2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
23 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
25 isl_int
*t
= bmap
->eq
[a
];
26 bmap
->eq
[a
] = bmap
->eq
[b
];
30 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->ineq
[a
];
34 bmap
->ineq
[a
] = bmap
->ineq
[b
];
39 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
41 isl_seq_cpy(c
, c
+ n
, rem
);
42 isl_seq_clr(c
+ rem
, n
);
45 /* Drop n dimensions starting at first.
47 * In principle, this frees up some extra variables as the number
48 * of columns remains constant, but we would have to extend
49 * the div array too as the number of rows in this array is assumed
50 * to be equal to extra.
52 struct isl_basic_set
*isl_basic_set_drop_dims(
53 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
60 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
62 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
65 bset
= isl_basic_set_cow(bset
);
69 for (i
= 0; i
< bset
->n_eq
; ++i
)
70 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
71 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
73 for (i
= 0; i
< bset
->n_ineq
; ++i
)
74 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
75 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
77 for (i
= 0; i
< bset
->n_div
; ++i
)
78 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
79 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
81 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
85 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
86 bset
= isl_basic_set_simplify(bset
);
87 return isl_basic_set_finalize(bset
);
89 isl_basic_set_free(bset
);
93 struct isl_set
*isl_set_drop_dims(
94 struct isl_set
*set
, unsigned first
, unsigned n
)
101 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
103 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
105 set
= isl_set_cow(set
);
108 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
112 for (i
= 0; i
< set
->n
; ++i
) {
113 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
118 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
125 /* Move "n" divs starting at "first" to the end of the list of divs.
127 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
128 unsigned first
, unsigned n
)
133 if (first
+ n
== bmap
->n_div
)
136 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
139 for (i
= 0; i
< n
; ++i
)
140 div
[i
] = bmap
->div
[first
+ i
];
141 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
142 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
143 for (i
= 0; i
< n
; ++i
)
144 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
148 isl_basic_map_free(bmap
);
152 /* Drop "n" dimensions of type "type" starting at "first".
154 * In principle, this frees up some extra variables as the number
155 * of columns remains constant, but we would have to extend
156 * the div array too as the number of rows in this array is assumed
157 * to be equal to extra.
159 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
160 enum isl_dim_type type
, unsigned first
, unsigned n
)
170 dim
= isl_basic_map_dim(bmap
, type
);
171 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
173 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
176 bmap
= isl_basic_map_cow(bmap
);
180 offset
= isl_basic_map_offset(bmap
, type
) + first
;
181 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
182 for (i
= 0; i
< bmap
->n_eq
; ++i
)
183 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
185 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
186 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
188 for (i
= 0; i
< bmap
->n_div
; ++i
)
189 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
191 if (type
== isl_dim_div
) {
192 bmap
= move_divs_last(bmap
, first
, n
);
195 isl_basic_map_free_div(bmap
, n
);
197 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
201 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
202 bmap
= isl_basic_map_simplify(bmap
);
203 return isl_basic_map_finalize(bmap
);
205 isl_basic_map_free(bmap
);
209 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
210 enum isl_dim_type type
, unsigned first
, unsigned n
)
212 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
216 struct isl_basic_map
*isl_basic_map_drop_inputs(
217 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
219 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
222 struct isl_map
*isl_map_drop(struct isl_map
*map
,
223 enum isl_dim_type type
, unsigned first
, unsigned n
)
230 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
232 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
234 map
= isl_map_cow(map
);
237 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
241 for (i
= 0; i
< map
->n
; ++i
) {
242 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
246 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
254 struct isl_set
*isl_set_drop(struct isl_set
*set
,
255 enum isl_dim_type type
, unsigned first
, unsigned n
)
257 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
260 struct isl_map
*isl_map_drop_inputs(
261 struct isl_map
*map
, unsigned first
, unsigned n
)
263 return isl_map_drop(map
, isl_dim_in
, first
, n
);
267 * We don't cow, as the div is assumed to be redundant.
269 static struct isl_basic_map
*isl_basic_map_drop_div(
270 struct isl_basic_map
*bmap
, unsigned div
)
278 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
280 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
282 for (i
= 0; i
< bmap
->n_eq
; ++i
)
283 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
285 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
286 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
287 isl_basic_map_drop_inequality(bmap
, i
);
291 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
294 for (i
= 0; i
< bmap
->n_div
; ++i
)
295 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
297 if (div
!= bmap
->n_div
- 1) {
299 isl_int
*t
= bmap
->div
[div
];
301 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
302 bmap
->div
[j
] = bmap
->div
[j
+1];
304 bmap
->div
[bmap
->n_div
- 1] = t
;
306 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
307 isl_basic_map_free_div(bmap
, 1);
311 isl_basic_map_free(bmap
);
315 struct isl_basic_map
*isl_basic_map_normalize_constraints(
316 struct isl_basic_map
*bmap
)
320 unsigned total
= isl_basic_map_total_dim(bmap
);
326 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
327 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
328 if (isl_int_is_zero(gcd
)) {
329 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
330 bmap
= isl_basic_map_set_to_empty(bmap
);
333 isl_basic_map_drop_equality(bmap
, i
);
336 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
337 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
338 if (isl_int_is_one(gcd
))
340 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
341 bmap
= isl_basic_map_set_to_empty(bmap
);
344 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
347 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
348 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
349 if (isl_int_is_zero(gcd
)) {
350 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
351 bmap
= isl_basic_map_set_to_empty(bmap
);
354 isl_basic_map_drop_inequality(bmap
, i
);
357 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
358 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
359 if (isl_int_is_one(gcd
))
361 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
362 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
369 struct isl_basic_set
*isl_basic_set_normalize_constraints(
370 struct isl_basic_set
*bset
)
372 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
373 (struct isl_basic_map
*)bset
);
376 /* Remove any common factor in numerator and denominator of the div expression,
377 * not taking into account the constant term.
378 * That is, if the div is of the form
380 * floor((a + m f(x))/(m d))
384 * floor((floor(a/m) + f(x))/d)
386 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
387 * and can therefore not influence the result of the floor.
389 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
391 unsigned total
= isl_basic_map_total_dim(bmap
);
392 isl_ctx
*ctx
= bmap
->ctx
;
394 if (isl_int_is_zero(bmap
->div
[div
][0]))
396 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
397 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
398 if (isl_int_is_one(ctx
->normalize_gcd
))
400 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
402 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
404 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
405 ctx
->normalize_gcd
, total
);
408 /* Remove any common factor in numerator and denominator of a div expression,
409 * not taking into account the constant term.
410 * That is, look for any div of the form
412 * floor((a + m f(x))/(m d))
416 * floor((floor(a/m) + f(x))/d)
418 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
419 * and can therefore not influence the result of the floor.
421 static __isl_give isl_basic_map
*normalize_div_expressions(
422 __isl_take isl_basic_map
*bmap
)
428 if (bmap
->n_div
== 0)
431 for (i
= 0; i
< bmap
->n_div
; ++i
)
432 normalize_div_expression(bmap
, i
);
437 /* Assumes divs have been ordered if keep_divs is set.
439 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
440 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
443 unsigned space_total
;
447 total
= isl_basic_map_total_dim(bmap
);
448 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
449 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
450 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
451 if (bmap
->eq
[k
] == eq
)
453 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
457 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
458 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
461 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
462 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
466 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
467 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
468 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
471 for (k
= 0; k
< bmap
->n_div
; ++k
) {
472 if (isl_int_is_zero(bmap
->div
[k
][0]))
474 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
478 /* We need to be careful about circular definitions,
479 * so for now we just remove the definition of div k
480 * if the equality contains any divs.
481 * If keep_divs is set, then the divs have been ordered
482 * and we can keep the definition as long as the result
485 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
486 isl_seq_elim(bmap
->div
[k
]+1, eq
,
487 1+pos
, 1+total
, &bmap
->div
[k
][0]);
488 normalize_div_expression(bmap
, k
);
490 isl_seq_clr(bmap
->div
[k
], 1 + total
);
491 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
495 /* Assumes divs have been ordered if keep_divs is set.
497 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
498 unsigned div
, int keep_divs
)
500 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
502 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
504 isl_basic_map_drop_div(bmap
, div
);
507 /* Check if elimination of div "div" using equality "eq" would not
508 * result in a div depending on a later div.
510 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
515 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
516 unsigned pos
= space_total
+ div
;
518 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
519 if (last_div
< 0 || last_div
<= div
)
522 for (k
= 0; k
<= last_div
; ++k
) {
523 if (isl_int_is_zero(bmap
->div
[k
][0]))
525 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
532 /* Elimininate divs based on equalities
534 static struct isl_basic_map
*eliminate_divs_eq(
535 struct isl_basic_map
*bmap
, int *progress
)
542 bmap
= isl_basic_map_order_divs(bmap
);
547 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
549 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
550 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
551 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
552 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
554 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
558 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
559 isl_basic_map_drop_equality(bmap
, i
);
564 return eliminate_divs_eq(bmap
, progress
);
568 /* Elimininate divs based on inequalities
570 static struct isl_basic_map
*eliminate_divs_ineq(
571 struct isl_basic_map
*bmap
, int *progress
)
582 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
584 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
585 for (i
= 0; i
< bmap
->n_eq
; ++i
)
586 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
590 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
591 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
593 if (i
< bmap
->n_ineq
)
596 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
597 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
599 bmap
= isl_basic_map_drop_div(bmap
, d
);
606 struct isl_basic_map
*isl_basic_map_gauss(
607 struct isl_basic_map
*bmap
, int *progress
)
615 bmap
= isl_basic_map_order_divs(bmap
);
620 total
= isl_basic_map_total_dim(bmap
);
621 total_var
= total
- bmap
->n_div
;
623 last_var
= total
- 1;
624 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
625 for (; last_var
>= 0; --last_var
) {
626 for (k
= done
; k
< bmap
->n_eq
; ++k
)
627 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
635 swap_equality(bmap
, k
, done
);
636 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
637 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
639 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
642 if (last_var
>= total_var
&&
643 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
644 unsigned div
= last_var
- total_var
;
645 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
646 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
647 isl_int_set(bmap
->div
[div
][0],
648 bmap
->eq
[done
][1+last_var
]);
651 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
654 if (done
== bmap
->n_eq
)
656 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
657 if (isl_int_is_zero(bmap
->eq
[k
][0]))
659 return isl_basic_map_set_to_empty(bmap
);
661 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
665 struct isl_basic_set
*isl_basic_set_gauss(
666 struct isl_basic_set
*bset
, int *progress
)
668 return (struct isl_basic_set
*)isl_basic_map_gauss(
669 (struct isl_basic_map
*)bset
, progress
);
673 static unsigned int round_up(unsigned int v
)
684 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
685 struct isl_basic_map
*bmap
, int k
)
688 unsigned total
= isl_basic_map_total_dim(bmap
);
689 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
690 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
691 if (&bmap
->ineq
[k
] != index
[h
] &&
692 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
697 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
698 struct isl_basic_set
*bset
, int k
)
700 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
703 /* If we can eliminate more than one div, then we need to make
704 * sure we do it from last div to first div, in order not to
705 * change the position of the other divs that still need to
708 static struct isl_basic_map
*remove_duplicate_divs(
709 struct isl_basic_map
*bmap
, int *progress
)
721 bmap
= isl_basic_map_order_divs(bmap
);
722 if (!bmap
|| bmap
->n_div
<= 1)
725 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
726 total
= total_var
+ bmap
->n_div
;
729 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
730 if (!isl_int_is_zero(bmap
->div
[k
][0]))
735 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
736 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
737 bits
= ffs(size
) - 1;
738 index
= isl_calloc_array(ctx
, int, size
);
741 eq
= isl_blk_alloc(ctx
, 1+total
);
742 if (isl_blk_is_error(eq
))
745 isl_seq_clr(eq
.data
, 1+total
);
746 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
747 for (--k
; k
>= 0; --k
) {
750 if (isl_int_is_zero(bmap
->div
[k
][0]))
753 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
754 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
755 if (isl_seq_eq(bmap
->div
[k
],
756 bmap
->div
[index
[h
]-1], 2+total
))
765 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
769 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
770 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
771 eliminate_div(bmap
, eq
.data
, l
, 1);
772 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
773 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
776 isl_blk_free(ctx
, eq
);
783 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
788 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
789 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
790 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
794 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
800 /* Normalize divs that appear in equalities.
802 * In particular, we assume that bmap contains some equalities
807 * and we want to replace the set of e_i by a minimal set and
808 * such that the new e_i have a canonical representation in terms
810 * If any of the equalities involves more than one divs, then
811 * we currently simply bail out.
813 * Let us first additionally assume that all equalities involve
814 * a div. The equalities then express modulo constraints on the
815 * remaining variables and we can use "parameter compression"
816 * to find a minimal set of constraints. The result is a transformation
818 * x = T(x') = x_0 + G x'
820 * with G a lower-triangular matrix with all elements below the diagonal
821 * non-negative and smaller than the diagonal element on the same row.
822 * We first normalize x_0 by making the same property hold in the affine
824 * The rows i of G with a 1 on the diagonal do not impose any modulo
825 * constraint and simply express x_i = x'_i.
826 * For each of the remaining rows i, we introduce a div and a corresponding
827 * equality. In particular
829 * g_ii e_j = x_i - g_i(x')
831 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
832 * corresponding div (if g_kk != 1).
834 * If there are any equalities not involving any div, then we
835 * first apply a variable compression on the variables x:
837 * x = C x'' x'' = C_2 x
839 * and perform the above parameter compression on A C instead of on A.
840 * The resulting compression is then of the form
842 * x'' = T(x') = x_0 + G x'
844 * and in constructing the new divs and the corresponding equalities,
845 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
846 * by the corresponding row from C_2.
848 static struct isl_basic_map
*normalize_divs(
849 struct isl_basic_map
*bmap
, int *progress
)
856 struct isl_mat
*T
= NULL
;
857 struct isl_mat
*C
= NULL
;
858 struct isl_mat
*C2
= NULL
;
866 if (bmap
->n_div
== 0)
872 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
875 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
876 div_eq
= n_pure_div_eq(bmap
);
880 if (div_eq
< bmap
->n_eq
) {
881 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
882 bmap
->n_eq
- div_eq
, 0, 1 + total
);
883 C
= isl_mat_variable_compression(B
, &C2
);
887 bmap
= isl_basic_map_set_to_empty(bmap
);
894 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
897 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
898 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
900 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
902 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
905 B
= isl_mat_product(B
, C
);
909 T
= isl_mat_parameter_compression(B
, d
);
913 bmap
= isl_basic_map_set_to_empty(bmap
);
919 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
920 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
921 if (isl_int_is_zero(v
))
923 isl_mat_col_submul(T
, 0, v
, 1 + i
);
926 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
929 /* We have to be careful because dropping equalities may reorder them */
931 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
932 for (i
= 0; i
< bmap
->n_eq
; ++i
)
933 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
935 if (i
< bmap
->n_eq
) {
936 bmap
= isl_basic_map_drop_div(bmap
, j
);
937 isl_basic_map_drop_equality(bmap
, i
);
943 for (i
= 1; i
< T
->n_row
; ++i
) {
944 if (isl_int_is_one(T
->row
[i
][i
]))
949 if (needed
> dropped
) {
950 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
955 for (i
= 1; i
< T
->n_row
; ++i
) {
956 if (isl_int_is_one(T
->row
[i
][i
]))
958 k
= isl_basic_map_alloc_div(bmap
);
959 pos
[i
] = 1 + total
+ k
;
960 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
961 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
963 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
965 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
966 for (j
= 0; j
< i
; ++j
) {
967 if (isl_int_is_zero(T
->row
[i
][j
]))
969 if (pos
[j
] < T
->n_row
&& C2
)
970 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
971 C2
->row
[pos
[j
]], 1 + total
);
973 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
976 j
= isl_basic_map_alloc_equality(bmap
);
977 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
978 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
987 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
997 static struct isl_basic_map
*set_div_from_lower_bound(
998 struct isl_basic_map
*bmap
, int div
, int ineq
)
1000 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1002 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1003 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1004 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1005 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1006 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1011 /* Check whether it is ok to define a div based on an inequality.
1012 * To avoid the introduction of circular definitions of divs, we
1013 * do not allow such a definition if the resulting expression would refer to
1014 * any other undefined divs or if any known div is defined in
1015 * terms of the unknown div.
1017 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1021 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1023 /* Not defined in terms of unknown divs */
1024 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1027 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1029 if (isl_int_is_zero(bmap
->div
[j
][0]))
1033 /* No other div defined in terms of this one => avoid loops */
1034 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1037 if (isl_int_is_zero(bmap
->div
[j
][0]))
1039 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1046 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1047 * be a better expression than the current one?
1049 * If we do not have any expression yet, then any expression would be better.
1050 * Otherwise we check if the last variable involved in the inequality
1051 * (disregarding the div that it would define) is in an earlier position
1052 * than the last variable involved in the current div expression.
1054 static int better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1057 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1061 if (isl_int_is_zero(bmap
->div
[div
][0]))
1064 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1065 bmap
->n_div
- (div
+ 1)) >= 0)
1068 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1069 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1070 total
+ bmap
->n_div
);
1072 return last_ineq
< last_div
;
1075 /* Given two constraints "k" and "l" that are opposite to each other,
1076 * except for the constant term, check if we can use them
1077 * to obtain an expression for one of the hitherto unknown divs or
1078 * a "better" expression for a div for which we already have an expression.
1079 * "sum" is the sum of the constant terms of the constraints.
1080 * If this sum is strictly smaller than the coefficient of one
1081 * of the divs, then this pair can be used define the div.
1082 * To avoid the introduction of circular definitions of divs, we
1083 * do not use the pair if the resulting expression would refer to
1084 * any other undefined divs or if any known div is defined in
1085 * terms of the unknown div.
1087 static struct isl_basic_map
*check_for_div_constraints(
1088 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1091 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1093 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1094 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1096 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1098 if (!better_div_constraint(bmap
, i
, k
))
1100 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1102 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1103 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1105 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1113 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1114 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1120 unsigned total
= isl_basic_map_total_dim(bmap
);
1124 if (!bmap
|| bmap
->n_ineq
<= 1)
1127 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1128 bits
= ffs(size
) - 1;
1129 ctx
= isl_basic_map_get_ctx(bmap
);
1130 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1134 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1135 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1136 h
= hash_index(index
, size
, bits
, bmap
, k
);
1138 index
[h
] = &bmap
->ineq
[k
];
1143 l
= index
[h
] - &bmap
->ineq
[0];
1144 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1145 swap_inequality(bmap
, k
, l
);
1146 isl_basic_map_drop_inequality(bmap
, k
);
1150 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1151 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1152 h
= hash_index(index
, size
, bits
, bmap
, k
);
1153 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1156 l
= index
[h
] - &bmap
->ineq
[0];
1157 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1158 if (isl_int_is_pos(sum
)) {
1160 bmap
= check_for_div_constraints(bmap
, k
, l
,
1164 if (isl_int_is_zero(sum
)) {
1165 /* We need to break out of the loop after these
1166 * changes since the contents of the hash
1167 * will no longer be valid.
1168 * Plus, we probably we want to regauss first.
1172 isl_basic_map_drop_inequality(bmap
, l
);
1173 isl_basic_map_inequality_to_equality(bmap
, k
);
1175 bmap
= isl_basic_map_set_to_empty(bmap
);
1185 /* Eliminate knowns divs from constraints where they appear with
1186 * a (positive or negative) unit coefficient.
1190 * floor(e/m) + f >= 0
1198 * -floor(e/m) + f >= 0
1202 * -e + m f + m - 1 >= 0
1204 * The first conversion is valid because floor(e/m) >= -f is equivalent
1205 * to e/m >= -f because -f is an integral expression.
1206 * The second conversion follows from the fact that
1208 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1211 * Note that one of the div constraints may have been eliminated
1212 * due to being redundant with respect to the constraint that is
1213 * being modified by this function. The modified constraint may
1214 * no longer imply this div constraint, so we add it back to make
1215 * sure we do not lose any information.
1217 * We skip integral divs, i.e., those with denominator 1, as we would
1218 * risk eliminating the div from the div constraints. We do not need
1219 * to handle those divs here anyway since the div constraints will turn
1220 * out to form an equality and this equality can then be use to eliminate
1221 * the div from all constraints.
1223 static __isl_give isl_basic_map
*eliminate_unit_divs(
1224 __isl_take isl_basic_map
*bmap
, int *progress
)
1233 ctx
= isl_basic_map_get_ctx(bmap
);
1234 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1236 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1237 if (isl_int_is_zero(bmap
->div
[i
][0]))
1239 if (isl_int_is_one(bmap
->div
[i
][0]))
1241 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1244 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1245 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1250 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1251 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1253 isl_seq_combine(bmap
->ineq
[j
],
1254 ctx
->negone
, bmap
->div
[i
] + 1,
1255 bmap
->div
[i
][0], bmap
->ineq
[j
],
1256 total
+ bmap
->n_div
);
1258 isl_seq_combine(bmap
->ineq
[j
],
1259 ctx
->one
, bmap
->div
[i
] + 1,
1260 bmap
->div
[i
][0], bmap
->ineq
[j
],
1261 total
+ bmap
->n_div
);
1263 isl_int_add(bmap
->ineq
[j
][0],
1264 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1265 isl_int_sub_ui(bmap
->ineq
[j
][0],
1266 bmap
->ineq
[j
][0], 1);
1269 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1270 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1271 return isl_basic_map_free(bmap
);
1278 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1287 if (isl_basic_map_plain_is_empty(bmap
))
1289 bmap
= isl_basic_map_normalize_constraints(bmap
);
1290 bmap
= normalize_div_expressions(bmap
);
1291 bmap
= remove_duplicate_divs(bmap
, &progress
);
1292 bmap
= eliminate_unit_divs(bmap
, &progress
);
1293 bmap
= eliminate_divs_eq(bmap
, &progress
);
1294 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1295 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1296 /* requires equalities in normal form */
1297 bmap
= normalize_divs(bmap
, &progress
);
1298 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1304 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1306 return (struct isl_basic_set
*)
1307 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1311 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1312 isl_int
*constraint
, unsigned div
)
1319 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1321 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1323 isl_int_sub(bmap
->div
[div
][1],
1324 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1325 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1326 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1327 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1328 isl_int_add(bmap
->div
[div
][1],
1329 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1332 if (isl_seq_first_non_zero(constraint
+pos
+1,
1333 bmap
->n_div
-div
-1) != -1)
1335 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1336 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1338 if (isl_seq_first_non_zero(constraint
+pos
+1,
1339 bmap
->n_div
-div
-1) != -1)
1347 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1348 isl_int
*constraint
, unsigned div
)
1350 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1354 /* If the only constraints a div d=floor(f/m)
1355 * appears in are its two defining constraints
1358 * -(f - (m - 1)) + m d >= 0
1360 * then it can safely be removed.
1362 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1365 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1367 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1368 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1371 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1372 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1374 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1378 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1379 if (isl_int_is_zero(bmap
->div
[i
][0]))
1381 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1389 * Remove divs that don't occur in any of the constraints or other divs.
1390 * These can arise when dropping some of the variables in a quast
1391 * returned by piplib.
1393 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1400 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1401 if (!div_is_redundant(bmap
, i
))
1403 bmap
= isl_basic_map_drop_div(bmap
, i
);
1408 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1410 bmap
= remove_redundant_divs(bmap
);
1413 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1417 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1419 return (struct isl_basic_set
*)
1420 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1423 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1429 for (i
= 0; i
< set
->n
; ++i
) {
1430 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1440 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1446 for (i
= 0; i
< map
->n
; ++i
) {
1447 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1451 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1459 /* Remove definition of any div that is defined in terms of the given variable.
1460 * The div itself is not removed. Functions such as
1461 * eliminate_divs_ineq depend on the other divs remaining in place.
1463 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1471 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1472 if (isl_int_is_zero(bmap
->div
[i
][0]))
1474 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1476 isl_int_set_si(bmap
->div
[i
][0], 0);
1481 /* Eliminate the specified variables from the constraints using
1482 * Fourier-Motzkin. The variables themselves are not removed.
1484 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1485 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1496 total
= isl_basic_map_total_dim(bmap
);
1498 bmap
= isl_basic_map_cow(bmap
);
1499 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1500 bmap
= remove_dependent_vars(bmap
, d
);
1504 for (d
= pos
+ n
- 1;
1505 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1506 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1507 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1508 int n_lower
, n_upper
;
1511 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1512 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1514 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1515 isl_basic_map_drop_equality(bmap
, i
);
1523 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1524 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1526 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1529 bmap
= isl_basic_map_extend_constraints(bmap
,
1530 0, n_lower
* n_upper
);
1533 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1535 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1538 for (j
= 0; j
< i
; ++j
) {
1539 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1542 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1543 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1545 k
= isl_basic_map_alloc_inequality(bmap
);
1548 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1550 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1551 1+d
, 1+total
, NULL
);
1553 isl_basic_map_drop_inequality(bmap
, i
);
1556 if (n_lower
> 0 && n_upper
> 0) {
1557 bmap
= isl_basic_map_normalize_constraints(bmap
);
1558 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1560 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1561 bmap
= isl_basic_map_remove_redundancies(bmap
);
1565 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1569 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1571 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1574 isl_basic_map_free(bmap
);
1578 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1579 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1581 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1582 (struct isl_basic_map
*)bset
, pos
, n
);
1585 /* Eliminate the specified n dimensions starting at first from the
1586 * constraints, without removing the dimensions from the space.
1587 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1588 * Otherwise, they are projected out and the original space is restored.
1590 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1591 __isl_take isl_basic_map
*bmap
,
1592 enum isl_dim_type type
, unsigned first
, unsigned n
)
1601 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1602 isl_die(bmap
->ctx
, isl_error_invalid
,
1603 "index out of bounds", goto error
);
1605 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1606 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1607 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1608 return isl_basic_map_finalize(bmap
);
1611 space
= isl_basic_map_get_space(bmap
);
1612 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1613 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1614 bmap
= isl_basic_map_reset_space(bmap
, space
);
1617 isl_basic_map_free(bmap
);
1621 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1622 __isl_take isl_basic_set
*bset
,
1623 enum isl_dim_type type
, unsigned first
, unsigned n
)
1625 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1628 /* Don't assume equalities are in order, because align_divs
1629 * may have changed the order of the divs.
1631 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1636 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1637 for (d
= 0; d
< total
; ++d
)
1639 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1640 for (d
= total
- 1; d
>= 0; --d
) {
1641 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1649 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1651 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1654 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1655 struct isl_basic_map
*bmap
, int *elim
)
1661 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1662 for (d
= total
- 1; d
>= 0; --d
) {
1663 if (isl_int_is_zero(src
[1+d
]))
1668 isl_seq_cpy(dst
, src
, 1 + total
);
1671 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1676 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1677 struct isl_basic_set
*bset
, int *elim
)
1679 return reduced_using_equalities(dst
, src
,
1680 (struct isl_basic_map
*)bset
, elim
);
1683 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1684 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1689 if (!bset
|| !context
)
1692 if (context
->n_eq
== 0) {
1693 isl_basic_set_free(context
);
1697 bset
= isl_basic_set_cow(bset
);
1701 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1704 set_compute_elimination_index(context
, elim
);
1705 for (i
= 0; i
< bset
->n_eq
; ++i
)
1706 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1708 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1709 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1711 isl_basic_set_free(context
);
1713 bset
= isl_basic_set_simplify(bset
);
1714 bset
= isl_basic_set_finalize(bset
);
1717 isl_basic_set_free(bset
);
1718 isl_basic_set_free(context
);
1722 static struct isl_basic_set
*remove_shifted_constraints(
1723 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1734 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1735 bits
= ffs(size
) - 1;
1736 ctx
= isl_basic_set_get_ctx(bset
);
1737 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1741 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1742 h
= set_hash_index(index
, size
, bits
, context
, k
);
1743 index
[h
] = &context
->ineq
[k
];
1745 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1746 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1749 l
= index
[h
] - &context
->ineq
[0];
1750 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1752 bset
= isl_basic_set_cow(bset
);
1755 isl_basic_set_drop_inequality(bset
, k
);
1765 /* Does the (linear part of a) constraint "c" involve any of the "len"
1766 * "relevant" dimensions?
1768 static int is_related(isl_int
*c
, int len
, int *relevant
)
1772 for (i
= 0; i
< len
; ++i
) {
1775 if (!isl_int_is_zero(c
[i
]))
1782 /* Drop constraints from "bset" that do not involve any of
1783 * the dimensions marked "relevant".
1785 static __isl_give isl_basic_set
*drop_unrelated_constraints(
1786 __isl_take isl_basic_set
*bset
, int *relevant
)
1790 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1791 for (i
= 0; i
< dim
; ++i
)
1797 for (i
= bset
->n_eq
- 1; i
>= 0; --i
)
1798 if (!is_related(bset
->eq
[i
] + 1, dim
, relevant
))
1799 isl_basic_set_drop_equality(bset
, i
);
1801 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
)
1802 if (!is_related(bset
->ineq
[i
] + 1, dim
, relevant
))
1803 isl_basic_set_drop_inequality(bset
, i
);
1808 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1810 * In particular, for any variable involved in the constraint,
1811 * find the actual group id from before and replace the group
1812 * of the corresponding variable by the minimal group of all
1813 * the variables involved in the constraint considered so far
1814 * (if this minimum is smaller) or replace the minimum by this group
1815 * (if the minimum is larger).
1817 * At the end, all the variables in "c" will (indirectly) point
1818 * to the minimal of the groups that they referred to originally.
1820 static void update_groups(int dim
, int *group
, isl_int
*c
)
1825 for (j
= 0; j
< dim
; ++j
) {
1826 if (isl_int_is_zero(c
[j
]))
1828 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
1829 group
[j
] = group
[group
[j
]];
1830 if (group
[j
] == min
)
1832 if (group
[j
] < min
) {
1833 if (min
>= 0 && min
< dim
)
1834 group
[min
] = group
[j
];
1837 group
[group
[j
]] = min
;
1841 /* Drop constraints from "context" that are irrelevant for computing
1842 * the gist of "bset".
1844 * In particular, drop constraints in variables that are not related
1845 * to any of the variables involved in the constraints of "bset"
1846 * in the sense that there is no sequence of constraints that connects them.
1848 * We construct groups of variables that collect variables that
1849 * (indirectly) appear in some common constraint of "context".
1850 * Each group is identified by the first variable in the group,
1851 * except for the special group of variables that appear in "bset"
1852 * (or are related to those variables), which is identified by -1.
1853 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1854 * otherwise the group of i is the group of group[i].
1856 * We first initialize the -1 group with the variables that appear in "bset".
1857 * Then we initialize groups for the remaining variables.
1858 * Then we iterate over the constraints of "context" and update the
1859 * group of the variables in the constraint by the smallest group.
1860 * Finally, we resolve indirect references to groups by running over
1863 * After computing the groups, we drop constraints that do not involve
1864 * any variables in the -1 group.
1866 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
1867 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
1875 if (!context
|| !bset
)
1876 return isl_basic_set_free(context
);
1878 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1879 ctx
= isl_basic_set_get_ctx(bset
);
1880 group
= isl_calloc_array(ctx
, int, dim
);
1885 for (i
= 0; i
< dim
; ++i
) {
1886 for (j
= 0; j
< bset
->n_eq
; ++j
)
1887 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
1889 if (j
< bset
->n_eq
) {
1893 for (j
= 0; j
< bset
->n_ineq
; ++j
)
1894 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
1896 if (j
< bset
->n_ineq
)
1901 for (i
= 0; i
< dim
; ++i
)
1903 last
= group
[i
] = i
;
1909 for (i
= 0; i
< context
->n_eq
; ++i
)
1910 update_groups(dim
, group
, context
->eq
[i
] + 1);
1911 for (i
= 0; i
< context
->n_ineq
; ++i
)
1912 update_groups(dim
, group
, context
->ineq
[i
] + 1);
1914 for (i
= 0; i
< dim
; ++i
)
1916 group
[i
] = group
[group
[i
]];
1918 for (i
= 0; i
< dim
; ++i
)
1919 group
[i
] = group
[i
] == -1;
1921 context
= drop_unrelated_constraints(context
, group
);
1927 return isl_basic_set_free(context
);
1930 /* Remove all information from bset that is redundant in the context
1931 * of context. Both bset and context are assumed to be full-dimensional.
1933 * We first remove the inequalities from "bset"
1934 * that are obviously redundant with respect to some inequality in "context".
1935 * Then we remove those constraints from "context" that have become
1936 * irrelevant for computing the gist of "bset".
1937 * Note that this removal of constraints cannot be replaced by
1938 * a factorization because factors in "bset" may still be connected
1939 * to each other through constraints in "context".
1941 * If there are any inequalities left, we construct a tableau for
1942 * the context and then add the inequalities of "bset".
1943 * Before adding these inequalities, we freeze all constraints such that
1944 * they won't be considered redundant in terms of the constraints of "bset".
1945 * Then we detect all redundant constraints (among the
1946 * constraints that weren't frozen), first by checking for redundancy in the
1947 * the tableau and then by checking if replacing a constraint by its negation
1948 * would lead to an empty set. This last step is fairly expensive
1949 * and could be optimized by more reuse of the tableau.
1950 * Finally, we update bset according to the results.
1952 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1953 __isl_take isl_basic_set
*context
)
1956 isl_basic_set
*combined
= NULL
;
1957 struct isl_tab
*tab
= NULL
;
1958 unsigned context_ineq
;
1961 if (!bset
|| !context
)
1964 if (isl_basic_set_is_universe(bset
)) {
1965 isl_basic_set_free(context
);
1969 if (isl_basic_set_is_universe(context
)) {
1970 isl_basic_set_free(context
);
1974 bset
= remove_shifted_constraints(bset
, context
);
1977 if (bset
->n_ineq
== 0)
1980 context
= drop_irrelevant_constraints(context
, bset
);
1983 if (isl_basic_set_is_universe(context
)) {
1984 isl_basic_set_free(context
);
1988 context_ineq
= context
->n_ineq
;
1989 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1990 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1991 tab
= isl_tab_from_basic_set(combined
, 0);
1992 for (i
= 0; i
< context_ineq
; ++i
)
1993 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1995 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1996 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1997 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1999 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
2003 if (isl_tab_detect_redundant(tab
) < 0)
2005 total
= isl_basic_set_total_dim(bset
);
2006 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
2008 if (tab
->con
[i
].is_redundant
)
2010 tab
->con
[i
].is_redundant
= 1;
2011 combined
= isl_basic_set_dup(bset
);
2012 combined
= isl_basic_set_update_from_tab(combined
, tab
);
2013 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
2014 k
= isl_basic_set_alloc_inequality(combined
);
2017 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
2018 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
2019 is_empty
= isl_basic_set_is_empty(combined
);
2022 isl_basic_set_free(combined
);
2025 tab
->con
[i
].is_redundant
= 0;
2027 for (i
= 0; i
< context_ineq
; ++i
)
2028 tab
->con
[i
].is_redundant
= 1;
2029 bset
= isl_basic_set_update_from_tab(bset
, tab
);
2031 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2032 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2037 bset
= isl_basic_set_simplify(bset
);
2038 bset
= isl_basic_set_finalize(bset
);
2039 isl_basic_set_free(context
);
2043 isl_basic_set_free(combined
);
2044 isl_basic_set_free(context
);
2045 isl_basic_set_free(bset
);
2049 /* Remove all information from bset that is redundant in the context
2050 * of context. In particular, equalities that are linear combinations
2051 * of those in context are removed. Then the inequalities that are
2052 * redundant in the context of the equalities and inequalities of
2053 * context are removed.
2055 * First of all, we drop those constraints from "context"
2056 * that are irrelevant for computing the gist of "bset".
2057 * Alternatively, we could factorize the intersection of "context" and "bset".
2059 * We first compute the integer affine hull of the intersection,
2060 * compute the gist inside this affine hull and then add back
2061 * those equalities that are not implied by the context.
2063 * If two constraints are mutually redundant, then uset_gist_full
2064 * will remove the second of those constraints. We therefore first
2065 * sort the constraints so that constraints not involving existentially
2066 * quantified variables are given precedence over those that do.
2067 * We have to perform this sorting before the variable compression,
2068 * because that may effect the order of the variables.
2070 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2071 __isl_take isl_basic_set
*context
)
2076 isl_basic_set
*aff_context
;
2079 if (!bset
|| !context
)
2082 context
= drop_irrelevant_constraints(context
, bset
);
2084 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
2085 if (isl_basic_set_plain_is_empty(bset
)) {
2086 isl_basic_set_free(context
);
2089 bset
= isl_basic_set_sort_constraints(bset
);
2090 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
2093 if (isl_basic_set_plain_is_empty(aff
)) {
2094 isl_basic_set_free(aff
);
2095 isl_basic_set_free(context
);
2098 if (aff
->n_eq
== 0) {
2099 isl_basic_set_free(aff
);
2100 return uset_gist_full(bset
, context
);
2102 total
= isl_basic_set_total_dim(bset
);
2103 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2104 eq
= isl_mat_cow(eq
);
2105 T
= isl_mat_variable_compression(eq
, &T2
);
2106 if (T
&& T
->n_col
== 0) {
2109 isl_basic_set_free(context
);
2110 isl_basic_set_free(aff
);
2111 return isl_basic_set_set_to_empty(bset
);
2114 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2116 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
2117 context
= isl_basic_set_preimage(context
, T
);
2119 bset
= uset_gist_full(bset
, context
);
2120 bset
= isl_basic_set_preimage(bset
, T2
);
2121 bset
= isl_basic_set_intersect(bset
, aff
);
2122 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2125 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2126 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2131 isl_basic_set_free(bset
);
2132 isl_basic_set_free(context
);
2136 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2137 * We simply add the equalities in context to bmap and then do a regular
2138 * div normalizations. Better results can be obtained by normalizing
2139 * only the divs in bmap than do not also appear in context.
2140 * We need to be careful to reduce the divs using the equalities
2141 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2142 * spurious constraints.
2144 static struct isl_basic_map
*normalize_divs_in_context(
2145 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
2148 unsigned total_context
;
2151 div_eq
= n_pure_div_eq(bmap
);
2155 if (context
->n_div
> 0)
2156 bmap
= isl_basic_map_align_divs(bmap
, context
);
2158 total_context
= isl_basic_map_total_dim(context
);
2159 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
2160 for (i
= 0; i
< context
->n_eq
; ++i
) {
2162 k
= isl_basic_map_alloc_equality(bmap
);
2164 return isl_basic_map_free(bmap
);
2165 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
2166 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
2167 isl_basic_map_total_dim(bmap
) - total_context
);
2169 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2170 bmap
= normalize_divs(bmap
, NULL
);
2171 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2175 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
2176 struct isl_basic_map
*context
)
2178 struct isl_basic_set
*bset
;
2180 if (!bmap
|| !context
)
2183 if (isl_basic_map_is_universe(bmap
)) {
2184 isl_basic_map_free(context
);
2187 if (isl_basic_map_plain_is_empty(context
)) {
2188 isl_basic_map_free(bmap
);
2191 if (isl_basic_map_plain_is_empty(bmap
)) {
2192 isl_basic_map_free(context
);
2196 bmap
= isl_basic_map_remove_redundancies(bmap
);
2197 context
= isl_basic_map_remove_redundancies(context
);
2202 bmap
= normalize_divs_in_context(bmap
, context
);
2204 context
= isl_basic_map_align_divs(context
, bmap
);
2205 bmap
= isl_basic_map_align_divs(bmap
, context
);
2207 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
2208 isl_basic_map_underlying_set(context
));
2210 return isl_basic_map_overlying_set(bset
, bmap
);
2212 isl_basic_map_free(bmap
);
2213 isl_basic_map_free(context
);
2218 * Assumes context has no implicit divs.
2220 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
2221 __isl_take isl_basic_map
*context
)
2225 if (!map
|| !context
)
2228 if (isl_basic_map_plain_is_empty(context
)) {
2230 return isl_map_from_basic_map(context
);
2233 context
= isl_basic_map_remove_redundancies(context
);
2234 map
= isl_map_cow(map
);
2235 if (!map
|| !context
)
2237 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
2238 map
= isl_map_compute_divs(map
);
2241 for (i
= map
->n
- 1; i
>= 0; --i
) {
2242 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
2243 isl_basic_map_copy(context
));
2246 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
2247 isl_basic_map_free(map
->p
[i
]);
2248 if (i
!= map
->n
- 1)
2249 map
->p
[i
] = map
->p
[map
->n
- 1];
2253 isl_basic_map_free(context
);
2254 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2258 isl_basic_map_free(context
);
2262 /* Return a map that has the same intersection with "context" as "map"
2263 * and that as "simple" as possible.
2265 * If "map" is already the universe, then we cannot make it any simpler.
2266 * Similarly, if "context" is the universe, then we cannot exploit it
2268 * If "map" and "context" are identical to each other, then we can
2269 * return the corresponding universe.
2271 * If none of these cases apply, we have to work a bit harder.
2273 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
2274 __isl_take isl_map
*context
)
2279 is_universe
= isl_map_plain_is_universe(map
);
2280 if (is_universe
>= 0 && !is_universe
)
2281 is_universe
= isl_map_plain_is_universe(context
);
2282 if (is_universe
< 0)
2285 isl_map_free(context
);
2289 equal
= isl_map_plain_is_equal(map
, context
);
2293 isl_map
*res
= isl_map_universe(isl_map_get_space(map
));
2295 isl_map_free(context
);
2299 context
= isl_map_compute_divs(context
);
2300 return isl_map_gist_basic_map(map
, isl_map_simple_hull(context
));
2303 isl_map_free(context
);
2307 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
2308 __isl_take isl_map
*context
)
2310 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
2313 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
2314 struct isl_basic_set
*context
)
2316 return (struct isl_basic_set
*)isl_basic_map_gist(
2317 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
2320 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
2321 __isl_take isl_basic_set
*context
)
2323 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
2324 (struct isl_basic_map
*)context
);
2327 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
2328 __isl_take isl_basic_set
*context
)
2330 isl_space
*space
= isl_set_get_space(set
);
2331 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
2332 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
2333 return isl_set_gist_basic_set(set
, dom_context
);
2336 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
2337 __isl_take isl_set
*context
)
2339 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
2340 (struct isl_map
*)context
);
2343 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
2344 __isl_take isl_set
*context
)
2346 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2347 map_context
= isl_map_intersect_domain(map_context
, context
);
2348 return isl_map_gist(map
, map_context
);
2351 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
2352 __isl_take isl_set
*context
)
2354 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2355 map_context
= isl_map_intersect_range(map_context
, context
);
2356 return isl_map_gist(map
, map_context
);
2359 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
2360 __isl_take isl_set
*context
)
2362 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2363 map_context
= isl_map_intersect_params(map_context
, context
);
2364 return isl_map_gist(map
, map_context
);
2367 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
2368 __isl_take isl_set
*context
)
2370 return isl_map_gist_params(set
, context
);
2373 /* Quick check to see if two basic maps are disjoint.
2374 * In particular, we reduce the equalities and inequalities of
2375 * one basic map in the context of the equalities of the other
2376 * basic map and check if we get a contradiction.
2378 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2379 __isl_keep isl_basic_map
*bmap2
)
2381 struct isl_vec
*v
= NULL
;
2386 if (!bmap1
|| !bmap2
)
2388 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
2390 if (bmap1
->n_div
|| bmap2
->n_div
)
2392 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
2395 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
2398 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
2401 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
2404 compute_elimination_index(bmap1
, elim
);
2405 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
2407 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
2409 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
2410 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2413 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
2415 reduced
= reduced_using_equalities(v
->block
.data
,
2416 bmap2
->ineq
[i
], bmap1
, elim
);
2417 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2418 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2421 compute_elimination_index(bmap2
, elim
);
2422 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
2424 reduced
= reduced_using_equalities(v
->block
.data
,
2425 bmap1
->ineq
[i
], bmap2
, elim
);
2426 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2427 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2443 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2444 __isl_keep isl_basic_set
*bset2
)
2446 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
2447 (struct isl_basic_map
*)bset2
);
2450 /* Are "map1" and "map2" obviously disjoint?
2452 * If they have different parameters, then we skip any further tests.
2453 * In particular, the outcome of the subsequent calls to
2454 * isl_space_tuple_match may be affected by the different parameters
2457 * If one of them is empty or if they live in different spaces (assuming
2458 * they have the same parameters), then they are clearly disjoint.
2460 * If they are obviously equal, but not obviously empty, then we will
2461 * not be able to detect if they are disjoint.
2463 * Otherwise we check if each basic map in "map1" is obviously disjoint
2464 * from each basic map in "map2".
2466 int isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
2467 __isl_keep isl_map
*map2
)
2477 disjoint
= isl_map_plain_is_empty(map1
);
2478 if (disjoint
< 0 || disjoint
)
2481 disjoint
= isl_map_plain_is_empty(map2
);
2482 if (disjoint
< 0 || disjoint
)
2485 match
= isl_space_match(map1
->dim
, isl_dim_param
,
2486 map2
->dim
, isl_dim_param
);
2487 if (match
< 0 || !match
)
2488 return match
< 0 ? -1 : 0;
2490 match
= isl_space_tuple_match(map1
->dim
, isl_dim_in
,
2491 map2
->dim
, isl_dim_in
);
2492 if (match
< 0 || !match
)
2493 return match
< 0 ? -1 : 1;
2495 match
= isl_space_tuple_match(map1
->dim
, isl_dim_out
,
2496 map2
->dim
, isl_dim_out
);
2497 if (match
< 0 || !match
)
2498 return match
< 0 ? -1 : 1;
2500 intersect
= isl_map_plain_is_equal(map1
, map2
);
2501 if (intersect
< 0 || intersect
)
2502 return intersect
< 0 ? -1 : 0;
2504 for (i
= 0; i
< map1
->n
; ++i
) {
2505 for (j
= 0; j
< map2
->n
; ++j
) {
2506 int d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
2515 /* Are "map1" and "map2" disjoint?
2517 * They are disjoint if they are "obviously disjoint" or if one of them
2518 * is empty. Otherwise, they are not disjoint if one of them is universal.
2519 * If none of these cases apply, we compute the intersection and see if
2520 * the result is empty.
2522 int isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
2528 disjoint
= isl_map_plain_is_disjoint(map1
, map2
);
2529 if (disjoint
< 0 || disjoint
)
2532 disjoint
= isl_map_is_empty(map1
);
2533 if (disjoint
< 0 || disjoint
)
2536 disjoint
= isl_map_is_empty(map2
);
2537 if (disjoint
< 0 || disjoint
)
2540 intersect
= isl_map_plain_is_universe(map1
);
2541 if (intersect
< 0 || intersect
)
2542 return intersect
< 0 ? -1 : 0;
2544 intersect
= isl_map_plain_is_universe(map2
);
2545 if (intersect
< 0 || intersect
)
2546 return intersect
< 0 ? -1 : 0;
2548 test
= isl_map_intersect(isl_map_copy(map1
), isl_map_copy(map2
));
2549 disjoint
= isl_map_is_empty(test
);
2555 /* Are "bmap1" and "bmap2" disjoint?
2557 * They are disjoint if they are "obviously disjoint" or if one of them
2558 * is empty. Otherwise, they are not disjoint if one of them is universal.
2559 * If none of these cases apply, we compute the intersection and see if
2560 * the result is empty.
2562 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2563 __isl_keep isl_basic_map
*bmap2
)
2567 isl_basic_map
*test
;
2569 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
2570 if (disjoint
< 0 || disjoint
)
2573 disjoint
= isl_basic_map_is_empty(bmap1
);
2574 if (disjoint
< 0 || disjoint
)
2577 disjoint
= isl_basic_map_is_empty(bmap2
);
2578 if (disjoint
< 0 || disjoint
)
2581 intersect
= isl_basic_map_is_universe(bmap1
);
2582 if (intersect
< 0 || intersect
)
2583 return intersect
< 0 ? -1 : 0;
2585 intersect
= isl_basic_map_is_universe(bmap2
);
2586 if (intersect
< 0 || intersect
)
2587 return intersect
< 0 ? -1 : 0;
2589 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
2590 isl_basic_map_copy(bmap2
));
2591 disjoint
= isl_basic_map_is_empty(test
);
2592 isl_basic_map_free(test
);
2597 /* Are "bset1" and "bset2" disjoint?
2599 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2600 __isl_keep isl_basic_set
*bset2
)
2602 return isl_basic_map_is_disjoint(bset1
, bset2
);
2605 int isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
2606 __isl_keep isl_set
*set2
)
2608 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
2609 (struct isl_map
*)set2
);
2612 /* Are "set1" and "set2" disjoint?
2614 int isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2616 return isl_map_is_disjoint(set1
, set2
);
2619 int isl_set_fast_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2621 return isl_set_plain_is_disjoint(set1
, set2
);
2624 /* Check if we can combine a given div with lower bound l and upper
2625 * bound u with some other div and if so return that other div.
2626 * Otherwise return -1.
2628 * We first check that
2629 * - the bounds are opposites of each other (except for the constant
2631 * - the bounds do not reference any other div
2632 * - no div is defined in terms of this div
2634 * Let m be the size of the range allowed on the div by the bounds.
2635 * That is, the bounds are of the form
2637 * e <= a <= e + m - 1
2639 * with e some expression in the other variables.
2640 * We look for another div b such that no third div is defined in terms
2641 * of this second div b and such that in any constraint that contains
2642 * a (except for the given lower and upper bound), also contains b
2643 * with a coefficient that is m times that of b.
2644 * That is, all constraints (execpt for the lower and upper bound)
2647 * e + f (a + m b) >= 0
2649 * If so, we return b so that "a + m b" can be replaced by
2650 * a single div "c = a + m b".
2652 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2653 unsigned div
, unsigned l
, unsigned u
)
2659 if (bmap
->n_div
<= 1)
2661 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2662 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2664 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2665 bmap
->n_div
- div
- 1) != -1)
2667 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2671 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2672 if (isl_int_is_zero(bmap
->div
[i
][0]))
2674 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2678 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2679 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2680 isl_int_sub(bmap
->ineq
[l
][0],
2681 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2682 bmap
= isl_basic_map_copy(bmap
);
2683 bmap
= isl_basic_map_set_to_empty(bmap
);
2684 isl_basic_map_free(bmap
);
2687 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2688 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2693 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2694 if (isl_int_is_zero(bmap
->div
[j
][0]))
2696 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2699 if (j
< bmap
->n_div
)
2701 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2703 if (j
== l
|| j
== u
)
2705 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2707 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2709 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2710 bmap
->ineq
[j
][1 + dim
+ div
],
2712 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2713 bmap
->ineq
[j
][1 + dim
+ i
]);
2714 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2715 bmap
->ineq
[j
][1 + dim
+ div
],
2720 if (j
< bmap
->n_ineq
)
2725 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2726 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2730 /* Given a lower and an upper bound on div i, construct an inequality
2731 * that when nonnegative ensures that this pair of bounds always allows
2732 * for an integer value of the given div.
2733 * The lower bound is inequality l, while the upper bound is inequality u.
2734 * The constructed inequality is stored in ineq.
2735 * g, fl, fu are temporary scalars.
2737 * Let the upper bound be
2741 * and the lower bound
2745 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2748 * - f_u e_l <= f_u f_l g a <= f_l e_u
2750 * Since all variables are integer valued, this is equivalent to
2752 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2754 * If this interval is at least f_u f_l g, then it contains at least
2755 * one integer value for a.
2756 * That is, the test constraint is
2758 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2760 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2761 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2764 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2766 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2767 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2768 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2769 isl_int_neg(fu
, fu
);
2770 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2771 1 + dim
+ bmap
->n_div
);
2772 isl_int_add(ineq
[0], ineq
[0], fl
);
2773 isl_int_add(ineq
[0], ineq
[0], fu
);
2774 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2775 isl_int_mul(g
, g
, fl
);
2776 isl_int_mul(g
, g
, fu
);
2777 isl_int_sub(ineq
[0], ineq
[0], g
);
2780 /* Remove more kinds of divs that are not strictly needed.
2781 * In particular, if all pairs of lower and upper bounds on a div
2782 * are such that they allow at least one integer value of the div,
2783 * the we can eliminate the div using Fourier-Motzkin without
2784 * introducing any spurious solutions.
2786 static struct isl_basic_map
*drop_more_redundant_divs(
2787 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2789 struct isl_tab
*tab
= NULL
;
2790 struct isl_vec
*vec
= NULL
;
2802 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2803 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2807 tab
= isl_tab_from_basic_map(bmap
, 0);
2812 enum isl_lp_result res
;
2814 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2817 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2823 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2824 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2826 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2827 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2829 construct_test_ineq(bmap
, i
, l
, u
,
2830 vec
->el
, g
, fl
, fu
);
2831 res
= isl_tab_min(tab
, vec
->el
,
2832 bmap
->ctx
->one
, &g
, NULL
, 0);
2833 if (res
== isl_lp_error
)
2835 if (res
== isl_lp_empty
) {
2836 bmap
= isl_basic_map_set_to_empty(bmap
);
2839 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2842 if (u
< bmap
->n_ineq
)
2845 if (l
== bmap
->n_ineq
) {
2865 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
2866 return isl_basic_map_drop_redundant_divs(bmap
);
2869 isl_basic_map_free(bmap
);
2878 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2879 * and the upper bound u, div1 always occurs together with div2 in the form
2880 * (div1 + m div2), where m is the constant range on the variable div1
2881 * allowed by l and u, replace the pair div1 and div2 by a single
2882 * div that is equal to div1 + m div2.
2884 * The new div will appear in the location that contains div2.
2885 * We need to modify all constraints that contain
2886 * div2 = (div - div1) / m
2887 * (If a constraint does not contain div2, it will also not contain div1.)
2888 * If the constraint also contains div1, then we know they appear
2889 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2890 * i.e., the coefficient of div is f.
2892 * Otherwise, we first need to introduce div1 into the constraint.
2901 * A lower bound on div2
2905 * can be replaced by
2907 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2909 * with g = gcd(m,n).
2914 * can be replaced by
2916 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2918 * These constraint are those that we would obtain from eliminating
2919 * div1 using Fourier-Motzkin.
2921 * After all constraints have been modified, we drop the lower and upper
2922 * bound and then drop div1.
2924 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2925 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2930 unsigned dim
, total
;
2933 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2934 total
= 1 + dim
+ bmap
->n_div
;
2939 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2940 isl_int_add_ui(m
, m
, 1);
2942 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2943 if (i
== l
|| i
== u
)
2945 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2947 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2948 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2949 isl_int_divexact(a
, m
, b
);
2950 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2951 if (isl_int_is_pos(b
)) {
2952 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2953 b
, bmap
->ineq
[l
], total
);
2956 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2957 b
, bmap
->ineq
[u
], total
);
2960 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2961 bmap
->ineq
[i
][1 + dim
+ div1
]);
2962 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2969 isl_basic_map_drop_inequality(bmap
, l
);
2970 isl_basic_map_drop_inequality(bmap
, u
);
2972 isl_basic_map_drop_inequality(bmap
, u
);
2973 isl_basic_map_drop_inequality(bmap
, l
);
2975 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2979 /* First check if we can coalesce any pair of divs and
2980 * then continue with dropping more redundant divs.
2982 * We loop over all pairs of lower and upper bounds on a div
2983 * with coefficient 1 and -1, respectively, check if there
2984 * is any other div "c" with which we can coalesce the div
2985 * and if so, perform the coalescing.
2987 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2988 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2993 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2995 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2998 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2999 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
3001 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
3004 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
3006 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
3010 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
3011 return isl_basic_map_drop_redundant_divs(bmap
);
3016 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
3019 return drop_more_redundant_divs(bmap
, pairs
, n
);
3022 /* Remove divs that are not strictly needed.
3023 * In particular, if a div only occurs positively (or negatively)
3024 * in constraints, then it can simply be dropped.
3025 * Also, if a div occurs in only two constraints and if moreover
3026 * those two constraints are opposite to each other, except for the constant
3027 * term and if the sum of the constant terms is such that for any value
3028 * of the other values, there is always at least one integer value of the
3029 * div, i.e., if one plus this sum is greater than or equal to
3030 * the (absolute value) of the coefficent of the div in the constraints,
3031 * then we can also simply drop the div.
3033 * We skip divs that appear in equalities or in the definition of other divs.
3034 * Divs that appear in the definition of other divs usually occur in at least
3035 * 4 constraints, but the constraints may have been simplified.
3037 * If any divs are left after these simple checks then we move on
3038 * to more complicated cases in drop_more_redundant_divs.
3040 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
3041 struct isl_basic_map
*bmap
)
3050 if (bmap
->n_div
== 0)
3053 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3054 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
3058 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3060 int last_pos
, last_neg
;
3064 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
3065 for (j
= i
; j
< bmap
->n_div
; ++j
)
3066 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
3068 if (j
< bmap
->n_div
)
3070 for (j
= 0; j
< bmap
->n_eq
; ++j
)
3071 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
3077 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3078 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
3082 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
3087 pairs
[i
] = pos
* neg
;
3088 if (pairs
[i
] == 0) {
3089 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
3090 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
3091 isl_basic_map_drop_inequality(bmap
, j
);
3092 bmap
= isl_basic_map_drop_div(bmap
, i
);
3094 return isl_basic_map_drop_redundant_divs(bmap
);
3098 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
3099 bmap
->ineq
[last_neg
] + 1,
3103 isl_int_add(bmap
->ineq
[last_pos
][0],
3104 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3105 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
3106 bmap
->ineq
[last_pos
][0], 1);
3107 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
3108 bmap
->ineq
[last_pos
][1+off
+i
]);
3109 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
3110 bmap
->ineq
[last_pos
][0], 1);
3111 isl_int_sub(bmap
->ineq
[last_pos
][0],
3112 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3115 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
3120 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
3121 bmap
= isl_basic_map_simplify(bmap
);
3123 return isl_basic_map_drop_redundant_divs(bmap
);
3125 if (last_pos
> last_neg
) {
3126 isl_basic_map_drop_inequality(bmap
, last_pos
);
3127 isl_basic_map_drop_inequality(bmap
, last_neg
);
3129 isl_basic_map_drop_inequality(bmap
, last_neg
);
3130 isl_basic_map_drop_inequality(bmap
, last_pos
);
3132 bmap
= isl_basic_map_drop_div(bmap
, i
);
3134 return isl_basic_map_drop_redundant_divs(bmap
);
3138 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
3144 isl_basic_map_free(bmap
);
3148 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
3149 struct isl_basic_set
*bset
)
3151 return (struct isl_basic_set
*)
3152 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
3155 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
3161 for (i
= 0; i
< map
->n
; ++i
) {
3162 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
3166 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3173 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
3175 return (struct isl_set
*)
3176 isl_map_drop_redundant_divs((struct isl_map
*)set
);