2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_lp_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
21 #include <isl_options_private.h>
22 #include "isl_equalities.h"
26 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
28 /* Return 1 if constraint c is redundant with respect to the constraints
29 * in bmap. If c is a lower [upper] bound in some variable and bmap
30 * does not have a lower [upper] bound in that variable, then c cannot
31 * be redundant and we do not need solve any lp.
33 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
34 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
36 enum isl_lp_result res
;
43 total
= isl_basic_map_total_dim(*bmap
);
44 for (i
= 0; i
< total
; ++i
) {
46 if (isl_int_is_zero(c
[1+i
]))
48 sign
= isl_int_sgn(c
[1+i
]);
49 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
50 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
52 if (j
== (*bmap
)->n_ineq
)
58 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
60 if (res
== isl_lp_unbounded
)
62 if (res
== isl_lp_error
)
64 if (res
== isl_lp_empty
) {
65 *bmap
= isl_basic_map_set_to_empty(*bmap
);
68 return !isl_int_is_neg(*opt_n
);
71 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
72 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
74 return isl_basic_map_constraint_is_redundant(
75 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
79 * constraints. If the minimal value along the normal of a constraint
80 * is the same if the constraint is removed, then the constraint is redundant.
82 * Alternatively, we could have intersected the basic map with the
83 * corresponding equality and the checked if the dimension was that
86 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
87 __isl_take isl_basic_map
*bmap
)
94 bmap
= isl_basic_map_gauss(bmap
, NULL
);
95 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
97 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
99 if (bmap
->n_ineq
<= 1)
102 tab
= isl_tab_from_basic_map(bmap
, 0);
103 if (isl_tab_detect_implicit_equalities(tab
) < 0)
105 if (isl_tab_detect_redundant(tab
) < 0)
107 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
109 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
110 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
114 isl_basic_map_free(bmap
);
118 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
119 __isl_take isl_basic_set
*bset
)
121 return (struct isl_basic_set
*)
122 isl_basic_map_remove_redundancies((struct isl_basic_map
*)bset
);
125 /* Remove redundant constraints in each of the basic maps.
127 __isl_give isl_map
*isl_map_remove_redundancies(__isl_take isl_map
*map
)
129 return isl_map_inline_foreach_basic_map(map
,
130 &isl_basic_map_remove_redundancies
);
133 __isl_give isl_set
*isl_set_remove_redundancies(__isl_take isl_set
*set
)
135 return isl_map_remove_redundancies(set
);
138 /* Check if the set set is bound in the direction of the affine
139 * constraint c and if so, set the constant term such that the
140 * resulting constraint is a bounding constraint for the set.
142 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
150 isl_int_init(opt_denom
);
152 for (j
= 0; j
< set
->n
; ++j
) {
153 enum isl_lp_result res
;
155 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
158 res
= isl_basic_set_solve_lp(set
->p
[j
],
159 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
160 if (res
== isl_lp_unbounded
)
162 if (res
== isl_lp_error
)
164 if (res
== isl_lp_empty
) {
165 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
170 if (first
|| isl_int_is_neg(opt
)) {
171 if (!isl_int_is_one(opt_denom
))
172 isl_seq_scale(c
, c
, opt_denom
, len
);
173 isl_int_sub(c
[0], c
[0], opt
);
178 isl_int_clear(opt_denom
);
182 isl_int_clear(opt_denom
);
186 __isl_give isl_basic_map
*isl_basic_map_set_rational(
187 __isl_take isl_basic_set
*bmap
)
192 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
195 bmap
= isl_basic_map_cow(bmap
);
199 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
201 return isl_basic_map_finalize(bmap
);
204 __isl_give isl_basic_set
*isl_basic_set_set_rational(
205 __isl_take isl_basic_set
*bset
)
207 return isl_basic_map_set_rational(bset
);
210 __isl_give isl_map
*isl_map_set_rational(__isl_take isl_map
*map
)
214 map
= isl_map_cow(map
);
217 for (i
= 0; i
< map
->n
; ++i
) {
218 map
->p
[i
] = isl_basic_map_set_rational(map
->p
[i
]);
228 __isl_give isl_set
*isl_set_set_rational(__isl_take isl_set
*set
)
230 return isl_map_set_rational(set
);
233 static struct isl_basic_set
*isl_basic_set_add_equality(
234 struct isl_basic_set
*bset
, isl_int
*c
)
242 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
245 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
246 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
247 dim
= isl_basic_set_n_dim(bset
);
248 bset
= isl_basic_set_cow(bset
);
249 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
250 i
= isl_basic_set_alloc_equality(bset
);
253 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
256 isl_basic_set_free(bset
);
260 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
264 set
= isl_set_cow(set
);
267 for (i
= 0; i
< set
->n
; ++i
) {
268 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
278 /* Given a union of basic sets, construct the constraints for wrapping
279 * a facet around one of its ridges.
280 * In particular, if each of n the d-dimensional basic sets i in "set"
281 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
282 * and is defined by the constraints
286 * then the resulting set is of dimension n*(1+d) and has as constraints
295 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
297 struct isl_basic_set
*lp
;
301 unsigned dim
, lp_dim
;
306 dim
= 1 + isl_set_n_dim(set
);
309 for (i
= 0; i
< set
->n
; ++i
) {
310 n_eq
+= set
->p
[i
]->n_eq
;
311 n_ineq
+= set
->p
[i
]->n_ineq
;
313 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
314 lp
= isl_basic_set_set_rational(lp
);
317 lp_dim
= isl_basic_set_n_dim(lp
);
318 k
= isl_basic_set_alloc_equality(lp
);
319 isl_int_set_si(lp
->eq
[k
][0], -1);
320 for (i
= 0; i
< set
->n
; ++i
) {
321 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
322 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
323 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
325 for (i
= 0; i
< set
->n
; ++i
) {
326 k
= isl_basic_set_alloc_inequality(lp
);
327 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
328 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
330 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
331 k
= isl_basic_set_alloc_equality(lp
);
332 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
333 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
334 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
337 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
338 k
= isl_basic_set_alloc_inequality(lp
);
339 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
340 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
341 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
347 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
348 * of that facet, compute the other facet of the convex hull that contains
351 * We first transform the set such that the facet constraint becomes
355 * I.e., the facet lies in
359 * and on that facet, the constraint that defines the ridge is
363 * (This transformation is not strictly needed, all that is needed is
364 * that the ridge contains the origin.)
366 * Since the ridge contains the origin, the cone of the convex hull
367 * will be of the form
372 * with this second constraint defining the new facet.
373 * The constant a is obtained by settting x_1 in the cone of the
374 * convex hull to 1 and minimizing x_2.
375 * Now, each element in the cone of the convex hull is the sum
376 * of elements in the cones of the basic sets.
377 * If a_i is the dilation factor of basic set i, then the problem
378 * we need to solve is
391 * the constraints of each (transformed) basic set.
392 * If a = n/d, then the constraint defining the new facet (in the transformed
395 * -n x_1 + d x_2 >= 0
397 * In the original space, we need to take the same combination of the
398 * corresponding constraints "facet" and "ridge".
400 * If a = -infty = "-1/0", then we just return the original facet constraint.
401 * This means that the facet is unbounded, but has a bounded intersection
402 * with the union of sets.
404 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
405 isl_int
*facet
, isl_int
*ridge
)
409 struct isl_mat
*T
= NULL
;
410 struct isl_basic_set
*lp
= NULL
;
412 enum isl_lp_result res
;
419 set
= isl_set_copy(set
);
420 set
= isl_set_set_rational(set
);
422 dim
= 1 + isl_set_n_dim(set
);
423 T
= isl_mat_alloc(ctx
, 3, dim
);
426 isl_int_set_si(T
->row
[0][0], 1);
427 isl_seq_clr(T
->row
[0]+1, dim
- 1);
428 isl_seq_cpy(T
->row
[1], facet
, dim
);
429 isl_seq_cpy(T
->row
[2], ridge
, dim
);
430 T
= isl_mat_right_inverse(T
);
431 set
= isl_set_preimage(set
, T
);
435 lp
= wrap_constraints(set
);
436 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
439 isl_int_set_si(obj
->block
.data
[0], 0);
440 for (i
= 0; i
< set
->n
; ++i
) {
441 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
442 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
443 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
447 res
= isl_basic_set_solve_lp(lp
, 0,
448 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
449 if (res
== isl_lp_ok
) {
450 isl_int_neg(num
, num
);
451 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
452 isl_seq_normalize(ctx
, facet
, dim
);
457 isl_basic_set_free(lp
);
459 if (res
== isl_lp_error
)
461 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
465 isl_basic_set_free(lp
);
471 /* Compute the constraint of a facet of "set".
473 * We first compute the intersection with a bounding constraint
474 * that is orthogonal to one of the coordinate axes.
475 * If the affine hull of this intersection has only one equality,
476 * we have found a facet.
477 * Otherwise, we wrap the current bounding constraint around
478 * one of the equalities of the face (one that is not equal to
479 * the current bounding constraint).
480 * This process continues until we have found a facet.
481 * The dimension of the intersection increases by at least
482 * one on each iteration, so termination is guaranteed.
484 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
486 struct isl_set
*slice
= NULL
;
487 struct isl_basic_set
*face
= NULL
;
489 unsigned dim
= isl_set_n_dim(set
);
491 isl_mat
*bounds
= NULL
;
493 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
494 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
498 isl_seq_clr(bounds
->row
[0], dim
);
499 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
500 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
503 isl_assert(set
->ctx
, is_bound
, goto error
);
504 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
508 slice
= isl_set_copy(set
);
509 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
510 face
= isl_set_affine_hull(slice
);
513 if (face
->n_eq
== 1) {
514 isl_basic_set_free(face
);
517 for (i
= 0; i
< face
->n_eq
; ++i
)
518 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
519 !isl_seq_is_neg(bounds
->row
[0],
520 face
->eq
[i
], 1 + dim
))
522 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
523 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
525 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
526 isl_basic_set_free(face
);
531 isl_basic_set_free(face
);
532 isl_mat_free(bounds
);
536 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
537 * compute a hyperplane description of the facet, i.e., compute the facets
540 * We compute an affine transformation that transforms the constraint
549 * by computing the right inverse U of a matrix that starts with the rows
562 * Since z_1 is zero, we can drop this variable as well as the corresponding
563 * column of U to obtain
571 * with Q' equal to Q, but without the corresponding row.
572 * After computing the facets of the facet in the z' space,
573 * we convert them back to the x space through Q.
575 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
577 struct isl_mat
*m
, *U
, *Q
;
578 struct isl_basic_set
*facet
= NULL
;
583 set
= isl_set_copy(set
);
584 dim
= isl_set_n_dim(set
);
585 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
588 isl_int_set_si(m
->row
[0][0], 1);
589 isl_seq_clr(m
->row
[0]+1, dim
);
590 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
591 U
= isl_mat_right_inverse(m
);
592 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
593 U
= isl_mat_drop_cols(U
, 1, 1);
594 Q
= isl_mat_drop_rows(Q
, 1, 1);
595 set
= isl_set_preimage(set
, U
);
596 facet
= uset_convex_hull_wrap_bounded(set
);
597 facet
= isl_basic_set_preimage(facet
, Q
);
599 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
602 isl_basic_set_free(facet
);
607 /* Given an initial facet constraint, compute the remaining facets.
608 * We do this by running through all facets found so far and computing
609 * the adjacent facets through wrapping, adding those facets that we
610 * hadn't already found before.
612 * For each facet we have found so far, we first compute its facets
613 * in the resulting convex hull. That is, we compute the ridges
614 * of the resulting convex hull contained in the facet.
615 * We also compute the corresponding facet in the current approximation
616 * of the convex hull. There is no need to wrap around the ridges
617 * in this facet since that would result in a facet that is already
618 * present in the current approximation.
620 * This function can still be significantly optimized by checking which of
621 * the facets of the basic sets are also facets of the convex hull and
622 * using all the facets so far to help in constructing the facets of the
625 * using the technique in section "3.1 Ridge Generation" of
626 * "Extended Convex Hull" by Fukuda et al.
628 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
633 struct isl_basic_set
*facet
= NULL
;
634 struct isl_basic_set
*hull_facet
= NULL
;
640 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
642 dim
= isl_set_n_dim(set
);
644 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
645 facet
= compute_facet(set
, hull
->ineq
[i
]);
646 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
647 facet
= isl_basic_set_gauss(facet
, NULL
);
648 facet
= isl_basic_set_normalize_constraints(facet
);
649 hull_facet
= isl_basic_set_copy(hull
);
650 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
651 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
652 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
653 if (!facet
|| !hull_facet
)
655 hull
= isl_basic_set_cow(hull
);
656 hull
= isl_basic_set_extend_space(hull
,
657 isl_space_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
660 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
661 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
662 if (isl_seq_eq(facet
->ineq
[j
],
663 hull_facet
->ineq
[f
], 1 + dim
))
665 if (f
< hull_facet
->n_ineq
)
667 k
= isl_basic_set_alloc_inequality(hull
);
670 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
671 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
674 isl_basic_set_free(hull_facet
);
675 isl_basic_set_free(facet
);
677 hull
= isl_basic_set_simplify(hull
);
678 hull
= isl_basic_set_finalize(hull
);
681 isl_basic_set_free(hull_facet
);
682 isl_basic_set_free(facet
);
683 isl_basic_set_free(hull
);
687 /* Special case for computing the convex hull of a one dimensional set.
688 * We simply collect the lower and upper bounds of each basic set
689 * and the biggest of those.
691 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
693 struct isl_mat
*c
= NULL
;
694 isl_int
*lower
= NULL
;
695 isl_int
*upper
= NULL
;
698 struct isl_basic_set
*hull
;
700 for (i
= 0; i
< set
->n
; ++i
) {
701 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
705 set
= isl_set_remove_empty_parts(set
);
708 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
709 c
= isl_mat_alloc(set
->ctx
, 2, 2);
713 if (set
->p
[0]->n_eq
> 0) {
714 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
717 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
718 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
719 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
721 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
722 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
725 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
726 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
728 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
731 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
738 for (i
= 0; i
< set
->n
; ++i
) {
739 struct isl_basic_set
*bset
= set
->p
[i
];
743 for (j
= 0; j
< bset
->n_eq
; ++j
) {
747 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
748 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
749 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
750 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
751 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
752 isl_seq_neg(lower
, bset
->eq
[j
], 2);
755 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
756 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
757 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
758 isl_seq_neg(upper
, bset
->eq
[j
], 2);
759 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
760 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
763 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
764 if (isl_int_is_pos(bset
->ineq
[j
][1]))
766 if (isl_int_is_neg(bset
->ineq
[j
][1]))
768 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
769 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
770 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
771 if (isl_int_lt(a
, b
))
772 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
774 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
775 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
776 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
777 if (isl_int_gt(a
, b
))
778 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
789 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
790 hull
= isl_basic_set_set_rational(hull
);
794 k
= isl_basic_set_alloc_inequality(hull
);
795 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
798 k
= isl_basic_set_alloc_inequality(hull
);
799 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
801 hull
= isl_basic_set_finalize(hull
);
811 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
813 struct isl_basic_set
*convex_hull
;
818 if (isl_set_is_empty(set
))
819 convex_hull
= isl_basic_set_empty(isl_space_copy(set
->dim
));
821 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
826 /* Compute the convex hull of a pair of basic sets without any parameters or
827 * integer divisions using Fourier-Motzkin elimination.
828 * The convex hull is the set of all points that can be written as
829 * the sum of points from both basic sets (in homogeneous coordinates).
830 * We set up the constraints in a space with dimensions for each of
831 * the three sets and then project out the dimensions corresponding
832 * to the two original basic sets, retaining only those corresponding
833 * to the convex hull.
835 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
836 struct isl_basic_set
*bset2
)
839 struct isl_basic_set
*bset
[2];
840 struct isl_basic_set
*hull
= NULL
;
843 if (!bset1
|| !bset2
)
846 dim
= isl_basic_set_n_dim(bset1
);
847 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
848 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
849 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
852 for (i
= 0; i
< 2; ++i
) {
853 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
854 k
= isl_basic_set_alloc_equality(hull
);
857 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
858 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
859 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
862 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
863 k
= isl_basic_set_alloc_inequality(hull
);
866 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
867 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
868 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
869 bset
[i
]->ineq
[j
], 1+dim
);
871 k
= isl_basic_set_alloc_inequality(hull
);
874 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
875 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
877 for (j
= 0; j
< 1+dim
; ++j
) {
878 k
= isl_basic_set_alloc_equality(hull
);
881 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
882 isl_int_set_si(hull
->eq
[k
][j
], -1);
883 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
884 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
886 hull
= isl_basic_set_set_rational(hull
);
887 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
888 hull
= isl_basic_set_remove_redundancies(hull
);
889 isl_basic_set_free(bset1
);
890 isl_basic_set_free(bset2
);
893 isl_basic_set_free(bset1
);
894 isl_basic_set_free(bset2
);
895 isl_basic_set_free(hull
);
899 /* Is the set bounded for each value of the parameters?
901 int isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
908 if (isl_basic_set_plain_is_empty(bset
))
911 tab
= isl_tab_from_recession_cone(bset
, 1);
912 bounded
= isl_tab_cone_is_bounded(tab
);
917 /* Is the image bounded for each value of the parameters and
918 * the domain variables?
920 int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
922 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
923 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
926 bmap
= isl_basic_map_copy(bmap
);
927 bmap
= isl_basic_map_cow(bmap
);
928 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
929 isl_dim_in
, 0, n_in
);
930 bounded
= isl_basic_set_is_bounded((isl_basic_set
*)bmap
);
931 isl_basic_map_free(bmap
);
936 /* Is the set bounded for each value of the parameters?
938 int isl_set_is_bounded(__isl_keep isl_set
*set
)
945 for (i
= 0; i
< set
->n
; ++i
) {
946 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
947 if (!bounded
|| bounded
< 0)
953 /* Compute the lineality space of the convex hull of bset1 and bset2.
955 * We first compute the intersection of the recession cone of bset1
956 * with the negative of the recession cone of bset2 and then compute
957 * the linear hull of the resulting cone.
959 static struct isl_basic_set
*induced_lineality_space(
960 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
963 struct isl_basic_set
*lin
= NULL
;
966 if (!bset1
|| !bset2
)
969 dim
= isl_basic_set_total_dim(bset1
);
970 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset1
), 0,
971 bset1
->n_eq
+ bset2
->n_eq
,
972 bset1
->n_ineq
+ bset2
->n_ineq
);
973 lin
= isl_basic_set_set_rational(lin
);
976 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
977 k
= isl_basic_set_alloc_equality(lin
);
980 isl_int_set_si(lin
->eq
[k
][0], 0);
981 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
983 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
984 k
= isl_basic_set_alloc_inequality(lin
);
987 isl_int_set_si(lin
->ineq
[k
][0], 0);
988 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
990 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
991 k
= isl_basic_set_alloc_equality(lin
);
994 isl_int_set_si(lin
->eq
[k
][0], 0);
995 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
997 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
998 k
= isl_basic_set_alloc_inequality(lin
);
1001 isl_int_set_si(lin
->ineq
[k
][0], 0);
1002 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1005 isl_basic_set_free(bset1
);
1006 isl_basic_set_free(bset2
);
1007 return isl_basic_set_affine_hull(lin
);
1009 isl_basic_set_free(lin
);
1010 isl_basic_set_free(bset1
);
1011 isl_basic_set_free(bset2
);
1015 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1017 /* Given a set and a linear space "lin" of dimension n > 0,
1018 * project the linear space from the set, compute the convex hull
1019 * and then map the set back to the original space.
1025 * describe the linear space. We first compute the Hermite normal
1026 * form H = M U of M = H Q, to obtain
1030 * The last n rows of H will be zero, so the last n variables of x' = Q x
1031 * are the one we want to project out. We do this by transforming each
1032 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1033 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1034 * we transform the hull back to the original space as A' Q_1 x >= b',
1035 * with Q_1 all but the last n rows of Q.
1037 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1038 struct isl_basic_set
*lin
)
1040 unsigned total
= isl_basic_set_total_dim(lin
);
1042 struct isl_basic_set
*hull
;
1043 struct isl_mat
*M
, *U
, *Q
;
1047 lin_dim
= total
- lin
->n_eq
;
1048 M
= isl_mat_sub_alloc6(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1049 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1053 isl_basic_set_free(lin
);
1055 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1057 U
= isl_mat_lin_to_aff(U
);
1058 Q
= isl_mat_lin_to_aff(Q
);
1060 set
= isl_set_preimage(set
, U
);
1061 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1062 hull
= uset_convex_hull(set
);
1063 hull
= isl_basic_set_preimage(hull
, Q
);
1067 isl_basic_set_free(lin
);
1072 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1073 * set up an LP for solving
1075 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1077 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1078 * The next \alpha{ij} correspond to the equalities and come in pairs.
1079 * The final \alpha{ij} correspond to the inequalities.
1081 static struct isl_basic_set
*valid_direction_lp(
1082 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1085 struct isl_basic_set
*lp
;
1090 if (!bset1
|| !bset2
)
1092 d
= 1 + isl_basic_set_total_dim(bset1
);
1094 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1095 dim
= isl_space_set_alloc(bset1
->ctx
, 0, n
);
1096 lp
= isl_basic_set_alloc_space(dim
, 0, d
, n
);
1099 for (i
= 0; i
< n
; ++i
) {
1100 k
= isl_basic_set_alloc_inequality(lp
);
1103 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1104 isl_int_set_si(lp
->ineq
[k
][0], -1);
1105 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1107 for (i
= 0; i
< d
; ++i
) {
1108 k
= isl_basic_set_alloc_equality(lp
);
1112 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1113 /* positivity constraint 1 >= 0 */
1114 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1115 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1116 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1117 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1119 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1120 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1122 /* positivity constraint 1 >= 0 */
1123 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1124 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1125 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1126 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1128 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1129 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1132 lp
= isl_basic_set_gauss(lp
, NULL
);
1133 isl_basic_set_free(bset1
);
1134 isl_basic_set_free(bset2
);
1137 isl_basic_set_free(bset1
);
1138 isl_basic_set_free(bset2
);
1142 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1143 * for all rays in the homogeneous space of the two cones that correspond
1144 * to the input polyhedra bset1 and bset2.
1146 * We compute s as a vector that satisfies
1148 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1150 * with h_{ij} the normals of the facets of polyhedron i
1151 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1152 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1153 * We first set up an LP with as variables the \alpha{ij}.
1154 * In this formulation, for each polyhedron i,
1155 * the first constraint is the positivity constraint, followed by pairs
1156 * of variables for the equalities, followed by variables for the inequalities.
1157 * We then simply pick a feasible solution and compute s using (*).
1159 * Note that we simply pick any valid direction and make no attempt
1160 * to pick a "good" or even the "best" valid direction.
1162 static struct isl_vec
*valid_direction(
1163 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1165 struct isl_basic_set
*lp
;
1166 struct isl_tab
*tab
;
1167 struct isl_vec
*sample
= NULL
;
1168 struct isl_vec
*dir
;
1173 if (!bset1
|| !bset2
)
1175 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1176 isl_basic_set_copy(bset2
));
1177 tab
= isl_tab_from_basic_set(lp
, 0);
1178 sample
= isl_tab_get_sample_value(tab
);
1180 isl_basic_set_free(lp
);
1183 d
= isl_basic_set_total_dim(bset1
);
1184 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1187 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1189 /* positivity constraint 1 >= 0 */
1190 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1191 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1192 isl_int_sub(sample
->block
.data
[n
],
1193 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1194 isl_seq_combine(dir
->block
.data
,
1195 bset1
->ctx
->one
, dir
->block
.data
,
1196 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1200 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1201 isl_seq_combine(dir
->block
.data
,
1202 bset1
->ctx
->one
, dir
->block
.data
,
1203 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1204 isl_vec_free(sample
);
1205 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1206 isl_basic_set_free(bset1
);
1207 isl_basic_set_free(bset2
);
1210 isl_vec_free(sample
);
1211 isl_basic_set_free(bset1
);
1212 isl_basic_set_free(bset2
);
1216 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1217 * compute b_i' + A_i' x' >= 0, with
1219 * [ b_i A_i ] [ y' ] [ y' ]
1220 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1222 * In particular, add the "positivity constraint" and then perform
1225 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1232 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1233 k
= isl_basic_set_alloc_inequality(bset
);
1236 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1237 isl_int_set_si(bset
->ineq
[k
][0], 1);
1238 bset
= isl_basic_set_preimage(bset
, T
);
1242 isl_basic_set_free(bset
);
1246 /* Compute the convex hull of a pair of basic sets without any parameters or
1247 * integer divisions, where the convex hull is known to be pointed,
1248 * but the basic sets may be unbounded.
1250 * We turn this problem into the computation of a convex hull of a pair
1251 * _bounded_ polyhedra by "changing the direction of the homogeneous
1252 * dimension". This idea is due to Matthias Koeppe.
1254 * Consider the cones in homogeneous space that correspond to the
1255 * input polyhedra. The rays of these cones are also rays of the
1256 * polyhedra if the coordinate that corresponds to the homogeneous
1257 * dimension is zero. That is, if the inner product of the rays
1258 * with the homogeneous direction is zero.
1259 * The cones in the homogeneous space can also be considered to
1260 * correspond to other pairs of polyhedra by chosing a different
1261 * homogeneous direction. To ensure that both of these polyhedra
1262 * are bounded, we need to make sure that all rays of the cones
1263 * correspond to vertices and not to rays.
1264 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1265 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1266 * The vector s is computed in valid_direction.
1268 * Note that we need to consider _all_ rays of the cones and not just
1269 * the rays that correspond to rays in the polyhedra. If we were to
1270 * only consider those rays and turn them into vertices, then we
1271 * may inadvertently turn some vertices into rays.
1273 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1274 * We therefore transform the two polyhedra such that the selected
1275 * direction is mapped onto this standard direction and then proceed
1276 * with the normal computation.
1277 * Let S be a non-singular square matrix with s as its first row,
1278 * then we want to map the polyhedra to the space
1280 * [ y' ] [ y ] [ y ] [ y' ]
1281 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1283 * We take S to be the unimodular completion of s to limit the growth
1284 * of the coefficients in the following computations.
1286 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1287 * We first move to the homogeneous dimension
1289 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1290 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1292 * Then we change directoin
1294 * [ b_i A_i ] [ y' ] [ y' ]
1295 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1297 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1298 * resulting in b' + A' x' >= 0, which we then convert back
1301 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1303 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1305 static struct isl_basic_set
*convex_hull_pair_pointed(
1306 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1308 struct isl_ctx
*ctx
= NULL
;
1309 struct isl_vec
*dir
= NULL
;
1310 struct isl_mat
*T
= NULL
;
1311 struct isl_mat
*T2
= NULL
;
1312 struct isl_basic_set
*hull
;
1313 struct isl_set
*set
;
1315 if (!bset1
|| !bset2
)
1318 dir
= valid_direction(isl_basic_set_copy(bset1
),
1319 isl_basic_set_copy(bset2
));
1322 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1325 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1326 T
= isl_mat_unimodular_complete(T
, 1);
1327 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1329 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1330 bset2
= homogeneous_map(bset2
, T2
);
1331 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1332 set
= isl_set_add_basic_set(set
, bset1
);
1333 set
= isl_set_add_basic_set(set
, bset2
);
1334 hull
= uset_convex_hull(set
);
1335 hull
= isl_basic_set_preimage(hull
, T
);
1342 isl_basic_set_free(bset1
);
1343 isl_basic_set_free(bset2
);
1347 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1348 static struct isl_basic_set
*modulo_affine_hull(
1349 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1351 /* Compute the convex hull of a pair of basic sets without any parameters or
1352 * integer divisions.
1354 * This function is called from uset_convex_hull_unbounded, which
1355 * means that the complete convex hull is unbounded. Some pairs
1356 * of basic sets may still be bounded, though.
1357 * They may even lie inside a lower dimensional space, in which
1358 * case they need to be handled inside their affine hull since
1359 * the main algorithm assumes that the result is full-dimensional.
1361 * If the convex hull of the two basic sets would have a non-trivial
1362 * lineality space, we first project out this lineality space.
1364 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1365 struct isl_basic_set
*bset2
)
1367 isl_basic_set
*lin
, *aff
;
1368 int bounded1
, bounded2
;
1370 if (bset1
->ctx
->opt
->convex
== ISL_CONVEX_HULL_FM
)
1371 return convex_hull_pair_elim(bset1
, bset2
);
1373 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1374 isl_basic_set_copy(bset2
)));
1378 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1379 isl_basic_set_free(aff
);
1381 bounded1
= isl_basic_set_is_bounded(bset1
);
1382 bounded2
= isl_basic_set_is_bounded(bset2
);
1384 if (bounded1
< 0 || bounded2
< 0)
1387 if (bounded1
&& bounded2
)
1388 uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1390 if (bounded1
|| bounded2
)
1391 return convex_hull_pair_pointed(bset1
, bset2
);
1393 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1394 isl_basic_set_copy(bset2
));
1397 if (isl_basic_set_is_universe(lin
)) {
1398 isl_basic_set_free(bset1
);
1399 isl_basic_set_free(bset2
);
1402 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1403 struct isl_set
*set
;
1404 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1405 set
= isl_set_add_basic_set(set
, bset1
);
1406 set
= isl_set_add_basic_set(set
, bset2
);
1407 return modulo_lineality(set
, lin
);
1409 isl_basic_set_free(lin
);
1411 return convex_hull_pair_pointed(bset1
, bset2
);
1413 isl_basic_set_free(bset1
);
1414 isl_basic_set_free(bset2
);
1418 /* Compute the lineality space of a basic set.
1419 * We currently do not allow the basic set to have any divs.
1420 * We basically just drop the constants and turn every inequality
1423 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1426 struct isl_basic_set
*lin
= NULL
;
1431 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1432 dim
= isl_basic_set_total_dim(bset
);
1434 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset
), 0, dim
, 0);
1437 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1438 k
= isl_basic_set_alloc_equality(lin
);
1441 isl_int_set_si(lin
->eq
[k
][0], 0);
1442 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1444 lin
= isl_basic_set_gauss(lin
, NULL
);
1447 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1448 k
= isl_basic_set_alloc_equality(lin
);
1451 isl_int_set_si(lin
->eq
[k
][0], 0);
1452 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1453 lin
= isl_basic_set_gauss(lin
, NULL
);
1457 isl_basic_set_free(bset
);
1460 isl_basic_set_free(lin
);
1461 isl_basic_set_free(bset
);
1465 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1466 * "underlying" set "set".
1468 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1471 struct isl_set
*lin
= NULL
;
1476 isl_space
*dim
= isl_set_get_space(set
);
1478 return isl_basic_set_empty(dim
);
1481 lin
= isl_set_alloc_space(isl_set_get_space(set
), set
->n
, 0);
1482 for (i
= 0; i
< set
->n
; ++i
)
1483 lin
= isl_set_add_basic_set(lin
,
1484 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1486 return isl_set_affine_hull(lin
);
1489 /* Compute the convex hull of a set without any parameters or
1490 * integer divisions.
1491 * In each step, we combined two basic sets until only one
1492 * basic set is left.
1493 * The input basic sets are assumed not to have a non-trivial
1494 * lineality space. If any of the intermediate results has
1495 * a non-trivial lineality space, it is projected out.
1497 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1499 struct isl_basic_set
*convex_hull
= NULL
;
1501 convex_hull
= isl_set_copy_basic_set(set
);
1502 set
= isl_set_drop_basic_set(set
, convex_hull
);
1505 while (set
->n
> 0) {
1506 struct isl_basic_set
*t
;
1507 t
= isl_set_copy_basic_set(set
);
1510 set
= isl_set_drop_basic_set(set
, t
);
1513 convex_hull
= convex_hull_pair(convex_hull
, t
);
1516 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1519 if (isl_basic_set_is_universe(t
)) {
1520 isl_basic_set_free(convex_hull
);
1524 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1525 set
= isl_set_add_basic_set(set
, convex_hull
);
1526 return modulo_lineality(set
, t
);
1528 isl_basic_set_free(t
);
1534 isl_basic_set_free(convex_hull
);
1538 /* Compute an initial hull for wrapping containing a single initial
1540 * This function assumes that the given set is bounded.
1542 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1543 struct isl_set
*set
)
1545 struct isl_mat
*bounds
= NULL
;
1551 bounds
= initial_facet_constraint(set
);
1554 k
= isl_basic_set_alloc_inequality(hull
);
1557 dim
= isl_set_n_dim(set
);
1558 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1559 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1560 isl_mat_free(bounds
);
1564 isl_basic_set_free(hull
);
1565 isl_mat_free(bounds
);
1569 struct max_constraint
{
1575 static int max_constraint_equal(const void *entry
, const void *val
)
1577 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1578 isl_int
*b
= (isl_int
*)val
;
1580 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1583 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1584 isl_int
*con
, unsigned len
, int n
, int ineq
)
1586 struct isl_hash_table_entry
*entry
;
1587 struct max_constraint
*c
;
1590 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1591 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1597 isl_hash_table_remove(ctx
, table
, entry
);
1601 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1603 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1608 c
->c
= isl_mat_cow(c
->c
);
1609 isl_int_set(c
->c
->row
[0][0], con
[0]);
1613 /* Check whether the constraint hash table "table" constains the constraint
1616 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1617 isl_int
*con
, unsigned len
, int n
)
1619 struct isl_hash_table_entry
*entry
;
1620 struct max_constraint
*c
;
1623 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1624 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1631 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1634 /* Check for inequality constraints of a basic set without equalities
1635 * such that the same or more stringent copies of the constraint appear
1636 * in all of the basic sets. Such constraints are necessarily facet
1637 * constraints of the convex hull.
1639 * If the resulting basic set is by chance identical to one of
1640 * the basic sets in "set", then we know that this basic set contains
1641 * all other basic sets and is therefore the convex hull of set.
1642 * In this case we set *is_hull to 1.
1644 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1645 struct isl_set
*set
, int *is_hull
)
1648 int min_constraints
;
1650 struct max_constraint
*constraints
= NULL
;
1651 struct isl_hash_table
*table
= NULL
;
1656 for (i
= 0; i
< set
->n
; ++i
)
1657 if (set
->p
[i
]->n_eq
== 0)
1661 min_constraints
= set
->p
[i
]->n_ineq
;
1663 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1664 if (set
->p
[i
]->n_eq
!= 0)
1666 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1668 min_constraints
= set
->p
[i
]->n_ineq
;
1671 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1675 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1676 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1679 total
= isl_space_dim(set
->dim
, isl_dim_all
);
1680 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1681 constraints
[i
].c
= isl_mat_sub_alloc6(hull
->ctx
,
1682 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1683 if (!constraints
[i
].c
)
1685 constraints
[i
].ineq
= 1;
1687 for (i
= 0; i
< min_constraints
; ++i
) {
1688 struct isl_hash_table_entry
*entry
;
1690 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1691 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1692 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1695 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1696 entry
->data
= &constraints
[i
];
1700 for (s
= 0; s
< set
->n
; ++s
) {
1704 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1705 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1706 for (j
= 0; j
< 2; ++j
) {
1707 isl_seq_neg(eq
, eq
, 1 + total
);
1708 update_constraint(hull
->ctx
, table
,
1712 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1713 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1714 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1715 set
->p
[s
]->n_eq
== 0);
1720 for (i
= 0; i
< min_constraints
; ++i
) {
1721 if (constraints
[i
].count
< n
)
1723 if (!constraints
[i
].ineq
)
1725 j
= isl_basic_set_alloc_inequality(hull
);
1728 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1731 for (s
= 0; s
< set
->n
; ++s
) {
1732 if (set
->p
[s
]->n_eq
)
1734 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1736 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1737 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1738 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1741 if (i
== set
->p
[s
]->n_ineq
)
1745 isl_hash_table_clear(table
);
1746 for (i
= 0; i
< min_constraints
; ++i
)
1747 isl_mat_free(constraints
[i
].c
);
1752 isl_hash_table_clear(table
);
1755 for (i
= 0; i
< min_constraints
; ++i
)
1756 isl_mat_free(constraints
[i
].c
);
1761 /* Create a template for the convex hull of "set" and fill it up
1762 * obvious facet constraints, if any. If the result happens to
1763 * be the convex hull of "set" then *is_hull is set to 1.
1765 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1767 struct isl_basic_set
*hull
;
1772 for (i
= 0; i
< set
->n
; ++i
) {
1773 n_ineq
+= set
->p
[i
]->n_eq
;
1774 n_ineq
+= set
->p
[i
]->n_ineq
;
1776 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
1777 hull
= isl_basic_set_set_rational(hull
);
1780 return common_constraints(hull
, set
, is_hull
);
1783 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1785 struct isl_basic_set
*hull
;
1788 hull
= proto_hull(set
, &is_hull
);
1789 if (hull
&& !is_hull
) {
1790 if (hull
->n_ineq
== 0)
1791 hull
= initial_hull(hull
, set
);
1792 hull
= extend(hull
, set
);
1799 /* Compute the convex hull of a set without any parameters or
1800 * integer divisions. Depending on whether the set is bounded,
1801 * we pass control to the wrapping based convex hull or
1802 * the Fourier-Motzkin elimination based convex hull.
1803 * We also handle a few special cases before checking the boundedness.
1805 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1807 struct isl_basic_set
*convex_hull
= NULL
;
1808 struct isl_basic_set
*lin
;
1810 if (isl_set_n_dim(set
) == 0)
1811 return convex_hull_0d(set
);
1813 set
= isl_set_coalesce(set
);
1814 set
= isl_set_set_rational(set
);
1821 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1825 if (isl_set_n_dim(set
) == 1)
1826 return convex_hull_1d(set
);
1828 if (isl_set_is_bounded(set
) &&
1829 set
->ctx
->opt
->convex
== ISL_CONVEX_HULL_WRAP
)
1830 return uset_convex_hull_wrap(set
);
1832 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1835 if (isl_basic_set_is_universe(lin
)) {
1839 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1840 return modulo_lineality(set
, lin
);
1841 isl_basic_set_free(lin
);
1843 return uset_convex_hull_unbounded(set
);
1846 isl_basic_set_free(convex_hull
);
1850 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1851 * without parameters or divs and where the convex hull of set is
1852 * known to be full-dimensional.
1854 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1856 struct isl_basic_set
*convex_hull
= NULL
;
1861 if (isl_set_n_dim(set
) == 0) {
1862 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
1864 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1868 set
= isl_set_set_rational(set
);
1869 set
= isl_set_coalesce(set
);
1873 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1875 convex_hull
= isl_basic_map_remove_redundancies(convex_hull
);
1878 if (isl_set_n_dim(set
) == 1)
1879 return convex_hull_1d(set
);
1881 return uset_convex_hull_wrap(set
);
1887 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1888 * We first remove the equalities (transforming the set), compute the
1889 * convex hull of the transformed set and then add the equalities back
1890 * (after performing the inverse transformation.
1892 static struct isl_basic_set
*modulo_affine_hull(
1893 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1897 struct isl_basic_set
*dummy
;
1898 struct isl_basic_set
*convex_hull
;
1900 dummy
= isl_basic_set_remove_equalities(
1901 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1904 isl_basic_set_free(dummy
);
1905 set
= isl_set_preimage(set
, T
);
1906 convex_hull
= uset_convex_hull(set
);
1907 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1908 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1911 isl_basic_set_free(affine_hull
);
1916 /* Compute the convex hull of a map.
1918 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1919 * specifically, the wrapping of facets to obtain new facets.
1921 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1923 struct isl_basic_set
*bset
;
1924 struct isl_basic_map
*model
= NULL
;
1925 struct isl_basic_set
*affine_hull
= NULL
;
1926 struct isl_basic_map
*convex_hull
= NULL
;
1927 struct isl_set
*set
= NULL
;
1928 struct isl_ctx
*ctx
;
1935 convex_hull
= isl_basic_map_empty_like_map(map
);
1940 map
= isl_map_detect_equalities(map
);
1941 map
= isl_map_align_divs(map
);
1944 model
= isl_basic_map_copy(map
->p
[0]);
1945 set
= isl_map_underlying_set(map
);
1949 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1952 if (affine_hull
->n_eq
!= 0)
1953 bset
= modulo_affine_hull(set
, affine_hull
);
1955 isl_basic_set_free(affine_hull
);
1956 bset
= uset_convex_hull(set
);
1959 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1963 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1964 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1965 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1969 isl_basic_map_free(model
);
1973 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1975 return (struct isl_basic_set
*)
1976 isl_map_convex_hull((struct isl_map
*)set
);
1979 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
1981 isl_basic_map
*hull
;
1983 hull
= isl_map_convex_hull(map
);
1984 return isl_basic_map_remove_divs(hull
);
1987 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
1989 return (isl_basic_set
*)isl_map_polyhedral_hull((isl_map
*)set
);
1992 struct sh_data_entry
{
1993 struct isl_hash_table
*table
;
1994 struct isl_tab
*tab
;
1997 /* Holds the data needed during the simple hull computation.
1999 * n the number of basic sets in the original set
2000 * hull_table a hash table of already computed constraints
2001 * in the simple hull
2002 * p for each basic set,
2003 * table a hash table of the constraints
2004 * tab the tableau corresponding to the basic set
2007 struct isl_ctx
*ctx
;
2009 struct isl_hash_table
*hull_table
;
2010 struct sh_data_entry p
[1];
2013 static void sh_data_free(struct sh_data
*data
)
2019 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2020 for (i
= 0; i
< data
->n
; ++i
) {
2021 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2022 isl_tab_free(data
->p
[i
].tab
);
2027 struct ineq_cmp_data
{
2032 static int has_ineq(const void *entry
, const void *val
)
2034 isl_int
*row
= (isl_int
*)entry
;
2035 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2037 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2038 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2041 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2042 isl_int
*ineq
, unsigned len
)
2045 struct ineq_cmp_data v
;
2046 struct isl_hash_table_entry
*entry
;
2050 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2051 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2058 /* Fill hash table "table" with the constraints of "bset".
2059 * Equalities are added as two inequalities.
2060 * The value in the hash table is a pointer to the (in)equality of "bset".
2062 static int hash_basic_set(struct isl_hash_table
*table
,
2063 struct isl_basic_set
*bset
)
2066 unsigned dim
= isl_basic_set_total_dim(bset
);
2068 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2069 for (j
= 0; j
< 2; ++j
) {
2070 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2071 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2075 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2076 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2082 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2084 struct sh_data
*data
;
2087 data
= isl_calloc(set
->ctx
, struct sh_data
,
2088 sizeof(struct sh_data
) +
2089 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2092 data
->ctx
= set
->ctx
;
2094 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2095 if (!data
->hull_table
)
2097 for (i
= 0; i
< set
->n
; ++i
) {
2098 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2099 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2100 if (!data
->p
[i
].table
)
2102 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2111 /* Check if inequality "ineq" is a bound for basic set "j" or if
2112 * it can be relaxed (by increasing the constant term) to become
2113 * a bound for that basic set. In the latter case, the constant
2115 * Relaxation of the constant term is only allowed if "shift" is set.
2117 * Return 1 if "ineq" is a bound
2118 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2119 * -1 if some error occurred
2121 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2122 isl_int
*ineq
, int shift
)
2124 enum isl_lp_result res
;
2127 if (!data
->p
[j
].tab
) {
2128 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
], 0);
2129 if (!data
->p
[j
].tab
)
2135 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2137 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
)) {
2139 isl_int_sub(ineq
[0], ineq
[0], opt
);
2141 res
= isl_lp_unbounded
;
2146 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2147 res
== isl_lp_unbounded
? 0 : -1;
2150 /* Check if inequality "ineq" from basic set "i" is or can be relaxed to
2151 * become a bound on the whole set. If so, add the (relaxed) inequality
2152 * to "hull". Relaxation is only allowed if "shift" is set.
2154 * We first check if "hull" already contains a translate of the inequality.
2155 * If so, we are done.
2156 * Then, we check if any of the previous basic sets contains a translate
2157 * of the inequality. If so, then we have already considered this
2158 * inequality and we are done.
2159 * Otherwise, for each basic set other than "i", we check if the inequality
2160 * is a bound on the basic set.
2161 * For previous basic sets, we know that they do not contain a translate
2162 * of the inequality, so we directly call is_bound.
2163 * For following basic sets, we first check if a translate of the
2164 * inequality appears in its description and if so directly update
2165 * the inequality accordingly.
2167 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2168 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
,
2172 struct ineq_cmp_data v
;
2173 struct isl_hash_table_entry
*entry
;
2179 v
.len
= isl_basic_set_total_dim(hull
);
2181 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2183 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2188 for (j
= 0; j
< i
; ++j
) {
2189 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2190 c_hash
, has_ineq
, &v
, 0);
2197 k
= isl_basic_set_alloc_inequality(hull
);
2200 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2202 for (j
= 0; j
< i
; ++j
) {
2204 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
], shift
);
2211 isl_basic_set_free_inequality(hull
, 1);
2215 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2218 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2219 c_hash
, has_ineq
, &v
, 0);
2221 ineq_j
= entry
->data
;
2222 neg
= isl_seq_is_neg(ineq_j
+ 1,
2223 hull
->ineq
[k
] + 1, v
.len
);
2225 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2226 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2227 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2229 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2232 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
], shift
);
2239 isl_basic_set_free_inequality(hull
, 1);
2243 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2247 entry
->data
= hull
->ineq
[k
];
2251 isl_basic_set_free(hull
);
2255 /* Check if any inequality from basic set "i" is or can be relaxed to
2256 * become a bound on the whole set. If so, add the (relaxed) inequality
2257 * to "hull". Relaxation is only allowed if "shift" is set.
2259 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2260 struct sh_data
*data
, struct isl_set
*set
, int i
, int shift
)
2263 unsigned dim
= isl_basic_set_total_dim(bset
);
2265 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2266 for (k
= 0; k
< 2; ++k
) {
2267 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2268 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
],
2272 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2273 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
], shift
);
2277 /* Compute a superset of the convex hull of set that is described
2278 * by only (translates of) the constraints in the constituents of set.
2279 * Translation is only allowed if "shift" is set.
2281 static __isl_give isl_basic_set
*uset_simple_hull(__isl_take isl_set
*set
,
2284 struct sh_data
*data
= NULL
;
2285 struct isl_basic_set
*hull
= NULL
;
2293 for (i
= 0; i
< set
->n
; ++i
) {
2296 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2299 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
2303 data
= sh_data_alloc(set
, n_ineq
);
2307 for (i
= 0; i
< set
->n
; ++i
)
2308 hull
= add_bounds(hull
, data
, set
, i
, shift
);
2316 isl_basic_set_free(hull
);
2321 /* Compute a superset of the convex hull of map that is described
2322 * by only (translates of) the constraints in the constituents of map.
2323 * Translation is only allowed if "shift" is set.
2325 static __isl_give isl_basic_map
*map_simple_hull(__isl_take isl_map
*map
,
2328 struct isl_set
*set
= NULL
;
2329 struct isl_basic_map
*model
= NULL
;
2330 struct isl_basic_map
*hull
;
2331 struct isl_basic_map
*affine_hull
;
2332 struct isl_basic_set
*bset
= NULL
;
2337 hull
= isl_basic_map_empty_like_map(map
);
2342 hull
= isl_basic_map_copy(map
->p
[0]);
2347 map
= isl_map_detect_equalities(map
);
2348 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2349 map
= isl_map_align_divs(map
);
2350 model
= map
? isl_basic_map_copy(map
->p
[0]) : NULL
;
2352 set
= isl_map_underlying_set(map
);
2354 bset
= uset_simple_hull(set
, shift
);
2356 hull
= isl_basic_map_overlying_set(bset
, model
);
2358 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2359 hull
= isl_basic_map_remove_redundancies(hull
);
2363 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2364 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2366 hull
= isl_basic_map_finalize(hull
);
2371 /* Compute a superset of the convex hull of map that is described
2372 * by only translates of the constraints in the constituents of map.
2374 __isl_give isl_basic_map
*isl_map_simple_hull(__isl_take isl_map
*map
)
2376 return map_simple_hull(map
, 1);
2379 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2381 return (struct isl_basic_set
*)
2382 isl_map_simple_hull((struct isl_map
*)set
);
2385 /* Compute a superset of the convex hull of map that is described
2386 * by only the constraints in the constituents of map.
2388 __isl_give isl_basic_map
*isl_map_unshifted_simple_hull(
2389 __isl_take isl_map
*map
)
2391 return map_simple_hull(map
, 0);
2394 __isl_give isl_basic_set
*isl_set_unshifted_simple_hull(
2395 __isl_take isl_set
*set
)
2397 return isl_map_unshifted_simple_hull(set
);
2400 /* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
2402 * For each basic set in "set", we first check if the basic set
2403 * contains a translate of "ineq". If this translate is more relaxed,
2404 * then we assume that "ineq" is not a bound on this basic set.
2405 * Otherwise, we know that it is a bound.
2406 * If the basic set does not contain a translate of "ineq", then
2407 * we call is_bound to perform the test.
2409 static __isl_give isl_basic_set
*add_bound_from_constraint(
2410 __isl_take isl_basic_set
*hull
, struct sh_data
*data
,
2411 __isl_keep isl_set
*set
, isl_int
*ineq
)
2416 struct ineq_cmp_data v
;
2419 return isl_basic_set_free(hull
);
2421 v
.len
= isl_basic_set_total_dim(hull
);
2423 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2425 ctx
= isl_basic_set_get_ctx(hull
);
2426 for (i
= 0; i
< set
->n
; ++i
) {
2428 struct isl_hash_table_entry
*entry
;
2430 entry
= isl_hash_table_find(ctx
, data
->p
[i
].table
,
2431 c_hash
, &has_ineq
, &v
, 0);
2433 isl_int
*ineq_i
= entry
->data
;
2434 int neg
, more_relaxed
;
2436 neg
= isl_seq_is_neg(ineq_i
+ 1, ineq
+ 1, v
.len
);
2438 isl_int_neg(ineq_i
[0], ineq_i
[0]);
2439 more_relaxed
= isl_int_gt(ineq_i
[0], ineq
[0]);
2441 isl_int_neg(ineq_i
[0], ineq_i
[0]);
2447 bound
= is_bound(data
, set
, i
, ineq
, 0);
2449 return isl_basic_set_free(hull
);
2456 k
= isl_basic_set_alloc_inequality(hull
);
2458 return isl_basic_set_free(hull
);
2459 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2464 /* Compute a superset of the convex hull of "set" that is described
2465 * by only some of the "n_ineq" constraints in the list "ineq", where "set"
2466 * has no parameters or integer divisions.
2468 * The inequalities in "ineq" are assumed to have been sorted such
2469 * that constraints with the same linear part appear together and
2470 * that among constraints with the same linear part, those with
2471 * smaller constant term appear first.
2473 * We reuse the same data structure that is used by uset_simple_hull,
2474 * but we do not need the hull table since we will not consider the
2475 * same constraint more than once. We therefore allocate it with zero size.
2477 * We run through the constraints and try to add them one by one,
2478 * skipping identical constraints. If we have added a constraint and
2479 * the next constraint is a more relaxed translate, then we skip this
2480 * next constraint as well.
2482 static __isl_give isl_basic_set
*uset_unshifted_simple_hull_from_constraints(
2483 __isl_take isl_set
*set
, int n_ineq
, isl_int
**ineq
)
2487 struct sh_data
*data
= NULL
;
2488 isl_basic_set
*hull
= NULL
;
2491 hull
= isl_basic_set_alloc_space(isl_set_get_space(set
), 0, 0, n_ineq
);
2495 data
= sh_data_alloc(set
, 0);
2499 dim
= isl_set_dim(set
, isl_dim_set
);
2500 for (i
= 0; i
< n_ineq
; ++i
) {
2501 int hull_n_ineq
= hull
->n_ineq
;
2504 parallel
= i
> 0 && isl_seq_eq(ineq
[i
- 1] + 1, ineq
[i
] + 1,
2507 (last_added
|| isl_int_eq(ineq
[i
- 1][0], ineq
[i
][0])))
2509 hull
= add_bound_from_constraint(hull
, data
, set
, ineq
[i
]);
2512 last_added
= hull
->n_ineq
> hull_n_ineq
;
2521 isl_basic_set_free(hull
);
2525 /* Collect pointers to all the inequalities in the elements of "list"
2526 * in "ineq". For equalities, store both a pointer to the equality and
2527 * a pointer to its opposite, which is first copied to "mat".
2528 * "ineq" and "mat" are assumed to have been preallocated to the right size
2529 * (the number of inequalities + 2 times the number of equalites and
2530 * the number of equalities, respectively).
2532 static __isl_give isl_mat
*collect_inequalities(__isl_take isl_mat
*mat
,
2533 __isl_keep isl_basic_set_list
*list
, isl_int
**ineq
)
2535 int i
, j
, n
, n_eq
, n_ineq
;
2542 n
= isl_basic_set_list_n_basic_set(list
);
2543 for (i
= 0; i
< n
; ++i
) {
2544 isl_basic_set
*bset
;
2545 bset
= isl_basic_set_list_get_basic_set(list
, i
);
2547 return isl_mat_free(mat
);
2548 for (j
= 0; j
< bset
->n_eq
; ++j
) {
2549 ineq
[n_ineq
++] = mat
->row
[n_eq
];
2550 ineq
[n_ineq
++] = bset
->eq
[j
];
2551 isl_seq_neg(mat
->row
[n_eq
++], bset
->eq
[j
], mat
->n_col
);
2553 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2554 ineq
[n_ineq
++] = bset
->ineq
[j
];
2555 isl_basic_set_free(bset
);
2561 /* Comparison routine for use as an isl_sort callback.
2563 * Constraints with the same linear part are sorted together and
2564 * among constraints with the same linear part, those with smaller
2565 * constant term are sorted first.
2567 static int cmp_ineq(const void *a
, const void *b
, void *arg
)
2569 unsigned dim
= *(unsigned *) arg
;
2570 isl_int
* const *ineq1
= a
;
2571 isl_int
* const *ineq2
= b
;
2574 cmp
= isl_seq_cmp((*ineq1
) + 1, (*ineq2
) + 1, dim
);
2577 return isl_int_cmp((*ineq1
)[0], (*ineq2
)[0]);
2580 /* Compute a superset of the convex hull of "set" that is described
2581 * by only constraints in the elements of "list", where "set" has
2582 * no parameters or integer divisions.
2584 * We collect all the constraints in those elements and then
2585 * sort the constraints such that constraints with the same linear part
2586 * are sorted together and that those with smaller constant term are
2589 static __isl_give isl_basic_set
*uset_unshifted_simple_hull_from_basic_set_list(
2590 __isl_take isl_set
*set
, __isl_take isl_basic_set_list
*list
)
2592 int i
, n
, n_eq
, n_ineq
;
2595 isl_mat
*mat
= NULL
;
2596 isl_int
**ineq
= NULL
;
2597 isl_basic_set
*hull
;
2601 ctx
= isl_set_get_ctx(set
);
2605 n
= isl_basic_set_list_n_basic_set(list
);
2606 for (i
= 0; i
< n
; ++i
) {
2607 isl_basic_set
*bset
;
2608 bset
= isl_basic_set_list_get_basic_set(list
, i
);
2612 n_ineq
+= 2 * bset
->n_eq
+ bset
->n_ineq
;
2613 isl_basic_set_free(bset
);
2616 ineq
= isl_alloc_array(ctx
, isl_int
*, n_ineq
);
2617 if (n_ineq
> 0 && !ineq
)
2620 dim
= isl_set_dim(set
, isl_dim_set
);
2621 mat
= isl_mat_alloc(ctx
, n_eq
, 1 + dim
);
2622 mat
= collect_inequalities(mat
, list
, ineq
);
2626 if (isl_sort(ineq
, n_ineq
, sizeof(ineq
[0]), &cmp_ineq
, &dim
) < 0)
2629 hull
= uset_unshifted_simple_hull_from_constraints(set
, n_ineq
, ineq
);
2633 isl_basic_set_list_free(list
);
2639 isl_basic_set_list_free(list
);
2643 /* Compute a superset of the convex hull of "set" that is described
2644 * by only constraints in the elements of "list".
2646 * If the list is empty, then we can only describe the universe set.
2647 * If the input set is empty, then all constraints are valid, so
2648 * we return the intersection of the elements in "list".
2650 * Otherwise, we align all divs and temporarily treat them
2651 * as regular variables, computing the unshifted simple hull in
2652 * uset_unshifted_simple_hull_from_basic_set_list.
2654 static __isl_give isl_basic_set
*set_unshifted_simple_hull_from_basic_set_list(
2655 __isl_take isl_set
*set
, __isl_take isl_basic_set_list
*list
)
2657 isl_basic_set
*model
;
2658 isl_basic_set
*hull
;
2663 if (isl_basic_set_list_n_basic_set(list
) == 0) {
2666 space
= isl_set_get_space(set
);
2668 isl_basic_set_list_free(list
);
2669 return isl_basic_set_universe(space
);
2671 if (isl_set_plain_is_empty(set
)) {
2673 return isl_basic_set_list_intersect(list
);
2676 set
= isl_set_align_divs_to_basic_set_list(set
, list
);
2679 list
= isl_basic_set_list_align_divs_to_basic_set(list
, set
->p
[0]);
2681 model
= isl_basic_set_list_get_basic_set(list
, 0);
2683 set
= isl_set_to_underlying_set(set
);
2684 list
= isl_basic_set_list_underlying_set(list
);
2686 hull
= uset_unshifted_simple_hull_from_basic_set_list(set
, list
);
2687 hull
= isl_basic_map_overlying_set(hull
, model
);
2692 isl_basic_set_list_free(list
);
2696 /* Return a sequence of the basic sets that make up the sets in "list".
2698 static __isl_give isl_basic_set_list
*collect_basic_sets(
2699 __isl_take isl_set_list
*list
)
2703 isl_basic_set_list
*bset_list
;
2707 n
= isl_set_list_n_set(list
);
2708 ctx
= isl_set_list_get_ctx(list
);
2709 bset_list
= isl_basic_set_list_alloc(ctx
, 0);
2711 for (i
= 0; i
< n
; ++i
) {
2713 isl_basic_set_list
*list_i
;
2715 set
= isl_set_list_get_set(list
, i
);
2716 set
= isl_set_compute_divs(set
);
2717 list_i
= isl_set_get_basic_set_list(set
);
2719 bset_list
= isl_basic_set_list_concat(bset_list
, list_i
);
2722 isl_set_list_free(list
);
2726 /* Compute a superset of the convex hull of "set" that is described
2727 * by only constraints in the elements of "list".
2729 * If "set" is the universe, then the convex hull (and therefore
2730 * any superset of the convexhull) is the universe as well.
2732 * Otherwise, we collect all the basic sets in the set list and
2733 * continue with set_unshifted_simple_hull_from_basic_set_list.
2735 __isl_give isl_basic_set
*isl_set_unshifted_simple_hull_from_set_list(
2736 __isl_take isl_set
*set
, __isl_take isl_set_list
*list
)
2738 isl_basic_set_list
*bset_list
;
2741 is_universe
= isl_set_plain_is_universe(set
);
2742 if (is_universe
< 0)
2743 set
= isl_set_free(set
);
2744 if (is_universe
< 0 || is_universe
) {
2745 isl_set_list_free(list
);
2746 return isl_set_unshifted_simple_hull(set
);
2749 bset_list
= collect_basic_sets(list
);
2750 return set_unshifted_simple_hull_from_basic_set_list(set
, bset_list
);
2753 /* Given a set "set", return parametric bounds on the dimension "dim".
2755 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2757 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2758 set
= isl_set_copy(set
);
2759 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2760 set
= isl_set_eliminate_dims(set
, 0, dim
);
2761 return isl_set_convex_hull(set
);
2764 /* Computes a "simple hull" and then check if each dimension in the
2765 * resulting hull is bounded by a symbolic constant. If not, the
2766 * hull is intersected with the corresponding bounds on the whole set.
2768 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2771 struct isl_basic_set
*hull
;
2772 unsigned nparam
, left
;
2773 int removed_divs
= 0;
2775 hull
= isl_set_simple_hull(isl_set_copy(set
));
2779 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2780 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2781 int lower
= 0, upper
= 0;
2782 struct isl_basic_set
*bounds
;
2784 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2785 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2786 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2788 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2795 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2796 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2798 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2800 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2803 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2814 if (!removed_divs
) {
2815 set
= isl_set_remove_divs(set
);
2820 bounds
= set_bounds(set
, i
);
2821 hull
= isl_basic_set_intersect(hull
, bounds
);