2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map
*isl_basic_map_implicit_equalities(
22 struct isl_basic_map
*bmap
)
29 bmap
= isl_basic_map_gauss(bmap
, NULL
);
30 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
32 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
34 if (bmap
->n_ineq
<= 1)
37 tab
= isl_tab_from_basic_map(bmap
, 0);
38 if (isl_tab_detect_implicit_equalities(tab
) < 0)
40 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
42 bmap
= isl_basic_map_gauss(bmap
, NULL
);
43 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
47 isl_basic_map_free(bmap
);
51 struct isl_basic_set
*isl_basic_set_implicit_equalities(
52 struct isl_basic_set
*bset
)
54 return (struct isl_basic_set
*)
55 isl_basic_map_implicit_equalities((struct isl_basic_map
*)bset
);
58 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
65 for (i
= 0; i
< map
->n
; ++i
) {
66 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
84 unsigned row
, unsigned col
)
88 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
93 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
94 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
95 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
96 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
97 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
111 for (r
= row
; r
< bset
->n_eq
; ++r
)
112 bset
->eq
[r
] = bset
->eq
[r
+1];
113 bset
->eq
[bset
->n_eq
] = t
;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
127 unsigned row
, unsigned col
)
136 total
= 1 + isl_basic_set_n_dim(bset1
);
137 for (r
= 0; r
< row
; ++r
) {
138 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
140 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
141 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
142 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
143 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
144 b
, bset1
->eq
[row
], total
);
145 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
149 delete_row(bset1
, row
);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
163 unsigned row
, unsigned col
)
169 for (t
= row
-1; t
>= 0; --t
)
170 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
175 total
= 1 + isl_basic_set_n_dim(bset1
);
179 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
180 for (i
= 0; i
< t
; ++i
) {
181 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
182 isl_int_gcd(g
, a
, b
);
183 isl_int_divexact(a
, a
, g
);
184 isl_int_divexact(g
, b
, g
);
185 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
187 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
193 delete_row(bset1
, t
);
194 delete_row(bset2
, t
);
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set
*affine_hull(
204 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
210 if (!bset1
|| !bset2
)
213 total
= 1 + isl_basic_set_n_dim(bset1
);
216 for (col
= total
-1; col
>= 0; --col
) {
217 int is_zero1
= row
>= bset1
->n_eq
||
218 isl_int_is_zero(bset1
->eq
[row
][col
]);
219 int is_zero2
= row
>= bset2
->n_eq
||
220 isl_int_is_zero(bset2
->eq
[row
][col
]);
221 if (!is_zero1
&& !is_zero2
) {
222 set_common_multiple(bset1
, bset2
, row
, col
);
224 } else if (!is_zero1
&& is_zero2
) {
225 construct_column(bset1
, bset2
, row
, col
);
226 } else if (is_zero1
&& !is_zero2
) {
227 construct_column(bset2
, bset1
, row
, col
);
229 if (transform_column(bset1
, bset2
, row
, col
))
233 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
234 isl_basic_set_free(bset2
);
235 bset1
= isl_basic_set_normalize_constraints(bset1
);
238 isl_basic_set_free(bset1
);
239 isl_basic_set_free(bset2
);
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
261 struct isl_vec
*sample
= NULL
;
262 struct isl_tab_undo
*snap
;
270 sample
= isl_vec_alloc(ctx
, 1 + dim
);
273 isl_int_set_si(sample
->el
[0], 1);
274 isl_seq_combine(sample
->el
+ 1,
275 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
276 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
277 if (isl_basic_map_contains(tab
->bmap
, sample
))
279 isl_vec_free(sample
);
282 snap
= isl_tab_snap(tab
);
285 isl_seq_neg(eq
, eq
, 1 + dim
);
286 isl_int_sub_ui(eq
[0], eq
[0], 1);
288 if (isl_tab_extend_cons(tab
, 1) < 0)
290 if (isl_tab_add_ineq(tab
, eq
) < 0)
293 sample
= isl_tab_sample(tab
);
295 isl_int_add_ui(eq
[0], eq
[0], 1);
297 isl_seq_neg(eq
, eq
, 1 + dim
);
299 if (sample
&& isl_tab_rollback(tab
, snap
) < 0)
304 isl_vec_free(sample
);
308 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
312 bset
= isl_basic_set_cow(bset
);
315 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
317 for (i
= 0; i
< bset
->n_eq
; ++i
)
318 isl_int_set_si(bset
->eq
[i
][0], 0);
320 for (i
= 0; i
< bset
->n_ineq
; ++i
)
321 isl_int_set_si(bset
->ineq
[i
][0], 0);
323 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
324 return isl_basic_set_implicit_equalities(bset
);
326 isl_basic_set_free(bset
);
330 __isl_give isl_set
*isl_set_recession_cone(__isl_take isl_set
*set
)
339 set
= isl_set_remove_divs(set
);
340 set
= isl_set_cow(set
);
344 for (i
= 0; i
< set
->n
; ++i
) {
345 set
->p
[i
] = isl_basic_set_recession_cone(set
->p
[i
]);
356 /* Move "sample" to a point that is one up (or down) from the original
357 * point in dimension "pos".
359 static void adjacent_point(__isl_keep isl_vec
*sample
, int pos
, int up
)
362 isl_int_add_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
364 isl_int_sub_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
367 /* Check if any points that are adjacent to "sample" also belong to "bset".
368 * If so, add them to "hull" and return the updated hull.
370 * Before checking whether and adjacent point belongs to "bset", we first
371 * check whether it already belongs to "hull" as this test is typically
374 static __isl_give isl_basic_set
*add_adjacent_points(
375 __isl_take isl_basic_set
*hull
, __isl_take isl_vec
*sample
,
376 __isl_keep isl_basic_set
*bset
)
384 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
386 for (i
= 0; i
< dim
; ++i
) {
387 for (up
= 0; up
<= 1; ++up
) {
389 isl_basic_set
*point
;
391 adjacent_point(sample
, i
, up
);
392 contains
= isl_basic_set_contains(hull
, sample
);
396 adjacent_point(sample
, i
, !up
);
399 contains
= isl_basic_set_contains(bset
, sample
);
403 point
= isl_basic_set_from_vec(
404 isl_vec_copy(sample
));
405 hull
= affine_hull(hull
, point
);
407 adjacent_point(sample
, i
, !up
);
413 isl_vec_free(sample
);
417 isl_vec_free(sample
);
418 isl_basic_set_free(hull
);
422 /* Extend an initial (under-)approximation of the affine hull of basic
423 * set represented by the tableau "tab"
424 * by looking for points that do not satisfy one of the equalities
425 * in the current approximation and adding them to that approximation
426 * until no such points can be found any more.
428 * The caller of this function ensures that "tab" is bounded or
429 * that tab->basis and tab->n_unbounded have been set appropriately.
431 * "bset" may be either NULL or the basic set represented by "tab".
432 * If "bset" is not NULL, we check for any point we find if any
433 * of its adjacent points also belong to "bset".
435 static __isl_give isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
436 __isl_take isl_basic_set
*hull
, __isl_keep isl_basic_set
*bset
)
446 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
449 for (i
= 0; i
< dim
; ++i
) {
450 struct isl_vec
*sample
;
451 struct isl_basic_set
*point
;
452 for (j
= 0; j
< hull
->n_eq
; ++j
) {
453 sample
= outside_point(tab
, hull
->eq
[j
], 1);
456 if (sample
->size
> 0)
458 isl_vec_free(sample
);
459 sample
= outside_point(tab
, hull
->eq
[j
], 0);
462 if (sample
->size
> 0)
464 isl_vec_free(sample
);
466 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
472 tab
= isl_tab_add_sample(tab
, isl_vec_copy(sample
));
476 hull
= add_adjacent_points(hull
, isl_vec_copy(sample
),
478 point
= isl_basic_set_from_vec(sample
);
479 hull
= affine_hull(hull
, point
);
486 isl_basic_set_free(hull
);
490 /* Drop all constraints in bset that involve any of the dimensions
491 * first to first+n-1.
493 __isl_give isl_basic_set
*isl_basic_set_drop_constraints_involving(
494 __isl_take isl_basic_set
*bset
, unsigned first
, unsigned n
)
501 bset
= isl_basic_set_cow(bset
);
506 for (i
= bset
->n_eq
- 1; i
>= 0; --i
) {
507 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + first
, n
) == -1)
509 isl_basic_set_drop_equality(bset
, i
);
512 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
513 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
515 isl_basic_set_drop_inequality(bset
, i
);
521 /* Construct an initial underapproximatino of the hull of "bset"
522 * from "sample" and any of its adjacent points that also belong to "bset".
524 static __isl_give isl_basic_set
*initialize_hull(__isl_keep isl_basic_set
*bset
,
525 __isl_take isl_vec
*sample
)
529 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
530 hull
= add_adjacent_points(hull
, sample
, bset
);
535 /* Look for all equalities satisfied by the integer points in bset,
536 * which is assumed to be bounded.
538 * The equalities are obtained by successively looking for
539 * a point that is affinely independent of the points found so far.
540 * In particular, for each equality satisfied by the points so far,
541 * we check if there is any point on a hyperplane parallel to the
542 * corresponding hyperplane shifted by at least one (in either direction).
544 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
546 struct isl_vec
*sample
= NULL
;
547 struct isl_basic_set
*hull
;
548 struct isl_tab
*tab
= NULL
;
551 if (isl_basic_set_plain_is_empty(bset
))
554 dim
= isl_basic_set_n_dim(bset
);
556 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
557 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
563 sample
= isl_vec_copy(bset
->sample
);
565 isl_vec_free(bset
->sample
);
570 tab
= isl_tab_from_basic_set(bset
, 1);
575 isl_vec_free(sample
);
576 return isl_basic_set_set_to_empty(bset
);
580 struct isl_tab_undo
*snap
;
581 snap
= isl_tab_snap(tab
);
582 sample
= isl_tab_sample(tab
);
583 if (isl_tab_rollback(tab
, snap
) < 0)
585 isl_vec_free(tab
->bmap
->sample
);
586 tab
->bmap
->sample
= isl_vec_copy(sample
);
591 if (sample
->size
== 0) {
593 isl_vec_free(sample
);
594 return isl_basic_set_set_to_empty(bset
);
597 hull
= initialize_hull(bset
, sample
);
599 hull
= extend_affine_hull(tab
, hull
, bset
);
600 isl_basic_set_free(bset
);
605 isl_vec_free(sample
);
607 isl_basic_set_free(bset
);
611 /* Given an unbounded tableau and an integer point satisfying the tableau,
612 * construct an initial affine hull containing the recession cone
613 * shifted to the given point.
615 * The unbounded directions are taken from the last rows of the basis,
616 * which is assumed to have been initialized appropriately.
618 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
619 __isl_take isl_vec
*vec
)
623 struct isl_basic_set
*bset
= NULL
;
630 isl_assert(ctx
, vec
->size
!= 0, goto error
);
632 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
635 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
636 for (i
= 0; i
< dim
; ++i
) {
637 k
= isl_basic_set_alloc_equality(bset
);
640 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
642 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
643 vec
->size
- 1, &bset
->eq
[k
][0]);
644 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
647 bset
= isl_basic_set_gauss(bset
, NULL
);
651 isl_basic_set_free(bset
);
656 /* Given a tableau of a set and a tableau of the corresponding
657 * recession cone, detect and add all equalities to the tableau.
658 * If the tableau is bounded, then we can simply keep the
659 * tableau in its state after the return from extend_affine_hull.
660 * However, if the tableau is unbounded, then
661 * isl_tab_set_initial_basis_with_cone will add some additional
662 * constraints to the tableau that have to be removed again.
663 * In this case, we therefore rollback to the state before
664 * any constraints were added and then add the equalities back in.
666 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
667 struct isl_tab
*tab_cone
)
670 struct isl_vec
*sample
;
671 struct isl_basic_set
*hull
;
672 struct isl_tab_undo
*snap
;
674 if (!tab
|| !tab_cone
)
677 snap
= isl_tab_snap(tab
);
679 isl_mat_free(tab
->basis
);
682 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
683 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
684 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
685 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
687 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
690 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
694 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
696 isl_vec_free(tab
->bmap
->sample
);
697 tab
->bmap
->sample
= isl_vec_copy(sample
);
699 if (tab
->n_unbounded
== 0)
700 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
702 hull
= initial_hull(tab
, isl_vec_copy(sample
));
704 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
705 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
706 hull
= affine_hull(hull
,
707 isl_basic_set_from_vec(isl_vec_copy(sample
)));
710 isl_vec_free(sample
);
712 hull
= extend_affine_hull(tab
, hull
, NULL
);
716 if (tab
->n_unbounded
== 0) {
717 isl_basic_set_free(hull
);
721 if (isl_tab_rollback(tab
, snap
) < 0)
724 if (hull
->n_eq
> tab
->n_zero
) {
725 for (j
= 0; j
< hull
->n_eq
; ++j
) {
726 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
727 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
732 isl_basic_set_free(hull
);
740 /* Compute the affine hull of "bset", where "cone" is the recession cone
743 * We first compute a unimodular transformation that puts the unbounded
744 * directions in the last dimensions. In particular, we take a transformation
745 * that maps all equalities to equalities (in HNF) on the first dimensions.
746 * Let x be the original dimensions and y the transformed, with y_1 bounded
749 * [ y_1 ] [ y_1 ] [ Q_1 ]
750 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
752 * Let's call the input basic set S. We compute S' = preimage(S, U)
753 * and drop the final dimensions including any constraints involving them.
754 * This results in set S''.
755 * Then we compute the affine hull A'' of S''.
756 * Let F y_1 >= g be the constraint system of A''. In the transformed
757 * space the y_2 are unbounded, so we can add them back without any constraints,
761 * [ F 0 ] [ y_2 ] >= g
764 * [ F 0 ] [ Q_2 ] x >= g
768 * The affine hull in the original space is then obtained as
769 * A = preimage(A'', Q_1).
771 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
772 struct isl_basic_set
*cone
)
776 struct isl_basic_set
*hull
;
777 struct isl_mat
*M
, *U
, *Q
;
782 total
= isl_basic_set_total_dim(cone
);
783 cone_dim
= total
- cone
->n_eq
;
785 M
= isl_mat_sub_alloc6(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
786 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
791 U
= isl_mat_lin_to_aff(U
);
792 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
794 bset
= isl_basic_set_drop_constraints_involving(bset
, total
- cone_dim
,
796 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
798 Q
= isl_mat_lin_to_aff(Q
);
799 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
801 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
802 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
804 hull
= uset_affine_hull_bounded(bset
);
809 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
810 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
811 if (sample
&& sample
->size
> 0)
812 sample
= isl_mat_vec_product(U
, sample
);
815 hull
= isl_basic_set_preimage(hull
, Q
);
817 isl_vec_free(hull
->sample
);
818 hull
->sample
= sample
;
820 isl_vec_free(sample
);
823 isl_basic_set_free(cone
);
827 isl_basic_set_free(bset
);
828 isl_basic_set_free(cone
);
832 /* Look for all equalities satisfied by the integer points in bset,
833 * which is assumed not to have any explicit equalities.
835 * The equalities are obtained by successively looking for
836 * a point that is affinely independent of the points found so far.
837 * In particular, for each equality satisfied by the points so far,
838 * we check if there is any point on a hyperplane parallel to the
839 * corresponding hyperplane shifted by at least one (in either direction).
841 * Before looking for any outside points, we first compute the recession
842 * cone. The directions of this recession cone will always be part
843 * of the affine hull, so there is no need for looking for any points
844 * in these directions.
845 * In particular, if the recession cone is full-dimensional, then
846 * the affine hull is simply the whole universe.
848 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
850 struct isl_basic_set
*cone
;
852 if (isl_basic_set_plain_is_empty(bset
))
855 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
858 if (cone
->n_eq
== 0) {
859 struct isl_basic_set
*hull
;
860 isl_basic_set_free(cone
);
861 hull
= isl_basic_set_universe_like(bset
);
862 isl_basic_set_free(bset
);
866 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
867 return affine_hull_with_cone(bset
, cone
);
869 isl_basic_set_free(cone
);
870 return uset_affine_hull_bounded(bset
);
872 isl_basic_set_free(bset
);
876 /* Look for all equalities satisfied by the integer points in bmap
877 * that are independent of the equalities already explicitly available
880 * We first remove all equalities already explicitly available,
881 * then look for additional equalities in the reduced space
882 * and then transform the result to the original space.
883 * The original equalities are _not_ added to this set. This is
884 * the responsibility of the calling function.
885 * The resulting basic set has all meaning about the dimensions removed.
886 * In particular, dimensions that correspond to existential variables
887 * in bmap and that are found to be fixed are not removed.
889 static struct isl_basic_set
*equalities_in_underlying_set(
890 struct isl_basic_map
*bmap
)
892 struct isl_mat
*T1
= NULL
;
893 struct isl_mat
*T2
= NULL
;
894 struct isl_basic_set
*bset
= NULL
;
895 struct isl_basic_set
*hull
= NULL
;
897 bset
= isl_basic_map_underlying_set(bmap
);
901 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
905 hull
= uset_affine_hull(bset
);
913 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
914 if (sample
&& sample
->size
> 0)
915 sample
= isl_mat_vec_product(T1
, sample
);
918 hull
= isl_basic_set_preimage(hull
, T2
);
920 isl_vec_free(hull
->sample
);
921 hull
->sample
= sample
;
923 isl_vec_free(sample
);
929 isl_basic_set_free(bset
);
930 isl_basic_set_free(hull
);
934 /* Detect and make explicit all equalities satisfied by the (integer)
937 struct isl_basic_map
*isl_basic_map_detect_equalities(
938 struct isl_basic_map
*bmap
)
941 struct isl_basic_set
*hull
= NULL
;
945 if (bmap
->n_ineq
== 0)
947 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
949 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
951 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
952 return isl_basic_map_implicit_equalities(bmap
);
954 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
957 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
958 isl_basic_set_free(hull
);
959 return isl_basic_map_set_to_empty(bmap
);
961 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
), 0,
963 for (i
= 0; i
< hull
->n_eq
; ++i
) {
964 j
= isl_basic_map_alloc_equality(bmap
);
967 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
968 1 + isl_basic_set_total_dim(hull
));
970 isl_vec_free(bmap
->sample
);
971 bmap
->sample
= isl_vec_copy(hull
->sample
);
972 isl_basic_set_free(hull
);
973 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
974 bmap
= isl_basic_map_simplify(bmap
);
975 return isl_basic_map_finalize(bmap
);
977 isl_basic_set_free(hull
);
978 isl_basic_map_free(bmap
);
982 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
983 __isl_take isl_basic_set
*bset
)
985 return (isl_basic_set
*)
986 isl_basic_map_detect_equalities((isl_basic_map
*)bset
);
989 __isl_give isl_map
*isl_map_inline_foreach_basic_map(__isl_take isl_map
*map
,
990 __isl_give isl_basic_map
*(*fn
)(__isl_take isl_basic_map
*bmap
))
992 struct isl_basic_map
*bmap
;
998 for (i
= 0; i
< map
->n
; ++i
) {
999 bmap
= isl_basic_map_copy(map
->p
[i
]);
1003 isl_basic_map_free(map
->p
[i
]);
1013 __isl_give isl_map
*isl_map_detect_equalities(__isl_take isl_map
*map
)
1015 return isl_map_inline_foreach_basic_map(map
,
1016 &isl_basic_map_detect_equalities
);
1019 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
1021 return (isl_set
*)isl_map_detect_equalities((isl_map
*)set
);
1024 /* After computing the rational affine hull (by detecting the implicit
1025 * equalities), we compute the additional equalities satisfied by
1026 * the integer points (if any) and add the original equalities back in.
1028 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
1030 bmap
= isl_basic_map_detect_equalities(bmap
);
1031 bmap
= isl_basic_map_cow(bmap
);
1033 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
1034 bmap
= isl_basic_map_finalize(bmap
);
1038 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
1040 return (struct isl_basic_set
*)
1041 isl_basic_map_affine_hull((struct isl_basic_map
*)bset
);
1044 struct isl_basic_map
*isl_map_affine_hull(struct isl_map
*map
)
1047 struct isl_basic_map
*model
= NULL
;
1048 struct isl_basic_map
*hull
= NULL
;
1049 struct isl_set
*set
;
1051 map
= isl_map_detect_equalities(map
);
1052 map
= isl_map_align_divs(map
);
1058 hull
= isl_basic_map_empty_like_map(map
);
1063 model
= isl_basic_map_copy(map
->p
[0]);
1064 set
= isl_map_underlying_set(map
);
1065 set
= isl_set_cow(set
);
1069 for (i
= 0; i
< set
->n
; ++i
) {
1070 set
->p
[i
] = isl_basic_set_cow(set
->p
[i
]);
1071 set
->p
[i
] = isl_basic_set_affine_hull(set
->p
[i
]);
1072 set
->p
[i
] = isl_basic_set_gauss(set
->p
[i
], NULL
);
1076 set
= isl_set_remove_empty_parts(set
);
1078 hull
= isl_basic_map_empty_like(model
);
1079 isl_basic_map_free(model
);
1081 struct isl_basic_set
*bset
;
1082 while (set
->n
> 1) {
1083 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
1087 bset
= isl_basic_set_copy(set
->p
[0]);
1088 hull
= isl_basic_map_overlying_set(bset
, model
);
1091 hull
= isl_basic_map_simplify(hull
);
1092 return isl_basic_map_finalize(hull
);
1094 isl_basic_map_free(model
);
1099 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
1101 return (struct isl_basic_set
*)
1102 isl_map_affine_hull((struct isl_map
*)set
);