm to detect the strongly connected components
1504 * in the dependence graph.
1505 * Only consider the (conditional) validity dependences and clear "weak".
1507 static isl_stat
detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1510 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1513 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1514 * in the dependence graph.
1515 * Consider all dependences and set "weak".
1517 static isl_stat
detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1520 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1523 static int cmp_scc(const void *a
, const void *b
, void *data
)
1525 struct isl_sched_graph
*graph
= data
;
1529 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1532 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1534 static int sort_sccs(struct isl_sched_graph
*graph
)
1536 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1539 /* Return a non-parametric set in the compressed space of "node" that is
1540 * bounded by the size in each direction
1542 * { [x] : -S_i <= x_i <= S_i }
1544 * If S_i is infinity in direction i, then there are no constraints
1545 * in that direction.
1547 * Cache the result in node->bounds.
1549 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1552 isl_basic_set
*bounds
;
1557 return isl_basic_set_copy(node
->bounds
);
1559 if (node
->compressed
)
1560 space
= isl_multi_aff_get_domain_space(node
->decompress
);
1562 space
= isl_space_copy(node
->space
);
1563 nparam
= isl_space_dim(space
, isl_dim_param
);
1564 space
= isl_space_drop_dims(space
, isl_dim_param
, 0, nparam
);
1565 bounds
= isl_basic_set_universe(space
);
1567 for (i
= 0; i
< node
->nvar
; ++i
) {
1570 size
= isl_multi_val_get_val(node
->sizes
, i
);
1572 return isl_basic_set_free(bounds
);
1573 if (!isl_val_is_int(size
)) {
1577 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1578 isl_val_copy(size
));
1579 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1583 node
->bounds
= isl_basic_set_copy(bounds
);
1587 /* Drop some constraints from "delta" that could be exploited
1588 * to construct loop coalescing schedules.
1589 * In particular, drop those constraint that bound the difference
1590 * to the size of the domain.
1591 * First project out the parameters to improve the effectiveness.
1593 static __isl_give isl_set
*drop_coalescing_constraints(
1594 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1597 isl_basic_set
*bounds
;
1599 bounds
= get_size_bounds(node
);
1601 nparam
= isl_set_dim(delta
, isl_dim_param
);
1602 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1603 delta
= isl_set_remove_divs(delta
);
1604 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1608 /* Given a dependence relation R from "node" to itself,
1609 * construct the set of coefficients of valid constraints for elements
1610 * in that dependence relation.
1611 * In particular, the result contains tuples of coefficients
1612 * c_0, c_n, c_x such that
1614 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1618 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1620 * We choose here to compute the dual of delta R.
1621 * Alternatively, we could have computed the dual of R, resulting
1622 * in a set of tuples c_0, c_n, c_x, c_y, and then
1623 * plugged in (c_0, c_n, c_x, -c_x).
1625 * If "need_param" is set, then the resulting coefficients effectively
1626 * include coefficients for the parameters c_n. Otherwise, they may
1627 * have been projected out already.
1628 * Since the constraints may be different for these two cases,
1629 * they are stored in separate caches.
1630 * In particular, if no parameter coefficients are required and
1631 * the schedule_treat_coalescing option is set, then the parameters
1632 * are projected out and some constraints that could be exploited
1633 * to construct coalescing schedules are removed before the dual
1636 * If "node" has been compressed, then the dependence relation
1637 * is also compressed before the set of coefficients is computed.
1639 static __isl_give isl_basic_set
*intra_coefficients(
1640 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1641 __isl_take isl_map
*map
, int need_param
)
1646 isl_basic_set
*coef
;
1647 isl_maybe_isl_basic_set m
;
1648 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1654 ctx
= isl_map_get_ctx(map
);
1655 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1657 hmap
= &graph
->intra_hmap_param
;
1658 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1659 if (m
.valid
< 0 || m
.valid
) {
1664 key
= isl_map_copy(map
);
1665 if (node
->compressed
) {
1666 map
= isl_map_preimage_domain_multi_aff(map
,
1667 isl_multi_aff_copy(node
->decompress
));
1668 map
= isl_map_preimage_range_multi_aff(map
,
1669 isl_multi_aff_copy(node
->decompress
));
1671 delta
= isl_map_deltas(map
);
1673 delta
= drop_coalescing_constraints(delta
, node
);
1674 delta
= isl_set_remove_divs(delta
);
1675 coef
= isl_set_coefficients(delta
);
1676 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1681 /* Given a dependence relation R, construct the set of coefficients
1682 * of valid constraints for elements in that dependence relation.
1683 * In particular, the result contains tuples of coefficients
1684 * c_0, c_n, c_x, c_y such that
1686 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1688 * If the source or destination nodes of "edge" have been compressed,
1689 * then the dependence relation is also compressed before
1690 * the set of coefficients is computed.
1692 static __isl_give isl_basic_set
*inter_coefficients(
1693 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1694 __isl_take isl_map
*map
)
1698 isl_basic_set
*coef
;
1699 isl_maybe_isl_basic_set m
;
1701 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1702 if (m
.valid
< 0 || m
.valid
) {
1707 key
= isl_map_copy(map
);
1708 if (edge
->src
->compressed
)
1709 map
= isl_map_preimage_domain_multi_aff(map
,
1710 isl_multi_aff_copy(edge
->src
->decompress
));
1711 if (edge
->dst
->compressed
)
1712 map
= isl_map_preimage_range_multi_aff(map
,
1713 isl_multi_aff_copy(edge
->dst
->decompress
));
1714 set
= isl_map_wrap(isl_map_remove_divs(map
));
1715 coef
= isl_set_coefficients(set
);
1716 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1717 isl_basic_set_copy(coef
));
1722 /* Return the position of the coefficients of the variables in
1723 * the coefficients constraints "coef".
1725 * The space of "coef" is of the form
1727 * { coefficients[[cst, params] -> S] }
1729 * Return the position of S.
1731 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1736 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1737 offset
= isl_space_dim(space
, isl_dim_in
);
1738 isl_space_free(space
);
1743 /* Return the offset of the coefficient of the constant term of "node"
1746 * Within each node, the coefficients have the following order:
1747 * - positive and negative parts of c_i_x
1748 * - c_i_n (if parametric)
1751 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1753 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1756 /* Return the offset of the coefficients of the parameters of "node"
1759 * Within each node, the coefficients have the following order:
1760 * - positive and negative parts of c_i_x
1761 * - c_i_n (if parametric)
1764 static int node_par_coef_offset(struct isl_sched_node
*node
)
1766 return node
->start
+ 2 * node
->nvar
;
1769 /* Return the offset of the coefficients of the variables of "node"
1772 * Within each node, the coefficients have the following order:
1773 * - positive and negative parts of c_i_x
1774 * - c_i_n (if parametric)
1777 static int node_var_coef_offset(struct isl_sched_node
*node
)
1782 /* Return the position of the pair of variables encoding
1783 * coefficient "i" of "node".
1785 * The order of these variable pairs is the opposite of
1786 * that of the coefficients, with 2 variables per coefficient.
1788 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1790 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1793 /* Construct an isl_dim_map for mapping constraints on coefficients
1794 * for "node" to the corresponding positions in graph->lp.
1795 * "offset" is the offset of the coefficients for the variables
1796 * in the input constraints.
1797 * "s" is the sign of the mapping.
1799 * The input constraints are given in terms of the coefficients
1800 * (c_0, c_x) or (c_0, c_n, c_x).
1801 * The mapping produced by this function essentially plugs in
1802 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1803 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1804 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1805 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1806 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1807 * Furthermore, the order of these pairs is the opposite of that
1808 * of the corresponding coefficients.
1810 * The caller can extend the mapping to also map the other coefficients
1811 * (and therefore not plug in 0).
1813 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1814 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1819 isl_dim_map
*dim_map
;
1821 if (!node
|| !graph
->lp
)
1824 total
= isl_basic_set_total_dim(graph
->lp
);
1825 pos
= node_var_coef_pos(node
, 0);
1826 dim_map
= isl_dim_map_alloc(ctx
, total
);
1827 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1828 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1833 /* Construct an isl_dim_map for mapping constraints on coefficients
1834 * for "src" (node i) and "dst" (node j) to the corresponding positions
1836 * "offset" is the offset of the coefficients for the variables of "src"
1837 * in the input constraints.
1838 * "s" is the sign of the mapping.
1840 * The input constraints are given in terms of the coefficients
1841 * (c_0, c_n, c_x, c_y).
1842 * The mapping produced by this function essentially plugs in
1843 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1844 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1845 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1846 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1847 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1848 * Furthermore, the order of these pairs is the opposite of that
1849 * of the corresponding coefficients.
1851 * The caller can further extend the mapping.
1853 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1854 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1855 struct isl_sched_node
*dst
, int offset
, int s
)
1859 isl_dim_map
*dim_map
;
1861 if (!src
|| !dst
|| !graph
->lp
)
1864 total
= isl_basic_set_total_dim(graph
->lp
);
1865 dim_map
= isl_dim_map_alloc(ctx
, total
);
1867 pos
= node_cst_coef_offset(dst
);
1868 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1869 pos
= node_par_coef_offset(dst
);
1870 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1871 pos
= node_var_coef_pos(dst
, 0);
1872 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1874 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1877 pos
= node_cst_coef_offset(src
);
1878 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1879 pos
= node_par_coef_offset(src
);
1880 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1881 pos
= node_var_coef_pos(src
, 0);
1882 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1883 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1888 /* Add the constraints from "src" to "dst" using "dim_map",
1889 * after making sure there is enough room in "dst" for the extra constraints.
1891 static __isl_give isl_basic_set
*add_constraints_dim_map(
1892 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1893 __isl_take isl_dim_map
*dim_map
)
1897 n_eq
= isl_basic_set_n_equality(src
);
1898 n_ineq
= isl_basic_set_n_inequality(src
);
1899 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1900 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1904 /* Add constraints to graph->lp that force validity for the given
1905 * dependence from a node i to itself.
1906 * That is, add constraints that enforce
1908 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1909 * = c_i_x (y - x) >= 0
1911 * for each (x,y) in R.
1912 * We obtain general constraints on coefficients (c_0, c_x)
1913 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1914 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1915 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1916 * Note that the result of intra_coefficients may also contain
1917 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1919 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1920 struct isl_sched_edge
*edge
)
1923 isl_map
*map
= isl_map_copy(edge
->map
);
1924 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1925 isl_dim_map
*dim_map
;
1926 isl_basic_set
*coef
;
1927 struct isl_sched_node
*node
= edge
->src
;
1929 coef
= intra_coefficients(graph
, node
, map
, 0);
1931 offset
= coef_var_offset(coef
);
1934 return isl_stat_error
;
1936 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1937 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1942 /* Add constraints to graph->lp that force validity for the given
1943 * dependence from node i to node j.
1944 * That is, add constraints that enforce
1946 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1948 * for each (x,y) in R.
1949 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1950 * of valid constraints for R and then plug in
1951 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1952 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1953 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1955 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1956 struct isl_sched_edge
*edge
)
1961 isl_dim_map
*dim_map
;
1962 isl_basic_set
*coef
;
1963 struct isl_sched_node
*src
= edge
->src
;
1964 struct isl_sched_node
*dst
= edge
->dst
;
1967 return isl_stat_error
;
1969 map
= isl_map_copy(edge
->map
);
1970 ctx
= isl_map_get_ctx(map
);
1971 coef
= inter_coefficients(graph
, edge
, map
);
1973 offset
= coef_var_offset(coef
);
1976 return isl_stat_error
;
1978 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1980 edge
->start
= graph
->lp
->n_ineq
;
1981 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1983 return isl_stat_error
;
1984 edge
->end
= graph
->lp
->n_ineq
;
1989 /* Add constraints to graph->lp that bound the dependence distance for the given
1990 * dependence from a node i to itself.
1991 * If s = 1, we add the constraint
1993 * c_i_x (y - x) <= m_0 + m_n n
1997 * -c_i_x (y - x) + m_0 + m_n n >= 0
1999 * for each (x,y) in R.
2000 * If s = -1, we add the constraint
2002 * -c_i_x (y - x) <= m_0 + m_n n
2006 * c_i_x (y - x) + m_0 + m_n n >= 0
2008 * for each (x,y) in R.
2009 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2010 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2011 * with each coefficient (except m_0) represented as a pair of non-negative
2015 * If "local" is set, then we add constraints
2017 * c_i_x (y - x) <= 0
2021 * -c_i_x (y - x) <= 0
2023 * instead, forcing the dependence distance to be (less than or) equal to 0.
2024 * That is, we plug in (0, 0, -s * c_i_x),
2025 * intra_coefficients is not required to have c_n in its result when
2026 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2027 * Note that dependences marked local are treated as validity constraints
2028 * by add_all_validity_constraints and therefore also have
2029 * their distances bounded by 0 from below.
2031 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2032 struct isl_sched_edge
*edge
, int s
, int local
)
2036 isl_map
*map
= isl_map_copy(edge
->map
);
2037 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2038 isl_dim_map
*dim_map
;
2039 isl_basic_set
*coef
;
2040 struct isl_sched_node
*node
= edge
->src
;
2042 coef
= intra_coefficients(graph
, node
, map
, !local
);
2044 offset
= coef_var_offset(coef
);
2047 return isl_stat_error
;
2049 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2050 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2053 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2054 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2055 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2057 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2062 /* Add constraints to graph->lp that bound the dependence distance for the given
2063 * dependence from node i to node j.
2064 * If s = 1, we add the constraint
2066 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2071 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2074 * for each (x,y) in R.
2075 * If s = -1, we add the constraint
2077 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2082 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2085 * for each (x,y) in R.
2086 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2087 * of valid constraints for R and then plug in
2088 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2089 * s*c_i_x, -s*c_j_x)
2090 * with each coefficient (except m_0, c_*_0 and c_*_n)
2091 * represented as a pair of non-negative coefficients.
2094 * If "local" is set (and s = 1), then we add constraints
2096 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2100 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2102 * instead, forcing the dependence distance to be (less than or) equal to 0.
2103 * That is, we plug in
2104 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2105 * Note that dependences marked local are treated as validity constraints
2106 * by add_all_validity_constraints and therefore also have
2107 * their distances bounded by 0 from below.
2109 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2110 struct isl_sched_edge
*edge
, int s
, int local
)
2114 isl_map
*map
= isl_map_copy(edge
->map
);
2115 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2116 isl_dim_map
*dim_map
;
2117 isl_basic_set
*coef
;
2118 struct isl_sched_node
*src
= edge
->src
;
2119 struct isl_sched_node
*dst
= edge
->dst
;
2121 coef
= inter_coefficients(graph
, edge
, map
);
2123 offset
= coef_var_offset(coef
);
2126 return isl_stat_error
;
2128 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2129 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2132 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2133 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2134 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2137 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2142 /* Should the distance over "edge" be forced to zero?
2143 * That is, is it marked as a local edge?
2144 * If "use_coincidence" is set, then coincidence edges are treated
2147 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2149 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2152 /* Add all validity constraints to graph->lp.
2154 * An edge that is forced to be local needs to have its dependence
2155 * distances equal to zero. We take care of bounding them by 0 from below
2156 * here. add_all_proximity_constraints takes care of bounding them by 0
2159 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2160 * Otherwise, we ignore them.
2162 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2163 int use_coincidence
)
2167 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2168 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2171 zero
= force_zero(edge
, use_coincidence
);
2172 if (!is_validity(edge
) && !zero
)
2174 if (edge
->src
!= edge
->dst
)
2176 if (add_intra_validity_constraints(graph
, edge
) < 0)
2180 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2181 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2184 zero
= force_zero(edge
, use_coincidence
);
2185 if (!is_validity(edge
) && !zero
)
2187 if (edge
->src
== edge
->dst
)
2189 if (add_inter_validity_constraints(graph
, edge
) < 0)
2196 /* Add constraints to graph->lp that bound the dependence distance
2197 * for all dependence relations.
2198 * If a given proximity dependence is identical to a validity
2199 * dependence, then the dependence distance is already bounded
2200 * from below (by zero), so we only need to bound the distance
2201 * from above. (This includes the case of "local" dependences
2202 * which are treated as validity dependence by add_all_validity_constraints.)
2203 * Otherwise, we need to bound the distance both from above and from below.
2205 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2206 * Otherwise, we ignore them.
2208 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2209 int use_coincidence
)
2213 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2214 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2217 zero
= force_zero(edge
, use_coincidence
);
2218 if (!is_proximity(edge
) && !zero
)
2220 if (edge
->src
== edge
->dst
&&
2221 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2223 if (edge
->src
!= edge
->dst
&&
2224 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2226 if (is_validity(edge
) || zero
)
2228 if (edge
->src
== edge
->dst
&&
2229 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2231 if (edge
->src
!= edge
->dst
&&
2232 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2239 /* Normalize the rows of "indep" such that all rows are lexicographically
2240 * positive and such that each row contains as many final zeros as possible,
2241 * given the choice for the previous rows.
2242 * Do this by performing elementary row operations.
2244 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2246 indep
= isl_mat_reverse_gauss(indep
);
2247 indep
= isl_mat_lexnonneg_rows(indep
);
2251 /* Compute a basis for the rows in the linear part of the schedule
2252 * and extend this basis to a full basis. The remaining rows
2253 * can then be used to force linear independence from the rows
2256 * In particular, given the schedule rows S, we compute
2261 * with H the Hermite normal form of S. That is, all but the
2262 * first rank columns of H are zero and so each row in S is
2263 * a linear combination of the first rank rows of Q.
2264 * The matrix Q can be used as a variable transformation
2265 * that isolates the directions of S in the first rank rows.
2266 * Transposing S U = H yields
2270 * with all but the first rank rows of H^T zero.
2271 * The last rows of U^T are therefore linear combinations
2272 * of schedule coefficients that are all zero on schedule
2273 * coefficients that are linearly dependent on the rows of S.
2274 * At least one of these combinations is non-zero on
2275 * linearly independent schedule coefficients.
2276 * The rows are normalized to involve as few of the last
2277 * coefficients as possible and to have a positive initial value.
2279 static int node_update_vmap(struct isl_sched_node
*node
)
2282 int n_row
= isl_mat_rows(node
->sched
);
2284 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2285 1 + node
->nparam
, node
->nvar
);
2287 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2288 isl_mat_free(node
->indep
);
2289 isl_mat_free(node
->vmap
);
2291 node
->indep
= isl_mat_transpose(U
);
2292 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2293 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2294 node
->indep
= normalize_independent(node
->indep
);
2297 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2302 /* Is "edge" marked as a validity or a conditional validity edge?
2304 static int is_any_validity(struct isl_sched_edge
*edge
)
2306 return is_validity(edge
) || is_conditional_validity(edge
);
2309 /* How many times should we count the constraints in "edge"?
2311 * We count as follows
2312 * validity -> 1 (>= 0)
2313 * validity+proximity -> 2 (>= 0 and upper bound)
2314 * proximity -> 2 (lower and upper bound)
2315 * local(+any) -> 2 (>= 0 and <= 0)
2317 * If an edge is only marked conditional_validity then it counts
2318 * as zero since it is only checked afterwards.
2320 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2321 * Otherwise, we ignore them.
2323 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2325 if (is_proximity(edge
) || force_zero(edge
, use_coincidence
))
2327 if (is_validity(edge
))
2332 /* How many times should the constraints in "edge" be counted
2333 * as a parametric intra-node constraint?
2335 * Only proximity edges that are not forced zero need
2336 * coefficient constraints that include coefficients for parameters.
2337 * If the edge is also a validity edge, then only
2338 * an upper bound is introduced. Otherwise, both lower and upper bounds
2341 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2342 int use_coincidence
)
2344 if (edge
->src
!= edge
->dst
)
2346 if (!is_proximity(edge
))
2348 if (force_zero(edge
, use_coincidence
))
2350 if (is_validity(edge
))
2356 /* Add "f" times the number of equality and inequality constraints of "bset"
2357 * to "n_eq" and "n_ineq" and free "bset".
2359 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2360 int f
, int *n_eq
, int *n_ineq
)
2363 return isl_stat_error
;
2365 *n_eq
+= isl_basic_set_n_equality(bset
);
2366 *n_ineq
+= isl_basic_set_n_inequality(bset
);
2367 isl_basic_set_free(bset
);
2372 /* Count the number of equality and inequality constraints
2373 * that will be added for the given map.
2375 * The edges that require parameter coefficients are counted separately.
2377 * "use_coincidence" is set if we should take into account coincidence edges.
2379 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2380 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2381 int *n_eq
, int *n_ineq
, int use_coincidence
)
2384 isl_basic_set
*coef
;
2385 int f
= edge_multiplicity(edge
, use_coincidence
);
2386 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2393 if (edge
->src
!= edge
->dst
) {
2394 coef
= inter_coefficients(graph
, edge
, map
);
2395 return update_count(coef
, f
, n_eq
, n_ineq
);
2399 copy
= isl_map_copy(map
);
2400 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2401 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2406 copy
= isl_map_copy(map
);
2407 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2408 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2416 return isl_stat_error
;
2419 /* Count the number of equality and inequality constraints
2420 * that will be added to the main lp problem.
2421 * We count as follows
2422 * validity -> 1 (>= 0)
2423 * validity+proximity -> 2 (>= 0 and upper bound)
2424 * proximity -> 2 (lower and upper bound)
2425 * local(+any) -> 2 (>= 0 and <= 0)
2427 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2428 * Otherwise, we ignore them.
2430 static int count_constraints(struct isl_sched_graph
*graph
,
2431 int *n_eq
, int *n_ineq
, int use_coincidence
)
2435 *n_eq
= *n_ineq
= 0;
2436 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2437 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2438 isl_map
*map
= isl_map_copy(edge
->map
);
2440 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2441 use_coincidence
) < 0)
2448 /* Count the number of constraints that will be added by
2449 * add_bound_constant_constraints to bound the values of the constant terms
2450 * and increment *n_eq and *n_ineq accordingly.
2452 * In practice, add_bound_constant_constraints only adds inequalities.
2454 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2455 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2457 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2460 *n_ineq
+= graph
->n
;
2465 /* Add constraints to bound the values of the constant terms in the schedule,
2466 * if requested by the user.
2468 * The maximal value of the constant terms is defined by the option
2469 * "schedule_max_constant_term".
2471 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2472 struct isl_sched_graph
*graph
)
2478 max
= isl_options_get_schedule_max_constant_term(ctx
);
2482 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2484 for (i
= 0; i
< graph
->n
; ++i
) {
2485 struct isl_sched_node
*node
= &graph
->node
[i
];
2488 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2490 return isl_stat_error
;
2491 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2492 pos
= node_cst_coef_offset(node
);
2493 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2494 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2500 /* Count the number of constraints that will be added by
2501 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2504 * In practice, add_bound_coefficient_constraints only adds inequalities.
2506 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2507 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2511 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2512 !isl_options_get_schedule_treat_coalescing(ctx
))
2515 for (i
= 0; i
< graph
->n
; ++i
)
2516 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2521 /* Add constraints to graph->lp that bound the values of
2522 * the parameter schedule coefficients of "node" to "max" and
2523 * the variable schedule coefficients to the corresponding entry
2525 * In either case, a negative value means that no bound needs to be imposed.
2527 * For parameter coefficients, this amounts to adding a constraint
2535 * The variables coefficients are, however, not represented directly.
2536 * Instead, the variable coefficients c_x are written as differences
2537 * c_x = c_x^+ - c_x^-.
2540 * -max_i <= c_x_i <= max_i
2544 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2548 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2549 * c_x_i^+ - c_x_i^- + max_i >= 0
2551 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2552 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2558 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2560 for (j
= 0; j
< node
->nparam
; ++j
) {
2566 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2568 return isl_stat_error
;
2569 dim
= 1 + node_par_coef_offset(node
) + j
;
2570 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2571 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2572 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2575 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2576 ineq
= isl_vec_clr(ineq
);
2578 return isl_stat_error
;
2579 for (i
= 0; i
< node
->nvar
; ++i
) {
2580 int pos
= 1 + node_var_coef_pos(node
, i
);
2582 if (isl_int_is_neg(node
->max
->el
[i
]))
2585 isl_int_set_si(ineq
->el
[pos
], 1);
2586 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2587 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2589 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2592 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2594 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2595 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2598 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2600 isl_seq_clr(ineq
->el
+ pos
, 2);
2607 return isl_stat_error
;
2610 /* Add constraints that bound the values of the variable and parameter
2611 * coefficients of the schedule.
2613 * The maximal value of the coefficients is defined by the option
2614 * 'schedule_max_coefficient' and the entries in node->max.
2615 * These latter entries are only set if either the schedule_max_coefficient
2616 * option or the schedule_treat_coalescing option is set.
2618 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2619 struct isl_sched_graph
*graph
)
2624 max
= isl_options_get_schedule_max_coefficient(ctx
);
2626 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2629 for (i
= 0; i
< graph
->n
; ++i
) {
2630 struct isl_sched_node
*node
= &graph
->node
[i
];
2632 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2633 return isl_stat_error
;
2639 /* Add a constraint to graph->lp that equates the value at position
2640 * "sum_pos" to the sum of the "n" values starting at "first".
2642 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2643 int sum_pos
, int first
, int n
)
2648 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2650 k
= isl_basic_set_alloc_equality(graph
->lp
);
2652 return isl_stat_error
;
2653 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2654 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2655 for (i
= 0; i
< n
; ++i
)
2656 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2661 /* Add a constraint to graph->lp that equates the value at position
2662 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2664 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2670 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2672 k
= isl_basic_set_alloc_equality(graph
->lp
);
2674 return isl_stat_error
;
2675 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2676 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2677 for (i
= 0; i
< graph
->n
; ++i
) {
2678 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2680 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2681 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2687 /* Add a constraint to graph->lp that equates the value at position
2688 * "sum_pos" to the sum of the variable coefficients of all nodes.
2690 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2696 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2698 k
= isl_basic_set_alloc_equality(graph
->lp
);
2700 return isl_stat_error
;
2701 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2702 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2703 for (i
= 0; i
< graph
->n
; ++i
) {
2704 struct isl_sched_node
*node
= &graph
->node
[i
];
2705 int pos
= 1 + node_var_coef_offset(node
);
2707 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2708 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2714 /* Construct an ILP problem for finding schedule coefficients
2715 * that result in non-negative, but small dependence distances
2716 * over all dependences.
2717 * In particular, the dependence distances over proximity edges
2718 * are bounded by m_0 + m_n n and we compute schedule coefficients
2719 * with small values (preferably zero) of m_n and m_0.
2721 * All variables of the ILP are non-negative. The actual coefficients
2722 * may be negative, so each coefficient is represented as the difference
2723 * of two non-negative variables. The negative part always appears
2724 * immediately before the positive part.
2725 * Other than that, the variables have the following order
2727 * - sum of positive and negative parts of m_n coefficients
2729 * - sum of all c_n coefficients
2730 * (unconstrained when computing non-parametric schedules)
2731 * - sum of positive and negative parts of all c_x coefficients
2732 * - positive and negative parts of m_n coefficients
2734 * - positive and negative parts of c_i_x, in opposite order
2735 * - c_i_n (if parametric)
2738 * The constraints are those from the edges plus two or three equalities
2739 * to express the sums.
2741 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2742 * Otherwise, we ignore them.
2744 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2745 int use_coincidence
)
2755 parametric
= ctx
->opt
->schedule_parametric
;
2756 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2758 total
= param_pos
+ 2 * nparam
;
2759 for (i
= 0; i
< graph
->n
; ++i
) {
2760 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2761 if (node_update_vmap(node
) < 0)
2762 return isl_stat_error
;
2763 node
->start
= total
;
2764 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2767 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2768 return isl_stat_error
;
2769 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2770 return isl_stat_error
;
2771 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2772 return isl_stat_error
;
2774 space
= isl_space_set_alloc(ctx
, 0, total
);
2775 isl_basic_set_free(graph
->lp
);
2776 n_eq
+= 2 + parametric
;
2778 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2780 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2781 return isl_stat_error
;
2782 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2783 return isl_stat_error
;
2784 if (add_var_sum_constraint(graph
, 3) < 0)
2785 return isl_stat_error
;
2786 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2787 return isl_stat_error
;
2788 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2789 return isl_stat_error
;
2790 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2791 return isl_stat_error
;
2792 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2793 return isl_stat_error
;
2798 /* Analyze the conflicting constraint found by
2799 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2800 * constraint of one of the edges between distinct nodes, living, moreover
2801 * in distinct SCCs, then record the source and sink SCC as this may
2802 * be a good place to cut between SCCs.
2804 static int check_conflict(int con
, void *user
)
2807 struct isl_sched_graph
*graph
= user
;
2809 if (graph
->src_scc
>= 0)
2812 con
-= graph
->lp
->n_eq
;
2814 if (con
>= graph
->lp
->n_ineq
)
2817 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2818 if (!is_validity(&graph
->edge
[i
]))
2820 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2822 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2824 if (graph
->edge
[i
].start
> con
)
2826 if (graph
->edge
[i
].end
<= con
)
2828 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2829 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2835 /* Check whether the next schedule row of the given node needs to be
2836 * non-trivial. Lower-dimensional domains may have some trivial rows,
2837 * but as soon as the number of remaining required non-trivial rows
2838 * is as large as the number or remaining rows to be computed,
2839 * all remaining rows need to be non-trivial.
2841 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2843 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2846 /* Construct a non-triviality region with triviality directions
2847 * corresponding to the rows of "indep".
2848 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2849 * while the triviality directions are expressed in terms of
2850 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2851 * before c^+_i. Furthermore,
2852 * the pairs of non-negative variables representing the coefficients
2853 * are stored in the opposite order.
2855 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2864 ctx
= isl_mat_get_ctx(indep
);
2865 n
= isl_mat_rows(indep
);
2866 n_var
= isl_mat_cols(indep
);
2867 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2870 for (i
= 0; i
< n
; ++i
) {
2871 for (j
= 0; j
< n_var
; ++j
) {
2872 int nj
= n_var
- 1 - j
;
2873 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2874 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2881 /* Solve the ILP problem constructed in setup_lp.
2882 * For each node such that all the remaining rows of its schedule
2883 * need to be non-trivial, we construct a non-triviality region.
2884 * This region imposes that the next row is independent of previous rows.
2885 * In particular, the non-triviality region enforces that at least
2886 * one of the linear combinations in the rows of node->indep is non-zero.
2888 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2894 for (i
= 0; i
< graph
->n
; ++i
) {
2895 struct isl_sched_node
*node
= &graph
->node
[i
];
2898 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2899 if (needs_row(graph
, node
))
2900 trivial
= construct_trivial(node
->indep
);
2902 trivial
= isl_mat_zero(ctx
, 0, 0);
2903 graph
->region
[i
].trivial
= trivial
;
2905 lp
= isl_basic_set_copy(graph
->lp
);
2906 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2907 graph
->region
, &check_conflict
, graph
);
2908 for (i
= 0; i
< graph
->n
; ++i
)
2909 isl_mat_free(graph
->region
[i
].trivial
);
2913 /* Extract the coefficients for the variables of "node" from "sol".
2915 * Each schedule coefficient c_i_x is represented as the difference
2916 * between two non-negative variables c_i_x^+ - c_i_x^-.
2917 * The c_i_x^- appear before their c_i_x^+ counterpart.
2918 * Furthermore, the order of these pairs is the opposite of that
2919 * of the corresponding coefficients.
2921 * Return c_i_x = c_i_x^+ - c_i_x^-
2923 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2924 __isl_keep isl_vec
*sol
)
2932 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2936 pos
= 1 + node_var_coef_offset(node
);
2937 for (i
= 0; i
< node
->nvar
; ++i
)
2938 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2939 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2944 /* Update the schedules of all nodes based on the given solution
2945 * of the LP problem.
2946 * The new row is added to the current band.
2947 * All possibly negative coefficients are encoded as a difference
2948 * of two non-negative variables, so we need to perform the subtraction
2951 * If coincident is set, then the caller guarantees that the new
2952 * row satisfies the coincidence constraints.
2954 static int update_schedule(struct isl_sched_graph
*graph
,
2955 __isl_take isl_vec
*sol
, int coincident
)
2958 isl_vec
*csol
= NULL
;
2963 isl_die(sol
->ctx
, isl_error_internal
,
2964 "no solution found", goto error
);
2965 if (graph
->n_total_row
>= graph
->max_row
)
2966 isl_die(sol
->ctx
, isl_error_internal
,
2967 "too many schedule rows", goto error
);
2969 for (i
= 0; i
< graph
->n
; ++i
) {
2970 struct isl_sched_node
*node
= &graph
->node
[i
];
2972 int row
= isl_mat_rows(node
->sched
);
2975 csol
= extract_var_coef(node
, sol
);
2979 isl_map_free(node
->sched_map
);
2980 node
->sched_map
= NULL
;
2981 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2984 pos
= node_cst_coef_offset(node
);
2985 node
->sched
= isl_mat_set_element(node
->sched
,
2986 row
, 0, sol
->el
[1 + pos
]);
2987 pos
= node_par_coef_offset(node
);
2988 for (j
= 0; j
< node
->nparam
; ++j
)
2989 node
->sched
= isl_mat_set_element(node
->sched
,
2990 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
2991 for (j
= 0; j
< node
->nvar
; ++j
)
2992 node
->sched
= isl_mat_set_element(node
->sched
,
2993 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2994 node
->coincident
[graph
->n_total_row
] = coincident
;
3000 graph
->n_total_row
++;
3009 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3010 * and return this isl_aff.
3012 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
3013 struct isl_sched_node
*node
, int row
)
3021 aff
= isl_aff_zero_on_domain(ls
);
3022 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3024 aff
= isl_aff_set_constant(aff
, v
);
3025 for (j
= 0; j
< node
->nparam
; ++j
) {
3026 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3028 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3030 for (j
= 0; j
< node
->nvar
; ++j
) {
3031 if (isl_mat_get_element(node
->sched
, row
,
3032 1 + node
->nparam
+ j
, &v
) < 0)
3034 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3046 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3047 * and return this multi_aff.
3049 * The result is defined over the uncompressed node domain.
3051 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
3052 struct isl_sched_node
*node
, int first
, int n
)
3056 isl_local_space
*ls
;
3063 nrow
= isl_mat_rows(node
->sched
);
3064 if (node
->compressed
)
3065 space
= isl_multi_aff_get_domain_space(node
->decompress
);
3067 space
= isl_space_copy(node
->space
);
3068 ls
= isl_local_space_from_space(isl_space_copy(space
));
3069 space
= isl_space_from_domain(space
);
3070 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3071 ma
= isl_multi_aff_zero(space
);
3073 for (i
= first
; i
< first
+ n
; ++i
) {
3074 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3075 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3078 isl_local_space_free(ls
);
3080 if (node
->compressed
)
3081 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3082 isl_multi_aff_copy(node
->compress
));
3087 /* Convert node->sched into a multi_aff and return this multi_aff.
3089 * The result is defined over the uncompressed node domain.
3091 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3092 struct isl_sched_node
*node
)
3096 nrow
= isl_mat_rows(node
->sched
);
3097 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3100 /* Convert node->sched into a map and return this map.
3102 * The result is cached in node->sched_map, which needs to be released
3103 * whenever node->sched is updated.
3104 * It is defined over the uncompressed node domain.
3106 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3108 if (!node
->sched_map
) {
3111 ma
= node_extract_schedule_multi_aff(node
);
3112 node
->sched_map
= isl_map_from_multi_aff(ma
);
3115 return isl_map_copy(node
->sched_map
);
3118 /* Construct a map that can be used to update a dependence relation
3119 * based on the current schedule.
3120 * That is, construct a map expressing that source and sink
3121 * are executed within the same iteration of the current schedule.
3122 * This map can then be intersected with the dependence relation.
3123 * This is not the most efficient way, but this shouldn't be a critical
3126 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3127 struct isl_sched_node
*dst
)
3129 isl_map
*src_sched
, *dst_sched
;
3131 src_sched
= node_extract_schedule(src
);
3132 dst_sched
= node_extract_schedule(dst
);
3133 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3136 /* Intersect the domains of the nested relations in domain and range
3137 * of "umap" with "map".
3139 static __isl_give isl_union_map
*intersect_domains(
3140 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3142 isl_union_set
*uset
;
3144 umap
= isl_union_map_zip(umap
);
3145 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3146 umap
= isl_union_map_intersect_domain(umap
, uset
);
3147 umap
= isl_union_map_zip(umap
);
3151 /* Update the dependence relation of the given edge based
3152 * on the current schedule.
3153 * If the dependence is carried completely by the current schedule, then
3154 * it is removed from the edge_tables. It is kept in the list of edges
3155 * as otherwise all edge_tables would have to be recomputed.
3157 * If the edge is of a type that can appear multiple times
3158 * between the same pair of nodes, then it is added to
3159 * the edge table (again). This prevents the situation
3160 * where none of these edges is referenced from the edge table
3161 * because the one that was referenced turned out to be empty and
3162 * was therefore removed from the table.
3164 static isl_stat
update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3165 struct isl_sched_edge
*edge
)
3170 id
= specializer(edge
->src
, edge
->dst
);
3171 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3175 if (edge
->tagged_condition
) {
3176 edge
->tagged_condition
=
3177 intersect_domains(edge
->tagged_condition
, id
);
3178 if (!edge
->tagged_condition
)
3181 if (edge
->tagged_validity
) {
3182 edge
->tagged_validity
=
3183 intersect_domains(edge
->tagged_validity
, id
);
3184 if (!edge
->tagged_validity
)
3188 empty
= isl_map_plain_is_empty(edge
->map
);
3192 graph_remove_edge(graph
, edge
);
3193 } else if (is_multi_edge_type(edge
)) {
3194 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3202 return isl_stat_error
;
3205 /* Does the domain of "umap" intersect "uset"?
3207 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3208 __isl_keep isl_union_set
*uset
)
3212 umap
= isl_union_map_copy(umap
);
3213 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3214 empty
= isl_union_map_is_empty(umap
);
3215 isl_union_map_free(umap
);
3217 return empty
< 0 ? -1 : !empty
;
3220 /* Does the range of "umap" intersect "uset"?
3222 static int range_intersects(__isl_keep isl_union_map
*umap
,
3223 __isl_keep isl_union_set
*uset
)
3227 umap
= isl_union_map_copy(umap
);
3228 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3229 empty
= isl_union_map_is_empty(umap
);
3230 isl_union_map_free(umap
);
3232 return empty
< 0 ? -1 : !empty
;
3235 /* Are the condition dependences of "edge" local with respect to
3236 * the current schedule?
3238 * That is, are domain and range of the condition dependences mapped
3239 * to the same point?
3241 * In other words, is the condition false?
3243 static int is_condition_false(struct isl_sched_edge
*edge
)
3245 isl_union_map
*umap
;
3246 isl_map
*map
, *sched
, *test
;
3249 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3250 if (empty
< 0 || empty
)
3253 umap
= isl_union_map_copy(edge
->tagged_condition
);
3254 umap
= isl_union_map_zip(umap
);
3255 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3256 map
= isl_map_from_union_map(umap
);
3258 sched
= node_extract_schedule(edge
->src
);
3259 map
= isl_map_apply_domain(map
, sched
);
3260 sched
= node_extract_schedule(edge
->dst
);
3261 map
= isl_map_apply_range(map
, sched
);
3263 test
= isl_map_identity(isl_map_get_space(map
));
3264 local
= isl_map_is_subset(map
, test
);
3271 /* For each conditional validity constraint that is adjacent
3272 * to a condition with domain in condition_source or range in condition_sink,
3273 * turn it into an unconditional validity constraint.
3275 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3276 __isl_take isl_union_set
*condition_source
,
3277 __isl_take isl_union_set
*condition_sink
)
3281 condition_source
= isl_union_set_coalesce(condition_source
);
3282 condition_sink
= isl_union_set_coalesce(condition_sink
);
3284 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3286 isl_union_map
*validity
;
3288 if (!is_conditional_validity(&graph
->edge
[i
]))
3290 if (is_validity(&graph
->edge
[i
]))
3293 validity
= graph
->edge
[i
].tagged_validity
;
3294 adjacent
= domain_intersects(validity
, condition_sink
);
3295 if (adjacent
>= 0 && !adjacent
)
3296 adjacent
= range_intersects(validity
, condition_source
);
3302 set_validity(&graph
->edge
[i
]);
3305 isl_union_set_free(condition_source
);
3306 isl_union_set_free(condition_sink
);
3309 isl_union_set_free(condition_source
);
3310 isl_union_set_free(condition_sink
);
3314 /* Update the dependence relations of all edges based on the current schedule
3315 * and enforce conditional validity constraints that are adjacent
3316 * to satisfied condition constraints.
3318 * First check if any of the condition constraints are satisfied
3319 * (i.e., not local to the outer schedule) and keep track of
3320 * their domain and range.
3321 * Then update all dependence relations (which removes the non-local
3323 * Finally, if any condition constraints turned out to be satisfied,
3324 * then turn all adjacent conditional validity constraints into
3325 * unconditional validity constraints.
3327 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3331 isl_union_set
*source
, *sink
;
3333 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3334 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3335 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3337 isl_union_set
*uset
;
3338 isl_union_map
*umap
;
3340 if (!is_condition(&graph
->edge
[i
]))
3342 if (is_local(&graph
->edge
[i
]))
3344 local
= is_condition_false(&graph
->edge
[i
]);
3352 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3353 uset
= isl_union_map_domain(umap
);
3354 source
= isl_union_set_union(source
, uset
);
3356 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3357 uset
= isl_union_map_range(umap
);
3358 sink
= isl_union_set_union(sink
, uset
);
3361 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3362 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3367 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3369 isl_union_set_free(source
);
3370 isl_union_set_free(sink
);
3373 isl_union_set_free(source
);
3374 isl_union_set_free(sink
);
3378 static void next_band(struct isl_sched_graph
*graph
)
3380 graph
->band_start
= graph
->n_total_row
;
3383 /* Return the union of the universe domains of the nodes in "graph"
3384 * that satisfy "pred".
3386 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3387 struct isl_sched_graph
*graph
,
3388 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3394 for (i
= 0; i
< graph
->n
; ++i
)
3395 if (pred(&graph
->node
[i
], data
))
3399 isl_die(ctx
, isl_error_internal
,
3400 "empty component", return NULL
);
3402 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3403 dom
= isl_union_set_from_set(set
);
3405 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3406 if (!pred(&graph
->node
[i
], data
))
3408 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3409 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3415 /* Return a list of unions of universe domains, where each element
3416 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3418 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3419 struct isl_sched_graph
*graph
)
3422 isl_union_set_list
*filters
;
3424 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3425 for (i
= 0; i
< graph
->scc
; ++i
) {
3428 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3429 filters
= isl_union_set_list_add(filters
, dom
);
3435 /* Return a list of two unions of universe domains, one for the SCCs up
3436 * to and including graph->src_scc and another for the other SCCs.
3438 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3439 struct isl_sched_graph
*graph
)
3442 isl_union_set_list
*filters
;
3444 filters
= isl_union_set_list_alloc(ctx
, 2);
3445 dom
= isl_sched_graph_domain(ctx
, graph
,
3446 &node_scc_at_most
, graph
->src_scc
);
3447 filters
= isl_union_set_list_add(filters
, dom
);
3448 dom
= isl_sched_graph_domain(ctx
, graph
,
3449 &node_scc_at_least
, graph
->src_scc
+ 1);
3450 filters
= isl_union_set_list_add(filters
, dom
);
3455 /* Copy nodes that satisfy node_pred from the src dependence graph
3456 * to the dst dependence graph.
3458 static isl_stat
copy_nodes(struct isl_sched_graph
*dst
,
3459 struct isl_sched_graph
*src
,
3460 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3465 for (i
= 0; i
< src
->n
; ++i
) {
3468 if (!node_pred(&src
->node
[i
], data
))
3472 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3473 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3474 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3475 dst
->node
[j
].compress
=
3476 isl_multi_aff_copy(src
->node
[i
].compress
);
3477 dst
->node
[j
].decompress
=
3478 isl_multi_aff_copy(src
->node
[i
].decompress
);
3479 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3480 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3481 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3482 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3483 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3484 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3485 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3486 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3489 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3490 return isl_stat_error
;
3491 if (dst
->node
[j
].compressed
&&
3492 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3493 !dst
->node
[j
].decompress
))
3494 return isl_stat_error
;
3500 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3501 * to the dst dependence graph.
3502 * If the source or destination node of the edge is not in the destination
3503 * graph, then it must be a backward proximity edge and it should simply
3506 static isl_stat
copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3507 struct isl_sched_graph
*src
,
3508 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3513 for (i
= 0; i
< src
->n_edge
; ++i
) {
3514 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3516 isl_union_map
*tagged_condition
;
3517 isl_union_map
*tagged_validity
;
3518 struct isl_sched_node
*dst_src
, *dst_dst
;
3520 if (!edge_pred(edge
, data
))
3523 if (isl_map_plain_is_empty(edge
->map
))
3526 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3527 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3528 if (!dst_src
|| !dst_dst
)
3529 return isl_stat_error
;
3530 if (!is_node(dst
, dst_src
) || !is_node(dst
, dst_dst
)) {
3531 if (is_validity(edge
) || is_conditional_validity(edge
))
3532 isl_die(ctx
, isl_error_internal
,
3533 "backward (conditional) validity edge",
3534 return isl_stat_error
);
3538 map
= isl_map_copy(edge
->map
);
3539 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3540 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3542 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3543 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3544 dst
->edge
[dst
->n_edge
].map
= map
;
3545 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3546 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3547 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3550 if (edge
->tagged_condition
&& !tagged_condition
)
3551 return isl_stat_error
;
3552 if (edge
->tagged_validity
&& !tagged_validity
)
3553 return isl_stat_error
;
3555 if (graph_edge_tables_add(ctx
, dst
,
3556 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3557 return isl_stat_error
;
3563 /* Compute the maximal number of variables over all nodes.
3564 * This is the maximal number of linearly independent schedule
3565 * rows that we need to compute.
3566 * Just in case we end up in a part of the dependence graph
3567 * with only lower-dimensional domains, we make sure we will
3568 * compute the required amount of extra linearly independent rows.
3570 static int compute_maxvar(struct isl_sched_graph
*graph
)
3575 for (i
= 0; i
< graph
->n
; ++i
) {
3576 struct isl_sched_node
*node
= &graph
->node
[i
];
3579 if (node_update_vmap(node
) < 0)
3581 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3582 if (nvar
> graph
->maxvar
)
3583 graph
->maxvar
= nvar
;
3589 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3590 * "node_pred" and the edges satisfying "edge_pred" and store
3591 * the result in "sub".
3593 static isl_stat
extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3594 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3595 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3596 int data
, struct isl_sched_graph
*sub
)
3598 int i
, n
= 0, n_edge
= 0;
3601 for (i
= 0; i
< graph
->n
; ++i
)
3602 if (node_pred(&graph
->node
[i
], data
))
3604 for (i
= 0; i
< graph
->n_edge
; ++i
)
3605 if (edge_pred(&graph
->edge
[i
], data
))
3607 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3608 return isl_stat_error
;
3609 sub
->root
= graph
->root
;
3610 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3611 return isl_stat_error
;
3612 if (graph_init_table(ctx
, sub
) < 0)
3613 return isl_stat_error
;
3614 for (t
= 0; t
<= isl_edge_last
; ++t
)
3615 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3616 if (graph_init_edge_tables(ctx
, sub
) < 0)
3617 return isl_stat_error
;
3618 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3619 return isl_stat_error
;
3620 sub
->n_row
= graph
->n_row
;
3621 sub
->max_row
= graph
->max_row
;
3622 sub
->n_total_row
= graph
->n_total_row
;
3623 sub
->band_start
= graph
->band_start
;
3628 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3629 struct isl_sched_graph
*graph
);
3630 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3631 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3633 /* Compute a schedule for a subgraph of "graph". In particular, for
3634 * the graph composed of nodes that satisfy node_pred and edges that
3635 * that satisfy edge_pred.
3636 * If the subgraph is known to consist of a single component, then wcc should
3637 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3638 * Otherwise, we call compute_schedule, which will check whether the subgraph
3641 * The schedule is inserted at "node" and the updated schedule node
3644 static __isl_give isl_schedule_node
*compute_sub_schedule(
3645 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3646 struct isl_sched_graph
*graph
,
3647 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3648 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3651 struct isl_sched_graph split
= { 0 };
3653 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3658 node
= compute_schedule_wcc(node
, &split
);
3660 node
= compute_schedule(node
, &split
);
3662 graph_free(ctx
, &split
);
3665 graph_free(ctx
, &split
);
3666 return isl_schedule_node_free(node
);
3669 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3671 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3674 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3676 return edge
->dst
->scc
<= scc
;
3679 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3681 return edge
->src
->scc
>= scc
;
3684 /* Reset the current band by dropping all its schedule rows.
3686 static isl_stat
reset_band(struct isl_sched_graph
*graph
)
3691 drop
= graph
->n_total_row
- graph
->band_start
;
3692 graph
->n_total_row
-= drop
;
3693 graph
->n_row
-= drop
;
3695 for (i
= 0; i
< graph
->n
; ++i
) {
3696 struct isl_sched_node
*node
= &graph
->node
[i
];
3698 isl_map_free(node
->sched_map
);
3699 node
->sched_map
= NULL
;
3701 node
->sched
= isl_mat_drop_rows(node
->sched
,
3702 graph
->band_start
, drop
);
3705 return isl_stat_error
;
3711 /* Split the current graph into two parts and compute a schedule for each
3712 * part individually. In particular, one part consists of all SCCs up
3713 * to and including graph->src_scc, while the other part contains the other
3714 * SCCs. The split is enforced by a sequence node inserted at position "node"
3715 * in the schedule tree. Return the updated schedule node.
3716 * If either of these two parts consists of a sequence, then it is spliced
3717 * into the sequence containing the two parts.
3719 * The current band is reset. It would be possible to reuse
3720 * the previously computed rows as the first rows in the next
3721 * band, but recomputing them may result in better rows as we are looking
3722 * at a smaller part of the dependence graph.
3724 static __isl_give isl_schedule_node
*compute_split_schedule(
3725 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3729 isl_union_set_list
*filters
;
3734 if (reset_band(graph
) < 0)
3735 return isl_schedule_node_free(node
);
3739 ctx
= isl_schedule_node_get_ctx(node
);
3740 filters
= extract_split(ctx
, graph
);
3741 node
= isl_schedule_node_insert_sequence(node
, filters
);
3742 node
= isl_schedule_node_child(node
, 1);
3743 node
= isl_schedule_node_child(node
, 0);
3745 node
= compute_sub_schedule(node
, ctx
, graph
,
3746 &node_scc_at_least
, &edge_src_scc_at_least
,
3747 graph
->src_scc
+ 1, 0);
3748 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3749 node
= isl_schedule_node_parent(node
);
3750 node
= isl_schedule_node_parent(node
);
3752 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3753 node
= isl_schedule_node_child(node
, 0);
3754 node
= isl_schedule_node_child(node
, 0);
3755 node
= compute_sub_schedule(node
, ctx
, graph
,
3756 &node_scc_at_most
, &edge_dst_scc_at_most
,
3758 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3759 node
= isl_schedule_node_parent(node
);
3760 node
= isl_schedule_node_parent(node
);
3762 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3767 /* Insert a band node at position "node" in the schedule tree corresponding
3768 * to the current band in "graph". Mark the band node permutable
3769 * if "permutable" is set.
3770 * The partial schedules and the coincidence property are extracted
3771 * from the graph nodes.
3772 * Return the updated schedule node.
3774 static __isl_give isl_schedule_node
*insert_current_band(
3775 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3781 isl_multi_pw_aff
*mpa
;
3782 isl_multi_union_pw_aff
*mupa
;
3788 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3789 "graph should have at least one node",
3790 return isl_schedule_node_free(node
));
3792 start
= graph
->band_start
;
3793 end
= graph
->n_total_row
;
3796 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3797 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3798 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3800 for (i
= 1; i
< graph
->n
; ++i
) {
3801 isl_multi_union_pw_aff
*mupa_i
;
3803 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3805 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3806 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3807 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3809 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3811 for (i
= 0; i
< n
; ++i
)
3812 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3813 graph
->node
[0].coincident
[start
+ i
]);
3814 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3819 /* Update the dependence relations based on the current schedule,
3820 * add the current band to "node" and then continue with the computation
3822 * Return the updated schedule node.
3824 static __isl_give isl_schedule_node
*compute_next_band(
3825 __isl_take isl_schedule_node
*node
,
3826 struct isl_sched_graph
*graph
, int permutable
)
3833 ctx
= isl_schedule_node_get_ctx(node
);
3834 if (update_edges(ctx
, graph
) < 0)
3835 return isl_schedule_node_free(node
);
3836 node
= insert_current_band(node
, graph
, permutable
);
3839 node
= isl_schedule_node_child(node
, 0);
3840 node
= compute_schedule(node
, graph
);
3841 node
= isl_schedule_node_parent(node
);
3846 /* Add the constraints "coef" derived from an edge from "node" to itself
3847 * to graph->lp in order to respect the dependences and to try and carry them.
3848 * "pos" is the sequence number of the edge that needs to be carried.
3849 * "coef" represents general constraints on coefficients (c_0, c_x)
3850 * of valid constraints for (y - x) with x and y instances of the node.
3852 * The constraints added to graph->lp need to enforce
3854 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3855 * = c_j_x (y - x) >= e_i
3857 * for each (x,y) in the dependence relation of the edge.
3858 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3859 * taking into account that each coefficient in c_j_x is represented
3860 * as a pair of non-negative coefficients.
3862 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3863 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3867 isl_dim_map
*dim_map
;
3870 return isl_stat_error
;
3872 ctx
= isl_basic_set_get_ctx(coef
);
3873 offset
= coef_var_offset(coef
);
3874 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3875 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3876 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3881 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3882 * to graph->lp in order to respect the dependences and to try and carry them.
3883 * "pos" is the sequence number of the edge that needs to be carried or
3884 * -1 if no attempt should be made to carry the dependences.
3885 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3886 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3888 * The constraints added to graph->lp need to enforce
3890 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3892 * for each (x,y) in the dependence relation of the edge or
3894 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3898 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3900 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3901 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3902 * taking into account that each coefficient in c_j_x and c_k_x is represented
3903 * as a pair of non-negative coefficients.
3905 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3906 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3907 __isl_take isl_basic_set
*coef
, int pos
)
3911 isl_dim_map
*dim_map
;
3914 return isl_stat_error
;
3916 ctx
= isl_basic_set_get_ctx(coef
);
3917 offset
= coef_var_offset(coef
);
3918 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3920 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3921 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3926 /* Data structure for keeping track of the data needed
3927 * to exploit non-trivial lineality spaces.
3929 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3930 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3931 * "equivalent" connects instances to other instances on the same line(s).
3932 * "mask" contains the domain spaces of "equivalent".
3933 * Any instance set not in "mask" does not have a non-trivial lineality space.
3935 struct isl_exploit_lineality_data
{
3936 isl_bool any_non_trivial
;
3937 isl_union_map
*equivalent
;
3938 isl_union_set
*mask
;
3941 /* Data structure collecting information used during the construction
3942 * of an LP for carrying dependences.
3944 * "intra" is a sequence of coefficient constraints for intra-node edges.
3945 * "inter" is a sequence of coefficient constraints for inter-node edges.
3946 * "lineality" contains data used to exploit non-trivial lineality spaces.
3949 isl_basic_set_list
*intra
;
3950 isl_basic_set_list
*inter
;
3951 struct isl_exploit_lineality_data lineality
;
3954 /* Free all the data stored in "carry".
3956 static void isl_carry_clear(struct isl_carry
*carry
)
3958 isl_basic_set_list_free(carry
->intra
);
3959 isl_basic_set_list_free(carry
->inter
);
3960 isl_union_map_free(carry
->lineality
.equivalent
);
3961 isl_union_set_free(carry
->lineality
.mask
);
3964 /* Return a pointer to the node in "graph" that lives in "space".
3965 * If the requested node has been compressed, then "space"
3966 * corresponds to the compressed space.
3967 * The graph is assumed to have such a node.
3968 * Return NULL in case of error.
3970 * First try and see if "space" is the space of an uncompressed node.
3971 * If so, return that node.
3972 * Otherwise, "space" was constructed by construct_compressed_id and
3973 * contains a user pointer pointing to the node in the tuple id.
3974 * However, this node belongs to the original dependence graph.
3975 * If "graph" is a subgraph of this original dependence graph,
3976 * then the node with the same space still needs to be looked up
3977 * in the current graph.
3979 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
3980 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
3983 struct isl_sched_node
*node
;
3988 node
= graph_find_node(ctx
, graph
, space
);
3991 if (is_node(graph
, node
))
3994 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
3995 node
= isl_id_get_user(id
);
4001 if (!is_node(graph
->root
, node
))
4002 isl_die(ctx
, isl_error_internal
,
4003 "space points to invalid node", return NULL
);
4004 if (graph
!= graph
->root
)
4005 node
= graph_find_node(ctx
, graph
, node
->space
);
4006 if (!is_node(graph
, node
))
4007 isl_die(ctx
, isl_error_internal
,
4008 "unable to find node", return NULL
);
4013 /* Internal data structure for add_all_constraints.
4015 * "graph" is the schedule constraint graph for which an LP problem
4016 * is being constructed.
4017 * "carry_inter" indicates whether inter-node edges should be carried.
4018 * "pos" is the position of the next edge that needs to be carried.
4020 struct isl_add_all_constraints_data
{
4022 struct isl_sched_graph
*graph
;
4027 /* Add the constraints "coef" derived from an edge from a node to itself
4028 * to data->graph->lp in order to respect the dependences and
4029 * to try and carry them.
4031 * The space of "coef" is of the form
4033 * coefficients[[c_cst] -> S[c_x]]
4035 * with S[c_x] the (compressed) space of the node.
4036 * Extract the node from the space and call add_intra_constraints.
4038 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4040 struct isl_add_all_constraints_data
*data
= user
;
4042 struct isl_sched_node
*node
;
4044 space
= isl_basic_set_get_space(coef
);
4045 space
= isl_space_range(isl_space_unwrap(space
));
4046 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4047 isl_space_free(space
);
4048 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4051 /* Add the constraints "coef" derived from an edge from a node j
4052 * to a node k to data->graph->lp in order to respect the dependences and
4053 * to try and carry them (provided data->carry_inter is set).
4055 * The space of "coef" is of the form
4057 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4059 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4060 * Extract the nodes from the space and call add_inter_constraints.
4062 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4064 struct isl_add_all_constraints_data
*data
= user
;
4065 isl_space
*space
, *dom
;
4066 struct isl_sched_node
*src
, *dst
;
4069 space
= isl_basic_set_get_space(coef
);
4070 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4071 dom
= isl_space_domain(isl_space_copy(space
));
4072 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4073 isl_space_free(dom
);
4074 space
= isl_space_range(space
);
4075 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4076 isl_space_free(space
);
4078 pos
= data
->carry_inter
? data
->pos
++ : -1;
4079 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4082 /* Add constraints to graph->lp that force all (conditional) validity
4083 * dependences to be respected and attempt to carry them.
4084 * "intra" is the sequence of coefficient constraints for intra-node edges.
4085 * "inter" is the sequence of coefficient constraints for inter-node edges.
4086 * "carry_inter" indicates whether inter-node edges should be carried or
4089 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4090 __isl_keep isl_basic_set_list
*intra
,
4091 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4093 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4096 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4097 return isl_stat_error
;
4098 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4099 return isl_stat_error
;
4103 /* Internal data structure for count_all_constraints
4104 * for keeping track of the number of equality and inequality constraints.
4106 struct isl_sched_count
{
4111 /* Add the number of equality and inequality constraints of "bset"
4112 * to data->n_eq and data->n_ineq.
4114 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4116 struct isl_sched_count
*data
= user
;
4118 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4121 /* Count the number of equality and inequality constraints
4122 * that will be added to the carry_lp problem.
4123 * We count each edge exactly once.
4124 * "intra" is the sequence of coefficient constraints for intra-node edges.
4125 * "inter" is the sequence of coefficient constraints for inter-node edges.
4127 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4128 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4130 struct isl_sched_count data
;
4132 data
.n_eq
= data
.n_ineq
= 0;
4133 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4134 return isl_stat_error
;
4135 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4136 return isl_stat_error
;
4139 *n_ineq
= data
.n_ineq
;
4144 /* Construct an LP problem for finding schedule coefficients
4145 * such that the schedule carries as many validity dependences as possible.
4146 * In particular, for each dependence i, we bound the dependence distance
4147 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4148 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4149 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4150 * "intra" is the sequence of coefficient constraints for intra-node edges.
4151 * "inter" is the sequence of coefficient constraints for inter-node edges.
4152 * "n_edge" is the total number of edges.
4153 * "carry_inter" indicates whether inter-node edges should be carried or
4154 * only respected. That is, if "carry_inter" is not set, then
4155 * no e_i variables are introduced for the inter-node edges.
4157 * All variables of the LP are non-negative. The actual coefficients
4158 * may be negative, so each coefficient is represented as the difference
4159 * of two non-negative variables. The negative part always appears
4160 * immediately before the positive part.
4161 * Other than that, the variables have the following order
4163 * - sum of (1 - e_i) over all edges
4164 * - sum of all c_n coefficients
4165 * (unconstrained when computing non-parametric schedules)
4166 * - sum of positive and negative parts of all c_x coefficients
4170 * - positive and negative parts of c_i_x, in opposite order
4171 * - c_i_n (if parametric)
4174 * The constraints are those from the (validity) edges plus three equalities
4175 * to express the sums and n_edge inequalities to express e_i <= 1.
4177 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4178 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4179 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4188 for (i
= 0; i
< graph
->n
; ++i
) {
4189 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4190 node
->start
= total
;
4191 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4194 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4195 return isl_stat_error
;
4197 dim
= isl_space_set_alloc(ctx
, 0, total
);
4198 isl_basic_set_free(graph
->lp
);
4201 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
4202 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4204 k
= isl_basic_set_alloc_equality(graph
->lp
);
4206 return isl_stat_error
;
4207 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4208 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4209 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4210 for (i
= 0; i
< n_edge
; ++i
)
4211 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4213 if (add_param_sum_constraint(graph
, 1) < 0)
4214 return isl_stat_error
;
4215 if (add_var_sum_constraint(graph
, 2) < 0)
4216 return isl_stat_error
;
4218 for (i
= 0; i
< n_edge
; ++i
) {
4219 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4221 return isl_stat_error
;
4222 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4223 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4224 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4227 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4228 return isl_stat_error
;
4233 static __isl_give isl_schedule_node
*compute_component_schedule(
4234 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4237 /* If the schedule_split_scaled option is set and if the linear
4238 * parts of the scheduling rows for all nodes in the graphs have
4239 * a non-trivial common divisor, then remove this
4240 * common divisor from the linear part.
4241 * Otherwise, insert a band node directly and continue with
4242 * the construction of the schedule.
4244 * If a non-trivial common divisor is found, then
4245 * the linear part is reduced and the remainder is ignored.
4246 * The pieces of the graph that are assigned different remainders
4247 * form (groups of) strongly connected components within
4248 * the scaled down band. If needed, they can therefore
4249 * be ordered along this remainder in a sequence node.
4250 * However, this ordering is not enforced here in order to allow
4251 * the scheduler to combine some of the strongly connected components.
4253 static __isl_give isl_schedule_node
*split_scaled(
4254 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4264 ctx
= isl_schedule_node_get_ctx(node
);
4265 if (!ctx
->opt
->schedule_split_scaled
)
4266 return compute_next_band(node
, graph
, 0);
4268 return compute_next_band(node
, graph
, 0);
4271 isl_int_init(gcd_i
);
4273 isl_int_set_si(gcd
, 0);
4275 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
4277 for (i
= 0; i
< graph
->n
; ++i
) {
4278 struct isl_sched_node
*node
= &graph
->node
[i
];
4279 int cols
= isl_mat_cols(node
->sched
);
4281 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4282 isl_int_gcd(gcd
, gcd
, gcd_i
);
4285 isl_int_clear(gcd_i
);
4287 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4289 return compute_next_band(node
, graph
, 0);
4292 for (i
= 0; i
< graph
->n
; ++i
) {
4293 struct isl_sched_node
*node
= &graph
->node
[i
];
4295 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4296 node
->sched
->row
[row
][0], gcd
);
4297 isl_int_mul(node
->sched
->row
[row
][0],
4298 node
->sched
->row
[row
][0], gcd
);
4299 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4306 return compute_next_band(node
, graph
, 0);
4309 return isl_schedule_node_free(node
);
4312 /* Is the schedule row "sol" trivial on node "node"?
4313 * That is, is the solution zero on the dimensions linearly independent of
4314 * the previously found solutions?
4315 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4317 * Each coefficient is represented as the difference between
4318 * two non-negative values in "sol".
4319 * We construct the schedule row s and check if it is linearly
4320 * independent of previously computed schedule rows
4321 * by computing T s, with T the linear combinations that are zero
4322 * on linearly dependent schedule rows.
4323 * If the result consists of all zeros, then the solution is trivial.
4325 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4332 if (node
->nvar
== node
->rank
)
4335 node_sol
= extract_var_coef(node
, sol
);
4336 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4340 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4341 node
->nvar
- node
->rank
) == -1;
4343 isl_vec_free(node_sol
);
4348 /* Is the schedule row "sol" trivial on any node where it should
4350 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4352 static int is_any_trivial(struct isl_sched_graph
*graph
,
4353 __isl_keep isl_vec
*sol
)
4357 for (i
= 0; i
< graph
->n
; ++i
) {
4358 struct isl_sched_node
*node
= &graph
->node
[i
];
4361 if (!needs_row(graph
, node
))
4363 trivial
= is_trivial(node
, sol
);
4364 if (trivial
< 0 || trivial
)
4371 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4372 * If so, return the position of the coalesced dimension.
4373 * Otherwise, return node->nvar or -1 on error.
4375 * In particular, look for pairs of coefficients c_i and c_j such that
4376 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4377 * If any such pair is found, then return i.
4378 * If size_i is infinity, then no check on c_i needs to be performed.
4380 static int find_node_coalescing(struct isl_sched_node
*node
,
4381 __isl_keep isl_vec
*sol
)
4387 if (node
->nvar
<= 1)
4390 csol
= extract_var_coef(node
, sol
);
4394 for (i
= 0; i
< node
->nvar
; ++i
) {
4397 if (isl_int_is_zero(csol
->el
[i
]))
4399 v
= isl_multi_val_get_val(node
->sizes
, i
);
4402 if (!isl_val_is_int(v
)) {
4406 v
= isl_val_div_ui(v
, 2);
4407 v
= isl_val_ceil(v
);
4410 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4413 for (j
= 0; j
< node
->nvar
; ++j
) {
4416 if (isl_int_abs_gt(csol
->el
[j
], max
))
4432 /* Force the schedule coefficient at position "pos" of "node" to be zero
4434 * The coefficient is encoded as the difference between two non-negative
4435 * variables. Force these two variables to have the same value.
4437 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4438 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4444 ctx
= isl_space_get_ctx(node
->space
);
4445 dim
= isl_tab_lexmin_dim(tl
);
4447 return isl_tab_lexmin_free(tl
);
4448 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4449 eq
= isl_vec_clr(eq
);
4451 return isl_tab_lexmin_free(tl
);
4453 pos
= 1 + node_var_coef_pos(node
, pos
);
4454 isl_int_set_si(eq
->el
[pos
], 1);
4455 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4456 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4462 /* Return the lexicographically smallest rational point in the basic set
4463 * from which "tl" was constructed, double checking that this input set
4466 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4470 sol
= isl_tab_lexmin_get_solution(tl
);
4474 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4475 "error in schedule construction",
4476 return isl_vec_free(sol
));
4480 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4481 * carry any of the "n_edge" groups of dependences?
4482 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4483 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4484 * by the edge are carried by the solution.
4485 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4486 * one of those is carried.
4488 * Note that despite the fact that the problem is solved using a rational
4489 * solver, the solution is guaranteed to be integral.
4490 * Specifically, the dependence distance lower bounds e_i (and therefore
4491 * also their sum) are integers. See Lemma 5 of [1].
4493 * Any potential denominator of the sum is cleared by this function.
4494 * The denominator is not relevant for any of the other elements
4497 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4498 * Problem, Part II: Multi-Dimensional Time.
4499 * In Intl. Journal of Parallel Programming, 1992.
4501 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4503 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4504 isl_int_set_si(sol
->el
[0], 1);
4505 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4508 /* Return the lexicographically smallest rational point in "lp",
4509 * assuming that all variables are non-negative and performing some
4510 * additional sanity checks.
4511 * If "want_integral" is set, then compute the lexicographically smallest
4512 * integer point instead.
4513 * In particular, "lp" should not be empty by construction.
4514 * Double check that this is the case.
4515 * If dependences are not carried for any of the "n_edge" edges,
4516 * then return an empty vector.
4518 * If the schedule_treat_coalescing option is set and
4519 * if the computed schedule performs loop coalescing on a given node,
4520 * i.e., if it is of the form
4522 * c_i i + c_j j + ...
4524 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4525 * to cut out this solution. Repeat this process until no more loop
4526 * coalescing occurs or until no more dependences can be carried.
4527 * In the latter case, revert to the previously computed solution.
4529 * If the caller requests an integral solution and if coalescing should
4530 * be treated, then perform the coalescing treatment first as
4531 * an integral solution computed before coalescing treatment
4532 * would carry the same number of edges and would therefore probably
4533 * also be coalescing.
4535 * To allow the coalescing treatment to be performed first,
4536 * the initial solution is allowed to be rational and it is only
4537 * cut out (if needed) in the next iteration, if no coalescing measures
4540 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4541 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4546 isl_vec
*sol
= NULL
, *prev
;
4547 int treat_coalescing
;
4552 ctx
= isl_basic_set_get_ctx(lp
);
4553 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4554 tl
= isl_tab_lexmin_from_basic_set(lp
);
4562 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4564 sol
= non_empty_solution(tl
);
4568 integral
= isl_int_is_one(sol
->el
[0]);
4569 if (!carries_dependences(sol
, n_edge
)) {
4571 prev
= isl_vec_alloc(ctx
, 0);
4576 prev
= isl_vec_free(prev
);
4577 cut
= want_integral
&& !integral
;
4580 if (!treat_coalescing
)
4582 for (i
= 0; i
< graph
->n
; ++i
) {
4583 struct isl_sched_node
*node
= &graph
->node
[i
];
4585 pos
= find_node_coalescing(node
, sol
);
4588 if (pos
< node
->nvar
)
4593 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4596 } while (try_again
);
4598 isl_tab_lexmin_free(tl
);
4602 isl_tab_lexmin_free(tl
);
4608 /* If "edge" is an edge from a node to itself, then add the corresponding
4609 * dependence relation to "umap".
4610 * If "node" has been compressed, then the dependence relation
4611 * is also compressed first.
4613 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4614 struct isl_sched_edge
*edge
)
4617 struct isl_sched_node
*node
= edge
->src
;
4619 if (edge
->src
!= edge
->dst
)
4622 map
= isl_map_copy(edge
->map
);
4623 if (node
->compressed
) {
4624 map
= isl_map_preimage_domain_multi_aff(map
,
4625 isl_multi_aff_copy(node
->decompress
));
4626 map
= isl_map_preimage_range_multi_aff(map
,
4627 isl_multi_aff_copy(node
->decompress
));
4629 umap
= isl_union_map_add_map(umap
, map
);
4633 /* If "edge" is an edge from a node to another node, then add the corresponding
4634 * dependence relation to "umap".
4635 * If the source or destination nodes of "edge" have been compressed,
4636 * then the dependence relation is also compressed first.
4638 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4639 struct isl_sched_edge
*edge
)
4643 if (edge
->src
== edge
->dst
)
4646 map
= isl_map_copy(edge
->map
);
4647 if (edge
->src
->compressed
)
4648 map
= isl_map_preimage_domain_multi_aff(map
,
4649 isl_multi_aff_copy(edge
->src
->decompress
));
4650 if (edge
->dst
->compressed
)
4651 map
= isl_map_preimage_range_multi_aff(map
,
4652 isl_multi_aff_copy(edge
->dst
->decompress
));
4653 umap
= isl_union_map_add_map(umap
, map
);
4657 /* Internal data structure used by union_drop_coalescing_constraints
4658 * to collect bounds on all relevant statements.
4660 * "graph" is the schedule constraint graph for which an LP problem
4661 * is being constructed.
4662 * "bounds" collects the bounds.
4664 struct isl_collect_bounds_data
{
4666 struct isl_sched_graph
*graph
;
4667 isl_union_set
*bounds
;
4670 /* Add the size bounds for the node with instance deltas in "set"
4673 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4675 struct isl_collect_bounds_data
*data
= user
;
4676 struct isl_sched_node
*node
;
4680 space
= isl_set_get_space(set
);
4683 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4684 isl_space_free(space
);
4686 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4687 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4692 /* Drop some constraints from "delta" that could be exploited
4693 * to construct loop coalescing schedules.
4694 * In particular, drop those constraint that bound the difference
4695 * to the size of the domain.
4696 * Do this for each set/node in "delta" separately.
4697 * The parameters are assumed to have been projected out by the caller.
4699 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4700 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4702 struct isl_collect_bounds_data data
= { ctx
, graph
};
4704 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4705 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4706 data
.bounds
= isl_union_set_free(data
.bounds
);
4707 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4712 /* Given a non-trivial lineality space "lineality", add the corresponding
4713 * universe set to data->mask and add a map from elements to
4714 * other elements along the lines in "lineality" to data->equivalent.
4715 * If this is the first time this function gets called
4716 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4717 * initialize data->mask and data->equivalent.
4719 * In particular, if the lineality space is defined by equality constraints
4723 * then construct an affine mapping
4727 * and compute the equivalence relation of having the same image under f:
4729 * { x -> x' : E x = E x' }
4731 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4732 struct isl_exploit_lineality_data
*data
)
4738 isl_multi_pw_aff
*mpa
;
4743 return isl_stat_error
;
4744 if (isl_basic_set_dim(lineality
, isl_dim_div
) != 0)
4745 isl_die(isl_basic_set_get_ctx(lineality
), isl_error_internal
,
4746 "local variables not allowed", goto error
);
4748 space
= isl_basic_set_get_space(lineality
);
4749 if (!data
->any_non_trivial
) {
4750 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4751 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4753 data
->any_non_trivial
= isl_bool_true
;
4755 univ
= isl_set_universe(isl_space_copy(space
));
4756 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4758 eq
= isl_basic_set_extract_equalities(lineality
);
4759 n
= isl_mat_rows(eq
);
4760 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4761 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4762 space
= isl_space_from_domain(space
);
4763 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4764 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4765 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4766 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4767 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4769 isl_basic_set_free(lineality
);
4772 isl_basic_set_free(lineality
);
4773 return isl_stat_error
;
4776 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4777 * the origin or, in other words, satisfies a number of equality constraints
4778 * that is smaller than the dimension of the set).
4779 * If so, extend data->mask and data->equivalent accordingly.
4781 * The input should not have any local variables already, but
4782 * isl_set_remove_divs is called to make sure it does not.
4784 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4786 struct isl_exploit_lineality_data
*data
= user
;
4787 isl_basic_set
*hull
;
4790 set
= isl_set_remove_divs(set
);
4791 hull
= isl_set_unshifted_simple_hull(set
);
4792 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4793 n_eq
= isl_basic_set_n_equality(hull
);
4795 return isl_stat_error
;
4797 return add_non_trivial_lineality(hull
, data
);
4798 isl_basic_set_free(hull
);
4802 /* Check if the difference set on intra-node schedule constraints "intra"
4803 * has any non-trivial lineality space.
4804 * If so, then extend the difference set to a difference set
4805 * on equivalent elements. That is, if "intra" is
4807 * { y - x : (x,y) \in V }
4809 * and elements are equivalent if they have the same image under f,
4812 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4814 * or, since f is linear,
4816 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4818 * The results of the search for non-trivial lineality spaces is stored
4821 static __isl_give isl_union_set
*exploit_intra_lineality(
4822 __isl_take isl_union_set
*intra
,
4823 struct isl_exploit_lineality_data
*data
)
4825 isl_union_set
*lineality
;
4826 isl_union_set
*uset
;
4828 data
->any_non_trivial
= isl_bool_false
;
4829 lineality
= isl_union_set_copy(intra
);
4830 lineality
= isl_union_set_combined_lineality_space(lineality
);
4831 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4832 data
->any_non_trivial
= isl_bool_error
;
4833 isl_union_set_free(lineality
);
4835 if (data
->any_non_trivial
< 0)
4836 return isl_union_set_free(intra
);
4837 if (!data
->any_non_trivial
)
4840 uset
= isl_union_set_copy(intra
);
4841 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4842 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4843 intra
= isl_union_set_union(intra
, uset
);
4845 intra
= isl_union_set_remove_divs(intra
);
4850 /* If the difference set on intra-node schedule constraints was found to have
4851 * any non-trivial lineality space by exploit_intra_lineality,
4852 * as recorded in "data", then extend the inter-node
4853 * schedule constraints "inter" to schedule constraints on equivalent elements.
4854 * That is, if "inter" is V and
4855 * elements are equivalent if they have the same image under f, then return
4857 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4859 static __isl_give isl_union_map
*exploit_inter_lineality(
4860 __isl_take isl_union_map
*inter
,
4861 struct isl_exploit_lineality_data
*data
)
4863 isl_union_map
*umap
;
4865 if (data
->any_non_trivial
< 0)
4866 return isl_union_map_free(inter
);
4867 if (!data
->any_non_trivial
)
4870 umap
= isl_union_map_copy(inter
);
4871 inter
= isl_union_map_subtract_range(inter
,
4872 isl_union_set_copy(data
->mask
));
4873 umap
= isl_union_map_apply_range(umap
,
4874 isl_union_map_copy(data
->equivalent
));
4875 inter
= isl_union_map_union(inter
, umap
);
4876 umap
= isl_union_map_copy(inter
);
4877 inter
= isl_union_map_subtract_domain(inter
,
4878 isl_union_set_copy(data
->mask
));
4879 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4881 inter
= isl_union_map_union(inter
, umap
);
4883 inter
= isl_union_map_remove_divs(inter
);
4888 /* For each (conditional) validity edge in "graph",
4889 * add the corresponding dependence relation using "add"
4890 * to a collection of dependence relations and return the result.
4891 * If "coincidence" is set, then coincidence edges are considered as well.
4893 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4894 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4895 struct isl_sched_edge
*edge
), int coincidence
)
4899 isl_union_map
*umap
;
4901 space
= isl_space_copy(graph
->node
[0].space
);
4902 umap
= isl_union_map_empty(space
);
4904 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4905 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4907 if (!is_any_validity(edge
) &&
4908 (!coincidence
|| !is_coincidence(edge
)))
4911 umap
= add(umap
, edge
);
4917 /* Project out all parameters from "uset" and return the result.
4919 static __isl_give isl_union_set
*union_set_drop_parameters(
4920 __isl_take isl_union_set
*uset
)
4924 nparam
= isl_union_set_dim(uset
, isl_dim_param
);
4925 return isl_union_set_project_out(uset
, isl_dim_param
, 0, nparam
);
4928 /* For each dependence relation on a (conditional) validity edge
4929 * from a node to itself,
4930 * construct the set of coefficients of valid constraints for elements
4931 * in that dependence relation and collect the results.
4932 * If "coincidence" is set, then coincidence edges are considered as well.
4934 * In particular, for each dependence relation R, constraints
4935 * on coefficients (c_0, c_x) are constructed such that
4937 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4939 * If the schedule_treat_coalescing option is set, then some constraints
4940 * that could be exploited to construct coalescing schedules
4941 * are removed before the dual is computed, but after the parameters
4942 * have been projected out.
4943 * The entire computation is essentially the same as that performed
4944 * by intra_coefficients, except that it operates on multiple
4945 * edges together and that the parameters are always projected out.
4947 * Additionally, exploit any non-trivial lineality space
4948 * in the difference set after removing coalescing constraints and
4949 * store the results of the non-trivial lineality space detection in "data".
4950 * The procedure is currently run unconditionally, but it is unlikely
4951 * to find any non-trivial lineality spaces if no coalescing constraints
4952 * have been removed.
4954 * Note that if a dependence relation is a union of basic maps,
4955 * then each basic map needs to be treated individually as it may only
4956 * be possible to carry the dependences expressed by some of those
4957 * basic maps and not all of them.
4958 * The collected validity constraints are therefore not coalesced and
4959 * it is assumed that they are not coalesced automatically.
4960 * Duplicate basic maps can be removed, however.
4961 * In particular, if the same basic map appears as a disjunct
4962 * in multiple edges, then it only needs to be carried once.
4964 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4965 struct isl_sched_graph
*graph
, int coincidence
,
4966 struct isl_exploit_lineality_data
*data
)
4968 isl_union_map
*intra
;
4969 isl_union_set
*delta
;
4970 isl_basic_set_list
*list
;
4972 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4973 delta
= isl_union_map_deltas(intra
);
4974 delta
= union_set_drop_parameters(delta
);
4975 delta
= isl_union_set_remove_divs(delta
);
4976 if (isl_options_get_schedule_treat_coalescing(ctx
))
4977 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
4978 delta
= exploit_intra_lineality(delta
, data
);
4979 list
= isl_union_set_get_basic_set_list(delta
);
4980 isl_union_set_free(delta
);
4982 return isl_basic_set_list_coefficients(list
);
4985 /* For each dependence relation on a (conditional) validity edge
4986 * from a node to some other node,
4987 * construct the set of coefficients of valid constraints for elements
4988 * in that dependence relation and collect the results.
4989 * If "coincidence" is set, then coincidence edges are considered as well.
4991 * In particular, for each dependence relation R, constraints
4992 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4994 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4996 * This computation is essentially the same as that performed
4997 * by inter_coefficients, except that it operates on multiple
5000 * Additionally, exploit any non-trivial lineality space
5001 * that may have been discovered by collect_intra_validity
5002 * (as stored in "data").
5004 * Note that if a dependence relation is a union of basic maps,
5005 * then each basic map needs to be treated individually as it may only
5006 * be possible to carry the dependences expressed by some of those
5007 * basic maps and not all of them.
5008 * The collected validity constraints are therefore not coalesced and
5009 * it is assumed that they are not coalesced automatically.
5010 * Duplicate basic maps can be removed, however.
5011 * In particular, if the same basic map appears as a disjunct
5012 * in multiple edges, then it only needs to be carried once.
5014 static __isl_give isl_basic_set_list
*collect_inter_validity(
5015 struct isl_sched_graph
*graph
, int coincidence
,
5016 struct isl_exploit_lineality_data
*data
)
5018 isl_union_map
*inter
;
5019 isl_union_set
*wrap
;
5020 isl_basic_set_list
*list
;
5022 inter
= collect_validity(graph
, &add_inter
, coincidence
);
5023 inter
= exploit_inter_lineality(inter
, data
);
5024 inter
= isl_union_map_remove_divs(inter
);
5025 wrap
= isl_union_map_wrap(inter
);
5026 list
= isl_union_set_get_basic_set_list(wrap
);
5027 isl_union_set_free(wrap
);
5028 return isl_basic_set_list_coefficients(list
);
5031 /* Construct an LP problem for finding schedule coefficients
5032 * such that the schedule carries as many of the "n_edge" groups of
5033 * dependences as possible based on the corresponding coefficient
5034 * constraints and return the lexicographically smallest non-trivial solution.
5035 * "intra" is the sequence of coefficient constraints for intra-node edges.
5036 * "inter" is the sequence of coefficient constraints for inter-node edges.
5037 * If "want_integral" is set, then compute an integral solution
5038 * for the coefficients rather than using the numerators
5039 * of a rational solution.
5040 * "carry_inter" indicates whether inter-node edges should be carried or
5043 * If none of the "n_edge" groups can be carried
5044 * then return an empty vector.
5046 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5047 struct isl_sched_graph
*graph
, int n_edge
,
5048 __isl_keep isl_basic_set_list
*intra
,
5049 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5054 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5057 lp
= isl_basic_set_copy(graph
->lp
);
5058 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5061 /* Construct an LP problem for finding schedule coefficients
5062 * such that the schedule carries as many of the validity dependences
5064 * return the lexicographically smallest non-trivial solution.
5065 * If "fallback" is set, then the carrying is performed as a fallback
5066 * for the Pluto-like scheduler.
5067 * If "coincidence" is set, then try and carry coincidence edges as well.
5069 * The variable "n_edge" stores the number of groups that should be carried.
5070 * If none of the "n_edge" groups can be carried
5071 * then return an empty vector.
5072 * If, moreover, "n_edge" is zero, then the LP problem does not even
5073 * need to be constructed.
5075 * If a fallback solution is being computed, then compute an integral solution
5076 * for the coefficients rather than using the numerators
5077 * of a rational solution.
5079 * If a fallback solution is being computed, if there are any intra-node
5080 * dependences, and if requested by the user, then first try
5081 * to only carry those intra-node dependences.
5082 * If this fails to carry any dependences, then try again
5083 * with the inter-node dependences included.
5085 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5086 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5088 int n_intra
, n_inter
;
5090 struct isl_carry carry
= { 0 };
5093 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5095 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5097 if (!carry
.intra
|| !carry
.inter
)
5099 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5100 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5102 if (fallback
&& n_intra
> 0 &&
5103 isl_options_get_schedule_carry_self_first(ctx
)) {
5104 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5105 carry
.intra
, carry
.inter
, fallback
, 0);
5106 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5107 isl_carry_clear(&carry
);
5113 n_edge
= n_intra
+ n_inter
;
5115 isl_carry_clear(&carry
);
5116 return isl_vec_alloc(ctx
, 0);
5119 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5120 carry
.intra
, carry
.inter
, fallback
, 1);
5121 isl_carry_clear(&carry
);
5124 isl_carry_clear(&carry
);
5128 /* Construct a schedule row for each node such that as many validity dependences
5129 * as possible are carried and then continue with the next band.
5130 * If "fallback" is set, then the carrying is performed as a fallback
5131 * for the Pluto-like scheduler.
5132 * If "coincidence" is set, then try and carry coincidence edges as well.
5134 * If there are no validity dependences, then no dependence can be carried and
5135 * the procedure is guaranteed to fail. If there is more than one component,
5136 * then try computing a schedule on each component separately
5137 * to prevent or at least postpone this failure.
5139 * If a schedule row is computed, then check that dependences are carried
5140 * for at least one of the edges.
5142 * If the computed schedule row turns out to be trivial on one or
5143 * more nodes where it should not be trivial, then we throw it away
5144 * and try again on each component separately.
5146 * If there is only one component, then we accept the schedule row anyway,
5147 * but we do not consider it as a complete row and therefore do not
5148 * increment graph->n_row. Note that the ranks of the nodes that
5149 * do get a non-trivial schedule part will get updated regardless and
5150 * graph->maxvar is computed based on these ranks. The test for
5151 * whether more schedule rows are required in compute_schedule_wcc
5152 * is therefore not affected.
5154 * Insert a band corresponding to the schedule row at position "node"
5155 * of the schedule tree and continue with the construction of the schedule.
5156 * This insertion and the continued construction is performed by split_scaled
5157 * after optionally checking for non-trivial common divisors.
5159 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5160 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5169 ctx
= isl_schedule_node_get_ctx(node
);
5170 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5172 return isl_schedule_node_free(node
);
5173 if (sol
->size
== 0) {
5176 return compute_component_schedule(node
, graph
, 1);
5177 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5178 return isl_schedule_node_free(node
));
5181 trivial
= is_any_trivial(graph
, sol
);
5183 sol
= isl_vec_free(sol
);
5184 } else if (trivial
&& graph
->scc
> 1) {
5186 return compute_component_schedule(node
, graph
, 1);
5189 if (update_schedule(graph
, sol
, 0) < 0)
5190 return isl_schedule_node_free(node
);
5194 return split_scaled(node
, graph
);
5197 /* Construct a schedule row for each node such that as many validity dependences
5198 * as possible are carried and then continue with the next band.
5199 * Do so as a fallback for the Pluto-like scheduler.
5200 * If "coincidence" is set, then try and carry coincidence edges as well.
5202 static __isl_give isl_schedule_node
*carry_fallback(
5203 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5206 return carry(node
, graph
, 1, coincidence
);
5209 /* Construct a schedule row for each node such that as many validity dependences
5210 * as possible are carried and then continue with the next band.
5211 * Do so for the case where the Feautrier scheduler was selected
5214 static __isl_give isl_schedule_node
*carry_feautrier(
5215 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5217 return carry(node
, graph
, 0, 0);
5220 /* Construct a schedule row for each node such that as many validity dependences
5221 * as possible are carried and then continue with the next band.
5222 * Do so as a fallback for the Pluto-like scheduler.
5224 static __isl_give isl_schedule_node
*carry_dependences(
5225 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5227 return carry_fallback(node
, graph
, 0);
5230 /* Construct a schedule row for each node such that as many validity or
5231 * coincidence dependences as possible are carried and
5232 * then continue with the next band.
5233 * Do so as a fallback for the Pluto-like scheduler.
5235 static __isl_give isl_schedule_node
*carry_coincidence(
5236 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5238 return carry_fallback(node
, graph
, 1);
5241 /* Topologically sort statements mapped to the same schedule iteration
5242 * and add insert a sequence node in front of "node"
5243 * corresponding to this order.
5244 * If "initialized" is set, then it may be assumed that compute_maxvar
5245 * has been called on the current band. Otherwise, call
5246 * compute_maxvar if and before carry_dependences gets called.
5248 * If it turns out to be impossible to sort the statements apart,
5249 * because different dependences impose different orderings
5250 * on the statements, then we extend the schedule such that
5251 * it carries at least one more dependence.
5253 static __isl_give isl_schedule_node
*sort_statements(
5254 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5258 isl_union_set_list
*filters
;
5263 ctx
= isl_schedule_node_get_ctx(node
);
5265 isl_die(ctx
, isl_error_internal
,
5266 "graph should have at least one node",
5267 return isl_schedule_node_free(node
));
5272 if (update_edges(ctx
, graph
) < 0)
5273 return isl_schedule_node_free(node
);
5275 if (graph
->n_edge
== 0)
5278 if (detect_sccs(ctx
, graph
) < 0)
5279 return isl_schedule_node_free(node
);
5282 if (graph
->scc
< graph
->n
) {
5283 if (!initialized
&& compute_maxvar(graph
) < 0)
5284 return isl_schedule_node_free(node
);
5285 return carry_dependences(node
, graph
);
5288 filters
= extract_sccs(ctx
, graph
);
5289 node
= isl_schedule_node_insert_sequence(node
, filters
);
5294 /* Are there any (non-empty) (conditional) validity edges in the graph?
5296 static int has_validity_edges(struct isl_sched_graph
*graph
)
5300 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5303 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5308 if (is_any_validity(&graph
->edge
[i
]))
5315 /* Should we apply a Feautrier step?
5316 * That is, did the user request the Feautrier algorithm and are
5317 * there any validity dependences (left)?
5319 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5321 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5324 return has_validity_edges(graph
);
5327 /* Compute a schedule for a connected dependence graph using Feautrier's
5328 * multi-dimensional scheduling algorithm and return the updated schedule node.
5330 * The original algorithm is described in [1].
5331 * The main idea is to minimize the number of scheduling dimensions, by
5332 * trying to satisfy as many dependences as possible per scheduling dimension.
5334 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5335 * Problem, Part II: Multi-Dimensional Time.
5336 * In Intl. Journal of Parallel Programming, 1992.
5338 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5339 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5341 return carry_feautrier(node
, graph
);
5344 /* Turn off the "local" bit on all (condition) edges.
5346 static void clear_local_edges(struct isl_sched_graph
*graph
)
5350 for (i
= 0; i
< graph
->n_edge
; ++i
)
5351 if (is_condition(&graph
->edge
[i
]))
5352 clear_local(&graph
->edge
[i
]);
5355 /* Does "graph" have both condition and conditional validity edges?
5357 static int need_condition_check(struct isl_sched_graph
*graph
)
5360 int any_condition
= 0;
5361 int any_conditional_validity
= 0;
5363 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5364 if (is_condition(&graph
->edge
[i
]))
5366 if (is_conditional_validity(&graph
->edge
[i
]))
5367 any_conditional_validity
= 1;
5370 return any_condition
&& any_conditional_validity
;
5373 /* Does "graph" contain any coincidence edge?
5375 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5379 for (i
= 0; i
< graph
->n_edge
; ++i
)
5380 if (is_coincidence(&graph
->edge
[i
]))
5386 /* Extract the final schedule row as a map with the iteration domain
5387 * of "node" as domain.
5389 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5394 row
= isl_mat_rows(node
->sched
) - 1;
5395 ma
= node_extract_partial_schedule_multi_aff(node
, row
, 1);
5396 return isl_map_from_multi_aff(ma
);
5399 /* Is the conditional validity dependence in the edge with index "edge_index"
5400 * violated by the latest (i.e., final) row of the schedule?
5401 * That is, is i scheduled after j
5402 * for any conditional validity dependence i -> j?
5404 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5406 isl_map
*src_sched
, *dst_sched
, *map
;
5407 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5410 src_sched
= final_row(edge
->src
);
5411 dst_sched
= final_row(edge
->dst
);
5412 map
= isl_map_copy(edge
->map
);
5413 map
= isl_map_apply_domain(map
, src_sched
);
5414 map
= isl_map_apply_range(map
, dst_sched
);
5415 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5416 empty
= isl_map_is_empty(map
);
5425 /* Does "graph" have any satisfied condition edges that
5426 * are adjacent to the conditional validity constraint with
5427 * domain "conditional_source" and range "conditional_sink"?
5429 * A satisfied condition is one that is not local.
5430 * If a condition was forced to be local already (i.e., marked as local)
5431 * then there is no need to check if it is in fact local.
5433 * Additionally, mark all adjacent condition edges found as local.
5435 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5436 __isl_keep isl_union_set
*conditional_source
,
5437 __isl_keep isl_union_set
*conditional_sink
)
5442 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5443 int adjacent
, local
;
5444 isl_union_map
*condition
;
5446 if (!is_condition(&graph
->edge
[i
]))
5448 if (is_local(&graph
->edge
[i
]))
5451 condition
= graph
->edge
[i
].tagged_condition
;
5452 adjacent
= domain_intersects(condition
, conditional_sink
);
5453 if (adjacent
>= 0 && !adjacent
)
5454 adjacent
= range_intersects(condition
,
5455 conditional_source
);
5461 set_local(&graph
->edge
[i
]);
5463 local
= is_condition_false(&graph
->edge
[i
]);
5473 /* Are there any violated conditional validity dependences with
5474 * adjacent condition dependences that are not local with respect
5475 * to the current schedule?
5476 * That is, is the conditional validity constraint violated?
5478 * Additionally, mark all those adjacent condition dependences as local.
5479 * We also mark those adjacent condition dependences that were not marked
5480 * as local before, but just happened to be local already. This ensures
5481 * that they remain local if the schedule is recomputed.
5483 * We first collect domain and range of all violated conditional validity
5484 * dependences and then check if there are any adjacent non-local
5485 * condition dependences.
5487 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5488 struct isl_sched_graph
*graph
)
5492 isl_union_set
*source
, *sink
;
5494 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5495 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5496 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5497 isl_union_set
*uset
;
5498 isl_union_map
*umap
;
5501 if (!is_conditional_validity(&graph
->edge
[i
]))
5504 violated
= is_violated(graph
, i
);
5512 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5513 uset
= isl_union_map_domain(umap
);
5514 source
= isl_union_set_union(source
, uset
);
5515 source
= isl_union_set_coalesce(source
);
5517 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5518 uset
= isl_union_map_range(umap
);
5519 sink
= isl_union_set_union(sink
, uset
);
5520 sink
= isl_union_set_coalesce(sink
);
5524 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5526 isl_union_set_free(source
);
5527 isl_union_set_free(sink
);
5530 isl_union_set_free(source
);
5531 isl_union_set_free(sink
);
5535 /* Examine the current band (the rows between graph->band_start and
5536 * graph->n_total_row), deciding whether to drop it or add it to "node"
5537 * and then continue with the computation of the next band, if any.
5538 * If "initialized" is set, then it may be assumed that compute_maxvar
5539 * has been called on the current band. Otherwise, call
5540 * compute_maxvar if and before carry_dependences gets called.
5542 * The caller keeps looking for a new row as long as
5543 * graph->n_row < graph->maxvar. If the latest attempt to find
5544 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5546 * - split between SCCs and start over (assuming we found an interesting
5547 * pair of SCCs between which to split)
5548 * - continue with the next band (assuming the current band has at least
5550 * - if there is more than one SCC left, then split along all SCCs
5551 * - if outer coincidence needs to be enforced, then try to carry as many
5552 * validity or coincidence dependences as possible and
5553 * continue with the next band
5554 * - try to carry as many validity dependences as possible and
5555 * continue with the next band
5556 * In each case, we first insert a band node in the schedule tree
5557 * if any rows have been computed.
5559 * If the caller managed to complete the schedule and the current band
5560 * is empty, then finish off by topologically
5561 * sorting the statements based on the remaining dependences.
5562 * If, on the other hand, the current band has at least one row,
5563 * then continue with the next band. Note that this next band
5564 * will necessarily be empty, but the graph may still be split up
5565 * into weakly connected components before arriving back here.
5567 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
5568 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5576 empty
= graph
->n_total_row
== graph
->band_start
;
5577 if (graph
->n_row
< graph
->maxvar
) {
5580 ctx
= isl_schedule_node_get_ctx(node
);
5581 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5582 return compute_next_band(node
, graph
, 1);
5583 if (graph
->src_scc
>= 0)
5584 return compute_split_schedule(node
, graph
);
5586 return compute_next_band(node
, graph
, 1);
5588 return compute_component_schedule(node
, graph
, 1);
5589 if (!initialized
&& compute_maxvar(graph
) < 0)
5590 return isl_schedule_node_free(node
);
5591 if (isl_options_get_schedule_outer_coincidence(ctx
))
5592 return carry_coincidence(node
, graph
);
5593 return carry_dependences(node
, graph
);
5597 return compute_next_band(node
, graph
, 1);
5598 return sort_statements(node
, graph
, initialized
);
5601 /* Construct a band of schedule rows for a connected dependence graph.
5602 * The caller is responsible for determining the strongly connected
5603 * components and calling compute_maxvar first.
5605 * We try to find a sequence of as many schedule rows as possible that result
5606 * in non-negative dependence distances (independent of the previous rows
5607 * in the sequence, i.e., such that the sequence is tilable), with as
5608 * many of the initial rows as possible satisfying the coincidence constraints.
5609 * The computation stops if we can't find any more rows or if we have found
5610 * all the rows we wanted to find.
5612 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5613 * outermost dimension to satisfy the coincidence constraints. If this
5614 * turns out to be impossible, we fall back on the general scheme above
5615 * and try to carry as many dependences as possible.
5617 * If "graph" contains both condition and conditional validity dependences,
5618 * then we need to check that that the conditional schedule constraint
5619 * is satisfied, i.e., there are no violated conditional validity dependences
5620 * that are adjacent to any non-local condition dependences.
5621 * If there are, then we mark all those adjacent condition dependences
5622 * as local and recompute the current band. Those dependences that
5623 * are marked local will then be forced to be local.
5624 * The initial computation is performed with no dependences marked as local.
5625 * If we are lucky, then there will be no violated conditional validity
5626 * dependences adjacent to any non-local condition dependences.
5627 * Otherwise, we mark some additional condition dependences as local and
5628 * recompute. We continue this process until there are no violations left or
5629 * until we are no longer able to compute a schedule.
5630 * Since there are only a finite number of dependences,
5631 * there will only be a finite number of iterations.
5633 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
5634 struct isl_sched_graph
*graph
)
5636 int has_coincidence
;
5637 int use_coincidence
;
5638 int force_coincidence
= 0;
5639 int check_conditional
;
5641 if (sort_sccs(graph
) < 0)
5642 return isl_stat_error
;
5644 clear_local_edges(graph
);
5645 check_conditional
= need_condition_check(graph
);
5646 has_coincidence
= has_any_coincidence(graph
);
5648 if (ctx
->opt
->schedule_outer_coincidence
)
5649 force_coincidence
= 1;
5651 use_coincidence
= has_coincidence
;
5652 while (graph
->n_row
< graph
->maxvar
) {
5657 graph
->src_scc
= -1;
5658 graph
->dst_scc
= -1;
5660 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5661 return isl_stat_error
;
5662 sol
= solve_lp(ctx
, graph
);
5664 return isl_stat_error
;
5665 if (sol
->size
== 0) {
5666 int empty
= graph
->n_total_row
== graph
->band_start
;
5669 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5670 use_coincidence
= 0;
5675 coincident
= !has_coincidence
|| use_coincidence
;
5676 if (update_schedule(graph
, sol
, coincident
) < 0)
5677 return isl_stat_error
;
5679 if (!check_conditional
)
5681 violated
= has_violated_conditional_constraint(ctx
, graph
);
5683 return isl_stat_error
;
5686 if (reset_band(graph
) < 0)
5687 return isl_stat_error
;
5688 use_coincidence
= has_coincidence
;
5694 /* Compute a schedule for a connected dependence graph by considering
5695 * the graph as a whole and return the updated schedule node.
5697 * The actual schedule rows of the current band are computed by
5698 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5699 * care of integrating the band into "node" and continuing
5702 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5703 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5710 ctx
= isl_schedule_node_get_ctx(node
);
5711 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
5712 return isl_schedule_node_free(node
);
5714 return compute_schedule_finish_band(node
, graph
, 1);
5717 /* Clustering information used by compute_schedule_wcc_clustering.
5719 * "n" is the number of SCCs in the original dependence graph
5720 * "scc" is an array of "n" elements, each representing an SCC
5721 * of the original dependence graph. All entries in the same cluster
5722 * have the same number of schedule rows.
5723 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5724 * where each cluster is represented by the index of the first SCC
5725 * in the cluster. Initially, each SCC belongs to a cluster containing
5728 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5729 * track of which SCCs need to be merged.
5731 * "cluster" contains the merged clusters of SCCs after the clustering
5734 * "scc_node" is a temporary data structure used inside copy_partial.
5735 * For each SCC, it keeps track of the number of nodes in the SCC
5736 * that have already been copied.
5738 struct isl_clustering
{
5740 struct isl_sched_graph
*scc
;
5741 struct isl_sched_graph
*cluster
;
5747 /* Initialize the clustering data structure "c" from "graph".
5749 * In particular, allocate memory, extract the SCCs from "graph"
5750 * into c->scc, initialize scc_cluster and construct
5751 * a band of schedule rows for each SCC.
5752 * Within each SCC, there is only one SCC by definition.
5753 * Each SCC initially belongs to a cluster containing only that SCC.
5755 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
5756 struct isl_sched_graph
*graph
)
5761 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5762 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5763 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
5764 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
5765 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
5766 if (!c
->scc
|| !c
->cluster
||
5767 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
5768 return isl_stat_error
;
5770 for (i
= 0; i
< c
->n
; ++i
) {
5771 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
5772 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
5773 return isl_stat_error
;
5775 if (compute_maxvar(&c
->scc
[i
]) < 0)
5776 return isl_stat_error
;
5777 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
5778 return isl_stat_error
;
5779 c
->scc_cluster
[i
] = i
;
5785 /* Free all memory allocated for "c".
5787 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
5792 for (i
= 0; i
< c
->n
; ++i
)
5793 graph_free(ctx
, &c
->scc
[i
]);
5796 for (i
= 0; i
< c
->n
; ++i
)
5797 graph_free(ctx
, &c
->cluster
[i
]);
5799 free(c
->scc_cluster
);
5801 free(c
->scc_in_merge
);
5804 /* Should we refrain from merging the cluster in "graph" with
5805 * any other cluster?
5806 * In particular, is its current schedule band empty and incomplete.
5808 static int bad_cluster(struct isl_sched_graph
*graph
)
5810 return graph
->n_row
< graph
->maxvar
&&
5811 graph
->n_total_row
== graph
->band_start
;
5814 /* Is "edge" a proximity edge with a non-empty dependence relation?
5816 static isl_bool
is_non_empty_proximity(struct isl_sched_edge
*edge
)
5818 if (!is_proximity(edge
))
5819 return isl_bool_false
;
5820 return isl_bool_not(isl_map_plain_is_empty(edge
->map
));
5823 /* Return the index of an edge in "graph" that can be used to merge
5824 * two clusters in "c".
5825 * Return graph->n_edge if no such edge can be found.
5826 * Return -1 on error.
5828 * In particular, return a proximity edge between two clusters
5829 * that is not marked "no_merge" and such that neither of the
5830 * two clusters has an incomplete, empty band.
5832 * If there are multiple such edges, then try and find the most
5833 * appropriate edge to use for merging. In particular, pick the edge
5834 * with the greatest weight. If there are multiple of those,
5835 * then pick one with the shortest distance between
5836 * the two cluster representatives.
5838 static int find_proximity(struct isl_sched_graph
*graph
,
5839 struct isl_clustering
*c
)
5841 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
5843 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5844 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5848 prox
= is_non_empty_proximity(edge
);
5855 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5856 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5858 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
5859 c
->scc_cluster
[edge
->src
->scc
];
5862 weight
= edge
->weight
;
5863 if (best
< graph
->n_edge
) {
5864 if (best_weight
> weight
)
5866 if (best_weight
== weight
&& best_dist
<= dist
)
5871 best_weight
= weight
;
5877 /* Internal data structure used in mark_merge_sccs.
5879 * "graph" is the dependence graph in which a strongly connected
5880 * component is constructed.
5881 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5882 * "src" and "dst" are the indices of the nodes that are being merged.
5884 struct isl_mark_merge_sccs_data
{
5885 struct isl_sched_graph
*graph
;
5891 /* Check whether the cluster containing node "i" depends on the cluster
5892 * containing node "j". If "i" and "j" belong to the same cluster,
5893 * then they are taken to depend on each other to ensure that
5894 * the resulting strongly connected component consists of complete
5895 * clusters. Furthermore, if "i" and "j" are the two nodes that
5896 * are being merged, then they are taken to depend on each other as well.
5897 * Otherwise, check if there is a (conditional) validity dependence
5898 * from node[j] to node[i], forcing node[i] to follow node[j].
5900 static isl_bool
cluster_follows(int i
, int j
, void *user
)
5902 struct isl_mark_merge_sccs_data
*data
= user
;
5903 struct isl_sched_graph
*graph
= data
->graph
;
5904 int *scc_cluster
= data
->scc_cluster
;
5906 if (data
->src
== i
&& data
->dst
== j
)
5907 return isl_bool_true
;
5908 if (data
->src
== j
&& data
->dst
== i
)
5909 return isl_bool_true
;
5910 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
5911 return isl_bool_true
;
5913 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5916 /* Mark all SCCs that belong to either of the two clusters in "c"
5917 * connected by the edge in "graph" with index "edge", or to any
5918 * of the intermediate clusters.
5919 * The marking is recorded in c->scc_in_merge.
5921 * The given edge has been selected for merging two clusters,
5922 * meaning that there is at least a proximity edge between the two nodes.
5923 * However, there may also be (indirect) validity dependences
5924 * between the two nodes. When merging the two clusters, all clusters
5925 * containing one or more of the intermediate nodes along the
5926 * indirect validity dependences need to be merged in as well.
5928 * First collect all such nodes by computing the strongly connected
5929 * component (SCC) containing the two nodes connected by the edge, where
5930 * the two nodes are considered to depend on each other to make
5931 * sure they end up in the same SCC. Similarly, each node is considered
5932 * to depend on every other node in the same cluster to ensure
5933 * that the SCC consists of complete clusters.
5935 * Then the original SCCs that contain any of these nodes are marked
5936 * in c->scc_in_merge.
5938 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5939 int edge
, struct isl_clustering
*c
)
5941 struct isl_mark_merge_sccs_data data
;
5942 struct isl_tarjan_graph
*g
;
5945 for (i
= 0; i
< c
->n
; ++i
)
5946 c
->scc_in_merge
[i
] = 0;
5949 data
.scc_cluster
= c
->scc_cluster
;
5950 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
5951 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
5953 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
5954 &cluster_follows
, &data
);
5960 isl_die(ctx
, isl_error_internal
,
5961 "expecting at least two nodes in component",
5963 if (g
->order
[--i
] != -1)
5964 isl_die(ctx
, isl_error_internal
,
5965 "expecting end of component marker", goto error
);
5967 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
5968 int scc
= graph
->node
[g
->order
[i
]].scc
;
5969 c
->scc_in_merge
[scc
] = 1;
5972 isl_tarjan_graph_free(g
);
5975 isl_tarjan_graph_free(g
);
5976 return isl_stat_error
;
5979 /* Construct the identifier "cluster_i".
5981 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
5985 snprintf(name
, sizeof(name
), "cluster_%d", i
);
5986 return isl_id_alloc(ctx
, name
, NULL
);
5989 /* Construct the space of the cluster with index "i" containing
5990 * the strongly connected component "scc".
5992 * In particular, construct a space called cluster_i with dimension equal
5993 * to the number of schedule rows in the current band of "scc".
5995 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
6001 nvar
= scc
->n_total_row
- scc
->band_start
;
6002 space
= isl_space_copy(scc
->node
[0].space
);
6003 space
= isl_space_params(space
);
6004 space
= isl_space_set_from_params(space
);
6005 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
6006 id
= cluster_id(isl_space_get_ctx(space
), i
);
6007 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
6012 /* Collect the domain of the graph for merging clusters.
6014 * In particular, for each cluster with first SCC "i", construct
6015 * a set in the space called cluster_i with dimension equal
6016 * to the number of schedule rows in the current band of the cluster.
6018 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
6019 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6023 isl_union_set
*domain
;
6025 space
= isl_space_params_alloc(ctx
, 0);
6026 domain
= isl_union_set_empty(space
);
6028 for (i
= 0; i
< graph
->scc
; ++i
) {
6031 if (!c
->scc_in_merge
[i
])
6033 if (c
->scc_cluster
[i
] != i
)
6035 space
= cluster_space(&c
->scc
[i
], i
);
6036 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
6042 /* Construct a map from the original instances to the corresponding
6043 * cluster instance in the current bands of the clusters in "c".
6045 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
6046 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6050 isl_union_map
*cluster_map
;
6052 space
= isl_space_params_alloc(ctx
, 0);
6053 cluster_map
= isl_union_map_empty(space
);
6054 for (i
= 0; i
< graph
->scc
; ++i
) {
6058 if (!c
->scc_in_merge
[i
])
6061 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
6062 start
= c
->scc
[i
].band_start
;
6063 n
= c
->scc
[i
].n_total_row
- start
;
6064 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
6067 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
6069 ma
= node_extract_partial_schedule_multi_aff(node
,
6071 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
6073 map
= isl_map_from_multi_aff(ma
);
6074 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
6082 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6083 * that are not isl_edge_condition or isl_edge_conditional_validity.
6085 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
6086 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6087 __isl_take isl_schedule_constraints
*sc
)
6089 enum isl_edge_type t
;
6094 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
6095 if (t
== isl_edge_condition
||
6096 t
== isl_edge_conditional_validity
)
6098 if (!is_type(edge
, t
))
6100 sc
= isl_schedule_constraints_add(sc
, t
,
6101 isl_union_map_copy(umap
));
6107 /* Add schedule constraints of types isl_edge_condition and
6108 * isl_edge_conditional_validity to "sc" by applying "umap" to
6109 * the domains of the wrapped relations in domain and range
6110 * of the corresponding tagged constraints of "edge".
6112 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
6113 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6114 __isl_take isl_schedule_constraints
*sc
)
6116 enum isl_edge_type t
;
6117 isl_union_map
*tagged
;
6119 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
6120 if (!is_type(edge
, t
))
6122 if (t
== isl_edge_condition
)
6123 tagged
= isl_union_map_copy(edge
->tagged_condition
);
6125 tagged
= isl_union_map_copy(edge
->tagged_validity
);
6126 tagged
= isl_union_map_zip(tagged
);
6127 tagged
= isl_union_map_apply_domain(tagged
,
6128 isl_union_map_copy(umap
));
6129 tagged
= isl_union_map_zip(tagged
);
6130 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
6138 /* Given a mapping "cluster_map" from the original instances to
6139 * the cluster instances, add schedule constraints on the clusters
6140 * to "sc" corresponding to the original constraints represented by "edge".
6142 * For non-tagged dependence constraints, the cluster constraints
6143 * are obtained by applying "cluster_map" to the edge->map.
6145 * For tagged dependence constraints, "cluster_map" needs to be applied
6146 * to the domains of the wrapped relations in domain and range
6147 * of the tagged dependence constraints. Pick out the mappings
6148 * from these domains from "cluster_map" and construct their product.
6149 * This mapping can then be applied to the pair of domains.
6151 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
6152 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
6153 __isl_take isl_schedule_constraints
*sc
)
6155 isl_union_map
*umap
;
6157 isl_union_set
*uset
;
6158 isl_union_map
*umap1
, *umap2
;
6163 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
6164 umap
= isl_union_map_apply_domain(umap
,
6165 isl_union_map_copy(cluster_map
));
6166 umap
= isl_union_map_apply_range(umap
,
6167 isl_union_map_copy(cluster_map
));
6168 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
6169 isl_union_map_free(umap
);
6171 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
6174 space
= isl_space_domain(isl_map_get_space(edge
->map
));
6175 uset
= isl_union_set_from_set(isl_set_universe(space
));
6176 umap1
= isl_union_map_copy(cluster_map
);
6177 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
6178 space
= isl_space_range(isl_map_get_space(edge
->map
));
6179 uset
= isl_union_set_from_set(isl_set_universe(space
));
6180 umap2
= isl_union_map_copy(cluster_map
);
6181 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
6182 umap
= isl_union_map_product(umap1
, umap2
);
6184 sc
= add_conditional_constraints(edge
, umap
, sc
);
6186 isl_union_map_free(umap
);
6190 /* Given a mapping "cluster_map" from the original instances to
6191 * the cluster instances, add schedule constraints on the clusters
6192 * to "sc" corresponding to all edges in "graph" between nodes that
6193 * belong to SCCs that are marked for merging in "scc_in_merge".
6195 static __isl_give isl_schedule_constraints
*collect_constraints(
6196 struct isl_sched_graph
*graph
, int *scc_in_merge
,
6197 __isl_keep isl_union_map
*cluster_map
,
6198 __isl_take isl_schedule_constraints
*sc
)
6202 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6203 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6205 if (!scc_in_merge
[edge
->src
->scc
])
6207 if (!scc_in_merge
[edge
->dst
->scc
])
6209 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
6215 /* Construct a dependence graph for scheduling clusters with respect
6216 * to each other and store the result in "merge_graph".
6217 * In particular, the nodes of the graph correspond to the schedule
6218 * dimensions of the current bands of those clusters that have been
6219 * marked for merging in "c".
6221 * First construct an isl_schedule_constraints object for this domain
6222 * by transforming the edges in "graph" to the domain.
6223 * Then initialize a dependence graph for scheduling from these
6226 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6227 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6229 isl_union_set
*domain
;
6230 isl_union_map
*cluster_map
;
6231 isl_schedule_constraints
*sc
;
6234 domain
= collect_domain(ctx
, graph
, c
);
6235 sc
= isl_schedule_constraints_on_domain(domain
);
6237 return isl_stat_error
;
6238 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
6239 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
6240 isl_union_map_free(cluster_map
);
6242 r
= graph_init(merge_graph
, sc
);
6244 isl_schedule_constraints_free(sc
);
6249 /* Compute the maximal number of remaining schedule rows that still need
6250 * to be computed for the nodes that belong to clusters with the maximal
6251 * dimension for the current band (i.e., the band that is to be merged).
6252 * Only clusters that are about to be merged are considered.
6253 * "maxvar" is the maximal dimension for the current band.
6254 * "c" contains information about the clusters.
6256 * Return the maximal number of remaining schedule rows or -1 on error.
6258 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
6264 for (i
= 0; i
< c
->n
; ++i
) {
6266 struct isl_sched_graph
*scc
;
6268 if (!c
->scc_in_merge
[i
])
6271 nvar
= scc
->n_total_row
- scc
->band_start
;
6274 for (j
= 0; j
< scc
->n
; ++j
) {
6275 struct isl_sched_node
*node
= &scc
->node
[j
];
6278 if (node_update_vmap(node
) < 0)
6280 slack
= node
->nvar
- node
->rank
;
6281 if (slack
> max_slack
)
6289 /* If there are any clusters where the dimension of the current band
6290 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6291 * if there are any nodes in such a cluster where the number
6292 * of remaining schedule rows that still need to be computed
6293 * is greater than "max_slack", then return the smallest current band
6294 * dimension of all these clusters. Otherwise return the original value
6295 * of "maxvar". Return -1 in case of any error.
6296 * Only clusters that are about to be merged are considered.
6297 * "c" contains information about the clusters.
6299 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
6300 struct isl_clustering
*c
)
6304 for (i
= 0; i
< c
->n
; ++i
) {
6306 struct isl_sched_graph
*scc
;
6308 if (!c
->scc_in_merge
[i
])
6311 nvar
= scc
->n_total_row
- scc
->band_start
;
6314 for (j
= 0; j
< scc
->n
; ++j
) {
6315 struct isl_sched_node
*node
= &scc
->node
[j
];
6318 if (node_update_vmap(node
) < 0)
6320 slack
= node
->nvar
- node
->rank
;
6321 if (slack
> max_slack
) {
6331 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6332 * that still need to be computed. In particular, if there is a node
6333 * in a cluster where the dimension of the current band is smaller
6334 * than merge_graph->maxvar, but the number of remaining schedule rows
6335 * is greater than that of any node in a cluster with the maximal
6336 * dimension for the current band (i.e., merge_graph->maxvar),
6337 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6338 * of those clusters. Without this adjustment, the total number of
6339 * schedule dimensions would be increased, resulting in a skewed view
6340 * of the number of coincident dimensions.
6341 * "c" contains information about the clusters.
6343 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6344 * then there is no point in attempting any merge since it will be rejected
6345 * anyway. Set merge_graph->maxvar to zero in such cases.
6347 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
6348 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
6350 int max_slack
, maxvar
;
6352 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
6354 return isl_stat_error
;
6355 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
6357 return isl_stat_error
;
6359 if (maxvar
< merge_graph
->maxvar
) {
6360 if (isl_options_get_schedule_maximize_band_depth(ctx
))
6361 merge_graph
->maxvar
= 0;
6363 merge_graph
->maxvar
= maxvar
;
6369 /* Return the number of coincident dimensions in the current band of "graph",
6370 * where the nodes of "graph" are assumed to be scheduled by a single band.
6372 static int get_n_coincident(struct isl_sched_graph
*graph
)
6376 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
6377 if (!graph
->node
[0].coincident
[i
])
6380 return i
- graph
->band_start
;
6383 /* Should the clusters be merged based on the cluster schedule
6384 * in the current (and only) band of "merge_graph", given that
6385 * coincidence should be maximized?
6387 * If the number of coincident schedule dimensions in the merged band
6388 * would be less than the maximal number of coincident schedule dimensions
6389 * in any of the merged clusters, then the clusters should not be merged.
6391 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
6392 struct isl_sched_graph
*merge_graph
)
6399 for (i
= 0; i
< c
->n
; ++i
) {
6400 if (!c
->scc_in_merge
[i
])
6402 n_coincident
= get_n_coincident(&c
->scc
[i
]);
6403 if (n_coincident
> max_coincident
)
6404 max_coincident
= n_coincident
;
6407 n_coincident
= get_n_coincident(merge_graph
);
6409 return n_coincident
>= max_coincident
;
6412 /* Return the transformation on "node" expressed by the current (and only)
6413 * band of "merge_graph" applied to the clusters in "c".
6415 * First find the representation of "node" in its SCC in "c" and
6416 * extract the transformation expressed by the current band.
6417 * Then extract the transformation applied by "merge_graph"
6418 * to the cluster to which this SCC belongs.
6419 * Combine the two to obtain the complete transformation on the node.
6421 * Note that the range of the first transformation is an anonymous space,
6422 * while the domain of the second is named "cluster_X". The range
6423 * of the former therefore needs to be adjusted before the two
6426 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
6427 struct isl_sched_node
*node
, struct isl_clustering
*c
,
6428 struct isl_sched_graph
*merge_graph
)
6430 struct isl_sched_node
*scc_node
, *cluster_node
;
6434 isl_multi_aff
*ma
, *ma2
;
6436 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
6437 if (scc_node
&& !is_node(&c
->scc
[node
->scc
], scc_node
))
6438 isl_die(ctx
, isl_error_internal
, "unable to find node",
6440 start
= c
->scc
[node
->scc
].band_start
;
6441 n
= c
->scc
[node
->scc
].n_total_row
- start
;
6442 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
6443 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
6444 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
6445 if (cluster_node
&& !is_node(merge_graph
, cluster_node
))
6446 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
6447 space
= isl_space_free(space
));
6448 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
6449 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
6450 isl_space_free(space
);
6451 n
= merge_graph
->n_total_row
;
6452 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
6453 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
6455 return isl_map_from_multi_aff(ma
);
6458 /* Give a set of distances "set", are they bounded by a small constant
6459 * in direction "pos"?
6460 * In practice, check if they are bounded by 2 by checking that there
6461 * are no elements with a value greater than or equal to 3 or
6462 * smaller than or equal to -3.
6464 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
6470 return isl_bool_error
;
6472 test
= isl_set_copy(set
);
6473 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
6474 bounded
= isl_set_is_empty(test
);
6477 if (bounded
< 0 || !bounded
)
6480 test
= isl_set_copy(set
);
6481 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
6482 bounded
= isl_set_is_empty(test
);
6488 /* Does the set "set" have a fixed (but possible parametric) value
6489 * at dimension "pos"?
6491 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
6497 return isl_bool_error
;
6498 set
= isl_set_copy(set
);
6499 n
= isl_set_dim(set
, isl_dim_set
);
6500 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
6501 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
6502 single
= isl_set_is_singleton(set
);
6508 /* Does "map" have a fixed (but possible parametric) value
6509 * at dimension "pos" of either its domain or its range?
6511 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
6516 set
= isl_map_domain(isl_map_copy(map
));
6517 single
= has_single_value(set
, pos
);
6520 if (single
< 0 || single
)
6523 set
= isl_map_range(isl_map_copy(map
));
6524 single
= has_single_value(set
, pos
);
6530 /* Does the edge "edge" from "graph" have bounded dependence distances
6531 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6533 * Extract the complete transformations of the source and destination
6534 * nodes of the edge, apply them to the edge constraints and
6535 * compute the differences. Finally, check if these differences are bounded
6536 * in each direction.
6538 * If the dimension of the band is greater than the number of
6539 * dimensions that can be expected to be optimized by the edge
6540 * (based on its weight), then also allow the differences to be unbounded
6541 * in the remaining dimensions, but only if either the source or
6542 * the destination has a fixed value in that direction.
6543 * This allows a statement that produces values that are used by
6544 * several instances of another statement to be merged with that
6546 * However, merging such clusters will introduce an inherently
6547 * large proximity distance inside the merged cluster, meaning
6548 * that proximity distances will no longer be optimized in
6549 * subsequent merges. These merges are therefore only allowed
6550 * after all other possible merges have been tried.
6551 * The first time such a merge is encountered, the weight of the edge
6552 * is replaced by a negative weight. The second time (i.e., after
6553 * all merges over edges with a non-negative weight have been tried),
6554 * the merge is allowed.
6556 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
6557 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6558 struct isl_sched_graph
*merge_graph
)
6565 map
= isl_map_copy(edge
->map
);
6566 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
6567 map
= isl_map_apply_domain(map
, t
);
6568 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
6569 map
= isl_map_apply_range(map
, t
);
6570 dist
= isl_map_deltas(isl_map_copy(map
));
6572 bounded
= isl_bool_true
;
6573 n
= isl_set_dim(dist
, isl_dim_set
);
6574 n_slack
= n
- edge
->weight
;
6575 if (edge
->weight
< 0)
6576 n_slack
-= graph
->max_weight
+ 1;
6577 for (i
= 0; i
< n
; ++i
) {
6578 isl_bool bounded_i
, singular_i
;
6580 bounded_i
= distance_is_bounded(dist
, i
);
6585 if (edge
->weight
>= 0)
6586 bounded
= isl_bool_false
;
6590 singular_i
= has_singular_src_or_dst(map
, i
);
6595 bounded
= isl_bool_false
;
6598 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
6599 edge
->weight
-= graph
->max_weight
+ 1;
6607 return isl_bool_error
;
6610 /* Should the clusters be merged based on the cluster schedule
6611 * in the current (and only) band of "merge_graph"?
6612 * "graph" is the original dependence graph, while "c" records
6613 * which SCCs are involved in the latest merge.
6615 * In particular, is there at least one proximity constraint
6616 * that is optimized by the merge?
6618 * A proximity constraint is considered to be optimized
6619 * if the dependence distances are small.
6621 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
6622 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6623 struct isl_sched_graph
*merge_graph
)
6627 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6628 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6631 if (!is_proximity(edge
))
6633 if (!c
->scc_in_merge
[edge
->src
->scc
])
6635 if (!c
->scc_in_merge
[edge
->dst
->scc
])
6637 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6638 c
->scc_cluster
[edge
->src
->scc
])
6640 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
6642 if (bounded
< 0 || bounded
)
6646 return isl_bool_false
;
6649 /* Should the clusters be merged based on the cluster schedule
6650 * in the current (and only) band of "merge_graph"?
6651 * "graph" is the original dependence graph, while "c" records
6652 * which SCCs are involved in the latest merge.
6654 * If the current band is empty, then the clusters should not be merged.
6656 * If the band depth should be maximized and the merge schedule
6657 * is incomplete (meaning that the dimension of some of the schedule
6658 * bands in the original schedule will be reduced), then the clusters
6659 * should not be merged.
6661 * If the schedule_maximize_coincidence option is set, then check that
6662 * the number of coincident schedule dimensions is not reduced.
6664 * Finally, only allow the merge if at least one proximity
6665 * constraint is optimized.
6667 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6668 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6670 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
6671 return isl_bool_false
;
6673 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
6674 merge_graph
->n_total_row
< merge_graph
->maxvar
)
6675 return isl_bool_false
;
6677 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
6680 ok
= ok_to_merge_coincident(c
, merge_graph
);
6685 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
6688 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6689 * of the schedule in "node" and return the result.
6691 * That is, essentially compute
6693 * T * N(first:first+n-1)
6695 * taking into account the constant term and the parameter coefficients
6698 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
6699 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
6704 int n_row
, n_col
, n_param
, n_var
;
6706 n_param
= node
->nparam
;
6708 n_row
= isl_mat_rows(t_node
->sched
);
6709 n_col
= isl_mat_cols(node
->sched
);
6710 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
6713 for (i
= 0; i
< n_row
; ++i
) {
6714 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
6715 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
6716 for (j
= 0; j
< n
; ++j
)
6717 isl_seq_addmul(t
->row
[i
],
6718 t_node
->sched
->row
[i
][1 + n_param
+ j
],
6719 node
->sched
->row
[first
+ j
],
6720 1 + n_param
+ n_var
);
6725 /* Apply the cluster schedule in "t_node" to the current band
6726 * schedule of the nodes in "graph".
6728 * In particular, replace the rows starting at band_start
6729 * by the result of applying the cluster schedule in "t_node"
6730 * to the original rows.
6732 * The coincidence of the schedule is determined by the coincidence
6733 * of the cluster schedule.
6735 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6736 struct isl_sched_node
*t_node
)
6742 start
= graph
->band_start
;
6743 n
= graph
->n_total_row
- start
;
6745 n_new
= isl_mat_rows(t_node
->sched
);
6746 for (i
= 0; i
< graph
->n
; ++i
) {
6747 struct isl_sched_node
*node
= &graph
->node
[i
];
6750 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
6751 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
6752 node
->sched
= isl_mat_concat(node
->sched
, t
);
6753 node
->sched_map
= isl_map_free(node
->sched_map
);
6755 return isl_stat_error
;
6756 for (j
= 0; j
< n_new
; ++j
)
6757 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
6759 graph
->n_total_row
-= n
;
6761 graph
->n_total_row
+= n_new
;
6762 graph
->n_row
+= n_new
;
6767 /* Merge the clusters marked for merging in "c" into a single
6768 * cluster using the cluster schedule in the current band of "merge_graph".
6769 * The representative SCC for the new cluster is the SCC with
6770 * the smallest index.
6772 * The current band schedule of each SCC in the new cluster is obtained
6773 * by applying the schedule of the corresponding original cluster
6774 * to the original band schedule.
6775 * All SCCs in the new cluster have the same number of schedule rows.
6777 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
6778 struct isl_sched_graph
*merge_graph
)
6784 for (i
= 0; i
< c
->n
; ++i
) {
6785 struct isl_sched_node
*node
;
6787 if (!c
->scc_in_merge
[i
])
6791 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
6792 node
= graph_find_node(ctx
, merge_graph
, space
);
6793 isl_space_free(space
);
6795 return isl_stat_error
;
6796 if (!is_node(merge_graph
, node
))
6797 isl_die(ctx
, isl_error_internal
,
6798 "unable to find cluster",
6799 return isl_stat_error
);
6800 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
6801 return isl_stat_error
;
6802 c
->scc_cluster
[i
] = cluster
;
6808 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6809 * by scheduling the current cluster bands with respect to each other.
6811 * Construct a dependence graph with a space for each cluster and
6812 * with the coordinates of each space corresponding to the schedule
6813 * dimensions of the current band of that cluster.
6814 * Construct a cluster schedule in this cluster dependence graph and
6815 * apply it to the current cluster bands if it is applicable
6816 * according to ok_to_merge.
6818 * If the number of remaining schedule dimensions in a cluster
6819 * with a non-maximal current schedule dimension is greater than
6820 * the number of remaining schedule dimensions in clusters
6821 * with a maximal current schedule dimension, then restrict
6822 * the number of rows to be computed in the cluster schedule
6823 * to the minimal such non-maximal current schedule dimension.
6824 * Do this by adjusting merge_graph.maxvar.
6826 * Return isl_bool_true if the clusters have effectively been merged
6827 * into a single cluster.
6829 * Note that since the standard scheduling algorithm minimizes the maximal
6830 * distance over proximity constraints, the proximity constraints between
6831 * the merged clusters may not be optimized any further than what is
6832 * sufficient to bring the distances within the limits of the internal
6833 * proximity constraints inside the individual clusters.
6834 * It may therefore make sense to perform an additional translation step
6835 * to bring the clusters closer to each other, while maintaining
6836 * the linear part of the merging schedule found using the standard
6837 * scheduling algorithm.
6839 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6840 struct isl_clustering
*c
)
6842 struct isl_sched_graph merge_graph
= { 0 };
6845 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
6848 if (compute_maxvar(&merge_graph
) < 0)
6850 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
6852 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
6854 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
6855 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
6858 graph_free(ctx
, &merge_graph
);
6861 graph_free(ctx
, &merge_graph
);
6862 return isl_bool_error
;
6865 /* Is there any edge marked "no_merge" between two SCCs that are
6866 * about to be merged (i.e., that are set in "scc_in_merge")?
6867 * "merge_edge" is the proximity edge along which the clusters of SCCs
6868 * are going to be merged.
6870 * If there is any edge between two SCCs with a negative weight,
6871 * while the weight of "merge_edge" is non-negative, then this
6872 * means that the edge was postponed. "merge_edge" should then
6873 * also be postponed since merging along the edge with negative weight should
6874 * be postponed until all edges with non-negative weight have been tried.
6875 * Replace the weight of "merge_edge" by a negative weight as well and
6876 * tell the caller not to attempt a merge.
6878 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
6879 struct isl_sched_edge
*merge_edge
)
6883 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6884 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6886 if (!scc_in_merge
[edge
->src
->scc
])
6888 if (!scc_in_merge
[edge
->dst
->scc
])
6892 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
6893 merge_edge
->weight
-= graph
->max_weight
+ 1;
6901 /* Merge the two clusters in "c" connected by the edge in "graph"
6902 * with index "edge" into a single cluster.
6903 * If it turns out to be impossible to merge these two clusters,
6904 * then mark the edge as "no_merge" such that it will not be
6907 * First mark all SCCs that need to be merged. This includes the SCCs
6908 * in the two clusters, but it may also include the SCCs
6909 * of intermediate clusters.
6910 * If there is already a no_merge edge between any pair of such SCCs,
6911 * then simply mark the current edge as no_merge as well.
6912 * Likewise, if any of those edges was postponed by has_bounded_distances,
6913 * then postpone the current edge as well.
6914 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6915 * if the clusters did not end up getting merged, unless the non-merge
6916 * is due to the fact that the edge was postponed. This postponement
6917 * can be recognized by a change in weight (from non-negative to negative).
6919 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
6920 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
6923 int edge_weight
= graph
->edge
[edge
].weight
;
6925 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
6926 return isl_stat_error
;
6928 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
6929 merged
= isl_bool_false
;
6931 merged
= try_merge(ctx
, graph
, c
);
6933 return isl_stat_error
;
6934 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
6935 graph
->edge
[edge
].no_merge
= 1;
6940 /* Does "node" belong to the cluster identified by "cluster"?
6942 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
6944 return node
->cluster
== cluster
;
6947 /* Does "edge" connect two nodes belonging to the cluster
6948 * identified by "cluster"?
6950 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
6952 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
6955 /* Swap the schedule of "node1" and "node2".
6956 * Both nodes have been derived from the same node in a common parent graph.
6957 * Since the "coincident" field is shared with that node
6958 * in the parent graph, there is no need to also swap this field.
6960 static void swap_sched(struct isl_sched_node
*node1
,
6961 struct isl_sched_node
*node2
)
6966 sched
= node1
->sched
;
6967 node1
->sched
= node2
->sched
;
6968 node2
->sched
= sched
;
6970 sched_map
= node1
->sched_map
;
6971 node1
->sched_map
= node2
->sched_map
;
6972 node2
->sched_map
= sched_map
;
6975 /* Copy the current band schedule from the SCCs that form the cluster
6976 * with index "pos" to the actual cluster at position "pos".
6977 * By construction, the index of the first SCC that belongs to the cluster
6980 * The order of the nodes inside both the SCCs and the cluster
6981 * is assumed to be same as the order in the original "graph".
6983 * Since the SCC graphs will no longer be used after this function,
6984 * the schedules are actually swapped rather than copied.
6986 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
6987 struct isl_clustering
*c
, int pos
)
6991 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
6992 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
6993 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
6995 for (i
= 0; i
< graph
->n
; ++i
) {
6999 if (graph
->node
[i
].cluster
!= pos
)
7001 s
= graph
->node
[i
].scc
;
7002 k
= c
->scc_node
[s
]++;
7003 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
7004 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
7005 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
7012 /* Is there a (conditional) validity dependence from node[j] to node[i],
7013 * forcing node[i] to follow node[j] or do the nodes belong to the same
7016 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
7018 struct isl_sched_graph
*graph
= user
;
7020 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
7021 return isl_bool_true
;
7022 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
7025 /* Extract the merged clusters of SCCs in "graph", sort them, and
7026 * store them in c->clusters. Update c->scc_cluster accordingly.
7028 * First keep track of the cluster containing the SCC to which a node
7029 * belongs in the node itself.
7030 * Then extract the clusters into c->clusters, copying the current
7031 * band schedule from the SCCs that belong to the cluster.
7032 * Do this only once per cluster.
7034 * Finally, topologically sort the clusters and update c->scc_cluster
7035 * to match the new scc numbering. While the SCCs were originally
7036 * sorted already, some SCCs that depend on some other SCCs may
7037 * have been merged with SCCs that appear before these other SCCs.
7038 * A reordering may therefore be required.
7040 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
7041 struct isl_clustering
*c
)
7045 for (i
= 0; i
< graph
->n
; ++i
)
7046 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
7048 for (i
= 0; i
< graph
->scc
; ++i
) {
7049 if (c
->scc_cluster
[i
] != i
)
7051 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
7052 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
7053 return isl_stat_error
;
7054 c
->cluster
[i
].src_scc
= -1;
7055 c
->cluster
[i
].dst_scc
= -1;
7056 if (copy_partial(graph
, c
, i
) < 0)
7057 return isl_stat_error
;
7060 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
7061 return isl_stat_error
;
7062 for (i
= 0; i
< graph
->n
; ++i
)
7063 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
7068 /* Compute weights on the proximity edges of "graph" that can
7069 * be used by find_proximity to find the most appropriate
7070 * proximity edge to use to merge two clusters in "c".
7071 * The weights are also used by has_bounded_distances to determine
7072 * whether the merge should be allowed.
7073 * Store the maximum of the computed weights in graph->max_weight.
7075 * The computed weight is a measure for the number of remaining schedule
7076 * dimensions that can still be completely aligned.
7077 * In particular, compute the number of equalities between
7078 * input dimensions and output dimensions in the proximity constraints.
7079 * The directions that are already handled by outer schedule bands
7080 * are projected out prior to determining this number.
7082 * Edges that will never be considered by find_proximity are ignored.
7084 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
7085 struct isl_clustering
*c
)
7089 graph
->max_weight
= 0;
7091 for (i
= 0; i
< graph
->n_edge
; ++i
) {
7092 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
7093 struct isl_sched_node
*src
= edge
->src
;
7094 struct isl_sched_node
*dst
= edge
->dst
;
7095 isl_basic_map
*hull
;
7099 prox
= is_non_empty_proximity(edge
);
7101 return isl_stat_error
;
7104 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
7105 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
7107 if (c
->scc_cluster
[edge
->dst
->scc
] ==
7108 c
->scc_cluster
[edge
->src
->scc
])
7111 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
7112 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
7113 isl_mat_copy(src
->vmap
));
7114 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
7115 isl_mat_copy(dst
->vmap
));
7116 hull
= isl_basic_map_project_out(hull
,
7117 isl_dim_in
, 0, src
->rank
);
7118 hull
= isl_basic_map_project_out(hull
,
7119 isl_dim_out
, 0, dst
->rank
);
7120 hull
= isl_basic_map_remove_divs(hull
);
7121 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
7122 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
7123 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7124 isl_dim_in
, 0, n_in
);
7125 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7126 isl_dim_out
, 0, n_out
);
7128 return isl_stat_error
;
7129 edge
->weight
= isl_basic_map_n_equality(hull
);
7130 isl_basic_map_free(hull
);
7132 if (edge
->weight
> graph
->max_weight
)
7133 graph
->max_weight
= edge
->weight
;
7139 /* Call compute_schedule_finish_band on each of the clusters in "c"
7140 * in their topological order. This order is determined by the scc
7141 * fields of the nodes in "graph".
7142 * Combine the results in a sequence expressing the topological order.
7144 * If there is only one cluster left, then there is no need to introduce
7145 * a sequence node. Also, in this case, the cluster necessarily contains
7146 * the SCC at position 0 in the original graph and is therefore also
7147 * stored in the first cluster of "c".
7149 static __isl_give isl_schedule_node
*finish_bands_clustering(
7150 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7151 struct isl_clustering
*c
)
7155 isl_union_set_list
*filters
;
7157 if (graph
->scc
== 1)
7158 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
7160 ctx
= isl_schedule_node_get_ctx(node
);
7162 filters
= extract_sccs(ctx
, graph
);
7163 node
= isl_schedule_node_insert_sequence(node
, filters
);
7165 for (i
= 0; i
< graph
->scc
; ++i
) {
7166 int j
= c
->scc_cluster
[i
];
7167 node
= isl_schedule_node_child(node
, i
);
7168 node
= isl_schedule_node_child(node
, 0);
7169 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
7170 node
= isl_schedule_node_parent(node
);
7171 node
= isl_schedule_node_parent(node
);
7177 /* Compute a schedule for a connected dependence graph by first considering
7178 * each strongly connected component (SCC) in the graph separately and then
7179 * incrementally combining them into clusters.
7180 * Return the updated schedule node.
7182 * Initially, each cluster consists of a single SCC, each with its
7183 * own band schedule. The algorithm then tries to merge pairs
7184 * of clusters along a proximity edge until no more suitable
7185 * proximity edges can be found. During this merging, the schedule
7186 * is maintained in the individual SCCs.
7187 * After the merging is completed, the full resulting clusters
7188 * are extracted and in finish_bands_clustering,
7189 * compute_schedule_finish_band is called on each of them to integrate
7190 * the band into "node" and to continue the computation.
7192 * compute_weights initializes the weights that are used by find_proximity.
7194 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
7195 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7198 struct isl_clustering c
;
7201 ctx
= isl_schedule_node_get_ctx(node
);
7203 if (clustering_init(ctx
, &c
, graph
) < 0)
7206 if (compute_weights(graph
, &c
) < 0)
7210 i
= find_proximity(graph
, &c
);
7213 if (i
>= graph
->n_edge
)
7215 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
7219 if (extract_clusters(ctx
, graph
, &c
) < 0)
7222 node
= finish_bands_clustering(node
, graph
, &c
);
7224 clustering_free(ctx
, &c
);
7227 clustering_free(ctx
, &c
);
7228 return isl_schedule_node_free(node
);
7231 /* Compute a schedule for a connected dependence graph and return
7232 * the updated schedule node.
7234 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7235 * as many validity dependences as possible. When all validity dependences
7236 * are satisfied we extend the schedule to a full-dimensional schedule.
7238 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7239 * depending on whether the user has selected the option to try and
7240 * compute a schedule for the entire (weakly connected) component first.
7241 * If there is only a single strongly connected component (SCC), then
7242 * there is no point in trying to combine SCCs
7243 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7244 * is called instead.
7246 static __isl_give isl_schedule_node
*compute_schedule_wcc(
7247 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7254 ctx
= isl_schedule_node_get_ctx(node
);
7255 if (detect_sccs(ctx
, graph
) < 0)
7256 return isl_schedule_node_free(node
);
7258 if (compute_maxvar(graph
) < 0)
7259 return isl_schedule_node_free(node
);
7261 if (need_feautrier_step(ctx
, graph
))
7262 return compute_schedule_wcc_feautrier(node
, graph
);
7264 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
7265 return compute_schedule_wcc_whole(node
, graph
);
7267 return compute_schedule_wcc_clustering(node
, graph
);
7270 /* Compute a schedule for each group of nodes identified by node->scc
7271 * separately and then combine them in a sequence node (or as set node
7272 * if graph->weak is set) inserted at position "node" of the schedule tree.
7273 * Return the updated schedule node.
7275 * If "wcc" is set then each of the groups belongs to a single
7276 * weakly connected component in the dependence graph so that
7277 * there is no need for compute_sub_schedule to look for weakly
7278 * connected components.
7280 * If a set node would be introduced and if the number of components
7281 * is equal to the number of nodes, then check if the schedule
7282 * is already complete. If so, a redundant set node would be introduced
7283 * (without any further descendants) stating that the statements
7284 * can be executed in arbitrary order, which is also expressed
7285 * by the absence of any node. Refrain from inserting any nodes
7286 * in this case and simply return.
7288 static __isl_give isl_schedule_node
*compute_component_schedule(
7289 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7294 isl_union_set_list
*filters
;
7299 if (graph
->weak
&& graph
->scc
== graph
->n
) {
7300 if (compute_maxvar(graph
) < 0)
7301 return isl_schedule_node_free(node
);
7302 if (graph
->n_row
>= graph
->maxvar
)
7306 ctx
= isl_schedule_node_get_ctx(node
);
7307 filters
= extract_sccs(ctx
, graph
);
7309 node
= isl_schedule_node_insert_set(node
, filters
);
7311 node
= isl_schedule_node_insert_sequence(node
, filters
);
7313 for (component
= 0; component
< graph
->scc
; ++component
) {
7314 node
= isl_schedule_node_child(node
, component
);
7315 node
= isl_schedule_node_child(node
, 0);
7316 node
= compute_sub_schedule(node
, ctx
, graph
,
7318 &edge_scc_exactly
, component
, wcc
);
7319 node
= isl_schedule_node_parent(node
);
7320 node
= isl_schedule_node_parent(node
);
7326 /* Compute a schedule for the given dependence graph and insert it at "node".
7327 * Return the updated schedule node.
7329 * We first check if the graph is connected (through validity and conditional
7330 * validity dependences) and, if not, compute a schedule
7331 * for each component separately.
7332 * If the schedule_serialize_sccs option is set, then we check for strongly
7333 * connected components instead and compute a separate schedule for
7334 * each such strongly connected component.
7336 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
7337 struct isl_sched_graph
*graph
)
7344 ctx
= isl_schedule_node_get_ctx(node
);
7345 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
7346 if (detect_sccs(ctx
, graph
) < 0)
7347 return isl_schedule_node_free(node
);
7349 if (detect_wccs(ctx
, graph
) < 0)
7350 return isl_schedule_node_free(node
);
7354 return compute_component_schedule(node
, graph
, 1);
7356 return compute_schedule_wcc(node
, graph
);
7359 /* Compute a schedule on sc->domain that respects the given schedule
7362 * In particular, the schedule respects all the validity dependences.
7363 * If the default isl scheduling algorithm is used, it tries to minimize
7364 * the dependence distances over the proximity dependences.
7365 * If Feautrier's scheduling algorithm is used, the proximity dependence
7366 * distances are only minimized during the extension to a full-dimensional
7369 * If there are any condition and conditional validity dependences,
7370 * then the conditional validity dependences may be violated inside
7371 * a tilable band, provided they have no adjacent non-local
7372 * condition dependences.
7374 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
7375 __isl_take isl_schedule_constraints
*sc
)
7377 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
7378 struct isl_sched_graph graph
= { 0 };
7379 isl_schedule
*sched
;
7380 isl_schedule_node
*node
;
7381 isl_union_set
*domain
;
7383 sc
= isl_schedule_constraints_align_params(sc
);
7385 domain
= isl_schedule_constraints_get_domain(sc
);
7386 if (isl_union_set_n_set(domain
) == 0) {
7387 isl_schedule_constraints_free(sc
);
7388 return isl_schedule_from_domain(domain
);
7391 if (graph_init(&graph
, sc
) < 0)
7392 domain
= isl_union_set_free(domain
);
7394 node
= isl_schedule_node_from_domain(domain
);
7395 node
= isl_schedule_node_child(node
, 0);
7397 node
= compute_schedule(node
, &graph
);
7398 sched
= isl_schedule_node_get_schedule(node
);
7399 isl_schedule_node_free(node
);
7401 graph_free(ctx
, &graph
);
7402 isl_schedule_constraints_free(sc
);
7407 /* Compute a schedule for the given union of domains that respects
7408 * all the validity dependences and minimizes
7409 * the dependence distances over the proximity dependences.
7411 * This function is kept for backward compatibility.
7413 __isl_give isl_schedule
*isl_union_set_compute_schedule(
7414 __isl_take isl_union_set
*domain
,
7415 __isl_take isl_union_map
*validity
,
7416 __isl_take isl_union_map
*proximity
)
7418 isl_schedule_constraints
*sc
;
7420 sc
= isl_schedule_constraints_on_domain(domain
);
7421 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
7422 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
7424 return isl_schedule_constraints_compute_schedule(sc
);