2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_options_private.h>
21 #include <isl_config.h>
24 * The implementation of parametric integer linear programming in this file
25 * was inspired by the paper "Parametric Integer Programming" and the
26 * report "Solving systems of affine (in)equalities" by Paul Feautrier
29 * The strategy used for obtaining a feasible solution is different
30 * from the one used in isl_tab.c. In particular, in isl_tab.c,
31 * upon finding a constraint that is not yet satisfied, we pivot
32 * in a row that increases the constant term of the row holding the
33 * constraint, making sure the sample solution remains feasible
34 * for all the constraints it already satisfied.
35 * Here, we always pivot in the row holding the constraint,
36 * choosing a column that induces the lexicographically smallest
37 * increment to the sample solution.
39 * By starting out from a sample value that is lexicographically
40 * smaller than any integer point in the problem space, the first
41 * feasible integer sample point we find will also be the lexicographically
42 * smallest. If all variables can be assumed to be non-negative,
43 * then the initial sample value may be chosen equal to zero.
44 * However, we will not make this assumption. Instead, we apply
45 * the "big parameter" trick. Any variable x is then not directly
46 * used in the tableau, but instead it is represented by another
47 * variable x' = M + x, where M is an arbitrarily large (positive)
48 * value. x' is therefore always non-negative, whatever the value of x.
49 * Taking as initial sample value x' = 0 corresponds to x = -M,
50 * which is always smaller than any possible value of x.
52 * The big parameter trick is used in the main tableau and
53 * also in the context tableau if isl_context_lex is used.
54 * In this case, each tableaus has its own big parameter.
55 * Before doing any real work, we check if all the parameters
56 * happen to be non-negative. If so, we drop the column corresponding
57 * to M from the initial context tableau.
58 * If isl_context_gbr is used, then the big parameter trick is only
59 * used in the main tableau.
63 struct isl_context_op
{
64 /* detect nonnegative parameters in context and mark them in tab */
65 struct isl_tab
*(*detect_nonnegative_parameters
)(
66 struct isl_context
*context
, struct isl_tab
*tab
);
67 /* return temporary reference to basic set representation of context */
68 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
69 /* return temporary reference to tableau representation of context */
70 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
71 /* add equality; check is 1 if eq may not be valid;
72 * update is 1 if we may want to call ineq_sign on context later.
74 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
75 int check
, int update
);
76 /* add inequality; check is 1 if ineq may not be valid;
77 * update is 1 if we may want to call ineq_sign on context later.
79 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
80 int check
, int update
);
81 /* check sign of ineq based on previous information.
82 * strict is 1 if saturation should be treated as a positive sign.
84 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
85 isl_int
*ineq
, int strict
);
86 /* check if inequality maintains feasibility */
87 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
88 /* return index of a div that corresponds to "div" */
89 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
91 /* add div "div" to context and return non-negativity */
92 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
93 int (*detect_equalities
)(struct isl_context
*context
,
95 /* return row index of "best" split */
96 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
97 /* check if context has already been determined to be empty */
98 int (*is_empty
)(struct isl_context
*context
);
99 /* check if context is still usable */
100 int (*is_ok
)(struct isl_context
*context
);
101 /* save a copy/snapshot of context */
102 void *(*save
)(struct isl_context
*context
);
103 /* restore saved context */
104 void (*restore
)(struct isl_context
*context
, void *);
105 /* invalidate context */
106 void (*invalidate
)(struct isl_context
*context
);
108 void (*free
)(struct isl_context
*context
);
112 struct isl_context_op
*op
;
115 struct isl_context_lex
{
116 struct isl_context context
;
120 struct isl_partial_sol
{
122 struct isl_basic_set
*dom
;
125 struct isl_partial_sol
*next
;
129 struct isl_sol_callback
{
130 struct isl_tab_callback callback
;
134 /* isl_sol is an interface for constructing a solution to
135 * a parametric integer linear programming problem.
136 * Every time the algorithm reaches a state where a solution
137 * can be read off from the tableau (including cases where the tableau
138 * is empty), the function "add" is called on the isl_sol passed
139 * to find_solutions_main.
141 * The context tableau is owned by isl_sol and is updated incrementally.
143 * There are currently two implementations of this interface,
144 * isl_sol_map, which simply collects the solutions in an isl_map
145 * and (optionally) the parts of the context where there is no solution
147 * isl_sol_for, which calls a user-defined function for each part of
156 struct isl_context
*context
;
157 struct isl_partial_sol
*partial
;
158 void (*add
)(struct isl_sol
*sol
,
159 struct isl_basic_set
*dom
, struct isl_mat
*M
);
160 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
161 void (*free
)(struct isl_sol
*sol
);
162 struct isl_sol_callback dec_level
;
165 static void sol_free(struct isl_sol
*sol
)
167 struct isl_partial_sol
*partial
, *next
;
170 for (partial
= sol
->partial
; partial
; partial
= next
) {
171 next
= partial
->next
;
172 isl_basic_set_free(partial
->dom
);
173 isl_mat_free(partial
->M
);
179 /* Push a partial solution represented by a domain and mapping M
180 * onto the stack of partial solutions.
182 static void sol_push_sol(struct isl_sol
*sol
,
183 struct isl_basic_set
*dom
, struct isl_mat
*M
)
185 struct isl_partial_sol
*partial
;
187 if (sol
->error
|| !dom
)
190 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
194 partial
->level
= sol
->level
;
197 partial
->next
= sol
->partial
;
199 sol
->partial
= partial
;
203 isl_basic_set_free(dom
);
207 /* Pop one partial solution from the partial solution stack and
208 * pass it on to sol->add or sol->add_empty.
210 static void sol_pop_one(struct isl_sol
*sol
)
212 struct isl_partial_sol
*partial
;
214 partial
= sol
->partial
;
215 sol
->partial
= partial
->next
;
218 sol
->add(sol
, partial
->dom
, partial
->M
);
220 sol
->add_empty(sol
, partial
->dom
);
224 /* Return a fresh copy of the domain represented by the context tableau.
226 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
228 struct isl_basic_set
*bset
;
233 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
234 bset
= isl_basic_set_update_from_tab(bset
,
235 sol
->context
->op
->peek_tab(sol
->context
));
240 /* Check whether two partial solutions have the same mapping, where n_div
241 * is the number of divs that the two partial solutions have in common.
243 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
249 if (!s1
->M
!= !s2
->M
)
254 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
256 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
257 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
258 s1
->M
->n_col
-1-dim
-n_div
) != -1)
260 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
261 s2
->M
->n_col
-1-dim
-n_div
) != -1)
263 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
269 /* Pop all solutions from the partial solution stack that were pushed onto
270 * the stack at levels that are deeper than the current level.
271 * If the two topmost elements on the stack have the same level
272 * and represent the same solution, then their domains are combined.
273 * This combined domain is the same as the current context domain
274 * as sol_pop is called each time we move back to a higher level.
276 static void sol_pop(struct isl_sol
*sol
)
278 struct isl_partial_sol
*partial
;
284 if (sol
->level
== 0) {
285 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
290 partial
= sol
->partial
;
294 if (partial
->level
<= sol
->level
)
297 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
298 n_div
= isl_basic_set_dim(
299 sol
->context
->op
->peek_basic_set(sol
->context
),
302 if (!same_solution(partial
, partial
->next
, n_div
)) {
306 struct isl_basic_set
*bset
;
308 bset
= sol_domain(sol
);
310 isl_basic_set_free(partial
->next
->dom
);
311 partial
->next
->dom
= bset
;
312 partial
->next
->level
= sol
->level
;
314 sol
->partial
= partial
->next
;
315 isl_basic_set_free(partial
->dom
);
316 isl_mat_free(partial
->M
);
323 static void sol_dec_level(struct isl_sol
*sol
)
333 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
335 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
337 sol_dec_level(callback
->sol
);
339 return callback
->sol
->error
? -1 : 0;
342 /* Move down to next level and push callback onto context tableau
343 * to decrease the level again when it gets rolled back across
344 * the current state. That is, dec_level will be called with
345 * the context tableau in the same state as it is when inc_level
348 static void sol_inc_level(struct isl_sol
*sol
)
356 tab
= sol
->context
->op
->peek_tab(sol
->context
);
357 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
361 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
365 if (isl_int_is_one(m
))
368 for (i
= 0; i
< n_row
; ++i
)
369 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
372 /* Add the solution identified by the tableau and the context tableau.
374 * The layout of the variables is as follows.
375 * tab->n_var is equal to the total number of variables in the input
376 * map (including divs that were copied from the context)
377 * + the number of extra divs constructed
378 * Of these, the first tab->n_param and the last tab->n_div variables
379 * correspond to the variables in the context, i.e.,
380 * tab->n_param + tab->n_div = context_tab->n_var
381 * tab->n_param is equal to the number of parameters and input
382 * dimensions in the input map
383 * tab->n_div is equal to the number of divs in the context
385 * If there is no solution, then call add_empty with a basic set
386 * that corresponds to the context tableau. (If add_empty is NULL,
389 * If there is a solution, then first construct a matrix that maps
390 * all dimensions of the context to the output variables, i.e.,
391 * the output dimensions in the input map.
392 * The divs in the input map (if any) that do not correspond to any
393 * div in the context do not appear in the solution.
394 * The algorithm will make sure that they have an integer value,
395 * but these values themselves are of no interest.
396 * We have to be careful not to drop or rearrange any divs in the
397 * context because that would change the meaning of the matrix.
399 * To extract the value of the output variables, it should be noted
400 * that we always use a big parameter M in the main tableau and so
401 * the variable stored in this tableau is not an output variable x itself, but
402 * x' = M + x (in case of minimization)
404 * x' = M - x (in case of maximization)
405 * If x' appears in a column, then its optimal value is zero,
406 * which means that the optimal value of x is an unbounded number
407 * (-M for minimization and M for maximization).
408 * We currently assume that the output dimensions in the original map
409 * are bounded, so this cannot occur.
410 * Similarly, when x' appears in a row, then the coefficient of M in that
411 * row is necessarily 1.
412 * If the row in the tableau represents
413 * d x' = c + d M + e(y)
414 * then, in case of minimization, the corresponding row in the matrix
417 * with a d = m, the (updated) common denominator of the matrix.
418 * In case of maximization, the row will be
421 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
423 struct isl_basic_set
*bset
= NULL
;
424 struct isl_mat
*mat
= NULL
;
429 if (sol
->error
|| !tab
)
432 if (tab
->empty
&& !sol
->add_empty
)
435 bset
= sol_domain(sol
);
438 sol_push_sol(sol
, bset
, NULL
);
444 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
445 1 + tab
->n_param
+ tab
->n_div
);
451 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
452 isl_int_set_si(mat
->row
[0][0], 1);
453 for (row
= 0; row
< sol
->n_out
; ++row
) {
454 int i
= tab
->n_param
+ row
;
457 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
458 if (!tab
->var
[i
].is_row
) {
460 isl_die(mat
->ctx
, isl_error_invalid
,
461 "unbounded optimum", goto error2
);
465 r
= tab
->var
[i
].index
;
467 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
468 isl_die(mat
->ctx
, isl_error_invalid
,
469 "unbounded optimum", goto error2
);
470 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
471 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
472 scale_rows(mat
, m
, 1 + row
);
473 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
474 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
475 for (j
= 0; j
< tab
->n_param
; ++j
) {
477 if (tab
->var
[j
].is_row
)
479 col
= tab
->var
[j
].index
;
480 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
481 tab
->mat
->row
[r
][off
+ col
]);
483 for (j
= 0; j
< tab
->n_div
; ++j
) {
485 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
487 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
488 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
489 tab
->mat
->row
[r
][off
+ col
]);
492 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
498 sol_push_sol(sol
, bset
, mat
);
503 isl_basic_set_free(bset
);
511 struct isl_set
*empty
;
514 static void sol_map_free(struct isl_sol_map
*sol_map
)
518 if (sol_map
->sol
.context
)
519 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
520 isl_map_free(sol_map
->map
);
521 isl_set_free(sol_map
->empty
);
525 static void sol_map_free_wrap(struct isl_sol
*sol
)
527 sol_map_free((struct isl_sol_map
*)sol
);
530 /* This function is called for parts of the context where there is
531 * no solution, with "bset" corresponding to the context tableau.
532 * Simply add the basic set to the set "empty".
534 static void sol_map_add_empty(struct isl_sol_map
*sol
,
535 struct isl_basic_set
*bset
)
539 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
541 sol
->empty
= isl_set_grow(sol
->empty
, 1);
542 bset
= isl_basic_set_simplify(bset
);
543 bset
= isl_basic_set_finalize(bset
);
544 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
547 isl_basic_set_free(bset
);
550 isl_basic_set_free(bset
);
554 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
555 struct isl_basic_set
*bset
)
557 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
560 /* Given a basic map "dom" that represents the context and an affine
561 * matrix "M" that maps the dimensions of the context to the
562 * output variables, construct a basic map with the same parameters
563 * and divs as the context, the dimensions of the context as input
564 * dimensions and a number of output dimensions that is equal to
565 * the number of output dimensions in the input map.
567 * The constraints and divs of the context are simply copied
568 * from "dom". For each row
572 * is added, with d the common denominator of M.
574 static void sol_map_add(struct isl_sol_map
*sol
,
575 struct isl_basic_set
*dom
, struct isl_mat
*M
)
578 struct isl_basic_map
*bmap
= NULL
;
586 if (sol
->sol
.error
|| !dom
|| !M
)
589 n_out
= sol
->sol
.n_out
;
590 n_eq
= dom
->n_eq
+ n_out
;
591 n_ineq
= dom
->n_ineq
;
593 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
594 total
= isl_map_dim(sol
->map
, isl_dim_all
);
595 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
596 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
599 if (sol
->sol
.rational
)
600 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
601 for (i
= 0; i
< dom
->n_div
; ++i
) {
602 int k
= isl_basic_map_alloc_div(bmap
);
605 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
606 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
607 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
608 dom
->div
[i
] + 1 + 1 + nparam
, i
);
610 for (i
= 0; i
< dom
->n_eq
; ++i
) {
611 int k
= isl_basic_map_alloc_equality(bmap
);
614 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
615 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
616 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
617 dom
->eq
[i
] + 1 + nparam
, n_div
);
619 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
620 int k
= isl_basic_map_alloc_inequality(bmap
);
623 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
624 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
625 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
626 dom
->ineq
[i
] + 1 + nparam
, n_div
);
628 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
629 int k
= isl_basic_map_alloc_equality(bmap
);
632 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
633 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
634 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
635 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
636 M
->row
[1 + i
] + 1 + nparam
, n_div
);
638 bmap
= isl_basic_map_simplify(bmap
);
639 bmap
= isl_basic_map_finalize(bmap
);
640 sol
->map
= isl_map_grow(sol
->map
, 1);
641 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
642 isl_basic_set_free(dom
);
648 isl_basic_set_free(dom
);
650 isl_basic_map_free(bmap
);
654 static void sol_map_add_wrap(struct isl_sol
*sol
,
655 struct isl_basic_set
*dom
, struct isl_mat
*M
)
657 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
661 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
662 * i.e., the constant term and the coefficients of all variables that
663 * appear in the context tableau.
664 * Note that the coefficient of the big parameter M is NOT copied.
665 * The context tableau may not have a big parameter and even when it
666 * does, it is a different big parameter.
668 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
671 unsigned off
= 2 + tab
->M
;
673 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
674 for (i
= 0; i
< tab
->n_param
; ++i
) {
675 if (tab
->var
[i
].is_row
)
676 isl_int_set_si(line
[1 + i
], 0);
678 int col
= tab
->var
[i
].index
;
679 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
682 for (i
= 0; i
< tab
->n_div
; ++i
) {
683 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
684 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
686 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
687 isl_int_set(line
[1 + tab
->n_param
+ i
],
688 tab
->mat
->row
[row
][off
+ col
]);
693 /* Check if rows "row1" and "row2" have identical "parametric constants",
694 * as explained above.
695 * In this case, we also insist that the coefficients of the big parameter
696 * be the same as the values of the constants will only be the same
697 * if these coefficients are also the same.
699 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
702 unsigned off
= 2 + tab
->M
;
704 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
707 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
708 tab
->mat
->row
[row2
][2]))
711 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
712 int pos
= i
< tab
->n_param
? i
:
713 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
716 if (tab
->var
[pos
].is_row
)
718 col
= tab
->var
[pos
].index
;
719 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
720 tab
->mat
->row
[row2
][off
+ col
]))
726 /* Return an inequality that expresses that the "parametric constant"
727 * should be non-negative.
728 * This function is only called when the coefficient of the big parameter
731 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
733 struct isl_vec
*ineq
;
735 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
739 get_row_parameter_line(tab
, row
, ineq
->el
);
741 ineq
= isl_vec_normalize(ineq
);
746 /* Return a integer division for use in a parametric cut based on the given row.
747 * In particular, let the parametric constant of the row be
751 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
752 * The div returned is equal to
754 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
756 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
760 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
764 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
765 get_row_parameter_line(tab
, row
, div
->el
+ 1);
766 div
= isl_vec_normalize(div
);
767 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
768 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
773 /* Return a integer division for use in transferring an integrality constraint
775 * In particular, let the parametric constant of the row be
779 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
780 * The the returned div is equal to
782 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
784 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
788 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
792 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
793 get_row_parameter_line(tab
, row
, div
->el
+ 1);
794 div
= isl_vec_normalize(div
);
795 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
800 /* Construct and return an inequality that expresses an upper bound
802 * In particular, if the div is given by
806 * then the inequality expresses
810 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
814 struct isl_vec
*ineq
;
819 total
= isl_basic_set_total_dim(bset
);
820 div_pos
= 1 + total
- bset
->n_div
+ div
;
822 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
826 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
827 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
831 /* Given a row in the tableau and a div that was created
832 * using get_row_split_div and that has been constrained to equality, i.e.,
834 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
836 * replace the expression "\sum_i {a_i} y_i" in the row by d,
837 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
838 * The coefficients of the non-parameters in the tableau have been
839 * verified to be integral. We can therefore simply replace coefficient b
840 * by floor(b). For the coefficients of the parameters we have
841 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
844 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
846 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
847 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
849 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
851 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
852 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
854 isl_assert(tab
->mat
->ctx
,
855 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
856 isl_seq_combine(tab
->mat
->row
[row
] + 1,
857 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
858 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
859 1 + tab
->M
+ tab
->n_col
);
861 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
863 isl_int_add_ui(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
],
864 tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
873 /* Check if the (parametric) constant of the given row is obviously
874 * negative, meaning that we don't need to consult the context tableau.
875 * If there is a big parameter and its coefficient is non-zero,
876 * then this coefficient determines the outcome.
877 * Otherwise, we check whether the constant is negative and
878 * all non-zero coefficients of parameters are negative and
879 * belong to non-negative parameters.
881 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
885 unsigned off
= 2 + tab
->M
;
888 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
890 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
894 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
896 for (i
= 0; i
< tab
->n_param
; ++i
) {
897 /* Eliminated parameter */
898 if (tab
->var
[i
].is_row
)
900 col
= tab
->var
[i
].index
;
901 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
903 if (!tab
->var
[i
].is_nonneg
)
905 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
908 for (i
= 0; i
< tab
->n_div
; ++i
) {
909 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
911 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
912 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
914 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
916 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
922 /* Check if the (parametric) constant of the given row is obviously
923 * non-negative, meaning that we don't need to consult the context tableau.
924 * If there is a big parameter and its coefficient is non-zero,
925 * then this coefficient determines the outcome.
926 * Otherwise, we check whether the constant is non-negative and
927 * all non-zero coefficients of parameters are positive and
928 * belong to non-negative parameters.
930 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
934 unsigned off
= 2 + tab
->M
;
937 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
939 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
943 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
945 for (i
= 0; i
< tab
->n_param
; ++i
) {
946 /* Eliminated parameter */
947 if (tab
->var
[i
].is_row
)
949 col
= tab
->var
[i
].index
;
950 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
952 if (!tab
->var
[i
].is_nonneg
)
954 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
957 for (i
= 0; i
< tab
->n_div
; ++i
) {
958 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
960 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
961 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
963 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
965 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
971 /* Given a row r and two columns, return the column that would
972 * lead to the lexicographically smallest increment in the sample
973 * solution when leaving the basis in favor of the row.
974 * Pivoting with column c will increment the sample value by a non-negative
975 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
976 * corresponding to the non-parametric variables.
977 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
978 * with all other entries in this virtual row equal to zero.
979 * If variable v appears in a row, then a_{v,c} is the element in column c
982 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
983 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
984 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
985 * increment. Otherwise, it's c2.
987 static int lexmin_col_pair(struct isl_tab
*tab
,
988 int row
, int col1
, int col2
, isl_int tmp
)
993 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
995 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
999 if (!tab
->var
[i
].is_row
) {
1000 if (tab
->var
[i
].index
== col1
)
1002 if (tab
->var
[i
].index
== col2
)
1007 if (tab
->var
[i
].index
== row
)
1010 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1011 s1
= isl_int_sgn(r
[col1
]);
1012 s2
= isl_int_sgn(r
[col2
]);
1013 if (s1
== 0 && s2
== 0)
1020 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1021 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1022 if (isl_int_is_pos(tmp
))
1024 if (isl_int_is_neg(tmp
))
1030 /* Given a row in the tableau, find and return the column that would
1031 * result in the lexicographically smallest, but positive, increment
1032 * in the sample point.
1033 * If there is no such column, then return tab->n_col.
1034 * If anything goes wrong, return -1.
1036 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1039 int col
= tab
->n_col
;
1043 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1047 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1048 if (tab
->col_var
[j
] >= 0 &&
1049 (tab
->col_var
[j
] < tab
->n_param
||
1050 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1053 if (!isl_int_is_pos(tr
[j
]))
1056 if (col
== tab
->n_col
)
1059 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1060 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1070 /* Return the first known violated constraint, i.e., a non-negative
1071 * constraint that currently has an either obviously negative value
1072 * or a previously determined to be negative value.
1074 * If any constraint has a negative coefficient for the big parameter,
1075 * if any, then we return one of these first.
1077 static int first_neg(struct isl_tab
*tab
)
1082 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1083 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1085 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1088 tab
->row_sign
[row
] = isl_tab_row_neg
;
1091 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1092 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1094 if (tab
->row_sign
) {
1095 if (tab
->row_sign
[row
] == 0 &&
1096 is_obviously_neg(tab
, row
))
1097 tab
->row_sign
[row
] = isl_tab_row_neg
;
1098 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1100 } else if (!is_obviously_neg(tab
, row
))
1107 /* Check whether the invariant that all columns are lexico-positive
1108 * is satisfied. This function is not called from the current code
1109 * but is useful during debugging.
1111 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1112 static void check_lexpos(struct isl_tab
*tab
)
1114 unsigned off
= 2 + tab
->M
;
1119 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1120 if (tab
->col_var
[col
] >= 0 &&
1121 (tab
->col_var
[col
] < tab
->n_param
||
1122 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1124 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1125 if (!tab
->var
[var
].is_row
) {
1126 if (tab
->var
[var
].index
== col
)
1131 row
= tab
->var
[var
].index
;
1132 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1134 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1136 fprintf(stderr
, "lexneg column %d (row %d)\n",
1139 if (var
>= tab
->n_var
- tab
->n_div
)
1140 fprintf(stderr
, "zero column %d\n", col
);
1144 /* Report to the caller that the given constraint is part of an encountered
1147 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1149 return tab
->conflict(con
, tab
->conflict_user
);
1152 /* Given a conflicting row in the tableau, report all constraints
1153 * involved in the row to the caller. That is, the row itself
1154 * (if represents a constraint) and all constraint columns with
1155 * non-zero (and therefore negative) coefficient.
1157 static int report_conflict(struct isl_tab
*tab
, int row
)
1165 if (tab
->row_var
[row
] < 0 &&
1166 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1169 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1171 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1172 if (tab
->col_var
[j
] >= 0 &&
1173 (tab
->col_var
[j
] < tab
->n_param
||
1174 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1177 if (!isl_int_is_neg(tr
[j
]))
1180 if (tab
->col_var
[j
] < 0 &&
1181 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1188 /* Resolve all known or obviously violated constraints through pivoting.
1189 * In particular, as long as we can find any violated constraint, we
1190 * look for a pivoting column that would result in the lexicographically
1191 * smallest increment in the sample point. If there is no such column
1192 * then the tableau is infeasible.
1194 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1195 static int restore_lexmin(struct isl_tab
*tab
)
1203 while ((row
= first_neg(tab
)) != -1) {
1204 col
= lexmin_pivot_col(tab
, row
);
1205 if (col
>= tab
->n_col
) {
1206 if (report_conflict(tab
, row
) < 0)
1208 if (isl_tab_mark_empty(tab
) < 0)
1214 if (isl_tab_pivot(tab
, row
, col
) < 0)
1220 /* Given a row that represents an equality, look for an appropriate
1222 * In particular, if there are any non-zero coefficients among
1223 * the non-parameter variables, then we take the last of these
1224 * variables. Eliminating this variable in terms of the other
1225 * variables and/or parameters does not influence the property
1226 * that all column in the initial tableau are lexicographically
1227 * positive. The row corresponding to the eliminated variable
1228 * will only have non-zero entries below the diagonal of the
1229 * initial tableau. That is, we transform
1235 * If there is no such non-parameter variable, then we are dealing with
1236 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1237 * for elimination. This will ensure that the eliminated parameter
1238 * always has an integer value whenever all the other parameters are integral.
1239 * If there is no such parameter then we return -1.
1241 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1243 unsigned off
= 2 + tab
->M
;
1246 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1248 if (tab
->var
[i
].is_row
)
1250 col
= tab
->var
[i
].index
;
1251 if (col
<= tab
->n_dead
)
1253 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1256 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1257 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1259 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1265 /* Add an equality that is known to be valid to the tableau.
1266 * We first check if we can eliminate a variable or a parameter.
1267 * If not, we add the equality as two inequalities.
1268 * In this case, the equality was a pure parameter equality and there
1269 * is no need to resolve any constraint violations.
1271 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1278 r
= isl_tab_add_row(tab
, eq
);
1282 r
= tab
->con
[r
].index
;
1283 i
= last_var_col_or_int_par_col(tab
, r
);
1285 tab
->con
[r
].is_nonneg
= 1;
1286 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1288 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1289 r
= isl_tab_add_row(tab
, eq
);
1292 tab
->con
[r
].is_nonneg
= 1;
1293 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1296 if (isl_tab_pivot(tab
, r
, i
) < 0)
1298 if (isl_tab_kill_col(tab
, i
) < 0)
1309 /* Check if the given row is a pure constant.
1311 static int is_constant(struct isl_tab
*tab
, int row
)
1313 unsigned off
= 2 + tab
->M
;
1315 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1316 tab
->n_col
- tab
->n_dead
) == -1;
1319 /* Add an equality that may or may not be valid to the tableau.
1320 * If the resulting row is a pure constant, then it must be zero.
1321 * Otherwise, the resulting tableau is empty.
1323 * If the row is not a pure constant, then we add two inequalities,
1324 * each time checking that they can be satisfied.
1325 * In the end we try to use one of the two constraints to eliminate
1328 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1329 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1333 struct isl_tab_undo
*snap
;
1337 snap
= isl_tab_snap(tab
);
1338 r1
= isl_tab_add_row(tab
, eq
);
1341 tab
->con
[r1
].is_nonneg
= 1;
1342 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1345 row
= tab
->con
[r1
].index
;
1346 if (is_constant(tab
, row
)) {
1347 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1348 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1349 if (isl_tab_mark_empty(tab
) < 0)
1353 if (isl_tab_rollback(tab
, snap
) < 0)
1358 if (restore_lexmin(tab
) < 0)
1363 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1365 r2
= isl_tab_add_row(tab
, eq
);
1368 tab
->con
[r2
].is_nonneg
= 1;
1369 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1372 if (restore_lexmin(tab
) < 0)
1377 if (!tab
->con
[r1
].is_row
) {
1378 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1380 } else if (!tab
->con
[r2
].is_row
) {
1381 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1386 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1387 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1389 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1390 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1391 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1392 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1401 /* Add an inequality to the tableau, resolving violations using
1404 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1411 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1412 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1417 r
= isl_tab_add_row(tab
, ineq
);
1420 tab
->con
[r
].is_nonneg
= 1;
1421 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1423 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1424 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1429 if (restore_lexmin(tab
) < 0)
1431 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1432 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1433 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1441 /* Check if the coefficients of the parameters are all integral.
1443 static int integer_parameter(struct isl_tab
*tab
, int row
)
1447 unsigned off
= 2 + tab
->M
;
1449 for (i
= 0; i
< tab
->n_param
; ++i
) {
1450 /* Eliminated parameter */
1451 if (tab
->var
[i
].is_row
)
1453 col
= tab
->var
[i
].index
;
1454 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1455 tab
->mat
->row
[row
][0]))
1458 for (i
= 0; i
< tab
->n_div
; ++i
) {
1459 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1461 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1462 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1463 tab
->mat
->row
[row
][0]))
1469 /* Check if the coefficients of the non-parameter variables are all integral.
1471 static int integer_variable(struct isl_tab
*tab
, int row
)
1474 unsigned off
= 2 + tab
->M
;
1476 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1477 if (tab
->col_var
[i
] >= 0 &&
1478 (tab
->col_var
[i
] < tab
->n_param
||
1479 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1481 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1482 tab
->mat
->row
[row
][0]))
1488 /* Check if the constant term is integral.
1490 static int integer_constant(struct isl_tab
*tab
, int row
)
1492 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1493 tab
->mat
->row
[row
][0]);
1496 #define I_CST 1 << 0
1497 #define I_PAR 1 << 1
1498 #define I_VAR 1 << 2
1500 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1501 * that is non-integer and therefore requires a cut and return
1502 * the index of the variable.
1503 * For parametric tableaus, there are three parts in a row,
1504 * the constant, the coefficients of the parameters and the rest.
1505 * For each part, we check whether the coefficients in that part
1506 * are all integral and if so, set the corresponding flag in *f.
1507 * If the constant and the parameter part are integral, then the
1508 * current sample value is integral and no cut is required
1509 * (irrespective of whether the variable part is integral).
1511 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1513 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1515 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1518 if (!tab
->var
[var
].is_row
)
1520 row
= tab
->var
[var
].index
;
1521 if (integer_constant(tab
, row
))
1522 ISL_FL_SET(flags
, I_CST
);
1523 if (integer_parameter(tab
, row
))
1524 ISL_FL_SET(flags
, I_PAR
);
1525 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1527 if (integer_variable(tab
, row
))
1528 ISL_FL_SET(flags
, I_VAR
);
1535 /* Check for first (non-parameter) variable that is non-integer and
1536 * therefore requires a cut and return the corresponding row.
1537 * For parametric tableaus, there are three parts in a row,
1538 * the constant, the coefficients of the parameters and the rest.
1539 * For each part, we check whether the coefficients in that part
1540 * are all integral and if so, set the corresponding flag in *f.
1541 * If the constant and the parameter part are integral, then the
1542 * current sample value is integral and no cut is required
1543 * (irrespective of whether the variable part is integral).
1545 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1547 int var
= next_non_integer_var(tab
, -1, f
);
1549 return var
< 0 ? -1 : tab
->var
[var
].index
;
1552 /* Add a (non-parametric) cut to cut away the non-integral sample
1553 * value of the given row.
1555 * If the row is given by
1557 * m r = f + \sum_i a_i y_i
1561 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1563 * The big parameter, if any, is ignored, since it is assumed to be big
1564 * enough to be divisible by any integer.
1565 * If the tableau is actually a parametric tableau, then this function
1566 * is only called when all coefficients of the parameters are integral.
1567 * The cut therefore has zero coefficients for the parameters.
1569 * The current value is known to be negative, so row_sign, if it
1570 * exists, is set accordingly.
1572 * Return the row of the cut or -1.
1574 static int add_cut(struct isl_tab
*tab
, int row
)
1579 unsigned off
= 2 + tab
->M
;
1581 if (isl_tab_extend_cons(tab
, 1) < 0)
1583 r
= isl_tab_allocate_con(tab
);
1587 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1588 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1589 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1590 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1591 isl_int_neg(r_row
[1], r_row
[1]);
1593 isl_int_set_si(r_row
[2], 0);
1594 for (i
= 0; i
< tab
->n_col
; ++i
)
1595 isl_int_fdiv_r(r_row
[off
+ i
],
1596 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1598 tab
->con
[r
].is_nonneg
= 1;
1599 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1602 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1604 return tab
->con
[r
].index
;
1607 /* Given a non-parametric tableau, add cuts until an integer
1608 * sample point is obtained or until the tableau is determined
1609 * to be integer infeasible.
1610 * As long as there is any non-integer value in the sample point,
1611 * we add appropriate cuts, if possible, for each of these
1612 * non-integer values and then resolve the violated
1613 * cut constraints using restore_lexmin.
1614 * If one of the corresponding rows is equal to an integral
1615 * combination of variables/constraints plus a non-integral constant,
1616 * then there is no way to obtain an integer point and we return
1617 * a tableau that is marked empty.
1619 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
)
1630 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1632 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1633 if (isl_tab_mark_empty(tab
) < 0)
1637 row
= tab
->var
[var
].index
;
1638 row
= add_cut(tab
, row
);
1641 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1642 if (restore_lexmin(tab
) < 0)
1653 /* Check whether all the currently active samples also satisfy the inequality
1654 * "ineq" (treated as an equality if eq is set).
1655 * Remove those samples that do not.
1657 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1665 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1666 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1667 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1670 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1672 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1673 1 + tab
->n_var
, &v
);
1674 sgn
= isl_int_sgn(v
);
1675 if (eq
? (sgn
== 0) : (sgn
>= 0))
1677 tab
= isl_tab_drop_sample(tab
, i
);
1689 /* Check whether the sample value of the tableau is finite,
1690 * i.e., either the tableau does not use a big parameter, or
1691 * all values of the variables are equal to the big parameter plus
1692 * some constant. This constant is the actual sample value.
1694 static int sample_is_finite(struct isl_tab
*tab
)
1701 for (i
= 0; i
< tab
->n_var
; ++i
) {
1703 if (!tab
->var
[i
].is_row
)
1705 row
= tab
->var
[i
].index
;
1706 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1712 /* Check if the context tableau of sol has any integer points.
1713 * Leave tab in empty state if no integer point can be found.
1714 * If an integer point can be found and if moreover it is finite,
1715 * then it is added to the list of sample values.
1717 * This function is only called when none of the currently active sample
1718 * values satisfies the most recently added constraint.
1720 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1722 struct isl_tab_undo
*snap
;
1727 snap
= isl_tab_snap(tab
);
1728 if (isl_tab_push_basis(tab
) < 0)
1731 tab
= cut_to_integer_lexmin(tab
);
1735 if (!tab
->empty
&& sample_is_finite(tab
)) {
1736 struct isl_vec
*sample
;
1738 sample
= isl_tab_get_sample_value(tab
);
1740 tab
= isl_tab_add_sample(tab
, sample
);
1743 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1752 /* Check if any of the currently active sample values satisfies
1753 * the inequality "ineq" (an equality if eq is set).
1755 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1763 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1764 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1765 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1768 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1770 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1771 1 + tab
->n_var
, &v
);
1772 sgn
= isl_int_sgn(v
);
1773 if (eq
? (sgn
== 0) : (sgn
>= 0))
1778 return i
< tab
->n_sample
;
1781 /* Add a div specified by "div" to the tableau "tab" and return
1782 * 1 if the div is obviously non-negative.
1784 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1785 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1789 struct isl_mat
*samples
;
1792 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1795 nonneg
= tab
->var
[r
].is_nonneg
;
1796 tab
->var
[r
].frozen
= 1;
1798 samples
= isl_mat_extend(tab
->samples
,
1799 tab
->n_sample
, 1 + tab
->n_var
);
1800 tab
->samples
= samples
;
1803 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1804 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1805 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1806 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1807 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1813 /* Add a div specified by "div" to both the main tableau and
1814 * the context tableau. In case of the main tableau, we only
1815 * need to add an extra div. In the context tableau, we also
1816 * need to express the meaning of the div.
1817 * Return the index of the div or -1 if anything went wrong.
1819 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1820 struct isl_vec
*div
)
1825 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1828 if (!context
->op
->is_ok(context
))
1831 if (isl_tab_extend_vars(tab
, 1) < 0)
1833 r
= isl_tab_allocate_var(tab
);
1837 tab
->var
[r
].is_nonneg
= 1;
1838 tab
->var
[r
].frozen
= 1;
1841 return tab
->n_div
- 1;
1843 context
->op
->invalidate(context
);
1847 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1850 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1852 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1853 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1855 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1862 /* Return the index of a div that corresponds to "div".
1863 * We first check if we already have such a div and if not, we create one.
1865 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1866 struct isl_vec
*div
)
1869 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1874 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1878 return add_div(tab
, context
, div
);
1881 /* Add a parametric cut to cut away the non-integral sample value
1883 * Let a_i be the coefficients of the constant term and the parameters
1884 * and let b_i be the coefficients of the variables or constraints
1885 * in basis of the tableau.
1886 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1888 * The cut is expressed as
1890 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1892 * If q did not already exist in the context tableau, then it is added first.
1893 * If q is in a column of the main tableau then the "+ q" can be accomplished
1894 * by setting the corresponding entry to the denominator of the constraint.
1895 * If q happens to be in a row of the main tableau, then the corresponding
1896 * row needs to be added instead (taking care of the denominators).
1897 * Note that this is very unlikely, but perhaps not entirely impossible.
1899 * The current value of the cut is known to be negative (or at least
1900 * non-positive), so row_sign is set accordingly.
1902 * Return the row of the cut or -1.
1904 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1905 struct isl_context
*context
)
1907 struct isl_vec
*div
;
1914 unsigned off
= 2 + tab
->M
;
1919 div
= get_row_parameter_div(tab
, row
);
1924 d
= context
->op
->get_div(context
, tab
, div
);
1928 if (isl_tab_extend_cons(tab
, 1) < 0)
1930 r
= isl_tab_allocate_con(tab
);
1934 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1935 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1936 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1937 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1938 isl_int_neg(r_row
[1], r_row
[1]);
1940 isl_int_set_si(r_row
[2], 0);
1941 for (i
= 0; i
< tab
->n_param
; ++i
) {
1942 if (tab
->var
[i
].is_row
)
1944 col
= tab
->var
[i
].index
;
1945 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1946 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1947 tab
->mat
->row
[row
][0]);
1948 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1950 for (i
= 0; i
< tab
->n_div
; ++i
) {
1951 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1953 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1954 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1955 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1956 tab
->mat
->row
[row
][0]);
1957 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1959 for (i
= 0; i
< tab
->n_col
; ++i
) {
1960 if (tab
->col_var
[i
] >= 0 &&
1961 (tab
->col_var
[i
] < tab
->n_param
||
1962 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1964 isl_int_fdiv_r(r_row
[off
+ i
],
1965 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1967 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
1969 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1971 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
1972 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
1973 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
1974 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
1975 r_row
[0], tab
->mat
->row
[d_row
] + 1,
1976 off
- 1 + tab
->n_col
);
1977 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
1980 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1981 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
1984 tab
->con
[r
].is_nonneg
= 1;
1985 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1988 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1992 row
= tab
->con
[r
].index
;
1994 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2000 /* Construct a tableau for bmap that can be used for computing
2001 * the lexicographic minimum (or maximum) of bmap.
2002 * If not NULL, then dom is the domain where the minimum
2003 * should be computed. In this case, we set up a parametric
2004 * tableau with row signs (initialized to "unknown").
2005 * If M is set, then the tableau will use a big parameter.
2006 * If max is set, then a maximum should be computed instead of a minimum.
2007 * This means that for each variable x, the tableau will contain the variable
2008 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2009 * of the variables in all constraints are negated prior to adding them
2012 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2013 struct isl_basic_set
*dom
, unsigned M
, int max
)
2016 struct isl_tab
*tab
;
2018 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2019 isl_basic_map_total_dim(bmap
), M
);
2023 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2025 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2026 tab
->n_div
= dom
->n_div
;
2027 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2028 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2032 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2033 if (isl_tab_mark_empty(tab
) < 0)
2038 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2039 tab
->var
[i
].is_nonneg
= 1;
2040 tab
->var
[i
].frozen
= 1;
2042 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2044 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2045 bmap
->eq
[i
] + 1 + tab
->n_param
,
2046 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2047 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2049 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2050 bmap
->eq
[i
] + 1 + tab
->n_param
,
2051 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2052 if (!tab
|| tab
->empty
)
2055 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2057 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2059 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2060 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2061 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2062 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2064 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2065 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2066 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2067 if (!tab
|| tab
->empty
)
2076 /* Given a main tableau where more than one row requires a split,
2077 * determine and return the "best" row to split on.
2079 * Given two rows in the main tableau, if the inequality corresponding
2080 * to the first row is redundant with respect to that of the second row
2081 * in the current tableau, then it is better to split on the second row,
2082 * since in the positive part, both row will be positive.
2083 * (In the negative part a pivot will have to be performed and just about
2084 * anything can happen to the sign of the other row.)
2086 * As a simple heuristic, we therefore select the row that makes the most
2087 * of the other rows redundant.
2089 * Perhaps it would also be useful to look at the number of constraints
2090 * that conflict with any given constraint.
2092 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2094 struct isl_tab_undo
*snap
;
2100 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2103 snap
= isl_tab_snap(context_tab
);
2105 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2106 struct isl_tab_undo
*snap2
;
2107 struct isl_vec
*ineq
= NULL
;
2111 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2113 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2116 ineq
= get_row_parameter_ineq(tab
, split
);
2119 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2124 snap2
= isl_tab_snap(context_tab
);
2126 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2127 struct isl_tab_var
*var
;
2131 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2133 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2136 ineq
= get_row_parameter_ineq(tab
, row
);
2139 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2143 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2144 if (!context_tab
->empty
&&
2145 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2147 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2150 if (best
== -1 || r
> best_r
) {
2154 if (isl_tab_rollback(context_tab
, snap
) < 0)
2161 static struct isl_basic_set
*context_lex_peek_basic_set(
2162 struct isl_context
*context
)
2164 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2167 return isl_tab_peek_bset(clex
->tab
);
2170 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2172 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2176 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2177 int check
, int update
)
2179 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2180 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2182 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2185 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2189 clex
->tab
= check_integer_feasible(clex
->tab
);
2192 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2195 isl_tab_free(clex
->tab
);
2199 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2200 int check
, int update
)
2202 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2203 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2205 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2207 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2211 clex
->tab
= check_integer_feasible(clex
->tab
);
2214 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2217 isl_tab_free(clex
->tab
);
2221 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2223 struct isl_context
*context
= (struct isl_context
*)user
;
2224 context_lex_add_ineq(context
, ineq
, 0, 0);
2225 return context
->op
->is_ok(context
) ? 0 : -1;
2228 /* Check which signs can be obtained by "ineq" on all the currently
2229 * active sample values. See row_sign for more information.
2231 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2237 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2239 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2240 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2241 return isl_tab_row_unknown
);
2244 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2245 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2246 1 + tab
->n_var
, &tmp
);
2247 sgn
= isl_int_sgn(tmp
);
2248 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2249 if (res
== isl_tab_row_unknown
)
2250 res
= isl_tab_row_pos
;
2251 if (res
== isl_tab_row_neg
)
2252 res
= isl_tab_row_any
;
2255 if (res
== isl_tab_row_unknown
)
2256 res
= isl_tab_row_neg
;
2257 if (res
== isl_tab_row_pos
)
2258 res
= isl_tab_row_any
;
2260 if (res
== isl_tab_row_any
)
2268 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2269 isl_int
*ineq
, int strict
)
2271 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2272 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2275 /* Check whether "ineq" can be added to the tableau without rendering
2278 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2280 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2281 struct isl_tab_undo
*snap
;
2287 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2290 snap
= isl_tab_snap(clex
->tab
);
2291 if (isl_tab_push_basis(clex
->tab
) < 0)
2293 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2294 clex
->tab
= check_integer_feasible(clex
->tab
);
2297 feasible
= !clex
->tab
->empty
;
2298 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2304 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2305 struct isl_vec
*div
)
2307 return get_div(tab
, context
, div
);
2310 /* Add a div specified by "div" to the context tableau and return
2311 * 1 if the div is obviously non-negative.
2312 * context_tab_add_div will always return 1, because all variables
2313 * in a isl_context_lex tableau are non-negative.
2314 * However, if we are using a big parameter in the context, then this only
2315 * reflects the non-negativity of the variable used to _encode_ the
2316 * div, i.e., div' = M + div, so we can't draw any conclusions.
2318 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2320 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2322 nonneg
= context_tab_add_div(clex
->tab
, div
,
2323 context_lex_add_ineq_wrap
, context
);
2331 static int context_lex_detect_equalities(struct isl_context
*context
,
2332 struct isl_tab
*tab
)
2337 static int context_lex_best_split(struct isl_context
*context
,
2338 struct isl_tab
*tab
)
2340 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2341 struct isl_tab_undo
*snap
;
2344 snap
= isl_tab_snap(clex
->tab
);
2345 if (isl_tab_push_basis(clex
->tab
) < 0)
2347 r
= best_split(tab
, clex
->tab
);
2349 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2355 static int context_lex_is_empty(struct isl_context
*context
)
2357 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2360 return clex
->tab
->empty
;
2363 static void *context_lex_save(struct isl_context
*context
)
2365 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2366 struct isl_tab_undo
*snap
;
2368 snap
= isl_tab_snap(clex
->tab
);
2369 if (isl_tab_push_basis(clex
->tab
) < 0)
2371 if (isl_tab_save_samples(clex
->tab
) < 0)
2377 static void context_lex_restore(struct isl_context
*context
, void *save
)
2379 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2380 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2381 isl_tab_free(clex
->tab
);
2386 static int context_lex_is_ok(struct isl_context
*context
)
2388 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2392 /* For each variable in the context tableau, check if the variable can
2393 * only attain non-negative values. If so, mark the parameter as non-negative
2394 * in the main tableau. This allows for a more direct identification of some
2395 * cases of violated constraints.
2397 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2398 struct isl_tab
*context_tab
)
2401 struct isl_tab_undo
*snap
;
2402 struct isl_vec
*ineq
= NULL
;
2403 struct isl_tab_var
*var
;
2406 if (context_tab
->n_var
== 0)
2409 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2413 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2416 snap
= isl_tab_snap(context_tab
);
2419 isl_seq_clr(ineq
->el
, ineq
->size
);
2420 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2421 isl_int_set_si(ineq
->el
[1 + i
], 1);
2422 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2424 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2425 if (!context_tab
->empty
&&
2426 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2428 if (i
>= tab
->n_param
)
2429 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2430 tab
->var
[j
].is_nonneg
= 1;
2433 isl_int_set_si(ineq
->el
[1 + i
], 0);
2434 if (isl_tab_rollback(context_tab
, snap
) < 0)
2438 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2439 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2451 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2452 struct isl_context
*context
, struct isl_tab
*tab
)
2454 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2455 struct isl_tab_undo
*snap
;
2460 snap
= isl_tab_snap(clex
->tab
);
2461 if (isl_tab_push_basis(clex
->tab
) < 0)
2464 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2466 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2475 static void context_lex_invalidate(struct isl_context
*context
)
2477 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2478 isl_tab_free(clex
->tab
);
2482 static void context_lex_free(struct isl_context
*context
)
2484 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2485 isl_tab_free(clex
->tab
);
2489 struct isl_context_op isl_context_lex_op
= {
2490 context_lex_detect_nonnegative_parameters
,
2491 context_lex_peek_basic_set
,
2492 context_lex_peek_tab
,
2494 context_lex_add_ineq
,
2495 context_lex_ineq_sign
,
2496 context_lex_test_ineq
,
2497 context_lex_get_div
,
2498 context_lex_add_div
,
2499 context_lex_detect_equalities
,
2500 context_lex_best_split
,
2501 context_lex_is_empty
,
2504 context_lex_restore
,
2505 context_lex_invalidate
,
2509 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2511 struct isl_tab
*tab
;
2513 bset
= isl_basic_set_cow(bset
);
2516 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2519 if (isl_tab_track_bset(tab
, bset
) < 0)
2521 tab
= isl_tab_init_samples(tab
);
2524 isl_basic_set_free(bset
);
2528 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2530 struct isl_context_lex
*clex
;
2535 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2539 clex
->context
.op
= &isl_context_lex_op
;
2541 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2542 if (restore_lexmin(clex
->tab
) < 0)
2544 clex
->tab
= check_integer_feasible(clex
->tab
);
2548 return &clex
->context
;
2550 clex
->context
.op
->free(&clex
->context
);
2554 struct isl_context_gbr
{
2555 struct isl_context context
;
2556 struct isl_tab
*tab
;
2557 struct isl_tab
*shifted
;
2558 struct isl_tab
*cone
;
2561 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2562 struct isl_context
*context
, struct isl_tab
*tab
)
2564 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2567 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2570 static struct isl_basic_set
*context_gbr_peek_basic_set(
2571 struct isl_context
*context
)
2573 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2576 return isl_tab_peek_bset(cgbr
->tab
);
2579 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2581 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2585 /* Initialize the "shifted" tableau of the context, which
2586 * contains the constraints of the original tableau shifted
2587 * by the sum of all negative coefficients. This ensures
2588 * that any rational point in the shifted tableau can
2589 * be rounded up to yield an integer point in the original tableau.
2591 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2594 struct isl_vec
*cst
;
2595 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2596 unsigned dim
= isl_basic_set_total_dim(bset
);
2598 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2602 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2603 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2604 for (j
= 0; j
< dim
; ++j
) {
2605 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2607 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2608 bset
->ineq
[i
][1 + j
]);
2612 cgbr
->shifted
= isl_tab_from_basic_set(bset
);
2614 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2615 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2620 /* Check if the shifted tableau is non-empty, and if so
2621 * use the sample point to construct an integer point
2622 * of the context tableau.
2624 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2626 struct isl_vec
*sample
;
2629 gbr_init_shifted(cgbr
);
2632 if (cgbr
->shifted
->empty
)
2633 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2635 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2636 sample
= isl_vec_ceil(sample
);
2641 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2648 for (i
= 0; i
< bset
->n_eq
; ++i
)
2649 isl_int_set_si(bset
->eq
[i
][0], 0);
2651 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2652 isl_int_set_si(bset
->ineq
[i
][0], 0);
2657 static int use_shifted(struct isl_context_gbr
*cgbr
)
2659 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2662 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2664 struct isl_basic_set
*bset
;
2665 struct isl_basic_set
*cone
;
2667 if (isl_tab_sample_is_integer(cgbr
->tab
))
2668 return isl_tab_get_sample_value(cgbr
->tab
);
2670 if (use_shifted(cgbr
)) {
2671 struct isl_vec
*sample
;
2673 sample
= gbr_get_shifted_sample(cgbr
);
2674 if (!sample
|| sample
->size
> 0)
2677 isl_vec_free(sample
);
2681 bset
= isl_tab_peek_bset(cgbr
->tab
);
2682 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2685 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2688 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2691 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2692 struct isl_vec
*sample
;
2693 struct isl_tab_undo
*snap
;
2695 if (cgbr
->tab
->basis
) {
2696 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2697 isl_mat_free(cgbr
->tab
->basis
);
2698 cgbr
->tab
->basis
= NULL
;
2700 cgbr
->tab
->n_zero
= 0;
2701 cgbr
->tab
->n_unbounded
= 0;
2704 snap
= isl_tab_snap(cgbr
->tab
);
2706 sample
= isl_tab_sample(cgbr
->tab
);
2708 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2709 isl_vec_free(sample
);
2716 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2717 cone
= drop_constant_terms(cone
);
2718 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2719 cone
= isl_basic_set_underlying_set(cone
);
2720 cone
= isl_basic_set_gauss(cone
, NULL
);
2722 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2723 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2724 bset
= isl_basic_set_underlying_set(bset
);
2725 bset
= isl_basic_set_gauss(bset
, NULL
);
2727 return isl_basic_set_sample_with_cone(bset
, cone
);
2730 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2732 struct isl_vec
*sample
;
2737 if (cgbr
->tab
->empty
)
2740 sample
= gbr_get_sample(cgbr
);
2744 if (sample
->size
== 0) {
2745 isl_vec_free(sample
);
2746 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2751 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2755 isl_tab_free(cgbr
->tab
);
2759 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2764 if (isl_tab_extend_cons(tab
, 2) < 0)
2767 if (isl_tab_add_eq(tab
, eq
) < 0)
2776 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2777 int check
, int update
)
2779 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2781 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2783 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2784 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2786 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2791 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2795 check_gbr_integer_feasible(cgbr
);
2798 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2801 isl_tab_free(cgbr
->tab
);
2805 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2810 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2813 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2816 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2819 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2821 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2824 for (i
= 0; i
< dim
; ++i
) {
2825 if (!isl_int_is_neg(ineq
[1 + i
]))
2827 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2830 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2833 for (i
= 0; i
< dim
; ++i
) {
2834 if (!isl_int_is_neg(ineq
[1 + i
]))
2836 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2840 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2841 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2843 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2849 isl_tab_free(cgbr
->tab
);
2853 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2854 int check
, int update
)
2856 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2858 add_gbr_ineq(cgbr
, ineq
);
2863 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2867 check_gbr_integer_feasible(cgbr
);
2870 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2873 isl_tab_free(cgbr
->tab
);
2877 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2879 struct isl_context
*context
= (struct isl_context
*)user
;
2880 context_gbr_add_ineq(context
, ineq
, 0, 0);
2881 return context
->op
->is_ok(context
) ? 0 : -1;
2884 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2885 isl_int
*ineq
, int strict
)
2887 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2888 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2891 /* Check whether "ineq" can be added to the tableau without rendering
2894 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2896 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2897 struct isl_tab_undo
*snap
;
2898 struct isl_tab_undo
*shifted_snap
= NULL
;
2899 struct isl_tab_undo
*cone_snap
= NULL
;
2905 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2908 snap
= isl_tab_snap(cgbr
->tab
);
2910 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
2912 cone_snap
= isl_tab_snap(cgbr
->cone
);
2913 add_gbr_ineq(cgbr
, ineq
);
2914 check_gbr_integer_feasible(cgbr
);
2917 feasible
= !cgbr
->tab
->empty
;
2918 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
2921 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
2923 } else if (cgbr
->shifted
) {
2924 isl_tab_free(cgbr
->shifted
);
2925 cgbr
->shifted
= NULL
;
2928 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
2930 } else if (cgbr
->cone
) {
2931 isl_tab_free(cgbr
->cone
);
2938 /* Return the column of the last of the variables associated to
2939 * a column that has a non-zero coefficient.
2940 * This function is called in a context where only coefficients
2941 * of parameters or divs can be non-zero.
2943 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
2948 if (tab
->n_var
== 0)
2951 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
2952 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
2954 if (tab
->var
[i
].is_row
)
2956 col
= tab
->var
[i
].index
;
2957 if (!isl_int_is_zero(p
[col
]))
2964 /* Look through all the recently added equalities in the context
2965 * to see if we can propagate any of them to the main tableau.
2967 * The newly added equalities in the context are encoded as pairs
2968 * of inequalities starting at inequality "first".
2970 * We tentatively add each of these equalities to the main tableau
2971 * and if this happens to result in a row with a final coefficient
2972 * that is one or negative one, we use it to kill a column
2973 * in the main tableau. Otherwise, we discard the tentatively
2976 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
2977 struct isl_tab
*tab
, unsigned first
)
2980 struct isl_vec
*eq
= NULL
;
2982 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2986 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
2989 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
2990 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2991 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
2994 struct isl_tab_undo
*snap
;
2995 snap
= isl_tab_snap(tab
);
2997 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
2998 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
2999 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3002 r
= isl_tab_add_row(tab
, eq
->el
);
3005 r
= tab
->con
[r
].index
;
3006 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3007 if (j
< 0 || j
< tab
->n_dead
||
3008 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3009 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3010 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3011 if (isl_tab_rollback(tab
, snap
) < 0)
3015 if (isl_tab_pivot(tab
, r
, j
) < 0)
3017 if (isl_tab_kill_col(tab
, j
) < 0)
3020 if (restore_lexmin(tab
) < 0)
3029 isl_tab_free(cgbr
->tab
);
3033 static int context_gbr_detect_equalities(struct isl_context
*context
,
3034 struct isl_tab
*tab
)
3036 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3037 struct isl_ctx
*ctx
;
3040 ctx
= cgbr
->tab
->mat
->ctx
;
3043 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3044 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3047 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
3050 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3053 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3054 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3055 if (cgbr
->tab
&& cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
3056 propagate_equalities(cgbr
, tab
, n_ineq
);
3060 isl_tab_free(cgbr
->tab
);
3065 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3066 struct isl_vec
*div
)
3068 return get_div(tab
, context
, div
);
3071 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3073 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3077 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3079 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3081 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3084 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3085 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3086 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3089 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3090 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3093 return context_tab_add_div(cgbr
->tab
, div
,
3094 context_gbr_add_ineq_wrap
, context
);
3097 static int context_gbr_best_split(struct isl_context
*context
,
3098 struct isl_tab
*tab
)
3100 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3101 struct isl_tab_undo
*snap
;
3104 snap
= isl_tab_snap(cgbr
->tab
);
3105 r
= best_split(tab
, cgbr
->tab
);
3107 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3113 static int context_gbr_is_empty(struct isl_context
*context
)
3115 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3118 return cgbr
->tab
->empty
;
3121 struct isl_gbr_tab_undo
{
3122 struct isl_tab_undo
*tab_snap
;
3123 struct isl_tab_undo
*shifted_snap
;
3124 struct isl_tab_undo
*cone_snap
;
3127 static void *context_gbr_save(struct isl_context
*context
)
3129 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3130 struct isl_gbr_tab_undo
*snap
;
3132 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3136 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3137 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3141 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3143 snap
->shifted_snap
= NULL
;
3146 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3148 snap
->cone_snap
= NULL
;
3156 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3158 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3159 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3162 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3163 isl_tab_free(cgbr
->tab
);
3167 if (snap
->shifted_snap
) {
3168 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3170 } else if (cgbr
->shifted
) {
3171 isl_tab_free(cgbr
->shifted
);
3172 cgbr
->shifted
= NULL
;
3175 if (snap
->cone_snap
) {
3176 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3178 } else if (cgbr
->cone
) {
3179 isl_tab_free(cgbr
->cone
);
3188 isl_tab_free(cgbr
->tab
);
3192 static int context_gbr_is_ok(struct isl_context
*context
)
3194 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3198 static void context_gbr_invalidate(struct isl_context
*context
)
3200 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3201 isl_tab_free(cgbr
->tab
);
3205 static void context_gbr_free(struct isl_context
*context
)
3207 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3208 isl_tab_free(cgbr
->tab
);
3209 isl_tab_free(cgbr
->shifted
);
3210 isl_tab_free(cgbr
->cone
);
3214 struct isl_context_op isl_context_gbr_op
= {
3215 context_gbr_detect_nonnegative_parameters
,
3216 context_gbr_peek_basic_set
,
3217 context_gbr_peek_tab
,
3219 context_gbr_add_ineq
,
3220 context_gbr_ineq_sign
,
3221 context_gbr_test_ineq
,
3222 context_gbr_get_div
,
3223 context_gbr_add_div
,
3224 context_gbr_detect_equalities
,
3225 context_gbr_best_split
,
3226 context_gbr_is_empty
,
3229 context_gbr_restore
,
3230 context_gbr_invalidate
,
3234 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3236 struct isl_context_gbr
*cgbr
;
3241 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3245 cgbr
->context
.op
= &isl_context_gbr_op
;
3247 cgbr
->shifted
= NULL
;
3249 cgbr
->tab
= isl_tab_from_basic_set(dom
);
3250 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3253 if (isl_tab_track_bset(cgbr
->tab
,
3254 isl_basic_set_cow(isl_basic_set_copy(dom
))) < 0)
3256 check_gbr_integer_feasible(cgbr
);
3258 return &cgbr
->context
;
3260 cgbr
->context
.op
->free(&cgbr
->context
);
3264 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3269 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3270 return isl_context_lex_alloc(dom
);
3272 return isl_context_gbr_alloc(dom
);
3275 /* Construct an isl_sol_map structure for accumulating the solution.
3276 * If track_empty is set, then we also keep track of the parts
3277 * of the context where there is no solution.
3278 * If max is set, then we are solving a maximization, rather than
3279 * a minimization problem, which means that the variables in the
3280 * tableau have value "M - x" rather than "M + x".
3282 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3283 struct isl_basic_set
*dom
, int track_empty
, int max
)
3285 struct isl_sol_map
*sol_map
= NULL
;
3290 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3294 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3295 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3296 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3297 sol_map
->sol
.max
= max
;
3298 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3299 sol_map
->sol
.add
= &sol_map_add_wrap
;
3300 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3301 sol_map
->sol
.free
= &sol_map_free_wrap
;
3302 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3307 sol_map
->sol
.context
= isl_context_alloc(dom
);
3308 if (!sol_map
->sol
.context
)
3312 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3313 1, ISL_SET_DISJOINT
);
3314 if (!sol_map
->empty
)
3318 isl_basic_set_free(dom
);
3319 return &sol_map
->sol
;
3321 isl_basic_set_free(dom
);
3322 sol_map_free(sol_map
);
3326 /* Check whether all coefficients of (non-parameter) variables
3327 * are non-positive, meaning that no pivots can be performed on the row.
3329 static int is_critical(struct isl_tab
*tab
, int row
)
3332 unsigned off
= 2 + tab
->M
;
3334 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3335 if (tab
->col_var
[j
] >= 0 &&
3336 (tab
->col_var
[j
] < tab
->n_param
||
3337 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3340 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3347 /* Check whether the inequality represented by vec is strict over the integers,
3348 * i.e., there are no integer values satisfying the constraint with
3349 * equality. This happens if the gcd of the coefficients is not a divisor
3350 * of the constant term. If so, scale the constraint down by the gcd
3351 * of the coefficients.
3353 static int is_strict(struct isl_vec
*vec
)
3359 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3360 if (!isl_int_is_one(gcd
)) {
3361 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3362 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3363 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3370 /* Determine the sign of the given row of the main tableau.
3371 * The result is one of
3372 * isl_tab_row_pos: always non-negative; no pivot needed
3373 * isl_tab_row_neg: always non-positive; pivot
3374 * isl_tab_row_any: can be both positive and negative; split
3376 * We first handle some simple cases
3377 * - the row sign may be known already
3378 * - the row may be obviously non-negative
3379 * - the parametric constant may be equal to that of another row
3380 * for which we know the sign. This sign will be either "pos" or
3381 * "any". If it had been "neg" then we would have pivoted before.
3383 * If none of these cases hold, we check the value of the row for each
3384 * of the currently active samples. Based on the signs of these values
3385 * we make an initial determination of the sign of the row.
3387 * all zero -> unk(nown)
3388 * all non-negative -> pos
3389 * all non-positive -> neg
3390 * both negative and positive -> all
3392 * If we end up with "all", we are done.
3393 * Otherwise, we perform a check for positive and/or negative
3394 * values as follows.
3396 * samples neg unk pos
3402 * There is no special sign for "zero", because we can usually treat zero
3403 * as either non-negative or non-positive, whatever works out best.
3404 * However, if the row is "critical", meaning that pivoting is impossible
3405 * then we don't want to limp zero with the non-positive case, because
3406 * then we we would lose the solution for those values of the parameters
3407 * where the value of the row is zero. Instead, we treat 0 as non-negative
3408 * ensuring a split if the row can attain both zero and negative values.
3409 * The same happens when the original constraint was one that could not
3410 * be satisfied with equality by any integer values of the parameters.
3411 * In this case, we normalize the constraint, but then a value of zero
3412 * for the normalized constraint is actually a positive value for the
3413 * original constraint, so again we need to treat zero as non-negative.
3414 * In both these cases, we have the following decision tree instead:
3416 * all non-negative -> pos
3417 * all negative -> neg
3418 * both negative and non-negative -> all
3426 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3427 struct isl_sol
*sol
, int row
)
3429 struct isl_vec
*ineq
= NULL
;
3430 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3435 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3436 return tab
->row_sign
[row
];
3437 if (is_obviously_nonneg(tab
, row
))
3438 return isl_tab_row_pos
;
3439 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3440 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3442 if (identical_parameter_line(tab
, row
, row2
))
3443 return tab
->row_sign
[row2
];
3446 critical
= is_critical(tab
, row
);
3448 ineq
= get_row_parameter_ineq(tab
, row
);
3452 strict
= is_strict(ineq
);
3454 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3455 critical
|| strict
);
3457 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3458 /* test for negative values */
3460 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3461 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3463 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3467 res
= isl_tab_row_pos
;
3469 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3471 if (res
== isl_tab_row_neg
) {
3472 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3473 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3477 if (res
== isl_tab_row_neg
) {
3478 /* test for positive values */
3480 if (!critical
&& !strict
)
3481 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3483 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3487 res
= isl_tab_row_any
;
3494 return isl_tab_row_unknown
;
3497 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3499 /* Find solutions for values of the parameters that satisfy the given
3502 * We currently take a snapshot of the context tableau that is reset
3503 * when we return from this function, while we make a copy of the main
3504 * tableau, leaving the original main tableau untouched.
3505 * These are fairly arbitrary choices. Making a copy also of the context
3506 * tableau would obviate the need to undo any changes made to it later,
3507 * while taking a snapshot of the main tableau could reduce memory usage.
3508 * If we were to switch to taking a snapshot of the main tableau,
3509 * we would have to keep in mind that we need to save the row signs
3510 * and that we need to do this before saving the current basis
3511 * such that the basis has been restore before we restore the row signs.
3513 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3519 saved
= sol
->context
->op
->save(sol
->context
);
3521 tab
= isl_tab_dup(tab
);
3525 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3527 find_solutions(sol
, tab
);
3530 sol
->context
->op
->restore(sol
->context
, saved
);
3536 /* Record the absence of solutions for those values of the parameters
3537 * that do not satisfy the given inequality with equality.
3539 static void no_sol_in_strict(struct isl_sol
*sol
,
3540 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3545 if (!sol
->context
|| sol
->error
)
3547 saved
= sol
->context
->op
->save(sol
->context
);
3549 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3551 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3560 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3562 sol
->context
->op
->restore(sol
->context
, saved
);
3568 /* Compute the lexicographic minimum of the set represented by the main
3569 * tableau "tab" within the context "sol->context_tab".
3570 * On entry the sample value of the main tableau is lexicographically
3571 * less than or equal to this lexicographic minimum.
3572 * Pivots are performed until a feasible point is found, which is then
3573 * necessarily equal to the minimum, or until the tableau is found to
3574 * be infeasible. Some pivots may need to be performed for only some
3575 * feasible values of the context tableau. If so, the context tableau
3576 * is split into a part where the pivot is needed and a part where it is not.
3578 * Whenever we enter the main loop, the main tableau is such that no
3579 * "obvious" pivots need to be performed on it, where "obvious" means
3580 * that the given row can be seen to be negative without looking at
3581 * the context tableau. In particular, for non-parametric problems,
3582 * no pivots need to be performed on the main tableau.
3583 * The caller of find_solutions is responsible for making this property
3584 * hold prior to the first iteration of the loop, while restore_lexmin
3585 * is called before every other iteration.
3587 * Inside the main loop, we first examine the signs of the rows of
3588 * the main tableau within the context of the context tableau.
3589 * If we find a row that is always non-positive for all values of
3590 * the parameters satisfying the context tableau and negative for at
3591 * least one value of the parameters, we perform the appropriate pivot
3592 * and start over. An exception is the case where no pivot can be
3593 * performed on the row. In this case, we require that the sign of
3594 * the row is negative for all values of the parameters (rather than just
3595 * non-positive). This special case is handled inside row_sign, which
3596 * will say that the row can have any sign if it determines that it can
3597 * attain both negative and zero values.
3599 * If we can't find a row that always requires a pivot, but we can find
3600 * one or more rows that require a pivot for some values of the parameters
3601 * (i.e., the row can attain both positive and negative signs), then we split
3602 * the context tableau into two parts, one where we force the sign to be
3603 * non-negative and one where we force is to be negative.
3604 * The non-negative part is handled by a recursive call (through find_in_pos).
3605 * Upon returning from this call, we continue with the negative part and
3606 * perform the required pivot.
3608 * If no such rows can be found, all rows are non-negative and we have
3609 * found a (rational) feasible point. If we only wanted a rational point
3611 * Otherwise, we check if all values of the sample point of the tableau
3612 * are integral for the variables. If so, we have found the minimal
3613 * integral point and we are done.
3614 * If the sample point is not integral, then we need to make a distinction
3615 * based on whether the constant term is non-integral or the coefficients
3616 * of the parameters. Furthermore, in order to decide how to handle
3617 * the non-integrality, we also need to know whether the coefficients
3618 * of the other columns in the tableau are integral. This leads
3619 * to the following table. The first two rows do not correspond
3620 * to a non-integral sample point and are only mentioned for completeness.
3622 * constant parameters other
3625 * int int rat | -> no problem
3627 * rat int int -> fail
3629 * rat int rat -> cut
3632 * rat rat rat | -> parametric cut
3635 * rat rat int | -> split context
3637 * If the parametric constant is completely integral, then there is nothing
3638 * to be done. If the constant term is non-integral, but all the other
3639 * coefficient are integral, then there is nothing that can be done
3640 * and the tableau has no integral solution.
3641 * If, on the other hand, one or more of the other columns have rational
3642 * coefficients, but the parameter coefficients are all integral, then
3643 * we can perform a regular (non-parametric) cut.
3644 * Finally, if there is any parameter coefficient that is non-integral,
3645 * then we need to involve the context tableau. There are two cases here.
3646 * If at least one other column has a rational coefficient, then we
3647 * can perform a parametric cut in the main tableau by adding a new
3648 * integer division in the context tableau.
3649 * If all other columns have integral coefficients, then we need to
3650 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3651 * is always integral. We do this by introducing an integer division
3652 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3653 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3654 * Since q is expressed in the tableau as
3655 * c + \sum a_i y_i - m q >= 0
3656 * -c - \sum a_i y_i + m q + m - 1 >= 0
3657 * it is sufficient to add the inequality
3658 * -c - \sum a_i y_i + m q >= 0
3659 * In the part of the context where this inequality does not hold, the
3660 * main tableau is marked as being empty.
3662 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3664 struct isl_context
*context
;
3667 if (!tab
|| sol
->error
)
3670 context
= sol
->context
;
3674 if (context
->op
->is_empty(context
))
3677 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3680 enum isl_tab_row_sign sgn
;
3684 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3685 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3687 sgn
= row_sign(tab
, sol
, row
);
3690 tab
->row_sign
[row
] = sgn
;
3691 if (sgn
== isl_tab_row_any
)
3693 if (sgn
== isl_tab_row_any
&& split
== -1)
3695 if (sgn
== isl_tab_row_neg
)
3698 if (row
< tab
->n_row
)
3701 struct isl_vec
*ineq
;
3703 split
= context
->op
->best_split(context
, tab
);
3706 ineq
= get_row_parameter_ineq(tab
, split
);
3710 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3711 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3713 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3714 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3716 tab
->row_sign
[split
] = isl_tab_row_pos
;
3718 find_in_pos(sol
, tab
, ineq
->el
);
3719 tab
->row_sign
[split
] = isl_tab_row_neg
;
3721 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3722 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3724 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3732 row
= first_non_integer_row(tab
, &flags
);
3735 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3736 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3737 if (isl_tab_mark_empty(tab
) < 0)
3741 row
= add_cut(tab
, row
);
3742 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3743 struct isl_vec
*div
;
3744 struct isl_vec
*ineq
;
3746 div
= get_row_split_div(tab
, row
);
3749 d
= context
->op
->get_div(context
, tab
, div
);
3753 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3757 no_sol_in_strict(sol
, tab
, ineq
);
3758 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3759 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3761 if (sol
->error
|| !context
->op
->is_ok(context
))
3763 tab
= set_row_cst_to_div(tab
, row
, d
);
3764 if (context
->op
->is_empty(context
))
3767 row
= add_parametric_cut(tab
, row
, context
);
3782 /* Compute the lexicographic minimum of the set represented by the main
3783 * tableau "tab" within the context "sol->context_tab".
3785 * As a preprocessing step, we first transfer all the purely parametric
3786 * equalities from the main tableau to the context tableau, i.e.,
3787 * parameters that have been pivoted to a row.
3788 * These equalities are ignored by the main algorithm, because the
3789 * corresponding rows may not be marked as being non-negative.
3790 * In parts of the context where the added equality does not hold,
3791 * the main tableau is marked as being empty.
3793 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3802 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3806 if (tab
->row_var
[row
] < 0)
3808 if (tab
->row_var
[row
] >= tab
->n_param
&&
3809 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3811 if (tab
->row_var
[row
] < tab
->n_param
)
3812 p
= tab
->row_var
[row
];
3814 p
= tab
->row_var
[row
]
3815 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3817 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3820 get_row_parameter_line(tab
, row
, eq
->el
);
3821 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3822 eq
= isl_vec_normalize(eq
);
3825 no_sol_in_strict(sol
, tab
, eq
);
3827 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3829 no_sol_in_strict(sol
, tab
, eq
);
3830 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3832 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3836 if (isl_tab_mark_redundant(tab
, row
) < 0)
3839 if (sol
->context
->op
->is_empty(sol
->context
))
3842 row
= tab
->n_redundant
- 1;
3845 find_solutions(sol
, tab
);
3856 /* Check if integer division "div" of "dom" also occurs in "bmap".
3857 * If so, return its position within the divs.
3858 * If not, return -1.
3860 static int find_context_div(struct isl_basic_map
*bmap
,
3861 struct isl_basic_set
*dom
, unsigned div
)
3864 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3865 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
3867 if (isl_int_is_zero(dom
->div
[div
][0]))
3869 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
3872 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3873 if (isl_int_is_zero(bmap
->div
[i
][0]))
3875 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
3876 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
3878 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
3884 /* The correspondence between the variables in the main tableau,
3885 * the context tableau, and the input map and domain is as follows.
3886 * The first n_param and the last n_div variables of the main tableau
3887 * form the variables of the context tableau.
3888 * In the basic map, these n_param variables correspond to the
3889 * parameters and the input dimensions. In the domain, they correspond
3890 * to the parameters and the set dimensions.
3891 * The n_div variables correspond to the integer divisions in the domain.
3892 * To ensure that everything lines up, we may need to copy some of the
3893 * integer divisions of the domain to the map. These have to be placed
3894 * in the same order as those in the context and they have to be placed
3895 * after any other integer divisions that the map may have.
3896 * This function performs the required reordering.
3898 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
3899 struct isl_basic_set
*dom
)
3905 for (i
= 0; i
< dom
->n_div
; ++i
)
3906 if (find_context_div(bmap
, dom
, i
) != -1)
3908 other
= bmap
->n_div
- common
;
3909 if (dom
->n_div
- common
> 0) {
3910 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
3911 dom
->n_div
- common
, 0, 0);
3915 for (i
= 0; i
< dom
->n_div
; ++i
) {
3916 int pos
= find_context_div(bmap
, dom
, i
);
3918 pos
= isl_basic_map_alloc_div(bmap
);
3921 isl_int_set_si(bmap
->div
[pos
][0], 0);
3923 if (pos
!= other
+ i
)
3924 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
3928 isl_basic_map_free(bmap
);
3932 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3933 * some obvious symmetries.
3935 * We make sure the divs in the domain are properly ordered,
3936 * because they will be added one by one in the given order
3937 * during the construction of the solution map.
3939 static struct isl_sol
*basic_map_partial_lexopt_base(
3940 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
3941 __isl_give isl_set
**empty
, int max
,
3942 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
3943 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
3945 struct isl_tab
*tab
;
3946 struct isl_sol
*sol
= NULL
;
3947 struct isl_context
*context
;
3950 dom
= isl_basic_set_order_divs(dom
);
3951 bmap
= align_context_divs(bmap
, dom
);
3953 sol
= init(bmap
, dom
, !!empty
, max
);
3957 context
= sol
->context
;
3958 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
3960 else if (isl_basic_map_plain_is_empty(bmap
)) {
3963 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
3965 tab
= tab_for_lexmin(bmap
,
3966 context
->op
->peek_basic_set(context
), 1, max
);
3967 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
3968 find_solutions_main(sol
, tab
);
3973 isl_basic_map_free(bmap
);
3977 isl_basic_map_free(bmap
);
3981 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3982 * some obvious symmetries.
3984 * We call basic_map_partial_lexopt_base and extract the results.
3986 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
3987 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
3988 __isl_give isl_set
**empty
, int max
)
3990 isl_map
*result
= NULL
;
3991 struct isl_sol
*sol
;
3992 struct isl_sol_map
*sol_map
;
3994 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
3998 sol_map
= (struct isl_sol_map
*) sol
;
4000 result
= isl_map_copy(sol_map
->map
);
4002 *empty
= isl_set_copy(sol_map
->empty
);
4003 sol_free(&sol_map
->sol
);
4007 /* Structure used during detection of parallel constraints.
4008 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4009 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4010 * val: the coefficients of the output variables
4012 struct isl_constraint_equal_info
{
4013 isl_basic_map
*bmap
;
4019 /* Check whether the coefficients of the output variables
4020 * of the constraint in "entry" are equal to info->val.
4022 static int constraint_equal(const void *entry
, const void *val
)
4024 isl_int
**row
= (isl_int
**)entry
;
4025 const struct isl_constraint_equal_info
*info
= val
;
4027 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4030 /* Check whether "bmap" has a pair of constraints that have
4031 * the same coefficients for the output variables.
4032 * Note that the coefficients of the existentially quantified
4033 * variables need to be zero since the existentially quantified
4034 * of the result are usually not the same as those of the input.
4035 * the isl_dim_out and isl_dim_div dimensions.
4036 * If so, return 1 and return the row indices of the two constraints
4037 * in *first and *second.
4039 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4040 int *first
, int *second
)
4043 isl_ctx
*ctx
= isl_basic_map_get_ctx(bmap
);
4044 struct isl_hash_table
*table
= NULL
;
4045 struct isl_hash_table_entry
*entry
;
4046 struct isl_constraint_equal_info info
;
4050 ctx
= isl_basic_map_get_ctx(bmap
);
4051 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4055 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4056 isl_basic_map_dim(bmap
, isl_dim_in
);
4058 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4059 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4060 info
.n_out
= n_out
+ n_div
;
4061 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4064 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4065 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4067 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4069 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4070 entry
= isl_hash_table_find(ctx
, table
, hash
,
4071 constraint_equal
, &info
, 1);
4076 entry
->data
= &bmap
->ineq
[i
];
4079 if (i
< bmap
->n_ineq
) {
4080 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4084 isl_hash_table_free(ctx
, table
);
4086 return i
< bmap
->n_ineq
;
4088 isl_hash_table_free(ctx
, table
);
4092 /* Given a set of upper bounds in "var", add constraints to "bset"
4093 * that make the i-th bound smallest.
4095 * In particular, if there are n bounds b_i, then add the constraints
4097 * b_i <= b_j for j > i
4098 * b_i < b_j for j < i
4100 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4101 __isl_keep isl_mat
*var
, int i
)
4106 ctx
= isl_mat_get_ctx(var
);
4108 for (j
= 0; j
< var
->n_row
; ++j
) {
4111 k
= isl_basic_set_alloc_inequality(bset
);
4114 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4115 ctx
->negone
, var
->row
[i
], var
->n_col
);
4116 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4118 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4121 bset
= isl_basic_set_finalize(bset
);
4125 isl_basic_set_free(bset
);
4129 /* Given a set of upper bounds on the last "input" variable m,
4130 * construct a set that assigns the minimal upper bound to m, i.e.,
4131 * construct a set that divides the space into cells where one
4132 * of the upper bounds is smaller than all the others and assign
4133 * this upper bound to m.
4135 * In particular, if there are n bounds b_i, then the result
4136 * consists of n basic sets, each one of the form
4139 * b_i <= b_j for j > i
4140 * b_i < b_j for j < i
4142 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4143 __isl_take isl_mat
*var
)
4146 isl_basic_set
*bset
= NULL
;
4148 isl_set
*set
= NULL
;
4153 ctx
= isl_space_get_ctx(dim
);
4154 set
= isl_set_alloc_space(isl_space_copy(dim
),
4155 var
->n_row
, ISL_SET_DISJOINT
);
4157 for (i
= 0; i
< var
->n_row
; ++i
) {
4158 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4160 k
= isl_basic_set_alloc_equality(bset
);
4163 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4164 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4165 bset
= select_minimum(bset
, var
, i
);
4166 set
= isl_set_add_basic_set(set
, bset
);
4169 isl_space_free(dim
);
4173 isl_basic_set_free(bset
);
4175 isl_space_free(dim
);
4180 /* Given that the last input variable of "bmap" represents the minimum
4181 * of the bounds in "cst", check whether we need to split the domain
4182 * based on which bound attains the minimum.
4184 * A split is needed when the minimum appears in an integer division
4185 * or in an equality. Otherwise, it is only needed if it appears in
4186 * an upper bound that is different from the upper bounds on which it
4189 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4190 __isl_keep isl_mat
*cst
)
4196 pos
= cst
->n_col
- 1;
4197 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4199 for (i
= 0; i
< bmap
->n_div
; ++i
)
4200 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4203 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4204 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4207 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4208 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4210 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4212 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4213 total
- pos
- 1) >= 0)
4216 for (j
= 0; j
< cst
->n_row
; ++j
)
4217 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4219 if (j
>= cst
->n_row
)
4226 /* Given that the last set variable of "bset" represents the minimum
4227 * of the bounds in "cst", check whether we need to split the domain
4228 * based on which bound attains the minimum.
4230 * We simply call need_split_basic_map here. This is safe because
4231 * the position of the minimum is computed from "cst" and not
4234 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4235 __isl_keep isl_mat
*cst
)
4237 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4240 /* Given that the last set variable of "set" represents the minimum
4241 * of the bounds in "cst", check whether we need to split the domain
4242 * based on which bound attains the minimum.
4244 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4248 for (i
= 0; i
< set
->n
; ++i
)
4249 if (need_split_basic_set(set
->p
[i
], cst
))
4255 /* Given a set of which the last set variable is the minimum
4256 * of the bounds in "cst", split each basic set in the set
4257 * in pieces where one of the bounds is (strictly) smaller than the others.
4258 * This subdivision is given in "min_expr".
4259 * The variable is subsequently projected out.
4261 * We only do the split when it is needed.
4262 * For example if the last input variable m = min(a,b) and the only
4263 * constraints in the given basic set are lower bounds on m,
4264 * i.e., l <= m = min(a,b), then we can simply project out m
4265 * to obtain l <= a and l <= b, without having to split on whether
4266 * m is equal to a or b.
4268 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4269 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4276 if (!empty
|| !min_expr
|| !cst
)
4279 n_in
= isl_set_dim(empty
, isl_dim_set
);
4280 dim
= isl_set_get_space(empty
);
4281 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4282 res
= isl_set_empty(dim
);
4284 for (i
= 0; i
< empty
->n
; ++i
) {
4287 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4288 if (need_split_basic_set(empty
->p
[i
], cst
))
4289 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4290 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4292 res
= isl_set_union_disjoint(res
, set
);
4295 isl_set_free(empty
);
4296 isl_set_free(min_expr
);
4300 isl_set_free(empty
);
4301 isl_set_free(min_expr
);
4306 /* Given a map of which the last input variable is the minimum
4307 * of the bounds in "cst", split each basic set in the set
4308 * in pieces where one of the bounds is (strictly) smaller than the others.
4309 * This subdivision is given in "min_expr".
4310 * The variable is subsequently projected out.
4312 * The implementation is essentially the same as that of "split".
4314 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4315 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4322 if (!opt
|| !min_expr
|| !cst
)
4325 n_in
= isl_map_dim(opt
, isl_dim_in
);
4326 dim
= isl_map_get_space(opt
);
4327 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4328 res
= isl_map_empty(dim
);
4330 for (i
= 0; i
< opt
->n
; ++i
) {
4333 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4334 if (need_split_basic_map(opt
->p
[i
], cst
))
4335 map
= isl_map_intersect_domain(map
,
4336 isl_set_copy(min_expr
));
4337 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4339 res
= isl_map_union_disjoint(res
, map
);
4343 isl_set_free(min_expr
);
4348 isl_set_free(min_expr
);
4353 static __isl_give isl_map
*basic_map_partial_lexopt(
4354 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4355 __isl_give isl_set
**empty
, int max
);
4360 isl_pw_multi_aff
*pma
;
4363 /* This function is called from basic_map_partial_lexopt_symm.
4364 * The last variable of "bmap" and "dom" corresponds to the minimum
4365 * of the bounds in "cst". "map_space" is the space of the original
4366 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4367 * is the space of the original domain.
4369 * We recursively call basic_map_partial_lexopt and then plug in
4370 * the definition of the minimum in the result.
4372 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4373 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4374 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4375 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4379 union isl_lex_res res
;
4381 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4383 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4386 *empty
= split(*empty
,
4387 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4388 *empty
= isl_set_reset_space(*empty
, set_space
);
4391 opt
= split_domain(opt
, min_expr
, cst
);
4392 opt
= isl_map_reset_space(opt
, map_space
);
4398 /* Given a basic map with at least two parallel constraints (as found
4399 * by the function parallel_constraints), first look for more constraints
4400 * parallel to the two constraint and replace the found list of parallel
4401 * constraints by a single constraint with as "input" part the minimum
4402 * of the input parts of the list of constraints. Then, recursively call
4403 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4404 * and plug in the definition of the minimum in the result.
4406 * More specifically, given a set of constraints
4410 * Replace this set by a single constraint
4414 * with u a new parameter with constraints
4418 * Any solution to the new system is also a solution for the original system
4421 * a x >= -u >= -b_i(p)
4423 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4424 * therefore be plugged into the solution.
4426 static union isl_lex_res
basic_map_partial_lexopt_symm(
4427 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4428 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4429 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4430 __isl_take isl_basic_set
*dom
,
4431 __isl_give isl_set
**empty
,
4432 int max
, __isl_take isl_mat
*cst
,
4433 __isl_take isl_space
*map_space
,
4434 __isl_take isl_space
*set_space
))
4438 unsigned n_in
, n_out
, n_div
;
4440 isl_vec
*var
= NULL
;
4441 isl_mat
*cst
= NULL
;
4442 isl_space
*map_space
, *set_space
;
4443 union isl_lex_res res
;
4445 map_space
= isl_basic_map_get_space(bmap
);
4446 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4448 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4449 isl_basic_map_dim(bmap
, isl_dim_in
);
4450 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4452 ctx
= isl_basic_map_get_ctx(bmap
);
4453 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4454 var
= isl_vec_alloc(ctx
, n_out
);
4460 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4461 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4462 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4466 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4470 for (i
= 0; i
< n
; ++i
)
4471 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4473 bmap
= isl_basic_map_cow(bmap
);
4476 for (i
= n
- 1; i
>= 0; --i
)
4477 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4480 bmap
= isl_basic_map_add(bmap
, isl_dim_in
, 1);
4481 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4482 k
= isl_basic_map_alloc_inequality(bmap
);
4485 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4486 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4487 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4488 bmap
= isl_basic_map_finalize(bmap
);
4490 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4491 dom
= isl_basic_set_add(dom
, isl_dim_set
, 1);
4492 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4493 for (i
= 0; i
< n
; ++i
) {
4494 k
= isl_basic_set_alloc_inequality(dom
);
4497 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4498 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4499 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4505 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4507 isl_space_free(map_space
);
4508 isl_space_free(set_space
);
4512 isl_basic_set_free(dom
);
4513 isl_basic_map_free(bmap
);
4518 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4519 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4520 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4522 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4523 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4526 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4527 * equalities and removing redundant constraints.
4529 * We first check if there are any parallel constraints (left).
4530 * If not, we are in the base case.
4531 * If there are parallel constraints, we replace them by a single
4532 * constraint in basic_map_partial_lexopt_symm and then call
4533 * this function recursively to look for more parallel constraints.
4535 static __isl_give isl_map
*basic_map_partial_lexopt(
4536 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4537 __isl_give isl_set
**empty
, int max
)
4545 if (bmap
->ctx
->opt
->pip_symmetry
)
4546 par
= parallel_constraints(bmap
, &first
, &second
);
4550 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4552 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4555 isl_basic_set_free(dom
);
4556 isl_basic_map_free(bmap
);
4560 /* Compute the lexicographic minimum (or maximum if "max" is set)
4561 * of "bmap" over the domain "dom" and return the result as a map.
4562 * If "empty" is not NULL, then *empty is assigned a set that
4563 * contains those parts of the domain where there is no solution.
4564 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4565 * then we compute the rational optimum. Otherwise, we compute
4566 * the integral optimum.
4568 * We perform some preprocessing. As the PILP solver does not
4569 * handle implicit equalities very well, we first make sure all
4570 * the equalities are explicitly available.
4572 * We also add context constraints to the basic map and remove
4573 * redundant constraints. This is only needed because of the
4574 * way we handle simple symmetries. In particular, we currently look
4575 * for symmetries on the constraints, before we set up the main tableau.
4576 * It is then no good to look for symmetries on possibly redundant constraints.
4578 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4579 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4580 struct isl_set
**empty
, int max
)
4587 isl_assert(bmap
->ctx
,
4588 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4590 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4591 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4593 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4594 bmap
= isl_basic_map_detect_equalities(bmap
);
4595 bmap
= isl_basic_map_remove_redundancies(bmap
);
4597 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4599 isl_basic_set_free(dom
);
4600 isl_basic_map_free(bmap
);
4604 struct isl_sol_for
{
4606 int (*fn
)(__isl_take isl_basic_set
*dom
,
4607 __isl_take isl_aff_list
*list
, void *user
);
4611 static void sol_for_free(struct isl_sol_for
*sol_for
)
4613 if (sol_for
->sol
.context
)
4614 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4618 static void sol_for_free_wrap(struct isl_sol
*sol
)
4620 sol_for_free((struct isl_sol_for
*)sol
);
4623 /* Add the solution identified by the tableau and the context tableau.
4625 * See documentation of sol_add for more details.
4627 * Instead of constructing a basic map, this function calls a user
4628 * defined function with the current context as a basic set and
4629 * a list of affine expressions representing the relation between
4630 * the input and output. The space over which the affine expressions
4631 * are defined is the same as that of the domain. The number of
4632 * affine expressions in the list is equal to the number of output variables.
4634 static void sol_for_add(struct isl_sol_for
*sol
,
4635 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4639 isl_local_space
*ls
;
4643 if (sol
->sol
.error
|| !dom
|| !M
)
4646 ctx
= isl_basic_set_get_ctx(dom
);
4647 ls
= isl_basic_set_get_local_space(dom
);
4648 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4649 for (i
= 1; i
< M
->n_row
; ++i
) {
4650 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4652 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4653 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4655 list
= isl_aff_list_add(list
, aff
);
4657 isl_local_space_free(ls
);
4659 dom
= isl_basic_set_finalize(dom
);
4661 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4664 isl_basic_set_free(dom
);
4668 isl_basic_set_free(dom
);
4673 static void sol_for_add_wrap(struct isl_sol
*sol
,
4674 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4676 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4679 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4680 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4684 struct isl_sol_for
*sol_for
= NULL
;
4686 struct isl_basic_set
*dom
= NULL
;
4688 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4692 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4693 dom
= isl_basic_set_universe(dom_dim
);
4695 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4696 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4697 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4699 sol_for
->user
= user
;
4700 sol_for
->sol
.max
= max
;
4701 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4702 sol_for
->sol
.add
= &sol_for_add_wrap
;
4703 sol_for
->sol
.add_empty
= NULL
;
4704 sol_for
->sol
.free
= &sol_for_free_wrap
;
4706 sol_for
->sol
.context
= isl_context_alloc(dom
);
4707 if (!sol_for
->sol
.context
)
4710 isl_basic_set_free(dom
);
4713 isl_basic_set_free(dom
);
4714 sol_for_free(sol_for
);
4718 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4719 struct isl_tab
*tab
)
4721 find_solutions_main(&sol_for
->sol
, tab
);
4724 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4725 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4729 struct isl_sol_for
*sol_for
= NULL
;
4731 bmap
= isl_basic_map_copy(bmap
);
4735 bmap
= isl_basic_map_detect_equalities(bmap
);
4736 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4738 if (isl_basic_map_plain_is_empty(bmap
))
4741 struct isl_tab
*tab
;
4742 struct isl_context
*context
= sol_for
->sol
.context
;
4743 tab
= tab_for_lexmin(bmap
,
4744 context
->op
->peek_basic_set(context
), 1, max
);
4745 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4746 sol_for_find_solutions(sol_for
, tab
);
4747 if (sol_for
->sol
.error
)
4751 sol_free(&sol_for
->sol
);
4752 isl_basic_map_free(bmap
);
4755 sol_free(&sol_for
->sol
);
4756 isl_basic_map_free(bmap
);
4760 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4761 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4765 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4768 /* Check if the given sequence of len variables starting at pos
4769 * represents a trivial (i.e., zero) solution.
4770 * The variables are assumed to be non-negative and to come in pairs,
4771 * with each pair representing a variable of unrestricted sign.
4772 * The solution is trivial if each such pair in the sequence consists
4773 * of two identical values, meaning that the variable being represented
4776 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4783 for (i
= 0; i
< len
; i
+= 2) {
4787 neg_row
= tab
->var
[pos
+ i
].is_row
?
4788 tab
->var
[pos
+ i
].index
: -1;
4789 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4790 tab
->var
[pos
+ i
+ 1].index
: -1;
4793 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4795 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4798 if (neg_row
< 0 || pos_row
< 0)
4800 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4801 tab
->mat
->row
[pos_row
][1]))
4808 /* Return the index of the first trivial region or -1 if all regions
4811 static int first_trivial_region(struct isl_tab
*tab
,
4812 int n_region
, struct isl_region
*region
)
4816 for (i
= 0; i
< n_region
; ++i
) {
4817 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4824 /* Check if the solution is optimal, i.e., whether the first
4825 * n_op entries are zero.
4827 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4831 for (i
= 0; i
< n_op
; ++i
)
4832 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4837 /* Add constraints to "tab" that ensure that any solution is significantly
4838 * better that that represented by "sol". That is, find the first
4839 * relevant (within first n_op) non-zero coefficient and force it (along
4840 * with all previous coefficients) to be zero.
4841 * If the solution is already optimal (all relevant coefficients are zero),
4842 * then just mark the table as empty.
4844 static int force_better_solution(struct isl_tab
*tab
,
4845 __isl_keep isl_vec
*sol
, int n_op
)
4854 for (i
= 0; i
< n_op
; ++i
)
4855 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4859 if (isl_tab_mark_empty(tab
) < 0)
4864 ctx
= isl_vec_get_ctx(sol
);
4865 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4869 for (; i
>= 0; --i
) {
4871 isl_int_set_si(v
->el
[1 + i
], -1);
4872 if (add_lexmin_eq(tab
, v
->el
) < 0)
4883 struct isl_trivial
{
4887 struct isl_tab_undo
*snap
;
4890 /* Return the lexicographically smallest non-trivial solution of the
4891 * given ILP problem.
4893 * All variables are assumed to be non-negative.
4895 * n_op is the number of initial coordinates to optimize.
4896 * That is, once a solution has been found, we will only continue looking
4897 * for solution that result in significantly better values for those
4898 * initial coordinates. That is, we only continue looking for solutions
4899 * that increase the number of initial zeros in this sequence.
4901 * A solution is non-trivial, if it is non-trivial on each of the
4902 * specified regions. Each region represents a sequence of pairs
4903 * of variables. A solution is non-trivial on such a region if
4904 * at least one of these pairs consists of different values, i.e.,
4905 * such that the non-negative variable represented by the pair is non-zero.
4907 * Whenever a conflict is encountered, all constraints involved are
4908 * reported to the caller through a call to "conflict".
4910 * We perform a simple branch-and-bound backtracking search.
4911 * Each level in the search represents initially trivial region that is forced
4912 * to be non-trivial.
4913 * At each level we consider n cases, where n is the length of the region.
4914 * In terms of the n/2 variables of unrestricted signs being encoded by
4915 * the region, we consider the cases
4918 * x_0 = 0 and x_1 >= 1
4919 * x_0 = 0 and x_1 <= -1
4920 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4921 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4923 * The cases are considered in this order, assuming that each pair
4924 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4925 * That is, x_0 >= 1 is enforced by adding the constraint
4926 * x_0_b - x_0_a >= 1
4928 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
4929 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
4930 struct isl_region
*region
,
4931 int (*conflict
)(int con
, void *user
), void *user
)
4935 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
4937 isl_vec
*sol
= isl_vec_alloc(ctx
, 0);
4938 struct isl_tab
*tab
;
4939 struct isl_trivial
*triv
= NULL
;
4942 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
4945 tab
->conflict
= conflict
;
4946 tab
->conflict_user
= user
;
4948 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
4949 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
4956 while (level
>= 0) {
4960 tab
= cut_to_integer_lexmin(tab
);
4965 r
= first_trivial_region(tab
, n_region
, region
);
4967 for (i
= 0; i
< level
; ++i
)
4970 sol
= isl_tab_get_sample_value(tab
);
4973 if (is_optimal(sol
, n_op
))
4977 if (level
>= n_region
)
4978 isl_die(ctx
, isl_error_internal
,
4979 "nesting level too deep", goto error
);
4980 if (isl_tab_extend_cons(tab
,
4981 2 * region
[r
].len
+ 2 * n_op
) < 0)
4983 triv
[level
].region
= r
;
4984 triv
[level
].side
= 0;
4987 r
= triv
[level
].region
;
4988 side
= triv
[level
].side
;
4989 base
= 2 * (side
/2);
4991 if (side
>= region
[r
].len
) {
4996 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5001 if (triv
[level
].update
) {
5002 if (force_better_solution(tab
, sol
, n_op
) < 0)
5004 triv
[level
].update
= 0;
5007 if (side
== base
&& base
>= 2) {
5008 for (j
= base
- 2; j
< base
; ++j
) {
5010 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5011 if (add_lexmin_eq(tab
, v
->el
) < 0)
5016 triv
[level
].snap
= isl_tab_snap(tab
);
5017 if (isl_tab_push_basis(tab
) < 0)
5021 isl_int_set_si(v
->el
[0], -1);
5022 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5023 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5024 tab
= add_lexmin_ineq(tab
, v
->el
);
5034 isl_basic_set_free(bset
);
5041 isl_basic_set_free(bset
);
5046 /* Return the lexicographically smallest rational point in "bset",
5047 * assuming that all variables are non-negative.
5048 * If "bset" is empty, then return a zero-length vector.
5050 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5051 __isl_take isl_basic_set
*bset
)
5053 struct isl_tab
*tab
;
5054 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5057 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5061 sol
= isl_vec_alloc(ctx
, 0);
5063 sol
= isl_tab_get_sample_value(tab
);
5065 isl_basic_set_free(bset
);
5069 isl_basic_set_free(bset
);
5073 struct isl_sol_pma
{
5075 isl_pw_multi_aff
*pma
;
5079 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5083 if (sol_pma
->sol
.context
)
5084 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5085 isl_pw_multi_aff_free(sol_pma
->pma
);
5086 isl_set_free(sol_pma
->empty
);
5090 /* This function is called for parts of the context where there is
5091 * no solution, with "bset" corresponding to the context tableau.
5092 * Simply add the basic set to the set "empty".
5094 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5095 __isl_take isl_basic_set
*bset
)
5099 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
5101 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5102 bset
= isl_basic_set_simplify(bset
);
5103 bset
= isl_basic_set_finalize(bset
);
5104 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5109 isl_basic_set_free(bset
);
5113 /* Given a basic map "dom" that represents the context and an affine
5114 * matrix "M" that maps the dimensions of the context to the
5115 * output variables, construct an isl_pw_multi_aff with a single
5116 * cell corresponding to "dom" and affine expressions copied from "M".
5118 static void sol_pma_add(struct isl_sol_pma
*sol
,
5119 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5122 isl_local_space
*ls
;
5124 isl_multi_aff
*maff
;
5125 isl_pw_multi_aff
*pma
;
5127 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5128 ls
= isl_basic_set_get_local_space(dom
);
5129 for (i
= 1; i
< M
->n_row
; ++i
) {
5130 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5132 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5133 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5135 aff
= isl_aff_normalize(aff
);
5136 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5138 isl_local_space_free(ls
);
5140 dom
= isl_basic_set_simplify(dom
);
5141 dom
= isl_basic_set_finalize(dom
);
5142 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5143 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5148 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5150 sol_pma_free((struct isl_sol_pma
*)sol
);
5153 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5154 __isl_take isl_basic_set
*bset
)
5156 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5159 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5160 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5162 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5165 /* Construct an isl_sol_pma structure for accumulating the solution.
5166 * If track_empty is set, then we also keep track of the parts
5167 * of the context where there is no solution.
5168 * If max is set, then we are solving a maximization, rather than
5169 * a minimization problem, which means that the variables in the
5170 * tableau have value "M - x" rather than "M + x".
5172 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5173 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5175 struct isl_sol_pma
*sol_pma
= NULL
;
5180 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5184 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5185 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5186 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5187 sol_pma
->sol
.max
= max
;
5188 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5189 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5190 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5191 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5192 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5196 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5197 if (!sol_pma
->sol
.context
)
5201 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5202 1, ISL_SET_DISJOINT
);
5203 if (!sol_pma
->empty
)
5207 isl_basic_set_free(dom
);
5208 return &sol_pma
->sol
;
5210 isl_basic_set_free(dom
);
5211 sol_pma_free(sol_pma
);
5215 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5216 * some obvious symmetries.
5218 * We call basic_map_partial_lexopt_base and extract the results.
5220 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5221 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5222 __isl_give isl_set
**empty
, int max
)
5224 isl_pw_multi_aff
*result
= NULL
;
5225 struct isl_sol
*sol
;
5226 struct isl_sol_pma
*sol_pma
;
5228 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5232 sol_pma
= (struct isl_sol_pma
*) sol
;
5234 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5236 *empty
= isl_set_copy(sol_pma
->empty
);
5237 sol_free(&sol_pma
->sol
);
5241 /* Given that the last input variable of "maff" represents the minimum
5242 * of some bounds, check whether we need to plug in the expression
5245 * In particular, check if the last input variable appears in any
5246 * of the expressions in "maff".
5248 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5253 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5255 for (i
= 0; i
< maff
->n
; ++i
)
5256 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5262 /* Given a set of upper bounds on the last "input" variable m,
5263 * construct a piecewise affine expression that selects
5264 * the minimal upper bound to m, i.e.,
5265 * divide the space into cells where one
5266 * of the upper bounds is smaller than all the others and select
5267 * this upper bound on that cell.
5269 * In particular, if there are n bounds b_i, then the result
5270 * consists of n cell, each one of the form
5272 * b_i <= b_j for j > i
5273 * b_i < b_j for j < i
5275 * The affine expression on this cell is
5279 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5280 __isl_take isl_mat
*var
)
5283 isl_aff
*aff
= NULL
;
5284 isl_basic_set
*bset
= NULL
;
5286 isl_pw_aff
*paff
= NULL
;
5287 isl_space
*pw_space
;
5288 isl_local_space
*ls
= NULL
;
5293 ctx
= isl_space_get_ctx(space
);
5294 ls
= isl_local_space_from_space(isl_space_copy(space
));
5295 pw_space
= isl_space_copy(space
);
5296 pw_space
= isl_space_from_domain(pw_space
);
5297 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5298 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5300 for (i
= 0; i
< var
->n_row
; ++i
) {
5303 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5304 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5308 isl_int_set_si(aff
->v
->el
[0], 1);
5309 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5310 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5311 bset
= select_minimum(bset
, var
, i
);
5312 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5313 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5316 isl_local_space_free(ls
);
5317 isl_space_free(space
);
5322 isl_basic_set_free(bset
);
5323 isl_pw_aff_free(paff
);
5324 isl_local_space_free(ls
);
5325 isl_space_free(space
);
5330 /* Given a piecewise multi-affine expression of which the last input variable
5331 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5332 * This minimum expression is given in "min_expr_pa".
5333 * The set "min_expr" contains the same information, but in the form of a set.
5334 * The variable is subsequently projected out.
5336 * The implementation is similar to those of "split" and "split_domain".
5337 * If the variable appears in a given expression, then minimum expression
5338 * is plugged in. Otherwise, if the variable appears in the constraints
5339 * and a split is required, then the domain is split. Otherwise, no split
5342 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5343 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5344 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5349 isl_pw_multi_aff
*res
;
5351 if (!opt
|| !min_expr
|| !cst
)
5354 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5355 space
= isl_pw_multi_aff_get_space(opt
);
5356 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5357 res
= isl_pw_multi_aff_empty(space
);
5359 for (i
= 0; i
< opt
->n
; ++i
) {
5360 isl_pw_multi_aff
*pma
;
5362 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5363 isl_multi_aff_copy(opt
->p
[i
].maff
));
5364 if (need_substitution(opt
->p
[i
].maff
))
5365 pma
= isl_pw_multi_aff_substitute(pma
,
5366 isl_dim_in
, n_in
- 1, min_expr_pa
);
5367 else if (need_split_set(opt
->p
[i
].set
, cst
))
5368 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5369 isl_set_copy(min_expr
));
5370 pma
= isl_pw_multi_aff_project_out(pma
,
5371 isl_dim_in
, n_in
- 1, 1);
5373 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5376 isl_pw_multi_aff_free(opt
);
5377 isl_pw_aff_free(min_expr_pa
);
5378 isl_set_free(min_expr
);
5382 isl_pw_multi_aff_free(opt
);
5383 isl_pw_aff_free(min_expr_pa
);
5384 isl_set_free(min_expr
);
5389 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5390 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5391 __isl_give isl_set
**empty
, int max
);
5393 /* This function is called from basic_map_partial_lexopt_symm.
5394 * The last variable of "bmap" and "dom" corresponds to the minimum
5395 * of the bounds in "cst". "map_space" is the space of the original
5396 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5397 * is the space of the original domain.
5399 * We recursively call basic_map_partial_lexopt and then plug in
5400 * the definition of the minimum in the result.
5402 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5403 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5404 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5405 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5407 isl_pw_multi_aff
*opt
;
5408 isl_pw_aff
*min_expr_pa
;
5410 union isl_lex_res res
;
5412 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5413 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5416 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5419 *empty
= split(*empty
,
5420 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5421 *empty
= isl_set_reset_space(*empty
, set_space
);
5424 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5425 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5431 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5432 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5433 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5435 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5436 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5439 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5440 * equalities and removing redundant constraints.
5442 * We first check if there are any parallel constraints (left).
5443 * If not, we are in the base case.
5444 * If there are parallel constraints, we replace them by a single
5445 * constraint in basic_map_partial_lexopt_symm_pma and then call
5446 * this function recursively to look for more parallel constraints.
5448 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5449 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5450 __isl_give isl_set
**empty
, int max
)
5458 if (bmap
->ctx
->opt
->pip_symmetry
)
5459 par
= parallel_constraints(bmap
, &first
, &second
);
5463 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5465 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5468 isl_basic_set_free(dom
);
5469 isl_basic_map_free(bmap
);
5473 /* Compute the lexicographic minimum (or maximum if "max" is set)
5474 * of "bmap" over the domain "dom" and return the result as a piecewise
5475 * multi-affine expression.
5476 * If "empty" is not NULL, then *empty is assigned a set that
5477 * contains those parts of the domain where there is no solution.
5478 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5479 * then we compute the rational optimum. Otherwise, we compute
5480 * the integral optimum.
5482 * We perform some preprocessing. As the PILP solver does not
5483 * handle implicit equalities very well, we first make sure all
5484 * the equalities are explicitly available.
5486 * We also add context constraints to the basic map and remove
5487 * redundant constraints. This is only needed because of the
5488 * way we handle simple symmetries. In particular, we currently look
5489 * for symmetries on the constraints, before we set up the main tableau.
5490 * It is then no good to look for symmetries on possibly redundant constraints.
5492 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5493 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5494 __isl_give isl_set
**empty
, int max
)
5501 isl_assert(bmap
->ctx
,
5502 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5504 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5505 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5507 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5508 bmap
= isl_basic_map_detect_equalities(bmap
);
5509 bmap
= isl_basic_map_remove_redundancies(bmap
);
5511 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5513 isl_basic_set_free(dom
);
5514 isl_basic_map_free(bmap
);