3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
102 =item * The C<isl_dim> type has been renamed to C<isl_space>
103 along with the associated functions.
104 Some of the old names have been kept for backward compatibility,
105 but they will be removed in the future.
107 =item * Spaces of maps, sets and parameter domains are now
108 treated differently. The distinction between map spaces and set spaces
109 has always been made on a conceptual level, but proper use of such spaces
110 was never checked. Furthermore, up until isl-0.07 there was no way
111 of explicitly creating a parameter space. These can now be created
112 directly using C<isl_space_params_alloc> or from other spaces using
115 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
116 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
117 objects live is now a map space
118 instead of a set space. This means, for example, that the dimensions
119 of the domain of an C<isl_aff> are now considered to be of type
120 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
121 added to obtain the domain space. Some of the constructors still
122 take a domain space and have therefore been renamed.
124 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
125 now take an C<isl_local_space> instead of an C<isl_space>.
126 An C<isl_local_space> can be created from an C<isl_space>
127 using C<isl_local_space_from_space>.
129 =item * The C<isl_div> type has been removed. Functions that used
130 to return an C<isl_div> now return an C<isl_aff>.
131 Note that the space of an C<isl_aff> is that of relation.
132 When replacing a call to C<isl_div_get_coefficient> by a call to
133 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
134 to be replaced by C<isl_dim_in>.
135 A call to C<isl_aff_from_div> can be replaced by a call
137 A call to C<isl_qpolynomial_div(div)> call be replaced by
140 isl_qpolynomial_from_aff(isl_aff_floor(div))
142 The function C<isl_constraint_div> has also been renamed
143 to C<isl_constraint_get_div>.
145 =item * The C<nparam> argument has been removed from
146 C<isl_map_read_from_str> and similar functions.
147 When reading input in the original PolyLib format,
148 the result will have no parameters.
149 If parameters are expected, the caller may want to perform
150 dimension manipulation on the result.
156 The source of C<isl> can be obtained either as a tarball
157 or from the git repository. Both are available from
158 L<http://freshmeat.net/projects/isl/>.
159 The installation process depends on how you obtained
162 =head2 Installation from the git repository
166 =item 1 Clone or update the repository
168 The first time the source is obtained, you need to clone
171 git clone git://repo.or.cz/isl.git
173 To obtain updates, you need to pull in the latest changes
177 =item 2 Generate C<configure>
183 After performing the above steps, continue
184 with the L<Common installation instructions>.
186 =head2 Common installation instructions
190 =item 1 Obtain C<GMP>
192 Building C<isl> requires C<GMP>, including its headers files.
193 Your distribution may not provide these header files by default
194 and you may need to install a package called C<gmp-devel> or something
195 similar. Alternatively, C<GMP> can be built from
196 source, available from L<http://gmplib.org/>.
200 C<isl> uses the standard C<autoconf> C<configure> script.
205 optionally followed by some configure options.
206 A complete list of options can be obtained by running
210 Below we discuss some of the more common options.
212 C<isl> can optionally use C<piplib>, but no
213 C<piplib> functionality is currently used by default.
214 The C<--with-piplib> option can
215 be used to specify which C<piplib>
216 library to use, either an installed version (C<system>),
217 an externally built version (C<build>)
218 or no version (C<no>). The option C<build> is mostly useful
219 in C<configure> scripts of larger projects that bundle both C<isl>
226 Installation prefix for C<isl>
228 =item C<--with-gmp-prefix>
230 Installation prefix for C<GMP> (architecture-independent files).
232 =item C<--with-gmp-exec-prefix>
234 Installation prefix for C<GMP> (architecture-dependent files).
236 =item C<--with-piplib>
238 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
240 =item C<--with-piplib-prefix>
242 Installation prefix for C<system> C<piplib> (architecture-independent files).
244 =item C<--with-piplib-exec-prefix>
246 Installation prefix for C<system> C<piplib> (architecture-dependent files).
248 =item C<--with-piplib-builddir>
250 Location where C<build> C<piplib> was built.
258 =item 4 Install (optional)
266 =head2 Initialization
268 All manipulations of integer sets and relations occur within
269 the context of an C<isl_ctx>.
270 A given C<isl_ctx> can only be used within a single thread.
271 All arguments of a function are required to have been allocated
272 within the same context.
273 There are currently no functions available for moving an object
274 from one C<isl_ctx> to another C<isl_ctx>. This means that
275 there is currently no way of safely moving an object from one
276 thread to another, unless the whole C<isl_ctx> is moved.
278 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
279 freed using C<isl_ctx_free>.
280 All objects allocated within an C<isl_ctx> should be freed
281 before the C<isl_ctx> itself is freed.
283 isl_ctx *isl_ctx_alloc();
284 void isl_ctx_free(isl_ctx *ctx);
288 All operations on integers, mainly the coefficients
289 of the constraints describing the sets and relations,
290 are performed in exact integer arithmetic using C<GMP>.
291 However, to allow future versions of C<isl> to optionally
292 support fixed integer arithmetic, all calls to C<GMP>
293 are wrapped inside C<isl> specific macros.
294 The basic type is C<isl_int> and the operations below
295 are available on this type.
296 The meanings of these operations are essentially the same
297 as their C<GMP> C<mpz_> counterparts.
298 As always with C<GMP> types, C<isl_int>s need to be
299 initialized with C<isl_int_init> before they can be used
300 and they need to be released with C<isl_int_clear>
302 The user should not assume that an C<isl_int> is represented
303 as a C<mpz_t>, but should instead explicitly convert between
304 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
305 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
309 =item isl_int_init(i)
311 =item isl_int_clear(i)
313 =item isl_int_set(r,i)
315 =item isl_int_set_si(r,i)
317 =item isl_int_set_gmp(r,g)
319 =item isl_int_get_gmp(i,g)
321 =item isl_int_abs(r,i)
323 =item isl_int_neg(r,i)
325 =item isl_int_swap(i,j)
327 =item isl_int_swap_or_set(i,j)
329 =item isl_int_add_ui(r,i,j)
331 =item isl_int_sub_ui(r,i,j)
333 =item isl_int_add(r,i,j)
335 =item isl_int_sub(r,i,j)
337 =item isl_int_mul(r,i,j)
339 =item isl_int_mul_ui(r,i,j)
341 =item isl_int_addmul(r,i,j)
343 =item isl_int_submul(r,i,j)
345 =item isl_int_gcd(r,i,j)
347 =item isl_int_lcm(r,i,j)
349 =item isl_int_divexact(r,i,j)
351 =item isl_int_cdiv_q(r,i,j)
353 =item isl_int_fdiv_q(r,i,j)
355 =item isl_int_fdiv_r(r,i,j)
357 =item isl_int_fdiv_q_ui(r,i,j)
359 =item isl_int_read(r,s)
361 =item isl_int_print(out,i,width)
365 =item isl_int_cmp(i,j)
367 =item isl_int_cmp_si(i,si)
369 =item isl_int_eq(i,j)
371 =item isl_int_ne(i,j)
373 =item isl_int_lt(i,j)
375 =item isl_int_le(i,j)
377 =item isl_int_gt(i,j)
379 =item isl_int_ge(i,j)
381 =item isl_int_abs_eq(i,j)
383 =item isl_int_abs_ne(i,j)
385 =item isl_int_abs_lt(i,j)
387 =item isl_int_abs_gt(i,j)
389 =item isl_int_abs_ge(i,j)
391 =item isl_int_is_zero(i)
393 =item isl_int_is_one(i)
395 =item isl_int_is_negone(i)
397 =item isl_int_is_pos(i)
399 =item isl_int_is_neg(i)
401 =item isl_int_is_nonpos(i)
403 =item isl_int_is_nonneg(i)
405 =item isl_int_is_divisible_by(i,j)
409 =head2 Sets and Relations
411 C<isl> uses six types of objects for representing sets and relations,
412 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
413 C<isl_union_set> and C<isl_union_map>.
414 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
415 can be described as a conjunction of affine constraints, while
416 C<isl_set> and C<isl_map> represent unions of
417 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
418 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
419 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
420 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
421 where spaces are considered different if they have a different number
422 of dimensions and/or different names (see L<"Spaces">).
423 The difference between sets and relations (maps) is that sets have
424 one set of variables, while relations have two sets of variables,
425 input variables and output variables.
427 =head2 Memory Management
429 Since a high-level operation on sets and/or relations usually involves
430 several substeps and since the user is usually not interested in
431 the intermediate results, most functions that return a new object
432 will also release all the objects passed as arguments.
433 If the user still wants to use one or more of these arguments
434 after the function call, she should pass along a copy of the
435 object rather than the object itself.
436 The user is then responsible for making sure that the original
437 object gets used somewhere else or is explicitly freed.
439 The arguments and return values of all documented functions are
440 annotated to make clear which arguments are released and which
441 arguments are preserved. In particular, the following annotations
448 C<__isl_give> means that a new object is returned.
449 The user should make sure that the returned pointer is
450 used exactly once as a value for an C<__isl_take> argument.
451 In between, it can be used as a value for as many
452 C<__isl_keep> arguments as the user likes.
453 There is one exception, and that is the case where the
454 pointer returned is C<NULL>. Is this case, the user
455 is free to use it as an C<__isl_take> argument or not.
459 C<__isl_take> means that the object the argument points to
460 is taken over by the function and may no longer be used
461 by the user as an argument to any other function.
462 The pointer value must be one returned by a function
463 returning an C<__isl_give> pointer.
464 If the user passes in a C<NULL> value, then this will
465 be treated as an error in the sense that the function will
466 not perform its usual operation. However, it will still
467 make sure that all the other C<__isl_take> arguments
472 C<__isl_keep> means that the function will only use the object
473 temporarily. After the function has finished, the user
474 can still use it as an argument to other functions.
475 A C<NULL> value will be treated in the same way as
476 a C<NULL> value for an C<__isl_take> argument.
482 Identifiers are used to identify both individual dimensions
483 and tuples of dimensions. They consist of a name and an optional
484 pointer. Identifiers with the same name but different pointer values
485 are considered to be distinct.
486 Identifiers can be constructed, copied, freed, inspected and printed
487 using the following functions.
490 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
491 __isl_keep const char *name, void *user);
492 __isl_give isl_id *isl_id_copy(isl_id *id);
493 void *isl_id_free(__isl_take isl_id *id);
495 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
496 void *isl_id_get_user(__isl_keep isl_id *id);
497 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
499 __isl_give isl_printer *isl_printer_print_id(
500 __isl_take isl_printer *p, __isl_keep isl_id *id);
502 Note that C<isl_id_get_name> returns a pointer to some internal
503 data structure, so the result can only be used while the
504 corresponding C<isl_id> is alive.
508 Whenever a new set or relation is created from scratch,
509 the space in which it lives needs to be specified using an C<isl_space>.
511 #include <isl/space.h>
512 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
513 unsigned nparam, unsigned n_in, unsigned n_out);
514 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
516 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
517 unsigned nparam, unsigned dim);
518 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
519 void isl_space_free(__isl_take isl_space *space);
520 unsigned isl_space_dim(__isl_keep isl_space *space,
521 enum isl_dim_type type);
523 The space used for creating a parameter domain
524 needs to be created using C<isl_space_params_alloc>.
525 For other sets, the space
526 needs to be created using C<isl_space_set_alloc>, while
527 for a relation, the space
528 needs to be created using C<isl_space_alloc>.
529 C<isl_space_dim> can be used
530 to find out the number of dimensions of each type in
531 a space, where type may be
532 C<isl_dim_param>, C<isl_dim_in> (only for relations),
533 C<isl_dim_out> (only for relations), C<isl_dim_set>
534 (only for sets) or C<isl_dim_all>.
536 To check whether a given space is that of a set or a map
537 or whether it is a parameter space, use these functions:
539 #include <isl/space.h>
540 int isl_space_is_params(__isl_keep isl_space *space);
541 int isl_space_is_set(__isl_keep isl_space *space);
543 It is often useful to create objects that live in the
544 same space as some other object. This can be accomplished
545 by creating the new objects
546 (see L<Creating New Sets and Relations> or
547 L<Creating New (Piecewise) Quasipolynomials>) based on the space
548 of the original object.
551 __isl_give isl_space *isl_basic_set_get_space(
552 __isl_keep isl_basic_set *bset);
553 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
555 #include <isl/union_set.h>
556 __isl_give isl_space *isl_union_set_get_space(
557 __isl_keep isl_union_set *uset);
560 __isl_give isl_space *isl_basic_map_get_space(
561 __isl_keep isl_basic_map *bmap);
562 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
564 #include <isl/union_map.h>
565 __isl_give isl_space *isl_union_map_get_space(
566 __isl_keep isl_union_map *umap);
568 #include <isl/constraint.h>
569 __isl_give isl_space *isl_constraint_get_space(
570 __isl_keep isl_constraint *constraint);
572 #include <isl/polynomial.h>
573 __isl_give isl_space *isl_qpolynomial_get_domain_space(
574 __isl_keep isl_qpolynomial *qp);
575 __isl_give isl_space *isl_qpolynomial_get_space(
576 __isl_keep isl_qpolynomial *qp);
577 __isl_give isl_space *isl_qpolynomial_fold_get_space(
578 __isl_keep isl_qpolynomial_fold *fold);
579 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
580 __isl_keep isl_pw_qpolynomial *pwqp);
581 __isl_give isl_space *isl_pw_qpolynomial_get_space(
582 __isl_keep isl_pw_qpolynomial *pwqp);
583 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
584 __isl_keep isl_pw_qpolynomial_fold *pwf);
585 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
586 __isl_keep isl_pw_qpolynomial_fold *pwf);
587 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
588 __isl_keep isl_union_pw_qpolynomial *upwqp);
589 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
590 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
593 __isl_give isl_space *isl_aff_get_domain_space(
594 __isl_keep isl_aff *aff);
595 __isl_give isl_space *isl_aff_get_space(
596 __isl_keep isl_aff *aff);
597 __isl_give isl_space *isl_pw_aff_get_domain_space(
598 __isl_keep isl_pw_aff *pwaff);
599 __isl_give isl_space *isl_pw_aff_get_space(
600 __isl_keep isl_pw_aff *pwaff);
601 __isl_give isl_space *isl_multi_aff_get_space(
602 __isl_keep isl_multi_aff *maff);
603 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
604 __isl_keep isl_pw_multi_aff *pma);
605 __isl_give isl_space *isl_pw_multi_aff_get_space(
606 __isl_keep isl_pw_multi_aff *pma);
608 #include <isl/point.h>
609 __isl_give isl_space *isl_point_get_space(
610 __isl_keep isl_point *pnt);
612 The identifiers or names of the individual dimensions may be set or read off
613 using the following functions.
615 #include <isl/space.h>
616 __isl_give isl_space *isl_space_set_dim_id(
617 __isl_take isl_space *space,
618 enum isl_dim_type type, unsigned pos,
619 __isl_take isl_id *id);
620 int isl_space_has_dim_id(__isl_keep isl_space *space,
621 enum isl_dim_type type, unsigned pos);
622 __isl_give isl_id *isl_space_get_dim_id(
623 __isl_keep isl_space *space,
624 enum isl_dim_type type, unsigned pos);
625 __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *space,
626 enum isl_dim_type type, unsigned pos,
627 __isl_keep const char *name);
628 __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *space,
629 enum isl_dim_type type, unsigned pos);
631 Note that C<isl_space_get_name> returns a pointer to some internal
632 data structure, so the result can only be used while the
633 corresponding C<isl_space> is alive.
634 Also note that every function that operates on two sets or relations
635 requires that both arguments have the same parameters. This also
636 means that if one of the arguments has named parameters, then the
637 other needs to have named parameters too and the names need to match.
638 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
639 arguments may have different parameters (as long as they are named),
640 in which case the result will have as parameters the union of the parameters of
643 Given the identifier or name of a dimension (typically a parameter),
644 its position can be obtained from the following function.
646 #include <isl/space.h>
647 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
648 enum isl_dim_type type, __isl_keep isl_id *id);
649 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
650 enum isl_dim_type type, const char *name);
652 The identifiers or names of entire spaces may be set or read off
653 using the following functions.
655 #include <isl/space.h>
656 __isl_give isl_space *isl_space_set_tuple_id(
657 __isl_take isl_space *space,
658 enum isl_dim_type type, __isl_take isl_id *id);
659 __isl_give isl_space *isl_space_reset_tuple_id(
660 __isl_take isl_space *space, enum isl_dim_type type);
661 int isl_space_has_tuple_id(__isl_keep isl_space *space,
662 enum isl_dim_type type);
663 __isl_give isl_id *isl_space_get_tuple_id(
664 __isl_keep isl_space *space, enum isl_dim_type type);
665 __isl_give isl_space *isl_space_set_tuple_name(
666 __isl_take isl_space *space,
667 enum isl_dim_type type, const char *s);
668 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
669 enum isl_dim_type type);
671 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
672 or C<isl_dim_set>. As with C<isl_space_get_name>,
673 the C<isl_space_get_tuple_name> function returns a pointer to some internal
675 Binary operations require the corresponding spaces of their arguments
676 to have the same name.
678 Spaces can be nested. In particular, the domain of a set or
679 the domain or range of a relation can be a nested relation.
680 The following functions can be used to construct and deconstruct
683 #include <isl/space.h>
684 int isl_space_is_wrapping(__isl_keep isl_space *space);
685 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
686 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
688 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
689 be the space of a set, while that of
690 C<isl_space_wrap> should be the space of a relation.
691 Conversely, the output of C<isl_space_unwrap> is the space
692 of a relation, while that of C<isl_space_wrap> is the space of a set.
694 Spaces can be created from other spaces
695 using the following functions.
697 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
698 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
699 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
700 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
701 __isl_give isl_space *isl_space_params(
702 __isl_take isl_space *space);
703 __isl_give isl_space *isl_space_set_from_params(
704 __isl_take isl_space *space);
705 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
706 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
707 __isl_take isl_space *right);
708 __isl_give isl_space *isl_space_align_params(
709 __isl_take isl_space *space1, __isl_take isl_space *space2)
710 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
711 enum isl_dim_type type, unsigned pos, unsigned n);
712 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
713 enum isl_dim_type type, unsigned n);
714 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
715 enum isl_dim_type type, unsigned first, unsigned n);
716 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
717 enum isl_dim_type dst_type, unsigned dst_pos,
718 enum isl_dim_type src_type, unsigned src_pos,
720 __isl_give isl_space *isl_space_map_from_set(
721 __isl_take isl_space *space);
722 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
724 Note that if dimensions are added or removed from a space, then
725 the name and the internal structure are lost.
729 A local space is essentially a space with
730 zero or more existentially quantified variables.
731 The local space of a basic set or relation can be obtained
732 using the following functions.
735 __isl_give isl_local_space *isl_basic_set_get_local_space(
736 __isl_keep isl_basic_set *bset);
739 __isl_give isl_local_space *isl_basic_map_get_local_space(
740 __isl_keep isl_basic_map *bmap);
742 A new local space can be created from a space using
744 #include <isl/local_space.h>
745 __isl_give isl_local_space *isl_local_space_from_space(
746 __isl_take isl_space *space);
748 They can be inspected, modified, copied and freed using the following functions.
750 #include <isl/local_space.h>
751 isl_ctx *isl_local_space_get_ctx(
752 __isl_keep isl_local_space *ls);
753 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
754 int isl_local_space_dim(__isl_keep isl_local_space *ls,
755 enum isl_dim_type type);
756 const char *isl_local_space_get_dim_name(
757 __isl_keep isl_local_space *ls,
758 enum isl_dim_type type, unsigned pos);
759 __isl_give isl_local_space *isl_local_space_set_dim_name(
760 __isl_take isl_local_space *ls,
761 enum isl_dim_type type, unsigned pos, const char *s);
762 __isl_give isl_local_space *isl_local_space_set_dim_id(
763 __isl_take isl_local_space *ls,
764 enum isl_dim_type type, unsigned pos,
765 __isl_take isl_id *id);
766 __isl_give isl_space *isl_local_space_get_space(
767 __isl_keep isl_local_space *ls);
768 __isl_give isl_aff *isl_local_space_get_div(
769 __isl_keep isl_local_space *ls, int pos);
770 __isl_give isl_local_space *isl_local_space_copy(
771 __isl_keep isl_local_space *ls);
772 void *isl_local_space_free(__isl_take isl_local_space *ls);
774 Two local spaces can be compared using
776 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
777 __isl_keep isl_local_space *ls2);
779 Local spaces can be created from other local spaces
780 using the following functions.
782 __isl_give isl_local_space *isl_local_space_domain(
783 __isl_take isl_local_space *ls);
784 __isl_give isl_local_space *isl_local_space_from_domain(
785 __isl_take isl_local_space *ls);
786 __isl_give isl_local_space *isl_local_space_intersect(
787 __isl_take isl_local_space *ls1,
788 __isl_take isl_local_space *ls2);
789 __isl_give isl_local_space *isl_local_space_add_dims(
790 __isl_take isl_local_space *ls,
791 enum isl_dim_type type, unsigned n);
792 __isl_give isl_local_space *isl_local_space_insert_dims(
793 __isl_take isl_local_space *ls,
794 enum isl_dim_type type, unsigned first, unsigned n);
795 __isl_give isl_local_space *isl_local_space_drop_dims(
796 __isl_take isl_local_space *ls,
797 enum isl_dim_type type, unsigned first, unsigned n);
799 =head2 Input and Output
801 C<isl> supports its own input/output format, which is similar
802 to the C<Omega> format, but also supports the C<PolyLib> format
807 The C<isl> format is similar to that of C<Omega>, but has a different
808 syntax for describing the parameters and allows for the definition
809 of an existentially quantified variable as the integer division
810 of an affine expression.
811 For example, the set of integers C<i> between C<0> and C<n>
812 such that C<i % 10 <= 6> can be described as
814 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
817 A set or relation can have several disjuncts, separated
818 by the keyword C<or>. Each disjunct is either a conjunction
819 of constraints or a projection (C<exists>) of a conjunction
820 of constraints. The constraints are separated by the keyword
823 =head3 C<PolyLib> format
825 If the represented set is a union, then the first line
826 contains a single number representing the number of disjuncts.
827 Otherwise, a line containing the number C<1> is optional.
829 Each disjunct is represented by a matrix of constraints.
830 The first line contains two numbers representing
831 the number of rows and columns,
832 where the number of rows is equal to the number of constraints
833 and the number of columns is equal to two plus the number of variables.
834 The following lines contain the actual rows of the constraint matrix.
835 In each row, the first column indicates whether the constraint
836 is an equality (C<0>) or inequality (C<1>). The final column
837 corresponds to the constant term.
839 If the set is parametric, then the coefficients of the parameters
840 appear in the last columns before the constant column.
841 The coefficients of any existentially quantified variables appear
842 between those of the set variables and those of the parameters.
844 =head3 Extended C<PolyLib> format
846 The extended C<PolyLib> format is nearly identical to the
847 C<PolyLib> format. The only difference is that the line
848 containing the number of rows and columns of a constraint matrix
849 also contains four additional numbers:
850 the number of output dimensions, the number of input dimensions,
851 the number of local dimensions (i.e., the number of existentially
852 quantified variables) and the number of parameters.
853 For sets, the number of ``output'' dimensions is equal
854 to the number of set dimensions, while the number of ``input''
860 __isl_give isl_basic_set *isl_basic_set_read_from_file(
861 isl_ctx *ctx, FILE *input);
862 __isl_give isl_basic_set *isl_basic_set_read_from_str(
863 isl_ctx *ctx, const char *str);
864 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
866 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
870 __isl_give isl_basic_map *isl_basic_map_read_from_file(
871 isl_ctx *ctx, FILE *input);
872 __isl_give isl_basic_map *isl_basic_map_read_from_str(
873 isl_ctx *ctx, const char *str);
874 __isl_give isl_map *isl_map_read_from_file(
875 isl_ctx *ctx, FILE *input);
876 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
879 #include <isl/union_set.h>
880 __isl_give isl_union_set *isl_union_set_read_from_file(
881 isl_ctx *ctx, FILE *input);
882 __isl_give isl_union_set *isl_union_set_read_from_str(
883 isl_ctx *ctx, const char *str);
885 #include <isl/union_map.h>
886 __isl_give isl_union_map *isl_union_map_read_from_file(
887 isl_ctx *ctx, FILE *input);
888 __isl_give isl_union_map *isl_union_map_read_from_str(
889 isl_ctx *ctx, const char *str);
891 The input format is autodetected and may be either the C<PolyLib> format
892 or the C<isl> format.
896 Before anything can be printed, an C<isl_printer> needs to
899 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
901 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
902 void isl_printer_free(__isl_take isl_printer *printer);
903 __isl_give char *isl_printer_get_str(
904 __isl_keep isl_printer *printer);
906 The behavior of the printer can be modified in various ways
908 __isl_give isl_printer *isl_printer_set_output_format(
909 __isl_take isl_printer *p, int output_format);
910 __isl_give isl_printer *isl_printer_set_indent(
911 __isl_take isl_printer *p, int indent);
912 __isl_give isl_printer *isl_printer_indent(
913 __isl_take isl_printer *p, int indent);
914 __isl_give isl_printer *isl_printer_set_prefix(
915 __isl_take isl_printer *p, const char *prefix);
916 __isl_give isl_printer *isl_printer_set_suffix(
917 __isl_take isl_printer *p, const char *suffix);
919 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
920 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
921 and defaults to C<ISL_FORMAT_ISL>.
922 Each line in the output is indented by C<indent> (set by
923 C<isl_printer_set_indent>) spaces
924 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
925 In the C<PolyLib> format output,
926 the coefficients of the existentially quantified variables
927 appear between those of the set variables and those
929 The function C<isl_printer_indent> increases the indentation
930 by the specified amount (which may be negative).
932 To actually print something, use
935 __isl_give isl_printer *isl_printer_print_basic_set(
936 __isl_take isl_printer *printer,
937 __isl_keep isl_basic_set *bset);
938 __isl_give isl_printer *isl_printer_print_set(
939 __isl_take isl_printer *printer,
940 __isl_keep isl_set *set);
943 __isl_give isl_printer *isl_printer_print_basic_map(
944 __isl_take isl_printer *printer,
945 __isl_keep isl_basic_map *bmap);
946 __isl_give isl_printer *isl_printer_print_map(
947 __isl_take isl_printer *printer,
948 __isl_keep isl_map *map);
950 #include <isl/union_set.h>
951 __isl_give isl_printer *isl_printer_print_union_set(
952 __isl_take isl_printer *p,
953 __isl_keep isl_union_set *uset);
955 #include <isl/union_map.h>
956 __isl_give isl_printer *isl_printer_print_union_map(
957 __isl_take isl_printer *p,
958 __isl_keep isl_union_map *umap);
960 When called on a file printer, the following function flushes
961 the file. When called on a string printer, the buffer is cleared.
963 __isl_give isl_printer *isl_printer_flush(
964 __isl_take isl_printer *p);
966 =head2 Creating New Sets and Relations
968 C<isl> has functions for creating some standard sets and relations.
972 =item * Empty sets and relations
974 __isl_give isl_basic_set *isl_basic_set_empty(
975 __isl_take isl_space *space);
976 __isl_give isl_basic_map *isl_basic_map_empty(
977 __isl_take isl_space *space);
978 __isl_give isl_set *isl_set_empty(
979 __isl_take isl_space *space);
980 __isl_give isl_map *isl_map_empty(
981 __isl_take isl_space *space);
982 __isl_give isl_union_set *isl_union_set_empty(
983 __isl_take isl_space *space);
984 __isl_give isl_union_map *isl_union_map_empty(
985 __isl_take isl_space *space);
987 For C<isl_union_set>s and C<isl_union_map>s, the space
988 is only used to specify the parameters.
990 =item * Universe sets and relations
992 __isl_give isl_basic_set *isl_basic_set_universe(
993 __isl_take isl_space *space);
994 __isl_give isl_basic_map *isl_basic_map_universe(
995 __isl_take isl_space *space);
996 __isl_give isl_set *isl_set_universe(
997 __isl_take isl_space *space);
998 __isl_give isl_map *isl_map_universe(
999 __isl_take isl_space *space);
1000 __isl_give isl_union_set *isl_union_set_universe(
1001 __isl_take isl_union_set *uset);
1002 __isl_give isl_union_map *isl_union_map_universe(
1003 __isl_take isl_union_map *umap);
1005 The sets and relations constructed by the functions above
1006 contain all integer values, while those constructed by the
1007 functions below only contain non-negative values.
1009 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1010 __isl_take isl_space *space);
1011 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1012 __isl_take isl_space *space);
1013 __isl_give isl_set *isl_set_nat_universe(
1014 __isl_take isl_space *space);
1015 __isl_give isl_map *isl_map_nat_universe(
1016 __isl_take isl_space *space);
1018 =item * Identity relations
1020 __isl_give isl_basic_map *isl_basic_map_identity(
1021 __isl_take isl_space *space);
1022 __isl_give isl_map *isl_map_identity(
1023 __isl_take isl_space *space);
1025 The number of input and output dimensions in C<space> needs
1028 =item * Lexicographic order
1030 __isl_give isl_map *isl_map_lex_lt(
1031 __isl_take isl_space *set_space);
1032 __isl_give isl_map *isl_map_lex_le(
1033 __isl_take isl_space *set_space);
1034 __isl_give isl_map *isl_map_lex_gt(
1035 __isl_take isl_space *set_space);
1036 __isl_give isl_map *isl_map_lex_ge(
1037 __isl_take isl_space *set_space);
1038 __isl_give isl_map *isl_map_lex_lt_first(
1039 __isl_take isl_space *space, unsigned n);
1040 __isl_give isl_map *isl_map_lex_le_first(
1041 __isl_take isl_space *space, unsigned n);
1042 __isl_give isl_map *isl_map_lex_gt_first(
1043 __isl_take isl_space *space, unsigned n);
1044 __isl_give isl_map *isl_map_lex_ge_first(
1045 __isl_take isl_space *space, unsigned n);
1047 The first four functions take a space for a B<set>
1048 and return relations that express that the elements in the domain
1049 are lexicographically less
1050 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1051 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1052 than the elements in the range.
1053 The last four functions take a space for a map
1054 and return relations that express that the first C<n> dimensions
1055 in the domain are lexicographically less
1056 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1057 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1058 than the first C<n> dimensions in the range.
1062 A basic set or relation can be converted to a set or relation
1063 using the following functions.
1065 __isl_give isl_set *isl_set_from_basic_set(
1066 __isl_take isl_basic_set *bset);
1067 __isl_give isl_map *isl_map_from_basic_map(
1068 __isl_take isl_basic_map *bmap);
1070 Sets and relations can be converted to union sets and relations
1071 using the following functions.
1073 __isl_give isl_union_map *isl_union_map_from_map(
1074 __isl_take isl_map *map);
1075 __isl_give isl_union_set *isl_union_set_from_set(
1076 __isl_take isl_set *set);
1078 The inverse conversions below can only be used if the input
1079 union set or relation is known to contain elements in exactly one
1082 __isl_give isl_set *isl_set_from_union_set(
1083 __isl_take isl_union_set *uset);
1084 __isl_give isl_map *isl_map_from_union_map(
1085 __isl_take isl_union_map *umap);
1087 A zero-dimensional set can be constructed on a given parameter domain
1088 using the following function.
1090 __isl_give isl_set *isl_set_from_params(
1091 __isl_take isl_set *set);
1093 Sets and relations can be copied and freed again using the following
1096 __isl_give isl_basic_set *isl_basic_set_copy(
1097 __isl_keep isl_basic_set *bset);
1098 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1099 __isl_give isl_union_set *isl_union_set_copy(
1100 __isl_keep isl_union_set *uset);
1101 __isl_give isl_basic_map *isl_basic_map_copy(
1102 __isl_keep isl_basic_map *bmap);
1103 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1104 __isl_give isl_union_map *isl_union_map_copy(
1105 __isl_keep isl_union_map *umap);
1106 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1107 void isl_set_free(__isl_take isl_set *set);
1108 void *isl_union_set_free(__isl_take isl_union_set *uset);
1109 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1110 void isl_map_free(__isl_take isl_map *map);
1111 void *isl_union_map_free(__isl_take isl_union_map *umap);
1113 Other sets and relations can be constructed by starting
1114 from a universe set or relation, adding equality and/or
1115 inequality constraints and then projecting out the
1116 existentially quantified variables, if any.
1117 Constraints can be constructed, manipulated and
1118 added to (or removed from) (basic) sets and relations
1119 using the following functions.
1121 #include <isl/constraint.h>
1122 __isl_give isl_constraint *isl_equality_alloc(
1123 __isl_take isl_local_space *ls);
1124 __isl_give isl_constraint *isl_inequality_alloc(
1125 __isl_take isl_local_space *ls);
1126 __isl_give isl_constraint *isl_constraint_set_constant(
1127 __isl_take isl_constraint *constraint, isl_int v);
1128 __isl_give isl_constraint *isl_constraint_set_constant_si(
1129 __isl_take isl_constraint *constraint, int v);
1130 __isl_give isl_constraint *isl_constraint_set_coefficient(
1131 __isl_take isl_constraint *constraint,
1132 enum isl_dim_type type, int pos, isl_int v);
1133 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1134 __isl_take isl_constraint *constraint,
1135 enum isl_dim_type type, int pos, int v);
1136 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1137 __isl_take isl_basic_map *bmap,
1138 __isl_take isl_constraint *constraint);
1139 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1140 __isl_take isl_basic_set *bset,
1141 __isl_take isl_constraint *constraint);
1142 __isl_give isl_map *isl_map_add_constraint(
1143 __isl_take isl_map *map,
1144 __isl_take isl_constraint *constraint);
1145 __isl_give isl_set *isl_set_add_constraint(
1146 __isl_take isl_set *set,
1147 __isl_take isl_constraint *constraint);
1148 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1149 __isl_take isl_basic_set *bset,
1150 __isl_take isl_constraint *constraint);
1152 For example, to create a set containing the even integers
1153 between 10 and 42, you would use the following code.
1156 isl_local_space *ls;
1158 isl_basic_set *bset;
1160 space = isl_space_set_alloc(ctx, 0, 2);
1161 bset = isl_basic_set_universe(isl_space_copy(space));
1162 ls = isl_local_space_from_space(space);
1164 c = isl_equality_alloc(isl_local_space_copy(ls));
1165 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1166 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1167 bset = isl_basic_set_add_constraint(bset, c);
1169 c = isl_inequality_alloc(isl_local_space_copy(ls));
1170 c = isl_constraint_set_constant_si(c, -10);
1171 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1172 bset = isl_basic_set_add_constraint(bset, c);
1174 c = isl_inequality_alloc(ls);
1175 c = isl_constraint_set_constant_si(c, 42);
1176 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1177 bset = isl_basic_set_add_constraint(bset, c);
1179 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1183 isl_basic_set *bset;
1184 bset = isl_basic_set_read_from_str(ctx,
1185 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1187 A basic set or relation can also be constructed from two matrices
1188 describing the equalities and the inequalities.
1190 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1191 __isl_take isl_space *space,
1192 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1193 enum isl_dim_type c1,
1194 enum isl_dim_type c2, enum isl_dim_type c3,
1195 enum isl_dim_type c4);
1196 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1197 __isl_take isl_space *space,
1198 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1199 enum isl_dim_type c1,
1200 enum isl_dim_type c2, enum isl_dim_type c3,
1201 enum isl_dim_type c4, enum isl_dim_type c5);
1203 The C<isl_dim_type> arguments indicate the order in which
1204 different kinds of variables appear in the input matrices
1205 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1206 C<isl_dim_set> and C<isl_dim_div> for sets and
1207 of C<isl_dim_cst>, C<isl_dim_param>,
1208 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1210 A (basic) set or relation can also be constructed from a (piecewise)
1211 (multiple) affine expression
1212 or a list of affine expressions
1213 (See L<"Piecewise Quasi Affine Expressions"> and
1214 L<"Piecewise Multiple Quasi Affine Expressions">).
1216 __isl_give isl_basic_map *isl_basic_map_from_aff(
1217 __isl_take isl_aff *aff);
1218 __isl_give isl_set *isl_set_from_pw_aff(
1219 __isl_take isl_pw_aff *pwaff);
1220 __isl_give isl_map *isl_map_from_pw_aff(
1221 __isl_take isl_pw_aff *pwaff);
1222 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1223 __isl_take isl_space *domain_space,
1224 __isl_take isl_aff_list *list);
1225 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1226 __isl_take isl_multi_aff *maff)
1227 __isl_give isl_set *isl_set_from_pw_multi_aff(
1228 __isl_take isl_pw_multi_aff *pma);
1229 __isl_give isl_map *isl_map_from_pw_multi_aff(
1230 __isl_take isl_pw_multi_aff *pma);
1232 The C<domain_dim> argument describes the domain of the resulting
1233 basic relation. It is required because the C<list> may consist
1234 of zero affine expressions.
1236 =head2 Inspecting Sets and Relations
1238 Usually, the user should not have to care about the actual constraints
1239 of the sets and maps, but should instead apply the abstract operations
1240 explained in the following sections.
1241 Occasionally, however, it may be required to inspect the individual
1242 coefficients of the constraints. This section explains how to do so.
1243 In these cases, it may also be useful to have C<isl> compute
1244 an explicit representation of the existentially quantified variables.
1246 __isl_give isl_set *isl_set_compute_divs(
1247 __isl_take isl_set *set);
1248 __isl_give isl_map *isl_map_compute_divs(
1249 __isl_take isl_map *map);
1250 __isl_give isl_union_set *isl_union_set_compute_divs(
1251 __isl_take isl_union_set *uset);
1252 __isl_give isl_union_map *isl_union_map_compute_divs(
1253 __isl_take isl_union_map *umap);
1255 This explicit representation defines the existentially quantified
1256 variables as integer divisions of the other variables, possibly
1257 including earlier existentially quantified variables.
1258 An explicitly represented existentially quantified variable therefore
1259 has a unique value when the values of the other variables are known.
1260 If, furthermore, the same existentials, i.e., existentials
1261 with the same explicit representations, should appear in the
1262 same order in each of the disjuncts of a set or map, then the user should call
1263 either of the following functions.
1265 __isl_give isl_set *isl_set_align_divs(
1266 __isl_take isl_set *set);
1267 __isl_give isl_map *isl_map_align_divs(
1268 __isl_take isl_map *map);
1270 Alternatively, the existentially quantified variables can be removed
1271 using the following functions, which compute an overapproximation.
1273 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1274 __isl_take isl_basic_set *bset);
1275 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1276 __isl_take isl_basic_map *bmap);
1277 __isl_give isl_set *isl_set_remove_divs(
1278 __isl_take isl_set *set);
1279 __isl_give isl_map *isl_map_remove_divs(
1280 __isl_take isl_map *map);
1282 To iterate over all the sets or maps in a union set or map, use
1284 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1285 int (*fn)(__isl_take isl_set *set, void *user),
1287 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1288 int (*fn)(__isl_take isl_map *map, void *user),
1291 The number of sets or maps in a union set or map can be obtained
1294 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1295 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1297 To extract the set or map in a given space from a union, use
1299 __isl_give isl_set *isl_union_set_extract_set(
1300 __isl_keep isl_union_set *uset,
1301 __isl_take isl_space *space);
1302 __isl_give isl_map *isl_union_map_extract_map(
1303 __isl_keep isl_union_map *umap,
1304 __isl_take isl_space *space);
1306 To iterate over all the basic sets or maps in a set or map, use
1308 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1309 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1311 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1312 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1315 The callback function C<fn> should return 0 if successful and
1316 -1 if an error occurs. In the latter case, or if any other error
1317 occurs, the above functions will return -1.
1319 It should be noted that C<isl> does not guarantee that
1320 the basic sets or maps passed to C<fn> are disjoint.
1321 If this is required, then the user should call one of
1322 the following functions first.
1324 __isl_give isl_set *isl_set_make_disjoint(
1325 __isl_take isl_set *set);
1326 __isl_give isl_map *isl_map_make_disjoint(
1327 __isl_take isl_map *map);
1329 The number of basic sets in a set can be obtained
1332 int isl_set_n_basic_set(__isl_keep isl_set *set);
1334 To iterate over the constraints of a basic set or map, use
1336 #include <isl/constraint.h>
1338 int isl_basic_map_foreach_constraint(
1339 __isl_keep isl_basic_map *bmap,
1340 int (*fn)(__isl_take isl_constraint *c, void *user),
1342 void *isl_constraint_free(__isl_take isl_constraint *c);
1344 Again, the callback function C<fn> should return 0 if successful and
1345 -1 if an error occurs. In the latter case, or if any other error
1346 occurs, the above functions will return -1.
1347 The constraint C<c> represents either an equality or an inequality.
1348 Use the following function to find out whether a constraint
1349 represents an equality. If not, it represents an inequality.
1351 int isl_constraint_is_equality(
1352 __isl_keep isl_constraint *constraint);
1354 The coefficients of the constraints can be inspected using
1355 the following functions.
1357 void isl_constraint_get_constant(
1358 __isl_keep isl_constraint *constraint, isl_int *v);
1359 void isl_constraint_get_coefficient(
1360 __isl_keep isl_constraint *constraint,
1361 enum isl_dim_type type, int pos, isl_int *v);
1362 int isl_constraint_involves_dims(
1363 __isl_keep isl_constraint *constraint,
1364 enum isl_dim_type type, unsigned first, unsigned n);
1366 The explicit representations of the existentially quantified
1367 variables can be inspected using the following function.
1368 Note that the user is only allowed to use this function
1369 if the inspected set or map is the result of a call
1370 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1371 The existentially quantified variable is equal to the floor
1372 of the returned affine expression. The affine expression
1373 itself can be inspected using the functions in
1374 L<"Piecewise Quasi Affine Expressions">.
1376 __isl_give isl_aff *isl_constraint_get_div(
1377 __isl_keep isl_constraint *constraint, int pos);
1379 To obtain the constraints of a basic set or map in matrix
1380 form, use the following functions.
1382 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1383 __isl_keep isl_basic_set *bset,
1384 enum isl_dim_type c1, enum isl_dim_type c2,
1385 enum isl_dim_type c3, enum isl_dim_type c4);
1386 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1387 __isl_keep isl_basic_set *bset,
1388 enum isl_dim_type c1, enum isl_dim_type c2,
1389 enum isl_dim_type c3, enum isl_dim_type c4);
1390 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1391 __isl_keep isl_basic_map *bmap,
1392 enum isl_dim_type c1,
1393 enum isl_dim_type c2, enum isl_dim_type c3,
1394 enum isl_dim_type c4, enum isl_dim_type c5);
1395 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1396 __isl_keep isl_basic_map *bmap,
1397 enum isl_dim_type c1,
1398 enum isl_dim_type c2, enum isl_dim_type c3,
1399 enum isl_dim_type c4, enum isl_dim_type c5);
1401 The C<isl_dim_type> arguments dictate the order in which
1402 different kinds of variables appear in the resulting matrix
1403 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1404 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1406 The number of parameters, input, output or set dimensions can
1407 be obtained using the following functions.
1409 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1410 enum isl_dim_type type);
1411 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1412 enum isl_dim_type type);
1413 unsigned isl_set_dim(__isl_keep isl_set *set,
1414 enum isl_dim_type type);
1415 unsigned isl_map_dim(__isl_keep isl_map *map,
1416 enum isl_dim_type type);
1418 To check whether the description of a set or relation depends
1419 on one or more given dimensions, it is not necessary to iterate over all
1420 constraints. Instead the following functions can be used.
1422 int isl_basic_set_involves_dims(
1423 __isl_keep isl_basic_set *bset,
1424 enum isl_dim_type type, unsigned first, unsigned n);
1425 int isl_set_involves_dims(__isl_keep isl_set *set,
1426 enum isl_dim_type type, unsigned first, unsigned n);
1427 int isl_basic_map_involves_dims(
1428 __isl_keep isl_basic_map *bmap,
1429 enum isl_dim_type type, unsigned first, unsigned n);
1430 int isl_map_involves_dims(__isl_keep isl_map *map,
1431 enum isl_dim_type type, unsigned first, unsigned n);
1433 Similarly, the following functions can be used to check whether
1434 a given dimension is involved in any lower or upper bound.
1436 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1437 enum isl_dim_type type, unsigned pos);
1438 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1439 enum isl_dim_type type, unsigned pos);
1441 The identifiers or names of the domain and range spaces of a set
1442 or relation can be read off or set using the following functions.
1444 __isl_give isl_set *isl_set_set_tuple_id(
1445 __isl_take isl_set *set, __isl_take isl_id *id);
1446 __isl_give isl_set *isl_set_reset_tuple_id(
1447 __isl_take isl_set *set);
1448 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1449 __isl_give isl_id *isl_set_get_tuple_id(
1450 __isl_keep isl_set *set);
1451 __isl_give isl_map *isl_map_set_tuple_id(
1452 __isl_take isl_map *map, enum isl_dim_type type,
1453 __isl_take isl_id *id);
1454 __isl_give isl_map *isl_map_reset_tuple_id(
1455 __isl_take isl_map *map, enum isl_dim_type type);
1456 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1457 enum isl_dim_type type);
1458 __isl_give isl_id *isl_map_get_tuple_id(
1459 __isl_keep isl_map *map, enum isl_dim_type type);
1461 const char *isl_basic_set_get_tuple_name(
1462 __isl_keep isl_basic_set *bset);
1463 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1464 __isl_take isl_basic_set *set, const char *s);
1465 const char *isl_set_get_tuple_name(
1466 __isl_keep isl_set *set);
1467 const char *isl_basic_map_get_tuple_name(
1468 __isl_keep isl_basic_map *bmap,
1469 enum isl_dim_type type);
1470 const char *isl_map_get_tuple_name(
1471 __isl_keep isl_map *map,
1472 enum isl_dim_type type);
1474 As with C<isl_space_get_tuple_name>, the value returned points to
1475 an internal data structure.
1476 The identifiers, positions or names of individual dimensions can be
1477 read off using the following functions.
1479 __isl_give isl_set *isl_set_set_dim_id(
1480 __isl_take isl_set *set, enum isl_dim_type type,
1481 unsigned pos, __isl_take isl_id *id);
1482 int isl_set_has_dim_id(__isl_keep isl_set *set,
1483 enum isl_dim_type type, unsigned pos);
1484 __isl_give isl_id *isl_set_get_dim_id(
1485 __isl_keep isl_set *set, enum isl_dim_type type,
1487 int isl_basic_map_has_dim_id(
1488 __isl_keep isl_basic_map *bmap,
1489 enum isl_dim_type type, unsigned pos);
1490 __isl_give isl_map *isl_map_set_dim_id(
1491 __isl_take isl_map *map, enum isl_dim_type type,
1492 unsigned pos, __isl_take isl_id *id);
1493 int isl_map_has_dim_id(__isl_keep isl_map *map,
1494 enum isl_dim_type type, unsigned pos);
1495 __isl_give isl_id *isl_map_get_dim_id(
1496 __isl_keep isl_map *map, enum isl_dim_type type,
1499 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1500 enum isl_dim_type type, __isl_keep isl_id *id);
1501 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1502 enum isl_dim_type type, __isl_keep isl_id *id);
1503 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1504 enum isl_dim_type type, const char *name);
1506 const char *isl_constraint_get_dim_name(
1507 __isl_keep isl_constraint *constraint,
1508 enum isl_dim_type type, unsigned pos);
1509 const char *isl_basic_set_get_dim_name(
1510 __isl_keep isl_basic_set *bset,
1511 enum isl_dim_type type, unsigned pos);
1512 const char *isl_set_get_dim_name(
1513 __isl_keep isl_set *set,
1514 enum isl_dim_type type, unsigned pos);
1515 const char *isl_basic_map_get_dim_name(
1516 __isl_keep isl_basic_map *bmap,
1517 enum isl_dim_type type, unsigned pos);
1518 const char *isl_map_get_dim_name(
1519 __isl_keep isl_map *map,
1520 enum isl_dim_type type, unsigned pos);
1522 These functions are mostly useful to obtain the identifiers, positions
1523 or names of the parameters. Identifiers of individual dimensions are
1524 essentially only useful for printing. They are ignored by all other
1525 operations and may not be preserved across those operations.
1529 =head3 Unary Properties
1535 The following functions test whether the given set or relation
1536 contains any integer points. The ``plain'' variants do not perform
1537 any computations, but simply check if the given set or relation
1538 is already known to be empty.
1540 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1541 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1542 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1543 int isl_set_is_empty(__isl_keep isl_set *set);
1544 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1545 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1546 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1547 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1548 int isl_map_is_empty(__isl_keep isl_map *map);
1549 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1551 =item * Universality
1553 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1554 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1555 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1557 =item * Single-valuedness
1559 int isl_map_is_single_valued(__isl_keep isl_map *map);
1560 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1564 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1565 int isl_map_is_injective(__isl_keep isl_map *map);
1566 int isl_union_map_plain_is_injective(
1567 __isl_keep isl_union_map *umap);
1568 int isl_union_map_is_injective(
1569 __isl_keep isl_union_map *umap);
1573 int isl_map_is_bijective(__isl_keep isl_map *map);
1574 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1578 int isl_basic_map_plain_is_fixed(
1579 __isl_keep isl_basic_map *bmap,
1580 enum isl_dim_type type, unsigned pos,
1582 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1583 enum isl_dim_type type, unsigned pos,
1585 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1586 enum isl_dim_type type, unsigned pos,
1589 Check if the relation obviously lies on a hyperplane where the given dimension
1590 has a fixed value and if so, return that value in C<*val>.
1594 To check whether a set is a parameter domain, use this function:
1596 int isl_set_is_params(__isl_keep isl_set *set);
1600 The following functions check whether the domain of the given
1601 (basic) set is a wrapped relation.
1603 int isl_basic_set_is_wrapping(
1604 __isl_keep isl_basic_set *bset);
1605 int isl_set_is_wrapping(__isl_keep isl_set *set);
1607 =item * Internal Product
1609 int isl_basic_map_can_zip(
1610 __isl_keep isl_basic_map *bmap);
1611 int isl_map_can_zip(__isl_keep isl_map *map);
1613 Check whether the product of domain and range of the given relation
1615 i.e., whether both domain and range are nested relations.
1619 =head3 Binary Properties
1625 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1626 __isl_keep isl_set *set2);
1627 int isl_set_is_equal(__isl_keep isl_set *set1,
1628 __isl_keep isl_set *set2);
1629 int isl_union_set_is_equal(
1630 __isl_keep isl_union_set *uset1,
1631 __isl_keep isl_union_set *uset2);
1632 int isl_basic_map_is_equal(
1633 __isl_keep isl_basic_map *bmap1,
1634 __isl_keep isl_basic_map *bmap2);
1635 int isl_map_is_equal(__isl_keep isl_map *map1,
1636 __isl_keep isl_map *map2);
1637 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1638 __isl_keep isl_map *map2);
1639 int isl_union_map_is_equal(
1640 __isl_keep isl_union_map *umap1,
1641 __isl_keep isl_union_map *umap2);
1643 =item * Disjointness
1645 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1646 __isl_keep isl_set *set2);
1650 int isl_set_is_subset(__isl_keep isl_set *set1,
1651 __isl_keep isl_set *set2);
1652 int isl_set_is_strict_subset(
1653 __isl_keep isl_set *set1,
1654 __isl_keep isl_set *set2);
1655 int isl_union_set_is_subset(
1656 __isl_keep isl_union_set *uset1,
1657 __isl_keep isl_union_set *uset2);
1658 int isl_union_set_is_strict_subset(
1659 __isl_keep isl_union_set *uset1,
1660 __isl_keep isl_union_set *uset2);
1661 int isl_basic_map_is_subset(
1662 __isl_keep isl_basic_map *bmap1,
1663 __isl_keep isl_basic_map *bmap2);
1664 int isl_basic_map_is_strict_subset(
1665 __isl_keep isl_basic_map *bmap1,
1666 __isl_keep isl_basic_map *bmap2);
1667 int isl_map_is_subset(
1668 __isl_keep isl_map *map1,
1669 __isl_keep isl_map *map2);
1670 int isl_map_is_strict_subset(
1671 __isl_keep isl_map *map1,
1672 __isl_keep isl_map *map2);
1673 int isl_union_map_is_subset(
1674 __isl_keep isl_union_map *umap1,
1675 __isl_keep isl_union_map *umap2);
1676 int isl_union_map_is_strict_subset(
1677 __isl_keep isl_union_map *umap1,
1678 __isl_keep isl_union_map *umap2);
1682 =head2 Unary Operations
1688 __isl_give isl_set *isl_set_complement(
1689 __isl_take isl_set *set);
1693 __isl_give isl_basic_map *isl_basic_map_reverse(
1694 __isl_take isl_basic_map *bmap);
1695 __isl_give isl_map *isl_map_reverse(
1696 __isl_take isl_map *map);
1697 __isl_give isl_union_map *isl_union_map_reverse(
1698 __isl_take isl_union_map *umap);
1702 __isl_give isl_basic_set *isl_basic_set_project_out(
1703 __isl_take isl_basic_set *bset,
1704 enum isl_dim_type type, unsigned first, unsigned n);
1705 __isl_give isl_basic_map *isl_basic_map_project_out(
1706 __isl_take isl_basic_map *bmap,
1707 enum isl_dim_type type, unsigned first, unsigned n);
1708 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1709 enum isl_dim_type type, unsigned first, unsigned n);
1710 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1711 enum isl_dim_type type, unsigned first, unsigned n);
1712 __isl_give isl_basic_set *isl_basic_set_params(
1713 __isl_take isl_basic_set *bset);
1714 __isl_give isl_basic_set *isl_basic_map_domain(
1715 __isl_take isl_basic_map *bmap);
1716 __isl_give isl_basic_set *isl_basic_map_range(
1717 __isl_take isl_basic_map *bmap);
1718 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1719 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1720 __isl_give isl_set *isl_map_domain(
1721 __isl_take isl_map *bmap);
1722 __isl_give isl_set *isl_map_range(
1723 __isl_take isl_map *map);
1724 __isl_give isl_union_set *isl_union_map_domain(
1725 __isl_take isl_union_map *umap);
1726 __isl_give isl_union_set *isl_union_map_range(
1727 __isl_take isl_union_map *umap);
1729 __isl_give isl_basic_map *isl_basic_map_domain_map(
1730 __isl_take isl_basic_map *bmap);
1731 __isl_give isl_basic_map *isl_basic_map_range_map(
1732 __isl_take isl_basic_map *bmap);
1733 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1734 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1735 __isl_give isl_union_map *isl_union_map_domain_map(
1736 __isl_take isl_union_map *umap);
1737 __isl_give isl_union_map *isl_union_map_range_map(
1738 __isl_take isl_union_map *umap);
1740 The functions above construct a (basic, regular or union) relation
1741 that maps (a wrapped version of) the input relation to its domain or range.
1745 __isl_give isl_set *isl_set_eliminate(
1746 __isl_take isl_set *set, enum isl_dim_type type,
1747 unsigned first, unsigned n);
1748 __isl_give isl_basic_map *isl_basic_map_eliminate(
1749 __isl_take isl_basic_map *bmap,
1750 enum isl_dim_type type,
1751 unsigned first, unsigned n);
1753 Eliminate the coefficients for the given dimensions from the constraints,
1754 without removing the dimensions.
1758 __isl_give isl_basic_set *isl_basic_set_fix(
1759 __isl_take isl_basic_set *bset,
1760 enum isl_dim_type type, unsigned pos,
1762 __isl_give isl_basic_set *isl_basic_set_fix_si(
1763 __isl_take isl_basic_set *bset,
1764 enum isl_dim_type type, unsigned pos, int value);
1765 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1766 enum isl_dim_type type, unsigned pos,
1768 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1769 enum isl_dim_type type, unsigned pos, int value);
1770 __isl_give isl_basic_map *isl_basic_map_fix_si(
1771 __isl_take isl_basic_map *bmap,
1772 enum isl_dim_type type, unsigned pos, int value);
1773 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1774 enum isl_dim_type type, unsigned pos, int value);
1776 Intersect the set or relation with the hyperplane where the given
1777 dimension has the fixed given value.
1779 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1780 enum isl_dim_type type1, int pos1,
1781 enum isl_dim_type type2, int pos2);
1782 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1783 enum isl_dim_type type1, int pos1,
1784 enum isl_dim_type type2, int pos2);
1786 Intersect the set or relation with the hyperplane where the given
1787 dimensions are equal to each other.
1789 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1790 enum isl_dim_type type1, int pos1,
1791 enum isl_dim_type type2, int pos2);
1793 Intersect the relation with the hyperplane where the given
1794 dimensions have opposite values.
1798 __isl_give isl_map *isl_set_identity(
1799 __isl_take isl_set *set);
1800 __isl_give isl_union_map *isl_union_set_identity(
1801 __isl_take isl_union_set *uset);
1803 Construct an identity relation on the given (union) set.
1807 __isl_give isl_basic_set *isl_basic_map_deltas(
1808 __isl_take isl_basic_map *bmap);
1809 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1810 __isl_give isl_union_set *isl_union_map_deltas(
1811 __isl_take isl_union_map *umap);
1813 These functions return a (basic) set containing the differences
1814 between image elements and corresponding domain elements in the input.
1816 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1817 __isl_take isl_basic_map *bmap);
1818 __isl_give isl_map *isl_map_deltas_map(
1819 __isl_take isl_map *map);
1820 __isl_give isl_union_map *isl_union_map_deltas_map(
1821 __isl_take isl_union_map *umap);
1823 The functions above construct a (basic, regular or union) relation
1824 that maps (a wrapped version of) the input relation to its delta set.
1828 Simplify the representation of a set or relation by trying
1829 to combine pairs of basic sets or relations into a single
1830 basic set or relation.
1832 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1833 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1834 __isl_give isl_union_set *isl_union_set_coalesce(
1835 __isl_take isl_union_set *uset);
1836 __isl_give isl_union_map *isl_union_map_coalesce(
1837 __isl_take isl_union_map *umap);
1839 =item * Detecting equalities
1841 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1842 __isl_take isl_basic_set *bset);
1843 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1844 __isl_take isl_basic_map *bmap);
1845 __isl_give isl_set *isl_set_detect_equalities(
1846 __isl_take isl_set *set);
1847 __isl_give isl_map *isl_map_detect_equalities(
1848 __isl_take isl_map *map);
1849 __isl_give isl_union_set *isl_union_set_detect_equalities(
1850 __isl_take isl_union_set *uset);
1851 __isl_give isl_union_map *isl_union_map_detect_equalities(
1852 __isl_take isl_union_map *umap);
1854 Simplify the representation of a set or relation by detecting implicit
1857 =item * Removing redundant constraints
1859 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1860 __isl_take isl_basic_set *bset);
1861 __isl_give isl_set *isl_set_remove_redundancies(
1862 __isl_take isl_set *set);
1863 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1864 __isl_take isl_basic_map *bmap);
1865 __isl_give isl_map *isl_map_remove_redundancies(
1866 __isl_take isl_map *map);
1870 __isl_give isl_basic_set *isl_set_convex_hull(
1871 __isl_take isl_set *set);
1872 __isl_give isl_basic_map *isl_map_convex_hull(
1873 __isl_take isl_map *map);
1875 If the input set or relation has any existentially quantified
1876 variables, then the result of these operations is currently undefined.
1880 __isl_give isl_basic_set *isl_set_simple_hull(
1881 __isl_take isl_set *set);
1882 __isl_give isl_basic_map *isl_map_simple_hull(
1883 __isl_take isl_map *map);
1884 __isl_give isl_union_map *isl_union_map_simple_hull(
1885 __isl_take isl_union_map *umap);
1887 These functions compute a single basic set or relation
1888 that contains the whole input set or relation.
1889 In particular, the output is described by translates
1890 of the constraints describing the basic sets or relations in the input.
1894 (See \autoref{s:simple hull}.)
1900 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1901 __isl_take isl_basic_set *bset);
1902 __isl_give isl_basic_set *isl_set_affine_hull(
1903 __isl_take isl_set *set);
1904 __isl_give isl_union_set *isl_union_set_affine_hull(
1905 __isl_take isl_union_set *uset);
1906 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1907 __isl_take isl_basic_map *bmap);
1908 __isl_give isl_basic_map *isl_map_affine_hull(
1909 __isl_take isl_map *map);
1910 __isl_give isl_union_map *isl_union_map_affine_hull(
1911 __isl_take isl_union_map *umap);
1913 In case of union sets and relations, the affine hull is computed
1916 =item * Polyhedral hull
1918 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1919 __isl_take isl_set *set);
1920 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1921 __isl_take isl_map *map);
1922 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1923 __isl_take isl_union_set *uset);
1924 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1925 __isl_take isl_union_map *umap);
1927 These functions compute a single basic set or relation
1928 not involving any existentially quantified variables
1929 that contains the whole input set or relation.
1930 In case of union sets and relations, the polyhedral hull is computed
1933 =item * Optimization
1935 #include <isl/ilp.h>
1936 enum isl_lp_result isl_basic_set_max(
1937 __isl_keep isl_basic_set *bset,
1938 __isl_keep isl_aff *obj, isl_int *opt)
1939 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
1940 __isl_keep isl_aff *obj, isl_int *opt);
1941 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
1942 __isl_keep isl_aff *obj, isl_int *opt);
1944 Compute the minimum or maximum of the integer affine expression C<obj>
1945 over the points in C<set>, returning the result in C<opt>.
1946 The return value may be one of C<isl_lp_error>,
1947 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
1949 =item * Parametric optimization
1951 __isl_give isl_pw_aff *isl_set_dim_min(
1952 __isl_take isl_set *set, int pos);
1953 __isl_give isl_pw_aff *isl_set_dim_max(
1954 __isl_take isl_set *set, int pos);
1955 __isl_give isl_pw_aff *isl_map_dim_max(
1956 __isl_take isl_map *map, int pos);
1958 Compute the minimum or maximum of the given set or output dimension
1959 as a function of the parameters (and input dimensions), but independently
1960 of the other set or output dimensions.
1961 For lexicographic optimization, see L<"Lexicographic Optimization">.
1965 The following functions compute either the set of (rational) coefficient
1966 values of valid constraints for the given set or the set of (rational)
1967 values satisfying the constraints with coefficients from the given set.
1968 Internally, these two sets of functions perform essentially the
1969 same operations, except that the set of coefficients is assumed to
1970 be a cone, while the set of values may be any polyhedron.
1971 The current implementation is based on the Farkas lemma and
1972 Fourier-Motzkin elimination, but this may change or be made optional
1973 in future. In particular, future implementations may use different
1974 dualization algorithms or skip the elimination step.
1976 __isl_give isl_basic_set *isl_basic_set_coefficients(
1977 __isl_take isl_basic_set *bset);
1978 __isl_give isl_basic_set *isl_set_coefficients(
1979 __isl_take isl_set *set);
1980 __isl_give isl_union_set *isl_union_set_coefficients(
1981 __isl_take isl_union_set *bset);
1982 __isl_give isl_basic_set *isl_basic_set_solutions(
1983 __isl_take isl_basic_set *bset);
1984 __isl_give isl_basic_set *isl_set_solutions(
1985 __isl_take isl_set *set);
1986 __isl_give isl_union_set *isl_union_set_solutions(
1987 __isl_take isl_union_set *bset);
1991 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1993 __isl_give isl_union_map *isl_union_map_power(
1994 __isl_take isl_union_map *umap, int *exact);
1996 Compute a parametric representation for all positive powers I<k> of C<map>.
1997 The result maps I<k> to a nested relation corresponding to the
1998 I<k>th power of C<map>.
1999 The result may be an overapproximation. If the result is known to be exact,
2000 then C<*exact> is set to C<1>.
2002 =item * Transitive closure
2004 __isl_give isl_map *isl_map_transitive_closure(
2005 __isl_take isl_map *map, int *exact);
2006 __isl_give isl_union_map *isl_union_map_transitive_closure(
2007 __isl_take isl_union_map *umap, int *exact);
2009 Compute the transitive closure of C<map>.
2010 The result may be an overapproximation. If the result is known to be exact,
2011 then C<*exact> is set to C<1>.
2013 =item * Reaching path lengths
2015 __isl_give isl_map *isl_map_reaching_path_lengths(
2016 __isl_take isl_map *map, int *exact);
2018 Compute a relation that maps each element in the range of C<map>
2019 to the lengths of all paths composed of edges in C<map> that
2020 end up in the given element.
2021 The result may be an overapproximation. If the result is known to be exact,
2022 then C<*exact> is set to C<1>.
2023 To compute the I<maximal> path length, the resulting relation
2024 should be postprocessed by C<isl_map_lexmax>.
2025 In particular, if the input relation is a dependence relation
2026 (mapping sources to sinks), then the maximal path length corresponds
2027 to the free schedule.
2028 Note, however, that C<isl_map_lexmax> expects the maximum to be
2029 finite, so if the path lengths are unbounded (possibly due to
2030 the overapproximation), then you will get an error message.
2034 __isl_give isl_basic_set *isl_basic_map_wrap(
2035 __isl_take isl_basic_map *bmap);
2036 __isl_give isl_set *isl_map_wrap(
2037 __isl_take isl_map *map);
2038 __isl_give isl_union_set *isl_union_map_wrap(
2039 __isl_take isl_union_map *umap);
2040 __isl_give isl_basic_map *isl_basic_set_unwrap(
2041 __isl_take isl_basic_set *bset);
2042 __isl_give isl_map *isl_set_unwrap(
2043 __isl_take isl_set *set);
2044 __isl_give isl_union_map *isl_union_set_unwrap(
2045 __isl_take isl_union_set *uset);
2049 Remove any internal structure of domain (and range) of the given
2050 set or relation. If there is any such internal structure in the input,
2051 then the name of the space is also removed.
2053 __isl_give isl_basic_set *isl_basic_set_flatten(
2054 __isl_take isl_basic_set *bset);
2055 __isl_give isl_set *isl_set_flatten(
2056 __isl_take isl_set *set);
2057 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2058 __isl_take isl_basic_map *bmap);
2059 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2060 __isl_take isl_basic_map *bmap);
2061 __isl_give isl_map *isl_map_flatten_range(
2062 __isl_take isl_map *map);
2063 __isl_give isl_map *isl_map_flatten_domain(
2064 __isl_take isl_map *map);
2065 __isl_give isl_basic_map *isl_basic_map_flatten(
2066 __isl_take isl_basic_map *bmap);
2067 __isl_give isl_map *isl_map_flatten(
2068 __isl_take isl_map *map);
2070 __isl_give isl_map *isl_set_flatten_map(
2071 __isl_take isl_set *set);
2073 The function above constructs a relation
2074 that maps the input set to a flattened version of the set.
2078 Lift the input set to a space with extra dimensions corresponding
2079 to the existentially quantified variables in the input.
2080 In particular, the result lives in a wrapped map where the domain
2081 is the original space and the range corresponds to the original
2082 existentially quantified variables.
2084 __isl_give isl_basic_set *isl_basic_set_lift(
2085 __isl_take isl_basic_set *bset);
2086 __isl_give isl_set *isl_set_lift(
2087 __isl_take isl_set *set);
2088 __isl_give isl_union_set *isl_union_set_lift(
2089 __isl_take isl_union_set *uset);
2091 Given a local space that contains the existentially quantified
2092 variables of a set, a basic relation that, when applied to
2093 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2094 can be constructed using the following function.
2096 #include <isl/local_space.h>
2097 __isl_give isl_basic_map *isl_local_space_lifting(
2098 __isl_take isl_local_space *ls);
2100 =item * Internal Product
2102 __isl_give isl_basic_map *isl_basic_map_zip(
2103 __isl_take isl_basic_map *bmap);
2104 __isl_give isl_map *isl_map_zip(
2105 __isl_take isl_map *map);
2106 __isl_give isl_union_map *isl_union_map_zip(
2107 __isl_take isl_union_map *umap);
2109 Given a relation with nested relations for domain and range,
2110 interchange the range of the domain with the domain of the range.
2112 =item * Aligning parameters
2114 __isl_give isl_set *isl_set_align_params(
2115 __isl_take isl_set *set,
2116 __isl_take isl_space *model);
2117 __isl_give isl_map *isl_map_align_params(
2118 __isl_take isl_map *map,
2119 __isl_take isl_space *model);
2121 Change the order of the parameters of the given set or relation
2122 such that the first parameters match those of C<model>.
2123 This may involve the introduction of extra parameters.
2124 All parameters need to be named.
2126 =item * Dimension manipulation
2128 __isl_give isl_set *isl_set_add_dims(
2129 __isl_take isl_set *set,
2130 enum isl_dim_type type, unsigned n);
2131 __isl_give isl_map *isl_map_add_dims(
2132 __isl_take isl_map *map,
2133 enum isl_dim_type type, unsigned n);
2134 __isl_give isl_set *isl_set_insert_dims(
2135 __isl_take isl_set *set,
2136 enum isl_dim_type type, unsigned pos, unsigned n);
2137 __isl_give isl_map *isl_map_insert_dims(
2138 __isl_take isl_map *map,
2139 enum isl_dim_type type, unsigned pos, unsigned n);
2140 __isl_give isl_basic_set *isl_basic_set_move_dims(
2141 __isl_take isl_basic_set *bset,
2142 enum isl_dim_type dst_type, unsigned dst_pos,
2143 enum isl_dim_type src_type, unsigned src_pos,
2145 __isl_give isl_basic_map *isl_basic_map_move_dims(
2146 __isl_take isl_basic_map *bmap,
2147 enum isl_dim_type dst_type, unsigned dst_pos,
2148 enum isl_dim_type src_type, unsigned src_pos,
2150 __isl_give isl_set *isl_set_move_dims(
2151 __isl_take isl_set *set,
2152 enum isl_dim_type dst_type, unsigned dst_pos,
2153 enum isl_dim_type src_type, unsigned src_pos,
2155 __isl_give isl_map *isl_map_move_dims(
2156 __isl_take isl_map *map,
2157 enum isl_dim_type dst_type, unsigned dst_pos,
2158 enum isl_dim_type src_type, unsigned src_pos,
2161 It is usually not advisable to directly change the (input or output)
2162 space of a set or a relation as this removes the name and the internal
2163 structure of the space. However, the above functions can be useful
2164 to add new parameters, assuming
2165 C<isl_set_align_params> and C<isl_map_align_params>
2170 =head2 Binary Operations
2172 The two arguments of a binary operation not only need to live
2173 in the same C<isl_ctx>, they currently also need to have
2174 the same (number of) parameters.
2176 =head3 Basic Operations
2180 =item * Intersection
2182 __isl_give isl_basic_set *isl_basic_set_intersect(
2183 __isl_take isl_basic_set *bset1,
2184 __isl_take isl_basic_set *bset2);
2185 __isl_give isl_set *isl_set_intersect_params(
2186 __isl_take isl_set *set,
2187 __isl_take isl_set *params);
2188 __isl_give isl_set *isl_set_intersect(
2189 __isl_take isl_set *set1,
2190 __isl_take isl_set *set2);
2191 __isl_give isl_union_set *isl_union_set_intersect(
2192 __isl_take isl_union_set *uset1,
2193 __isl_take isl_union_set *uset2);
2194 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2195 __isl_take isl_basic_map *bmap,
2196 __isl_take isl_basic_set *bset);
2197 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2198 __isl_take isl_basic_map *bmap,
2199 __isl_take isl_basic_set *bset);
2200 __isl_give isl_basic_map *isl_basic_map_intersect(
2201 __isl_take isl_basic_map *bmap1,
2202 __isl_take isl_basic_map *bmap2);
2203 __isl_give isl_map *isl_map_intersect_params(
2204 __isl_take isl_map *map,
2205 __isl_take isl_set *params);
2206 __isl_give isl_map *isl_map_intersect_domain(
2207 __isl_take isl_map *map,
2208 __isl_take isl_set *set);
2209 __isl_give isl_map *isl_map_intersect_range(
2210 __isl_take isl_map *map,
2211 __isl_take isl_set *set);
2212 __isl_give isl_map *isl_map_intersect(
2213 __isl_take isl_map *map1,
2214 __isl_take isl_map *map2);
2215 __isl_give isl_union_map *isl_union_map_intersect_domain(
2216 __isl_take isl_union_map *umap,
2217 __isl_take isl_union_set *uset);
2218 __isl_give isl_union_map *isl_union_map_intersect_range(
2219 __isl_take isl_union_map *umap,
2220 __isl_take isl_union_set *uset);
2221 __isl_give isl_union_map *isl_union_map_intersect(
2222 __isl_take isl_union_map *umap1,
2223 __isl_take isl_union_map *umap2);
2227 __isl_give isl_set *isl_basic_set_union(
2228 __isl_take isl_basic_set *bset1,
2229 __isl_take isl_basic_set *bset2);
2230 __isl_give isl_map *isl_basic_map_union(
2231 __isl_take isl_basic_map *bmap1,
2232 __isl_take isl_basic_map *bmap2);
2233 __isl_give isl_set *isl_set_union(
2234 __isl_take isl_set *set1,
2235 __isl_take isl_set *set2);
2236 __isl_give isl_map *isl_map_union(
2237 __isl_take isl_map *map1,
2238 __isl_take isl_map *map2);
2239 __isl_give isl_union_set *isl_union_set_union(
2240 __isl_take isl_union_set *uset1,
2241 __isl_take isl_union_set *uset2);
2242 __isl_give isl_union_map *isl_union_map_union(
2243 __isl_take isl_union_map *umap1,
2244 __isl_take isl_union_map *umap2);
2246 =item * Set difference
2248 __isl_give isl_set *isl_set_subtract(
2249 __isl_take isl_set *set1,
2250 __isl_take isl_set *set2);
2251 __isl_give isl_map *isl_map_subtract(
2252 __isl_take isl_map *map1,
2253 __isl_take isl_map *map2);
2254 __isl_give isl_union_set *isl_union_set_subtract(
2255 __isl_take isl_union_set *uset1,
2256 __isl_take isl_union_set *uset2);
2257 __isl_give isl_union_map *isl_union_map_subtract(
2258 __isl_take isl_union_map *umap1,
2259 __isl_take isl_union_map *umap2);
2263 __isl_give isl_basic_set *isl_basic_set_apply(
2264 __isl_take isl_basic_set *bset,
2265 __isl_take isl_basic_map *bmap);
2266 __isl_give isl_set *isl_set_apply(
2267 __isl_take isl_set *set,
2268 __isl_take isl_map *map);
2269 __isl_give isl_union_set *isl_union_set_apply(
2270 __isl_take isl_union_set *uset,
2271 __isl_take isl_union_map *umap);
2272 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2273 __isl_take isl_basic_map *bmap1,
2274 __isl_take isl_basic_map *bmap2);
2275 __isl_give isl_basic_map *isl_basic_map_apply_range(
2276 __isl_take isl_basic_map *bmap1,
2277 __isl_take isl_basic_map *bmap2);
2278 __isl_give isl_map *isl_map_apply_domain(
2279 __isl_take isl_map *map1,
2280 __isl_take isl_map *map2);
2281 __isl_give isl_union_map *isl_union_map_apply_domain(
2282 __isl_take isl_union_map *umap1,
2283 __isl_take isl_union_map *umap2);
2284 __isl_give isl_map *isl_map_apply_range(
2285 __isl_take isl_map *map1,
2286 __isl_take isl_map *map2);
2287 __isl_give isl_union_map *isl_union_map_apply_range(
2288 __isl_take isl_union_map *umap1,
2289 __isl_take isl_union_map *umap2);
2291 =item * Cartesian Product
2293 __isl_give isl_set *isl_set_product(
2294 __isl_take isl_set *set1,
2295 __isl_take isl_set *set2);
2296 __isl_give isl_union_set *isl_union_set_product(
2297 __isl_take isl_union_set *uset1,
2298 __isl_take isl_union_set *uset2);
2299 __isl_give isl_basic_map *isl_basic_map_domain_product(
2300 __isl_take isl_basic_map *bmap1,
2301 __isl_take isl_basic_map *bmap2);
2302 __isl_give isl_basic_map *isl_basic_map_range_product(
2303 __isl_take isl_basic_map *bmap1,
2304 __isl_take isl_basic_map *bmap2);
2305 __isl_give isl_map *isl_map_domain_product(
2306 __isl_take isl_map *map1,
2307 __isl_take isl_map *map2);
2308 __isl_give isl_map *isl_map_range_product(
2309 __isl_take isl_map *map1,
2310 __isl_take isl_map *map2);
2311 __isl_give isl_union_map *isl_union_map_range_product(
2312 __isl_take isl_union_map *umap1,
2313 __isl_take isl_union_map *umap2);
2314 __isl_give isl_map *isl_map_product(
2315 __isl_take isl_map *map1,
2316 __isl_take isl_map *map2);
2317 __isl_give isl_union_map *isl_union_map_product(
2318 __isl_take isl_union_map *umap1,
2319 __isl_take isl_union_map *umap2);
2321 The above functions compute the cross product of the given
2322 sets or relations. The domains and ranges of the results
2323 are wrapped maps between domains and ranges of the inputs.
2324 To obtain a ``flat'' product, use the following functions
2327 __isl_give isl_basic_set *isl_basic_set_flat_product(
2328 __isl_take isl_basic_set *bset1,
2329 __isl_take isl_basic_set *bset2);
2330 __isl_give isl_set *isl_set_flat_product(
2331 __isl_take isl_set *set1,
2332 __isl_take isl_set *set2);
2333 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2334 __isl_take isl_basic_map *bmap1,
2335 __isl_take isl_basic_map *bmap2);
2336 __isl_give isl_map *isl_map_flat_domain_product(
2337 __isl_take isl_map *map1,
2338 __isl_take isl_map *map2);
2339 __isl_give isl_map *isl_map_flat_range_product(
2340 __isl_take isl_map *map1,
2341 __isl_take isl_map *map2);
2342 __isl_give isl_union_map *isl_union_map_flat_range_product(
2343 __isl_take isl_union_map *umap1,
2344 __isl_take isl_union_map *umap2);
2345 __isl_give isl_basic_map *isl_basic_map_flat_product(
2346 __isl_take isl_basic_map *bmap1,
2347 __isl_take isl_basic_map *bmap2);
2348 __isl_give isl_map *isl_map_flat_product(
2349 __isl_take isl_map *map1,
2350 __isl_take isl_map *map2);
2352 =item * Simplification
2354 __isl_give isl_basic_set *isl_basic_set_gist(
2355 __isl_take isl_basic_set *bset,
2356 __isl_take isl_basic_set *context);
2357 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2358 __isl_take isl_set *context);
2359 __isl_give isl_set *isl_set_gist_params(
2360 __isl_take isl_set *set,
2361 __isl_take isl_set *context);
2362 __isl_give isl_union_set *isl_union_set_gist(
2363 __isl_take isl_union_set *uset,
2364 __isl_take isl_union_set *context);
2365 __isl_give isl_basic_map *isl_basic_map_gist(
2366 __isl_take isl_basic_map *bmap,
2367 __isl_take isl_basic_map *context);
2368 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2369 __isl_take isl_map *context);
2370 __isl_give isl_map *isl_map_gist_params(
2371 __isl_take isl_map *map,
2372 __isl_take isl_set *context);
2373 __isl_give isl_union_map *isl_union_map_gist(
2374 __isl_take isl_union_map *umap,
2375 __isl_take isl_union_map *context);
2377 The gist operation returns a set or relation that has the
2378 same intersection with the context as the input set or relation.
2379 Any implicit equality in the intersection is made explicit in the result,
2380 while all inequalities that are redundant with respect to the intersection
2382 In case of union sets and relations, the gist operation is performed
2387 =head3 Lexicographic Optimization
2389 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2390 the following functions
2391 compute a set that contains the lexicographic minimum or maximum
2392 of the elements in C<set> (or C<bset>) for those values of the parameters
2393 that satisfy C<dom>.
2394 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2395 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2397 In other words, the union of the parameter values
2398 for which the result is non-empty and of C<*empty>
2401 __isl_give isl_set *isl_basic_set_partial_lexmin(
2402 __isl_take isl_basic_set *bset,
2403 __isl_take isl_basic_set *dom,
2404 __isl_give isl_set **empty);
2405 __isl_give isl_set *isl_basic_set_partial_lexmax(
2406 __isl_take isl_basic_set *bset,
2407 __isl_take isl_basic_set *dom,
2408 __isl_give isl_set **empty);
2409 __isl_give isl_set *isl_set_partial_lexmin(
2410 __isl_take isl_set *set, __isl_take isl_set *dom,
2411 __isl_give isl_set **empty);
2412 __isl_give isl_set *isl_set_partial_lexmax(
2413 __isl_take isl_set *set, __isl_take isl_set *dom,
2414 __isl_give isl_set **empty);
2416 Given a (basic) set C<set> (or C<bset>), the following functions simply
2417 return a set containing the lexicographic minimum or maximum
2418 of the elements in C<set> (or C<bset>).
2419 In case of union sets, the optimum is computed per space.
2421 __isl_give isl_set *isl_basic_set_lexmin(
2422 __isl_take isl_basic_set *bset);
2423 __isl_give isl_set *isl_basic_set_lexmax(
2424 __isl_take isl_basic_set *bset);
2425 __isl_give isl_set *isl_set_lexmin(
2426 __isl_take isl_set *set);
2427 __isl_give isl_set *isl_set_lexmax(
2428 __isl_take isl_set *set);
2429 __isl_give isl_union_set *isl_union_set_lexmin(
2430 __isl_take isl_union_set *uset);
2431 __isl_give isl_union_set *isl_union_set_lexmax(
2432 __isl_take isl_union_set *uset);
2434 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2435 the following functions
2436 compute a relation that maps each element of C<dom>
2437 to the single lexicographic minimum or maximum
2438 of the elements that are associated to that same
2439 element in C<map> (or C<bmap>).
2440 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2441 that contains the elements in C<dom> that do not map
2442 to any elements in C<map> (or C<bmap>).
2443 In other words, the union of the domain of the result and of C<*empty>
2446 __isl_give isl_map *isl_basic_map_partial_lexmax(
2447 __isl_take isl_basic_map *bmap,
2448 __isl_take isl_basic_set *dom,
2449 __isl_give isl_set **empty);
2450 __isl_give isl_map *isl_basic_map_partial_lexmin(
2451 __isl_take isl_basic_map *bmap,
2452 __isl_take isl_basic_set *dom,
2453 __isl_give isl_set **empty);
2454 __isl_give isl_map *isl_map_partial_lexmax(
2455 __isl_take isl_map *map, __isl_take isl_set *dom,
2456 __isl_give isl_set **empty);
2457 __isl_give isl_map *isl_map_partial_lexmin(
2458 __isl_take isl_map *map, __isl_take isl_set *dom,
2459 __isl_give isl_set **empty);
2461 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2462 return a map mapping each element in the domain of
2463 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2464 of all elements associated to that element.
2465 In case of union relations, the optimum is computed per space.
2467 __isl_give isl_map *isl_basic_map_lexmin(
2468 __isl_take isl_basic_map *bmap);
2469 __isl_give isl_map *isl_basic_map_lexmax(
2470 __isl_take isl_basic_map *bmap);
2471 __isl_give isl_map *isl_map_lexmin(
2472 __isl_take isl_map *map);
2473 __isl_give isl_map *isl_map_lexmax(
2474 __isl_take isl_map *map);
2475 __isl_give isl_union_map *isl_union_map_lexmin(
2476 __isl_take isl_union_map *umap);
2477 __isl_give isl_union_map *isl_union_map_lexmax(
2478 __isl_take isl_union_map *umap);
2480 The following functions return their result in the form of
2481 a piecewise multi-affine expression
2482 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2483 but are otherwise equivalent to the corresponding functions
2484 returning a basic set or relation.
2486 __isl_give isl_pw_multi_aff *
2487 isl_basic_map_lexmin_pw_multi_aff(
2488 __isl_take isl_basic_map *bmap);
2489 __isl_give isl_pw_multi_aff *
2490 isl_basic_set_partial_lexmin_pw_multi_aff(
2491 __isl_take isl_basic_set *bset,
2492 __isl_take isl_basic_set *dom,
2493 __isl_give isl_set **empty);
2494 __isl_give isl_pw_multi_aff *
2495 isl_basic_set_partial_lexmax_pw_multi_aff(
2496 __isl_take isl_basic_set *bset,
2497 __isl_take isl_basic_set *dom,
2498 __isl_give isl_set **empty);
2499 __isl_give isl_pw_multi_aff *
2500 isl_basic_map_partial_lexmin_pw_multi_aff(
2501 __isl_take isl_basic_map *bmap,
2502 __isl_take isl_basic_set *dom,
2503 __isl_give isl_set **empty);
2504 __isl_give isl_pw_multi_aff *
2505 isl_basic_map_partial_lexmax_pw_multi_aff(
2506 __isl_take isl_basic_map *bmap,
2507 __isl_take isl_basic_set *dom,
2508 __isl_give isl_set **empty);
2512 Lists are defined over several element types, including
2513 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2514 Here we take lists of C<isl_set>s as an example.
2515 Lists can be created, copied and freed using the following functions.
2517 #include <isl/list.h>
2518 __isl_give isl_set_list *isl_set_list_from_set(
2519 __isl_take isl_set *el);
2520 __isl_give isl_set_list *isl_set_list_alloc(
2521 isl_ctx *ctx, int n);
2522 __isl_give isl_set_list *isl_set_list_copy(
2523 __isl_keep isl_set_list *list);
2524 __isl_give isl_set_list *isl_set_list_add(
2525 __isl_take isl_set_list *list,
2526 __isl_take isl_set *el);
2527 __isl_give isl_set_list *isl_set_list_concat(
2528 __isl_take isl_set_list *list1,
2529 __isl_take isl_set_list *list2);
2530 void *isl_set_list_free(__isl_take isl_set_list *list);
2532 C<isl_set_list_alloc> creates an empty list with a capacity for
2533 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2536 Lists can be inspected using the following functions.
2538 #include <isl/list.h>
2539 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2540 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2541 __isl_give isl_set *isl_set_list_get_set(
2542 __isl_keep isl_set_list *list, int index);
2543 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2544 int (*fn)(__isl_take isl_set *el, void *user),
2547 Lists can be printed using
2549 #include <isl/list.h>
2550 __isl_give isl_printer *isl_printer_print_set_list(
2551 __isl_take isl_printer *p,
2552 __isl_keep isl_set_list *list);
2556 Matrices can be created, copied and freed using the following functions.
2558 #include <isl/mat.h>
2559 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2560 unsigned n_row, unsigned n_col);
2561 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2562 void isl_mat_free(__isl_take isl_mat *mat);
2564 Note that the elements of a newly created matrix may have arbitrary values.
2565 The elements can be changed and inspected using the following functions.
2567 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2568 int isl_mat_rows(__isl_keep isl_mat *mat);
2569 int isl_mat_cols(__isl_keep isl_mat *mat);
2570 int isl_mat_get_element(__isl_keep isl_mat *mat,
2571 int row, int col, isl_int *v);
2572 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2573 int row, int col, isl_int v);
2574 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2575 int row, int col, int v);
2577 C<isl_mat_get_element> will return a negative value if anything went wrong.
2578 In that case, the value of C<*v> is undefined.
2580 The following function can be used to compute the (right) inverse
2581 of a matrix, i.e., a matrix such that the product of the original
2582 and the inverse (in that order) is a multiple of the identity matrix.
2583 The input matrix is assumed to be of full row-rank.
2585 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2587 The following function can be used to compute the (right) kernel
2588 (or null space) of a matrix, i.e., a matrix such that the product of
2589 the original and the kernel (in that order) is the zero matrix.
2591 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2593 =head2 Piecewise Quasi Affine Expressions
2595 The zero quasi affine expression on a given domain can be created using
2597 __isl_give isl_aff *isl_aff_zero_on_domain(
2598 __isl_take isl_local_space *ls);
2600 Note that the space in which the resulting object lives is a map space
2601 with the given space as domain and a one-dimensional range.
2603 An empty piecewise quasi affine expression (one with no cells)
2604 or a piecewise quasi affine expression with a single cell can
2605 be created using the following functions.
2607 #include <isl/aff.h>
2608 __isl_give isl_pw_aff *isl_pw_aff_empty(
2609 __isl_take isl_space *space);
2610 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2611 __isl_take isl_set *set, __isl_take isl_aff *aff);
2612 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2613 __isl_take isl_aff *aff);
2615 Quasi affine expressions can be copied and freed using
2617 #include <isl/aff.h>
2618 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2619 void *isl_aff_free(__isl_take isl_aff *aff);
2621 __isl_give isl_pw_aff *isl_pw_aff_copy(
2622 __isl_keep isl_pw_aff *pwaff);
2623 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2625 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2626 using the following function. The constraint is required to have
2627 a non-zero coefficient for the specified dimension.
2629 #include <isl/constraint.h>
2630 __isl_give isl_aff *isl_constraint_get_bound(
2631 __isl_keep isl_constraint *constraint,
2632 enum isl_dim_type type, int pos);
2634 The entire affine expression of the constraint can also be extracted
2635 using the following function.
2637 #include <isl/constraint.h>
2638 __isl_give isl_aff *isl_constraint_get_aff(
2639 __isl_keep isl_constraint *constraint);
2641 Conversely, an equality constraint equating
2642 the affine expression to zero or an inequality constraint enforcing
2643 the affine expression to be non-negative, can be constructed using
2645 __isl_give isl_constraint *isl_equality_from_aff(
2646 __isl_take isl_aff *aff);
2647 __isl_give isl_constraint *isl_inequality_from_aff(
2648 __isl_take isl_aff *aff);
2650 The expression can be inspected using
2652 #include <isl/aff.h>
2653 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2654 int isl_aff_dim(__isl_keep isl_aff *aff,
2655 enum isl_dim_type type);
2656 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2657 __isl_keep isl_aff *aff);
2658 __isl_give isl_local_space *isl_aff_get_local_space(
2659 __isl_keep isl_aff *aff);
2660 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2661 enum isl_dim_type type, unsigned pos);
2662 const char *isl_pw_aff_get_dim_name(
2663 __isl_keep isl_pw_aff *pa,
2664 enum isl_dim_type type, unsigned pos);
2665 __isl_give isl_id *isl_pw_aff_get_dim_id(
2666 __isl_keep isl_pw_aff *pa,
2667 enum isl_dim_type type, unsigned pos);
2668 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2670 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2671 enum isl_dim_type type, int pos, isl_int *v);
2672 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2674 __isl_give isl_aff *isl_aff_get_div(
2675 __isl_keep isl_aff *aff, int pos);
2677 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2678 int (*fn)(__isl_take isl_set *set,
2679 __isl_take isl_aff *aff,
2680 void *user), void *user);
2682 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2683 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2685 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2686 enum isl_dim_type type, unsigned first, unsigned n);
2687 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2688 enum isl_dim_type type, unsigned first, unsigned n);
2690 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2691 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2692 enum isl_dim_type type);
2693 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2695 It can be modified using
2697 #include <isl/aff.h>
2698 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2699 __isl_take isl_pw_aff *pwaff,
2700 enum isl_dim_type type, __isl_take isl_id *id);
2701 __isl_give isl_aff *isl_aff_set_dim_name(
2702 __isl_take isl_aff *aff, enum isl_dim_type type,
2703 unsigned pos, const char *s);
2704 __isl_give isl_aff *isl_aff_set_dim_id(
2705 __isl_take isl_aff *aff, enum isl_dim_type type,
2706 unsigned pos, __isl_take isl_id *id);
2707 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2708 __isl_take isl_pw_aff *pma,
2709 enum isl_dim_type type, unsigned pos,
2710 __isl_take isl_id *id);
2711 __isl_give isl_aff *isl_aff_set_constant(
2712 __isl_take isl_aff *aff, isl_int v);
2713 __isl_give isl_aff *isl_aff_set_constant_si(
2714 __isl_take isl_aff *aff, int v);
2715 __isl_give isl_aff *isl_aff_set_coefficient(
2716 __isl_take isl_aff *aff,
2717 enum isl_dim_type type, int pos, isl_int v);
2718 __isl_give isl_aff *isl_aff_set_coefficient_si(
2719 __isl_take isl_aff *aff,
2720 enum isl_dim_type type, int pos, int v);
2721 __isl_give isl_aff *isl_aff_set_denominator(
2722 __isl_take isl_aff *aff, isl_int v);
2724 __isl_give isl_aff *isl_aff_add_constant(
2725 __isl_take isl_aff *aff, isl_int v);
2726 __isl_give isl_aff *isl_aff_add_constant_si(
2727 __isl_take isl_aff *aff, int v);
2728 __isl_give isl_aff *isl_aff_add_coefficient(
2729 __isl_take isl_aff *aff,
2730 enum isl_dim_type type, int pos, isl_int v);
2731 __isl_give isl_aff *isl_aff_add_coefficient_si(
2732 __isl_take isl_aff *aff,
2733 enum isl_dim_type type, int pos, int v);
2735 __isl_give isl_aff *isl_aff_insert_dims(
2736 __isl_take isl_aff *aff,
2737 enum isl_dim_type type, unsigned first, unsigned n);
2738 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2739 __isl_take isl_pw_aff *pwaff,
2740 enum isl_dim_type type, unsigned first, unsigned n);
2741 __isl_give isl_aff *isl_aff_add_dims(
2742 __isl_take isl_aff *aff,
2743 enum isl_dim_type type, unsigned n);
2744 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2745 __isl_take isl_pw_aff *pwaff,
2746 enum isl_dim_type type, unsigned n);
2747 __isl_give isl_aff *isl_aff_drop_dims(
2748 __isl_take isl_aff *aff,
2749 enum isl_dim_type type, unsigned first, unsigned n);
2750 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2751 __isl_take isl_pw_aff *pwaff,
2752 enum isl_dim_type type, unsigned first, unsigned n);
2754 Note that the C<set_constant> and C<set_coefficient> functions
2755 set the I<numerator> of the constant or coefficient, while
2756 C<add_constant> and C<add_coefficient> add an integer value to
2757 the possibly rational constant or coefficient.
2759 To check whether an affine expressions is obviously zero
2760 or obviously equal to some other affine expression, use
2762 #include <isl/aff.h>
2763 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2764 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2765 __isl_keep isl_aff *aff2);
2766 int isl_pw_aff_plain_is_equal(
2767 __isl_keep isl_pw_aff *pwaff1,
2768 __isl_keep isl_pw_aff *pwaff2);
2772 #include <isl/aff.h>
2773 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2774 __isl_take isl_aff *aff2);
2775 __isl_give isl_pw_aff *isl_pw_aff_add(
2776 __isl_take isl_pw_aff *pwaff1,
2777 __isl_take isl_pw_aff *pwaff2);
2778 __isl_give isl_pw_aff *isl_pw_aff_min(
2779 __isl_take isl_pw_aff *pwaff1,
2780 __isl_take isl_pw_aff *pwaff2);
2781 __isl_give isl_pw_aff *isl_pw_aff_max(
2782 __isl_take isl_pw_aff *pwaff1,
2783 __isl_take isl_pw_aff *pwaff2);
2784 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2785 __isl_take isl_aff *aff2);
2786 __isl_give isl_pw_aff *isl_pw_aff_sub(
2787 __isl_take isl_pw_aff *pwaff1,
2788 __isl_take isl_pw_aff *pwaff2);
2789 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2790 __isl_give isl_pw_aff *isl_pw_aff_neg(
2791 __isl_take isl_pw_aff *pwaff);
2792 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2793 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2794 __isl_take isl_pw_aff *pwaff);
2795 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2796 __isl_give isl_pw_aff *isl_pw_aff_floor(
2797 __isl_take isl_pw_aff *pwaff);
2798 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2800 __isl_give isl_pw_aff *isl_pw_aff_mod(
2801 __isl_take isl_pw_aff *pwaff, isl_int mod);
2802 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2804 __isl_give isl_pw_aff *isl_pw_aff_scale(
2805 __isl_take isl_pw_aff *pwaff, isl_int f);
2806 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2808 __isl_give isl_aff *isl_aff_scale_down_ui(
2809 __isl_take isl_aff *aff, unsigned f);
2810 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2811 __isl_take isl_pw_aff *pwaff, isl_int f);
2813 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2814 __isl_take isl_pw_aff_list *list);
2815 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2816 __isl_take isl_pw_aff_list *list);
2818 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2819 __isl_take isl_pw_aff *pwqp);
2821 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2822 __isl_take isl_pw_aff *pwaff,
2823 __isl_take isl_space *model);
2825 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2826 __isl_take isl_set *context);
2827 __isl_give isl_pw_aff *isl_pw_aff_gist(
2828 __isl_take isl_pw_aff *pwaff,
2829 __isl_take isl_set *context);
2831 __isl_give isl_set *isl_pw_aff_domain(
2832 __isl_take isl_pw_aff *pwaff);
2833 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
2834 __isl_take isl_pw_aff *pa,
2835 __isl_take isl_set *set);
2837 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2838 __isl_take isl_aff *aff2);
2839 __isl_give isl_pw_aff *isl_pw_aff_mul(
2840 __isl_take isl_pw_aff *pwaff1,
2841 __isl_take isl_pw_aff *pwaff2);
2843 When multiplying two affine expressions, at least one of the two needs
2846 #include <isl/aff.h>
2847 __isl_give isl_basic_set *isl_aff_le_basic_set(
2848 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2849 __isl_give isl_basic_set *isl_aff_ge_basic_set(
2850 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2851 __isl_give isl_set *isl_pw_aff_eq_set(
2852 __isl_take isl_pw_aff *pwaff1,
2853 __isl_take isl_pw_aff *pwaff2);
2854 __isl_give isl_set *isl_pw_aff_ne_set(
2855 __isl_take isl_pw_aff *pwaff1,
2856 __isl_take isl_pw_aff *pwaff2);
2857 __isl_give isl_set *isl_pw_aff_le_set(
2858 __isl_take isl_pw_aff *pwaff1,
2859 __isl_take isl_pw_aff *pwaff2);
2860 __isl_give isl_set *isl_pw_aff_lt_set(
2861 __isl_take isl_pw_aff *pwaff1,
2862 __isl_take isl_pw_aff *pwaff2);
2863 __isl_give isl_set *isl_pw_aff_ge_set(
2864 __isl_take isl_pw_aff *pwaff1,
2865 __isl_take isl_pw_aff *pwaff2);
2866 __isl_give isl_set *isl_pw_aff_gt_set(
2867 __isl_take isl_pw_aff *pwaff1,
2868 __isl_take isl_pw_aff *pwaff2);
2870 __isl_give isl_set *isl_pw_aff_list_eq_set(
2871 __isl_take isl_pw_aff_list *list1,
2872 __isl_take isl_pw_aff_list *list2);
2873 __isl_give isl_set *isl_pw_aff_list_ne_set(
2874 __isl_take isl_pw_aff_list *list1,
2875 __isl_take isl_pw_aff_list *list2);
2876 __isl_give isl_set *isl_pw_aff_list_le_set(
2877 __isl_take isl_pw_aff_list *list1,
2878 __isl_take isl_pw_aff_list *list2);
2879 __isl_give isl_set *isl_pw_aff_list_lt_set(
2880 __isl_take isl_pw_aff_list *list1,
2881 __isl_take isl_pw_aff_list *list2);
2882 __isl_give isl_set *isl_pw_aff_list_ge_set(
2883 __isl_take isl_pw_aff_list *list1,
2884 __isl_take isl_pw_aff_list *list2);
2885 __isl_give isl_set *isl_pw_aff_list_gt_set(
2886 __isl_take isl_pw_aff_list *list1,
2887 __isl_take isl_pw_aff_list *list2);
2889 The function C<isl_aff_ge_basic_set> returns a basic set
2890 containing those elements in the shared space
2891 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
2892 The function C<isl_aff_ge_set> returns a set
2893 containing those elements in the shared domain
2894 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
2895 The functions operating on C<isl_pw_aff_list> apply the corresponding
2896 C<isl_pw_aff> function to each pair of elements in the two lists.
2898 #include <isl/aff.h>
2899 __isl_give isl_set *isl_pw_aff_nonneg_set(
2900 __isl_take isl_pw_aff *pwaff);
2901 __isl_give isl_set *isl_pw_aff_zero_set(
2902 __isl_take isl_pw_aff *pwaff);
2903 __isl_give isl_set *isl_pw_aff_non_zero_set(
2904 __isl_take isl_pw_aff *pwaff);
2906 The function C<isl_pw_aff_nonneg_set> returns a set
2907 containing those elements in the domain
2908 of C<pwaff> where C<pwaff> is non-negative.
2910 #include <isl/aff.h>
2911 __isl_give isl_pw_aff *isl_pw_aff_cond(
2912 __isl_take isl_set *cond,
2913 __isl_take isl_pw_aff *pwaff_true,
2914 __isl_take isl_pw_aff *pwaff_false);
2916 The function C<isl_pw_aff_cond> performs a conditional operator
2917 and returns an expression that is equal to C<pwaff_true>
2918 for elements in C<cond> and equal to C<pwaff_false> for elements
2921 #include <isl/aff.h>
2922 __isl_give isl_pw_aff *isl_pw_aff_union_min(
2923 __isl_take isl_pw_aff *pwaff1,
2924 __isl_take isl_pw_aff *pwaff2);
2925 __isl_give isl_pw_aff *isl_pw_aff_union_max(
2926 __isl_take isl_pw_aff *pwaff1,
2927 __isl_take isl_pw_aff *pwaff2);
2929 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
2930 expression with a domain that is the union of those of C<pwaff1> and
2931 C<pwaff2> and such that on each cell, the quasi-affine expression is
2932 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
2933 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
2934 associated expression is the defined one.
2936 An expression can be read from input using
2938 #include <isl/aff.h>
2939 __isl_give isl_aff *isl_aff_read_from_str(
2940 isl_ctx *ctx, const char *str);
2941 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
2942 isl_ctx *ctx, const char *str);
2944 An expression can be printed using
2946 #include <isl/aff.h>
2947 __isl_give isl_printer *isl_printer_print_aff(
2948 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
2950 __isl_give isl_printer *isl_printer_print_pw_aff(
2951 __isl_take isl_printer *p,
2952 __isl_keep isl_pw_aff *pwaff);
2954 =head2 Piecewise Multiple Quasi Affine Expressions
2956 An C<isl_multi_aff> object represents a sequence of
2957 zero or more affine expressions, all defined on the same domain space.
2959 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
2962 #include <isl/aff.h>
2963 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2964 __isl_take isl_space *space,
2965 __isl_take isl_aff_list *list);
2967 An empty piecewise multiple quasi affine expression (one with no cells) or
2968 a piecewise multiple quasi affine expression with a single cell can
2969 be created using the following functions.
2971 #include <isl/aff.h>
2972 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
2973 __isl_take isl_space *space);
2974 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
2975 __isl_take isl_set *set,
2976 __isl_take isl_multi_aff *maff);
2978 A piecewise multiple quasi affine expression can also be initialized
2979 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
2980 and the C<isl_map> is single-valued.
2982 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
2983 __isl_take isl_set *set);
2984 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
2985 __isl_take isl_map *map);
2987 Multiple quasi affine expressions can be copied and freed using
2989 #include <isl/aff.h>
2990 __isl_give isl_multi_aff *isl_multi_aff_copy(
2991 __isl_keep isl_multi_aff *maff);
2992 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
2994 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
2995 __isl_keep isl_pw_multi_aff *pma);
2996 void *isl_pw_multi_aff_free(
2997 __isl_take isl_pw_multi_aff *pma);
2999 The expression can be inspected using
3001 #include <isl/aff.h>
3002 isl_ctx *isl_multi_aff_get_ctx(
3003 __isl_keep isl_multi_aff *maff);
3004 isl_ctx *isl_pw_multi_aff_get_ctx(
3005 __isl_keep isl_pw_multi_aff *pma);
3006 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3007 enum isl_dim_type type);
3008 unsigned isl_pw_multi_aff_dim(
3009 __isl_keep isl_pw_multi_aff *pma,
3010 enum isl_dim_type type);
3011 __isl_give isl_aff *isl_multi_aff_get_aff(
3012 __isl_keep isl_multi_aff *multi, int pos);
3013 const char *isl_pw_multi_aff_get_dim_name(
3014 __isl_keep isl_pw_multi_aff *pma,
3015 enum isl_dim_type type, unsigned pos);
3016 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3017 __isl_keep isl_pw_multi_aff *pma,
3018 enum isl_dim_type type, unsigned pos);
3019 const char *isl_multi_aff_get_tuple_name(
3020 __isl_keep isl_multi_aff *multi,
3021 enum isl_dim_type type);
3022 const char *isl_pw_multi_aff_get_tuple_name(
3023 __isl_keep isl_pw_multi_aff *pma,
3024 enum isl_dim_type type);
3025 int isl_pw_multi_aff_has_tuple_id(
3026 __isl_keep isl_pw_multi_aff *pma,
3027 enum isl_dim_type type);
3028 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3029 __isl_keep isl_pw_multi_aff *pma,
3030 enum isl_dim_type type);
3032 int isl_pw_multi_aff_foreach_piece(
3033 __isl_keep isl_pw_multi_aff *pma,
3034 int (*fn)(__isl_take isl_set *set,
3035 __isl_take isl_multi_aff *maff,
3036 void *user), void *user);
3038 It can be modified using
3040 #include <isl/aff.h>
3041 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3042 __isl_take isl_multi_aff *maff,
3043 enum isl_dim_type type, unsigned pos, const char *s);
3044 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3045 __isl_take isl_pw_multi_aff *pma,
3046 enum isl_dim_type type, __isl_take isl_id *id);
3048 To check whether two multiple affine expressions are
3049 obviously equal to each other, use
3051 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3052 __isl_keep isl_multi_aff *maff2);
3053 int isl_pw_multi_aff_plain_is_equal(
3054 __isl_keep isl_pw_multi_aff *pma1,
3055 __isl_keep isl_pw_multi_aff *pma2);
3059 #include <isl/aff.h>
3060 __isl_give isl_multi_aff *isl_multi_aff_add(
3061 __isl_take isl_multi_aff *maff1,
3062 __isl_take isl_multi_aff *maff2);
3063 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3064 __isl_take isl_pw_multi_aff *pma1,
3065 __isl_take isl_pw_multi_aff *pma2);
3066 __isl_give isl_multi_aff *isl_multi_aff_scale(
3067 __isl_take isl_multi_aff *maff,
3069 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3070 __isl_take isl_pw_multi_aff *pma,
3071 __isl_take isl_set *set);
3072 __isl_give isl_multi_aff *isl_multi_aff_lift(
3073 __isl_take isl_multi_aff *maff,
3074 __isl_give isl_local_space **ls);
3075 __isl_give isl_multi_aff *isl_multi_aff_gist(
3076 __isl_take isl_multi_aff *maff,
3077 __isl_take isl_set *context);
3079 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3080 then it is assigned the local space that lies at the basis of
3081 the lifting applied.
3083 An expression can be read from input using
3085 #include <isl/aff.h>
3086 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3087 isl_ctx *ctx, const char *str);
3088 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3089 isl_ctx *ctx, const char *str);
3091 An expression can be printed using
3093 #include <isl/aff.h>
3094 __isl_give isl_printer *isl_printer_print_multi_aff(
3095 __isl_take isl_printer *p,
3096 __isl_keep isl_multi_aff *maff);
3097 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3098 __isl_take isl_printer *p,
3099 __isl_keep isl_pw_multi_aff *pma);
3103 Points are elements of a set. They can be used to construct
3104 simple sets (boxes) or they can be used to represent the
3105 individual elements of a set.
3106 The zero point (the origin) can be created using
3108 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3110 The coordinates of a point can be inspected, set and changed
3113 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
3114 enum isl_dim_type type, int pos, isl_int *v);
3115 __isl_give isl_point *isl_point_set_coordinate(
3116 __isl_take isl_point *pnt,
3117 enum isl_dim_type type, int pos, isl_int v);
3119 __isl_give isl_point *isl_point_add_ui(
3120 __isl_take isl_point *pnt,
3121 enum isl_dim_type type, int pos, unsigned val);
3122 __isl_give isl_point *isl_point_sub_ui(
3123 __isl_take isl_point *pnt,
3124 enum isl_dim_type type, int pos, unsigned val);
3126 Other properties can be obtained using
3128 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3130 Points can be copied or freed using
3132 __isl_give isl_point *isl_point_copy(
3133 __isl_keep isl_point *pnt);
3134 void isl_point_free(__isl_take isl_point *pnt);
3136 A singleton set can be created from a point using
3138 __isl_give isl_basic_set *isl_basic_set_from_point(
3139 __isl_take isl_point *pnt);
3140 __isl_give isl_set *isl_set_from_point(
3141 __isl_take isl_point *pnt);
3143 and a box can be created from two opposite extremal points using
3145 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3146 __isl_take isl_point *pnt1,
3147 __isl_take isl_point *pnt2);
3148 __isl_give isl_set *isl_set_box_from_points(
3149 __isl_take isl_point *pnt1,
3150 __isl_take isl_point *pnt2);
3152 All elements of a B<bounded> (union) set can be enumerated using
3153 the following functions.
3155 int isl_set_foreach_point(__isl_keep isl_set *set,
3156 int (*fn)(__isl_take isl_point *pnt, void *user),
3158 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3159 int (*fn)(__isl_take isl_point *pnt, void *user),
3162 The function C<fn> is called for each integer point in
3163 C<set> with as second argument the last argument of
3164 the C<isl_set_foreach_point> call. The function C<fn>
3165 should return C<0> on success and C<-1> on failure.
3166 In the latter case, C<isl_set_foreach_point> will stop
3167 enumerating and return C<-1> as well.
3168 If the enumeration is performed successfully and to completion,
3169 then C<isl_set_foreach_point> returns C<0>.
3171 To obtain a single point of a (basic) set, use
3173 __isl_give isl_point *isl_basic_set_sample_point(
3174 __isl_take isl_basic_set *bset);
3175 __isl_give isl_point *isl_set_sample_point(
3176 __isl_take isl_set *set);
3178 If C<set> does not contain any (integer) points, then the
3179 resulting point will be ``void'', a property that can be
3182 int isl_point_is_void(__isl_keep isl_point *pnt);
3184 =head2 Piecewise Quasipolynomials
3186 A piecewise quasipolynomial is a particular kind of function that maps
3187 a parametric point to a rational value.
3188 More specifically, a quasipolynomial is a polynomial expression in greatest
3189 integer parts of affine expressions of parameters and variables.
3190 A piecewise quasipolynomial is a subdivision of a given parametric
3191 domain into disjoint cells with a quasipolynomial associated to
3192 each cell. The value of the piecewise quasipolynomial at a given
3193 point is the value of the quasipolynomial associated to the cell
3194 that contains the point. Outside of the union of cells,
3195 the value is assumed to be zero.
3196 For example, the piecewise quasipolynomial
3198 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3200 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3201 A given piecewise quasipolynomial has a fixed domain dimension.
3202 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3203 defined over different domains.
3204 Piecewise quasipolynomials are mainly used by the C<barvinok>
3205 library for representing the number of elements in a parametric set or map.
3206 For example, the piecewise quasipolynomial above represents
3207 the number of points in the map
3209 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3211 =head3 Printing (Piecewise) Quasipolynomials
3213 Quasipolynomials and piecewise quasipolynomials can be printed
3214 using the following functions.
3216 __isl_give isl_printer *isl_printer_print_qpolynomial(
3217 __isl_take isl_printer *p,
3218 __isl_keep isl_qpolynomial *qp);
3220 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3221 __isl_take isl_printer *p,
3222 __isl_keep isl_pw_qpolynomial *pwqp);
3224 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3225 __isl_take isl_printer *p,
3226 __isl_keep isl_union_pw_qpolynomial *upwqp);
3228 The output format of the printer
3229 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3230 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3232 In case of printing in C<ISL_FORMAT_C>, the user may want
3233 to set the names of all dimensions
3235 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3236 __isl_take isl_qpolynomial *qp,
3237 enum isl_dim_type type, unsigned pos,
3239 __isl_give isl_pw_qpolynomial *
3240 isl_pw_qpolynomial_set_dim_name(
3241 __isl_take isl_pw_qpolynomial *pwqp,
3242 enum isl_dim_type type, unsigned pos,
3245 =head3 Creating New (Piecewise) Quasipolynomials
3247 Some simple quasipolynomials can be created using the following functions.
3248 More complicated quasipolynomials can be created by applying
3249 operations such as addition and multiplication
3250 on the resulting quasipolynomials
3252 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3253 __isl_take isl_space *domain);
3254 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3255 __isl_take isl_space *domain);
3256 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3257 __isl_take isl_space *domain);
3258 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3259 __isl_take isl_space *domain);
3260 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3261 __isl_take isl_space *domain);
3262 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3263 __isl_take isl_space *domain,
3264 const isl_int n, const isl_int d);
3265 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3266 __isl_take isl_space *domain,
3267 enum isl_dim_type type, unsigned pos);
3268 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3269 __isl_take isl_aff *aff);
3271 Note that the space in which a quasipolynomial lives is a map space
3272 with a one-dimensional range. The C<domain> argument in some of
3273 the functions above corresponds to the domain of this map space.
3275 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3276 with a single cell can be created using the following functions.
3277 Multiple of these single cell piecewise quasipolynomials can
3278 be combined to create more complicated piecewise quasipolynomials.
3280 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3281 __isl_take isl_space *space);
3282 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3283 __isl_take isl_set *set,
3284 __isl_take isl_qpolynomial *qp);
3285 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3286 __isl_take isl_qpolynomial *qp);
3287 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3288 __isl_take isl_pw_aff *pwaff);
3290 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3291 __isl_take isl_space *space);
3292 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3293 __isl_take isl_pw_qpolynomial *pwqp);
3294 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3295 __isl_take isl_union_pw_qpolynomial *upwqp,
3296 __isl_take isl_pw_qpolynomial *pwqp);
3298 Quasipolynomials can be copied and freed again using the following
3301 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3302 __isl_keep isl_qpolynomial *qp);
3303 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3305 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3306 __isl_keep isl_pw_qpolynomial *pwqp);
3307 void *isl_pw_qpolynomial_free(
3308 __isl_take isl_pw_qpolynomial *pwqp);
3310 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3311 __isl_keep isl_union_pw_qpolynomial *upwqp);
3312 void isl_union_pw_qpolynomial_free(
3313 __isl_take isl_union_pw_qpolynomial *upwqp);
3315 =head3 Inspecting (Piecewise) Quasipolynomials
3317 To iterate over all piecewise quasipolynomials in a union
3318 piecewise quasipolynomial, use the following function
3320 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3321 __isl_keep isl_union_pw_qpolynomial *upwqp,
3322 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3325 To extract the piecewise quasipolynomial in a given space from a union, use
3327 __isl_give isl_pw_qpolynomial *
3328 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3329 __isl_keep isl_union_pw_qpolynomial *upwqp,
3330 __isl_take isl_space *space);
3332 To iterate over the cells in a piecewise quasipolynomial,
3333 use either of the following two functions
3335 int isl_pw_qpolynomial_foreach_piece(
3336 __isl_keep isl_pw_qpolynomial *pwqp,
3337 int (*fn)(__isl_take isl_set *set,
3338 __isl_take isl_qpolynomial *qp,
3339 void *user), void *user);
3340 int isl_pw_qpolynomial_foreach_lifted_piece(
3341 __isl_keep isl_pw_qpolynomial *pwqp,
3342 int (*fn)(__isl_take isl_set *set,
3343 __isl_take isl_qpolynomial *qp,
3344 void *user), void *user);
3346 As usual, the function C<fn> should return C<0> on success
3347 and C<-1> on failure. The difference between
3348 C<isl_pw_qpolynomial_foreach_piece> and
3349 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3350 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3351 compute unique representations for all existentially quantified
3352 variables and then turn these existentially quantified variables
3353 into extra set variables, adapting the associated quasipolynomial
3354 accordingly. This means that the C<set> passed to C<fn>
3355 will not have any existentially quantified variables, but that
3356 the dimensions of the sets may be different for different
3357 invocations of C<fn>.
3359 To iterate over all terms in a quasipolynomial,
3362 int isl_qpolynomial_foreach_term(
3363 __isl_keep isl_qpolynomial *qp,
3364 int (*fn)(__isl_take isl_term *term,
3365 void *user), void *user);
3367 The terms themselves can be inspected and freed using
3370 unsigned isl_term_dim(__isl_keep isl_term *term,
3371 enum isl_dim_type type);
3372 void isl_term_get_num(__isl_keep isl_term *term,
3374 void isl_term_get_den(__isl_keep isl_term *term,
3376 int isl_term_get_exp(__isl_keep isl_term *term,
3377 enum isl_dim_type type, unsigned pos);
3378 __isl_give isl_aff *isl_term_get_div(
3379 __isl_keep isl_term *term, unsigned pos);
3380 void isl_term_free(__isl_take isl_term *term);
3382 Each term is a product of parameters, set variables and
3383 integer divisions. The function C<isl_term_get_exp>
3384 returns the exponent of a given dimensions in the given term.
3385 The C<isl_int>s in the arguments of C<isl_term_get_num>
3386 and C<isl_term_get_den> need to have been initialized
3387 using C<isl_int_init> before calling these functions.
3389 =head3 Properties of (Piecewise) Quasipolynomials
3391 To check whether a quasipolynomial is actually a constant,
3392 use the following function.
3394 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3395 isl_int *n, isl_int *d);
3397 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3398 then the numerator and denominator of the constant
3399 are returned in C<*n> and C<*d>, respectively.
3401 To check whether two union piecewise quasipolynomials are
3402 obviously equal, use
3404 int isl_union_pw_qpolynomial_plain_is_equal(
3405 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3406 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3408 =head3 Operations on (Piecewise) Quasipolynomials
3410 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3411 __isl_take isl_qpolynomial *qp, isl_int v);
3412 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3413 __isl_take isl_qpolynomial *qp);
3414 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3415 __isl_take isl_qpolynomial *qp1,
3416 __isl_take isl_qpolynomial *qp2);
3417 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3418 __isl_take isl_qpolynomial *qp1,
3419 __isl_take isl_qpolynomial *qp2);
3420 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3421 __isl_take isl_qpolynomial *qp1,
3422 __isl_take isl_qpolynomial *qp2);
3423 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3424 __isl_take isl_qpolynomial *qp, unsigned exponent);
3426 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3427 __isl_take isl_pw_qpolynomial *pwqp1,
3428 __isl_take isl_pw_qpolynomial *pwqp2);
3429 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3430 __isl_take isl_pw_qpolynomial *pwqp1,
3431 __isl_take isl_pw_qpolynomial *pwqp2);
3432 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3433 __isl_take isl_pw_qpolynomial *pwqp1,
3434 __isl_take isl_pw_qpolynomial *pwqp2);
3435 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3436 __isl_take isl_pw_qpolynomial *pwqp);
3437 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3438 __isl_take isl_pw_qpolynomial *pwqp1,
3439 __isl_take isl_pw_qpolynomial *pwqp2);
3440 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3441 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3443 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3444 __isl_take isl_union_pw_qpolynomial *upwqp1,
3445 __isl_take isl_union_pw_qpolynomial *upwqp2);
3446 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3447 __isl_take isl_union_pw_qpolynomial *upwqp1,
3448 __isl_take isl_union_pw_qpolynomial *upwqp2);
3449 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3450 __isl_take isl_union_pw_qpolynomial *upwqp1,
3451 __isl_take isl_union_pw_qpolynomial *upwqp2);
3453 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3454 __isl_take isl_pw_qpolynomial *pwqp,
3455 __isl_take isl_point *pnt);
3457 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3458 __isl_take isl_union_pw_qpolynomial *upwqp,
3459 __isl_take isl_point *pnt);
3461 __isl_give isl_set *isl_pw_qpolynomial_domain(
3462 __isl_take isl_pw_qpolynomial *pwqp);
3463 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3464 __isl_take isl_pw_qpolynomial *pwpq,
3465 __isl_take isl_set *set);
3467 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3468 __isl_take isl_union_pw_qpolynomial *upwqp);
3469 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3470 __isl_take isl_union_pw_qpolynomial *upwpq,
3471 __isl_take isl_union_set *uset);
3473 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3474 __isl_take isl_qpolynomial *qp,
3475 __isl_take isl_space *model);
3477 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3478 __isl_take isl_qpolynomial *qp);
3479 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3480 __isl_take isl_pw_qpolynomial *pwqp);
3482 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3483 __isl_take isl_union_pw_qpolynomial *upwqp);
3485 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3486 __isl_take isl_qpolynomial *qp,
3487 __isl_take isl_set *context);
3489 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3490 __isl_take isl_pw_qpolynomial *pwqp,
3491 __isl_take isl_set *context);
3493 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3494 __isl_take isl_union_pw_qpolynomial *upwqp,
3495 __isl_take isl_union_set *context);
3497 The gist operation applies the gist operation to each of
3498 the cells in the domain of the input piecewise quasipolynomial.
3499 The context is also exploited
3500 to simplify the quasipolynomials associated to each cell.
3502 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3503 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3504 __isl_give isl_union_pw_qpolynomial *
3505 isl_union_pw_qpolynomial_to_polynomial(
3506 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3508 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3509 the polynomial will be an overapproximation. If C<sign> is negative,
3510 it will be an underapproximation. If C<sign> is zero, the approximation
3511 will lie somewhere in between.
3513 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3515 A piecewise quasipolynomial reduction is a piecewise
3516 reduction (or fold) of quasipolynomials.
3517 In particular, the reduction can be maximum or a minimum.
3518 The objects are mainly used to represent the result of
3519 an upper or lower bound on a quasipolynomial over its domain,
3520 i.e., as the result of the following function.
3522 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3523 __isl_take isl_pw_qpolynomial *pwqp,
3524 enum isl_fold type, int *tight);
3526 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3527 __isl_take isl_union_pw_qpolynomial *upwqp,
3528 enum isl_fold type, int *tight);
3530 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3531 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3532 is the returned bound is known be tight, i.e., for each value
3533 of the parameters there is at least
3534 one element in the domain that reaches the bound.
3535 If the domain of C<pwqp> is not wrapping, then the bound is computed
3536 over all elements in that domain and the result has a purely parametric
3537 domain. If the domain of C<pwqp> is wrapping, then the bound is
3538 computed over the range of the wrapped relation. The domain of the
3539 wrapped relation becomes the domain of the result.
3541 A (piecewise) quasipolynomial reduction can be copied or freed using the
3542 following functions.
3544 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3545 __isl_keep isl_qpolynomial_fold *fold);
3546 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3547 __isl_keep isl_pw_qpolynomial_fold *pwf);
3548 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3549 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3550 void isl_qpolynomial_fold_free(
3551 __isl_take isl_qpolynomial_fold *fold);
3552 void *isl_pw_qpolynomial_fold_free(
3553 __isl_take isl_pw_qpolynomial_fold *pwf);
3554 void isl_union_pw_qpolynomial_fold_free(
3555 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3557 =head3 Printing Piecewise Quasipolynomial Reductions
3559 Piecewise quasipolynomial reductions can be printed
3560 using the following function.
3562 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3563 __isl_take isl_printer *p,
3564 __isl_keep isl_pw_qpolynomial_fold *pwf);
3565 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3566 __isl_take isl_printer *p,
3567 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3569 For C<isl_printer_print_pw_qpolynomial_fold>,
3570 output format of the printer
3571 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3572 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3573 output format of the printer
3574 needs to be set to C<ISL_FORMAT_ISL>.
3575 In case of printing in C<ISL_FORMAT_C>, the user may want
3576 to set the names of all dimensions
3578 __isl_give isl_pw_qpolynomial_fold *
3579 isl_pw_qpolynomial_fold_set_dim_name(
3580 __isl_take isl_pw_qpolynomial_fold *pwf,
3581 enum isl_dim_type type, unsigned pos,
3584 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3586 To iterate over all piecewise quasipolynomial reductions in a union
3587 piecewise quasipolynomial reduction, use the following function
3589 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3590 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3591 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3592 void *user), void *user);
3594 To iterate over the cells in a piecewise quasipolynomial reduction,
3595 use either of the following two functions
3597 int isl_pw_qpolynomial_fold_foreach_piece(
3598 __isl_keep isl_pw_qpolynomial_fold *pwf,
3599 int (*fn)(__isl_take isl_set *set,
3600 __isl_take isl_qpolynomial_fold *fold,
3601 void *user), void *user);
3602 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3603 __isl_keep isl_pw_qpolynomial_fold *pwf,
3604 int (*fn)(__isl_take isl_set *set,
3605 __isl_take isl_qpolynomial_fold *fold,
3606 void *user), void *user);
3608 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3609 of the difference between these two functions.
3611 To iterate over all quasipolynomials in a reduction, use
3613 int isl_qpolynomial_fold_foreach_qpolynomial(
3614 __isl_keep isl_qpolynomial_fold *fold,
3615 int (*fn)(__isl_take isl_qpolynomial *qp,
3616 void *user), void *user);
3618 =head3 Properties of Piecewise Quasipolynomial Reductions
3620 To check whether two union piecewise quasipolynomial reductions are
3621 obviously equal, use
3623 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3624 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3625 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3627 =head3 Operations on Piecewise Quasipolynomial Reductions
3629 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3630 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3632 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3633 __isl_take isl_pw_qpolynomial_fold *pwf1,
3634 __isl_take isl_pw_qpolynomial_fold *pwf2);
3636 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3637 __isl_take isl_pw_qpolynomial_fold *pwf1,
3638 __isl_take isl_pw_qpolynomial_fold *pwf2);
3640 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3641 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3642 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3644 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3645 __isl_take isl_pw_qpolynomial_fold *pwf,
3646 __isl_take isl_point *pnt);
3648 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3649 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3650 __isl_take isl_point *pnt);
3652 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3653 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3654 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3655 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3656 __isl_take isl_union_set *uset);
3658 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3659 __isl_take isl_pw_qpolynomial_fold *pwf);
3661 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3662 __isl_take isl_pw_qpolynomial_fold *pwf);
3664 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3665 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3667 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3668 __isl_take isl_pw_qpolynomial_fold *pwf,
3669 __isl_take isl_set *context);
3671 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3672 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3673 __isl_take isl_union_set *context);
3675 The gist operation applies the gist operation to each of
3676 the cells in the domain of the input piecewise quasipolynomial reduction.
3677 In future, the operation will also exploit the context
3678 to simplify the quasipolynomial reductions associated to each cell.
3680 __isl_give isl_pw_qpolynomial_fold *
3681 isl_set_apply_pw_qpolynomial_fold(
3682 __isl_take isl_set *set,
3683 __isl_take isl_pw_qpolynomial_fold *pwf,
3685 __isl_give isl_pw_qpolynomial_fold *
3686 isl_map_apply_pw_qpolynomial_fold(
3687 __isl_take isl_map *map,
3688 __isl_take isl_pw_qpolynomial_fold *pwf,
3690 __isl_give isl_union_pw_qpolynomial_fold *
3691 isl_union_set_apply_union_pw_qpolynomial_fold(
3692 __isl_take isl_union_set *uset,
3693 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3695 __isl_give isl_union_pw_qpolynomial_fold *
3696 isl_union_map_apply_union_pw_qpolynomial_fold(
3697 __isl_take isl_union_map *umap,
3698 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3701 The functions taking a map
3702 compose the given map with the given piecewise quasipolynomial reduction.
3703 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3704 over all elements in the intersection of the range of the map
3705 and the domain of the piecewise quasipolynomial reduction
3706 as a function of an element in the domain of the map.
3707 The functions taking a set compute a bound over all elements in the
3708 intersection of the set and the domain of the
3709 piecewise quasipolynomial reduction.
3711 =head2 Dependence Analysis
3713 C<isl> contains specialized functionality for performing
3714 array dataflow analysis. That is, given a I<sink> access relation
3715 and a collection of possible I<source> access relations,
3716 C<isl> can compute relations that describe
3717 for each iteration of the sink access, which iteration
3718 of which of the source access relations was the last
3719 to access the same data element before the given iteration
3721 To compute standard flow dependences, the sink should be
3722 a read, while the sources should be writes.
3723 If any of the source accesses are marked as being I<may>
3724 accesses, then there will be a dependence to the last
3725 I<must> access B<and> to any I<may> access that follows
3726 this last I<must> access.
3727 In particular, if I<all> sources are I<may> accesses,
3728 then memory based dependence analysis is performed.
3729 If, on the other hand, all sources are I<must> accesses,
3730 then value based dependence analysis is performed.
3732 #include <isl/flow.h>
3734 typedef int (*isl_access_level_before)(void *first, void *second);
3736 __isl_give isl_access_info *isl_access_info_alloc(
3737 __isl_take isl_map *sink,
3738 void *sink_user, isl_access_level_before fn,
3740 __isl_give isl_access_info *isl_access_info_add_source(
3741 __isl_take isl_access_info *acc,
3742 __isl_take isl_map *source, int must,
3744 void isl_access_info_free(__isl_take isl_access_info *acc);
3746 __isl_give isl_flow *isl_access_info_compute_flow(
3747 __isl_take isl_access_info *acc);
3749 int isl_flow_foreach(__isl_keep isl_flow *deps,
3750 int (*fn)(__isl_take isl_map *dep, int must,
3751 void *dep_user, void *user),
3753 __isl_give isl_map *isl_flow_get_no_source(
3754 __isl_keep isl_flow *deps, int must);
3755 void isl_flow_free(__isl_take isl_flow *deps);
3757 The function C<isl_access_info_compute_flow> performs the actual
3758 dependence analysis. The other functions are used to construct
3759 the input for this function or to read off the output.
3761 The input is collected in an C<isl_access_info>, which can
3762 be created through a call to C<isl_access_info_alloc>.
3763 The arguments to this functions are the sink access relation
3764 C<sink>, a token C<sink_user> used to identify the sink
3765 access to the user, a callback function for specifying the
3766 relative order of source and sink accesses, and the number
3767 of source access relations that will be added.
3768 The callback function has type C<int (*)(void *first, void *second)>.
3769 The function is called with two user supplied tokens identifying
3770 either a source or the sink and it should return the shared nesting
3771 level and the relative order of the two accesses.
3772 In particular, let I<n> be the number of loops shared by
3773 the two accesses. If C<first> precedes C<second> textually,
3774 then the function should return I<2 * n + 1>; otherwise,
3775 it should return I<2 * n>.
3776 The sources can be added to the C<isl_access_info> by performing
3777 (at most) C<max_source> calls to C<isl_access_info_add_source>.
3778 C<must> indicates whether the source is a I<must> access
3779 or a I<may> access. Note that a multi-valued access relation
3780 should only be marked I<must> if every iteration in the domain
3781 of the relation accesses I<all> elements in its image.
3782 The C<source_user> token is again used to identify
3783 the source access. The range of the source access relation
3784 C<source> should have the same dimension as the range
3785 of the sink access relation.
3786 The C<isl_access_info_free> function should usually not be
3787 called explicitly, because it is called implicitly by
3788 C<isl_access_info_compute_flow>.
3790 The result of the dependence analysis is collected in an
3791 C<isl_flow>. There may be elements of
3792 the sink access for which no preceding source access could be
3793 found or for which all preceding sources are I<may> accesses.
3794 The relations containing these elements can be obtained through
3795 calls to C<isl_flow_get_no_source>, the first with C<must> set
3796 and the second with C<must> unset.
3797 In the case of standard flow dependence analysis,
3798 with the sink a read and the sources I<must> writes,
3799 the first relation corresponds to the reads from uninitialized
3800 array elements and the second relation is empty.
3801 The actual flow dependences can be extracted using
3802 C<isl_flow_foreach>. This function will call the user-specified
3803 callback function C<fn> for each B<non-empty> dependence between
3804 a source and the sink. The callback function is called
3805 with four arguments, the actual flow dependence relation
3806 mapping source iterations to sink iterations, a boolean that
3807 indicates whether it is a I<must> or I<may> dependence, a token
3808 identifying the source and an additional C<void *> with value
3809 equal to the third argument of the C<isl_flow_foreach> call.
3810 A dependence is marked I<must> if it originates from a I<must>
3811 source and if it is not followed by any I<may> sources.
3813 After finishing with an C<isl_flow>, the user should call
3814 C<isl_flow_free> to free all associated memory.
3816 A higher-level interface to dependence analysis is provided
3817 by the following function.
3819 #include <isl/flow.h>
3821 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3822 __isl_take isl_union_map *must_source,
3823 __isl_take isl_union_map *may_source,
3824 __isl_take isl_union_map *schedule,
3825 __isl_give isl_union_map **must_dep,
3826 __isl_give isl_union_map **may_dep,
3827 __isl_give isl_union_map **must_no_source,
3828 __isl_give isl_union_map **may_no_source);
3830 The arrays are identified by the tuple names of the ranges
3831 of the accesses. The iteration domains by the tuple names
3832 of the domains of the accesses and of the schedule.
3833 The relative order of the iteration domains is given by the
3834 schedule. The relations returned through C<must_no_source>
3835 and C<may_no_source> are subsets of C<sink>.
3836 Any of C<must_dep>, C<may_dep>, C<must_no_source>
3837 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
3838 any of the other arguments is treated as an error.
3842 B<The functionality described in this section is fairly new
3843 and may be subject to change.>
3845 The following function can be used to compute a schedule
3846 for a union of domains. The generated schedule respects
3847 all C<validity> dependences. That is, all dependence distances
3848 over these dependences in the scheduled space are lexicographically
3849 positive. The generated schedule schedule also tries to minimize
3850 the dependence distances over C<proximity> dependences.
3851 Moreover, it tries to obtain sequences (bands) of schedule dimensions
3852 for groups of domains where the dependence distances have only
3853 non-negative values.
3854 The algorithm used to construct the schedule is similar to that
3857 #include <isl/schedule.h>
3858 __isl_give isl_schedule *isl_union_set_compute_schedule(
3859 __isl_take isl_union_set *domain,
3860 __isl_take isl_union_map *validity,
3861 __isl_take isl_union_map *proximity);
3862 void *isl_schedule_free(__isl_take isl_schedule *sched);
3864 A mapping from the domains to the scheduled space can be obtained
3865 from an C<isl_schedule> using the following function.
3867 __isl_give isl_union_map *isl_schedule_get_map(
3868 __isl_keep isl_schedule *sched);
3870 A representation of the schedule can be printed using
3872 __isl_give isl_printer *isl_printer_print_schedule(
3873 __isl_take isl_printer *p,
3874 __isl_keep isl_schedule *schedule);
3876 A representation of the schedule as a forest of bands can be obtained
3877 using the following function.
3879 __isl_give isl_band_list *isl_schedule_get_band_forest(
3880 __isl_keep isl_schedule *schedule);
3882 The list can be manipulated as explained in L<"Lists">.
3883 The bands inside the list can be copied and freed using the following
3886 #include <isl/band.h>
3887 __isl_give isl_band *isl_band_copy(
3888 __isl_keep isl_band *band);
3889 void *isl_band_free(__isl_take isl_band *band);
3891 Each band contains zero or more scheduling dimensions.
3892 These are referred to as the members of the band.
3893 The section of the schedule that corresponds to the band is
3894 referred to as the partial schedule of the band.
3895 For those nodes that participate in a band, the outer scheduling
3896 dimensions form the prefix schedule, while the inner scheduling
3897 dimensions form the suffix schedule.
3898 That is, if we take a cut of the band forest, then the union of
3899 the concatenations of the prefix, partial and suffix schedules of
3900 each band in the cut is equal to the entire schedule (modulo
3901 some possible padding at the end with zero scheduling dimensions).
3902 The properties of a band can be inspected using the following functions.
3904 #include <isl/band.h>
3905 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
3907 int isl_band_has_children(__isl_keep isl_band *band);
3908 __isl_give isl_band_list *isl_band_get_children(
3909 __isl_keep isl_band *band);
3911 __isl_give isl_union_map *isl_band_get_prefix_schedule(
3912 __isl_keep isl_band *band);
3913 __isl_give isl_union_map *isl_band_get_partial_schedule(
3914 __isl_keep isl_band *band);
3915 __isl_give isl_union_map *isl_band_get_suffix_schedule(
3916 __isl_keep isl_band *band);
3918 int isl_band_n_member(__isl_keep isl_band *band);
3919 int isl_band_member_is_zero_distance(
3920 __isl_keep isl_band *band, int pos);
3922 Note that a scheduling dimension is considered to be ``zero
3923 distance'' if it does not carry any proximity dependences
3925 That is, if the dependence distances of the proximity
3926 dependences are all zero in that direction (for fixed
3927 iterations of outer bands).
3929 A representation of the band can be printed using
3931 #include <isl/band.h>
3932 __isl_give isl_printer *isl_printer_print_band(
3933 __isl_take isl_printer *p,
3934 __isl_keep isl_band *band);
3936 =head2 Parametric Vertex Enumeration
3938 The parametric vertex enumeration described in this section
3939 is mainly intended to be used internally and by the C<barvinok>
3942 #include <isl/vertices.h>
3943 __isl_give isl_vertices *isl_basic_set_compute_vertices(
3944 __isl_keep isl_basic_set *bset);
3946 The function C<isl_basic_set_compute_vertices> performs the
3947 actual computation of the parametric vertices and the chamber
3948 decomposition and store the result in an C<isl_vertices> object.
3949 This information can be queried by either iterating over all
3950 the vertices or iterating over all the chambers or cells
3951 and then iterating over all vertices that are active on the chamber.
3953 int isl_vertices_foreach_vertex(
3954 __isl_keep isl_vertices *vertices,
3955 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3958 int isl_vertices_foreach_cell(
3959 __isl_keep isl_vertices *vertices,
3960 int (*fn)(__isl_take isl_cell *cell, void *user),
3962 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
3963 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3966 Other operations that can be performed on an C<isl_vertices> object are
3969 isl_ctx *isl_vertices_get_ctx(
3970 __isl_keep isl_vertices *vertices);
3971 int isl_vertices_get_n_vertices(
3972 __isl_keep isl_vertices *vertices);
3973 void isl_vertices_free(__isl_take isl_vertices *vertices);
3975 Vertices can be inspected and destroyed using the following functions.
3977 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
3978 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
3979 __isl_give isl_basic_set *isl_vertex_get_domain(
3980 __isl_keep isl_vertex *vertex);
3981 __isl_give isl_basic_set *isl_vertex_get_expr(
3982 __isl_keep isl_vertex *vertex);
3983 void isl_vertex_free(__isl_take isl_vertex *vertex);
3985 C<isl_vertex_get_expr> returns a singleton parametric set describing
3986 the vertex, while C<isl_vertex_get_domain> returns the activity domain
3988 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
3989 B<rational> basic sets, so they should mainly be used for inspection
3990 and should not be mixed with integer sets.
3992 Chambers can be inspected and destroyed using the following functions.
3994 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
3995 __isl_give isl_basic_set *isl_cell_get_domain(
3996 __isl_keep isl_cell *cell);
3997 void isl_cell_free(__isl_take isl_cell *cell);
4001 Although C<isl> is mainly meant to be used as a library,
4002 it also contains some basic applications that use some
4003 of the functionality of C<isl>.
4004 The input may be specified in either the L<isl format>
4005 or the L<PolyLib format>.
4007 =head2 C<isl_polyhedron_sample>
4009 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4010 an integer element of the polyhedron, if there is any.
4011 The first column in the output is the denominator and is always
4012 equal to 1. If the polyhedron contains no integer points,
4013 then a vector of length zero is printed.
4017 C<isl_pip> takes the same input as the C<example> program
4018 from the C<piplib> distribution, i.e., a set of constraints
4019 on the parameters, a line containing only -1 and finally a set
4020 of constraints on a parametric polyhedron.
4021 The coefficients of the parameters appear in the last columns
4022 (but before the final constant column).
4023 The output is the lexicographic minimum of the parametric polyhedron.
4024 As C<isl> currently does not have its own output format, the output
4025 is just a dump of the internal state.
4027 =head2 C<isl_polyhedron_minimize>
4029 C<isl_polyhedron_minimize> computes the minimum of some linear
4030 or affine objective function over the integer points in a polyhedron.
4031 If an affine objective function
4032 is given, then the constant should appear in the last column.
4034 =head2 C<isl_polytope_scan>
4036 Given a polytope, C<isl_polytope_scan> prints
4037 all integer points in the polytope.