add some isl_map_plain_is_fixed tests
[isl.git] / isl_polynomial.c
blobabd752bd9ae1827ae71d785ee7e2d62a2a22b753
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl/lp.h>
16 #include <isl/seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_dim_private.h>
22 #include <isl_div_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_dim *dim, enum isl_dim_type type)
31 switch (type) {
32 case isl_dim_param: return 0;
33 case isl_dim_in: return dim->nparam;
34 case isl_dim_out: return dim->nparam + dim->n_in;
35 default: return 0;
39 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
41 if (!up)
42 return -1;
44 return up->var < 0;
47 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
49 if (!up)
50 return NULL;
52 isl_assert(up->ctx, up->var < 0, return NULL);
54 return (struct isl_upoly_cst *)up;
57 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
59 if (!up)
60 return NULL;
62 isl_assert(up->ctx, up->var >= 0, return NULL);
64 return (struct isl_upoly_rec *)up;
67 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
68 __isl_keep struct isl_upoly *up2)
70 int i;
71 struct isl_upoly_rec *rec1, *rec2;
73 if (!up1 || !up2)
74 return -1;
75 if (up1 == up2)
76 return 1;
77 if (up1->var != up2->var)
78 return 0;
79 if (isl_upoly_is_cst(up1)) {
80 struct isl_upoly_cst *cst1, *cst2;
81 cst1 = isl_upoly_as_cst(up1);
82 cst2 = isl_upoly_as_cst(up2);
83 if (!cst1 || !cst2)
84 return -1;
85 return isl_int_eq(cst1->n, cst2->n) &&
86 isl_int_eq(cst1->d, cst2->d);
89 rec1 = isl_upoly_as_rec(up1);
90 rec2 = isl_upoly_as_rec(up2);
91 if (!rec1 || !rec2)
92 return -1;
94 if (rec1->n != rec2->n)
95 return 0;
97 for (i = 0; i < rec1->n; ++i) {
98 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
99 if (eq < 0 || !eq)
100 return eq;
103 return 1;
106 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
108 struct isl_upoly_cst *cst;
110 if (!up)
111 return -1;
112 if (!isl_upoly_is_cst(up))
113 return 0;
115 cst = isl_upoly_as_cst(up);
116 if (!cst)
117 return -1;
119 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
122 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
124 struct isl_upoly_cst *cst;
126 if (!up)
127 return 0;
128 if (!isl_upoly_is_cst(up))
129 return 0;
131 cst = isl_upoly_as_cst(up);
132 if (!cst)
133 return 0;
135 return isl_int_sgn(cst->n);
138 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
140 struct isl_upoly_cst *cst;
142 if (!up)
143 return -1;
144 if (!isl_upoly_is_cst(up))
145 return 0;
147 cst = isl_upoly_as_cst(up);
148 if (!cst)
149 return -1;
151 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
154 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
156 struct isl_upoly_cst *cst;
158 if (!up)
159 return -1;
160 if (!isl_upoly_is_cst(up))
161 return 0;
163 cst = isl_upoly_as_cst(up);
164 if (!cst)
165 return -1;
167 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
170 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
172 struct isl_upoly_cst *cst;
174 if (!up)
175 return -1;
176 if (!isl_upoly_is_cst(up))
177 return 0;
179 cst = isl_upoly_as_cst(up);
180 if (!cst)
181 return -1;
183 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
186 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
188 struct isl_upoly_cst *cst;
190 if (!up)
191 return -1;
192 if (!isl_upoly_is_cst(up))
193 return 0;
195 cst = isl_upoly_as_cst(up);
196 if (!cst)
197 return -1;
199 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
202 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
204 struct isl_upoly_cst *cst;
206 if (!up)
207 return -1;
208 if (!isl_upoly_is_cst(up))
209 return 0;
211 cst = isl_upoly_as_cst(up);
212 if (!cst)
213 return -1;
215 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
218 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
220 struct isl_upoly_cst *cst;
222 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
223 if (!cst)
224 return NULL;
226 cst->up.ref = 1;
227 cst->up.ctx = ctx;
228 isl_ctx_ref(ctx);
229 cst->up.var = -1;
231 isl_int_init(cst->n);
232 isl_int_init(cst->d);
234 return cst;
237 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
239 struct isl_upoly_cst *cst;
241 cst = isl_upoly_cst_alloc(ctx);
242 if (!cst)
243 return NULL;
245 isl_int_set_si(cst->n, 0);
246 isl_int_set_si(cst->d, 1);
248 return &cst->up;
251 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
253 struct isl_upoly_cst *cst;
255 cst = isl_upoly_cst_alloc(ctx);
256 if (!cst)
257 return NULL;
259 isl_int_set_si(cst->n, 1);
260 isl_int_set_si(cst->d, 1);
262 return &cst->up;
265 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
267 struct isl_upoly_cst *cst;
269 cst = isl_upoly_cst_alloc(ctx);
270 if (!cst)
271 return NULL;
273 isl_int_set_si(cst->n, 1);
274 isl_int_set_si(cst->d, 0);
276 return &cst->up;
279 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
281 struct isl_upoly_cst *cst;
283 cst = isl_upoly_cst_alloc(ctx);
284 if (!cst)
285 return NULL;
287 isl_int_set_si(cst->n, -1);
288 isl_int_set_si(cst->d, 0);
290 return &cst->up;
293 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
295 struct isl_upoly_cst *cst;
297 cst = isl_upoly_cst_alloc(ctx);
298 if (!cst)
299 return NULL;
301 isl_int_set_si(cst->n, 0);
302 isl_int_set_si(cst->d, 0);
304 return &cst->up;
307 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
308 isl_int n, isl_int d)
310 struct isl_upoly_cst *cst;
312 cst = isl_upoly_cst_alloc(ctx);
313 if (!cst)
314 return NULL;
316 isl_int_set(cst->n, n);
317 isl_int_set(cst->d, d);
319 return &cst->up;
322 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
323 int var, int size)
325 struct isl_upoly_rec *rec;
327 isl_assert(ctx, var >= 0, return NULL);
328 isl_assert(ctx, size >= 0, return NULL);
329 rec = isl_calloc(ctx, struct isl_upoly_rec,
330 sizeof(struct isl_upoly_rec) +
331 size * sizeof(struct isl_upoly *));
332 if (!rec)
333 return NULL;
335 rec->up.ref = 1;
336 rec->up.ctx = ctx;
337 isl_ctx_ref(ctx);
338 rec->up.var = var;
340 rec->n = 0;
341 rec->size = size;
343 return rec;
346 __isl_give isl_qpolynomial *isl_qpolynomial_reset_dim(
347 __isl_take isl_qpolynomial *qp, __isl_take isl_dim *dim)
349 qp = isl_qpolynomial_cow(qp);
350 if (!qp || !dim)
351 goto error;
353 isl_dim_free(qp->dim);
354 qp->dim = dim;
356 return qp;
357 error:
358 isl_qpolynomial_free(qp);
359 isl_dim_free(dim);
360 return NULL;
363 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
365 return qp ? qp->dim->ctx : NULL;
368 __isl_give isl_dim *isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial *qp)
370 return qp ? isl_dim_copy(qp->dim) : NULL;
373 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
374 enum isl_dim_type type)
376 return qp ? isl_dim_size(qp->dim, type) : 0;
379 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
381 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
384 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
386 return qp ? isl_upoly_is_one(qp->upoly) : -1;
389 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
391 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
394 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
396 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
399 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
401 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
404 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
406 return qp ? isl_upoly_sgn(qp->upoly) : 0;
409 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
411 isl_int_clear(cst->n);
412 isl_int_clear(cst->d);
415 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
417 int i;
419 for (i = 0; i < rec->n; ++i)
420 isl_upoly_free(rec->p[i]);
423 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
425 if (!up)
426 return NULL;
428 up->ref++;
429 return up;
432 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
434 struct isl_upoly_cst *cst;
435 struct isl_upoly_cst *dup;
437 cst = isl_upoly_as_cst(up);
438 if (!cst)
439 return NULL;
441 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
442 if (!dup)
443 return NULL;
444 isl_int_set(dup->n, cst->n);
445 isl_int_set(dup->d, cst->d);
447 return &dup->up;
450 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
452 int i;
453 struct isl_upoly_rec *rec;
454 struct isl_upoly_rec *dup;
456 rec = isl_upoly_as_rec(up);
457 if (!rec)
458 return NULL;
460 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
461 if (!dup)
462 return NULL;
464 for (i = 0; i < rec->n; ++i) {
465 dup->p[i] = isl_upoly_copy(rec->p[i]);
466 if (!dup->p[i])
467 goto error;
468 dup->n++;
471 return &dup->up;
472 error:
473 isl_upoly_free(&dup->up);
474 return NULL;
477 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
479 if (!up)
480 return NULL;
482 if (isl_upoly_is_cst(up))
483 return isl_upoly_dup_cst(up);
484 else
485 return isl_upoly_dup_rec(up);
488 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
490 if (!up)
491 return NULL;
493 if (up->ref == 1)
494 return up;
495 up->ref--;
496 return isl_upoly_dup(up);
499 void isl_upoly_free(__isl_take struct isl_upoly *up)
501 if (!up)
502 return;
504 if (--up->ref > 0)
505 return;
507 if (up->var < 0)
508 upoly_free_cst((struct isl_upoly_cst *)up);
509 else
510 upoly_free_rec((struct isl_upoly_rec *)up);
512 isl_ctx_deref(up->ctx);
513 free(up);
516 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
518 isl_int gcd;
520 isl_int_init(gcd);
521 isl_int_gcd(gcd, cst->n, cst->d);
522 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
523 isl_int_divexact(cst->n, cst->n, gcd);
524 isl_int_divexact(cst->d, cst->d, gcd);
526 isl_int_clear(gcd);
529 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
530 __isl_take struct isl_upoly *up2)
532 struct isl_upoly_cst *cst1;
533 struct isl_upoly_cst *cst2;
535 up1 = isl_upoly_cow(up1);
536 if (!up1 || !up2)
537 goto error;
539 cst1 = isl_upoly_as_cst(up1);
540 cst2 = isl_upoly_as_cst(up2);
542 if (isl_int_eq(cst1->d, cst2->d))
543 isl_int_add(cst1->n, cst1->n, cst2->n);
544 else {
545 isl_int_mul(cst1->n, cst1->n, cst2->d);
546 isl_int_addmul(cst1->n, cst2->n, cst1->d);
547 isl_int_mul(cst1->d, cst1->d, cst2->d);
550 isl_upoly_cst_reduce(cst1);
552 isl_upoly_free(up2);
553 return up1;
554 error:
555 isl_upoly_free(up1);
556 isl_upoly_free(up2);
557 return NULL;
560 static __isl_give struct isl_upoly *replace_by_zero(
561 __isl_take struct isl_upoly *up)
563 struct isl_ctx *ctx;
565 if (!up)
566 return NULL;
567 ctx = up->ctx;
568 isl_upoly_free(up);
569 return isl_upoly_zero(ctx);
572 static __isl_give struct isl_upoly *replace_by_constant_term(
573 __isl_take struct isl_upoly *up)
575 struct isl_upoly_rec *rec;
576 struct isl_upoly *cst;
578 if (!up)
579 return NULL;
581 rec = isl_upoly_as_rec(up);
582 if (!rec)
583 goto error;
584 cst = isl_upoly_copy(rec->p[0]);
585 isl_upoly_free(up);
586 return cst;
587 error:
588 isl_upoly_free(up);
589 return NULL;
592 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
593 __isl_take struct isl_upoly *up2)
595 int i;
596 struct isl_upoly_rec *rec1, *rec2;
598 if (!up1 || !up2)
599 goto error;
601 if (isl_upoly_is_nan(up1)) {
602 isl_upoly_free(up2);
603 return up1;
606 if (isl_upoly_is_nan(up2)) {
607 isl_upoly_free(up1);
608 return up2;
611 if (isl_upoly_is_zero(up1)) {
612 isl_upoly_free(up1);
613 return up2;
616 if (isl_upoly_is_zero(up2)) {
617 isl_upoly_free(up2);
618 return up1;
621 if (up1->var < up2->var)
622 return isl_upoly_sum(up2, up1);
624 if (up2->var < up1->var) {
625 struct isl_upoly_rec *rec;
626 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
627 isl_upoly_free(up1);
628 return up2;
630 up1 = isl_upoly_cow(up1);
631 rec = isl_upoly_as_rec(up1);
632 if (!rec)
633 goto error;
634 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
635 if (rec->n == 1)
636 up1 = replace_by_constant_term(up1);
637 return up1;
640 if (isl_upoly_is_cst(up1))
641 return isl_upoly_sum_cst(up1, up2);
643 rec1 = isl_upoly_as_rec(up1);
644 rec2 = isl_upoly_as_rec(up2);
645 if (!rec1 || !rec2)
646 goto error;
648 if (rec1->n < rec2->n)
649 return isl_upoly_sum(up2, up1);
651 up1 = isl_upoly_cow(up1);
652 rec1 = isl_upoly_as_rec(up1);
653 if (!rec1)
654 goto error;
656 for (i = rec2->n - 1; i >= 0; --i) {
657 rec1->p[i] = isl_upoly_sum(rec1->p[i],
658 isl_upoly_copy(rec2->p[i]));
659 if (!rec1->p[i])
660 goto error;
661 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
662 isl_upoly_free(rec1->p[i]);
663 rec1->n--;
667 if (rec1->n == 0)
668 up1 = replace_by_zero(up1);
669 else if (rec1->n == 1)
670 up1 = replace_by_constant_term(up1);
672 isl_upoly_free(up2);
674 return up1;
675 error:
676 isl_upoly_free(up1);
677 isl_upoly_free(up2);
678 return NULL;
681 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
682 __isl_take struct isl_upoly *up, isl_int v)
684 struct isl_upoly_cst *cst;
686 up = isl_upoly_cow(up);
687 if (!up)
688 return NULL;
690 cst = isl_upoly_as_cst(up);
692 isl_int_addmul(cst->n, cst->d, v);
694 return up;
697 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
698 __isl_take struct isl_upoly *up, isl_int v)
700 struct isl_upoly_rec *rec;
702 if (!up)
703 return NULL;
705 if (isl_upoly_is_cst(up))
706 return isl_upoly_cst_add_isl_int(up, v);
708 up = isl_upoly_cow(up);
709 rec = isl_upoly_as_rec(up);
710 if (!rec)
711 goto error;
713 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
714 if (!rec->p[0])
715 goto error;
717 return up;
718 error:
719 isl_upoly_free(up);
720 return NULL;
723 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
724 __isl_take struct isl_upoly *up, isl_int v)
726 struct isl_upoly_cst *cst;
728 if (isl_upoly_is_zero(up))
729 return up;
731 up = isl_upoly_cow(up);
732 if (!up)
733 return NULL;
735 cst = isl_upoly_as_cst(up);
737 isl_int_mul(cst->n, cst->n, v);
739 return up;
742 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
743 __isl_take struct isl_upoly *up, isl_int v)
745 int i;
746 struct isl_upoly_rec *rec;
748 if (!up)
749 return NULL;
751 if (isl_upoly_is_cst(up))
752 return isl_upoly_cst_mul_isl_int(up, v);
754 up = isl_upoly_cow(up);
755 rec = isl_upoly_as_rec(up);
756 if (!rec)
757 goto error;
759 for (i = 0; i < rec->n; ++i) {
760 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
761 if (!rec->p[i])
762 goto error;
765 return up;
766 error:
767 isl_upoly_free(up);
768 return NULL;
771 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
772 __isl_take struct isl_upoly *up2)
774 struct isl_upoly_cst *cst1;
775 struct isl_upoly_cst *cst2;
777 up1 = isl_upoly_cow(up1);
778 if (!up1 || !up2)
779 goto error;
781 cst1 = isl_upoly_as_cst(up1);
782 cst2 = isl_upoly_as_cst(up2);
784 isl_int_mul(cst1->n, cst1->n, cst2->n);
785 isl_int_mul(cst1->d, cst1->d, cst2->d);
787 isl_upoly_cst_reduce(cst1);
789 isl_upoly_free(up2);
790 return up1;
791 error:
792 isl_upoly_free(up1);
793 isl_upoly_free(up2);
794 return NULL;
797 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
798 __isl_take struct isl_upoly *up2)
800 struct isl_upoly_rec *rec1;
801 struct isl_upoly_rec *rec2;
802 struct isl_upoly_rec *res = NULL;
803 int i, j;
804 int size;
806 rec1 = isl_upoly_as_rec(up1);
807 rec2 = isl_upoly_as_rec(up2);
808 if (!rec1 || !rec2)
809 goto error;
810 size = rec1->n + rec2->n - 1;
811 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
812 if (!res)
813 goto error;
815 for (i = 0; i < rec1->n; ++i) {
816 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
817 isl_upoly_copy(rec1->p[i]));
818 if (!res->p[i])
819 goto error;
820 res->n++;
822 for (; i < size; ++i) {
823 res->p[i] = isl_upoly_zero(up1->ctx);
824 if (!res->p[i])
825 goto error;
826 res->n++;
828 for (i = 0; i < rec1->n; ++i) {
829 for (j = 1; j < rec2->n; ++j) {
830 struct isl_upoly *up;
831 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
832 isl_upoly_copy(rec1->p[i]));
833 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
834 if (!res->p[i + j])
835 goto error;
839 isl_upoly_free(up1);
840 isl_upoly_free(up2);
842 return &res->up;
843 error:
844 isl_upoly_free(up1);
845 isl_upoly_free(up2);
846 isl_upoly_free(&res->up);
847 return NULL;
850 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
851 __isl_take struct isl_upoly *up2)
853 if (!up1 || !up2)
854 goto error;
856 if (isl_upoly_is_nan(up1)) {
857 isl_upoly_free(up2);
858 return up1;
861 if (isl_upoly_is_nan(up2)) {
862 isl_upoly_free(up1);
863 return up2;
866 if (isl_upoly_is_zero(up1)) {
867 isl_upoly_free(up2);
868 return up1;
871 if (isl_upoly_is_zero(up2)) {
872 isl_upoly_free(up1);
873 return up2;
876 if (isl_upoly_is_one(up1)) {
877 isl_upoly_free(up1);
878 return up2;
881 if (isl_upoly_is_one(up2)) {
882 isl_upoly_free(up2);
883 return up1;
886 if (up1->var < up2->var)
887 return isl_upoly_mul(up2, up1);
889 if (up2->var < up1->var) {
890 int i;
891 struct isl_upoly_rec *rec;
892 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
893 isl_ctx *ctx = up1->ctx;
894 isl_upoly_free(up1);
895 isl_upoly_free(up2);
896 return isl_upoly_nan(ctx);
898 up1 = isl_upoly_cow(up1);
899 rec = isl_upoly_as_rec(up1);
900 if (!rec)
901 goto error;
903 for (i = 0; i < rec->n; ++i) {
904 rec->p[i] = isl_upoly_mul(rec->p[i],
905 isl_upoly_copy(up2));
906 if (!rec->p[i])
907 goto error;
909 isl_upoly_free(up2);
910 return up1;
913 if (isl_upoly_is_cst(up1))
914 return isl_upoly_mul_cst(up1, up2);
916 return isl_upoly_mul_rec(up1, up2);
917 error:
918 isl_upoly_free(up1);
919 isl_upoly_free(up2);
920 return NULL;
923 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
924 unsigned power)
926 struct isl_upoly *res;
928 if (!up)
929 return NULL;
930 if (power == 1)
931 return up;
933 if (power % 2)
934 res = isl_upoly_copy(up);
935 else
936 res = isl_upoly_one(up->ctx);
938 while (power >>= 1) {
939 up = isl_upoly_mul(up, isl_upoly_copy(up));
940 if (power % 2)
941 res = isl_upoly_mul(res, isl_upoly_copy(up));
944 isl_upoly_free(up);
945 return res;
948 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_dim *dim,
949 unsigned n_div, __isl_take struct isl_upoly *up)
951 struct isl_qpolynomial *qp = NULL;
952 unsigned total;
954 if (!dim || !up)
955 goto error;
957 total = isl_dim_total(dim);
959 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
960 if (!qp)
961 goto error;
963 qp->ref = 1;
964 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
965 if (!qp->div)
966 goto error;
968 qp->dim = dim;
969 qp->upoly = up;
971 return qp;
972 error:
973 isl_dim_free(dim);
974 isl_upoly_free(up);
975 isl_qpolynomial_free(qp);
976 return NULL;
979 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
981 if (!qp)
982 return NULL;
984 qp->ref++;
985 return qp;
988 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
990 struct isl_qpolynomial *dup;
992 if (!qp)
993 return NULL;
995 dup = isl_qpolynomial_alloc(isl_dim_copy(qp->dim), qp->div->n_row,
996 isl_upoly_copy(qp->upoly));
997 if (!dup)
998 return NULL;
999 isl_mat_free(dup->div);
1000 dup->div = isl_mat_copy(qp->div);
1001 if (!dup->div)
1002 goto error;
1004 return dup;
1005 error:
1006 isl_qpolynomial_free(dup);
1007 return NULL;
1010 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1012 if (!qp)
1013 return NULL;
1015 if (qp->ref == 1)
1016 return qp;
1017 qp->ref--;
1018 return isl_qpolynomial_dup(qp);
1021 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1023 if (!qp)
1024 return;
1026 if (--qp->ref > 0)
1027 return;
1029 isl_dim_free(qp->dim);
1030 isl_mat_free(qp->div);
1031 isl_upoly_free(qp->upoly);
1033 free(qp);
1036 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1038 int i;
1039 struct isl_upoly_rec *rec;
1040 struct isl_upoly_cst *cst;
1042 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1043 if (!rec)
1044 return NULL;
1045 for (i = 0; i < 1 + power; ++i) {
1046 rec->p[i] = isl_upoly_zero(ctx);
1047 if (!rec->p[i])
1048 goto error;
1049 rec->n++;
1051 cst = isl_upoly_as_cst(rec->p[power]);
1052 isl_int_set_si(cst->n, 1);
1054 return &rec->up;
1055 error:
1056 isl_upoly_free(&rec->up);
1057 return NULL;
1060 /* r array maps original positions to new positions.
1062 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1063 int *r)
1065 int i;
1066 struct isl_upoly_rec *rec;
1067 struct isl_upoly *base;
1068 struct isl_upoly *res;
1070 if (isl_upoly_is_cst(up))
1071 return up;
1073 rec = isl_upoly_as_rec(up);
1074 if (!rec)
1075 goto error;
1077 isl_assert(up->ctx, rec->n >= 1, goto error);
1079 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1080 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1082 for (i = rec->n - 2; i >= 0; --i) {
1083 res = isl_upoly_mul(res, isl_upoly_copy(base));
1084 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1087 isl_upoly_free(base);
1088 isl_upoly_free(up);
1090 return res;
1091 error:
1092 isl_upoly_free(up);
1093 return NULL;
1096 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1098 int n_row, n_col;
1099 int equal;
1101 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1102 div1->n_col >= div2->n_col, return -1);
1104 if (div1->n_row == div2->n_row)
1105 return isl_mat_is_equal(div1, div2);
1107 n_row = div1->n_row;
1108 n_col = div1->n_col;
1109 div1->n_row = div2->n_row;
1110 div1->n_col = div2->n_col;
1112 equal = isl_mat_is_equal(div1, div2);
1114 div1->n_row = n_row;
1115 div1->n_col = n_col;
1117 return equal;
1120 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1122 int li, lj;
1124 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1125 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1127 if (li != lj)
1128 return li - lj;
1130 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1133 struct isl_div_sort_info {
1134 isl_mat *div;
1135 int row;
1138 static int div_sort_cmp(const void *p1, const void *p2)
1140 const struct isl_div_sort_info *i1, *i2;
1141 i1 = (const struct isl_div_sort_info *) p1;
1142 i2 = (const struct isl_div_sort_info *) p2;
1144 return cmp_row(i1->div, i1->row, i2->row);
1147 /* Sort divs and remove duplicates.
1149 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1151 int i;
1152 int skip;
1153 int len;
1154 struct isl_div_sort_info *array = NULL;
1155 int *pos = NULL, *at = NULL;
1156 int *reordering = NULL;
1157 unsigned div_pos;
1159 if (!qp)
1160 return NULL;
1161 if (qp->div->n_row <= 1)
1162 return qp;
1164 div_pos = isl_dim_total(qp->dim);
1166 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1167 qp->div->n_row);
1168 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1169 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1170 len = qp->div->n_col - 2;
1171 reordering = isl_alloc_array(qp->div->ctx, int, len);
1172 if (!array || !pos || !at || !reordering)
1173 goto error;
1175 for (i = 0; i < qp->div->n_row; ++i) {
1176 array[i].div = qp->div;
1177 array[i].row = i;
1178 pos[i] = i;
1179 at[i] = i;
1182 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1183 div_sort_cmp);
1185 for (i = 0; i < div_pos; ++i)
1186 reordering[i] = i;
1188 for (i = 0; i < qp->div->n_row; ++i) {
1189 if (pos[array[i].row] == i)
1190 continue;
1191 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1192 pos[at[i]] = pos[array[i].row];
1193 at[pos[array[i].row]] = at[i];
1194 at[i] = array[i].row;
1195 pos[array[i].row] = i;
1198 skip = 0;
1199 for (i = 0; i < len - div_pos; ++i) {
1200 if (i > 0 &&
1201 isl_seq_eq(qp->div->row[i - skip - 1],
1202 qp->div->row[i - skip], qp->div->n_col)) {
1203 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1204 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1205 2 + div_pos + i - skip);
1206 qp->div = isl_mat_drop_cols(qp->div,
1207 2 + div_pos + i - skip, 1);
1208 skip++;
1210 reordering[div_pos + array[i].row] = div_pos + i - skip;
1213 qp->upoly = reorder(qp->upoly, reordering);
1215 if (!qp->upoly || !qp->div)
1216 goto error;
1218 free(at);
1219 free(pos);
1220 free(array);
1221 free(reordering);
1223 return qp;
1224 error:
1225 free(at);
1226 free(pos);
1227 free(array);
1228 free(reordering);
1229 isl_qpolynomial_free(qp);
1230 return NULL;
1233 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1234 int *exp, int first)
1236 int i;
1237 struct isl_upoly_rec *rec;
1239 if (isl_upoly_is_cst(up))
1240 return up;
1242 if (up->var < first)
1243 return up;
1245 if (exp[up->var - first] == up->var - first)
1246 return up;
1248 up = isl_upoly_cow(up);
1249 if (!up)
1250 goto error;
1252 up->var = exp[up->var - first] + first;
1254 rec = isl_upoly_as_rec(up);
1255 if (!rec)
1256 goto error;
1258 for (i = 0; i < rec->n; ++i) {
1259 rec->p[i] = expand(rec->p[i], exp, first);
1260 if (!rec->p[i])
1261 goto error;
1264 return up;
1265 error:
1266 isl_upoly_free(up);
1267 return NULL;
1270 static __isl_give isl_qpolynomial *with_merged_divs(
1271 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1272 __isl_take isl_qpolynomial *qp2),
1273 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1275 int *exp1 = NULL;
1276 int *exp2 = NULL;
1277 isl_mat *div = NULL;
1279 qp1 = isl_qpolynomial_cow(qp1);
1280 qp2 = isl_qpolynomial_cow(qp2);
1282 if (!qp1 || !qp2)
1283 goto error;
1285 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1286 qp1->div->n_col >= qp2->div->n_col, goto error);
1288 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1289 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1290 if (!exp1 || !exp2)
1291 goto error;
1293 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1294 if (!div)
1295 goto error;
1297 isl_mat_free(qp1->div);
1298 qp1->div = isl_mat_copy(div);
1299 isl_mat_free(qp2->div);
1300 qp2->div = isl_mat_copy(div);
1302 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1303 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1305 if (!qp1->upoly || !qp2->upoly)
1306 goto error;
1308 isl_mat_free(div);
1309 free(exp1);
1310 free(exp2);
1312 return fn(qp1, qp2);
1313 error:
1314 isl_mat_free(div);
1315 free(exp1);
1316 free(exp2);
1317 isl_qpolynomial_free(qp1);
1318 isl_qpolynomial_free(qp2);
1319 return NULL;
1322 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1323 __isl_take isl_qpolynomial *qp2)
1325 qp1 = isl_qpolynomial_cow(qp1);
1327 if (!qp1 || !qp2)
1328 goto error;
1330 if (qp1->div->n_row < qp2->div->n_row)
1331 return isl_qpolynomial_add(qp2, qp1);
1333 isl_assert(qp1->dim->ctx, isl_dim_equal(qp1->dim, qp2->dim), goto error);
1334 if (!compatible_divs(qp1->div, qp2->div))
1335 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1337 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1338 if (!qp1->upoly)
1339 goto error;
1341 isl_qpolynomial_free(qp2);
1343 return qp1;
1344 error:
1345 isl_qpolynomial_free(qp1);
1346 isl_qpolynomial_free(qp2);
1347 return NULL;
1350 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1351 __isl_keep isl_set *dom,
1352 __isl_take isl_qpolynomial *qp1,
1353 __isl_take isl_qpolynomial *qp2)
1355 qp1 = isl_qpolynomial_add(qp1, qp2);
1356 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1357 return qp1;
1360 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1361 __isl_take isl_qpolynomial *qp2)
1363 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1366 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1367 __isl_take isl_qpolynomial *qp, isl_int v)
1369 if (isl_int_is_zero(v))
1370 return qp;
1372 qp = isl_qpolynomial_cow(qp);
1373 if (!qp)
1374 return NULL;
1376 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1377 if (!qp->upoly)
1378 goto error;
1380 return qp;
1381 error:
1382 isl_qpolynomial_free(qp);
1383 return NULL;
1387 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1389 if (!qp)
1390 return NULL;
1392 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1395 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1396 __isl_take isl_qpolynomial *qp, isl_int v)
1398 if (isl_int_is_one(v))
1399 return qp;
1401 if (qp && isl_int_is_zero(v)) {
1402 isl_qpolynomial *zero;
1403 zero = isl_qpolynomial_zero(isl_dim_copy(qp->dim));
1404 isl_qpolynomial_free(qp);
1405 return zero;
1408 qp = isl_qpolynomial_cow(qp);
1409 if (!qp)
1410 return NULL;
1412 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1413 if (!qp->upoly)
1414 goto error;
1416 return qp;
1417 error:
1418 isl_qpolynomial_free(qp);
1419 return NULL;
1422 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1423 __isl_take isl_qpolynomial *qp, isl_int v)
1425 return isl_qpolynomial_mul_isl_int(qp, v);
1428 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1429 __isl_take isl_qpolynomial *qp2)
1431 qp1 = isl_qpolynomial_cow(qp1);
1433 if (!qp1 || !qp2)
1434 goto error;
1436 if (qp1->div->n_row < qp2->div->n_row)
1437 return isl_qpolynomial_mul(qp2, qp1);
1439 isl_assert(qp1->dim->ctx, isl_dim_equal(qp1->dim, qp2->dim), goto error);
1440 if (!compatible_divs(qp1->div, qp2->div))
1441 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1443 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1444 if (!qp1->upoly)
1445 goto error;
1447 isl_qpolynomial_free(qp2);
1449 return qp1;
1450 error:
1451 isl_qpolynomial_free(qp1);
1452 isl_qpolynomial_free(qp2);
1453 return NULL;
1456 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1457 unsigned power)
1459 qp = isl_qpolynomial_cow(qp);
1461 if (!qp)
1462 return NULL;
1464 qp->upoly = isl_upoly_pow(qp->upoly, power);
1465 if (!qp->upoly)
1466 goto error;
1468 return qp;
1469 error:
1470 isl_qpolynomial_free(qp);
1471 return NULL;
1474 __isl_give isl_qpolynomial *isl_qpolynomial_zero(__isl_take isl_dim *dim)
1476 if (!dim)
1477 return NULL;
1478 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1481 __isl_give isl_qpolynomial *isl_qpolynomial_one(__isl_take isl_dim *dim)
1483 if (!dim)
1484 return NULL;
1485 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1488 __isl_give isl_qpolynomial *isl_qpolynomial_infty(__isl_take isl_dim *dim)
1490 if (!dim)
1491 return NULL;
1492 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1495 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(__isl_take isl_dim *dim)
1497 if (!dim)
1498 return NULL;
1499 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1502 __isl_give isl_qpolynomial *isl_qpolynomial_nan(__isl_take isl_dim *dim)
1504 if (!dim)
1505 return NULL;
1506 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1509 __isl_give isl_qpolynomial *isl_qpolynomial_cst(__isl_take isl_dim *dim,
1510 isl_int v)
1512 struct isl_qpolynomial *qp;
1513 struct isl_upoly_cst *cst;
1515 if (!dim)
1516 return NULL;
1518 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1519 if (!qp)
1520 return NULL;
1522 cst = isl_upoly_as_cst(qp->upoly);
1523 isl_int_set(cst->n, v);
1525 return qp;
1528 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1529 isl_int *n, isl_int *d)
1531 struct isl_upoly_cst *cst;
1533 if (!qp)
1534 return -1;
1536 if (!isl_upoly_is_cst(qp->upoly))
1537 return 0;
1539 cst = isl_upoly_as_cst(qp->upoly);
1540 if (!cst)
1541 return -1;
1543 if (n)
1544 isl_int_set(*n, cst->n);
1545 if (d)
1546 isl_int_set(*d, cst->d);
1548 return 1;
1551 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1553 int is_cst;
1554 struct isl_upoly_rec *rec;
1556 if (!up)
1557 return -1;
1559 if (up->var < 0)
1560 return 1;
1562 rec = isl_upoly_as_rec(up);
1563 if (!rec)
1564 return -1;
1566 if (rec->n > 2)
1567 return 0;
1569 isl_assert(up->ctx, rec->n > 1, return -1);
1571 is_cst = isl_upoly_is_cst(rec->p[1]);
1572 if (is_cst < 0)
1573 return -1;
1574 if (!is_cst)
1575 return 0;
1577 return isl_upoly_is_affine(rec->p[0]);
1580 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1582 if (!qp)
1583 return -1;
1585 if (qp->div->n_row > 0)
1586 return 0;
1588 return isl_upoly_is_affine(qp->upoly);
1591 static void update_coeff(__isl_keep isl_vec *aff,
1592 __isl_keep struct isl_upoly_cst *cst, int pos)
1594 isl_int gcd;
1595 isl_int f;
1597 if (isl_int_is_zero(cst->n))
1598 return;
1600 isl_int_init(gcd);
1601 isl_int_init(f);
1602 isl_int_gcd(gcd, cst->d, aff->el[0]);
1603 isl_int_divexact(f, cst->d, gcd);
1604 isl_int_divexact(gcd, aff->el[0], gcd);
1605 isl_seq_scale(aff->el, aff->el, f, aff->size);
1606 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1607 isl_int_clear(gcd);
1608 isl_int_clear(f);
1611 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1612 __isl_keep isl_vec *aff)
1614 struct isl_upoly_cst *cst;
1615 struct isl_upoly_rec *rec;
1617 if (!up || !aff)
1618 return -1;
1620 if (up->var < 0) {
1621 struct isl_upoly_cst *cst;
1623 cst = isl_upoly_as_cst(up);
1624 if (!cst)
1625 return -1;
1626 update_coeff(aff, cst, 0);
1627 return 0;
1630 rec = isl_upoly_as_rec(up);
1631 if (!rec)
1632 return -1;
1633 isl_assert(up->ctx, rec->n == 2, return -1);
1635 cst = isl_upoly_as_cst(rec->p[1]);
1636 if (!cst)
1637 return -1;
1638 update_coeff(aff, cst, 1 + up->var);
1640 return isl_upoly_update_affine(rec->p[0], aff);
1643 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1644 __isl_keep isl_qpolynomial *qp)
1646 isl_vec *aff;
1647 unsigned d;
1649 if (!qp)
1650 return NULL;
1652 d = isl_dim_total(qp->dim);
1653 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1654 if (!aff)
1655 return NULL;
1657 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1658 isl_int_set_si(aff->el[0], 1);
1660 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1661 goto error;
1663 return aff;
1664 error:
1665 isl_vec_free(aff);
1666 return NULL;
1669 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
1670 __isl_keep isl_qpolynomial *qp2)
1672 int equal;
1674 if (!qp1 || !qp2)
1675 return -1;
1677 equal = isl_dim_equal(qp1->dim, qp2->dim);
1678 if (equal < 0 || !equal)
1679 return equal;
1681 equal = isl_mat_is_equal(qp1->div, qp2->div);
1682 if (equal < 0 || !equal)
1683 return equal;
1685 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1688 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1690 int i;
1691 struct isl_upoly_rec *rec;
1693 if (isl_upoly_is_cst(up)) {
1694 struct isl_upoly_cst *cst;
1695 cst = isl_upoly_as_cst(up);
1696 if (!cst)
1697 return;
1698 isl_int_lcm(*d, *d, cst->d);
1699 return;
1702 rec = isl_upoly_as_rec(up);
1703 if (!rec)
1704 return;
1706 for (i = 0; i < rec->n; ++i)
1707 upoly_update_den(rec->p[i], d);
1710 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1712 isl_int_set_si(*d, 1);
1713 if (!qp)
1714 return;
1715 upoly_update_den(qp->upoly, d);
1718 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow(__isl_take isl_dim *dim,
1719 int pos, int power)
1721 struct isl_ctx *ctx;
1723 if (!dim)
1724 return NULL;
1726 ctx = dim->ctx;
1728 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1731 __isl_give isl_qpolynomial *isl_qpolynomial_var(__isl_take isl_dim *dim,
1732 enum isl_dim_type type, unsigned pos)
1734 if (!dim)
1735 return NULL;
1737 isl_assert(dim->ctx, isl_dim_size(dim, isl_dim_in) == 0, goto error);
1738 isl_assert(dim->ctx, pos < isl_dim_size(dim, type), goto error);
1740 if (type == isl_dim_set)
1741 pos += isl_dim_size(dim, isl_dim_param);
1743 return isl_qpolynomial_var_pow(dim, pos, 1);
1744 error:
1745 isl_dim_free(dim);
1746 return NULL;
1749 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1750 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1752 int i;
1753 struct isl_upoly_rec *rec;
1754 struct isl_upoly *base, *res;
1756 if (!up)
1757 return NULL;
1759 if (isl_upoly_is_cst(up))
1760 return up;
1762 if (up->var < first)
1763 return up;
1765 rec = isl_upoly_as_rec(up);
1766 if (!rec)
1767 goto error;
1769 isl_assert(up->ctx, rec->n >= 1, goto error);
1771 if (up->var >= first + n)
1772 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1773 else
1774 base = isl_upoly_copy(subs[up->var - first]);
1776 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1777 for (i = rec->n - 2; i >= 0; --i) {
1778 struct isl_upoly *t;
1779 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1780 res = isl_upoly_mul(res, isl_upoly_copy(base));
1781 res = isl_upoly_sum(res, t);
1784 isl_upoly_free(base);
1785 isl_upoly_free(up);
1787 return res;
1788 error:
1789 isl_upoly_free(up);
1790 return NULL;
1793 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1794 isl_int denom, unsigned len)
1796 int i;
1797 struct isl_upoly *up;
1799 isl_assert(ctx, len >= 1, return NULL);
1801 up = isl_upoly_rat_cst(ctx, f[0], denom);
1802 for (i = 0; i < len - 1; ++i) {
1803 struct isl_upoly *t;
1804 struct isl_upoly *c;
1806 if (isl_int_is_zero(f[1 + i]))
1807 continue;
1809 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1810 t = isl_upoly_var_pow(ctx, i, 1);
1811 t = isl_upoly_mul(c, t);
1812 up = isl_upoly_sum(up, t);
1815 return up;
1818 /* Remove common factor of non-constant terms and denominator.
1820 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1822 isl_ctx *ctx = qp->div->ctx;
1823 unsigned total = qp->div->n_col - 2;
1825 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1826 isl_int_gcd(ctx->normalize_gcd,
1827 ctx->normalize_gcd, qp->div->row[div][0]);
1828 if (isl_int_is_one(ctx->normalize_gcd))
1829 return;
1831 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1832 ctx->normalize_gcd, total);
1833 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1834 ctx->normalize_gcd);
1835 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1836 ctx->normalize_gcd);
1839 /* Replace the integer division identified by "div" by the polynomial "s".
1840 * The integer division is assumed not to appear in the definition
1841 * of any other integer divisions.
1843 static __isl_give isl_qpolynomial *substitute_div(
1844 __isl_take isl_qpolynomial *qp,
1845 int div, __isl_take struct isl_upoly *s)
1847 int i;
1848 int total;
1849 int *reordering;
1851 if (!qp || !s)
1852 goto error;
1854 qp = isl_qpolynomial_cow(qp);
1855 if (!qp)
1856 goto error;
1858 total = isl_dim_total(qp->dim);
1859 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1860 if (!qp->upoly)
1861 goto error;
1863 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1864 if (!reordering)
1865 goto error;
1866 for (i = 0; i < total + div; ++i)
1867 reordering[i] = i;
1868 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1869 reordering[i] = i - 1;
1870 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1871 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1872 qp->upoly = reorder(qp->upoly, reordering);
1873 free(reordering);
1875 if (!qp->upoly || !qp->div)
1876 goto error;
1878 isl_upoly_free(s);
1879 return qp;
1880 error:
1881 isl_qpolynomial_free(qp);
1882 isl_upoly_free(s);
1883 return NULL;
1886 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1887 * divisions because d is equal to 1 by their definition, i.e., e.
1889 static __isl_give isl_qpolynomial *substitute_non_divs(
1890 __isl_take isl_qpolynomial *qp)
1892 int i, j;
1893 int total;
1894 struct isl_upoly *s;
1896 if (!qp)
1897 return NULL;
1899 total = isl_dim_total(qp->dim);
1900 for (i = 0; qp && i < qp->div->n_row; ++i) {
1901 if (!isl_int_is_one(qp->div->row[i][0]))
1902 continue;
1903 for (j = i + 1; j < qp->div->n_row; ++j) {
1904 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1905 continue;
1906 isl_seq_combine(qp->div->row[j] + 1,
1907 qp->div->ctx->one, qp->div->row[j] + 1,
1908 qp->div->row[j][2 + total + i],
1909 qp->div->row[i] + 1, 1 + total + i);
1910 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1911 normalize_div(qp, j);
1913 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1914 qp->div->row[i][0], qp->div->n_col - 1);
1915 qp = substitute_div(qp, i, s);
1916 --i;
1919 return qp;
1922 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1923 * with d the denominator. When replacing the coefficient e of x by
1924 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1925 * inside the division, so we need to add floor(e/d) * x outside.
1926 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1927 * to adjust the coefficient of x in each later div that depends on the
1928 * current div "div" and also in the affine expression "aff"
1929 * (if it too depends on "div").
1931 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1932 __isl_keep isl_vec *aff)
1934 int i, j;
1935 isl_int v;
1936 unsigned total = qp->div->n_col - qp->div->n_row - 2;
1938 isl_int_init(v);
1939 for (i = 0; i < 1 + total + div; ++i) {
1940 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
1941 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
1942 continue;
1943 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
1944 isl_int_fdiv_r(qp->div->row[div][1 + i],
1945 qp->div->row[div][1 + i], qp->div->row[div][0]);
1946 if (!isl_int_is_zero(aff->el[1 + total + div]))
1947 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
1948 for (j = div + 1; j < qp->div->n_row; ++j) {
1949 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
1950 continue;
1951 isl_int_addmul(qp->div->row[j][1 + i],
1952 v, qp->div->row[j][2 + total + div]);
1955 isl_int_clear(v);
1958 /* Check if the last non-zero coefficient is bigger that half of the
1959 * denominator. If so, we will invert the div to further reduce the number
1960 * of distinct divs that may appear.
1961 * If the last non-zero coefficient is exactly half the denominator,
1962 * then we continue looking for earlier coefficients that are bigger
1963 * than half the denominator.
1965 static int needs_invert(__isl_keep isl_mat *div, int row)
1967 int i;
1968 int cmp;
1970 for (i = div->n_col - 1; i >= 1; --i) {
1971 if (isl_int_is_zero(div->row[row][i]))
1972 continue;
1973 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
1974 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
1975 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
1976 if (cmp)
1977 return cmp > 0;
1978 if (i == 1)
1979 return 1;
1982 return 0;
1985 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
1986 * We only invert the coefficients of e (and the coefficient of q in
1987 * later divs and in "aff"). After calling this function, the
1988 * coefficients of e should be reduced again.
1990 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
1991 __isl_keep isl_vec *aff)
1993 unsigned total = qp->div->n_col - qp->div->n_row - 2;
1995 isl_seq_neg(qp->div->row[div] + 1,
1996 qp->div->row[div] + 1, qp->div->n_col - 1);
1997 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
1998 isl_int_add(qp->div->row[div][1],
1999 qp->div->row[div][1], qp->div->row[div][0]);
2000 if (!isl_int_is_zero(aff->el[1 + total + div]))
2001 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2002 isl_mat_col_mul(qp->div, 2 + total + div,
2003 qp->div->ctx->negone, 2 + total + div);
2006 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2007 * in the interval [0, d-1], with d the denominator and such that the
2008 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2010 * After the reduction, some divs may have become redundant or identical,
2011 * so we call substitute_non_divs and sort_divs. If these functions
2012 * eliminate divs or merge two or more divs into one, the coefficients
2013 * of the enclosing divs may have to be reduced again, so we call
2014 * ourselves recursively if the number of divs decreases.
2016 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2018 int i;
2019 isl_vec *aff = NULL;
2020 struct isl_upoly *s;
2021 unsigned n_div;
2023 if (!qp)
2024 return NULL;
2026 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2027 aff = isl_vec_clr(aff);
2028 if (!aff)
2029 goto error;
2031 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2033 for (i = 0; i < qp->div->n_row; ++i) {
2034 normalize_div(qp, i);
2035 reduce_div(qp, i, aff);
2036 if (needs_invert(qp->div, i)) {
2037 invert_div(qp, i, aff);
2038 reduce_div(qp, i, aff);
2042 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2043 qp->div->ctx->one, aff->size);
2044 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2045 isl_upoly_free(s);
2046 if (!qp->upoly)
2047 goto error;
2049 isl_vec_free(aff);
2051 n_div = qp->div->n_row;
2052 qp = substitute_non_divs(qp);
2053 qp = sort_divs(qp);
2054 if (qp && qp->div->n_row < n_div)
2055 return reduce_divs(qp);
2057 return qp;
2058 error:
2059 isl_qpolynomial_free(qp);
2060 isl_vec_free(aff);
2061 return NULL;
2064 /* Assumes each div only depends on earlier divs.
2066 __isl_give isl_qpolynomial *isl_qpolynomial_div_pow(__isl_take isl_div *div,
2067 int power)
2069 struct isl_qpolynomial *qp = NULL;
2070 struct isl_upoly_rec *rec;
2071 struct isl_upoly_cst *cst;
2072 int i, d;
2073 int pos;
2075 if (!div)
2076 return NULL;
2078 d = div->line - div->bmap->div;
2080 pos = isl_dim_total(div->bmap->dim) + d;
2081 rec = isl_upoly_alloc_rec(div->ctx, pos, 1 + power);
2082 qp = isl_qpolynomial_alloc(isl_basic_map_get_dim(div->bmap),
2083 div->bmap->n_div, &rec->up);
2084 if (!qp)
2085 goto error;
2087 for (i = 0; i < div->bmap->n_div; ++i)
2088 isl_seq_cpy(qp->div->row[i], div->bmap->div[i], qp->div->n_col);
2090 for (i = 0; i < 1 + power; ++i) {
2091 rec->p[i] = isl_upoly_zero(div->ctx);
2092 if (!rec->p[i])
2093 goto error;
2094 rec->n++;
2096 cst = isl_upoly_as_cst(rec->p[power]);
2097 isl_int_set_si(cst->n, 1);
2099 isl_div_free(div);
2101 qp = reduce_divs(qp);
2103 return qp;
2104 error:
2105 isl_qpolynomial_free(qp);
2106 isl_div_free(div);
2107 return NULL;
2110 __isl_give isl_qpolynomial *isl_qpolynomial_div(__isl_take isl_div *div)
2112 return isl_qpolynomial_div_pow(div, 1);
2115 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(__isl_take isl_dim *dim,
2116 const isl_int n, const isl_int d)
2118 struct isl_qpolynomial *qp;
2119 struct isl_upoly_cst *cst;
2121 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2122 if (!qp)
2123 return NULL;
2125 cst = isl_upoly_as_cst(qp->upoly);
2126 isl_int_set(cst->n, n);
2127 isl_int_set(cst->d, d);
2129 return qp;
2132 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2134 struct isl_upoly_rec *rec;
2135 int i;
2137 if (!up)
2138 return -1;
2140 if (isl_upoly_is_cst(up))
2141 return 0;
2143 if (up->var < d)
2144 active[up->var] = 1;
2146 rec = isl_upoly_as_rec(up);
2147 for (i = 0; i < rec->n; ++i)
2148 if (up_set_active(rec->p[i], active, d) < 0)
2149 return -1;
2151 return 0;
2154 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2156 int i, j;
2157 int d = isl_dim_total(qp->dim);
2159 if (!qp || !active)
2160 return -1;
2162 for (i = 0; i < d; ++i)
2163 for (j = 0; j < qp->div->n_row; ++j) {
2164 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2165 continue;
2166 active[i] = 1;
2167 break;
2170 return up_set_active(qp->upoly, active, d);
2173 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2174 enum isl_dim_type type, unsigned first, unsigned n)
2176 int i;
2177 int *active = NULL;
2178 int involves = 0;
2180 if (!qp)
2181 return -1;
2182 if (n == 0)
2183 return 0;
2185 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
2186 return -1);
2187 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2188 type == isl_dim_set, return -1);
2190 active = isl_calloc_array(qp->dim->ctx, int, isl_dim_total(qp->dim));
2191 if (set_active(qp, active) < 0)
2192 goto error;
2194 if (type == isl_dim_set)
2195 first += isl_dim_size(qp->dim, isl_dim_param);
2196 for (i = 0; i < n; ++i)
2197 if (active[first + i]) {
2198 involves = 1;
2199 break;
2202 free(active);
2204 return involves;
2205 error:
2206 free(active);
2207 return -1;
2210 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2211 * of the divs that do appear in the quasi-polynomial.
2213 static __isl_give isl_qpolynomial *remove_redundant_divs(
2214 __isl_take isl_qpolynomial *qp)
2216 int i, j;
2217 int d;
2218 int len;
2219 int skip;
2220 int *active = NULL;
2221 int *reordering = NULL;
2222 int redundant = 0;
2223 int n_div;
2224 isl_ctx *ctx;
2226 if (!qp)
2227 return NULL;
2228 if (qp->div->n_row == 0)
2229 return qp;
2231 d = isl_dim_total(qp->dim);
2232 len = qp->div->n_col - 2;
2233 ctx = isl_qpolynomial_get_ctx(qp);
2234 active = isl_calloc_array(ctx, int, len);
2235 if (!active)
2236 goto error;
2238 if (up_set_active(qp->upoly, active, len) < 0)
2239 goto error;
2241 for (i = qp->div->n_row - 1; i >= 0; --i) {
2242 if (!active[d + i]) {
2243 redundant = 1;
2244 continue;
2246 for (j = 0; j < i; ++j) {
2247 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2248 continue;
2249 active[d + j] = 1;
2250 break;
2254 if (!redundant) {
2255 free(active);
2256 return qp;
2259 reordering = isl_alloc_array(qp->div->ctx, int, len);
2260 if (!reordering)
2261 goto error;
2263 for (i = 0; i < d; ++i)
2264 reordering[i] = i;
2266 skip = 0;
2267 n_div = qp->div->n_row;
2268 for (i = 0; i < n_div; ++i) {
2269 if (!active[d + i]) {
2270 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2271 qp->div = isl_mat_drop_cols(qp->div,
2272 2 + d + i - skip, 1);
2273 skip++;
2275 reordering[d + i] = d + i - skip;
2278 qp->upoly = reorder(qp->upoly, reordering);
2280 if (!qp->upoly || !qp->div)
2281 goto error;
2283 free(active);
2284 free(reordering);
2286 return qp;
2287 error:
2288 free(active);
2289 free(reordering);
2290 isl_qpolynomial_free(qp);
2291 return NULL;
2294 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2295 unsigned first, unsigned n)
2297 int i;
2298 struct isl_upoly_rec *rec;
2300 if (!up)
2301 return NULL;
2302 if (n == 0 || up->var < 0 || up->var < first)
2303 return up;
2304 if (up->var < first + n) {
2305 up = replace_by_constant_term(up);
2306 return isl_upoly_drop(up, first, n);
2308 up = isl_upoly_cow(up);
2309 if (!up)
2310 return NULL;
2311 up->var -= n;
2312 rec = isl_upoly_as_rec(up);
2313 if (!rec)
2314 goto error;
2316 for (i = 0; i < rec->n; ++i) {
2317 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2318 if (!rec->p[i])
2319 goto error;
2322 return up;
2323 error:
2324 isl_upoly_free(up);
2325 return NULL;
2328 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2329 __isl_take isl_qpolynomial *qp,
2330 enum isl_dim_type type, unsigned pos, const char *s)
2332 qp = isl_qpolynomial_cow(qp);
2333 if (!qp)
2334 return NULL;
2335 qp->dim = isl_dim_set_name(qp->dim, type, pos, s);
2336 if (!qp->dim)
2337 goto error;
2338 return qp;
2339 error:
2340 isl_qpolynomial_free(qp);
2341 return NULL;
2344 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2345 __isl_take isl_qpolynomial *qp,
2346 enum isl_dim_type type, unsigned first, unsigned n)
2348 if (!qp)
2349 return NULL;
2350 if (n == 0 && !isl_dim_is_named_or_nested(qp->dim, type))
2351 return qp;
2353 qp = isl_qpolynomial_cow(qp);
2354 if (!qp)
2355 return NULL;
2357 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
2358 goto error);
2359 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2360 type == isl_dim_set, goto error);
2362 qp->dim = isl_dim_drop(qp->dim, type, first, n);
2363 if (!qp->dim)
2364 goto error;
2366 if (type == isl_dim_set)
2367 first += isl_dim_size(qp->dim, isl_dim_param);
2369 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2370 if (!qp->div)
2371 goto error;
2373 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2374 if (!qp->upoly)
2375 goto error;
2377 return qp;
2378 error:
2379 isl_qpolynomial_free(qp);
2380 return NULL;
2383 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2384 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2386 int i, j, k;
2387 isl_int denom;
2388 unsigned total;
2389 unsigned n_div;
2390 struct isl_upoly *up;
2392 if (!eq)
2393 goto error;
2394 if (eq->n_eq == 0) {
2395 isl_basic_set_free(eq);
2396 return qp;
2399 qp = isl_qpolynomial_cow(qp);
2400 if (!qp)
2401 goto error;
2402 qp->div = isl_mat_cow(qp->div);
2403 if (!qp->div)
2404 goto error;
2406 total = 1 + isl_dim_total(eq->dim);
2407 n_div = eq->n_div;
2408 isl_int_init(denom);
2409 for (i = 0; i < eq->n_eq; ++i) {
2410 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2411 if (j < 0 || j == 0 || j >= total)
2412 continue;
2414 for (k = 0; k < qp->div->n_row; ++k) {
2415 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2416 continue;
2417 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2418 &qp->div->row[k][0]);
2419 normalize_div(qp, k);
2422 if (isl_int_is_pos(eq->eq[i][j]))
2423 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2424 isl_int_abs(denom, eq->eq[i][j]);
2425 isl_int_set_si(eq->eq[i][j], 0);
2427 up = isl_upoly_from_affine(qp->dim->ctx,
2428 eq->eq[i], denom, total);
2429 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2430 isl_upoly_free(up);
2432 isl_int_clear(denom);
2434 if (!qp->upoly)
2435 goto error;
2437 isl_basic_set_free(eq);
2439 qp = substitute_non_divs(qp);
2440 qp = sort_divs(qp);
2442 return qp;
2443 error:
2444 isl_basic_set_free(eq);
2445 isl_qpolynomial_free(qp);
2446 return NULL;
2449 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2451 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2452 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2454 if (!qp || !eq)
2455 goto error;
2456 if (qp->div->n_row > 0)
2457 eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row);
2458 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2459 error:
2460 isl_basic_set_free(eq);
2461 isl_qpolynomial_free(qp);
2462 return NULL;
2465 static __isl_give isl_basic_set *add_div_constraints(
2466 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2468 int i;
2469 unsigned total;
2471 if (!bset || !div)
2472 goto error;
2474 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2475 if (!bset)
2476 goto error;
2477 total = isl_basic_set_total_dim(bset);
2478 for (i = 0; i < div->n_row; ++i)
2479 if (isl_basic_set_add_div_constraints_var(bset,
2480 total - div->n_row + i, div->row[i]) < 0)
2481 goto error;
2483 isl_mat_free(div);
2484 return bset;
2485 error:
2486 isl_mat_free(div);
2487 isl_basic_set_free(bset);
2488 return NULL;
2491 /* Look for equalities among the variables shared by context and qp
2492 * and the integer divisions of qp, if any.
2493 * The equalities are then used to eliminate variables and/or integer
2494 * divisions from qp.
2496 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2497 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2499 isl_basic_set *aff;
2501 if (!qp)
2502 goto error;
2503 if (qp->div->n_row > 0) {
2504 isl_basic_set *bset;
2505 context = isl_set_add_dims(context, isl_dim_set,
2506 qp->div->n_row);
2507 bset = isl_basic_set_universe(isl_set_get_dim(context));
2508 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2509 context = isl_set_intersect(context,
2510 isl_set_from_basic_set(bset));
2513 aff = isl_set_affine_hull(context);
2514 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2515 error:
2516 isl_qpolynomial_free(qp);
2517 isl_set_free(context);
2518 return NULL;
2521 #undef PW
2522 #define PW isl_pw_qpolynomial
2523 #undef EL
2524 #define EL isl_qpolynomial
2525 #undef EL_IS_ZERO
2526 #define EL_IS_ZERO is_zero
2527 #undef ZERO
2528 #define ZERO zero
2529 #undef IS_ZERO
2530 #define IS_ZERO is_zero
2531 #undef FIELD
2532 #define FIELD qp
2534 #include <isl_pw_templ.c>
2536 #undef UNION
2537 #define UNION isl_union_pw_qpolynomial
2538 #undef PART
2539 #define PART isl_pw_qpolynomial
2540 #undef PARTS
2541 #define PARTS pw_qpolynomial
2543 #include <isl_union_templ.c>
2545 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2547 if (!pwqp)
2548 return -1;
2550 if (pwqp->n != -1)
2551 return 0;
2553 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2554 return 0;
2556 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2559 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2560 __isl_take isl_pw_qpolynomial *pwqp1,
2561 __isl_take isl_pw_qpolynomial *pwqp2)
2563 int i, j, n;
2564 struct isl_pw_qpolynomial *res;
2566 if (!pwqp1 || !pwqp2)
2567 goto error;
2569 isl_assert(pwqp1->dim->ctx, isl_dim_equal(pwqp1->dim, pwqp2->dim),
2570 goto error);
2572 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2573 isl_pw_qpolynomial_free(pwqp2);
2574 return pwqp1;
2577 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2578 isl_pw_qpolynomial_free(pwqp1);
2579 return pwqp2;
2582 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2583 isl_pw_qpolynomial_free(pwqp1);
2584 return pwqp2;
2587 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2588 isl_pw_qpolynomial_free(pwqp2);
2589 return pwqp1;
2592 n = pwqp1->n * pwqp2->n;
2593 res = isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1->dim), n);
2595 for (i = 0; i < pwqp1->n; ++i) {
2596 for (j = 0; j < pwqp2->n; ++j) {
2597 struct isl_set *common;
2598 struct isl_qpolynomial *prod;
2599 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2600 isl_set_copy(pwqp2->p[j].set));
2601 if (isl_set_plain_is_empty(common)) {
2602 isl_set_free(common);
2603 continue;
2606 prod = isl_qpolynomial_mul(
2607 isl_qpolynomial_copy(pwqp1->p[i].qp),
2608 isl_qpolynomial_copy(pwqp2->p[j].qp));
2610 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2614 isl_pw_qpolynomial_free(pwqp1);
2615 isl_pw_qpolynomial_free(pwqp2);
2617 return res;
2618 error:
2619 isl_pw_qpolynomial_free(pwqp1);
2620 isl_pw_qpolynomial_free(pwqp2);
2621 return NULL;
2624 __isl_give struct isl_upoly *isl_upoly_eval(
2625 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2627 int i;
2628 struct isl_upoly_rec *rec;
2629 struct isl_upoly *res;
2630 struct isl_upoly *base;
2632 if (isl_upoly_is_cst(up)) {
2633 isl_vec_free(vec);
2634 return up;
2637 rec = isl_upoly_as_rec(up);
2638 if (!rec)
2639 goto error;
2641 isl_assert(up->ctx, rec->n >= 1, goto error);
2643 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2645 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2646 isl_vec_copy(vec));
2648 for (i = rec->n - 2; i >= 0; --i) {
2649 res = isl_upoly_mul(res, isl_upoly_copy(base));
2650 res = isl_upoly_sum(res,
2651 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2652 isl_vec_copy(vec)));
2655 isl_upoly_free(base);
2656 isl_upoly_free(up);
2657 isl_vec_free(vec);
2658 return res;
2659 error:
2660 isl_upoly_free(up);
2661 isl_vec_free(vec);
2662 return NULL;
2665 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2666 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2668 isl_vec *ext;
2669 struct isl_upoly *up;
2670 isl_dim *dim;
2672 if (!qp || !pnt)
2673 goto error;
2674 isl_assert(pnt->dim->ctx, isl_dim_equal(pnt->dim, qp->dim), goto error);
2676 if (qp->div->n_row == 0)
2677 ext = isl_vec_copy(pnt->vec);
2678 else {
2679 int i;
2680 unsigned dim = isl_dim_total(qp->dim);
2681 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2682 if (!ext)
2683 goto error;
2685 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2686 for (i = 0; i < qp->div->n_row; ++i) {
2687 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2688 1 + dim + i, &ext->el[1+dim+i]);
2689 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2690 qp->div->row[i][0]);
2694 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2695 if (!up)
2696 goto error;
2698 dim = isl_dim_copy(qp->dim);
2699 isl_qpolynomial_free(qp);
2700 isl_point_free(pnt);
2702 return isl_qpolynomial_alloc(dim, 0, up);
2703 error:
2704 isl_qpolynomial_free(qp);
2705 isl_point_free(pnt);
2706 return NULL;
2709 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2710 __isl_keep struct isl_upoly_cst *cst2)
2712 int cmp;
2713 isl_int t;
2714 isl_int_init(t);
2715 isl_int_mul(t, cst1->n, cst2->d);
2716 isl_int_submul(t, cst2->n, cst1->d);
2717 cmp = isl_int_sgn(t);
2718 isl_int_clear(t);
2719 return cmp;
2722 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2723 __isl_keep isl_qpolynomial *qp2)
2725 struct isl_upoly_cst *cst1, *cst2;
2727 if (!qp1 || !qp2)
2728 return -1;
2729 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2730 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2731 if (isl_qpolynomial_is_nan(qp1))
2732 return -1;
2733 if (isl_qpolynomial_is_nan(qp2))
2734 return -1;
2735 cst1 = isl_upoly_as_cst(qp1->upoly);
2736 cst2 = isl_upoly_as_cst(qp2->upoly);
2738 return isl_upoly_cmp(cst1, cst2) <= 0;
2741 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2742 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2744 struct isl_upoly_cst *cst1, *cst2;
2745 int cmp;
2747 if (!qp1 || !qp2)
2748 goto error;
2749 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2750 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2751 cst1 = isl_upoly_as_cst(qp1->upoly);
2752 cst2 = isl_upoly_as_cst(qp2->upoly);
2753 cmp = isl_upoly_cmp(cst1, cst2);
2755 if (cmp <= 0) {
2756 isl_qpolynomial_free(qp2);
2757 } else {
2758 isl_qpolynomial_free(qp1);
2759 qp1 = qp2;
2761 return qp1;
2762 error:
2763 isl_qpolynomial_free(qp1);
2764 isl_qpolynomial_free(qp2);
2765 return NULL;
2768 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2769 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2771 struct isl_upoly_cst *cst1, *cst2;
2772 int cmp;
2774 if (!qp1 || !qp2)
2775 goto error;
2776 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2777 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2778 cst1 = isl_upoly_as_cst(qp1->upoly);
2779 cst2 = isl_upoly_as_cst(qp2->upoly);
2780 cmp = isl_upoly_cmp(cst1, cst2);
2782 if (cmp >= 0) {
2783 isl_qpolynomial_free(qp2);
2784 } else {
2785 isl_qpolynomial_free(qp1);
2786 qp1 = qp2;
2788 return qp1;
2789 error:
2790 isl_qpolynomial_free(qp1);
2791 isl_qpolynomial_free(qp2);
2792 return NULL;
2795 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2796 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2797 unsigned first, unsigned n)
2799 unsigned total;
2800 unsigned g_pos;
2801 int *exp;
2803 if (n == 0 && !isl_dim_is_named_or_nested(qp->dim, type))
2804 return qp;
2806 qp = isl_qpolynomial_cow(qp);
2807 if (!qp)
2808 return NULL;
2810 isl_assert(qp->div->ctx, first <= isl_dim_size(qp->dim, type),
2811 goto error);
2813 g_pos = pos(qp->dim, type) + first;
2815 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
2816 if (!qp->div)
2817 goto error;
2819 total = qp->div->n_col - 2;
2820 if (total > g_pos) {
2821 int i;
2822 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2823 if (!exp)
2824 goto error;
2825 for (i = 0; i < total - g_pos; ++i)
2826 exp[i] = i + n;
2827 qp->upoly = expand(qp->upoly, exp, g_pos);
2828 free(exp);
2829 if (!qp->upoly)
2830 goto error;
2833 qp->dim = isl_dim_insert(qp->dim, type, first, n);
2834 if (!qp->dim)
2835 goto error;
2837 return qp;
2838 error:
2839 isl_qpolynomial_free(qp);
2840 return NULL;
2843 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2844 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2846 unsigned pos;
2848 pos = isl_qpolynomial_dim(qp, type);
2850 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2853 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2854 __isl_take isl_pw_qpolynomial *pwqp,
2855 enum isl_dim_type type, unsigned n)
2857 unsigned pos;
2859 pos = isl_pw_qpolynomial_dim(pwqp, type);
2861 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2864 static int *reordering_move(isl_ctx *ctx,
2865 unsigned len, unsigned dst, unsigned src, unsigned n)
2867 int i;
2868 int *reordering;
2870 reordering = isl_alloc_array(ctx, int, len);
2871 if (!reordering)
2872 return NULL;
2874 if (dst <= src) {
2875 for (i = 0; i < dst; ++i)
2876 reordering[i] = i;
2877 for (i = 0; i < n; ++i)
2878 reordering[src + i] = dst + i;
2879 for (i = 0; i < src - dst; ++i)
2880 reordering[dst + i] = dst + n + i;
2881 for (i = 0; i < len - src - n; ++i)
2882 reordering[src + n + i] = src + n + i;
2883 } else {
2884 for (i = 0; i < src; ++i)
2885 reordering[i] = i;
2886 for (i = 0; i < n; ++i)
2887 reordering[src + i] = dst + i;
2888 for (i = 0; i < dst - src; ++i)
2889 reordering[src + n + i] = src + i;
2890 for (i = 0; i < len - dst - n; ++i)
2891 reordering[dst + n + i] = dst + n + i;
2894 return reordering;
2897 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2898 __isl_take isl_qpolynomial *qp,
2899 enum isl_dim_type dst_type, unsigned dst_pos,
2900 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2902 unsigned g_dst_pos;
2903 unsigned g_src_pos;
2904 int *reordering;
2906 qp = isl_qpolynomial_cow(qp);
2907 if (!qp)
2908 return NULL;
2910 isl_assert(qp->dim->ctx, src_pos + n <= isl_dim_size(qp->dim, src_type),
2911 goto error);
2913 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
2914 g_src_pos = pos(qp->dim, src_type) + src_pos;
2915 if (dst_type > src_type)
2916 g_dst_pos -= n;
2918 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
2919 if (!qp->div)
2920 goto error;
2921 qp = sort_divs(qp);
2922 if (!qp)
2923 goto error;
2925 reordering = reordering_move(qp->dim->ctx,
2926 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
2927 if (!reordering)
2928 goto error;
2930 qp->upoly = reorder(qp->upoly, reordering);
2931 free(reordering);
2932 if (!qp->upoly)
2933 goto error;
2935 qp->dim = isl_dim_move(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
2936 if (!qp->dim)
2937 goto error;
2939 return qp;
2940 error:
2941 isl_qpolynomial_free(qp);
2942 return NULL;
2945 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_dim *dim,
2946 isl_int *f, isl_int denom)
2948 struct isl_upoly *up;
2950 if (!dim)
2951 return NULL;
2953 up = isl_upoly_from_affine(dim->ctx, f, denom, 1 + isl_dim_total(dim));
2955 return isl_qpolynomial_alloc(dim, 0, up);
2958 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
2960 isl_ctx *ctx;
2961 struct isl_upoly *up;
2962 isl_qpolynomial *qp;
2964 if (!aff)
2965 return NULL;
2967 ctx = isl_aff_get_ctx(aff);
2968 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
2969 aff->v->size - 1);
2971 qp = isl_qpolynomial_alloc(isl_aff_get_dim(aff),
2972 aff->ls->div->n_row, up);
2973 if (!qp)
2974 goto error;
2976 isl_mat_free(qp->div);
2977 qp->div = isl_mat_copy(aff->ls->div);
2978 qp->div = isl_mat_cow(qp->div);
2979 if (!qp->div)
2980 goto error;
2982 isl_aff_free(aff);
2983 qp = reduce_divs(qp);
2984 qp = remove_redundant_divs(qp);
2985 return qp;
2986 error:
2987 isl_aff_free(aff);
2988 return NULL;
2991 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
2992 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
2994 isl_aff *aff;
2996 aff = isl_constraint_get_bound(c, type, pos);
2997 isl_constraint_free(c);
2998 return isl_qpolynomial_from_aff(aff);
3001 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3002 * in "qp" by subs[i].
3004 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3005 __isl_take isl_qpolynomial *qp,
3006 enum isl_dim_type type, unsigned first, unsigned n,
3007 __isl_keep isl_qpolynomial **subs)
3009 int i;
3010 struct isl_upoly **ups;
3012 if (n == 0)
3013 return qp;
3015 qp = isl_qpolynomial_cow(qp);
3016 if (!qp)
3017 return NULL;
3018 for (i = 0; i < n; ++i)
3019 if (!subs[i])
3020 goto error;
3022 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
3023 goto error);
3025 for (i = 0; i < n; ++i)
3026 isl_assert(qp->dim->ctx, isl_dim_equal(qp->dim, subs[i]->dim),
3027 goto error);
3029 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3030 for (i = 0; i < n; ++i)
3031 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3033 first += pos(qp->dim, type);
3035 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3036 if (!ups)
3037 goto error;
3038 for (i = 0; i < n; ++i)
3039 ups[i] = subs[i]->upoly;
3041 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3043 free(ups);
3045 if (!qp->upoly)
3046 goto error;
3048 return qp;
3049 error:
3050 isl_qpolynomial_free(qp);
3051 return NULL;
3054 /* Extend "bset" with extra set dimensions for each integer division
3055 * in "qp" and then call "fn" with the extended bset and the polynomial
3056 * that results from replacing each of the integer divisions by the
3057 * corresponding extra set dimension.
3059 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3060 __isl_keep isl_basic_set *bset,
3061 int (*fn)(__isl_take isl_basic_set *bset,
3062 __isl_take isl_qpolynomial *poly, void *user), void *user)
3064 isl_dim *dim;
3065 isl_mat *div;
3066 isl_qpolynomial *poly;
3068 if (!qp || !bset)
3069 goto error;
3070 if (qp->div->n_row == 0)
3071 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3072 user);
3074 div = isl_mat_copy(qp->div);
3075 dim = isl_dim_copy(qp->dim);
3076 dim = isl_dim_add(dim, isl_dim_set, qp->div->n_row);
3077 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3078 bset = isl_basic_set_copy(bset);
3079 bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row);
3080 bset = add_div_constraints(bset, div);
3082 return fn(bset, poly, user);
3083 error:
3084 return -1;
3087 /* Return total degree in variables first (inclusive) up to last (exclusive).
3089 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3091 int deg = -1;
3092 int i;
3093 struct isl_upoly_rec *rec;
3095 if (!up)
3096 return -2;
3097 if (isl_upoly_is_zero(up))
3098 return -1;
3099 if (isl_upoly_is_cst(up) || up->var < first)
3100 return 0;
3102 rec = isl_upoly_as_rec(up);
3103 if (!rec)
3104 return -2;
3106 for (i = 0; i < rec->n; ++i) {
3107 int d;
3109 if (isl_upoly_is_zero(rec->p[i]))
3110 continue;
3111 d = isl_upoly_degree(rec->p[i], first, last);
3112 if (up->var < last)
3113 d += i;
3114 if (d > deg)
3115 deg = d;
3118 return deg;
3121 /* Return total degree in set variables.
3123 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3125 unsigned ovar;
3126 unsigned nvar;
3128 if (!poly)
3129 return -2;
3131 ovar = isl_dim_offset(poly->dim, isl_dim_set);
3132 nvar = isl_dim_size(poly->dim, isl_dim_set);
3133 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3136 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3137 unsigned pos, int deg)
3139 int i;
3140 struct isl_upoly_rec *rec;
3142 if (!up)
3143 return NULL;
3145 if (isl_upoly_is_cst(up) || up->var < pos) {
3146 if (deg == 0)
3147 return isl_upoly_copy(up);
3148 else
3149 return isl_upoly_zero(up->ctx);
3152 rec = isl_upoly_as_rec(up);
3153 if (!rec)
3154 return NULL;
3156 if (up->var == pos) {
3157 if (deg < rec->n)
3158 return isl_upoly_copy(rec->p[deg]);
3159 else
3160 return isl_upoly_zero(up->ctx);
3163 up = isl_upoly_copy(up);
3164 up = isl_upoly_cow(up);
3165 rec = isl_upoly_as_rec(up);
3166 if (!rec)
3167 goto error;
3169 for (i = 0; i < rec->n; ++i) {
3170 struct isl_upoly *t;
3171 t = isl_upoly_coeff(rec->p[i], pos, deg);
3172 if (!t)
3173 goto error;
3174 isl_upoly_free(rec->p[i]);
3175 rec->p[i] = t;
3178 return up;
3179 error:
3180 isl_upoly_free(up);
3181 return NULL;
3184 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3186 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3187 __isl_keep isl_qpolynomial *qp,
3188 enum isl_dim_type type, unsigned t_pos, int deg)
3190 unsigned g_pos;
3191 struct isl_upoly *up;
3192 isl_qpolynomial *c;
3194 if (!qp)
3195 return NULL;
3197 isl_assert(qp->div->ctx, t_pos < isl_dim_size(qp->dim, type),
3198 return NULL);
3200 g_pos = pos(qp->dim, type) + t_pos;
3201 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3203 c = isl_qpolynomial_alloc(isl_dim_copy(qp->dim), qp->div->n_row, up);
3204 if (!c)
3205 return NULL;
3206 isl_mat_free(c->div);
3207 c->div = isl_mat_copy(qp->div);
3208 if (!c->div)
3209 goto error;
3210 return c;
3211 error:
3212 isl_qpolynomial_free(c);
3213 return NULL;
3216 /* Homogenize the polynomial in the variables first (inclusive) up to
3217 * last (exclusive) by inserting powers of variable first.
3218 * Variable first is assumed not to appear in the input.
3220 __isl_give struct isl_upoly *isl_upoly_homogenize(
3221 __isl_take struct isl_upoly *up, int deg, int target,
3222 int first, int last)
3224 int i;
3225 struct isl_upoly_rec *rec;
3227 if (!up)
3228 return NULL;
3229 if (isl_upoly_is_zero(up))
3230 return up;
3231 if (deg == target)
3232 return up;
3233 if (isl_upoly_is_cst(up) || up->var < first) {
3234 struct isl_upoly *hom;
3236 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3237 if (!hom)
3238 goto error;
3239 rec = isl_upoly_as_rec(hom);
3240 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3242 return hom;
3245 up = isl_upoly_cow(up);
3246 rec = isl_upoly_as_rec(up);
3247 if (!rec)
3248 goto error;
3250 for (i = 0; i < rec->n; ++i) {
3251 if (isl_upoly_is_zero(rec->p[i]))
3252 continue;
3253 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3254 up->var < last ? deg + i : i, target,
3255 first, last);
3256 if (!rec->p[i])
3257 goto error;
3260 return up;
3261 error:
3262 isl_upoly_free(up);
3263 return NULL;
3266 /* Homogenize the polynomial in the set variables by introducing
3267 * powers of an extra set variable at position 0.
3269 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3270 __isl_take isl_qpolynomial *poly)
3272 unsigned ovar;
3273 unsigned nvar;
3274 int deg = isl_qpolynomial_degree(poly);
3276 if (deg < -1)
3277 goto error;
3279 poly = isl_qpolynomial_insert_dims(poly, isl_dim_set, 0, 1);
3280 poly = isl_qpolynomial_cow(poly);
3281 if (!poly)
3282 goto error;
3284 ovar = isl_dim_offset(poly->dim, isl_dim_set);
3285 nvar = isl_dim_size(poly->dim, isl_dim_set);
3286 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3287 ovar, ovar + nvar);
3288 if (!poly->upoly)
3289 goto error;
3291 return poly;
3292 error:
3293 isl_qpolynomial_free(poly);
3294 return NULL;
3297 __isl_give isl_term *isl_term_alloc(__isl_take isl_dim *dim,
3298 __isl_take isl_mat *div)
3300 isl_term *term;
3301 int n;
3303 if (!dim || !div)
3304 goto error;
3306 n = isl_dim_total(dim) + div->n_row;
3308 term = isl_calloc(dim->ctx, struct isl_term,
3309 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3310 if (!term)
3311 goto error;
3313 term->ref = 1;
3314 term->dim = dim;
3315 term->div = div;
3316 isl_int_init(term->n);
3317 isl_int_init(term->d);
3319 return term;
3320 error:
3321 isl_dim_free(dim);
3322 isl_mat_free(div);
3323 return NULL;
3326 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3328 if (!term)
3329 return NULL;
3331 term->ref++;
3332 return term;
3335 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3337 int i;
3338 isl_term *dup;
3339 unsigned total;
3341 if (term)
3342 return NULL;
3344 total = isl_dim_total(term->dim) + term->div->n_row;
3346 dup = isl_term_alloc(isl_dim_copy(term->dim), isl_mat_copy(term->div));
3347 if (!dup)
3348 return NULL;
3350 isl_int_set(dup->n, term->n);
3351 isl_int_set(dup->d, term->d);
3353 for (i = 0; i < total; ++i)
3354 dup->pow[i] = term->pow[i];
3356 return dup;
3359 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3361 if (!term)
3362 return NULL;
3364 if (term->ref == 1)
3365 return term;
3366 term->ref--;
3367 return isl_term_dup(term);
3370 void isl_term_free(__isl_take isl_term *term)
3372 if (!term)
3373 return;
3375 if (--term->ref > 0)
3376 return;
3378 isl_dim_free(term->dim);
3379 isl_mat_free(term->div);
3380 isl_int_clear(term->n);
3381 isl_int_clear(term->d);
3382 free(term);
3385 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3387 if (!term)
3388 return 0;
3390 switch (type) {
3391 case isl_dim_param:
3392 case isl_dim_in:
3393 case isl_dim_out: return isl_dim_size(term->dim, type);
3394 case isl_dim_div: return term->div->n_row;
3395 case isl_dim_all: return isl_dim_total(term->dim) + term->div->n_row;
3396 default: return 0;
3400 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3402 return term ? term->dim->ctx : NULL;
3405 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3407 if (!term)
3408 return;
3409 isl_int_set(*n, term->n);
3412 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3414 if (!term)
3415 return;
3416 isl_int_set(*d, term->d);
3419 int isl_term_get_exp(__isl_keep isl_term *term,
3420 enum isl_dim_type type, unsigned pos)
3422 if (!term)
3423 return -1;
3425 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3427 if (type >= isl_dim_set)
3428 pos += isl_dim_size(term->dim, isl_dim_param);
3429 if (type >= isl_dim_div)
3430 pos += isl_dim_size(term->dim, isl_dim_set);
3432 return term->pow[pos];
3435 __isl_give isl_div *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3437 isl_basic_map *bmap;
3438 unsigned total;
3439 int k;
3441 if (!term)
3442 return NULL;
3444 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3445 return NULL);
3447 total = term->div->n_col - term->div->n_row - 2;
3448 /* No nested divs for now */
3449 isl_assert(term->dim->ctx,
3450 isl_seq_first_non_zero(term->div->row[pos] + 2 + total,
3451 term->div->n_row) == -1,
3452 return NULL);
3454 bmap = isl_basic_map_alloc_dim(isl_dim_copy(term->dim), 1, 0, 0);
3455 if ((k = isl_basic_map_alloc_div(bmap)) < 0)
3456 goto error;
3458 isl_seq_cpy(bmap->div[k], term->div->row[pos], 2 + total);
3460 return isl_basic_map_div(bmap, k);
3461 error:
3462 isl_basic_map_free(bmap);
3463 return NULL;
3466 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3467 int (*fn)(__isl_take isl_term *term, void *user),
3468 __isl_take isl_term *term, void *user)
3470 int i;
3471 struct isl_upoly_rec *rec;
3473 if (!up || !term)
3474 goto error;
3476 if (isl_upoly_is_zero(up))
3477 return term;
3479 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3480 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3481 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3483 if (isl_upoly_is_cst(up)) {
3484 struct isl_upoly_cst *cst;
3485 cst = isl_upoly_as_cst(up);
3486 if (!cst)
3487 goto error;
3488 term = isl_term_cow(term);
3489 if (!term)
3490 goto error;
3491 isl_int_set(term->n, cst->n);
3492 isl_int_set(term->d, cst->d);
3493 if (fn(isl_term_copy(term), user) < 0)
3494 goto error;
3495 return term;
3498 rec = isl_upoly_as_rec(up);
3499 if (!rec)
3500 goto error;
3502 for (i = 0; i < rec->n; ++i) {
3503 term = isl_term_cow(term);
3504 if (!term)
3505 goto error;
3506 term->pow[up->var] = i;
3507 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3508 if (!term)
3509 goto error;
3511 term->pow[up->var] = 0;
3513 return term;
3514 error:
3515 isl_term_free(term);
3516 return NULL;
3519 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3520 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3522 isl_term *term;
3524 if (!qp)
3525 return -1;
3527 term = isl_term_alloc(isl_dim_copy(qp->dim), isl_mat_copy(qp->div));
3528 if (!term)
3529 return -1;
3531 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3533 isl_term_free(term);
3535 return term ? 0 : -1;
3538 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3540 struct isl_upoly *up;
3541 isl_qpolynomial *qp;
3542 int i, n;
3544 if (!term)
3545 return NULL;
3547 n = isl_dim_total(term->dim) + term->div->n_row;
3549 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3550 for (i = 0; i < n; ++i) {
3551 if (!term->pow[i])
3552 continue;
3553 up = isl_upoly_mul(up,
3554 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3557 qp = isl_qpolynomial_alloc(isl_dim_copy(term->dim), term->div->n_row, up);
3558 if (!qp)
3559 goto error;
3560 isl_mat_free(qp->div);
3561 qp->div = isl_mat_copy(term->div);
3562 if (!qp->div)
3563 goto error;
3565 isl_term_free(term);
3566 return qp;
3567 error:
3568 isl_qpolynomial_free(qp);
3569 isl_term_free(term);
3570 return NULL;
3573 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3574 __isl_take isl_dim *dim)
3576 int i;
3577 int extra;
3578 unsigned total;
3580 if (!qp || !dim)
3581 goto error;
3583 if (isl_dim_equal(qp->dim, dim)) {
3584 isl_dim_free(dim);
3585 return qp;
3588 qp = isl_qpolynomial_cow(qp);
3589 if (!qp)
3590 goto error;
3592 extra = isl_dim_size(dim, isl_dim_set) -
3593 isl_dim_size(qp->dim, isl_dim_set);
3594 total = isl_dim_total(qp->dim);
3595 if (qp->div->n_row) {
3596 int *exp;
3598 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3599 if (!exp)
3600 goto error;
3601 for (i = 0; i < qp->div->n_row; ++i)
3602 exp[i] = extra + i;
3603 qp->upoly = expand(qp->upoly, exp, total);
3604 free(exp);
3605 if (!qp->upoly)
3606 goto error;
3608 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3609 if (!qp->div)
3610 goto error;
3611 for (i = 0; i < qp->div->n_row; ++i)
3612 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3614 isl_dim_free(qp->dim);
3615 qp->dim = dim;
3617 return qp;
3618 error:
3619 isl_dim_free(dim);
3620 isl_qpolynomial_free(qp);
3621 return NULL;
3624 /* For each parameter or variable that does not appear in qp,
3625 * first eliminate the variable from all constraints and then set it to zero.
3627 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3628 __isl_keep isl_qpolynomial *qp)
3630 int *active = NULL;
3631 int i;
3632 int d;
3633 unsigned nparam;
3634 unsigned nvar;
3636 if (!set || !qp)
3637 goto error;
3639 d = isl_dim_total(set->dim);
3640 active = isl_calloc_array(set->ctx, int, d);
3641 if (set_active(qp, active) < 0)
3642 goto error;
3644 for (i = 0; i < d; ++i)
3645 if (!active[i])
3646 break;
3648 if (i == d) {
3649 free(active);
3650 return set;
3653 nparam = isl_dim_size(set->dim, isl_dim_param);
3654 nvar = isl_dim_size(set->dim, isl_dim_set);
3655 for (i = 0; i < nparam; ++i) {
3656 if (active[i])
3657 continue;
3658 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3659 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3661 for (i = 0; i < nvar; ++i) {
3662 if (active[nparam + i])
3663 continue;
3664 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3665 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3668 free(active);
3670 return set;
3671 error:
3672 free(active);
3673 isl_set_free(set);
3674 return NULL;
3677 struct isl_opt_data {
3678 isl_qpolynomial *qp;
3679 int first;
3680 isl_qpolynomial *opt;
3681 int max;
3684 static int opt_fn(__isl_take isl_point *pnt, void *user)
3686 struct isl_opt_data *data = (struct isl_opt_data *)user;
3687 isl_qpolynomial *val;
3689 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3690 if (data->first) {
3691 data->first = 0;
3692 data->opt = val;
3693 } else if (data->max) {
3694 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3695 } else {
3696 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3699 return 0;
3702 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3703 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3705 struct isl_opt_data data = { NULL, 1, NULL, max };
3707 if (!set || !qp)
3708 goto error;
3710 if (isl_upoly_is_cst(qp->upoly)) {
3711 isl_set_free(set);
3712 return qp;
3715 set = fix_inactive(set, qp);
3717 data.qp = qp;
3718 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3719 goto error;
3721 if (data.first)
3722 data.opt = isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp));
3724 isl_set_free(set);
3725 isl_qpolynomial_free(qp);
3726 return data.opt;
3727 error:
3728 isl_set_free(set);
3729 isl_qpolynomial_free(qp);
3730 isl_qpolynomial_free(data.opt);
3731 return NULL;
3734 __isl_give isl_qpolynomial *isl_qpolynomial_morph(__isl_take isl_qpolynomial *qp,
3735 __isl_take isl_morph *morph)
3737 int i;
3738 int n_sub;
3739 isl_ctx *ctx;
3740 struct isl_upoly **subs;
3741 isl_mat *mat;
3743 qp = isl_qpolynomial_cow(qp);
3744 if (!qp || !morph)
3745 goto error;
3747 ctx = qp->dim->ctx;
3748 isl_assert(ctx, isl_dim_equal(qp->dim, morph->dom->dim), goto error);
3750 n_sub = morph->inv->n_row - 1;
3751 if (morph->inv->n_row != morph->inv->n_col)
3752 n_sub += qp->div->n_row;
3753 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3754 if (!subs)
3755 goto error;
3757 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3758 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3759 morph->inv->row[0][0], morph->inv->n_col);
3760 if (morph->inv->n_row != morph->inv->n_col)
3761 for (i = 0; i < qp->div->n_row; ++i)
3762 subs[morph->inv->n_row - 1 + i] =
3763 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3765 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3767 for (i = 0; i < n_sub; ++i)
3768 isl_upoly_free(subs[i]);
3769 free(subs);
3771 mat = isl_mat_diagonal(isl_mat_identity(ctx, 1), isl_mat_copy(morph->inv));
3772 mat = isl_mat_diagonal(mat, isl_mat_identity(ctx, qp->div->n_row));
3773 qp->div = isl_mat_product(qp->div, mat);
3774 isl_dim_free(qp->dim);
3775 qp->dim = isl_dim_copy(morph->ran->dim);
3777 if (!qp->upoly || !qp->div || !qp->dim)
3778 goto error;
3780 isl_morph_free(morph);
3782 return qp;
3783 error:
3784 isl_qpolynomial_free(qp);
3785 isl_morph_free(morph);
3786 return NULL;
3789 static int neg_entry(void **entry, void *user)
3791 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3793 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3795 return *pwqp ? 0 : -1;
3798 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3799 __isl_take isl_union_pw_qpolynomial *upwqp)
3801 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3802 if (!upwqp)
3803 return NULL;
3805 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3806 &neg_entry, NULL) < 0)
3807 goto error;
3809 return upwqp;
3810 error:
3811 isl_union_pw_qpolynomial_free(upwqp);
3812 return NULL;
3815 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3816 __isl_take isl_union_pw_qpolynomial *upwqp1,
3817 __isl_take isl_union_pw_qpolynomial *upwqp2)
3819 return isl_union_pw_qpolynomial_add(upwqp1,
3820 isl_union_pw_qpolynomial_neg(upwqp2));
3823 static int mul_entry(void **entry, void *user)
3825 struct isl_union_pw_qpolynomial_match_bin_data *data = user;
3826 uint32_t hash;
3827 struct isl_hash_table_entry *entry2;
3828 isl_pw_qpolynomial *pwpq = *entry;
3829 int empty;
3831 hash = isl_dim_get_hash(pwpq->dim);
3832 entry2 = isl_hash_table_find(data->u2->dim->ctx, &data->u2->table,
3833 hash, &has_dim, pwpq->dim, 0);
3834 if (!entry2)
3835 return 0;
3837 pwpq = isl_pw_qpolynomial_copy(pwpq);
3838 pwpq = isl_pw_qpolynomial_mul(pwpq,
3839 isl_pw_qpolynomial_copy(entry2->data));
3841 empty = isl_pw_qpolynomial_is_zero(pwpq);
3842 if (empty < 0) {
3843 isl_pw_qpolynomial_free(pwpq);
3844 return -1;
3846 if (empty) {
3847 isl_pw_qpolynomial_free(pwpq);
3848 return 0;
3851 data->res = isl_union_pw_qpolynomial_add_pw_qpolynomial(data->res, pwpq);
3853 return 0;
3856 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3857 __isl_take isl_union_pw_qpolynomial *upwqp1,
3858 __isl_take isl_union_pw_qpolynomial *upwqp2)
3860 return match_bin_op(upwqp1, upwqp2, &mul_entry);
3863 /* Reorder the columns of the given div definitions according to the
3864 * given reordering.
3866 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3867 __isl_take isl_reordering *r)
3869 int i, j;
3870 isl_mat *mat;
3871 int extra;
3873 if (!div || !r)
3874 goto error;
3876 extra = isl_dim_total(r->dim) + div->n_row - r->len;
3877 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
3878 if (!mat)
3879 goto error;
3881 for (i = 0; i < div->n_row; ++i) {
3882 isl_seq_cpy(mat->row[i], div->row[i], 2);
3883 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
3884 for (j = 0; j < r->len; ++j)
3885 isl_int_set(mat->row[i][2 + r->pos[j]],
3886 div->row[i][2 + j]);
3889 isl_reordering_free(r);
3890 isl_mat_free(div);
3891 return mat;
3892 error:
3893 isl_reordering_free(r);
3894 isl_mat_free(div);
3895 return NULL;
3898 /* Reorder the dimension of "qp" according to the given reordering.
3900 __isl_give isl_qpolynomial *isl_qpolynomial_realign(
3901 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
3903 qp = isl_qpolynomial_cow(qp);
3904 if (!qp)
3905 goto error;
3907 r = isl_reordering_extend(r, qp->div->n_row);
3908 if (!r)
3909 goto error;
3911 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
3912 if (!qp->div)
3913 goto error;
3915 qp->upoly = reorder(qp->upoly, r->pos);
3916 if (!qp->upoly)
3917 goto error;
3919 qp = isl_qpolynomial_reset_dim(qp, isl_dim_copy(r->dim));
3921 isl_reordering_free(r);
3922 return qp;
3923 error:
3924 isl_qpolynomial_free(qp);
3925 isl_reordering_free(r);
3926 return NULL;
3929 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3930 __isl_take isl_qpolynomial *qp, __isl_take isl_dim *model)
3932 if (!qp || !model)
3933 goto error;
3935 if (!isl_dim_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
3936 isl_reordering *exp;
3938 model = isl_dim_drop(model, isl_dim_in,
3939 0, isl_dim_size(model, isl_dim_in));
3940 model = isl_dim_drop(model, isl_dim_out,
3941 0, isl_dim_size(model, isl_dim_out));
3942 exp = isl_parameter_alignment_reordering(qp->dim, model);
3943 exp = isl_reordering_extend_dim(exp,
3944 isl_qpolynomial_get_dim(qp));
3945 qp = isl_qpolynomial_realign(qp, exp);
3948 isl_dim_free(model);
3949 return qp;
3950 error:
3951 isl_dim_free(model);
3952 isl_qpolynomial_free(qp);
3953 return NULL;
3956 struct isl_split_periods_data {
3957 int max_periods;
3958 isl_pw_qpolynomial *res;
3961 /* Create a slice where the integer division "div" has the fixed value "v".
3962 * In particular, if "div" refers to floor(f/m), then create a slice
3964 * m v <= f <= m v + (m - 1)
3966 * or
3968 * f - m v >= 0
3969 * -f + m v + (m - 1) >= 0
3971 static __isl_give isl_set *set_div_slice(__isl_take isl_dim *dim,
3972 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
3974 int total;
3975 isl_basic_set *bset = NULL;
3976 int k;
3978 if (!dim || !qp)
3979 goto error;
3981 total = isl_dim_total(dim);
3982 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0, 0, 2);
3984 k = isl_basic_set_alloc_inequality(bset);
3985 if (k < 0)
3986 goto error;
3987 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
3988 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
3990 k = isl_basic_set_alloc_inequality(bset);
3991 if (k < 0)
3992 goto error;
3993 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
3994 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
3995 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
3996 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
3998 isl_dim_free(dim);
3999 return isl_set_from_basic_set(bset);
4000 error:
4001 isl_basic_set_free(bset);
4002 isl_dim_free(dim);
4003 return NULL;
4006 static int split_periods(__isl_take isl_set *set,
4007 __isl_take isl_qpolynomial *qp, void *user);
4009 /* Create a slice of the domain "set" such that integer division "div"
4010 * has the fixed value "v" and add the results to data->res,
4011 * replacing the integer division by "v" in "qp".
4013 static int set_div(__isl_take isl_set *set,
4014 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4015 struct isl_split_periods_data *data)
4017 int i;
4018 int total;
4019 isl_set *slice;
4020 struct isl_upoly *cst;
4022 slice = set_div_slice(isl_set_get_dim(set), qp, div, v);
4023 set = isl_set_intersect(set, slice);
4025 if (!qp)
4026 goto error;
4028 total = isl_dim_total(qp->dim);
4030 for (i = div + 1; i < qp->div->n_row; ++i) {
4031 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4032 continue;
4033 isl_int_addmul(qp->div->row[i][1],
4034 qp->div->row[i][2 + total + div], v);
4035 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4038 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4039 qp = substitute_div(qp, div, cst);
4041 return split_periods(set, qp, data);
4042 error:
4043 isl_set_free(set);
4044 isl_qpolynomial_free(qp);
4045 return -1;
4048 /* Split the domain "set" such that integer division "div"
4049 * has a fixed value (ranging from "min" to "max") on each slice
4050 * and add the results to data->res.
4052 static int split_div(__isl_take isl_set *set,
4053 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4054 struct isl_split_periods_data *data)
4056 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4057 isl_set *set_i = isl_set_copy(set);
4058 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4060 if (set_div(set_i, qp_i, div, min, data) < 0)
4061 goto error;
4063 isl_set_free(set);
4064 isl_qpolynomial_free(qp);
4065 return 0;
4066 error:
4067 isl_set_free(set);
4068 isl_qpolynomial_free(qp);
4069 return -1;
4072 /* If "qp" refers to any integer division
4073 * that can only attain "max_periods" distinct values on "set"
4074 * then split the domain along those distinct values.
4075 * Add the results (or the original if no splitting occurs)
4076 * to data->res.
4078 static int split_periods(__isl_take isl_set *set,
4079 __isl_take isl_qpolynomial *qp, void *user)
4081 int i;
4082 isl_pw_qpolynomial *pwqp;
4083 struct isl_split_periods_data *data;
4084 isl_int min, max;
4085 int total;
4086 int r = 0;
4088 data = (struct isl_split_periods_data *)user;
4090 if (!set || !qp)
4091 goto error;
4093 if (qp->div->n_row == 0) {
4094 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4095 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4096 return 0;
4099 isl_int_init(min);
4100 isl_int_init(max);
4101 total = isl_dim_total(qp->dim);
4102 for (i = 0; i < qp->div->n_row; ++i) {
4103 enum isl_lp_result lp_res;
4105 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4106 qp->div->n_row) != -1)
4107 continue;
4109 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4110 set->ctx->one, &min, NULL, NULL);
4111 if (lp_res == isl_lp_error)
4112 goto error2;
4113 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4114 continue;
4115 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4117 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4118 set->ctx->one, &max, NULL, NULL);
4119 if (lp_res == isl_lp_error)
4120 goto error2;
4121 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4122 continue;
4123 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4125 isl_int_sub(max, max, min);
4126 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4127 isl_int_add(max, max, min);
4128 break;
4132 if (i < qp->div->n_row) {
4133 r = split_div(set, qp, i, min, max, data);
4134 } else {
4135 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4136 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4139 isl_int_clear(max);
4140 isl_int_clear(min);
4142 return r;
4143 error2:
4144 isl_int_clear(max);
4145 isl_int_clear(min);
4146 error:
4147 isl_set_free(set);
4148 isl_qpolynomial_free(qp);
4149 return -1;
4152 /* If any quasi-polynomial in pwqp refers to any integer division
4153 * that can only attain "max_periods" distinct values on its domain
4154 * then split the domain along those distinct values.
4156 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4157 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4159 struct isl_split_periods_data data;
4161 data.max_periods = max_periods;
4162 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp));
4164 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4165 goto error;
4167 isl_pw_qpolynomial_free(pwqp);
4169 return data.res;
4170 error:
4171 isl_pw_qpolynomial_free(data.res);
4172 isl_pw_qpolynomial_free(pwqp);
4173 return NULL;
4176 /* Construct a piecewise quasipolynomial that is constant on the given
4177 * domain. In particular, it is
4178 * 0 if cst == 0
4179 * 1 if cst == 1
4180 * infinity if cst == -1
4182 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4183 __isl_take isl_basic_set *bset, int cst)
4185 isl_dim *dim;
4186 isl_qpolynomial *qp;
4188 if (!bset)
4189 return NULL;
4191 bset = isl_basic_map_domain(isl_basic_map_from_range(bset));
4192 dim = isl_basic_set_get_dim(bset);
4193 if (cst < 0)
4194 qp = isl_qpolynomial_infty(dim);
4195 else if (cst == 0)
4196 qp = isl_qpolynomial_zero(dim);
4197 else
4198 qp = isl_qpolynomial_one(dim);
4199 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4202 /* Factor bset, call fn on each of the factors and return the product.
4204 * If no factors can be found, simply call fn on the input.
4205 * Otherwise, construct the factors based on the factorizer,
4206 * call fn on each factor and compute the product.
4208 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4209 __isl_take isl_basic_set *bset,
4210 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4212 int i, n;
4213 isl_dim *dim;
4214 isl_set *set;
4215 isl_factorizer *f;
4216 isl_qpolynomial *qp;
4217 isl_pw_qpolynomial *pwqp;
4218 unsigned nparam;
4219 unsigned nvar;
4221 f = isl_basic_set_factorizer(bset);
4222 if (!f)
4223 goto error;
4224 if (f->n_group == 0) {
4225 isl_factorizer_free(f);
4226 return fn(bset);
4229 nparam = isl_basic_set_dim(bset, isl_dim_param);
4230 nvar = isl_basic_set_dim(bset, isl_dim_set);
4232 dim = isl_basic_set_get_dim(bset);
4233 dim = isl_dim_domain(dim);
4234 set = isl_set_universe(isl_dim_copy(dim));
4235 qp = isl_qpolynomial_one(dim);
4236 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4238 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4240 for (i = 0, n = 0; i < f->n_group; ++i) {
4241 isl_basic_set *bset_i;
4242 isl_pw_qpolynomial *pwqp_i;
4244 bset_i = isl_basic_set_copy(bset);
4245 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4246 nparam + n + f->len[i], nvar - n - f->len[i]);
4247 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4248 nparam, n);
4249 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4250 n + f->len[i], nvar - n - f->len[i]);
4251 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4253 pwqp_i = fn(bset_i);
4254 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4256 n += f->len[i];
4259 isl_basic_set_free(bset);
4260 isl_factorizer_free(f);
4262 return pwqp;
4263 error:
4264 isl_basic_set_free(bset);
4265 return NULL;
4268 /* Factor bset, call fn on each of the factors and return the product.
4269 * The function is assumed to evaluate to zero on empty domains,
4270 * to one on zero-dimensional domains and to infinity on unbounded domains
4271 * and will not be called explicitly on zero-dimensional or unbounded domains.
4273 * We first check for some special cases and remove all equalities.
4274 * Then we hand over control to compressed_multiplicative_call.
4276 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4277 __isl_take isl_basic_set *bset,
4278 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4280 int bounded;
4281 isl_morph *morph;
4282 isl_pw_qpolynomial *pwqp;
4283 unsigned orig_nvar, final_nvar;
4285 if (!bset)
4286 return NULL;
4288 if (isl_basic_set_plain_is_empty(bset))
4289 return constant_on_domain(bset, 0);
4291 orig_nvar = isl_basic_set_dim(bset, isl_dim_set);
4293 if (orig_nvar == 0)
4294 return constant_on_domain(bset, 1);
4296 bounded = isl_basic_set_is_bounded(bset);
4297 if (bounded < 0)
4298 goto error;
4299 if (!bounded)
4300 return constant_on_domain(bset, -1);
4302 if (bset->n_eq == 0)
4303 return compressed_multiplicative_call(bset, fn);
4305 morph = isl_basic_set_full_compression(bset);
4306 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4308 final_nvar = isl_basic_set_dim(bset, isl_dim_set);
4310 pwqp = compressed_multiplicative_call(bset, fn);
4312 morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, orig_nvar);
4313 morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, final_nvar);
4314 morph = isl_morph_inverse(morph);
4316 pwqp = isl_pw_qpolynomial_morph(pwqp, morph);
4318 return pwqp;
4319 error:
4320 isl_basic_set_free(bset);
4321 return NULL;
4324 /* Drop all floors in "qp", turning each integer division [a/m] into
4325 * a rational division a/m. If "down" is set, then the integer division
4326 * is replaces by (a-(m-1))/m instead.
4328 static __isl_give isl_qpolynomial *qp_drop_floors(
4329 __isl_take isl_qpolynomial *qp, int down)
4331 int i;
4332 struct isl_upoly *s;
4334 if (!qp)
4335 return NULL;
4336 if (qp->div->n_row == 0)
4337 return qp;
4339 qp = isl_qpolynomial_cow(qp);
4340 if (!qp)
4341 return NULL;
4343 for (i = qp->div->n_row - 1; i >= 0; --i) {
4344 if (down) {
4345 isl_int_sub(qp->div->row[i][1],
4346 qp->div->row[i][1], qp->div->row[i][0]);
4347 isl_int_add_ui(qp->div->row[i][1],
4348 qp->div->row[i][1], 1);
4350 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4351 qp->div->row[i][0], qp->div->n_col - 1);
4352 qp = substitute_div(qp, i, s);
4353 if (!qp)
4354 return NULL;
4357 return qp;
4360 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4361 * a rational division a/m.
4363 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4364 __isl_take isl_pw_qpolynomial *pwqp)
4366 int i;
4368 if (!pwqp)
4369 return NULL;
4371 if (isl_pw_qpolynomial_is_zero(pwqp))
4372 return pwqp;
4374 pwqp = isl_pw_qpolynomial_cow(pwqp);
4375 if (!pwqp)
4376 return NULL;
4378 for (i = 0; i < pwqp->n; ++i) {
4379 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4380 if (!pwqp->p[i].qp)
4381 goto error;
4384 return pwqp;
4385 error:
4386 isl_pw_qpolynomial_free(pwqp);
4387 return NULL;
4390 /* Adjust all the integer divisions in "qp" such that they are at least
4391 * one over the given orthant (identified by "signs"). This ensures
4392 * that they will still be non-negative even after subtracting (m-1)/m.
4394 * In particular, f is replaced by f' + v, changing f = [a/m]
4395 * to f' = [(a - m v)/m].
4396 * If the constant term k in a is smaller than m,
4397 * the constant term of v is set to floor(k/m) - 1.
4398 * For any other term, if the coefficient c and the variable x have
4399 * the same sign, then no changes are needed.
4400 * Otherwise, if the variable is positive (and c is negative),
4401 * then the coefficient of x in v is set to floor(c/m).
4402 * If the variable is negative (and c is positive),
4403 * then the coefficient of x in v is set to ceil(c/m).
4405 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4406 int *signs)
4408 int i, j;
4409 int total;
4410 isl_vec *v = NULL;
4411 struct isl_upoly *s;
4413 qp = isl_qpolynomial_cow(qp);
4414 if (!qp)
4415 return NULL;
4416 qp->div = isl_mat_cow(qp->div);
4417 if (!qp->div)
4418 goto error;
4420 total = isl_dim_total(qp->dim);
4421 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4423 for (i = 0; i < qp->div->n_row; ++i) {
4424 isl_int *row = qp->div->row[i];
4425 v = isl_vec_clr(v);
4426 if (!v)
4427 goto error;
4428 if (isl_int_lt(row[1], row[0])) {
4429 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4430 isl_int_sub_ui(v->el[0], v->el[0], 1);
4431 isl_int_submul(row[1], row[0], v->el[0]);
4433 for (j = 0; j < total; ++j) {
4434 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4435 continue;
4436 if (signs[j] < 0)
4437 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4438 else
4439 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4440 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4442 for (j = 0; j < i; ++j) {
4443 if (isl_int_sgn(row[2 + total + j]) >= 0)
4444 continue;
4445 isl_int_fdiv_q(v->el[1 + total + j],
4446 row[2 + total + j], row[0]);
4447 isl_int_submul(row[2 + total + j],
4448 row[0], v->el[1 + total + j]);
4450 for (j = i + 1; j < qp->div->n_row; ++j) {
4451 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4452 continue;
4453 isl_seq_combine(qp->div->row[j] + 1,
4454 qp->div->ctx->one, qp->div->row[j] + 1,
4455 qp->div->row[j][2 + total + i], v->el, v->size);
4457 isl_int_set_si(v->el[1 + total + i], 1);
4458 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4459 qp->div->ctx->one, v->size);
4460 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4461 isl_upoly_free(s);
4462 if (!qp->upoly)
4463 goto error;
4466 isl_vec_free(v);
4467 return qp;
4468 error:
4469 isl_vec_free(v);
4470 isl_qpolynomial_free(qp);
4471 return NULL;
4474 struct isl_to_poly_data {
4475 int sign;
4476 isl_pw_qpolynomial *res;
4477 isl_qpolynomial *qp;
4480 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4481 * We first make all integer divisions positive and then split the
4482 * quasipolynomials into terms with sign data->sign (the direction
4483 * of the requested approximation) and terms with the opposite sign.
4484 * In the first set of terms, each integer division [a/m] is
4485 * overapproximated by a/m, while in the second it is underapproximated
4486 * by (a-(m-1))/m.
4488 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4489 void *user)
4491 struct isl_to_poly_data *data = user;
4492 isl_pw_qpolynomial *t;
4493 isl_qpolynomial *qp, *up, *down;
4495 qp = isl_qpolynomial_copy(data->qp);
4496 qp = make_divs_pos(qp, signs);
4498 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4499 up = qp_drop_floors(up, 0);
4500 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4501 down = qp_drop_floors(down, 1);
4503 isl_qpolynomial_free(qp);
4504 qp = isl_qpolynomial_add(up, down);
4506 t = isl_pw_qpolynomial_alloc(orthant, qp);
4507 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4509 return 0;
4512 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4513 * the polynomial will be an overapproximation. If "sign" is negative,
4514 * it will be an underapproximation. If "sign" is zero, the approximation
4515 * will lie somewhere in between.
4517 * In particular, is sign == 0, we simply drop the floors, turning
4518 * the integer divisions into rational divisions.
4519 * Otherwise, we split the domains into orthants, make all integer divisions
4520 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4521 * depending on the requested sign and the sign of the term in which
4522 * the integer division appears.
4524 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4525 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4527 int i;
4528 struct isl_to_poly_data data;
4530 if (sign == 0)
4531 return pwqp_drop_floors(pwqp);
4533 if (!pwqp)
4534 return NULL;
4536 data.sign = sign;
4537 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp));
4539 for (i = 0; i < pwqp->n; ++i) {
4540 if (pwqp->p[i].qp->div->n_row == 0) {
4541 isl_pw_qpolynomial *t;
4542 t = isl_pw_qpolynomial_alloc(
4543 isl_set_copy(pwqp->p[i].set),
4544 isl_qpolynomial_copy(pwqp->p[i].qp));
4545 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4546 continue;
4548 data.qp = pwqp->p[i].qp;
4549 if (isl_set_foreach_orthant(pwqp->p[i].set,
4550 &to_polynomial_on_orthant, &data) < 0)
4551 goto error;
4554 isl_pw_qpolynomial_free(pwqp);
4556 return data.res;
4557 error:
4558 isl_pw_qpolynomial_free(pwqp);
4559 isl_pw_qpolynomial_free(data.res);
4560 return NULL;
4563 static int poly_entry(void **entry, void *user)
4565 int *sign = user;
4566 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4568 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4570 return *pwqp ? 0 : -1;
4573 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4574 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4576 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4577 if (!upwqp)
4578 return NULL;
4580 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4581 &poly_entry, &sign) < 0)
4582 goto error;
4584 return upwqp;
4585 error:
4586 isl_union_pw_qpolynomial_free(upwqp);
4587 return NULL;
4590 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4591 __isl_take isl_qpolynomial *qp)
4593 int i, k;
4594 isl_dim *dim;
4595 isl_vec *aff = NULL;
4596 isl_basic_map *bmap = NULL;
4597 unsigned pos;
4598 unsigned n_div;
4600 if (!qp)
4601 return NULL;
4602 if (!isl_upoly_is_affine(qp->upoly))
4603 isl_die(qp->dim->ctx, isl_error_invalid,
4604 "input quasi-polynomial not affine", goto error);
4605 aff = isl_qpolynomial_extract_affine(qp);
4606 if (!aff)
4607 goto error;
4608 dim = isl_qpolynomial_get_dim(qp);
4609 dim = isl_dim_from_domain(dim);
4610 pos = 1 + isl_dim_offset(dim, isl_dim_out);
4611 dim = isl_dim_add(dim, isl_dim_out, 1);
4612 n_div = qp->div->n_row;
4613 bmap = isl_basic_map_alloc_dim(dim, n_div, 1, 2 * n_div);
4615 for (i = 0; i < n_div; ++i) {
4616 k = isl_basic_map_alloc_div(bmap);
4617 if (k < 0)
4618 goto error;
4619 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4620 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4621 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4622 goto error;
4624 k = isl_basic_map_alloc_equality(bmap);
4625 if (k < 0)
4626 goto error;
4627 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4628 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4629 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4631 isl_vec_free(aff);
4632 isl_qpolynomial_free(qp);
4633 bmap = isl_basic_map_finalize(bmap);
4634 return bmap;
4635 error:
4636 isl_vec_free(aff);
4637 isl_qpolynomial_free(qp);
4638 isl_basic_map_free(bmap);
4639 return NULL;