2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
14 #include <isl_mat_private.h>
17 #include <isl_options_private.h>
18 #include "isl_equalities.h"
21 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
29 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
31 enum isl_lp_result res
;
38 total
= isl_basic_map_total_dim(*bmap
);
39 for (i
= 0; i
< total
; ++i
) {
41 if (isl_int_is_zero(c
[1+i
]))
43 sign
= isl_int_sgn(c
[1+i
]);
44 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
45 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
47 if (j
== (*bmap
)->n_ineq
)
53 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
55 if (res
== isl_lp_unbounded
)
57 if (res
== isl_lp_error
)
59 if (res
== isl_lp_empty
) {
60 *bmap
= isl_basic_map_set_to_empty(*bmap
);
63 return !isl_int_is_neg(*opt_n
);
66 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
67 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
69 return isl_basic_map_constraint_is_redundant(
70 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
74 * constraints. If the minimal value along the normal of a constraint
75 * is the same if the constraint is removed, then the constraint is redundant.
77 * Alternatively, we could have intersected the basic map with the
78 * corresponding equality and the checked if the dimension was that
81 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
82 __isl_take isl_basic_map
*bmap
)
89 bmap
= isl_basic_map_gauss(bmap
, NULL
);
90 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
92 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
94 if (bmap
->n_ineq
<= 1)
97 tab
= isl_tab_from_basic_map(bmap
);
98 if (isl_tab_detect_implicit_equalities(tab
) < 0)
100 if (isl_tab_detect_redundant(tab
) < 0)
102 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
104 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
105 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
109 isl_basic_map_free(bmap
);
113 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
114 __isl_take isl_basic_set
*bset
)
116 return (struct isl_basic_set
*)
117 isl_basic_map_remove_redundancies((struct isl_basic_map
*)bset
);
120 /* Remove redundant constraints in each of the basic maps.
122 __isl_give isl_map
*isl_map_remove_redundancies(__isl_take isl_map
*map
)
124 return isl_map_inline_foreach_basic_map(map
,
125 &isl_basic_map_remove_redundancies
);
128 __isl_give isl_set
*isl_set_remove_redundancies(__isl_take isl_set
*set
)
130 return isl_map_remove_redundancies(set
);
133 /* Check if the set set is bound in the direction of the affine
134 * constraint c and if so, set the constant term such that the
135 * resulting constraint is a bounding constraint for the set.
137 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
145 isl_int_init(opt_denom
);
147 for (j
= 0; j
< set
->n
; ++j
) {
148 enum isl_lp_result res
;
150 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
153 res
= isl_basic_set_solve_lp(set
->p
[j
],
154 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
155 if (res
== isl_lp_unbounded
)
157 if (res
== isl_lp_error
)
159 if (res
== isl_lp_empty
) {
160 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
165 if (first
|| isl_int_is_neg(opt
)) {
166 if (!isl_int_is_one(opt_denom
))
167 isl_seq_scale(c
, c
, opt_denom
, len
);
168 isl_int_sub(c
[0], c
[0], opt
);
173 isl_int_clear(opt_denom
);
177 isl_int_clear(opt_denom
);
181 __isl_give isl_basic_map
*isl_basic_map_set_rational(
182 __isl_take isl_basic_set
*bmap
)
187 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
190 bmap
= isl_basic_map_cow(bmap
);
194 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
196 return isl_basic_map_finalize(bmap
);
199 __isl_give isl_basic_set
*isl_basic_set_set_rational(
200 __isl_take isl_basic_set
*bset
)
202 return isl_basic_map_set_rational(bset
);
205 __isl_give isl_map
*isl_map_set_rational(__isl_take isl_map
*map
)
209 map
= isl_map_cow(map
);
212 for (i
= 0; i
< map
->n
; ++i
) {
213 map
->p
[i
] = isl_basic_map_set_rational(map
->p
[i
]);
223 __isl_give isl_set
*isl_set_set_rational(__isl_take isl_set
*set
)
225 return isl_map_set_rational(set
);
228 static struct isl_basic_set
*isl_basic_set_add_equality(
229 struct isl_basic_set
*bset
, isl_int
*c
)
237 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
240 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
241 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
242 dim
= isl_basic_set_n_dim(bset
);
243 bset
= isl_basic_set_cow(bset
);
244 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
245 i
= isl_basic_set_alloc_equality(bset
);
248 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
251 isl_basic_set_free(bset
);
255 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
259 set
= isl_set_cow(set
);
262 for (i
= 0; i
< set
->n
; ++i
) {
263 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
273 /* Given a union of basic sets, construct the constraints for wrapping
274 * a facet around one of its ridges.
275 * In particular, if each of n the d-dimensional basic sets i in "set"
276 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
277 * and is defined by the constraints
281 * then the resulting set is of dimension n*(1+d) and has as constraints
290 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
292 struct isl_basic_set
*lp
;
296 unsigned dim
, lp_dim
;
301 dim
= 1 + isl_set_n_dim(set
);
304 for (i
= 0; i
< set
->n
; ++i
) {
305 n_eq
+= set
->p
[i
]->n_eq
;
306 n_ineq
+= set
->p
[i
]->n_ineq
;
308 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
309 lp
= isl_basic_set_set_rational(lp
);
312 lp_dim
= isl_basic_set_n_dim(lp
);
313 k
= isl_basic_set_alloc_equality(lp
);
314 isl_int_set_si(lp
->eq
[k
][0], -1);
315 for (i
= 0; i
< set
->n
; ++i
) {
316 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
317 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
318 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
320 for (i
= 0; i
< set
->n
; ++i
) {
321 k
= isl_basic_set_alloc_inequality(lp
);
322 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
323 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
325 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
326 k
= isl_basic_set_alloc_equality(lp
);
327 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
328 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
329 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
332 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
333 k
= isl_basic_set_alloc_inequality(lp
);
334 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
335 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
336 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
342 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
343 * of that facet, compute the other facet of the convex hull that contains
346 * We first transform the set such that the facet constraint becomes
350 * I.e., the facet lies in
354 * and on that facet, the constraint that defines the ridge is
358 * (This transformation is not strictly needed, all that is needed is
359 * that the ridge contains the origin.)
361 * Since the ridge contains the origin, the cone of the convex hull
362 * will be of the form
367 * with this second constraint defining the new facet.
368 * The constant a is obtained by settting x_1 in the cone of the
369 * convex hull to 1 and minimizing x_2.
370 * Now, each element in the cone of the convex hull is the sum
371 * of elements in the cones of the basic sets.
372 * If a_i is the dilation factor of basic set i, then the problem
373 * we need to solve is
386 * the constraints of each (transformed) basic set.
387 * If a = n/d, then the constraint defining the new facet (in the transformed
390 * -n x_1 + d x_2 >= 0
392 * In the original space, we need to take the same combination of the
393 * corresponding constraints "facet" and "ridge".
395 * If a = -infty = "-1/0", then we just return the original facet constraint.
396 * This means that the facet is unbounded, but has a bounded intersection
397 * with the union of sets.
399 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
400 isl_int
*facet
, isl_int
*ridge
)
404 struct isl_mat
*T
= NULL
;
405 struct isl_basic_set
*lp
= NULL
;
407 enum isl_lp_result res
;
414 set
= isl_set_copy(set
);
415 set
= isl_set_set_rational(set
);
417 dim
= 1 + isl_set_n_dim(set
);
418 T
= isl_mat_alloc(ctx
, 3, dim
);
421 isl_int_set_si(T
->row
[0][0], 1);
422 isl_seq_clr(T
->row
[0]+1, dim
- 1);
423 isl_seq_cpy(T
->row
[1], facet
, dim
);
424 isl_seq_cpy(T
->row
[2], ridge
, dim
);
425 T
= isl_mat_right_inverse(T
);
426 set
= isl_set_preimage(set
, T
);
430 lp
= wrap_constraints(set
);
431 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
434 isl_int_set_si(obj
->block
.data
[0], 0);
435 for (i
= 0; i
< set
->n
; ++i
) {
436 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
437 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
438 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
442 res
= isl_basic_set_solve_lp(lp
, 0,
443 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
444 if (res
== isl_lp_ok
) {
445 isl_int_neg(num
, num
);
446 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
447 isl_seq_normalize(ctx
, facet
, dim
);
452 isl_basic_set_free(lp
);
454 if (res
== isl_lp_error
)
456 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
460 isl_basic_set_free(lp
);
466 /* Compute the constraint of a facet of "set".
468 * We first compute the intersection with a bounding constraint
469 * that is orthogonal to one of the coordinate axes.
470 * If the affine hull of this intersection has only one equality,
471 * we have found a facet.
472 * Otherwise, we wrap the current bounding constraint around
473 * one of the equalities of the face (one that is not equal to
474 * the current bounding constraint).
475 * This process continues until we have found a facet.
476 * The dimension of the intersection increases by at least
477 * one on each iteration, so termination is guaranteed.
479 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
481 struct isl_set
*slice
= NULL
;
482 struct isl_basic_set
*face
= NULL
;
484 unsigned dim
= isl_set_n_dim(set
);
488 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
489 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
493 isl_seq_clr(bounds
->row
[0], dim
);
494 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
495 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
498 isl_assert(set
->ctx
, is_bound
, goto error
);
499 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
503 slice
= isl_set_copy(set
);
504 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
505 face
= isl_set_affine_hull(slice
);
508 if (face
->n_eq
== 1) {
509 isl_basic_set_free(face
);
512 for (i
= 0; i
< face
->n_eq
; ++i
)
513 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
514 !isl_seq_is_neg(bounds
->row
[0],
515 face
->eq
[i
], 1 + dim
))
517 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
518 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
520 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
521 isl_basic_set_free(face
);
526 isl_basic_set_free(face
);
527 isl_mat_free(bounds
);
531 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
532 * compute a hyperplane description of the facet, i.e., compute the facets
535 * We compute an affine transformation that transforms the constraint
544 * by computing the right inverse U of a matrix that starts with the rows
557 * Since z_1 is zero, we can drop this variable as well as the corresponding
558 * column of U to obtain
566 * with Q' equal to Q, but without the corresponding row.
567 * After computing the facets of the facet in the z' space,
568 * we convert them back to the x space through Q.
570 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
572 struct isl_mat
*m
, *U
, *Q
;
573 struct isl_basic_set
*facet
= NULL
;
578 set
= isl_set_copy(set
);
579 dim
= isl_set_n_dim(set
);
580 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
583 isl_int_set_si(m
->row
[0][0], 1);
584 isl_seq_clr(m
->row
[0]+1, dim
);
585 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
586 U
= isl_mat_right_inverse(m
);
587 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
588 U
= isl_mat_drop_cols(U
, 1, 1);
589 Q
= isl_mat_drop_rows(Q
, 1, 1);
590 set
= isl_set_preimage(set
, U
);
591 facet
= uset_convex_hull_wrap_bounded(set
);
592 facet
= isl_basic_set_preimage(facet
, Q
);
594 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
597 isl_basic_set_free(facet
);
602 /* Given an initial facet constraint, compute the remaining facets.
603 * We do this by running through all facets found so far and computing
604 * the adjacent facets through wrapping, adding those facets that we
605 * hadn't already found before.
607 * For each facet we have found so far, we first compute its facets
608 * in the resulting convex hull. That is, we compute the ridges
609 * of the resulting convex hull contained in the facet.
610 * We also compute the corresponding facet in the current approximation
611 * of the convex hull. There is no need to wrap around the ridges
612 * in this facet since that would result in a facet that is already
613 * present in the current approximation.
615 * This function can still be significantly optimized by checking which of
616 * the facets of the basic sets are also facets of the convex hull and
617 * using all the facets so far to help in constructing the facets of the
620 * using the technique in section "3.1 Ridge Generation" of
621 * "Extended Convex Hull" by Fukuda et al.
623 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
628 struct isl_basic_set
*facet
= NULL
;
629 struct isl_basic_set
*hull_facet
= NULL
;
635 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
637 dim
= isl_set_n_dim(set
);
639 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
640 facet
= compute_facet(set
, hull
->ineq
[i
]);
641 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
642 facet
= isl_basic_set_gauss(facet
, NULL
);
643 facet
= isl_basic_set_normalize_constraints(facet
);
644 hull_facet
= isl_basic_set_copy(hull
);
645 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
646 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
647 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
648 if (!facet
|| !hull_facet
)
650 hull
= isl_basic_set_cow(hull
);
651 hull
= isl_basic_set_extend_space(hull
,
652 isl_space_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
655 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
656 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
657 if (isl_seq_eq(facet
->ineq
[j
],
658 hull_facet
->ineq
[f
], 1 + dim
))
660 if (f
< hull_facet
->n_ineq
)
662 k
= isl_basic_set_alloc_inequality(hull
);
665 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
666 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
669 isl_basic_set_free(hull_facet
);
670 isl_basic_set_free(facet
);
672 hull
= isl_basic_set_simplify(hull
);
673 hull
= isl_basic_set_finalize(hull
);
676 isl_basic_set_free(hull_facet
);
677 isl_basic_set_free(facet
);
678 isl_basic_set_free(hull
);
682 /* Special case for computing the convex hull of a one dimensional set.
683 * We simply collect the lower and upper bounds of each basic set
684 * and the biggest of those.
686 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
688 struct isl_mat
*c
= NULL
;
689 isl_int
*lower
= NULL
;
690 isl_int
*upper
= NULL
;
693 struct isl_basic_set
*hull
;
695 for (i
= 0; i
< set
->n
; ++i
) {
696 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
700 set
= isl_set_remove_empty_parts(set
);
703 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
704 c
= isl_mat_alloc(set
->ctx
, 2, 2);
708 if (set
->p
[0]->n_eq
> 0) {
709 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
712 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
713 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
714 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
716 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
717 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
720 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
721 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
723 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
726 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
733 for (i
= 0; i
< set
->n
; ++i
) {
734 struct isl_basic_set
*bset
= set
->p
[i
];
738 for (j
= 0; j
< bset
->n_eq
; ++j
) {
742 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
743 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
744 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
745 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
746 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
747 isl_seq_neg(lower
, bset
->eq
[j
], 2);
750 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
751 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
752 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
753 isl_seq_neg(upper
, bset
->eq
[j
], 2);
754 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
755 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
758 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
759 if (isl_int_is_pos(bset
->ineq
[j
][1]))
761 if (isl_int_is_neg(bset
->ineq
[j
][1]))
763 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
764 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
765 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
766 if (isl_int_lt(a
, b
))
767 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
769 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
770 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
771 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
772 if (isl_int_gt(a
, b
))
773 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
784 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
785 hull
= isl_basic_set_set_rational(hull
);
789 k
= isl_basic_set_alloc_inequality(hull
);
790 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
793 k
= isl_basic_set_alloc_inequality(hull
);
794 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
796 hull
= isl_basic_set_finalize(hull
);
806 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
808 struct isl_basic_set
*convex_hull
;
813 if (isl_set_is_empty(set
))
814 convex_hull
= isl_basic_set_empty(isl_space_copy(set
->dim
));
816 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
821 /* Compute the convex hull of a pair of basic sets without any parameters or
822 * integer divisions using Fourier-Motzkin elimination.
823 * The convex hull is the set of all points that can be written as
824 * the sum of points from both basic sets (in homogeneous coordinates).
825 * We set up the constraints in a space with dimensions for each of
826 * the three sets and then project out the dimensions corresponding
827 * to the two original basic sets, retaining only those corresponding
828 * to the convex hull.
830 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
831 struct isl_basic_set
*bset2
)
834 struct isl_basic_set
*bset
[2];
835 struct isl_basic_set
*hull
= NULL
;
838 if (!bset1
|| !bset2
)
841 dim
= isl_basic_set_n_dim(bset1
);
842 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
843 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
844 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
847 for (i
= 0; i
< 2; ++i
) {
848 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
849 k
= isl_basic_set_alloc_equality(hull
);
852 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
853 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
854 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
857 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
858 k
= isl_basic_set_alloc_inequality(hull
);
861 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
862 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
863 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
864 bset
[i
]->ineq
[j
], 1+dim
);
866 k
= isl_basic_set_alloc_inequality(hull
);
869 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
870 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
872 for (j
= 0; j
< 1+dim
; ++j
) {
873 k
= isl_basic_set_alloc_equality(hull
);
876 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
877 isl_int_set_si(hull
->eq
[k
][j
], -1);
878 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
879 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
881 hull
= isl_basic_set_set_rational(hull
);
882 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
883 hull
= isl_basic_set_remove_redundancies(hull
);
884 isl_basic_set_free(bset1
);
885 isl_basic_set_free(bset2
);
888 isl_basic_set_free(bset1
);
889 isl_basic_set_free(bset2
);
890 isl_basic_set_free(hull
);
894 /* Is the set bounded for each value of the parameters?
896 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
903 if (isl_basic_set_plain_is_empty(bset
))
906 tab
= isl_tab_from_recession_cone(bset
, 1);
907 bounded
= isl_tab_cone_is_bounded(tab
);
912 /* Is the image bounded for each value of the parameters and
913 * the domain variables?
915 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
917 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
918 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
921 bmap
= isl_basic_map_copy(bmap
);
922 bmap
= isl_basic_map_cow(bmap
);
923 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
924 isl_dim_in
, 0, n_in
);
925 bounded
= isl_basic_set_is_bounded((isl_basic_set
*)bmap
);
926 isl_basic_map_free(bmap
);
931 /* Is the set bounded for each value of the parameters?
933 int isl_set_is_bounded(__isl_keep isl_set
*set
)
940 for (i
= 0; i
< set
->n
; ++i
) {
941 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
942 if (!bounded
|| bounded
< 0)
948 /* Compute the lineality space of the convex hull of bset1 and bset2.
950 * We first compute the intersection of the recession cone of bset1
951 * with the negative of the recession cone of bset2 and then compute
952 * the linear hull of the resulting cone.
954 static struct isl_basic_set
*induced_lineality_space(
955 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
958 struct isl_basic_set
*lin
= NULL
;
961 if (!bset1
|| !bset2
)
964 dim
= isl_basic_set_total_dim(bset1
);
965 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset1
), 0,
966 bset1
->n_eq
+ bset2
->n_eq
,
967 bset1
->n_ineq
+ bset2
->n_ineq
);
968 lin
= isl_basic_set_set_rational(lin
);
971 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
972 k
= isl_basic_set_alloc_equality(lin
);
975 isl_int_set_si(lin
->eq
[k
][0], 0);
976 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
978 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
979 k
= isl_basic_set_alloc_inequality(lin
);
982 isl_int_set_si(lin
->ineq
[k
][0], 0);
983 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
985 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
986 k
= isl_basic_set_alloc_equality(lin
);
989 isl_int_set_si(lin
->eq
[k
][0], 0);
990 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
992 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
993 k
= isl_basic_set_alloc_inequality(lin
);
996 isl_int_set_si(lin
->ineq
[k
][0], 0);
997 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1000 isl_basic_set_free(bset1
);
1001 isl_basic_set_free(bset2
);
1002 return isl_basic_set_affine_hull(lin
);
1004 isl_basic_set_free(lin
);
1005 isl_basic_set_free(bset1
);
1006 isl_basic_set_free(bset2
);
1010 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1012 /* Given a set and a linear space "lin" of dimension n > 0,
1013 * project the linear space from the set, compute the convex hull
1014 * and then map the set back to the original space.
1020 * describe the linear space. We first compute the Hermite normal
1021 * form H = M U of M = H Q, to obtain
1025 * The last n rows of H will be zero, so the last n variables of x' = Q x
1026 * are the one we want to project out. We do this by transforming each
1027 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1028 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1029 * we transform the hull back to the original space as A' Q_1 x >= b',
1030 * with Q_1 all but the last n rows of Q.
1032 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1033 struct isl_basic_set
*lin
)
1035 unsigned total
= isl_basic_set_total_dim(lin
);
1037 struct isl_basic_set
*hull
;
1038 struct isl_mat
*M
, *U
, *Q
;
1042 lin_dim
= total
- lin
->n_eq
;
1043 M
= isl_mat_sub_alloc6(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1044 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1048 isl_basic_set_free(lin
);
1050 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1052 U
= isl_mat_lin_to_aff(U
);
1053 Q
= isl_mat_lin_to_aff(Q
);
1055 set
= isl_set_preimage(set
, U
);
1056 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1057 hull
= uset_convex_hull(set
);
1058 hull
= isl_basic_set_preimage(hull
, Q
);
1062 isl_basic_set_free(lin
);
1067 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1068 * set up an LP for solving
1070 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1072 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1073 * The next \alpha{ij} correspond to the equalities and come in pairs.
1074 * The final \alpha{ij} correspond to the inequalities.
1076 static struct isl_basic_set
*valid_direction_lp(
1077 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1080 struct isl_basic_set
*lp
;
1085 if (!bset1
|| !bset2
)
1087 d
= 1 + isl_basic_set_total_dim(bset1
);
1089 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1090 dim
= isl_space_set_alloc(bset1
->ctx
, 0, n
);
1091 lp
= isl_basic_set_alloc_space(dim
, 0, d
, n
);
1094 for (i
= 0; i
< n
; ++i
) {
1095 k
= isl_basic_set_alloc_inequality(lp
);
1098 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1099 isl_int_set_si(lp
->ineq
[k
][0], -1);
1100 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1102 for (i
= 0; i
< d
; ++i
) {
1103 k
= isl_basic_set_alloc_equality(lp
);
1107 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1108 /* positivity constraint 1 >= 0 */
1109 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1110 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1111 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1112 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1114 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1115 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1117 /* positivity constraint 1 >= 0 */
1118 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1119 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1120 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1121 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1123 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1124 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1127 lp
= isl_basic_set_gauss(lp
, NULL
);
1128 isl_basic_set_free(bset1
);
1129 isl_basic_set_free(bset2
);
1132 isl_basic_set_free(bset1
);
1133 isl_basic_set_free(bset2
);
1137 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1138 * for all rays in the homogeneous space of the two cones that correspond
1139 * to the input polyhedra bset1 and bset2.
1141 * We compute s as a vector that satisfies
1143 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1145 * with h_{ij} the normals of the facets of polyhedron i
1146 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1147 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1148 * We first set up an LP with as variables the \alpha{ij}.
1149 * In this formulation, for each polyhedron i,
1150 * the first constraint is the positivity constraint, followed by pairs
1151 * of variables for the equalities, followed by variables for the inequalities.
1152 * We then simply pick a feasible solution and compute s using (*).
1154 * Note that we simply pick any valid direction and make no attempt
1155 * to pick a "good" or even the "best" valid direction.
1157 static struct isl_vec
*valid_direction(
1158 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1160 struct isl_basic_set
*lp
;
1161 struct isl_tab
*tab
;
1162 struct isl_vec
*sample
= NULL
;
1163 struct isl_vec
*dir
;
1168 if (!bset1
|| !bset2
)
1170 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1171 isl_basic_set_copy(bset2
));
1172 tab
= isl_tab_from_basic_set(lp
);
1173 sample
= isl_tab_get_sample_value(tab
);
1175 isl_basic_set_free(lp
);
1178 d
= isl_basic_set_total_dim(bset1
);
1179 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1182 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1184 /* positivity constraint 1 >= 0 */
1185 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1186 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1187 isl_int_sub(sample
->block
.data
[n
],
1188 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1189 isl_seq_combine(dir
->block
.data
,
1190 bset1
->ctx
->one
, dir
->block
.data
,
1191 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1195 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1196 isl_seq_combine(dir
->block
.data
,
1197 bset1
->ctx
->one
, dir
->block
.data
,
1198 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1199 isl_vec_free(sample
);
1200 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1201 isl_basic_set_free(bset1
);
1202 isl_basic_set_free(bset2
);
1205 isl_vec_free(sample
);
1206 isl_basic_set_free(bset1
);
1207 isl_basic_set_free(bset2
);
1211 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1212 * compute b_i' + A_i' x' >= 0, with
1214 * [ b_i A_i ] [ y' ] [ y' ]
1215 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1217 * In particular, add the "positivity constraint" and then perform
1220 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1227 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1228 k
= isl_basic_set_alloc_inequality(bset
);
1231 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1232 isl_int_set_si(bset
->ineq
[k
][0], 1);
1233 bset
= isl_basic_set_preimage(bset
, T
);
1237 isl_basic_set_free(bset
);
1241 /* Compute the convex hull of a pair of basic sets without any parameters or
1242 * integer divisions, where the convex hull is known to be pointed,
1243 * but the basic sets may be unbounded.
1245 * We turn this problem into the computation of a convex hull of a pair
1246 * _bounded_ polyhedra by "changing the direction of the homogeneous
1247 * dimension". This idea is due to Matthias Koeppe.
1249 * Consider the cones in homogeneous space that correspond to the
1250 * input polyhedra. The rays of these cones are also rays of the
1251 * polyhedra if the coordinate that corresponds to the homogeneous
1252 * dimension is zero. That is, if the inner product of the rays
1253 * with the homogeneous direction is zero.
1254 * The cones in the homogeneous space can also be considered to
1255 * correspond to other pairs of polyhedra by chosing a different
1256 * homogeneous direction. To ensure that both of these polyhedra
1257 * are bounded, we need to make sure that all rays of the cones
1258 * correspond to vertices and not to rays.
1259 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1260 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1261 * The vector s is computed in valid_direction.
1263 * Note that we need to consider _all_ rays of the cones and not just
1264 * the rays that correspond to rays in the polyhedra. If we were to
1265 * only consider those rays and turn them into vertices, then we
1266 * may inadvertently turn some vertices into rays.
1268 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1269 * We therefore transform the two polyhedra such that the selected
1270 * direction is mapped onto this standard direction and then proceed
1271 * with the normal computation.
1272 * Let S be a non-singular square matrix with s as its first row,
1273 * then we want to map the polyhedra to the space
1275 * [ y' ] [ y ] [ y ] [ y' ]
1276 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1278 * We take S to be the unimodular completion of s to limit the growth
1279 * of the coefficients in the following computations.
1281 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1282 * We first move to the homogeneous dimension
1284 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1285 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1287 * Then we change directoin
1289 * [ b_i A_i ] [ y' ] [ y' ]
1290 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1292 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1293 * resulting in b' + A' x' >= 0, which we then convert back
1296 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1298 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1300 static struct isl_basic_set
*convex_hull_pair_pointed(
1301 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1303 struct isl_ctx
*ctx
= NULL
;
1304 struct isl_vec
*dir
= NULL
;
1305 struct isl_mat
*T
= NULL
;
1306 struct isl_mat
*T2
= NULL
;
1307 struct isl_basic_set
*hull
;
1308 struct isl_set
*set
;
1310 if (!bset1
|| !bset2
)
1313 dir
= valid_direction(isl_basic_set_copy(bset1
),
1314 isl_basic_set_copy(bset2
));
1317 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1320 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1321 T
= isl_mat_unimodular_complete(T
, 1);
1322 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1324 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1325 bset2
= homogeneous_map(bset2
, T2
);
1326 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1327 set
= isl_set_add_basic_set(set
, bset1
);
1328 set
= isl_set_add_basic_set(set
, bset2
);
1329 hull
= uset_convex_hull(set
);
1330 hull
= isl_basic_set_preimage(hull
, T
);
1337 isl_basic_set_free(bset1
);
1338 isl_basic_set_free(bset2
);
1342 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1343 static struct isl_basic_set
*modulo_affine_hull(
1344 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1346 /* Compute the convex hull of a pair of basic sets without any parameters or
1347 * integer divisions.
1349 * This function is called from uset_convex_hull_unbounded, which
1350 * means that the complete convex hull is unbounded. Some pairs
1351 * of basic sets may still be bounded, though.
1352 * They may even lie inside a lower dimensional space, in which
1353 * case they need to be handled inside their affine hull since
1354 * the main algorithm assumes that the result is full-dimensional.
1356 * If the convex hull of the two basic sets would have a non-trivial
1357 * lineality space, we first project out this lineality space.
1359 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1360 struct isl_basic_set
*bset2
)
1362 isl_basic_set
*lin
, *aff
;
1363 int bounded1
, bounded2
;
1365 if (bset1
->ctx
->opt
->convex
== ISL_CONVEX_HULL_FM
)
1366 return convex_hull_pair_elim(bset1
, bset2
);
1368 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1369 isl_basic_set_copy(bset2
)));
1373 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1374 isl_basic_set_free(aff
);
1376 bounded1
= isl_basic_set_is_bounded(bset1
);
1377 bounded2
= isl_basic_set_is_bounded(bset2
);
1379 if (bounded1
< 0 || bounded2
< 0)
1382 if (bounded1
&& bounded2
)
1383 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1385 if (bounded1
|| bounded2
)
1386 return convex_hull_pair_pointed(bset1
, bset2
);
1388 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1389 isl_basic_set_copy(bset2
));
1392 if (isl_basic_set_is_universe(lin
)) {
1393 isl_basic_set_free(bset1
);
1394 isl_basic_set_free(bset2
);
1397 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1398 struct isl_set
*set
;
1399 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1400 set
= isl_set_add_basic_set(set
, bset1
);
1401 set
= isl_set_add_basic_set(set
, bset2
);
1402 return modulo_lineality(set
, lin
);
1404 isl_basic_set_free(lin
);
1406 return convex_hull_pair_pointed(bset1
, bset2
);
1408 isl_basic_set_free(bset1
);
1409 isl_basic_set_free(bset2
);
1413 /* Compute the lineality space of a basic set.
1414 * We currently do not allow the basic set to have any divs.
1415 * We basically just drop the constants and turn every inequality
1418 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1421 struct isl_basic_set
*lin
= NULL
;
1426 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1427 dim
= isl_basic_set_total_dim(bset
);
1429 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset
), 0, dim
, 0);
1432 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1433 k
= isl_basic_set_alloc_equality(lin
);
1436 isl_int_set_si(lin
->eq
[k
][0], 0);
1437 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1439 lin
= isl_basic_set_gauss(lin
, NULL
);
1442 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1443 k
= isl_basic_set_alloc_equality(lin
);
1446 isl_int_set_si(lin
->eq
[k
][0], 0);
1447 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1448 lin
= isl_basic_set_gauss(lin
, NULL
);
1452 isl_basic_set_free(bset
);
1455 isl_basic_set_free(lin
);
1456 isl_basic_set_free(bset
);
1460 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1461 * "underlying" set "set".
1463 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1466 struct isl_set
*lin
= NULL
;
1471 isl_space
*dim
= isl_set_get_space(set
);
1473 return isl_basic_set_empty(dim
);
1476 lin
= isl_set_alloc_space(isl_set_get_space(set
), set
->n
, 0);
1477 for (i
= 0; i
< set
->n
; ++i
)
1478 lin
= isl_set_add_basic_set(lin
,
1479 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1481 return isl_set_affine_hull(lin
);
1484 /* Compute the convex hull of a set without any parameters or
1485 * integer divisions.
1486 * In each step, we combined two basic sets until only one
1487 * basic set is left.
1488 * The input basic sets are assumed not to have a non-trivial
1489 * lineality space. If any of the intermediate results has
1490 * a non-trivial lineality space, it is projected out.
1492 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1494 struct isl_basic_set
*convex_hull
= NULL
;
1496 convex_hull
= isl_set_copy_basic_set(set
);
1497 set
= isl_set_drop_basic_set(set
, convex_hull
);
1500 while (set
->n
> 0) {
1501 struct isl_basic_set
*t
;
1502 t
= isl_set_copy_basic_set(set
);
1505 set
= isl_set_drop_basic_set(set
, t
);
1508 convex_hull
= convex_hull_pair(convex_hull
, t
);
1511 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1514 if (isl_basic_set_is_universe(t
)) {
1515 isl_basic_set_free(convex_hull
);
1519 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1520 set
= isl_set_add_basic_set(set
, convex_hull
);
1521 return modulo_lineality(set
, t
);
1523 isl_basic_set_free(t
);
1529 isl_basic_set_free(convex_hull
);
1533 /* Compute an initial hull for wrapping containing a single initial
1535 * This function assumes that the given set is bounded.
1537 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1538 struct isl_set
*set
)
1540 struct isl_mat
*bounds
= NULL
;
1546 bounds
= initial_facet_constraint(set
);
1549 k
= isl_basic_set_alloc_inequality(hull
);
1552 dim
= isl_set_n_dim(set
);
1553 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1554 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1555 isl_mat_free(bounds
);
1559 isl_basic_set_free(hull
);
1560 isl_mat_free(bounds
);
1564 struct max_constraint
{
1570 static int max_constraint_equal(const void *entry
, const void *val
)
1572 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1573 isl_int
*b
= (isl_int
*)val
;
1575 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1578 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1579 isl_int
*con
, unsigned len
, int n
, int ineq
)
1581 struct isl_hash_table_entry
*entry
;
1582 struct max_constraint
*c
;
1585 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1586 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1592 isl_hash_table_remove(ctx
, table
, entry
);
1596 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1598 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1603 c
->c
= isl_mat_cow(c
->c
);
1604 isl_int_set(c
->c
->row
[0][0], con
[0]);
1608 /* Check whether the constraint hash table "table" constains the constraint
1611 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1612 isl_int
*con
, unsigned len
, int n
)
1614 struct isl_hash_table_entry
*entry
;
1615 struct max_constraint
*c
;
1618 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1619 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1626 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1629 /* Check for inequality constraints of a basic set without equalities
1630 * such that the same or more stringent copies of the constraint appear
1631 * in all of the basic sets. Such constraints are necessarily facet
1632 * constraints of the convex hull.
1634 * If the resulting basic set is by chance identical to one of
1635 * the basic sets in "set", then we know that this basic set contains
1636 * all other basic sets and is therefore the convex hull of set.
1637 * In this case we set *is_hull to 1.
1639 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1640 struct isl_set
*set
, int *is_hull
)
1643 int min_constraints
;
1645 struct max_constraint
*constraints
= NULL
;
1646 struct isl_hash_table
*table
= NULL
;
1651 for (i
= 0; i
< set
->n
; ++i
)
1652 if (set
->p
[i
]->n_eq
== 0)
1656 min_constraints
= set
->p
[i
]->n_ineq
;
1658 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1659 if (set
->p
[i
]->n_eq
!= 0)
1661 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1663 min_constraints
= set
->p
[i
]->n_ineq
;
1666 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1670 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1671 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1674 total
= isl_space_dim(set
->dim
, isl_dim_all
);
1675 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1676 constraints
[i
].c
= isl_mat_sub_alloc6(hull
->ctx
,
1677 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1678 if (!constraints
[i
].c
)
1680 constraints
[i
].ineq
= 1;
1682 for (i
= 0; i
< min_constraints
; ++i
) {
1683 struct isl_hash_table_entry
*entry
;
1685 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1686 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1687 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1690 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1691 entry
->data
= &constraints
[i
];
1695 for (s
= 0; s
< set
->n
; ++s
) {
1699 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1700 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1701 for (j
= 0; j
< 2; ++j
) {
1702 isl_seq_neg(eq
, eq
, 1 + total
);
1703 update_constraint(hull
->ctx
, table
,
1707 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1708 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1709 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1710 set
->p
[s
]->n_eq
== 0);
1715 for (i
= 0; i
< min_constraints
; ++i
) {
1716 if (constraints
[i
].count
< n
)
1718 if (!constraints
[i
].ineq
)
1720 j
= isl_basic_set_alloc_inequality(hull
);
1723 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1726 for (s
= 0; s
< set
->n
; ++s
) {
1727 if (set
->p
[s
]->n_eq
)
1729 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1731 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1732 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1733 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1736 if (i
== set
->p
[s
]->n_ineq
)
1740 isl_hash_table_clear(table
);
1741 for (i
= 0; i
< min_constraints
; ++i
)
1742 isl_mat_free(constraints
[i
].c
);
1747 isl_hash_table_clear(table
);
1750 for (i
= 0; i
< min_constraints
; ++i
)
1751 isl_mat_free(constraints
[i
].c
);
1756 /* Create a template for the convex hull of "set" and fill it up
1757 * obvious facet constraints, if any. If the result happens to
1758 * be the convex hull of "set" then *is_hull is set to 1.
1760 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1762 struct isl_basic_set
*hull
;
1767 for (i
= 0; i
< set
->n
; ++i
) {
1768 n_ineq
+= set
->p
[i
]->n_eq
;
1769 n_ineq
+= set
->p
[i
]->n_ineq
;
1771 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
1772 hull
= isl_basic_set_set_rational(hull
);
1775 return common_constraints(hull
, set
, is_hull
);
1778 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1780 struct isl_basic_set
*hull
;
1783 hull
= proto_hull(set
, &is_hull
);
1784 if (hull
&& !is_hull
) {
1785 if (hull
->n_ineq
== 0)
1786 hull
= initial_hull(hull
, set
);
1787 hull
= extend(hull
, set
);
1794 /* Compute the convex hull of a set without any parameters or
1795 * integer divisions. Depending on whether the set is bounded,
1796 * we pass control to the wrapping based convex hull or
1797 * the Fourier-Motzkin elimination based convex hull.
1798 * We also handle a few special cases before checking the boundedness.
1800 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1802 struct isl_basic_set
*convex_hull
= NULL
;
1803 struct isl_basic_set
*lin
;
1805 if (isl_set_n_dim(set
) == 0)
1806 return convex_hull_0d(set
);
1808 set
= isl_set_coalesce(set
);
1809 set
= isl_set_set_rational(set
);
1816 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1820 if (isl_set_n_dim(set
) == 1)
1821 return convex_hull_1d(set
);
1823 if (isl_set_is_bounded(set
) &&
1824 set
->ctx
->opt
->convex
== ISL_CONVEX_HULL_WRAP
)
1825 return uset_convex_hull_wrap(set
);
1827 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1830 if (isl_basic_set_is_universe(lin
)) {
1834 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1835 return modulo_lineality(set
, lin
);
1836 isl_basic_set_free(lin
);
1838 return uset_convex_hull_unbounded(set
);
1841 isl_basic_set_free(convex_hull
);
1845 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1846 * without parameters or divs and where the convex hull of set is
1847 * known to be full-dimensional.
1849 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1851 struct isl_basic_set
*convex_hull
= NULL
;
1856 if (isl_set_n_dim(set
) == 0) {
1857 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
1859 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1863 set
= isl_set_set_rational(set
);
1864 set
= isl_set_coalesce(set
);
1868 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1872 if (isl_set_n_dim(set
) == 1)
1873 return convex_hull_1d(set
);
1875 return uset_convex_hull_wrap(set
);
1881 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1882 * We first remove the equalities (transforming the set), compute the
1883 * convex hull of the transformed set and then add the equalities back
1884 * (after performing the inverse transformation.
1886 static struct isl_basic_set
*modulo_affine_hull(
1887 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1891 struct isl_basic_set
*dummy
;
1892 struct isl_basic_set
*convex_hull
;
1894 dummy
= isl_basic_set_remove_equalities(
1895 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1898 isl_basic_set_free(dummy
);
1899 set
= isl_set_preimage(set
, T
);
1900 convex_hull
= uset_convex_hull(set
);
1901 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1902 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1905 isl_basic_set_free(affine_hull
);
1910 /* Compute the convex hull of a map.
1912 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1913 * specifically, the wrapping of facets to obtain new facets.
1915 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1917 struct isl_basic_set
*bset
;
1918 struct isl_basic_map
*model
= NULL
;
1919 struct isl_basic_set
*affine_hull
= NULL
;
1920 struct isl_basic_map
*convex_hull
= NULL
;
1921 struct isl_set
*set
= NULL
;
1922 struct isl_ctx
*ctx
;
1929 convex_hull
= isl_basic_map_empty_like_map(map
);
1934 map
= isl_map_detect_equalities(map
);
1935 map
= isl_map_align_divs(map
);
1938 model
= isl_basic_map_copy(map
->p
[0]);
1939 set
= isl_map_underlying_set(map
);
1943 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1946 if (affine_hull
->n_eq
!= 0)
1947 bset
= modulo_affine_hull(set
, affine_hull
);
1949 isl_basic_set_free(affine_hull
);
1950 bset
= uset_convex_hull(set
);
1953 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1957 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1958 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1959 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1963 isl_basic_map_free(model
);
1967 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1969 return (struct isl_basic_set
*)
1970 isl_map_convex_hull((struct isl_map
*)set
);
1973 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
1975 isl_basic_map
*hull
;
1977 hull
= isl_map_convex_hull(map
);
1978 return isl_basic_map_remove_divs(hull
);
1981 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
1983 return (isl_basic_set
*)isl_map_polyhedral_hull((isl_map
*)set
);
1986 struct sh_data_entry
{
1987 struct isl_hash_table
*table
;
1988 struct isl_tab
*tab
;
1991 /* Holds the data needed during the simple hull computation.
1993 * n the number of basic sets in the original set
1994 * hull_table a hash table of already computed constraints
1995 * in the simple hull
1996 * p for each basic set,
1997 * table a hash table of the constraints
1998 * tab the tableau corresponding to the basic set
2001 struct isl_ctx
*ctx
;
2003 struct isl_hash_table
*hull_table
;
2004 struct sh_data_entry p
[1];
2007 static void sh_data_free(struct sh_data
*data
)
2013 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2014 for (i
= 0; i
< data
->n
; ++i
) {
2015 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2016 isl_tab_free(data
->p
[i
].tab
);
2021 struct ineq_cmp_data
{
2026 static int has_ineq(const void *entry
, const void *val
)
2028 isl_int
*row
= (isl_int
*)entry
;
2029 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2031 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2032 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2035 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2036 isl_int
*ineq
, unsigned len
)
2039 struct ineq_cmp_data v
;
2040 struct isl_hash_table_entry
*entry
;
2044 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2045 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2052 /* Fill hash table "table" with the constraints of "bset".
2053 * Equalities are added as two inequalities.
2054 * The value in the hash table is a pointer to the (in)equality of "bset".
2056 static int hash_basic_set(struct isl_hash_table
*table
,
2057 struct isl_basic_set
*bset
)
2060 unsigned dim
= isl_basic_set_total_dim(bset
);
2062 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2063 for (j
= 0; j
< 2; ++j
) {
2064 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2065 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2069 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2070 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2076 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2078 struct sh_data
*data
;
2081 data
= isl_calloc(set
->ctx
, struct sh_data
,
2082 sizeof(struct sh_data
) +
2083 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2086 data
->ctx
= set
->ctx
;
2088 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2089 if (!data
->hull_table
)
2091 for (i
= 0; i
< set
->n
; ++i
) {
2092 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2093 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2094 if (!data
->p
[i
].table
)
2096 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2105 /* Check if inequality "ineq" is a bound for basic set "j" or if
2106 * it can be relaxed (by increasing the constant term) to become
2107 * a bound for that basic set. In the latter case, the constant
2109 * Return 1 if "ineq" is a bound
2110 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2111 * -1 if some error occurred
2113 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2116 enum isl_lp_result res
;
2119 if (!data
->p
[j
].tab
) {
2120 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2121 if (!data
->p
[j
].tab
)
2127 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2129 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2130 isl_int_sub(ineq
[0], ineq
[0], opt
);
2134 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2135 res
== isl_lp_unbounded
? 0 : -1;
2138 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2139 * become a bound on the whole set. If so, add the (relaxed) inequality
2142 * We first check if "hull" already contains a translate of the inequality.
2143 * If so, we are done.
2144 * Then, we check if any of the previous basic sets contains a translate
2145 * of the inequality. If so, then we have already considered this
2146 * inequality and we are done.
2147 * Otherwise, for each basic set other than "i", we check if the inequality
2148 * is a bound on the basic set.
2149 * For previous basic sets, we know that they do not contain a translate
2150 * of the inequality, so we directly call is_bound.
2151 * For following basic sets, we first check if a translate of the
2152 * inequality appears in its description and if so directly update
2153 * the inequality accordingly.
2155 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2156 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2159 struct ineq_cmp_data v
;
2160 struct isl_hash_table_entry
*entry
;
2166 v
.len
= isl_basic_set_total_dim(hull
);
2168 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2170 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2175 for (j
= 0; j
< i
; ++j
) {
2176 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2177 c_hash
, has_ineq
, &v
, 0);
2184 k
= isl_basic_set_alloc_inequality(hull
);
2185 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2189 for (j
= 0; j
< i
; ++j
) {
2191 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2198 isl_basic_set_free_inequality(hull
, 1);
2202 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2205 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2206 c_hash
, has_ineq
, &v
, 0);
2208 ineq_j
= entry
->data
;
2209 neg
= isl_seq_is_neg(ineq_j
+ 1,
2210 hull
->ineq
[k
] + 1, v
.len
);
2212 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2213 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2214 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2216 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2219 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2226 isl_basic_set_free_inequality(hull
, 1);
2230 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2234 entry
->data
= hull
->ineq
[k
];
2238 isl_basic_set_free(hull
);
2242 /* Check if any inequality from basic set "i" can be relaxed to
2243 * become a bound on the whole set. If so, add the (relaxed) inequality
2246 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2247 struct sh_data
*data
, struct isl_set
*set
, int i
)
2250 unsigned dim
= isl_basic_set_total_dim(bset
);
2252 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2253 for (k
= 0; k
< 2; ++k
) {
2254 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2255 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2258 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2259 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2263 /* Compute a superset of the convex hull of set that is described
2264 * by only translates of the constraints in the constituents of set.
2266 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2268 struct sh_data
*data
= NULL
;
2269 struct isl_basic_set
*hull
= NULL
;
2277 for (i
= 0; i
< set
->n
; ++i
) {
2280 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2283 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
2287 data
= sh_data_alloc(set
, n_ineq
);
2291 for (i
= 0; i
< set
->n
; ++i
)
2292 hull
= add_bounds(hull
, data
, set
, i
);
2300 isl_basic_set_free(hull
);
2305 /* Compute a superset of the convex hull of map that is described
2306 * by only translates of the constraints in the constituents of map.
2308 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2310 struct isl_set
*set
= NULL
;
2311 struct isl_basic_map
*model
= NULL
;
2312 struct isl_basic_map
*hull
;
2313 struct isl_basic_map
*affine_hull
;
2314 struct isl_basic_set
*bset
= NULL
;
2319 hull
= isl_basic_map_empty_like_map(map
);
2324 hull
= isl_basic_map_copy(map
->p
[0]);
2329 map
= isl_map_detect_equalities(map
);
2330 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2331 map
= isl_map_align_divs(map
);
2332 model
= isl_basic_map_copy(map
->p
[0]);
2334 set
= isl_map_underlying_set(map
);
2336 bset
= uset_simple_hull(set
);
2338 hull
= isl_basic_map_overlying_set(bset
, model
);
2340 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2341 hull
= isl_basic_map_remove_redundancies(hull
);
2342 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2343 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2348 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2350 return (struct isl_basic_set
*)
2351 isl_map_simple_hull((struct isl_map
*)set
);
2354 /* Given a set "set", return parametric bounds on the dimension "dim".
2356 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2358 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2359 set
= isl_set_copy(set
);
2360 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2361 set
= isl_set_eliminate_dims(set
, 0, dim
);
2362 return isl_set_convex_hull(set
);
2365 /* Computes a "simple hull" and then check if each dimension in the
2366 * resulting hull is bounded by a symbolic constant. If not, the
2367 * hull is intersected with the corresponding bounds on the whole set.
2369 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2372 struct isl_basic_set
*hull
;
2373 unsigned nparam
, left
;
2374 int removed_divs
= 0;
2376 hull
= isl_set_simple_hull(isl_set_copy(set
));
2380 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2381 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2382 int lower
= 0, upper
= 0;
2383 struct isl_basic_set
*bounds
;
2385 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2386 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2387 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2389 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2396 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2397 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2399 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2401 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2404 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2415 if (!removed_divs
) {
2416 set
= isl_set_remove_divs(set
);
2421 bounds
= set_bounds(set
, i
);
2422 hull
= isl_basic_set_intersect(hull
, bounds
);