introduce explicit isl_dim_map_free
[isl.git] / isl_tab.c
blob3a538f973040c9380ff6f95a1bcc34a31e9a1012
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
20 #include "isl_tab.h"
21 #include <isl_seq.h>
22 #include <isl_config.h>
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
33 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
34 unsigned n_row, unsigned n_var, unsigned M)
36 int i;
37 struct isl_tab *tab;
38 unsigned off = 2 + M;
40 tab = isl_calloc_type(ctx, struct isl_tab);
41 if (!tab)
42 return NULL;
43 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
44 if (!tab->mat)
45 goto error;
46 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
47 if (n_var && !tab->var)
48 goto error;
49 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
50 if (n_row && !tab->con)
51 goto error;
52 tab->col_var = isl_alloc_array(ctx, int, n_var);
53 if (n_var && !tab->col_var)
54 goto error;
55 tab->row_var = isl_alloc_array(ctx, int, n_row);
56 if (n_row && !tab->row_var)
57 goto error;
58 for (i = 0; i < n_var; ++i) {
59 tab->var[i].index = i;
60 tab->var[i].is_row = 0;
61 tab->var[i].is_nonneg = 0;
62 tab->var[i].is_zero = 0;
63 tab->var[i].is_redundant = 0;
64 tab->var[i].frozen = 0;
65 tab->var[i].negated = 0;
66 tab->col_var[i] = i;
68 tab->n_row = 0;
69 tab->n_con = 0;
70 tab->n_eq = 0;
71 tab->max_con = n_row;
72 tab->n_col = n_var;
73 tab->n_var = n_var;
74 tab->max_var = n_var;
75 tab->n_param = 0;
76 tab->n_div = 0;
77 tab->n_dead = 0;
78 tab->n_redundant = 0;
79 tab->strict_redundant = 0;
80 tab->need_undo = 0;
81 tab->rational = 0;
82 tab->empty = 0;
83 tab->in_undo = 0;
84 tab->M = M;
85 tab->cone = 0;
86 tab->bottom.type = isl_tab_undo_bottom;
87 tab->bottom.next = NULL;
88 tab->top = &tab->bottom;
90 tab->n_zero = 0;
91 tab->n_unbounded = 0;
92 tab->basis = NULL;
94 return tab;
95 error:
96 isl_tab_free(tab);
97 return NULL;
100 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
102 return tab ? isl_mat_get_ctx(tab->mat) : NULL;
105 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
107 unsigned off;
109 if (!tab)
110 return -1;
112 off = 2 + tab->M;
114 if (tab->max_con < tab->n_con + n_new) {
115 struct isl_tab_var *con;
117 con = isl_realloc_array(tab->mat->ctx, tab->con,
118 struct isl_tab_var, tab->max_con + n_new);
119 if (!con)
120 return -1;
121 tab->con = con;
122 tab->max_con += n_new;
124 if (tab->mat->n_row < tab->n_row + n_new) {
125 int *row_var;
127 tab->mat = isl_mat_extend(tab->mat,
128 tab->n_row + n_new, off + tab->n_col);
129 if (!tab->mat)
130 return -1;
131 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
132 int, tab->mat->n_row);
133 if (!row_var)
134 return -1;
135 tab->row_var = row_var;
136 if (tab->row_sign) {
137 enum isl_tab_row_sign *s;
138 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
139 enum isl_tab_row_sign, tab->mat->n_row);
140 if (!s)
141 return -1;
142 tab->row_sign = s;
145 return 0;
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
151 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
153 struct isl_tab_var *var;
154 unsigned off = 2 + tab->M;
156 if (tab->max_var < tab->n_var + n_new) {
157 var = isl_realloc_array(tab->mat->ctx, tab->var,
158 struct isl_tab_var, tab->n_var + n_new);
159 if (!var)
160 return -1;
161 tab->var = var;
162 tab->max_var = tab->n_var + n_new;
165 if (tab->mat->n_col < off + tab->n_col + n_new) {
166 int *p;
168 tab->mat = isl_mat_extend(tab->mat,
169 tab->mat->n_row, off + tab->n_col + n_new);
170 if (!tab->mat)
171 return -1;
172 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
173 int, tab->n_col + n_new);
174 if (!p)
175 return -1;
176 tab->col_var = p;
179 return 0;
182 static void free_undo_record(struct isl_tab_undo *undo)
184 switch (undo->type) {
185 case isl_tab_undo_saved_basis:
186 free(undo->u.col_var);
187 break;
188 default:;
190 free(undo);
193 static void free_undo(struct isl_tab *tab)
195 struct isl_tab_undo *undo, *next;
197 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
198 next = undo->next;
199 free_undo_record(undo);
201 tab->top = undo;
204 void isl_tab_free(struct isl_tab *tab)
206 if (!tab)
207 return;
208 free_undo(tab);
209 isl_mat_free(tab->mat);
210 isl_vec_free(tab->dual);
211 isl_basic_map_free(tab->bmap);
212 free(tab->var);
213 free(tab->con);
214 free(tab->row_var);
215 free(tab->col_var);
216 free(tab->row_sign);
217 isl_mat_free(tab->samples);
218 free(tab->sample_index);
219 isl_mat_free(tab->basis);
220 free(tab);
223 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
225 int i;
226 struct isl_tab *dup;
227 unsigned off;
229 if (!tab)
230 return NULL;
232 off = 2 + tab->M;
233 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
234 if (!dup)
235 return NULL;
236 dup->mat = isl_mat_dup(tab->mat);
237 if (!dup->mat)
238 goto error;
239 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
240 if (tab->max_var && !dup->var)
241 goto error;
242 for (i = 0; i < tab->n_var; ++i)
243 dup->var[i] = tab->var[i];
244 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
245 if (tab->max_con && !dup->con)
246 goto error;
247 for (i = 0; i < tab->n_con; ++i)
248 dup->con[i] = tab->con[i];
249 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
250 if ((tab->mat->n_col - off) && !dup->col_var)
251 goto error;
252 for (i = 0; i < tab->n_col; ++i)
253 dup->col_var[i] = tab->col_var[i];
254 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
255 if (tab->mat->n_row && !dup->row_var)
256 goto error;
257 for (i = 0; i < tab->n_row; ++i)
258 dup->row_var[i] = tab->row_var[i];
259 if (tab->row_sign) {
260 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
261 tab->mat->n_row);
262 if (tab->mat->n_row && !dup->row_sign)
263 goto error;
264 for (i = 0; i < tab->n_row; ++i)
265 dup->row_sign[i] = tab->row_sign[i];
267 if (tab->samples) {
268 dup->samples = isl_mat_dup(tab->samples);
269 if (!dup->samples)
270 goto error;
271 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
272 tab->samples->n_row);
273 if (tab->samples->n_row && !dup->sample_index)
274 goto error;
275 dup->n_sample = tab->n_sample;
276 dup->n_outside = tab->n_outside;
278 dup->n_row = tab->n_row;
279 dup->n_con = tab->n_con;
280 dup->n_eq = tab->n_eq;
281 dup->max_con = tab->max_con;
282 dup->n_col = tab->n_col;
283 dup->n_var = tab->n_var;
284 dup->max_var = tab->max_var;
285 dup->n_param = tab->n_param;
286 dup->n_div = tab->n_div;
287 dup->n_dead = tab->n_dead;
288 dup->n_redundant = tab->n_redundant;
289 dup->rational = tab->rational;
290 dup->empty = tab->empty;
291 dup->strict_redundant = 0;
292 dup->need_undo = 0;
293 dup->in_undo = 0;
294 dup->M = tab->M;
295 tab->cone = tab->cone;
296 dup->bottom.type = isl_tab_undo_bottom;
297 dup->bottom.next = NULL;
298 dup->top = &dup->bottom;
300 dup->n_zero = tab->n_zero;
301 dup->n_unbounded = tab->n_unbounded;
302 dup->basis = isl_mat_dup(tab->basis);
304 return dup;
305 error:
306 isl_tab_free(dup);
307 return NULL;
310 /* Construct the coefficient matrix of the product tableau
311 * of two tableaus.
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
323 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
324 struct isl_mat *mat2, unsigned row1, unsigned row2,
325 unsigned col1, unsigned col2,
326 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
328 int i;
329 struct isl_mat *prod;
330 unsigned n;
332 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
333 off + col1 + col2);
334 if (!prod)
335 return NULL;
337 n = 0;
338 for (i = 0; i < r1; ++i) {
339 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
340 isl_seq_clr(prod->row[n + i] + off + d1, d2);
341 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
342 mat1->row[i] + off + d1, col1 - d1);
343 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
346 n += r1;
347 for (i = 0; i < r2; ++i) {
348 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
349 isl_seq_clr(prod->row[n + i] + off, d1);
350 isl_seq_cpy(prod->row[n + i] + off + d1,
351 mat2->row[i] + off, d2);
352 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
353 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
354 mat2->row[i] + off + d2, col2 - d2);
357 n += r2;
358 for (i = 0; i < row1 - r1; ++i) {
359 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
360 isl_seq_clr(prod->row[n + i] + off + d1, d2);
361 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
362 mat1->row[r1 + i] + off + d1, col1 - d1);
363 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
366 n += row1 - r1;
367 for (i = 0; i < row2 - r2; ++i) {
368 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
369 isl_seq_clr(prod->row[n + i] + off, d1);
370 isl_seq_cpy(prod->row[n + i] + off + d1,
371 mat2->row[r2 + i] + off, d2);
372 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
373 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
374 mat2->row[r2 + i] + off + d2, col2 - d2);
377 return prod;
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
383 static void update_index1(struct isl_tab_var *var,
384 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
386 if (var->index == -1)
387 return;
388 if (var->is_row && var->index >= r1)
389 var->index += r2;
390 if (!var->is_row && var->index >= d1)
391 var->index += d2;
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
397 static void update_index2(struct isl_tab_var *var,
398 unsigned row1, unsigned col1,
399 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
401 if (var->index == -1)
402 return;
403 if (var->is_row) {
404 if (var->index < r2)
405 var->index += r1;
406 else
407 var->index += row1;
408 } else {
409 if (var->index < d2)
410 var->index += d1;
411 else
412 var->index += col1;
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
424 * - denominator
425 * - constant term
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
434 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
436 int i;
437 struct isl_tab *prod;
438 unsigned off;
439 unsigned r1, r2, d1, d2;
441 if (!tab1 || !tab2)
442 return NULL;
444 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
445 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
446 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
447 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
448 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
449 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
450 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
451 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
452 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
454 off = 2 + tab1->M;
455 r1 = tab1->n_redundant;
456 r2 = tab2->n_redundant;
457 d1 = tab1->n_dead;
458 d2 = tab2->n_dead;
459 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
460 if (!prod)
461 return NULL;
462 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
463 tab1->n_row, tab2->n_row,
464 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
465 if (!prod->mat)
466 goto error;
467 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
468 tab1->max_var + tab2->max_var);
469 if ((tab1->max_var + tab2->max_var) && !prod->var)
470 goto error;
471 for (i = 0; i < tab1->n_var; ++i) {
472 prod->var[i] = tab1->var[i];
473 update_index1(&prod->var[i], r1, r2, d1, d2);
475 for (i = 0; i < tab2->n_var; ++i) {
476 prod->var[tab1->n_var + i] = tab2->var[i];
477 update_index2(&prod->var[tab1->n_var + i],
478 tab1->n_row, tab1->n_col,
479 r1, r2, d1, d2);
481 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
482 tab1->max_con + tab2->max_con);
483 if ((tab1->max_con + tab2->max_con) && !prod->con)
484 goto error;
485 for (i = 0; i < tab1->n_con; ++i) {
486 prod->con[i] = tab1->con[i];
487 update_index1(&prod->con[i], r1, r2, d1, d2);
489 for (i = 0; i < tab2->n_con; ++i) {
490 prod->con[tab1->n_con + i] = tab2->con[i];
491 update_index2(&prod->con[tab1->n_con + i],
492 tab1->n_row, tab1->n_col,
493 r1, r2, d1, d2);
495 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
496 tab1->n_col + tab2->n_col);
497 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
498 goto error;
499 for (i = 0; i < tab1->n_col; ++i) {
500 int pos = i < d1 ? i : i + d2;
501 prod->col_var[pos] = tab1->col_var[i];
503 for (i = 0; i < tab2->n_col; ++i) {
504 int pos = i < d2 ? d1 + i : tab1->n_col + i;
505 int t = tab2->col_var[i];
506 if (t >= 0)
507 t += tab1->n_var;
508 else
509 t -= tab1->n_con;
510 prod->col_var[pos] = t;
512 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
513 tab1->mat->n_row + tab2->mat->n_row);
514 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
515 goto error;
516 for (i = 0; i < tab1->n_row; ++i) {
517 int pos = i < r1 ? i : i + r2;
518 prod->row_var[pos] = tab1->row_var[i];
520 for (i = 0; i < tab2->n_row; ++i) {
521 int pos = i < r2 ? r1 + i : tab1->n_row + i;
522 int t = tab2->row_var[i];
523 if (t >= 0)
524 t += tab1->n_var;
525 else
526 t -= tab1->n_con;
527 prod->row_var[pos] = t;
529 prod->samples = NULL;
530 prod->sample_index = NULL;
531 prod->n_row = tab1->n_row + tab2->n_row;
532 prod->n_con = tab1->n_con + tab2->n_con;
533 prod->n_eq = 0;
534 prod->max_con = tab1->max_con + tab2->max_con;
535 prod->n_col = tab1->n_col + tab2->n_col;
536 prod->n_var = tab1->n_var + tab2->n_var;
537 prod->max_var = tab1->max_var + tab2->max_var;
538 prod->n_param = 0;
539 prod->n_div = 0;
540 prod->n_dead = tab1->n_dead + tab2->n_dead;
541 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
542 prod->rational = tab1->rational;
543 prod->empty = tab1->empty || tab2->empty;
544 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
545 prod->need_undo = 0;
546 prod->in_undo = 0;
547 prod->M = tab1->M;
548 prod->cone = tab1->cone;
549 prod->bottom.type = isl_tab_undo_bottom;
550 prod->bottom.next = NULL;
551 prod->top = &prod->bottom;
553 prod->n_zero = 0;
554 prod->n_unbounded = 0;
555 prod->basis = NULL;
557 return prod;
558 error:
559 isl_tab_free(prod);
560 return NULL;
563 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
565 if (i >= 0)
566 return &tab->var[i];
567 else
568 return &tab->con[~i];
571 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
573 return var_from_index(tab, tab->row_var[i]);
576 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
578 return var_from_index(tab, tab->col_var[i]);
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
585 static int max_is_manifestly_unbounded(struct isl_tab *tab,
586 struct isl_tab_var *var)
588 int i;
589 unsigned off = 2 + tab->M;
591 if (var->is_row)
592 return 0;
593 for (i = tab->n_redundant; i < tab->n_row; ++i) {
594 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
595 continue;
596 if (isl_tab_var_from_row(tab, i)->is_nonneg)
597 return 0;
599 return 1;
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
606 static int min_is_manifestly_unbounded(struct isl_tab *tab,
607 struct isl_tab_var *var)
609 int i;
610 unsigned off = 2 + tab->M;
612 if (var->is_row)
613 return 0;
614 for (i = tab->n_redundant; i < tab->n_row; ++i) {
615 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
616 continue;
617 if (isl_tab_var_from_row(tab, i)->is_nonneg)
618 return 0;
620 return 1;
623 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
625 unsigned off = 2 + tab->M;
627 if (tab->M) {
628 int s;
629 isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
630 isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
631 s = isl_int_sgn(*t);
632 if (s)
633 return s;
635 isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
636 isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
637 return isl_int_sgn(*t);
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
646 * Each row in the tableau is of the form
648 * x_r = a_r0 + \sum_i a_ri x_i
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
660 static int pivot_row(struct isl_tab *tab,
661 struct isl_tab_var *var, int sgn, int c)
663 int j, r, tsgn;
664 isl_int t;
665 unsigned off = 2 + tab->M;
667 isl_int_init(t);
668 r = -1;
669 for (j = tab->n_redundant; j < tab->n_row; ++j) {
670 if (var && j == var->index)
671 continue;
672 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
673 continue;
674 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
675 continue;
676 if (r < 0) {
677 r = j;
678 continue;
680 tsgn = sgn * row_cmp(tab, r, j, c, &t);
681 if (tsgn < 0 || (tsgn == 0 &&
682 tab->row_var[j] < tab->row_var[r]))
683 r = j;
685 isl_int_clear(t);
686 return r;
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
694 * As the given row in the tableau is of the form
696 * x_r = a_r0 + \sum_i a_ri x_i
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
705 static void find_pivot(struct isl_tab *tab,
706 struct isl_tab_var *var, struct isl_tab_var *skip_var,
707 int sgn, int *row, int *col)
709 int j, r, c;
710 isl_int *tr;
712 *row = *col = -1;
714 isl_assert(tab->mat->ctx, var->is_row, return);
715 tr = tab->mat->row[var->index] + 2 + tab->M;
717 c = -1;
718 for (j = tab->n_dead; j < tab->n_col; ++j) {
719 if (isl_int_is_zero(tr[j]))
720 continue;
721 if (isl_int_sgn(tr[j]) != sgn &&
722 var_from_col(tab, j)->is_nonneg)
723 continue;
724 if (c < 0 || tab->col_var[j] < tab->col_var[c])
725 c = j;
727 if (c < 0)
728 return;
730 sgn *= isl_int_sgn(tr[c]);
731 r = pivot_row(tab, skip_var, sgn, c);
732 *row = r < 0 ? var->index : r;
733 *col = c;
736 /* Return 1 if row "row" represents an obviously redundant inequality.
737 * This means
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
742 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
744 int i;
745 unsigned off = 2 + tab->M;
747 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
748 return 0;
750 if (isl_int_is_neg(tab->mat->row[row][1]))
751 return 0;
752 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
753 return 0;
754 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
755 return 0;
757 for (i = tab->n_dead; i < tab->n_col; ++i) {
758 if (isl_int_is_zero(tab->mat->row[row][off + i]))
759 continue;
760 if (tab->col_var[i] >= 0)
761 return 0;
762 if (isl_int_is_neg(tab->mat->row[row][off + i]))
763 return 0;
764 if (!var_from_col(tab, i)->is_nonneg)
765 return 0;
767 return 1;
770 static void swap_rows(struct isl_tab *tab, int row1, int row2)
772 int t;
773 enum isl_tab_row_sign s;
775 t = tab->row_var[row1];
776 tab->row_var[row1] = tab->row_var[row2];
777 tab->row_var[row2] = t;
778 isl_tab_var_from_row(tab, row1)->index = row1;
779 isl_tab_var_from_row(tab, row2)->index = row2;
780 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
782 if (!tab->row_sign)
783 return;
784 s = tab->row_sign[row1];
785 tab->row_sign[row1] = tab->row_sign[row2];
786 tab->row_sign[row2] = s;
789 static isl_stat push_union(struct isl_tab *tab,
790 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
792 /* Push record "u" onto the undo stack of "tab", provided "tab"
793 * keeps track of undo information.
795 * If the record cannot be pushed, then mark the undo stack as invalid
796 * such that a later rollback attempt will not try to undo earlier
797 * records without having been able to undo the current record.
799 static isl_stat push_union(struct isl_tab *tab,
800 enum isl_tab_undo_type type, union isl_tab_undo_val u)
802 struct isl_tab_undo *undo;
804 if (!tab)
805 return isl_stat_error;
806 if (!tab->need_undo)
807 return isl_stat_ok;
809 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
810 if (!undo)
811 goto error;
812 undo->type = type;
813 undo->u = u;
814 undo->next = tab->top;
815 tab->top = undo;
817 return isl_stat_ok;
818 error:
819 free_undo(tab);
820 tab->top = NULL;
821 return isl_stat_error;
824 isl_stat isl_tab_push_var(struct isl_tab *tab,
825 enum isl_tab_undo_type type, struct isl_tab_var *var)
827 union isl_tab_undo_val u;
828 if (var->is_row)
829 u.var_index = tab->row_var[var->index];
830 else
831 u.var_index = tab->col_var[var->index];
832 return push_union(tab, type, u);
835 isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
837 union isl_tab_undo_val u = { 0 };
838 return push_union(tab, type, u);
841 /* Push a record on the undo stack describing the current basic
842 * variables, so that the this state can be restored during rollback.
844 isl_stat isl_tab_push_basis(struct isl_tab *tab)
846 int i;
847 union isl_tab_undo_val u;
849 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
850 if (tab->n_col && !u.col_var)
851 return isl_stat_error;
852 for (i = 0; i < tab->n_col; ++i)
853 u.col_var[i] = tab->col_var[i];
854 return push_union(tab, isl_tab_undo_saved_basis, u);
857 isl_stat isl_tab_push_callback(struct isl_tab *tab,
858 struct isl_tab_callback *callback)
860 union isl_tab_undo_val u;
861 u.callback = callback;
862 return push_union(tab, isl_tab_undo_callback, u);
865 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
867 if (!tab)
868 return NULL;
870 tab->n_sample = 0;
871 tab->n_outside = 0;
872 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
873 if (!tab->samples)
874 goto error;
875 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
876 if (!tab->sample_index)
877 goto error;
878 return tab;
879 error:
880 isl_tab_free(tab);
881 return NULL;
884 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
886 if (!tab || !sample)
887 goto error;
889 if (tab->n_sample + 1 > tab->samples->n_row) {
890 int *t = isl_realloc_array(tab->mat->ctx,
891 tab->sample_index, int, tab->n_sample + 1);
892 if (!t)
893 goto error;
894 tab->sample_index = t;
897 tab->samples = isl_mat_extend(tab->samples,
898 tab->n_sample + 1, tab->samples->n_col);
899 if (!tab->samples)
900 goto error;
902 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
903 isl_vec_free(sample);
904 tab->sample_index[tab->n_sample] = tab->n_sample;
905 tab->n_sample++;
907 return 0;
908 error:
909 isl_vec_free(sample);
910 return -1;
913 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
915 if (s != tab->n_outside) {
916 int t = tab->sample_index[tab->n_outside];
917 tab->sample_index[tab->n_outside] = tab->sample_index[s];
918 tab->sample_index[s] = t;
919 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
921 tab->n_outside++;
922 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
923 isl_tab_free(tab);
924 return NULL;
927 return tab;
930 /* Record the current number of samples so that we can remove newer
931 * samples during a rollback.
933 isl_stat isl_tab_save_samples(struct isl_tab *tab)
935 union isl_tab_undo_val u;
937 if (!tab)
938 return isl_stat_error;
940 u.n = tab->n_sample;
941 return push_union(tab, isl_tab_undo_saved_samples, u);
944 /* Mark row with index "row" as being redundant.
945 * If we may need to undo the operation or if the row represents
946 * a variable of the original problem, the row is kept,
947 * but no longer considered when looking for a pivot row.
948 * Otherwise, the row is simply removed.
950 * The row may be interchanged with some other row. If it
951 * is interchanged with a later row, return 1. Otherwise return 0.
952 * If the rows are checked in order in the calling function,
953 * then a return value of 1 means that the row with the given
954 * row number may now contain a different row that hasn't been checked yet.
956 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
958 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
959 var->is_redundant = 1;
960 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
961 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
962 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
963 var->is_nonneg = 1;
964 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
965 return -1;
967 if (row != tab->n_redundant)
968 swap_rows(tab, row, tab->n_redundant);
969 tab->n_redundant++;
970 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
971 } else {
972 if (row != tab->n_row - 1)
973 swap_rows(tab, row, tab->n_row - 1);
974 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
975 tab->n_row--;
976 return 1;
980 /* Mark "tab" as a rational tableau.
981 * If it wasn't marked as a rational tableau already and if we may
982 * need to undo changes, then arrange for the marking to be undone
983 * during the undo.
985 int isl_tab_mark_rational(struct isl_tab *tab)
987 if (!tab)
988 return -1;
989 if (!tab->rational && tab->need_undo)
990 if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
991 return -1;
992 tab->rational = 1;
993 return 0;
996 isl_stat isl_tab_mark_empty(struct isl_tab *tab)
998 if (!tab)
999 return isl_stat_error;
1000 if (!tab->empty && tab->need_undo)
1001 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
1002 return isl_stat_error;
1003 tab->empty = 1;
1004 return isl_stat_ok;
1007 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
1009 struct isl_tab_var *var;
1011 if (!tab)
1012 return -1;
1014 var = &tab->con[con];
1015 if (var->frozen)
1016 return 0;
1017 if (var->index < 0)
1018 return 0;
1019 var->frozen = 1;
1021 if (tab->need_undo)
1022 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1024 return 0;
1027 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1028 * the original sign of the pivot element.
1029 * We only keep track of row signs during PILP solving and in this case
1030 * we only pivot a row with negative sign (meaning the value is always
1031 * non-positive) using a positive pivot element.
1033 * For each row j, the new value of the parametric constant is equal to
1035 * a_j0 - a_jc a_r0/a_rc
1037 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1038 * a_r0 is the parametric constant of the pivot row and a_jc is the
1039 * pivot column entry of the row j.
1040 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1041 * remains the same if a_jc has the same sign as the row j or if
1042 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1044 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1046 int i;
1047 struct isl_mat *mat = tab->mat;
1048 unsigned off = 2 + tab->M;
1050 if (!tab->row_sign)
1051 return;
1053 if (tab->row_sign[row] == 0)
1054 return;
1055 isl_assert(mat->ctx, row_sgn > 0, return);
1056 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1057 tab->row_sign[row] = isl_tab_row_pos;
1058 for (i = 0; i < tab->n_row; ++i) {
1059 int s;
1060 if (i == row)
1061 continue;
1062 s = isl_int_sgn(mat->row[i][off + col]);
1063 if (!s)
1064 continue;
1065 if (!tab->row_sign[i])
1066 continue;
1067 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1068 continue;
1069 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1070 continue;
1071 tab->row_sign[i] = isl_tab_row_unknown;
1075 /* Given a row number "row" and a column number "col", pivot the tableau
1076 * such that the associated variables are interchanged.
1077 * The given row in the tableau expresses
1079 * x_r = a_r0 + \sum_i a_ri x_i
1081 * or
1083 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1085 * Substituting this equality into the other rows
1087 * x_j = a_j0 + \sum_i a_ji x_i
1089 * with a_jc \ne 0, we obtain
1091 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1093 * The tableau
1095 * n_rc/d_r n_ri/d_r
1096 * n_jc/d_j n_ji/d_j
1098 * where i is any other column and j is any other row,
1099 * is therefore transformed into
1101 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1102 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1104 * The transformation is performed along the following steps
1106 * d_r/n_rc n_ri/n_rc
1107 * n_jc/d_j n_ji/d_j
1109 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1110 * n_jc/d_j n_ji/d_j
1112 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1113 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1115 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1116 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1118 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1119 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1121 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1122 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1125 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1127 int i, j;
1128 int sgn;
1129 int t;
1130 isl_ctx *ctx;
1131 struct isl_mat *mat = tab->mat;
1132 struct isl_tab_var *var;
1133 unsigned off = 2 + tab->M;
1135 ctx = isl_tab_get_ctx(tab);
1136 if (isl_ctx_next_operation(ctx) < 0)
1137 return -1;
1139 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1140 sgn = isl_int_sgn(mat->row[row][0]);
1141 if (sgn < 0) {
1142 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1143 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1144 } else
1145 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1146 if (j == off - 1 + col)
1147 continue;
1148 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1150 if (!isl_int_is_one(mat->row[row][0]))
1151 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1152 for (i = 0; i < tab->n_row; ++i) {
1153 if (i == row)
1154 continue;
1155 if (isl_int_is_zero(mat->row[i][off + col]))
1156 continue;
1157 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1158 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1159 if (j == off - 1 + col)
1160 continue;
1161 isl_int_mul(mat->row[i][1 + j],
1162 mat->row[i][1 + j], mat->row[row][0]);
1163 isl_int_addmul(mat->row[i][1 + j],
1164 mat->row[i][off + col], mat->row[row][1 + j]);
1166 isl_int_mul(mat->row[i][off + col],
1167 mat->row[i][off + col], mat->row[row][off + col]);
1168 if (!isl_int_is_one(mat->row[i][0]))
1169 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1171 t = tab->row_var[row];
1172 tab->row_var[row] = tab->col_var[col];
1173 tab->col_var[col] = t;
1174 var = isl_tab_var_from_row(tab, row);
1175 var->is_row = 1;
1176 var->index = row;
1177 var = var_from_col(tab, col);
1178 var->is_row = 0;
1179 var->index = col;
1180 update_row_sign(tab, row, col, sgn);
1181 if (tab->in_undo)
1182 return 0;
1183 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1184 if (isl_int_is_zero(mat->row[i][off + col]))
1185 continue;
1186 if (!isl_tab_var_from_row(tab, i)->frozen &&
1187 isl_tab_row_is_redundant(tab, i)) {
1188 int redo = isl_tab_mark_redundant(tab, i);
1189 if (redo < 0)
1190 return -1;
1191 if (redo)
1192 --i;
1195 return 0;
1198 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1199 * or down (sgn < 0) to a row. The variable is assumed not to be
1200 * unbounded in the specified direction.
1201 * If sgn = 0, then the variable is unbounded in both directions,
1202 * and we pivot with any row we can find.
1204 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1205 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1207 int r;
1208 unsigned off = 2 + tab->M;
1210 if (var->is_row)
1211 return 0;
1213 if (sign == 0) {
1214 for (r = tab->n_redundant; r < tab->n_row; ++r)
1215 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1216 break;
1217 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1218 } else {
1219 r = pivot_row(tab, NULL, sign, var->index);
1220 isl_assert(tab->mat->ctx, r >= 0, return -1);
1223 return isl_tab_pivot(tab, r, var->index);
1226 /* Check whether all variables that are marked as non-negative
1227 * also have a non-negative sample value. This function is not
1228 * called from the current code but is useful during debugging.
1230 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1231 static void check_table(struct isl_tab *tab)
1233 int i;
1235 if (tab->empty)
1236 return;
1237 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1238 struct isl_tab_var *var;
1239 var = isl_tab_var_from_row(tab, i);
1240 if (!var->is_nonneg)
1241 continue;
1242 if (tab->M) {
1243 isl_assert(tab->mat->ctx,
1244 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1245 if (isl_int_is_pos(tab->mat->row[i][2]))
1246 continue;
1248 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1249 abort());
1253 /* Return the sign of the maximal value of "var".
1254 * If the sign is not negative, then on return from this function,
1255 * the sample value will also be non-negative.
1257 * If "var" is manifestly unbounded wrt positive values, we are done.
1258 * Otherwise, we pivot the variable up to a row if needed
1259 * Then we continue pivoting down until either
1260 * - no more down pivots can be performed
1261 * - the sample value is positive
1262 * - the variable is pivoted into a manifestly unbounded column
1264 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1266 int row, col;
1268 if (max_is_manifestly_unbounded(tab, var))
1269 return 1;
1270 if (to_row(tab, var, 1) < 0)
1271 return -2;
1272 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1273 find_pivot(tab, var, var, 1, &row, &col);
1274 if (row == -1)
1275 return isl_int_sgn(tab->mat->row[var->index][1]);
1276 if (isl_tab_pivot(tab, row, col) < 0)
1277 return -2;
1278 if (!var->is_row) /* manifestly unbounded */
1279 return 1;
1281 return 1;
1284 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1286 struct isl_tab_var *var;
1288 if (!tab)
1289 return -2;
1291 var = &tab->con[con];
1292 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1293 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1295 return sign_of_max(tab, var);
1298 static int row_is_neg(struct isl_tab *tab, int row)
1300 if (!tab->M)
1301 return isl_int_is_neg(tab->mat->row[row][1]);
1302 if (isl_int_is_pos(tab->mat->row[row][2]))
1303 return 0;
1304 if (isl_int_is_neg(tab->mat->row[row][2]))
1305 return 1;
1306 return isl_int_is_neg(tab->mat->row[row][1]);
1309 static int row_sgn(struct isl_tab *tab, int row)
1311 if (!tab->M)
1312 return isl_int_sgn(tab->mat->row[row][1]);
1313 if (!isl_int_is_zero(tab->mat->row[row][2]))
1314 return isl_int_sgn(tab->mat->row[row][2]);
1315 else
1316 return isl_int_sgn(tab->mat->row[row][1]);
1319 /* Perform pivots until the row variable "var" has a non-negative
1320 * sample value or until no more upward pivots can be performed.
1321 * Return the sign of the sample value after the pivots have been
1322 * performed.
1324 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1326 int row, col;
1328 while (row_is_neg(tab, var->index)) {
1329 find_pivot(tab, var, var, 1, &row, &col);
1330 if (row == -1)
1331 break;
1332 if (isl_tab_pivot(tab, row, col) < 0)
1333 return -2;
1334 if (!var->is_row) /* manifestly unbounded */
1335 return 1;
1337 return row_sgn(tab, var->index);
1340 /* Perform pivots until we are sure that the row variable "var"
1341 * can attain non-negative values. After return from this
1342 * function, "var" is still a row variable, but its sample
1343 * value may not be non-negative, even if the function returns 1.
1345 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1347 int row, col;
1349 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1350 find_pivot(tab, var, var, 1, &row, &col);
1351 if (row == -1)
1352 break;
1353 if (row == var->index) /* manifestly unbounded */
1354 return 1;
1355 if (isl_tab_pivot(tab, row, col) < 0)
1356 return -1;
1358 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1361 /* Return a negative value if "var" can attain negative values.
1362 * Return a non-negative value otherwise.
1364 * If "var" is manifestly unbounded wrt negative values, we are done.
1365 * Otherwise, if var is in a column, we can pivot it down to a row.
1366 * Then we continue pivoting down until either
1367 * - the pivot would result in a manifestly unbounded column
1368 * => we don't perform the pivot, but simply return -1
1369 * - no more down pivots can be performed
1370 * - the sample value is negative
1371 * If the sample value becomes negative and the variable is supposed
1372 * to be nonnegative, then we undo the last pivot.
1373 * However, if the last pivot has made the pivoting variable
1374 * obviously redundant, then it may have moved to another row.
1375 * In that case we look for upward pivots until we reach a non-negative
1376 * value again.
1378 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1380 int row, col;
1381 struct isl_tab_var *pivot_var = NULL;
1383 if (min_is_manifestly_unbounded(tab, var))
1384 return -1;
1385 if (!var->is_row) {
1386 col = var->index;
1387 row = pivot_row(tab, NULL, -1, col);
1388 pivot_var = var_from_col(tab, col);
1389 if (isl_tab_pivot(tab, row, col) < 0)
1390 return -2;
1391 if (var->is_redundant)
1392 return 0;
1393 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1394 if (var->is_nonneg) {
1395 if (!pivot_var->is_redundant &&
1396 pivot_var->index == row) {
1397 if (isl_tab_pivot(tab, row, col) < 0)
1398 return -2;
1399 } else
1400 if (restore_row(tab, var) < -1)
1401 return -2;
1403 return -1;
1406 if (var->is_redundant)
1407 return 0;
1408 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1409 find_pivot(tab, var, var, -1, &row, &col);
1410 if (row == var->index)
1411 return -1;
1412 if (row == -1)
1413 return isl_int_sgn(tab->mat->row[var->index][1]);
1414 pivot_var = var_from_col(tab, col);
1415 if (isl_tab_pivot(tab, row, col) < 0)
1416 return -2;
1417 if (var->is_redundant)
1418 return 0;
1420 if (pivot_var && var->is_nonneg) {
1421 /* pivot back to non-negative value */
1422 if (!pivot_var->is_redundant && pivot_var->index == row) {
1423 if (isl_tab_pivot(tab, row, col) < 0)
1424 return -2;
1425 } else
1426 if (restore_row(tab, var) < -1)
1427 return -2;
1429 return -1;
1432 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1434 if (tab->M) {
1435 if (isl_int_is_pos(tab->mat->row[row][2]))
1436 return 0;
1437 if (isl_int_is_neg(tab->mat->row[row][2]))
1438 return 1;
1440 return isl_int_is_neg(tab->mat->row[row][1]) &&
1441 isl_int_abs_ge(tab->mat->row[row][1],
1442 tab->mat->row[row][0]);
1445 /* Return 1 if "var" can attain values <= -1.
1446 * Return 0 otherwise.
1448 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1449 * then the sample value of "var" is assumed to be non-negative when the
1450 * the function is called. If 1 is returned then the constraint
1451 * is not redundant and the sample value is made non-negative again before
1452 * the function returns.
1454 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1456 int row, col;
1457 struct isl_tab_var *pivot_var;
1459 if (min_is_manifestly_unbounded(tab, var))
1460 return 1;
1461 if (!var->is_row) {
1462 col = var->index;
1463 row = pivot_row(tab, NULL, -1, col);
1464 pivot_var = var_from_col(tab, col);
1465 if (isl_tab_pivot(tab, row, col) < 0)
1466 return -1;
1467 if (var->is_redundant)
1468 return 0;
1469 if (row_at_most_neg_one(tab, var->index)) {
1470 if (var->is_nonneg) {
1471 if (!pivot_var->is_redundant &&
1472 pivot_var->index == row) {
1473 if (isl_tab_pivot(tab, row, col) < 0)
1474 return -1;
1475 } else
1476 if (restore_row(tab, var) < -1)
1477 return -1;
1479 return 1;
1482 if (var->is_redundant)
1483 return 0;
1484 do {
1485 find_pivot(tab, var, var, -1, &row, &col);
1486 if (row == var->index) {
1487 if (var->is_nonneg && restore_row(tab, var) < -1)
1488 return -1;
1489 return 1;
1491 if (row == -1)
1492 return 0;
1493 pivot_var = var_from_col(tab, col);
1494 if (isl_tab_pivot(tab, row, col) < 0)
1495 return -1;
1496 if (var->is_redundant)
1497 return 0;
1498 } while (!row_at_most_neg_one(tab, var->index));
1499 if (var->is_nonneg) {
1500 /* pivot back to non-negative value */
1501 if (!pivot_var->is_redundant && pivot_var->index == row)
1502 if (isl_tab_pivot(tab, row, col) < 0)
1503 return -1;
1504 if (restore_row(tab, var) < -1)
1505 return -1;
1507 return 1;
1510 /* Return 1 if "var" can attain values >= 1.
1511 * Return 0 otherwise.
1513 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1515 int row, col;
1516 isl_int *r;
1518 if (max_is_manifestly_unbounded(tab, var))
1519 return 1;
1520 if (to_row(tab, var, 1) < 0)
1521 return -1;
1522 r = tab->mat->row[var->index];
1523 while (isl_int_lt(r[1], r[0])) {
1524 find_pivot(tab, var, var, 1, &row, &col);
1525 if (row == -1)
1526 return isl_int_ge(r[1], r[0]);
1527 if (row == var->index) /* manifestly unbounded */
1528 return 1;
1529 if (isl_tab_pivot(tab, row, col) < 0)
1530 return -1;
1532 return 1;
1535 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1537 int t;
1538 unsigned off = 2 + tab->M;
1539 t = tab->col_var[col1];
1540 tab->col_var[col1] = tab->col_var[col2];
1541 tab->col_var[col2] = t;
1542 var_from_col(tab, col1)->index = col1;
1543 var_from_col(tab, col2)->index = col2;
1544 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1547 /* Mark column with index "col" as representing a zero variable.
1548 * If we may need to undo the operation the column is kept,
1549 * but no longer considered.
1550 * Otherwise, the column is simply removed.
1552 * The column may be interchanged with some other column. If it
1553 * is interchanged with a later column, return 1. Otherwise return 0.
1554 * If the columns are checked in order in the calling function,
1555 * then a return value of 1 means that the column with the given
1556 * column number may now contain a different column that
1557 * hasn't been checked yet.
1559 int isl_tab_kill_col(struct isl_tab *tab, int col)
1561 var_from_col(tab, col)->is_zero = 1;
1562 if (tab->need_undo) {
1563 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1564 var_from_col(tab, col)) < 0)
1565 return -1;
1566 if (col != tab->n_dead)
1567 swap_cols(tab, col, tab->n_dead);
1568 tab->n_dead++;
1569 return 0;
1570 } else {
1571 if (col != tab->n_col - 1)
1572 swap_cols(tab, col, tab->n_col - 1);
1573 var_from_col(tab, tab->n_col - 1)->index = -1;
1574 tab->n_col--;
1575 return 1;
1579 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1581 unsigned off = 2 + tab->M;
1583 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1584 tab->mat->row[row][0]))
1585 return 0;
1586 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1587 tab->n_col - tab->n_dead) != -1)
1588 return 0;
1590 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1591 tab->mat->row[row][0]);
1594 /* For integer tableaus, check if any of the coordinates are stuck
1595 * at a non-integral value.
1597 static int tab_is_manifestly_empty(struct isl_tab *tab)
1599 int i;
1601 if (tab->empty)
1602 return 1;
1603 if (tab->rational)
1604 return 0;
1606 for (i = 0; i < tab->n_var; ++i) {
1607 if (!tab->var[i].is_row)
1608 continue;
1609 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1610 return 1;
1613 return 0;
1616 /* Row variable "var" is non-negative and cannot attain any values
1617 * larger than zero. This means that the coefficients of the unrestricted
1618 * column variables are zero and that the coefficients of the non-negative
1619 * column variables are zero or negative.
1620 * Each of the non-negative variables with a negative coefficient can
1621 * then also be written as the negative sum of non-negative variables
1622 * and must therefore also be zero.
1624 * If "temp_var" is set, then "var" is a temporary variable that
1625 * will be removed after this function returns and for which
1626 * no information is recorded on the undo stack.
1627 * Do not add any undo records involving this variable in this case
1628 * since the variable will have been removed before any future undo
1629 * operations. Also avoid marking the variable as redundant,
1630 * since that either adds an undo record or needlessly removes the row
1631 * (the caller will take care of removing the row).
1633 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1634 int temp_var) WARN_UNUSED;
1635 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1636 int temp_var)
1638 int j;
1639 struct isl_mat *mat = tab->mat;
1640 unsigned off = 2 + tab->M;
1642 if (!var->is_nonneg)
1643 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1644 "expecting non-negative variable",
1645 return isl_stat_error);
1646 var->is_zero = 1;
1647 if (!temp_var && tab->need_undo)
1648 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1649 return isl_stat_error;
1650 for (j = tab->n_dead; j < tab->n_col; ++j) {
1651 int recheck;
1652 if (isl_int_is_zero(mat->row[var->index][off + j]))
1653 continue;
1654 if (isl_int_is_pos(mat->row[var->index][off + j]))
1655 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1656 "row cannot have positive coefficients",
1657 return isl_stat_error);
1658 recheck = isl_tab_kill_col(tab, j);
1659 if (recheck < 0)
1660 return isl_stat_error;
1661 if (recheck)
1662 --j;
1664 if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
1665 return isl_stat_error;
1666 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1667 return isl_stat_error;
1668 return isl_stat_ok;
1671 /* Add a constraint to the tableau and allocate a row for it.
1672 * Return the index into the constraint array "con".
1674 * This function assumes that at least one more row and at least
1675 * one more element in the constraint array are available in the tableau.
1677 int isl_tab_allocate_con(struct isl_tab *tab)
1679 int r;
1681 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1682 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1684 r = tab->n_con;
1685 tab->con[r].index = tab->n_row;
1686 tab->con[r].is_row = 1;
1687 tab->con[r].is_nonneg = 0;
1688 tab->con[r].is_zero = 0;
1689 tab->con[r].is_redundant = 0;
1690 tab->con[r].frozen = 0;
1691 tab->con[r].negated = 0;
1692 tab->row_var[tab->n_row] = ~r;
1694 tab->n_row++;
1695 tab->n_con++;
1696 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1697 return -1;
1699 return r;
1702 /* Move the entries in tab->var up one position, starting at "first",
1703 * creating room for an extra entry at position "first".
1704 * Since some of the entries of tab->row_var and tab->col_var contain
1705 * indices into this array, they have to be updated accordingly.
1707 static int var_insert_entry(struct isl_tab *tab, int first)
1709 int i;
1711 if (tab->n_var >= tab->max_var)
1712 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1713 "not enough room for new variable", return -1);
1714 if (first > tab->n_var)
1715 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1716 "invalid initial position", return -1);
1718 for (i = tab->n_var - 1; i >= first; --i) {
1719 tab->var[i + 1] = tab->var[i];
1720 if (tab->var[i + 1].is_row)
1721 tab->row_var[tab->var[i + 1].index]++;
1722 else
1723 tab->col_var[tab->var[i + 1].index]++;
1726 tab->n_var++;
1728 return 0;
1731 /* Drop the entry at position "first" in tab->var, moving all
1732 * subsequent entries down.
1733 * Since some of the entries of tab->row_var and tab->col_var contain
1734 * indices into this array, they have to be updated accordingly.
1736 static int var_drop_entry(struct isl_tab *tab, int first)
1738 int i;
1740 if (first >= tab->n_var)
1741 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1742 "invalid initial position", return -1);
1744 tab->n_var--;
1746 for (i = first; i < tab->n_var; ++i) {
1747 tab->var[i] = tab->var[i + 1];
1748 if (tab->var[i + 1].is_row)
1749 tab->row_var[tab->var[i].index]--;
1750 else
1751 tab->col_var[tab->var[i].index]--;
1754 return 0;
1757 /* Add a variable to the tableau at position "r" and allocate a column for it.
1758 * Return the index into the variable array "var", i.e., "r",
1759 * or -1 on error.
1761 int isl_tab_insert_var(struct isl_tab *tab, int r)
1763 int i;
1764 unsigned off = 2 + tab->M;
1766 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1768 if (var_insert_entry(tab, r) < 0)
1769 return -1;
1771 tab->var[r].index = tab->n_col;
1772 tab->var[r].is_row = 0;
1773 tab->var[r].is_nonneg = 0;
1774 tab->var[r].is_zero = 0;
1775 tab->var[r].is_redundant = 0;
1776 tab->var[r].frozen = 0;
1777 tab->var[r].negated = 0;
1778 tab->col_var[tab->n_col] = r;
1780 for (i = 0; i < tab->n_row; ++i)
1781 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1783 tab->n_col++;
1784 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1785 return -1;
1787 return r;
1790 /* Add a variable to the tableau and allocate a column for it.
1791 * Return the index into the variable array "var".
1793 int isl_tab_allocate_var(struct isl_tab *tab)
1795 if (!tab)
1796 return -1;
1798 return isl_tab_insert_var(tab, tab->n_var);
1801 /* Add a row to the tableau. The row is given as an affine combination
1802 * of the original variables and needs to be expressed in terms of the
1803 * column variables.
1805 * This function assumes that at least one more row and at least
1806 * one more element in the constraint array are available in the tableau.
1808 * We add each term in turn.
1809 * If r = n/d_r is the current sum and we need to add k x, then
1810 * if x is a column variable, we increase the numerator of
1811 * this column by k d_r
1812 * if x = f/d_x is a row variable, then the new representation of r is
1814 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1815 * --- + --- = ------------------- = -------------------
1816 * d_r d_r d_r d_x/g m
1818 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1820 * If tab->M is set, then, internally, each variable x is represented
1821 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1823 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1825 int i;
1826 int r;
1827 isl_int *row;
1828 isl_int a, b;
1829 unsigned off = 2 + tab->M;
1831 r = isl_tab_allocate_con(tab);
1832 if (r < 0)
1833 return -1;
1835 isl_int_init(a);
1836 isl_int_init(b);
1837 row = tab->mat->row[tab->con[r].index];
1838 isl_int_set_si(row[0], 1);
1839 isl_int_set(row[1], line[0]);
1840 isl_seq_clr(row + 2, tab->M + tab->n_col);
1841 for (i = 0; i < tab->n_var; ++i) {
1842 if (tab->var[i].is_zero)
1843 continue;
1844 if (tab->var[i].is_row) {
1845 isl_int_lcm(a,
1846 row[0], tab->mat->row[tab->var[i].index][0]);
1847 isl_int_swap(a, row[0]);
1848 isl_int_divexact(a, row[0], a);
1849 isl_int_divexact(b,
1850 row[0], tab->mat->row[tab->var[i].index][0]);
1851 isl_int_mul(b, b, line[1 + i]);
1852 isl_seq_combine(row + 1, a, row + 1,
1853 b, tab->mat->row[tab->var[i].index] + 1,
1854 1 + tab->M + tab->n_col);
1855 } else
1856 isl_int_addmul(row[off + tab->var[i].index],
1857 line[1 + i], row[0]);
1858 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1859 isl_int_submul(row[2], line[1 + i], row[0]);
1861 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1862 isl_int_clear(a);
1863 isl_int_clear(b);
1865 if (tab->row_sign)
1866 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1868 return r;
1871 static isl_stat drop_row(struct isl_tab *tab, int row)
1873 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,
1874 return isl_stat_error);
1875 if (row != tab->n_row - 1)
1876 swap_rows(tab, row, tab->n_row - 1);
1877 tab->n_row--;
1878 tab->n_con--;
1879 return isl_stat_ok;
1882 /* Drop the variable in column "col" along with the column.
1883 * The column is removed first because it may need to be moved
1884 * into the last position and this process requires
1885 * the contents of the col_var array in a state
1886 * before the removal of the variable.
1888 static isl_stat drop_col(struct isl_tab *tab, int col)
1890 int var;
1892 var = tab->col_var[col];
1893 if (col != tab->n_col - 1)
1894 swap_cols(tab, col, tab->n_col - 1);
1895 tab->n_col--;
1896 if (var_drop_entry(tab, var) < 0)
1897 return isl_stat_error;
1898 return isl_stat_ok;
1901 /* Add inequality "ineq" and check if it conflicts with the
1902 * previously added constraints or if it is obviously redundant.
1904 * This function assumes that at least one more row and at least
1905 * one more element in the constraint array are available in the tableau.
1907 isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1909 int r;
1910 int sgn;
1911 isl_int cst;
1913 if (!tab)
1914 return isl_stat_error;
1915 if (tab->bmap) {
1916 struct isl_basic_map *bmap = tab->bmap;
1918 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,
1919 return isl_stat_error);
1920 isl_assert(tab->mat->ctx,
1921 tab->n_con == bmap->n_eq + bmap->n_ineq,
1922 return isl_stat_error);
1923 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1924 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1925 return isl_stat_error;
1926 if (!tab->bmap)
1927 return isl_stat_error;
1929 if (tab->cone) {
1930 isl_int_init(cst);
1931 isl_int_set_si(cst, 0);
1932 isl_int_swap(ineq[0], cst);
1934 r = isl_tab_add_row(tab, ineq);
1935 if (tab->cone) {
1936 isl_int_swap(ineq[0], cst);
1937 isl_int_clear(cst);
1939 if (r < 0)
1940 return isl_stat_error;
1941 tab->con[r].is_nonneg = 1;
1942 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1943 return isl_stat_error;
1944 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1945 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1946 return isl_stat_error;
1947 return isl_stat_ok;
1950 sgn = restore_row(tab, &tab->con[r]);
1951 if (sgn < -1)
1952 return isl_stat_error;
1953 if (sgn < 0)
1954 return isl_tab_mark_empty(tab);
1955 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1956 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1957 return isl_stat_error;
1958 return isl_stat_ok;
1961 /* Pivot a non-negative variable down until it reaches the value zero
1962 * and then pivot the variable into a column position.
1964 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1965 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1967 int i;
1968 int row, col;
1969 unsigned off = 2 + tab->M;
1971 if (!var->is_row)
1972 return 0;
1974 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1975 find_pivot(tab, var, NULL, -1, &row, &col);
1976 isl_assert(tab->mat->ctx, row != -1, return -1);
1977 if (isl_tab_pivot(tab, row, col) < 0)
1978 return -1;
1979 if (!var->is_row)
1980 return 0;
1983 for (i = tab->n_dead; i < tab->n_col; ++i)
1984 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1985 break;
1987 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1988 if (isl_tab_pivot(tab, var->index, i) < 0)
1989 return -1;
1991 return 0;
1994 /* We assume Gaussian elimination has been performed on the equalities.
1995 * The equalities can therefore never conflict.
1996 * Adding the equalities is currently only really useful for a later call
1997 * to isl_tab_ineq_type.
1999 * This function assumes that at least one more row and at least
2000 * one more element in the constraint array are available in the tableau.
2002 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
2004 int i;
2005 int r;
2007 if (!tab)
2008 return NULL;
2009 r = isl_tab_add_row(tab, eq);
2010 if (r < 0)
2011 goto error;
2013 r = tab->con[r].index;
2014 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
2015 tab->n_col - tab->n_dead);
2016 isl_assert(tab->mat->ctx, i >= 0, goto error);
2017 i += tab->n_dead;
2018 if (isl_tab_pivot(tab, r, i) < 0)
2019 goto error;
2020 if (isl_tab_kill_col(tab, i) < 0)
2021 goto error;
2022 tab->n_eq++;
2024 return tab;
2025 error:
2026 isl_tab_free(tab);
2027 return NULL;
2030 /* Does the sample value of row "row" of "tab" involve the big parameter,
2031 * if any?
2033 static int row_is_big(struct isl_tab *tab, int row)
2035 return tab->M && !isl_int_is_zero(tab->mat->row[row][2]);
2038 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
2040 unsigned off = 2 + tab->M;
2042 if (!isl_int_is_zero(tab->mat->row[row][1]))
2043 return 0;
2044 if (row_is_big(tab, row))
2045 return 0;
2046 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2047 tab->n_col - tab->n_dead) == -1;
2050 /* Add an equality that is known to be valid for the given tableau.
2052 * This function assumes that at least one more row and at least
2053 * one more element in the constraint array are available in the tableau.
2055 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
2057 struct isl_tab_var *var;
2058 int r;
2060 if (!tab)
2061 return -1;
2062 r = isl_tab_add_row(tab, eq);
2063 if (r < 0)
2064 return -1;
2066 var = &tab->con[r];
2067 r = var->index;
2068 if (row_is_manifestly_zero(tab, r)) {
2069 var->is_zero = 1;
2070 if (isl_tab_mark_redundant(tab, r) < 0)
2071 return -1;
2072 return 0;
2075 if (isl_int_is_neg(tab->mat->row[r][1])) {
2076 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
2077 1 + tab->n_col);
2078 var->negated = 1;
2080 var->is_nonneg = 1;
2081 if (to_col(tab, var) < 0)
2082 return -1;
2083 var->is_nonneg = 0;
2084 if (isl_tab_kill_col(tab, var->index) < 0)
2085 return -1;
2087 return 0;
2090 /* Add a zero row to "tab" and return the corresponding index
2091 * in the constraint array.
2093 * This function assumes that at least one more row and at least
2094 * one more element in the constraint array are available in the tableau.
2096 static int add_zero_row(struct isl_tab *tab)
2098 int r;
2099 isl_int *row;
2101 r = isl_tab_allocate_con(tab);
2102 if (r < 0)
2103 return -1;
2105 row = tab->mat->row[tab->con[r].index];
2106 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
2107 isl_int_set_si(row[0], 1);
2109 return r;
2112 /* Add equality "eq" and check if it conflicts with the
2113 * previously added constraints or if it is obviously redundant.
2115 * This function assumes that at least one more row and at least
2116 * one more element in the constraint array are available in the tableau.
2117 * If tab->bmap is set, then two rows are needed instead of one.
2119 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
2121 struct isl_tab_undo *snap = NULL;
2122 struct isl_tab_var *var;
2123 int r;
2124 int row;
2125 int sgn;
2126 isl_int cst;
2128 if (!tab)
2129 return -1;
2130 isl_assert(tab->mat->ctx, !tab->M, return -1);
2132 if (tab->need_undo)
2133 snap = isl_tab_snap(tab);
2135 if (tab->cone) {
2136 isl_int_init(cst);
2137 isl_int_set_si(cst, 0);
2138 isl_int_swap(eq[0], cst);
2140 r = isl_tab_add_row(tab, eq);
2141 if (tab->cone) {
2142 isl_int_swap(eq[0], cst);
2143 isl_int_clear(cst);
2145 if (r < 0)
2146 return -1;
2148 var = &tab->con[r];
2149 row = var->index;
2150 if (row_is_manifestly_zero(tab, row)) {
2151 if (snap)
2152 return isl_tab_rollback(tab, snap);
2153 return drop_row(tab, row);
2156 if (tab->bmap) {
2157 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2158 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2159 return -1;
2160 isl_seq_neg(eq, eq, 1 + tab->n_var);
2161 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2162 isl_seq_neg(eq, eq, 1 + tab->n_var);
2163 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2164 return -1;
2165 if (!tab->bmap)
2166 return -1;
2167 if (add_zero_row(tab) < 0)
2168 return -1;
2171 sgn = isl_int_sgn(tab->mat->row[row][1]);
2173 if (sgn > 0) {
2174 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2175 1 + tab->n_col);
2176 var->negated = 1;
2177 sgn = -1;
2180 if (sgn < 0) {
2181 sgn = sign_of_max(tab, var);
2182 if (sgn < -1)
2183 return -1;
2184 if (sgn < 0) {
2185 if (isl_tab_mark_empty(tab) < 0)
2186 return -1;
2187 return 0;
2191 var->is_nonneg = 1;
2192 if (to_col(tab, var) < 0)
2193 return -1;
2194 var->is_nonneg = 0;
2195 if (isl_tab_kill_col(tab, var->index) < 0)
2196 return -1;
2198 return 0;
2201 /* Construct and return an inequality that expresses an upper bound
2202 * on the given div.
2203 * In particular, if the div is given by
2205 * d = floor(e/m)
2207 * then the inequality expresses
2209 * m d <= e
2211 static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap,
2212 unsigned div)
2214 unsigned total;
2215 unsigned div_pos;
2216 struct isl_vec *ineq;
2218 if (!bmap)
2219 return NULL;
2221 total = isl_basic_map_total_dim(bmap);
2222 div_pos = 1 + total - bmap->n_div + div;
2224 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2225 if (!ineq)
2226 return NULL;
2228 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2229 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2230 return ineq;
2233 /* For a div d = floor(f/m), add the constraints
2235 * f - m d >= 0
2236 * -(f-(m-1)) + m d >= 0
2238 * Note that the second constraint is the negation of
2240 * f - m d >= m
2242 * If add_ineq is not NULL, then this function is used
2243 * instead of isl_tab_add_ineq to effectively add the inequalities.
2245 * This function assumes that at least two more rows and at least
2246 * two more elements in the constraint array are available in the tableau.
2248 static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
2249 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2251 unsigned total;
2252 unsigned div_pos;
2253 struct isl_vec *ineq;
2255 total = isl_basic_map_total_dim(tab->bmap);
2256 div_pos = 1 + total - tab->bmap->n_div + div;
2258 ineq = ineq_for_div(tab->bmap, div);
2259 if (!ineq)
2260 goto error;
2262 if (add_ineq) {
2263 if (add_ineq(user, ineq->el) < 0)
2264 goto error;
2265 } else {
2266 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2267 goto error;
2270 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2271 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2272 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2273 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2275 if (add_ineq) {
2276 if (add_ineq(user, ineq->el) < 0)
2277 goto error;
2278 } else {
2279 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2280 goto error;
2283 isl_vec_free(ineq);
2285 return isl_stat_ok;
2286 error:
2287 isl_vec_free(ineq);
2288 return isl_stat_error;
2291 /* Check whether the div described by "div" is obviously non-negative.
2292 * If we are using a big parameter, then we will encode the div
2293 * as div' = M + div, which is always non-negative.
2294 * Otherwise, we check whether div is a non-negative affine combination
2295 * of non-negative variables.
2297 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2299 int i;
2301 if (tab->M)
2302 return 1;
2304 if (isl_int_is_neg(div->el[1]))
2305 return 0;
2307 for (i = 0; i < tab->n_var; ++i) {
2308 if (isl_int_is_neg(div->el[2 + i]))
2309 return 0;
2310 if (isl_int_is_zero(div->el[2 + i]))
2311 continue;
2312 if (!tab->var[i].is_nonneg)
2313 return 0;
2316 return 1;
2319 /* Insert an extra div, prescribed by "div", to the tableau and
2320 * the associated bmap (which is assumed to be non-NULL).
2321 * The extra integer division is inserted at (tableau) position "pos".
2322 * Return "pos" or -1 if an error occurred.
2324 * If add_ineq is not NULL, then this function is used instead
2325 * of isl_tab_add_ineq to add the div constraints.
2326 * This complication is needed because the code in isl_tab_pip
2327 * wants to perform some extra processing when an inequality
2328 * is added to the tableau.
2330 int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
2331 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2333 int r;
2334 int nonneg;
2335 int n_div, o_div;
2337 if (!tab || !div)
2338 return -1;
2340 if (div->size != 1 + 1 + tab->n_var)
2341 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2342 "unexpected size", return -1);
2344 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2345 n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
2346 o_div = tab->n_var - n_div;
2347 if (pos < o_div || pos > tab->n_var)
2348 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2349 "invalid position", return -1);
2351 nonneg = div_is_nonneg(tab, div);
2353 if (isl_tab_extend_cons(tab, 3) < 0)
2354 return -1;
2355 if (isl_tab_extend_vars(tab, 1) < 0)
2356 return -1;
2357 r = isl_tab_insert_var(tab, pos);
2358 if (r < 0)
2359 return -1;
2361 if (nonneg)
2362 tab->var[r].is_nonneg = 1;
2364 tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
2365 if (!tab->bmap)
2366 return -1;
2367 if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
2368 return -1;
2370 if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
2371 return -1;
2373 return r;
2376 /* Add an extra div, prescribed by "div", to the tableau and
2377 * the associated bmap (which is assumed to be non-NULL).
2379 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
2381 if (!tab)
2382 return -1;
2383 return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL);
2386 /* If "track" is set, then we want to keep track of all constraints in tab
2387 * in its bmap field. This field is initialized from a copy of "bmap",
2388 * so we need to make sure that all constraints in "bmap" also appear
2389 * in the constructed tab.
2391 __isl_give struct isl_tab *isl_tab_from_basic_map(
2392 __isl_keep isl_basic_map *bmap, int track)
2394 int i;
2395 struct isl_tab *tab;
2397 if (!bmap)
2398 return NULL;
2399 tab = isl_tab_alloc(bmap->ctx,
2400 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2401 isl_basic_map_total_dim(bmap), 0);
2402 if (!tab)
2403 return NULL;
2404 tab->preserve = track;
2405 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2406 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2407 if (isl_tab_mark_empty(tab) < 0)
2408 goto error;
2409 goto done;
2411 for (i = 0; i < bmap->n_eq; ++i) {
2412 tab = add_eq(tab, bmap->eq[i]);
2413 if (!tab)
2414 return tab;
2416 for (i = 0; i < bmap->n_ineq; ++i) {
2417 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2418 goto error;
2419 if (tab->empty)
2420 goto done;
2422 done:
2423 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2424 goto error;
2425 return tab;
2426 error:
2427 isl_tab_free(tab);
2428 return NULL;
2431 __isl_give struct isl_tab *isl_tab_from_basic_set(
2432 __isl_keep isl_basic_set *bset, int track)
2434 return isl_tab_from_basic_map(bset, track);
2437 /* Construct a tableau corresponding to the recession cone of "bset".
2439 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2440 int parametric)
2442 isl_int cst;
2443 int i;
2444 struct isl_tab *tab;
2445 unsigned offset = 0;
2447 if (!bset)
2448 return NULL;
2449 if (parametric)
2450 offset = isl_basic_set_dim(bset, isl_dim_param);
2451 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2452 isl_basic_set_total_dim(bset) - offset, 0);
2453 if (!tab)
2454 return NULL;
2455 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2456 tab->cone = 1;
2458 isl_int_init(cst);
2459 isl_int_set_si(cst, 0);
2460 for (i = 0; i < bset->n_eq; ++i) {
2461 isl_int_swap(bset->eq[i][offset], cst);
2462 if (offset > 0) {
2463 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2464 goto error;
2465 } else
2466 tab = add_eq(tab, bset->eq[i]);
2467 isl_int_swap(bset->eq[i][offset], cst);
2468 if (!tab)
2469 goto done;
2471 for (i = 0; i < bset->n_ineq; ++i) {
2472 int r;
2473 isl_int_swap(bset->ineq[i][offset], cst);
2474 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2475 isl_int_swap(bset->ineq[i][offset], cst);
2476 if (r < 0)
2477 goto error;
2478 tab->con[r].is_nonneg = 1;
2479 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2480 goto error;
2482 done:
2483 isl_int_clear(cst);
2484 return tab;
2485 error:
2486 isl_int_clear(cst);
2487 isl_tab_free(tab);
2488 return NULL;
2491 /* Assuming "tab" is the tableau of a cone, check if the cone is
2492 * bounded, i.e., if it is empty or only contains the origin.
2494 isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
2496 int i;
2498 if (!tab)
2499 return isl_bool_error;
2500 if (tab->empty)
2501 return isl_bool_true;
2502 if (tab->n_dead == tab->n_col)
2503 return isl_bool_true;
2505 for (;;) {
2506 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2507 struct isl_tab_var *var;
2508 int sgn;
2509 var = isl_tab_var_from_row(tab, i);
2510 if (!var->is_nonneg)
2511 continue;
2512 sgn = sign_of_max(tab, var);
2513 if (sgn < -1)
2514 return isl_bool_error;
2515 if (sgn != 0)
2516 return isl_bool_false;
2517 if (close_row(tab, var, 0) < 0)
2518 return isl_bool_error;
2519 break;
2521 if (tab->n_dead == tab->n_col)
2522 return isl_bool_true;
2523 if (i == tab->n_row)
2524 return isl_bool_false;
2528 int isl_tab_sample_is_integer(struct isl_tab *tab)
2530 int i;
2532 if (!tab)
2533 return -1;
2535 for (i = 0; i < tab->n_var; ++i) {
2536 int row;
2537 if (!tab->var[i].is_row)
2538 continue;
2539 row = tab->var[i].index;
2540 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2541 tab->mat->row[row][0]))
2542 return 0;
2544 return 1;
2547 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2549 int i;
2550 struct isl_vec *vec;
2552 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2553 if (!vec)
2554 return NULL;
2556 isl_int_set_si(vec->block.data[0], 1);
2557 for (i = 0; i < tab->n_var; ++i) {
2558 if (!tab->var[i].is_row)
2559 isl_int_set_si(vec->block.data[1 + i], 0);
2560 else {
2561 int row = tab->var[i].index;
2562 isl_int_divexact(vec->block.data[1 + i],
2563 tab->mat->row[row][1], tab->mat->row[row][0]);
2567 return vec;
2570 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2572 int i;
2573 struct isl_vec *vec;
2574 isl_int m;
2576 if (!tab)
2577 return NULL;
2579 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2580 if (!vec)
2581 return NULL;
2583 isl_int_init(m);
2585 isl_int_set_si(vec->block.data[0], 1);
2586 for (i = 0; i < tab->n_var; ++i) {
2587 int row;
2588 if (!tab->var[i].is_row) {
2589 isl_int_set_si(vec->block.data[1 + i], 0);
2590 continue;
2592 row = tab->var[i].index;
2593 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2594 isl_int_divexact(m, tab->mat->row[row][0], m);
2595 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2596 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2597 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2599 vec = isl_vec_normalize(vec);
2601 isl_int_clear(m);
2602 return vec;
2605 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2606 * or down (if sgn < 0) to the nearest integer in *v.
2608 static void get_rounded_sample_value(struct isl_tab *tab,
2609 struct isl_tab_var *var, int sgn, isl_int *v)
2611 if (!var->is_row)
2612 isl_int_set_si(*v, 0);
2613 else if (sgn > 0)
2614 isl_int_cdiv_q(*v, tab->mat->row[var->index][1],
2615 tab->mat->row[var->index][0]);
2616 else
2617 isl_int_fdiv_q(*v, tab->mat->row[var->index][1],
2618 tab->mat->row[var->index][0]);
2621 /* Update "bmap" based on the results of the tableau "tab".
2622 * In particular, implicit equalities are made explicit, redundant constraints
2623 * are removed and if the sample value happens to be integer, it is stored
2624 * in "bmap" (unless "bmap" already had an integer sample).
2626 * The tableau is assumed to have been created from "bmap" using
2627 * isl_tab_from_basic_map.
2629 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2630 struct isl_tab *tab)
2632 int i;
2633 unsigned n_eq;
2635 if (!bmap)
2636 return NULL;
2637 if (!tab)
2638 return bmap;
2640 n_eq = tab->n_eq;
2641 if (tab->empty)
2642 bmap = isl_basic_map_set_to_empty(bmap);
2643 else
2644 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2645 if (isl_tab_is_equality(tab, n_eq + i))
2646 isl_basic_map_inequality_to_equality(bmap, i);
2647 else if (isl_tab_is_redundant(tab, n_eq + i))
2648 isl_basic_map_drop_inequality(bmap, i);
2650 if (bmap->n_eq != n_eq)
2651 bmap = isl_basic_map_gauss(bmap, NULL);
2652 if (!tab->rational &&
2653 bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
2654 bmap->sample = extract_integer_sample(tab);
2655 return bmap;
2658 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2659 struct isl_tab *tab)
2661 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
2662 tab));
2665 /* Drop the last constraint added to "tab" in position "r".
2666 * The constraint is expected to have remained in a row.
2668 static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
2670 if (!tab->con[r].is_row)
2671 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2672 "row unexpectedly moved to column",
2673 return isl_stat_error);
2674 if (r + 1 != tab->n_con)
2675 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2676 "additional constraints added", return isl_stat_error);
2677 if (drop_row(tab, tab->con[r].index) < 0)
2678 return isl_stat_error;
2680 return isl_stat_ok;
2683 /* Given a non-negative variable "var", temporarily add a new non-negative
2684 * variable that is the opposite of "var", ensuring that "var" can only attain
2685 * the value zero. The new variable is removed again before this function
2686 * returns. However, the effect of forcing "var" to be zero remains.
2687 * If var = n/d is a row variable, then the new variable = -n/d.
2688 * If var is a column variables, then the new variable = -var.
2689 * If the new variable cannot attain non-negative values, then
2690 * the resulting tableau is empty.
2691 * Otherwise, we know the value will be zero and we close the row.
2693 static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2695 unsigned r;
2696 isl_int *row;
2697 int sgn;
2698 unsigned off = 2 + tab->M;
2700 if (var->is_zero)
2701 return isl_stat_ok;
2702 if (var->is_redundant || !var->is_nonneg)
2703 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2704 "expecting non-redundant non-negative variable",
2705 return isl_stat_error);
2707 if (isl_tab_extend_cons(tab, 1) < 0)
2708 return isl_stat_error;
2710 r = tab->n_con;
2711 tab->con[r].index = tab->n_row;
2712 tab->con[r].is_row = 1;
2713 tab->con[r].is_nonneg = 0;
2714 tab->con[r].is_zero = 0;
2715 tab->con[r].is_redundant = 0;
2716 tab->con[r].frozen = 0;
2717 tab->con[r].negated = 0;
2718 tab->row_var[tab->n_row] = ~r;
2719 row = tab->mat->row[tab->n_row];
2721 if (var->is_row) {
2722 isl_int_set(row[0], tab->mat->row[var->index][0]);
2723 isl_seq_neg(row + 1,
2724 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2725 } else {
2726 isl_int_set_si(row[0], 1);
2727 isl_seq_clr(row + 1, 1 + tab->n_col);
2728 isl_int_set_si(row[off + var->index], -1);
2731 tab->n_row++;
2732 tab->n_con++;
2734 sgn = sign_of_max(tab, &tab->con[r]);
2735 if (sgn < -1)
2736 return isl_stat_error;
2737 if (sgn < 0) {
2738 if (drop_last_con_in_row(tab, r) < 0)
2739 return isl_stat_error;
2740 if (isl_tab_mark_empty(tab) < 0)
2741 return isl_stat_error;
2742 return isl_stat_ok;
2744 tab->con[r].is_nonneg = 1;
2745 /* sgn == 0 */
2746 if (close_row(tab, &tab->con[r], 1) < 0)
2747 return isl_stat_error;
2748 if (drop_last_con_in_row(tab, r) < 0)
2749 return isl_stat_error;
2751 return isl_stat_ok;
2754 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2755 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2756 * by r' = r + 1 >= 0.
2757 * If r is a row variable, we simply increase the constant term by one
2758 * (taking into account the denominator).
2759 * If r is a column variable, then we need to modify each row that
2760 * refers to r = r' - 1 by substituting this equality, effectively
2761 * subtracting the coefficient of the column from the constant.
2762 * We should only do this if the minimum is manifestly unbounded,
2763 * however. Otherwise, we may end up with negative sample values
2764 * for non-negative variables.
2765 * So, if r is a column variable with a minimum that is not
2766 * manifestly unbounded, then we need to move it to a row.
2767 * However, the sample value of this row may be negative,
2768 * even after the relaxation, so we need to restore it.
2769 * We therefore prefer to pivot a column up to a row, if possible.
2771 int isl_tab_relax(struct isl_tab *tab, int con)
2773 struct isl_tab_var *var;
2775 if (!tab)
2776 return -1;
2778 var = &tab->con[con];
2780 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2781 isl_die(tab->mat->ctx, isl_error_invalid,
2782 "cannot relax redundant constraint", return -1);
2783 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2784 isl_die(tab->mat->ctx, isl_error_invalid,
2785 "cannot relax dead constraint", return -1);
2787 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2788 if (to_row(tab, var, 1) < 0)
2789 return -1;
2790 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2791 if (to_row(tab, var, -1) < 0)
2792 return -1;
2794 if (var->is_row) {
2795 isl_int_add(tab->mat->row[var->index][1],
2796 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2797 if (restore_row(tab, var) < 0)
2798 return -1;
2799 } else {
2800 int i;
2801 unsigned off = 2 + tab->M;
2803 for (i = 0; i < tab->n_row; ++i) {
2804 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2805 continue;
2806 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2807 tab->mat->row[i][off + var->index]);
2812 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2813 return -1;
2815 return 0;
2818 /* Replace the variable v at position "pos" in the tableau "tab"
2819 * by v' = v + shift.
2821 * If the variable is in a column, then we first check if we can
2822 * simply plug in v = v' - shift. The effect on a row with
2823 * coefficient f/d for variable v is that the constant term c/d
2824 * is replaced by (c - f * shift)/d. If shift is positive and
2825 * f is negative for each row that needs to remain non-negative,
2826 * then this is clearly safe. In other words, if the minimum of v
2827 * is manifestly unbounded, then we can keep v in a column position.
2828 * Otherwise, we can pivot it down to a row.
2829 * Similarly, if shift is negative, we need to check if the maximum
2830 * of is manifestly unbounded.
2832 * If the variable is in a row (from the start or after pivoting),
2833 * then the constant term c/d is replaced by (c + d * shift)/d.
2835 int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
2837 struct isl_tab_var *var;
2839 if (!tab)
2840 return -1;
2841 if (isl_int_is_zero(shift))
2842 return 0;
2844 var = &tab->var[pos];
2845 if (!var->is_row) {
2846 if (isl_int_is_neg(shift)) {
2847 if (!max_is_manifestly_unbounded(tab, var))
2848 if (to_row(tab, var, 1) < 0)
2849 return -1;
2850 } else {
2851 if (!min_is_manifestly_unbounded(tab, var))
2852 if (to_row(tab, var, -1) < 0)
2853 return -1;
2857 if (var->is_row) {
2858 isl_int_addmul(tab->mat->row[var->index][1],
2859 shift, tab->mat->row[var->index][0]);
2860 } else {
2861 int i;
2862 unsigned off = 2 + tab->M;
2864 for (i = 0; i < tab->n_row; ++i) {
2865 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2866 continue;
2867 isl_int_submul(tab->mat->row[i][1],
2868 shift, tab->mat->row[i][off + var->index]);
2873 return 0;
2876 /* Remove the sign constraint from constraint "con".
2878 * If the constraint variable was originally marked non-negative,
2879 * then we make sure we mark it non-negative again during rollback.
2881 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2883 struct isl_tab_var *var;
2885 if (!tab)
2886 return -1;
2888 var = &tab->con[con];
2889 if (!var->is_nonneg)
2890 return 0;
2892 var->is_nonneg = 0;
2893 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2894 return -1;
2896 return 0;
2899 int isl_tab_select_facet(struct isl_tab *tab, int con)
2901 if (!tab)
2902 return -1;
2904 return cut_to_hyperplane(tab, &tab->con[con]);
2907 static int may_be_equality(struct isl_tab *tab, int row)
2909 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2910 : isl_int_lt(tab->mat->row[row][1],
2911 tab->mat->row[row][0]);
2914 /* Return an isl_tab_var that has been marked or NULL if no such
2915 * variable can be found.
2916 * The marked field has only been set for variables that
2917 * appear in non-redundant rows or non-dead columns.
2919 * Pick the last constraint variable that is marked and
2920 * that appears in either a non-redundant row or a non-dead columns.
2921 * Since the returned variable is tested for being a redundant constraint or
2922 * an implicit equality, there is no need to return any tab variable that
2923 * corresponds to a variable.
2925 static struct isl_tab_var *select_marked(struct isl_tab *tab)
2927 int i;
2928 struct isl_tab_var *var;
2930 for (i = tab->n_con - 1; i >= 0; --i) {
2931 var = &tab->con[i];
2932 if (var->index < 0)
2933 continue;
2934 if (var->is_row && var->index < tab->n_redundant)
2935 continue;
2936 if (!var->is_row && var->index < tab->n_dead)
2937 continue;
2938 if (var->marked)
2939 return var;
2942 return NULL;
2945 /* Check for (near) equalities among the constraints.
2946 * A constraint is an equality if it is non-negative and if
2947 * its maximal value is either
2948 * - zero (in case of rational tableaus), or
2949 * - strictly less than 1 (in case of integer tableaus)
2951 * We first mark all non-redundant and non-dead variables that
2952 * are not frozen and not obviously not an equality.
2953 * Then we iterate over all marked variables if they can attain
2954 * any values larger than zero or at least one.
2955 * If the maximal value is zero, we mark any column variables
2956 * that appear in the row as being zero and mark the row as being redundant.
2957 * Otherwise, if the maximal value is strictly less than one (and the
2958 * tableau is integer), then we restrict the value to being zero
2959 * by adding an opposite non-negative variable.
2960 * The order in which the variables are considered is not important.
2962 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2964 int i;
2965 unsigned n_marked;
2967 if (!tab)
2968 return -1;
2969 if (tab->empty)
2970 return 0;
2971 if (tab->n_dead == tab->n_col)
2972 return 0;
2974 n_marked = 0;
2975 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2976 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2977 var->marked = !var->frozen && var->is_nonneg &&
2978 may_be_equality(tab, i);
2979 if (var->marked)
2980 n_marked++;
2982 for (i = tab->n_dead; i < tab->n_col; ++i) {
2983 struct isl_tab_var *var = var_from_col(tab, i);
2984 var->marked = !var->frozen && var->is_nonneg;
2985 if (var->marked)
2986 n_marked++;
2988 while (n_marked) {
2989 struct isl_tab_var *var;
2990 int sgn;
2991 var = select_marked(tab);
2992 if (!var)
2993 break;
2994 var->marked = 0;
2995 n_marked--;
2996 sgn = sign_of_max(tab, var);
2997 if (sgn < 0)
2998 return -1;
2999 if (sgn == 0) {
3000 if (close_row(tab, var, 0) < 0)
3001 return -1;
3002 } else if (!tab->rational && !at_least_one(tab, var)) {
3003 if (cut_to_hyperplane(tab, var) < 0)
3004 return -1;
3005 return isl_tab_detect_implicit_equalities(tab);
3007 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3008 var = isl_tab_var_from_row(tab, i);
3009 if (!var->marked)
3010 continue;
3011 if (may_be_equality(tab, i))
3012 continue;
3013 var->marked = 0;
3014 n_marked--;
3018 return 0;
3021 /* Update the element of row_var or col_var that corresponds to
3022 * constraint tab->con[i] to a move from position "old" to position "i".
3024 static int update_con_after_move(struct isl_tab *tab, int i, int old)
3026 int *p;
3027 int index;
3029 index = tab->con[i].index;
3030 if (index == -1)
3031 return 0;
3032 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
3033 if (p[index] != ~old)
3034 isl_die(tab->mat->ctx, isl_error_internal,
3035 "broken internal state", return -1);
3036 p[index] = ~i;
3038 return 0;
3041 /* Rotate the "n" constraints starting at "first" to the right,
3042 * putting the last constraint in the position of the first constraint.
3044 static int rotate_constraints(struct isl_tab *tab, int first, int n)
3046 int i, last;
3047 struct isl_tab_var var;
3049 if (n <= 1)
3050 return 0;
3052 last = first + n - 1;
3053 var = tab->con[last];
3054 for (i = last; i > first; --i) {
3055 tab->con[i] = tab->con[i - 1];
3056 if (update_con_after_move(tab, i, i - 1) < 0)
3057 return -1;
3059 tab->con[first] = var;
3060 if (update_con_after_move(tab, first, last) < 0)
3061 return -1;
3063 return 0;
3066 /* Make the equalities that are implicit in "bmap" but that have been
3067 * detected in the corresponding "tab" explicit in "bmap" and update
3068 * "tab" to reflect the new order of the constraints.
3070 * In particular, if inequality i is an implicit equality then
3071 * isl_basic_map_inequality_to_equality will move the inequality
3072 * in front of the other equality and it will move the last inequality
3073 * in the position of inequality i.
3074 * In the tableau, the inequalities of "bmap" are stored after the equalities
3075 * and so the original order
3077 * E E E E E A A A I B B B B L
3079 * is changed into
3081 * I E E E E E A A A L B B B B
3083 * where I is the implicit equality, the E are equalities,
3084 * the A inequalities before I, the B inequalities after I and
3085 * L the last inequality.
3086 * We therefore need to rotate to the right two sets of constraints,
3087 * those up to and including I and those after I.
3089 * If "tab" contains any constraints that are not in "bmap" then they
3090 * appear after those in "bmap" and they should be left untouched.
3092 * Note that this function leaves "bmap" in a temporary state
3093 * as it does not call isl_basic_map_gauss. Calling this function
3094 * is the responsibility of the caller.
3096 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
3097 __isl_take isl_basic_map *bmap)
3099 int i;
3101 if (!tab || !bmap)
3102 return isl_basic_map_free(bmap);
3103 if (tab->empty)
3104 return bmap;
3106 for (i = bmap->n_ineq - 1; i >= 0; --i) {
3107 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
3108 continue;
3109 isl_basic_map_inequality_to_equality(bmap, i);
3110 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
3111 return isl_basic_map_free(bmap);
3112 if (rotate_constraints(tab, tab->n_eq + i + 1,
3113 bmap->n_ineq - i) < 0)
3114 return isl_basic_map_free(bmap);
3115 tab->n_eq++;
3118 return bmap;
3121 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
3123 if (!tab)
3124 return -1;
3125 if (tab->rational) {
3126 int sgn = sign_of_min(tab, var);
3127 if (sgn < -1)
3128 return -1;
3129 return sgn >= 0;
3130 } else {
3131 int irred = isl_tab_min_at_most_neg_one(tab, var);
3132 if (irred < 0)
3133 return -1;
3134 return !irred;
3138 /* Check for (near) redundant constraints.
3139 * A constraint is redundant if it is non-negative and if
3140 * its minimal value (temporarily ignoring the non-negativity) is either
3141 * - zero (in case of rational tableaus), or
3142 * - strictly larger than -1 (in case of integer tableaus)
3144 * We first mark all non-redundant and non-dead variables that
3145 * are not frozen and not obviously negatively unbounded.
3146 * Then we iterate over all marked variables if they can attain
3147 * any values smaller than zero or at most negative one.
3148 * If not, we mark the row as being redundant (assuming it hasn't
3149 * been detected as being obviously redundant in the mean time).
3151 int isl_tab_detect_redundant(struct isl_tab *tab)
3153 int i;
3154 unsigned n_marked;
3156 if (!tab)
3157 return -1;
3158 if (tab->empty)
3159 return 0;
3160 if (tab->n_redundant == tab->n_row)
3161 return 0;
3163 n_marked = 0;
3164 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3165 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
3166 var->marked = !var->frozen && var->is_nonneg;
3167 if (var->marked)
3168 n_marked++;
3170 for (i = tab->n_dead; i < tab->n_col; ++i) {
3171 struct isl_tab_var *var = var_from_col(tab, i);
3172 var->marked = !var->frozen && var->is_nonneg &&
3173 !min_is_manifestly_unbounded(tab, var);
3174 if (var->marked)
3175 n_marked++;
3177 while (n_marked) {
3178 struct isl_tab_var *var;
3179 int red;
3180 var = select_marked(tab);
3181 if (!var)
3182 break;
3183 var->marked = 0;
3184 n_marked--;
3185 red = con_is_redundant(tab, var);
3186 if (red < 0)
3187 return -1;
3188 if (red && !var->is_redundant)
3189 if (isl_tab_mark_redundant(tab, var->index) < 0)
3190 return -1;
3191 for (i = tab->n_dead; i < tab->n_col; ++i) {
3192 var = var_from_col(tab, i);
3193 if (!var->marked)
3194 continue;
3195 if (!min_is_manifestly_unbounded(tab, var))
3196 continue;
3197 var->marked = 0;
3198 n_marked--;
3202 return 0;
3205 int isl_tab_is_equality(struct isl_tab *tab, int con)
3207 int row;
3208 unsigned off;
3210 if (!tab)
3211 return -1;
3212 if (tab->con[con].is_zero)
3213 return 1;
3214 if (tab->con[con].is_redundant)
3215 return 0;
3216 if (!tab->con[con].is_row)
3217 return tab->con[con].index < tab->n_dead;
3219 row = tab->con[con].index;
3221 off = 2 + tab->M;
3222 return isl_int_is_zero(tab->mat->row[row][1]) &&
3223 !row_is_big(tab, row) &&
3224 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3225 tab->n_col - tab->n_dead) == -1;
3228 /* Return the minimal value of the affine expression "f" with denominator
3229 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3230 * the expression cannot attain arbitrarily small values.
3231 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3232 * The return value reflects the nature of the result (empty, unbounded,
3233 * minimal value returned in *opt).
3235 * This function assumes that at least one more row and at least
3236 * one more element in the constraint array are available in the tableau.
3238 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
3239 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
3240 unsigned flags)
3242 int r;
3243 enum isl_lp_result res = isl_lp_ok;
3244 struct isl_tab_var *var;
3245 struct isl_tab_undo *snap;
3247 if (!tab)
3248 return isl_lp_error;
3250 if (tab->empty)
3251 return isl_lp_empty;
3253 snap = isl_tab_snap(tab);
3254 r = isl_tab_add_row(tab, f);
3255 if (r < 0)
3256 return isl_lp_error;
3257 var = &tab->con[r];
3258 for (;;) {
3259 int row, col;
3260 find_pivot(tab, var, var, -1, &row, &col);
3261 if (row == var->index) {
3262 res = isl_lp_unbounded;
3263 break;
3265 if (row == -1)
3266 break;
3267 if (isl_tab_pivot(tab, row, col) < 0)
3268 return isl_lp_error;
3270 isl_int_mul(tab->mat->row[var->index][0],
3271 tab->mat->row[var->index][0], denom);
3272 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
3273 int i;
3275 isl_vec_free(tab->dual);
3276 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
3277 if (!tab->dual)
3278 return isl_lp_error;
3279 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
3280 for (i = 0; i < tab->n_con; ++i) {
3281 int pos;
3282 if (tab->con[i].is_row) {
3283 isl_int_set_si(tab->dual->el[1 + i], 0);
3284 continue;
3286 pos = 2 + tab->M + tab->con[i].index;
3287 if (tab->con[i].negated)
3288 isl_int_neg(tab->dual->el[1 + i],
3289 tab->mat->row[var->index][pos]);
3290 else
3291 isl_int_set(tab->dual->el[1 + i],
3292 tab->mat->row[var->index][pos]);
3295 if (opt && res == isl_lp_ok) {
3296 if (opt_denom) {
3297 isl_int_set(*opt, tab->mat->row[var->index][1]);
3298 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3299 } else
3300 get_rounded_sample_value(tab, var, 1, opt);
3302 if (isl_tab_rollback(tab, snap) < 0)
3303 return isl_lp_error;
3304 return res;
3307 /* Is the constraint at position "con" marked as being redundant?
3308 * If it is marked as representing an equality, then it is not
3309 * considered to be redundant.
3310 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3311 * redundant and moves the corresponding row into the first
3312 * tab->n_redundant positions (or removes the row, assigning it index -1),
3313 * so the final test is actually redundant itself.
3315 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3317 if (!tab)
3318 return -1;
3319 if (con < 0 || con >= tab->n_con)
3320 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3321 "position out of bounds", return -1);
3322 if (tab->con[con].is_zero)
3323 return 0;
3324 if (tab->con[con].is_redundant)
3325 return 1;
3326 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3329 /* Is variable "var" of "tab" fixed to a constant value by its row
3330 * in the tableau?
3331 * If so and if "value" is not NULL, then store this constant value
3332 * in "value".
3334 * That is, is it a row variable that only has non-zero coefficients
3335 * for dead columns?
3337 static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
3338 isl_int *value)
3340 unsigned off = 2 + tab->M;
3341 isl_mat *mat = tab->mat;
3342 int n;
3343 int row;
3344 int pos;
3346 if (!var->is_row)
3347 return isl_bool_false;
3348 row = var->index;
3349 if (row_is_big(tab, row))
3350 return isl_bool_false;
3351 n = tab->n_col - tab->n_dead;
3352 pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
3353 if (pos != -1)
3354 return isl_bool_false;
3355 if (value)
3356 isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]);
3357 return isl_bool_true;
3360 /* Has the variable "var' of "tab" reached a value that is greater than
3361 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3362 * "tmp" has been initialized by the caller and can be used
3363 * to perform local computations.
3365 * If the sample value involves the big parameter, then any value
3366 * is reached.
3367 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3368 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3370 static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
3371 isl_int target, isl_int *tmp)
3373 if (row_is_big(tab, var->index))
3374 return 1;
3375 isl_int_mul(*tmp, tab->mat->row[var->index][0], target);
3376 if (sgn > 0)
3377 return isl_int_ge(tab->mat->row[var->index][1], *tmp);
3378 else
3379 return isl_int_le(tab->mat->row[var->index][1], *tmp);
3382 /* Can variable "var" of "tab" attain the value "target" by
3383 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3384 * If not, then pivot up [down] to the greatest [smallest]
3385 * rational value.
3386 * "tmp" has been initialized by the caller and can be used
3387 * to perform local computations.
3389 * If the variable is manifestly unbounded in the desired direction,
3390 * then it can attain any value.
3391 * Otherwise, it can be moved to a row.
3392 * Continue pivoting until the target is reached.
3393 * If no more pivoting can be performed, the maximal [minimal]
3394 * rational value has been reached and the target cannot be reached.
3395 * If the variable would be pivoted into a manifestly unbounded column,
3396 * then the target can be reached.
3398 static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
3399 int sgn, isl_int target, isl_int *tmp)
3401 int row, col;
3403 if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
3404 return isl_bool_true;
3405 if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
3406 return isl_bool_true;
3407 if (to_row(tab, var, sgn) < 0)
3408 return isl_bool_error;
3409 while (!reached(tab, var, sgn, target, tmp)) {
3410 find_pivot(tab, var, var, sgn, &row, &col);
3411 if (row == -1)
3412 return isl_bool_false;
3413 if (row == var->index)
3414 return isl_bool_true;
3415 if (isl_tab_pivot(tab, row, col) < 0)
3416 return isl_bool_error;
3419 return isl_bool_true;
3422 /* Check if variable "var" of "tab" can only attain a single (integer)
3423 * value, and, if so, add an equality constraint to fix the variable
3424 * to this single value and store the result in "target".
3425 * "target" and "tmp" have been initialized by the caller.
3427 * Given the current sample value, round it down and check
3428 * whether it is possible to attain a strictly smaller integer value.
3429 * If so, the variable is not restricted to a single integer value.
3430 * Otherwise, the search stops at the smallest rational value.
3431 * Round up this value and check whether it is possible to attain
3432 * a strictly greater integer value.
3433 * If so, the variable is not restricted to a single integer value.
3434 * Otherwise, the search stops at the greatest rational value.
3435 * If rounding down this value yields a value that is different
3436 * from rounding up the smallest rational value, then the variable
3437 * cannot attain any integer value. Mark the tableau empty.
3438 * Otherwise, add an equality constraint that fixes the variable
3439 * to the single integer value found.
3441 static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
3442 struct isl_tab_var *var, isl_int *target, isl_int *tmp)
3444 isl_bool reached;
3445 isl_vec *eq;
3446 int pos;
3447 isl_stat r;
3449 get_rounded_sample_value(tab, var, -1, target);
3450 isl_int_sub_ui(*target, *target, 1);
3451 reached = var_reaches(tab, var, -1, *target, tmp);
3452 if (reached < 0 || reached)
3453 return isl_bool_not(reached);
3454 get_rounded_sample_value(tab, var, 1, target);
3455 isl_int_add_ui(*target, *target, 1);
3456 reached = var_reaches(tab, var, 1, *target, tmp);
3457 if (reached < 0 || reached)
3458 return isl_bool_not(reached);
3459 get_rounded_sample_value(tab, var, -1, tmp);
3460 isl_int_sub_ui(*target, *target, 1);
3461 if (isl_int_ne(*target, *tmp)) {
3462 if (isl_tab_mark_empty(tab) < 0)
3463 return isl_bool_error;
3464 return isl_bool_false;
3467 if (isl_tab_extend_cons(tab, 1) < 0)
3468 return isl_bool_error;
3469 eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
3470 if (!eq)
3471 return isl_bool_error;
3472 pos = var - tab->var;
3473 isl_seq_clr(eq->el + 1, tab->n_var);
3474 isl_int_set_si(eq->el[1 + pos], -1);
3475 isl_int_set(eq->el[0], *target);
3476 r = isl_tab_add_eq(tab, eq->el);
3477 isl_vec_free(eq);
3479 return r < 0 ? isl_bool_error : isl_bool_true;
3482 /* Check if variable "var" of "tab" can only attain a single (integer)
3483 * value, and, if so, add an equality constraint to fix the variable
3484 * to this single value and store the result in "value" (if "value"
3485 * is not NULL).
3487 * If the current sample value involves the big parameter,
3488 * then the variable cannot have a fixed integer value.
3489 * If the variable is already fixed to a single value by its row, then
3490 * there is no need to add another equality constraint.
3492 * Otherwise, allocate some temporary variables and continue
3493 * with detect_constant_with_tmp.
3495 static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
3496 isl_int *value)
3498 isl_int target, tmp;
3499 isl_bool is_cst;
3501 if (var->is_row && row_is_big(tab, var->index))
3502 return isl_bool_false;
3503 is_cst = is_constant(tab, var, value);
3504 if (is_cst < 0 || is_cst)
3505 return is_cst;
3507 if (!value)
3508 isl_int_init(target);
3509 isl_int_init(tmp);
3511 is_cst = detect_constant_with_tmp(tab, var,
3512 value ? value : &target, &tmp);
3514 isl_int_clear(tmp);
3515 if (!value)
3516 isl_int_clear(target);
3518 return is_cst;
3521 /* Check if variable "var" of "tab" can only attain a single (integer)
3522 * value, and, if so, add an equality constraint to fix the variable
3523 * to this single value and store the result in "value" (if "value"
3524 * is not NULL).
3526 * For rational tableaus, nothing needs to be done.
3528 isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
3530 if (!tab)
3531 return isl_bool_error;
3532 if (var < 0 || var >= tab->n_var)
3533 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3534 "position out of bounds", return isl_bool_error);
3535 if (tab->rational)
3536 return isl_bool_false;
3538 return get_constant(tab, &tab->var[var], value);
3541 /* Check if any of the variables of "tab" can only attain a single (integer)
3542 * value, and, if so, add equality constraints to fix those variables
3543 * to these single values.
3545 * For rational tableaus, nothing needs to be done.
3547 isl_stat isl_tab_detect_constants(struct isl_tab *tab)
3549 int i;
3551 if (!tab)
3552 return isl_stat_error;
3553 if (tab->rational)
3554 return isl_stat_ok;
3556 for (i = 0; i < tab->n_var; ++i) {
3557 if (get_constant(tab, &tab->var[i], NULL) < 0)
3558 return isl_stat_error;
3561 return isl_stat_ok;
3564 /* Take a snapshot of the tableau that can be restored by a call to
3565 * isl_tab_rollback.
3567 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3569 if (!tab)
3570 return NULL;
3571 tab->need_undo = 1;
3572 return tab->top;
3575 /* Does "tab" need to keep track of undo information?
3576 * That is, was a snapshot taken that may need to be restored?
3578 isl_bool isl_tab_need_undo(struct isl_tab *tab)
3580 if (!tab)
3581 return isl_bool_error;
3583 return tab->need_undo;
3586 /* Remove all tracking of undo information from "tab", invalidating
3587 * any snapshots that may have been taken of the tableau.
3588 * Since all snapshots have been invalidated, there is also
3589 * no need to start keeping track of undo information again.
3591 void isl_tab_clear_undo(struct isl_tab *tab)
3593 if (!tab)
3594 return;
3596 free_undo(tab);
3597 tab->need_undo = 0;
3600 /* Undo the operation performed by isl_tab_relax.
3602 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3603 WARN_UNUSED;
3604 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3606 unsigned off = 2 + tab->M;
3608 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3609 if (to_row(tab, var, 1) < 0)
3610 return isl_stat_error;
3612 if (var->is_row) {
3613 isl_int_sub(tab->mat->row[var->index][1],
3614 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3615 if (var->is_nonneg) {
3616 int sgn = restore_row(tab, var);
3617 isl_assert(tab->mat->ctx, sgn >= 0,
3618 return isl_stat_error);
3620 } else {
3621 int i;
3623 for (i = 0; i < tab->n_row; ++i) {
3624 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3625 continue;
3626 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3627 tab->mat->row[i][off + var->index]);
3632 return isl_stat_ok;
3635 /* Undo the operation performed by isl_tab_unrestrict.
3637 * In particular, mark the variable as being non-negative and make
3638 * sure the sample value respects this constraint.
3640 static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3642 var->is_nonneg = 1;
3644 if (var->is_row && restore_row(tab, var) < -1)
3645 return isl_stat_error;
3647 return isl_stat_ok;
3650 /* Unmark the last redundant row in "tab" as being redundant.
3651 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3652 * In particular, remove the redundant mark and make
3653 * sure the sample value respects the constraint again.
3654 * A variable that is marked non-negative by isl_tab_mark_redundant
3655 * is covered by a separate undo record.
3657 static isl_stat restore_last_redundant(struct isl_tab *tab)
3659 struct isl_tab_var *var;
3661 if (tab->n_redundant < 1)
3662 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3663 "no redundant rows", return isl_stat_error);
3665 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3666 var->is_redundant = 0;
3667 tab->n_redundant--;
3668 restore_row(tab, var);
3670 return isl_stat_ok;
3673 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3674 WARN_UNUSED;
3675 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3677 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3678 switch (undo->type) {
3679 case isl_tab_undo_nonneg:
3680 var->is_nonneg = 0;
3681 break;
3682 case isl_tab_undo_redundant:
3683 if (!var->is_row || var->index != tab->n_redundant - 1)
3684 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3685 "not undoing last redundant row",
3686 return isl_stat_error);
3687 return restore_last_redundant(tab);
3688 case isl_tab_undo_freeze:
3689 var->frozen = 0;
3690 break;
3691 case isl_tab_undo_zero:
3692 var->is_zero = 0;
3693 if (!var->is_row)
3694 tab->n_dead--;
3695 break;
3696 case isl_tab_undo_allocate:
3697 if (undo->u.var_index >= 0) {
3698 isl_assert(tab->mat->ctx, !var->is_row,
3699 return isl_stat_error);
3700 return drop_col(tab, var->index);
3702 if (!var->is_row) {
3703 if (!max_is_manifestly_unbounded(tab, var)) {
3704 if (to_row(tab, var, 1) < 0)
3705 return isl_stat_error;
3706 } else if (!min_is_manifestly_unbounded(tab, var)) {
3707 if (to_row(tab, var, -1) < 0)
3708 return isl_stat_error;
3709 } else
3710 if (to_row(tab, var, 0) < 0)
3711 return isl_stat_error;
3713 return drop_row(tab, var->index);
3714 case isl_tab_undo_relax:
3715 return unrelax(tab, var);
3716 case isl_tab_undo_unrestrict:
3717 return ununrestrict(tab, var);
3718 default:
3719 isl_die(tab->mat->ctx, isl_error_internal,
3720 "perform_undo_var called on invalid undo record",
3721 return isl_stat_error);
3724 return isl_stat_ok;
3727 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3728 * and that have been preserved in the tableau.
3729 * Note that isl_tab_mark_redundant may also have marked some variables
3730 * as being non-negative before marking them redundant. These need
3731 * to be removed as well as otherwise some constraints could end up
3732 * getting marked redundant with respect to the variable.
3734 isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
3736 if (!tab)
3737 return isl_stat_error;
3739 if (tab->need_undo)
3740 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3741 "manually restoring redundant constraints "
3742 "interferes with undo history",
3743 return isl_stat_error);
3745 while (tab->n_redundant > 0) {
3746 if (tab->row_var[tab->n_redundant - 1] >= 0) {
3747 struct isl_tab_var *var;
3749 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3750 var->is_nonneg = 0;
3752 restore_last_redundant(tab);
3754 return isl_stat_ok;
3757 /* Undo the addition of an integer division to the basic map representation
3758 * of "tab" in position "pos".
3760 static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
3762 int off;
3764 off = tab->n_var - isl_basic_map_dim(tab->bmap, isl_dim_div);
3765 if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0)
3766 return isl_stat_error;
3767 if (tab->samples) {
3768 tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
3769 if (!tab->samples)
3770 return isl_stat_error;
3773 return isl_stat_ok;
3776 /* Restore the tableau to the state where the basic variables
3777 * are those in "col_var".
3778 * We first construct a list of variables that are currently in
3779 * the basis, but shouldn't. Then we iterate over all variables
3780 * that should be in the basis and for each one that is currently
3781 * not in the basis, we exchange it with one of the elements of the
3782 * list constructed before.
3783 * We can always find an appropriate variable to pivot with because
3784 * the current basis is mapped to the old basis by a non-singular
3785 * matrix and so we can never end up with a zero row.
3787 static int restore_basis(struct isl_tab *tab, int *col_var)
3789 int i, j;
3790 int n_extra = 0;
3791 int *extra = NULL; /* current columns that contain bad stuff */
3792 unsigned off = 2 + tab->M;
3794 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3795 if (tab->n_col && !extra)
3796 goto error;
3797 for (i = 0; i < tab->n_col; ++i) {
3798 for (j = 0; j < tab->n_col; ++j)
3799 if (tab->col_var[i] == col_var[j])
3800 break;
3801 if (j < tab->n_col)
3802 continue;
3803 extra[n_extra++] = i;
3805 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3806 struct isl_tab_var *var;
3807 int row;
3809 for (j = 0; j < tab->n_col; ++j)
3810 if (col_var[i] == tab->col_var[j])
3811 break;
3812 if (j < tab->n_col)
3813 continue;
3814 var = var_from_index(tab, col_var[i]);
3815 row = var->index;
3816 for (j = 0; j < n_extra; ++j)
3817 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3818 break;
3819 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3820 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3821 goto error;
3822 extra[j] = extra[--n_extra];
3825 free(extra);
3826 return 0;
3827 error:
3828 free(extra);
3829 return -1;
3832 /* Remove all samples with index n or greater, i.e., those samples
3833 * that were added since we saved this number of samples in
3834 * isl_tab_save_samples.
3836 static void drop_samples_since(struct isl_tab *tab, int n)
3838 int i;
3840 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3841 if (tab->sample_index[i] < n)
3842 continue;
3844 if (i != tab->n_sample - 1) {
3845 int t = tab->sample_index[tab->n_sample-1];
3846 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3847 tab->sample_index[i] = t;
3848 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3850 tab->n_sample--;
3854 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3855 WARN_UNUSED;
3856 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3858 switch (undo->type) {
3859 case isl_tab_undo_rational:
3860 tab->rational = 0;
3861 break;
3862 case isl_tab_undo_empty:
3863 tab->empty = 0;
3864 break;
3865 case isl_tab_undo_nonneg:
3866 case isl_tab_undo_redundant:
3867 case isl_tab_undo_freeze:
3868 case isl_tab_undo_zero:
3869 case isl_tab_undo_allocate:
3870 case isl_tab_undo_relax:
3871 case isl_tab_undo_unrestrict:
3872 return perform_undo_var(tab, undo);
3873 case isl_tab_undo_bmap_eq:
3874 return isl_basic_map_free_equality(tab->bmap, 1);
3875 case isl_tab_undo_bmap_ineq:
3876 return isl_basic_map_free_inequality(tab->bmap, 1);
3877 case isl_tab_undo_bmap_div:
3878 return drop_bmap_div(tab, undo->u.var_index);
3879 case isl_tab_undo_saved_basis:
3880 if (restore_basis(tab, undo->u.col_var) < 0)
3881 return isl_stat_error;
3882 break;
3883 case isl_tab_undo_drop_sample:
3884 tab->n_outside--;
3885 break;
3886 case isl_tab_undo_saved_samples:
3887 drop_samples_since(tab, undo->u.n);
3888 break;
3889 case isl_tab_undo_callback:
3890 return undo->u.callback->run(undo->u.callback);
3891 default:
3892 isl_assert(tab->mat->ctx, 0, return isl_stat_error);
3894 return isl_stat_ok;
3897 /* Return the tableau to the state it was in when the snapshot "snap"
3898 * was taken.
3900 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3902 struct isl_tab_undo *undo, *next;
3904 if (!tab)
3905 return -1;
3907 tab->in_undo = 1;
3908 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3909 next = undo->next;
3910 if (undo == snap)
3911 break;
3912 if (perform_undo(tab, undo) < 0) {
3913 tab->top = undo;
3914 free_undo(tab);
3915 tab->in_undo = 0;
3916 return -1;
3918 free_undo_record(undo);
3920 tab->in_undo = 0;
3921 tab->top = undo;
3922 if (!undo)
3923 return -1;
3924 return 0;
3927 /* The given row "row" represents an inequality violated by all
3928 * points in the tableau. Check for some special cases of such
3929 * separating constraints.
3930 * In particular, if the row has been reduced to the constant -1,
3931 * then we know the inequality is adjacent (but opposite) to
3932 * an equality in the tableau.
3933 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3934 * of the tableau and c a positive constant, then the inequality
3935 * is adjacent (but opposite) to the inequality r'.
3937 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3939 int pos;
3940 unsigned off = 2 + tab->M;
3942 if (tab->rational)
3943 return isl_ineq_separate;
3945 if (!isl_int_is_one(tab->mat->row[row][0]))
3946 return isl_ineq_separate;
3948 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3949 tab->n_col - tab->n_dead);
3950 if (pos == -1) {
3951 if (isl_int_is_negone(tab->mat->row[row][1]))
3952 return isl_ineq_adj_eq;
3953 else
3954 return isl_ineq_separate;
3957 if (!isl_int_eq(tab->mat->row[row][1],
3958 tab->mat->row[row][off + tab->n_dead + pos]))
3959 return isl_ineq_separate;
3961 pos = isl_seq_first_non_zero(
3962 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3963 tab->n_col - tab->n_dead - pos - 1);
3965 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3968 /* Check the effect of inequality "ineq" on the tableau "tab".
3969 * The result may be
3970 * isl_ineq_redundant: satisfied by all points in the tableau
3971 * isl_ineq_separate: satisfied by no point in the tableau
3972 * isl_ineq_cut: satisfied by some by not all points
3973 * isl_ineq_adj_eq: adjacent to an equality
3974 * isl_ineq_adj_ineq: adjacent to an inequality.
3976 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3978 enum isl_ineq_type type = isl_ineq_error;
3979 struct isl_tab_undo *snap = NULL;
3980 int con;
3981 int row;
3983 if (!tab)
3984 return isl_ineq_error;
3986 if (isl_tab_extend_cons(tab, 1) < 0)
3987 return isl_ineq_error;
3989 snap = isl_tab_snap(tab);
3991 con = isl_tab_add_row(tab, ineq);
3992 if (con < 0)
3993 goto error;
3995 row = tab->con[con].index;
3996 if (isl_tab_row_is_redundant(tab, row))
3997 type = isl_ineq_redundant;
3998 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3999 (tab->rational ||
4000 isl_int_abs_ge(tab->mat->row[row][1],
4001 tab->mat->row[row][0]))) {
4002 int nonneg = at_least_zero(tab, &tab->con[con]);
4003 if (nonneg < 0)
4004 goto error;
4005 if (nonneg)
4006 type = isl_ineq_cut;
4007 else
4008 type = separation_type(tab, row);
4009 } else {
4010 int red = con_is_redundant(tab, &tab->con[con]);
4011 if (red < 0)
4012 goto error;
4013 if (!red)
4014 type = isl_ineq_cut;
4015 else
4016 type = isl_ineq_redundant;
4019 if (isl_tab_rollback(tab, snap))
4020 return isl_ineq_error;
4021 return type;
4022 error:
4023 return isl_ineq_error;
4026 isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
4028 bmap = isl_basic_map_cow(bmap);
4029 if (!tab || !bmap)
4030 goto error;
4032 if (tab->empty) {
4033 bmap = isl_basic_map_set_to_empty(bmap);
4034 if (!bmap)
4035 goto error;
4036 tab->bmap = bmap;
4037 return isl_stat_ok;
4040 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
4041 isl_assert(tab->mat->ctx,
4042 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
4044 tab->bmap = bmap;
4046 return isl_stat_ok;
4047 error:
4048 isl_basic_map_free(bmap);
4049 return isl_stat_error;
4052 isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
4054 return isl_tab_track_bmap(tab, bset_to_bmap(bset));
4057 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
4059 if (!tab)
4060 return NULL;
4062 return bset_from_bmap(tab->bmap);
4065 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
4066 FILE *out, int indent)
4068 unsigned r, c;
4069 int i;
4071 if (!tab) {
4072 fprintf(out, "%*snull tab\n", indent, "");
4073 return;
4075 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
4076 tab->n_redundant, tab->n_dead);
4077 if (tab->rational)
4078 fprintf(out, ", rational");
4079 if (tab->empty)
4080 fprintf(out, ", empty");
4081 fprintf(out, "\n");
4082 fprintf(out, "%*s[", indent, "");
4083 for (i = 0; i < tab->n_var; ++i) {
4084 if (i)
4085 fprintf(out, (i == tab->n_param ||
4086 i == tab->n_var - tab->n_div) ? "; "
4087 : ", ");
4088 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
4089 tab->var[i].index,
4090 tab->var[i].is_zero ? " [=0]" :
4091 tab->var[i].is_redundant ? " [R]" : "");
4093 fprintf(out, "]\n");
4094 fprintf(out, "%*s[", indent, "");
4095 for (i = 0; i < tab->n_con; ++i) {
4096 if (i)
4097 fprintf(out, ", ");
4098 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
4099 tab->con[i].index,
4100 tab->con[i].is_zero ? " [=0]" :
4101 tab->con[i].is_redundant ? " [R]" : "");
4103 fprintf(out, "]\n");
4104 fprintf(out, "%*s[", indent, "");
4105 for (i = 0; i < tab->n_row; ++i) {
4106 const char *sign = "";
4107 if (i)
4108 fprintf(out, ", ");
4109 if (tab->row_sign) {
4110 if (tab->row_sign[i] == isl_tab_row_unknown)
4111 sign = "?";
4112 else if (tab->row_sign[i] == isl_tab_row_neg)
4113 sign = "-";
4114 else if (tab->row_sign[i] == isl_tab_row_pos)
4115 sign = "+";
4116 else
4117 sign = "+-";
4119 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
4120 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
4122 fprintf(out, "]\n");
4123 fprintf(out, "%*s[", indent, "");
4124 for (i = 0; i < tab->n_col; ++i) {
4125 if (i)
4126 fprintf(out, ", ");
4127 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
4128 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
4130 fprintf(out, "]\n");
4131 r = tab->mat->n_row;
4132 tab->mat->n_row = tab->n_row;
4133 c = tab->mat->n_col;
4134 tab->mat->n_col = 2 + tab->M + tab->n_col;
4135 isl_mat_print_internal(tab->mat, out, indent);
4136 tab->mat->n_row = r;
4137 tab->mat->n_col = c;
4138 if (tab->bmap)
4139 isl_basic_map_print_internal(tab->bmap, out, indent);
4142 void isl_tab_dump(__isl_keep struct isl_tab *tab)
4144 isl_tab_print_internal(tab, stderr, 0);