isl_test: avoid use of band forests
[isl.git] / isl_scheduler.c
blob0d3d3346f25e7d4b793b9d36cdd7f9924fdc2e87
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl/schedule_node.h>
21 #include <isl_mat_private.h>
22 #include <isl_vec_private.h>
23 #include <isl/set.h>
24 #include <isl_seq.h>
25 #include <isl_tab.h>
26 #include <isl_dim_map.h>
27 #include <isl/map_to_basic_set.h>
28 #include <isl_sort.h>
29 #include <isl_options_private.h>
30 #include <isl_tarjan.h>
31 #include <isl_morph.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 enum isl_edge_type {
40 isl_edge_validity = 0,
41 isl_edge_first = isl_edge_validity,
42 isl_edge_coincidence,
43 isl_edge_condition,
44 isl_edge_conditional_validity,
45 isl_edge_proximity,
46 isl_edge_last = isl_edge_proximity
49 /* The constraints that need to be satisfied by a schedule on "domain".
51 * "validity" constraints map domain elements i to domain elements
52 * that should be scheduled after i. (Hard constraint)
53 * "proximity" constraints map domain elements i to domains elements
54 * that should be scheduled as early as possible after i (or before i).
55 * (Soft constraint)
57 * "condition" and "conditional_validity" constraints map possibly "tagged"
58 * domain elements i -> s to "tagged" domain elements j -> t.
59 * The elements of the "conditional_validity" constraints, but without the
60 * tags (i.e., the elements i -> j) are treated as validity constraints,
61 * except that during the construction of a tilable band,
62 * the elements of the "conditional_validity" constraints may be violated
63 * provided that all adjacent elements of the "condition" constraints
64 * are local within the band.
65 * A dependence is local within a band if domain and range are mapped
66 * to the same schedule point by the band.
68 struct isl_schedule_constraints {
69 isl_union_set *domain;
71 isl_union_map *constraint[isl_edge_last + 1];
74 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
75 __isl_keep isl_schedule_constraints *sc)
77 isl_ctx *ctx;
78 isl_schedule_constraints *sc_copy;
79 enum isl_edge_type i;
81 ctx = isl_union_set_get_ctx(sc->domain);
82 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
83 if (!sc_copy)
84 return NULL;
86 sc_copy->domain = isl_union_set_copy(sc->domain);
87 if (!sc_copy->domain)
88 return isl_schedule_constraints_free(sc_copy);
90 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
91 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
92 if (!sc_copy->constraint[i])
93 return isl_schedule_constraints_free(sc_copy);
96 return sc_copy;
100 /* Construct an isl_schedule_constraints object for computing a schedule
101 * on "domain". The initial object does not impose any constraints.
103 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
104 __isl_take isl_union_set *domain)
106 isl_ctx *ctx;
107 isl_space *space;
108 isl_schedule_constraints *sc;
109 isl_union_map *empty;
110 enum isl_edge_type i;
112 if (!domain)
113 return NULL;
115 ctx = isl_union_set_get_ctx(domain);
116 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
117 if (!sc)
118 goto error;
120 space = isl_union_set_get_space(domain);
121 sc->domain = domain;
122 empty = isl_union_map_empty(space);
123 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
124 sc->constraint[i] = isl_union_map_copy(empty);
125 if (!sc->constraint[i])
126 sc->domain = isl_union_set_free(sc->domain);
128 isl_union_map_free(empty);
130 if (!sc->domain)
131 return isl_schedule_constraints_free(sc);
133 return sc;
134 error:
135 isl_union_set_free(domain);
136 return NULL;
139 /* Replace the validity constraints of "sc" by "validity".
141 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
142 __isl_take isl_schedule_constraints *sc,
143 __isl_take isl_union_map *validity)
145 if (!sc || !validity)
146 goto error;
148 isl_union_map_free(sc->constraint[isl_edge_validity]);
149 sc->constraint[isl_edge_validity] = validity;
151 return sc;
152 error:
153 isl_schedule_constraints_free(sc);
154 isl_union_map_free(validity);
155 return NULL;
158 /* Replace the coincidence constraints of "sc" by "coincidence".
160 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
161 __isl_take isl_schedule_constraints *sc,
162 __isl_take isl_union_map *coincidence)
164 if (!sc || !coincidence)
165 goto error;
167 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
168 sc->constraint[isl_edge_coincidence] = coincidence;
170 return sc;
171 error:
172 isl_schedule_constraints_free(sc);
173 isl_union_map_free(coincidence);
174 return NULL;
177 /* Replace the proximity constraints of "sc" by "proximity".
179 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
180 __isl_take isl_schedule_constraints *sc,
181 __isl_take isl_union_map *proximity)
183 if (!sc || !proximity)
184 goto error;
186 isl_union_map_free(sc->constraint[isl_edge_proximity]);
187 sc->constraint[isl_edge_proximity] = proximity;
189 return sc;
190 error:
191 isl_schedule_constraints_free(sc);
192 isl_union_map_free(proximity);
193 return NULL;
196 /* Replace the conditional validity constraints of "sc" by "condition"
197 * and "validity".
199 __isl_give isl_schedule_constraints *
200 isl_schedule_constraints_set_conditional_validity(
201 __isl_take isl_schedule_constraints *sc,
202 __isl_take isl_union_map *condition,
203 __isl_take isl_union_map *validity)
205 if (!sc || !condition || !validity)
206 goto error;
208 isl_union_map_free(sc->constraint[isl_edge_condition]);
209 sc->constraint[isl_edge_condition] = condition;
210 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
211 sc->constraint[isl_edge_conditional_validity] = validity;
213 return sc;
214 error:
215 isl_schedule_constraints_free(sc);
216 isl_union_map_free(condition);
217 isl_union_map_free(validity);
218 return NULL;
221 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
222 __isl_take isl_schedule_constraints *sc)
224 enum isl_edge_type i;
226 if (!sc)
227 return NULL;
229 isl_union_set_free(sc->domain);
230 for (i = isl_edge_first; i <= isl_edge_last; ++i)
231 isl_union_map_free(sc->constraint[i]);
233 free(sc);
235 return NULL;
238 isl_ctx *isl_schedule_constraints_get_ctx(
239 __isl_keep isl_schedule_constraints *sc)
241 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
244 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
246 if (!sc)
247 return;
249 fprintf(stderr, "domain: ");
250 isl_union_set_dump(sc->domain);
251 fprintf(stderr, "validity: ");
252 isl_union_map_dump(sc->constraint[isl_edge_validity]);
253 fprintf(stderr, "proximity: ");
254 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
255 fprintf(stderr, "coincidence: ");
256 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
257 fprintf(stderr, "condition: ");
258 isl_union_map_dump(sc->constraint[isl_edge_condition]);
259 fprintf(stderr, "conditional_validity: ");
260 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
263 /* Align the parameters of the fields of "sc".
265 static __isl_give isl_schedule_constraints *
266 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
268 isl_space *space;
269 enum isl_edge_type i;
271 if (!sc)
272 return NULL;
274 space = isl_union_set_get_space(sc->domain);
275 for (i = isl_edge_first; i <= isl_edge_last; ++i)
276 space = isl_space_align_params(space,
277 isl_union_map_get_space(sc->constraint[i]));
279 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
280 sc->constraint[i] = isl_union_map_align_params(
281 sc->constraint[i], isl_space_copy(space));
282 if (!sc->constraint[i])
283 space = isl_space_free(space);
285 sc->domain = isl_union_set_align_params(sc->domain, space);
286 if (!sc->domain)
287 return isl_schedule_constraints_free(sc);
289 return sc;
292 /* Return the total number of isl_maps in the constraints of "sc".
294 static __isl_give int isl_schedule_constraints_n_map(
295 __isl_keep isl_schedule_constraints *sc)
297 enum isl_edge_type i;
298 int n = 0;
300 for (i = isl_edge_first; i <= isl_edge_last; ++i)
301 n += isl_union_map_n_map(sc->constraint[i]);
303 return n;
306 /* Internal information about a node that is used during the construction
307 * of a schedule.
308 * space represents the space in which the domain lives
309 * sched is a matrix representation of the schedule being constructed
310 * for this node; if compressed is set, then this schedule is
311 * defined over the compressed domain space
312 * sched_map is an isl_map representation of the same (partial) schedule
313 * sched_map may be NULL; if compressed is set, then this map
314 * is defined over the uncompressed domain space
315 * rank is the number of linearly independent rows in the linear part
316 * of sched
317 * the columns of cmap represent a change of basis for the schedule
318 * coefficients; the first rank columns span the linear part of
319 * the schedule rows
320 * cinv is the inverse of cmap.
321 * start is the first variable in the LP problem in the sequences that
322 * represents the schedule coefficients of this node
323 * nvar is the dimension of the domain
324 * nparam is the number of parameters or 0 if we are not constructing
325 * a parametric schedule
327 * If compressed is set, then hull represents the constraints
328 * that were used to derive the compression, while compress and
329 * decompress map the original space to the compressed space and
330 * vice versa.
332 * scc is the index of SCC (or WCC) this node belongs to
334 * coincident contains a boolean for each of the rows of the schedule,
335 * indicating whether the corresponding scheduling dimension satisfies
336 * the coincidence constraints in the sense that the corresponding
337 * dependence distances are zero.
339 struct isl_sched_node {
340 isl_space *space;
341 int compressed;
342 isl_set *hull;
343 isl_multi_aff *compress;
344 isl_multi_aff *decompress;
345 isl_mat *sched;
346 isl_map *sched_map;
347 int rank;
348 isl_mat *cmap;
349 isl_mat *cinv;
350 int start;
351 int nvar;
352 int nparam;
354 int scc;
356 int *coincident;
359 static int node_has_space(const void *entry, const void *val)
361 struct isl_sched_node *node = (struct isl_sched_node *)entry;
362 isl_space *dim = (isl_space *)val;
364 return isl_space_is_equal(node->space, dim);
367 static int node_scc_exactly(struct isl_sched_node *node, int scc)
369 return node->scc == scc;
372 static int node_scc_at_most(struct isl_sched_node *node, int scc)
374 return node->scc <= scc;
377 static int node_scc_at_least(struct isl_sched_node *node, int scc)
379 return node->scc >= scc;
382 /* An edge in the dependence graph. An edge may be used to
383 * ensure validity of the generated schedule, to minimize the dependence
384 * distance or both
386 * map is the dependence relation, with i -> j in the map if j depends on i
387 * tagged_condition and tagged_validity contain the union of all tagged
388 * condition or conditional validity dependence relations that
389 * specialize the dependence relation "map"; that is,
390 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
391 * or "tagged_validity", then i -> j is an element of "map".
392 * If these fields are NULL, then they represent the empty relation.
393 * src is the source node
394 * dst is the sink node
395 * validity is set if the edge is used to ensure correctness
396 * coincidence is used to enforce zero dependence distances
397 * proximity is set if the edge is used to minimize dependence distances
398 * condition is set if the edge represents a condition
399 * for a conditional validity schedule constraint
400 * local can only be set for condition edges and indicates that
401 * the dependence distance over the edge should be zero
402 * conditional_validity is set if the edge is used to conditionally
403 * ensure correctness
405 * For validity edges, start and end mark the sequence of inequality
406 * constraints in the LP problem that encode the validity constraint
407 * corresponding to this edge.
409 struct isl_sched_edge {
410 isl_map *map;
411 isl_union_map *tagged_condition;
412 isl_union_map *tagged_validity;
414 struct isl_sched_node *src;
415 struct isl_sched_node *dst;
417 unsigned validity : 1;
418 unsigned coincidence : 1;
419 unsigned proximity : 1;
420 unsigned local : 1;
421 unsigned condition : 1;
422 unsigned conditional_validity : 1;
424 int start;
425 int end;
428 /* Internal information about the dependence graph used during
429 * the construction of the schedule.
431 * intra_hmap is a cache, mapping dependence relations to their dual,
432 * for dependences from a node to itself
433 * inter_hmap is a cache, mapping dependence relations to their dual,
434 * for dependences between distinct nodes
435 * if compression is involved then the key for these maps
436 * it the original, uncompressed dependence relation, while
437 * the value is the dual of the compressed dependence relation.
439 * n is the number of nodes
440 * node is the list of nodes
441 * maxvar is the maximal number of variables over all nodes
442 * max_row is the allocated number of rows in the schedule
443 * n_row is the current (maximal) number of linearly independent
444 * rows in the node schedules
445 * n_total_row is the current number of rows in the node schedules
446 * band_start is the starting row in the node schedules of the current band
447 * root is set if this graph is the original dependence graph,
448 * without any splitting
450 * sorted contains a list of node indices sorted according to the
451 * SCC to which a node belongs
453 * n_edge is the number of edges
454 * edge is the list of edges
455 * max_edge contains the maximal number of edges of each type;
456 * in particular, it contains the number of edges in the inital graph.
457 * edge_table contains pointers into the edge array, hashed on the source
458 * and sink spaces; there is one such table for each type;
459 * a given edge may be referenced from more than one table
460 * if the corresponding relation appears in more than of the
461 * sets of dependences
463 * node_table contains pointers into the node array, hashed on the space
465 * region contains a list of variable sequences that should be non-trivial
467 * lp contains the (I)LP problem used to obtain new schedule rows
469 * src_scc and dst_scc are the source and sink SCCs of an edge with
470 * conflicting constraints
472 * scc represents the number of components
473 * weak is set if the components are weakly connected
475 struct isl_sched_graph {
476 isl_map_to_basic_set *intra_hmap;
477 isl_map_to_basic_set *inter_hmap;
479 struct isl_sched_node *node;
480 int n;
481 int maxvar;
482 int max_row;
483 int n_row;
485 int *sorted;
487 int n_total_row;
488 int band_start;
490 int root;
492 struct isl_sched_edge *edge;
493 int n_edge;
494 int max_edge[isl_edge_last + 1];
495 struct isl_hash_table *edge_table[isl_edge_last + 1];
497 struct isl_hash_table *node_table;
498 struct isl_region *region;
500 isl_basic_set *lp;
502 int src_scc;
503 int dst_scc;
505 int scc;
506 int weak;
509 /* Initialize node_table based on the list of nodes.
511 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
513 int i;
515 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
516 if (!graph->node_table)
517 return -1;
519 for (i = 0; i < graph->n; ++i) {
520 struct isl_hash_table_entry *entry;
521 uint32_t hash;
523 hash = isl_space_get_hash(graph->node[i].space);
524 entry = isl_hash_table_find(ctx, graph->node_table, hash,
525 &node_has_space,
526 graph->node[i].space, 1);
527 if (!entry)
528 return -1;
529 entry->data = &graph->node[i];
532 return 0;
535 /* Return a pointer to the node that lives within the given space,
536 * or NULL if there is no such node.
538 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
539 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
541 struct isl_hash_table_entry *entry;
542 uint32_t hash;
544 hash = isl_space_get_hash(dim);
545 entry = isl_hash_table_find(ctx, graph->node_table, hash,
546 &node_has_space, dim, 0);
548 return entry ? entry->data : NULL;
551 static int edge_has_src_and_dst(const void *entry, const void *val)
553 const struct isl_sched_edge *edge = entry;
554 const struct isl_sched_edge *temp = val;
556 return edge->src == temp->src && edge->dst == temp->dst;
559 /* Add the given edge to graph->edge_table[type].
561 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
562 enum isl_edge_type type, struct isl_sched_edge *edge)
564 struct isl_hash_table_entry *entry;
565 uint32_t hash;
567 hash = isl_hash_init();
568 hash = isl_hash_builtin(hash, edge->src);
569 hash = isl_hash_builtin(hash, edge->dst);
570 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
571 &edge_has_src_and_dst, edge, 1);
572 if (!entry)
573 return -1;
574 entry->data = edge;
576 return 0;
579 /* Allocate the edge_tables based on the maximal number of edges of
580 * each type.
582 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
584 int i;
586 for (i = 0; i <= isl_edge_last; ++i) {
587 graph->edge_table[i] = isl_hash_table_alloc(ctx,
588 graph->max_edge[i]);
589 if (!graph->edge_table[i])
590 return -1;
593 return 0;
596 /* If graph->edge_table[type] contains an edge from the given source
597 * to the given destination, then return the hash table entry of this edge.
598 * Otherwise, return NULL.
600 static struct isl_hash_table_entry *graph_find_edge_entry(
601 struct isl_sched_graph *graph,
602 enum isl_edge_type type,
603 struct isl_sched_node *src, struct isl_sched_node *dst)
605 isl_ctx *ctx = isl_space_get_ctx(src->space);
606 uint32_t hash;
607 struct isl_sched_edge temp = { .src = src, .dst = dst };
609 hash = isl_hash_init();
610 hash = isl_hash_builtin(hash, temp.src);
611 hash = isl_hash_builtin(hash, temp.dst);
612 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
613 &edge_has_src_and_dst, &temp, 0);
617 /* If graph->edge_table[type] contains an edge from the given source
618 * to the given destination, then return this edge.
619 * Otherwise, return NULL.
621 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
622 enum isl_edge_type type,
623 struct isl_sched_node *src, struct isl_sched_node *dst)
625 struct isl_hash_table_entry *entry;
627 entry = graph_find_edge_entry(graph, type, src, dst);
628 if (!entry)
629 return NULL;
631 return entry->data;
634 /* Check whether the dependence graph has an edge of the given type
635 * between the given two nodes.
637 static int graph_has_edge(struct isl_sched_graph *graph,
638 enum isl_edge_type type,
639 struct isl_sched_node *src, struct isl_sched_node *dst)
641 struct isl_sched_edge *edge;
642 int empty;
644 edge = graph_find_edge(graph, type, src, dst);
645 if (!edge)
646 return 0;
648 empty = isl_map_plain_is_empty(edge->map);
649 if (empty < 0)
650 return -1;
652 return !empty;
655 /* Look for any edge with the same src, dst and map fields as "model".
657 * Return the matching edge if one can be found.
658 * Return "model" if no matching edge is found.
659 * Return NULL on error.
661 static struct isl_sched_edge *graph_find_matching_edge(
662 struct isl_sched_graph *graph, struct isl_sched_edge *model)
664 enum isl_edge_type i;
665 struct isl_sched_edge *edge;
667 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
668 int is_equal;
670 edge = graph_find_edge(graph, i, model->src, model->dst);
671 if (!edge)
672 continue;
673 is_equal = isl_map_plain_is_equal(model->map, edge->map);
674 if (is_equal < 0)
675 return NULL;
676 if (is_equal)
677 return edge;
680 return model;
683 /* Remove the given edge from all the edge_tables that refer to it.
685 static void graph_remove_edge(struct isl_sched_graph *graph,
686 struct isl_sched_edge *edge)
688 isl_ctx *ctx = isl_map_get_ctx(edge->map);
689 enum isl_edge_type i;
691 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
692 struct isl_hash_table_entry *entry;
694 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
695 if (!entry)
696 continue;
697 if (entry->data != edge)
698 continue;
699 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
703 /* Check whether the dependence graph has any edge
704 * between the given two nodes.
706 static int graph_has_any_edge(struct isl_sched_graph *graph,
707 struct isl_sched_node *src, struct isl_sched_node *dst)
709 enum isl_edge_type i;
710 int r;
712 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
713 r = graph_has_edge(graph, i, src, dst);
714 if (r < 0 || r)
715 return r;
718 return r;
721 /* Check whether the dependence graph has a validity edge
722 * between the given two nodes.
724 * Conditional validity edges are essentially validity edges that
725 * can be ignored if the corresponding condition edges are iteration private.
726 * Here, we are only checking for the presence of validity
727 * edges, so we need to consider the conditional validity edges too.
728 * In particular, this function is used during the detection
729 * of strongly connected components and we cannot ignore
730 * conditional validity edges during this detection.
732 static int graph_has_validity_edge(struct isl_sched_graph *graph,
733 struct isl_sched_node *src, struct isl_sched_node *dst)
735 int r;
737 r = graph_has_edge(graph, isl_edge_validity, src, dst);
738 if (r < 0 || r)
739 return r;
741 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
744 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
745 int n_node, int n_edge)
747 int i;
749 graph->n = n_node;
750 graph->n_edge = n_edge;
751 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
752 graph->sorted = isl_calloc_array(ctx, int, graph->n);
753 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
754 graph->edge = isl_calloc_array(ctx,
755 struct isl_sched_edge, graph->n_edge);
757 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
758 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
760 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
761 !graph->sorted)
762 return -1;
764 for(i = 0; i < graph->n; ++i)
765 graph->sorted[i] = i;
767 return 0;
770 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
772 int i;
774 isl_map_to_basic_set_free(graph->intra_hmap);
775 isl_map_to_basic_set_free(graph->inter_hmap);
777 if (graph->node)
778 for (i = 0; i < graph->n; ++i) {
779 isl_space_free(graph->node[i].space);
780 isl_set_free(graph->node[i].hull);
781 isl_multi_aff_free(graph->node[i].compress);
782 isl_multi_aff_free(graph->node[i].decompress);
783 isl_mat_free(graph->node[i].sched);
784 isl_map_free(graph->node[i].sched_map);
785 isl_mat_free(graph->node[i].cmap);
786 isl_mat_free(graph->node[i].cinv);
787 if (graph->root)
788 free(graph->node[i].coincident);
790 free(graph->node);
791 free(graph->sorted);
792 if (graph->edge)
793 for (i = 0; i < graph->n_edge; ++i) {
794 isl_map_free(graph->edge[i].map);
795 isl_union_map_free(graph->edge[i].tagged_condition);
796 isl_union_map_free(graph->edge[i].tagged_validity);
798 free(graph->edge);
799 free(graph->region);
800 for (i = 0; i <= isl_edge_last; ++i)
801 isl_hash_table_free(ctx, graph->edge_table[i]);
802 isl_hash_table_free(ctx, graph->node_table);
803 isl_basic_set_free(graph->lp);
806 /* For each "set" on which this function is called, increment
807 * graph->n by one and update graph->maxvar.
809 static int init_n_maxvar(__isl_take isl_set *set, void *user)
811 struct isl_sched_graph *graph = user;
812 int nvar = isl_set_dim(set, isl_dim_set);
814 graph->n++;
815 if (nvar > graph->maxvar)
816 graph->maxvar = nvar;
818 isl_set_free(set);
820 return 0;
823 /* Add the number of basic maps in "map" to *n.
825 static int add_n_basic_map(__isl_take isl_map *map, void *user)
827 int *n = user;
829 *n += isl_map_n_basic_map(map);
830 isl_map_free(map);
832 return 0;
835 /* Compute the number of rows that should be allocated for the schedule.
836 * In particular, we need one row for each variable or one row
837 * for each basic map in the dependences.
838 * Note that it is practically impossible to exhaust both
839 * the number of dependences and the number of variables.
841 static int compute_max_row(struct isl_sched_graph *graph,
842 __isl_keep isl_schedule_constraints *sc)
844 enum isl_edge_type i;
845 int n_edge;
847 graph->n = 0;
848 graph->maxvar = 0;
849 if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
850 return -1;
851 n_edge = 0;
852 for (i = isl_edge_first; i <= isl_edge_last; ++i)
853 if (isl_union_map_foreach_map(sc->constraint[i],
854 &add_n_basic_map, &n_edge) < 0)
855 return -1;
856 graph->max_row = n_edge + graph->maxvar;
858 return 0;
861 /* Does "bset" have any defining equalities for its set variables?
863 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
865 int i, n;
867 if (!bset)
868 return -1;
870 n = isl_basic_set_dim(bset, isl_dim_set);
871 for (i = 0; i < n; ++i) {
872 int has;
874 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
875 NULL);
876 if (has < 0 || has)
877 return has;
880 return 0;
883 /* Add a new node to the graph representing the given space.
884 * "nvar" is the (possibly compressed) number of variables and
885 * may be smaller than then number of set variables in "space"
886 * if "compressed" is set.
887 * If "compressed" is set, then "hull" represents the constraints
888 * that were used to derive the compression, while "compress" and
889 * "decompress" map the original space to the compressed space and
890 * vice versa.
891 * If "compressed" is not set, then "hull", "compress" and "decompress"
892 * should be NULL.
894 static int add_node(struct isl_sched_graph *graph, __isl_take isl_space *space,
895 int nvar, int compressed, __isl_take isl_set *hull,
896 __isl_take isl_multi_aff *compress,
897 __isl_take isl_multi_aff *decompress)
899 int nparam;
900 isl_ctx *ctx;
901 isl_mat *sched;
902 int *coincident;
904 if (!space)
905 return -1;
907 ctx = isl_space_get_ctx(space);
908 nparam = isl_space_dim(space, isl_dim_param);
909 if (!ctx->opt->schedule_parametric)
910 nparam = 0;
911 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
912 graph->node[graph->n].space = space;
913 graph->node[graph->n].nvar = nvar;
914 graph->node[graph->n].nparam = nparam;
915 graph->node[graph->n].sched = sched;
916 graph->node[graph->n].sched_map = NULL;
917 coincident = isl_calloc_array(ctx, int, graph->max_row);
918 graph->node[graph->n].coincident = coincident;
919 graph->node[graph->n].compressed = compressed;
920 graph->node[graph->n].hull = hull;
921 graph->node[graph->n].compress = compress;
922 graph->node[graph->n].decompress = decompress;
923 graph->n++;
925 if (!space || !sched || (graph->max_row && !coincident))
926 return -1;
927 if (compressed && (!hull || !compress || !decompress))
928 return -1;
930 return 0;
933 /* Add a new node to the graph representing the given set.
935 * If any of the set variables is defined by an equality, then
936 * we perform variable compression such that we can perform
937 * the scheduling on the compressed domain.
939 static int extract_node(__isl_take isl_set *set, void *user)
941 int nvar;
942 int has_equality;
943 isl_space *space;
944 isl_basic_set *hull;
945 isl_set *hull_set;
946 isl_morph *morph;
947 isl_multi_aff *compress, *decompress;
948 struct isl_sched_graph *graph = user;
950 space = isl_set_get_space(set);
951 hull = isl_set_affine_hull(set);
952 hull = isl_basic_set_remove_divs(hull);
953 nvar = isl_space_dim(space, isl_dim_set);
954 has_equality = has_any_defining_equality(hull);
956 if (has_equality < 0)
957 goto error;
958 if (!has_equality) {
959 isl_basic_set_free(hull);
960 return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
963 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
964 nvar = isl_morph_ran_dim(morph, isl_dim_set);
965 compress = isl_morph_get_var_multi_aff(morph);
966 morph = isl_morph_inverse(morph);
967 decompress = isl_morph_get_var_multi_aff(morph);
968 isl_morph_free(morph);
970 hull_set = isl_set_from_basic_set(hull);
971 return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
972 error:
973 isl_basic_set_free(hull);
974 isl_space_free(space);
975 return -1;
978 struct isl_extract_edge_data {
979 enum isl_edge_type type;
980 struct isl_sched_graph *graph;
983 /* Merge edge2 into edge1, freeing the contents of edge2.
984 * "type" is the type of the schedule constraint from which edge2 was
985 * extracted.
986 * Return 0 on success and -1 on failure.
988 * edge1 and edge2 are assumed to have the same value for the map field.
990 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
991 struct isl_sched_edge *edge2)
993 edge1->validity |= edge2->validity;
994 edge1->coincidence |= edge2->coincidence;
995 edge1->proximity |= edge2->proximity;
996 edge1->condition |= edge2->condition;
997 edge1->conditional_validity |= edge2->conditional_validity;
998 isl_map_free(edge2->map);
1000 if (type == isl_edge_condition) {
1001 if (!edge1->tagged_condition)
1002 edge1->tagged_condition = edge2->tagged_condition;
1003 else
1004 edge1->tagged_condition =
1005 isl_union_map_union(edge1->tagged_condition,
1006 edge2->tagged_condition);
1009 if (type == isl_edge_conditional_validity) {
1010 if (!edge1->tagged_validity)
1011 edge1->tagged_validity = edge2->tagged_validity;
1012 else
1013 edge1->tagged_validity =
1014 isl_union_map_union(edge1->tagged_validity,
1015 edge2->tagged_validity);
1018 if (type == isl_edge_condition && !edge1->tagged_condition)
1019 return -1;
1020 if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
1021 return -1;
1023 return 0;
1026 /* Insert dummy tags in domain and range of "map".
1028 * In particular, if "map" is of the form
1030 * A -> B
1032 * then return
1034 * [A -> dummy_tag] -> [B -> dummy_tag]
1036 * where the dummy_tags are identical and equal to any dummy tags
1037 * introduced by any other call to this function.
1039 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1041 static char dummy;
1042 isl_ctx *ctx;
1043 isl_id *id;
1044 isl_space *space;
1045 isl_set *domain, *range;
1047 ctx = isl_map_get_ctx(map);
1049 id = isl_id_alloc(ctx, NULL, &dummy);
1050 space = isl_space_params(isl_map_get_space(map));
1051 space = isl_space_set_from_params(space);
1052 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1053 space = isl_space_map_from_set(space);
1055 domain = isl_map_wrap(map);
1056 range = isl_map_wrap(isl_map_universe(space));
1057 map = isl_map_from_domain_and_range(domain, range);
1058 map = isl_map_zip(map);
1060 return map;
1063 /* Given that at least one of "src" or "dst" is compressed, return
1064 * a map between the spaces of these nodes restricted to the affine
1065 * hull that was used in the compression.
1067 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1068 struct isl_sched_node *dst)
1070 isl_set *dom, *ran;
1072 if (src->compressed)
1073 dom = isl_set_copy(src->hull);
1074 else
1075 dom = isl_set_universe(isl_space_copy(src->space));
1076 if (dst->compressed)
1077 ran = isl_set_copy(dst->hull);
1078 else
1079 ran = isl_set_universe(isl_space_copy(dst->space));
1081 return isl_map_from_domain_and_range(dom, ran);
1084 /* Intersect the domains of the nested relations in domain and range
1085 * of "tagged" with "map".
1087 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1088 __isl_keep isl_map *map)
1090 isl_set *set;
1092 tagged = isl_map_zip(tagged);
1093 set = isl_map_wrap(isl_map_copy(map));
1094 tagged = isl_map_intersect_domain(tagged, set);
1095 tagged = isl_map_zip(tagged);
1096 return tagged;
1099 /* Add a new edge to the graph based on the given map
1100 * and add it to data->graph->edge_table[data->type].
1101 * If a dependence relation of a given type happens to be identical
1102 * to one of the dependence relations of a type that was added before,
1103 * then we don't create a new edge, but instead mark the original edge
1104 * as also representing a dependence of the current type.
1106 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1107 * may be specified as "tagged" dependence relations. That is, "map"
1108 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1109 * the dependence on iterations and a and b are tags.
1110 * edge->map is set to the relation containing the elements i -> j,
1111 * while edge->tagged_condition and edge->tagged_validity contain
1112 * the union of all the "map" relations
1113 * for which extract_edge is called that result in the same edge->map.
1115 * If the source or the destination node is compressed, then
1116 * intersect both "map" and "tagged" with the constraints that
1117 * were used to construct the compression.
1118 * This ensures that there are no schedule constraints defined
1119 * outside of these domains, while the scheduler no longer has
1120 * any control over those outside parts.
1122 static int extract_edge(__isl_take isl_map *map, void *user)
1124 isl_ctx *ctx = isl_map_get_ctx(map);
1125 struct isl_extract_edge_data *data = user;
1126 struct isl_sched_graph *graph = data->graph;
1127 struct isl_sched_node *src, *dst;
1128 isl_space *dim;
1129 struct isl_sched_edge *edge;
1130 isl_map *tagged = NULL;
1132 if (data->type == isl_edge_condition ||
1133 data->type == isl_edge_conditional_validity) {
1134 if (isl_map_can_zip(map)) {
1135 tagged = isl_map_copy(map);
1136 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1137 } else {
1138 tagged = insert_dummy_tags(isl_map_copy(map));
1142 dim = isl_space_domain(isl_map_get_space(map));
1143 src = graph_find_node(ctx, graph, dim);
1144 isl_space_free(dim);
1145 dim = isl_space_range(isl_map_get_space(map));
1146 dst = graph_find_node(ctx, graph, dim);
1147 isl_space_free(dim);
1149 if (!src || !dst) {
1150 isl_map_free(map);
1151 isl_map_free(tagged);
1152 return 0;
1155 if (src->compressed || dst->compressed) {
1156 isl_map *hull;
1157 hull = extract_hull(src, dst);
1158 if (tagged)
1159 tagged = map_intersect_domains(tagged, hull);
1160 map = isl_map_intersect(map, hull);
1163 graph->edge[graph->n_edge].src = src;
1164 graph->edge[graph->n_edge].dst = dst;
1165 graph->edge[graph->n_edge].map = map;
1166 graph->edge[graph->n_edge].validity = 0;
1167 graph->edge[graph->n_edge].coincidence = 0;
1168 graph->edge[graph->n_edge].proximity = 0;
1169 graph->edge[graph->n_edge].condition = 0;
1170 graph->edge[graph->n_edge].local = 0;
1171 graph->edge[graph->n_edge].conditional_validity = 0;
1172 graph->edge[graph->n_edge].tagged_condition = NULL;
1173 graph->edge[graph->n_edge].tagged_validity = NULL;
1174 if (data->type == isl_edge_validity)
1175 graph->edge[graph->n_edge].validity = 1;
1176 if (data->type == isl_edge_coincidence)
1177 graph->edge[graph->n_edge].coincidence = 1;
1178 if (data->type == isl_edge_proximity)
1179 graph->edge[graph->n_edge].proximity = 1;
1180 if (data->type == isl_edge_condition) {
1181 graph->edge[graph->n_edge].condition = 1;
1182 graph->edge[graph->n_edge].tagged_condition =
1183 isl_union_map_from_map(tagged);
1185 if (data->type == isl_edge_conditional_validity) {
1186 graph->edge[graph->n_edge].conditional_validity = 1;
1187 graph->edge[graph->n_edge].tagged_validity =
1188 isl_union_map_from_map(tagged);
1191 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1192 if (!edge) {
1193 graph->n_edge++;
1194 return -1;
1196 if (edge == &graph->edge[graph->n_edge])
1197 return graph_edge_table_add(ctx, graph, data->type,
1198 &graph->edge[graph->n_edge++]);
1200 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
1201 return -1;
1203 return graph_edge_table_add(ctx, graph, data->type, edge);
1206 /* Check whether there is any dependence from node[j] to node[i]
1207 * or from node[i] to node[j].
1209 static int node_follows_weak(int i, int j, void *user)
1211 int f;
1212 struct isl_sched_graph *graph = user;
1214 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1215 if (f < 0 || f)
1216 return f;
1217 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1220 /* Check whether there is a (conditional) validity dependence from node[j]
1221 * to node[i], forcing node[i] to follow node[j].
1223 static int node_follows_strong(int i, int j, void *user)
1225 struct isl_sched_graph *graph = user;
1227 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1230 /* Use Tarjan's algorithm for computing the strongly connected components
1231 * in the dependence graph (only validity edges).
1232 * If weak is set, we consider the graph to be undirected and
1233 * we effectively compute the (weakly) connected components.
1234 * Additionally, we also consider other edges when weak is set.
1236 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
1238 int i, n;
1239 struct isl_tarjan_graph *g = NULL;
1241 g = isl_tarjan_graph_init(ctx, graph->n,
1242 weak ? &node_follows_weak : &node_follows_strong, graph);
1243 if (!g)
1244 return -1;
1246 graph->weak = weak;
1247 graph->scc = 0;
1248 i = 0;
1249 n = graph->n;
1250 while (n) {
1251 while (g->order[i] != -1) {
1252 graph->node[g->order[i]].scc = graph->scc;
1253 --n;
1254 ++i;
1256 ++i;
1257 graph->scc++;
1260 isl_tarjan_graph_free(g);
1262 return 0;
1265 /* Apply Tarjan's algorithm to detect the strongly connected components
1266 * in the dependence graph.
1268 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1270 return detect_ccs(ctx, graph, 0);
1273 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1274 * in the dependence graph.
1276 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1278 return detect_ccs(ctx, graph, 1);
1281 static int cmp_scc(const void *a, const void *b, void *data)
1283 struct isl_sched_graph *graph = data;
1284 const int *i1 = a;
1285 const int *i2 = b;
1287 return graph->node[*i1].scc - graph->node[*i2].scc;
1290 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1292 static int sort_sccs(struct isl_sched_graph *graph)
1294 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1297 /* Given a dependence relation R from "node" to itself,
1298 * construct the set of coefficients of valid constraints for elements
1299 * in that dependence relation.
1300 * In particular, the result contains tuples of coefficients
1301 * c_0, c_n, c_x such that
1303 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1305 * or, equivalently,
1307 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1309 * We choose here to compute the dual of delta R.
1310 * Alternatively, we could have computed the dual of R, resulting
1311 * in a set of tuples c_0, c_n, c_x, c_y, and then
1312 * plugged in (c_0, c_n, c_x, -c_x).
1314 * If "node" has been compressed, then the dependence relation
1315 * is also compressed before the set of coefficients is computed.
1317 static __isl_give isl_basic_set *intra_coefficients(
1318 struct isl_sched_graph *graph, struct isl_sched_node *node,
1319 __isl_take isl_map *map)
1321 isl_set *delta;
1322 isl_map *key;
1323 isl_basic_set *coef;
1325 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
1326 return isl_map_to_basic_set_get(graph->intra_hmap, map);
1328 key = isl_map_copy(map);
1329 if (node->compressed) {
1330 map = isl_map_preimage_domain_multi_aff(map,
1331 isl_multi_aff_copy(node->decompress));
1332 map = isl_map_preimage_range_multi_aff(map,
1333 isl_multi_aff_copy(node->decompress));
1335 delta = isl_set_remove_divs(isl_map_deltas(map));
1336 coef = isl_set_coefficients(delta);
1337 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1338 isl_basic_set_copy(coef));
1340 return coef;
1343 /* Given a dependence relation R, construct the set of coefficients
1344 * of valid constraints for elements in that dependence relation.
1345 * In particular, the result contains tuples of coefficients
1346 * c_0, c_n, c_x, c_y such that
1348 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1350 * If the source or destination nodes of "edge" have been compressed,
1351 * then the dependence relation is also compressed before
1352 * the set of coefficients is computed.
1354 static __isl_give isl_basic_set *inter_coefficients(
1355 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1356 __isl_take isl_map *map)
1358 isl_set *set;
1359 isl_map *key;
1360 isl_basic_set *coef;
1362 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
1363 return isl_map_to_basic_set_get(graph->inter_hmap, map);
1365 key = isl_map_copy(map);
1366 if (edge->src->compressed)
1367 map = isl_map_preimage_domain_multi_aff(map,
1368 isl_multi_aff_copy(edge->src->decompress));
1369 if (edge->dst->compressed)
1370 map = isl_map_preimage_range_multi_aff(map,
1371 isl_multi_aff_copy(edge->dst->decompress));
1372 set = isl_map_wrap(isl_map_remove_divs(map));
1373 coef = isl_set_coefficients(set);
1374 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1375 isl_basic_set_copy(coef));
1377 return coef;
1380 /* Add constraints to graph->lp that force validity for the given
1381 * dependence from a node i to itself.
1382 * That is, add constraints that enforce
1384 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1385 * = c_i_x (y - x) >= 0
1387 * for each (x,y) in R.
1388 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1389 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1390 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1391 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1393 * Actually, we do not construct constraints for the c_i_x themselves,
1394 * but for the coefficients of c_i_x written as a linear combination
1395 * of the columns in node->cmap.
1397 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1398 struct isl_sched_edge *edge)
1400 unsigned total;
1401 isl_map *map = isl_map_copy(edge->map);
1402 isl_ctx *ctx = isl_map_get_ctx(map);
1403 isl_space *dim;
1404 isl_dim_map *dim_map;
1405 isl_basic_set *coef;
1406 struct isl_sched_node *node = edge->src;
1408 coef = intra_coefficients(graph, node, map);
1410 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1412 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1413 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1414 if (!coef)
1415 goto error;
1417 total = isl_basic_set_total_dim(graph->lp);
1418 dim_map = isl_dim_map_alloc(ctx, total);
1419 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1420 isl_space_dim(dim, isl_dim_set), 1,
1421 node->nvar, -1);
1422 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1423 isl_space_dim(dim, isl_dim_set), 1,
1424 node->nvar, 1);
1425 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1426 coef->n_eq, coef->n_ineq);
1427 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1428 coef, dim_map);
1429 isl_space_free(dim);
1431 return 0;
1432 error:
1433 isl_space_free(dim);
1434 return -1;
1437 /* Add constraints to graph->lp that force validity for the given
1438 * dependence from node i to node j.
1439 * That is, add constraints that enforce
1441 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1443 * for each (x,y) in R.
1444 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1445 * of valid constraints for R and then plug in
1446 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1447 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1448 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1449 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1451 * Actually, we do not construct constraints for the c_*_x themselves,
1452 * but for the coefficients of c_*_x written as a linear combination
1453 * of the columns in node->cmap.
1455 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1456 struct isl_sched_edge *edge)
1458 unsigned total;
1459 isl_map *map = isl_map_copy(edge->map);
1460 isl_ctx *ctx = isl_map_get_ctx(map);
1461 isl_space *dim;
1462 isl_dim_map *dim_map;
1463 isl_basic_set *coef;
1464 struct isl_sched_node *src = edge->src;
1465 struct isl_sched_node *dst = edge->dst;
1467 coef = inter_coefficients(graph, edge, map);
1469 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1471 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1472 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1473 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1474 isl_space_dim(dim, isl_dim_set) + src->nvar,
1475 isl_mat_copy(dst->cmap));
1476 if (!coef)
1477 goto error;
1479 total = isl_basic_set_total_dim(graph->lp);
1480 dim_map = isl_dim_map_alloc(ctx, total);
1482 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1483 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1484 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1485 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1486 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1487 dst->nvar, -1);
1488 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1489 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1490 dst->nvar, 1);
1492 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1493 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1494 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1495 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1496 isl_space_dim(dim, isl_dim_set), 1,
1497 src->nvar, 1);
1498 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1499 isl_space_dim(dim, isl_dim_set), 1,
1500 src->nvar, -1);
1502 edge->start = graph->lp->n_ineq;
1503 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1504 coef->n_eq, coef->n_ineq);
1505 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1506 coef, dim_map);
1507 if (!graph->lp)
1508 goto error;
1509 isl_space_free(dim);
1510 edge->end = graph->lp->n_ineq;
1512 return 0;
1513 error:
1514 isl_space_free(dim);
1515 return -1;
1518 /* Add constraints to graph->lp that bound the dependence distance for the given
1519 * dependence from a node i to itself.
1520 * If s = 1, we add the constraint
1522 * c_i_x (y - x) <= m_0 + m_n n
1524 * or
1526 * -c_i_x (y - x) + m_0 + m_n n >= 0
1528 * for each (x,y) in R.
1529 * If s = -1, we add the constraint
1531 * -c_i_x (y - x) <= m_0 + m_n n
1533 * or
1535 * c_i_x (y - x) + m_0 + m_n n >= 0
1537 * for each (x,y) in R.
1538 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1539 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1540 * with each coefficient (except m_0) represented as a pair of non-negative
1541 * coefficients.
1543 * Actually, we do not construct constraints for the c_i_x themselves,
1544 * but for the coefficients of c_i_x written as a linear combination
1545 * of the columns in node->cmap.
1548 * If "local" is set, then we add constraints
1550 * c_i_x (y - x) <= 0
1552 * or
1554 * -c_i_x (y - x) <= 0
1556 * instead, forcing the dependence distance to be (less than or) equal to 0.
1557 * That is, we plug in (0, 0, -s * c_i_x),
1558 * Note that dependences marked local are treated as validity constraints
1559 * by add_all_validity_constraints and therefore also have
1560 * their distances bounded by 0 from below.
1562 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1563 struct isl_sched_edge *edge, int s, int local)
1565 unsigned total;
1566 unsigned nparam;
1567 isl_map *map = isl_map_copy(edge->map);
1568 isl_ctx *ctx = isl_map_get_ctx(map);
1569 isl_space *dim;
1570 isl_dim_map *dim_map;
1571 isl_basic_set *coef;
1572 struct isl_sched_node *node = edge->src;
1574 coef = intra_coefficients(graph, node, map);
1576 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1578 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1579 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1580 if (!coef)
1581 goto error;
1583 nparam = isl_space_dim(node->space, isl_dim_param);
1584 total = isl_basic_set_total_dim(graph->lp);
1585 dim_map = isl_dim_map_alloc(ctx, total);
1587 if (!local) {
1588 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1589 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1590 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1592 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1593 isl_space_dim(dim, isl_dim_set), 1,
1594 node->nvar, s);
1595 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1596 isl_space_dim(dim, isl_dim_set), 1,
1597 node->nvar, -s);
1598 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1599 coef->n_eq, coef->n_ineq);
1600 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1601 coef, dim_map);
1602 isl_space_free(dim);
1604 return 0;
1605 error:
1606 isl_space_free(dim);
1607 return -1;
1610 /* Add constraints to graph->lp that bound the dependence distance for the given
1611 * dependence from node i to node j.
1612 * If s = 1, we add the constraint
1614 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1615 * <= m_0 + m_n n
1617 * or
1619 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1620 * m_0 + m_n n >= 0
1622 * for each (x,y) in R.
1623 * If s = -1, we add the constraint
1625 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1626 * <= m_0 + m_n n
1628 * or
1630 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1631 * m_0 + m_n n >= 0
1633 * for each (x,y) in R.
1634 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1635 * of valid constraints for R and then plug in
1636 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1637 * -s*c_j_x+s*c_i_x)
1638 * with each coefficient (except m_0, c_j_0 and c_i_0)
1639 * represented as a pair of non-negative coefficients.
1641 * Actually, we do not construct constraints for the c_*_x themselves,
1642 * but for the coefficients of c_*_x written as a linear combination
1643 * of the columns in node->cmap.
1646 * If "local" is set, then we add constraints
1648 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1650 * or
1652 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1654 * instead, forcing the dependence distance to be (less than or) equal to 0.
1655 * That is, we plug in
1656 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1657 * Note that dependences marked local are treated as validity constraints
1658 * by add_all_validity_constraints and therefore also have
1659 * their distances bounded by 0 from below.
1661 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1662 struct isl_sched_edge *edge, int s, int local)
1664 unsigned total;
1665 unsigned nparam;
1666 isl_map *map = isl_map_copy(edge->map);
1667 isl_ctx *ctx = isl_map_get_ctx(map);
1668 isl_space *dim;
1669 isl_dim_map *dim_map;
1670 isl_basic_set *coef;
1671 struct isl_sched_node *src = edge->src;
1672 struct isl_sched_node *dst = edge->dst;
1674 coef = inter_coefficients(graph, edge, map);
1676 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1678 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1679 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1680 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1681 isl_space_dim(dim, isl_dim_set) + src->nvar,
1682 isl_mat_copy(dst->cmap));
1683 if (!coef)
1684 goto error;
1686 nparam = isl_space_dim(src->space, isl_dim_param);
1687 total = isl_basic_set_total_dim(graph->lp);
1688 dim_map = isl_dim_map_alloc(ctx, total);
1690 if (!local) {
1691 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1692 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1693 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1696 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1697 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1698 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1699 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1700 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1701 dst->nvar, s);
1702 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1703 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1704 dst->nvar, -s);
1706 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1707 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1708 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1709 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1710 isl_space_dim(dim, isl_dim_set), 1,
1711 src->nvar, -s);
1712 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1713 isl_space_dim(dim, isl_dim_set), 1,
1714 src->nvar, s);
1716 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1717 coef->n_eq, coef->n_ineq);
1718 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1719 coef, dim_map);
1720 isl_space_free(dim);
1722 return 0;
1723 error:
1724 isl_space_free(dim);
1725 return -1;
1728 /* Add all validity constraints to graph->lp.
1730 * An edge that is forced to be local needs to have its dependence
1731 * distances equal to zero. We take care of bounding them by 0 from below
1732 * here. add_all_proximity_constraints takes care of bounding them by 0
1733 * from above.
1735 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1736 * Otherwise, we ignore them.
1738 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1739 int use_coincidence)
1741 int i;
1743 for (i = 0; i < graph->n_edge; ++i) {
1744 struct isl_sched_edge *edge= &graph->edge[i];
1745 int local;
1747 local = edge->local || (edge->coincidence && use_coincidence);
1748 if (!edge->validity && !local)
1749 continue;
1750 if (edge->src != edge->dst)
1751 continue;
1752 if (add_intra_validity_constraints(graph, edge) < 0)
1753 return -1;
1756 for (i = 0; i < graph->n_edge; ++i) {
1757 struct isl_sched_edge *edge = &graph->edge[i];
1758 int local;
1760 local = edge->local || (edge->coincidence && use_coincidence);
1761 if (!edge->validity && !local)
1762 continue;
1763 if (edge->src == edge->dst)
1764 continue;
1765 if (add_inter_validity_constraints(graph, edge) < 0)
1766 return -1;
1769 return 0;
1772 /* Add constraints to graph->lp that bound the dependence distance
1773 * for all dependence relations.
1774 * If a given proximity dependence is identical to a validity
1775 * dependence, then the dependence distance is already bounded
1776 * from below (by zero), so we only need to bound the distance
1777 * from above. (This includes the case of "local" dependences
1778 * which are treated as validity dependence by add_all_validity_constraints.)
1779 * Otherwise, we need to bound the distance both from above and from below.
1781 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1782 * Otherwise, we ignore them.
1784 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1785 int use_coincidence)
1787 int i;
1789 for (i = 0; i < graph->n_edge; ++i) {
1790 struct isl_sched_edge *edge= &graph->edge[i];
1791 int local;
1793 local = edge->local || (edge->coincidence && use_coincidence);
1794 if (!edge->proximity && !local)
1795 continue;
1796 if (edge->src == edge->dst &&
1797 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1798 return -1;
1799 if (edge->src != edge->dst &&
1800 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1801 return -1;
1802 if (edge->validity || local)
1803 continue;
1804 if (edge->src == edge->dst &&
1805 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1806 return -1;
1807 if (edge->src != edge->dst &&
1808 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1809 return -1;
1812 return 0;
1815 /* Compute a basis for the rows in the linear part of the schedule
1816 * and extend this basis to a full basis. The remaining rows
1817 * can then be used to force linear independence from the rows
1818 * in the schedule.
1820 * In particular, given the schedule rows S, we compute
1822 * S = H Q
1823 * S U = H
1825 * with H the Hermite normal form of S. That is, all but the
1826 * first rank columns of H are zero and so each row in S is
1827 * a linear combination of the first rank rows of Q.
1828 * The matrix Q is then transposed because we will write the
1829 * coefficients of the next schedule row as a column vector s
1830 * and express this s as a linear combination s = Q c of the
1831 * computed basis.
1832 * Similarly, the matrix U is transposed such that we can
1833 * compute the coefficients c = U s from a schedule row s.
1835 static int node_update_cmap(struct isl_sched_node *node)
1837 isl_mat *H, *U, *Q;
1838 int n_row = isl_mat_rows(node->sched);
1840 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1841 1 + node->nparam, node->nvar);
1843 H = isl_mat_left_hermite(H, 0, &U, &Q);
1844 isl_mat_free(node->cmap);
1845 isl_mat_free(node->cinv);
1846 node->cmap = isl_mat_transpose(Q);
1847 node->cinv = isl_mat_transpose(U);
1848 node->rank = isl_mat_initial_non_zero_cols(H);
1849 isl_mat_free(H);
1851 if (!node->cmap || !node->cinv || node->rank < 0)
1852 return -1;
1853 return 0;
1856 /* How many times should we count the constraints in "edge"?
1858 * If carry is set, then we are counting the number of
1859 * (validity or conditional validity) constraints that will be added
1860 * in setup_carry_lp and we count each edge exactly once.
1862 * Otherwise, we count as follows
1863 * validity -> 1 (>= 0)
1864 * validity+proximity -> 2 (>= 0 and upper bound)
1865 * proximity -> 2 (lower and upper bound)
1866 * local(+any) -> 2 (>= 0 and <= 0)
1868 * If an edge is only marked conditional_validity then it counts
1869 * as zero since it is only checked afterwards.
1871 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1872 * Otherwise, we ignore them.
1874 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
1875 int use_coincidence)
1877 if (carry && !edge->validity && !edge->conditional_validity)
1878 return 0;
1879 if (carry)
1880 return 1;
1881 if (edge->proximity || edge->local)
1882 return 2;
1883 if (use_coincidence && edge->coincidence)
1884 return 2;
1885 if (edge->validity)
1886 return 1;
1887 return 0;
1890 /* Count the number of equality and inequality constraints
1891 * that will be added for the given map.
1893 * "use_coincidence" is set if we should take into account coincidence edges.
1895 static int count_map_constraints(struct isl_sched_graph *graph,
1896 struct isl_sched_edge *edge, __isl_take isl_map *map,
1897 int *n_eq, int *n_ineq, int carry, int use_coincidence)
1899 isl_basic_set *coef;
1900 int f = edge_multiplicity(edge, carry, use_coincidence);
1902 if (f == 0) {
1903 isl_map_free(map);
1904 return 0;
1907 if (edge->src == edge->dst)
1908 coef = intra_coefficients(graph, edge->src, map);
1909 else
1910 coef = inter_coefficients(graph, edge, map);
1911 if (!coef)
1912 return -1;
1913 *n_eq += f * coef->n_eq;
1914 *n_ineq += f * coef->n_ineq;
1915 isl_basic_set_free(coef);
1917 return 0;
1920 /* Count the number of equality and inequality constraints
1921 * that will be added to the main lp problem.
1922 * We count as follows
1923 * validity -> 1 (>= 0)
1924 * validity+proximity -> 2 (>= 0 and upper bound)
1925 * proximity -> 2 (lower and upper bound)
1926 * local(+any) -> 2 (>= 0 and <= 0)
1928 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1929 * Otherwise, we ignore them.
1931 static int count_constraints(struct isl_sched_graph *graph,
1932 int *n_eq, int *n_ineq, int use_coincidence)
1934 int i;
1936 *n_eq = *n_ineq = 0;
1937 for (i = 0; i < graph->n_edge; ++i) {
1938 struct isl_sched_edge *edge= &graph->edge[i];
1939 isl_map *map = isl_map_copy(edge->map);
1941 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
1942 0, use_coincidence) < 0)
1943 return -1;
1946 return 0;
1949 /* Count the number of constraints that will be added by
1950 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1951 * accordingly.
1953 * In practice, add_bound_coefficient_constraints only adds inequalities.
1955 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1956 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1958 int i;
1960 if (ctx->opt->schedule_max_coefficient == -1)
1961 return 0;
1963 for (i = 0; i < graph->n; ++i)
1964 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1966 return 0;
1969 /* Add constraints that bound the values of the variable and parameter
1970 * coefficients of the schedule.
1972 * The maximal value of the coefficients is defined by the option
1973 * 'schedule_max_coefficient'.
1975 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1976 struct isl_sched_graph *graph)
1978 int i, j, k;
1979 int max_coefficient;
1980 int total;
1982 max_coefficient = ctx->opt->schedule_max_coefficient;
1984 if (max_coefficient == -1)
1985 return 0;
1987 total = isl_basic_set_total_dim(graph->lp);
1989 for (i = 0; i < graph->n; ++i) {
1990 struct isl_sched_node *node = &graph->node[i];
1991 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1992 int dim;
1993 k = isl_basic_set_alloc_inequality(graph->lp);
1994 if (k < 0)
1995 return -1;
1996 dim = 1 + node->start + 1 + j;
1997 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1998 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1999 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
2003 return 0;
2006 /* Construct an ILP problem for finding schedule coefficients
2007 * that result in non-negative, but small dependence distances
2008 * over all dependences.
2009 * In particular, the dependence distances over proximity edges
2010 * are bounded by m_0 + m_n n and we compute schedule coefficients
2011 * with small values (preferably zero) of m_n and m_0.
2013 * All variables of the ILP are non-negative. The actual coefficients
2014 * may be negative, so each coefficient is represented as the difference
2015 * of two non-negative variables. The negative part always appears
2016 * immediately before the positive part.
2017 * Other than that, the variables have the following order
2019 * - sum of positive and negative parts of m_n coefficients
2020 * - m_0
2021 * - sum of positive and negative parts of all c_n coefficients
2022 * (unconstrained when computing non-parametric schedules)
2023 * - sum of positive and negative parts of all c_x coefficients
2024 * - positive and negative parts of m_n coefficients
2025 * - for each node
2026 * - c_i_0
2027 * - positive and negative parts of c_i_n (if parametric)
2028 * - positive and negative parts of c_i_x
2030 * The c_i_x are not represented directly, but through the columns of
2031 * node->cmap. That is, the computed values are for variable t_i_x
2032 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2034 * The constraints are those from the edges plus two or three equalities
2035 * to express the sums.
2037 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2038 * Otherwise, we ignore them.
2040 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2041 int use_coincidence)
2043 int i, j;
2044 int k;
2045 unsigned nparam;
2046 unsigned total;
2047 isl_space *dim;
2048 int parametric;
2049 int param_pos;
2050 int n_eq, n_ineq;
2051 int max_constant_term;
2053 max_constant_term = ctx->opt->schedule_max_constant_term;
2055 parametric = ctx->opt->schedule_parametric;
2056 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2057 param_pos = 4;
2058 total = param_pos + 2 * nparam;
2059 for (i = 0; i < graph->n; ++i) {
2060 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2061 if (node_update_cmap(node) < 0)
2062 return -1;
2063 node->start = total;
2064 total += 1 + 2 * (node->nparam + node->nvar);
2067 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2068 return -1;
2069 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2070 return -1;
2072 dim = isl_space_set_alloc(ctx, 0, total);
2073 isl_basic_set_free(graph->lp);
2074 n_eq += 2 + parametric;
2075 if (max_constant_term != -1)
2076 n_ineq += graph->n;
2078 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2080 k = isl_basic_set_alloc_equality(graph->lp);
2081 if (k < 0)
2082 return -1;
2083 isl_seq_clr(graph->lp->eq[k], 1 + total);
2084 isl_int_set_si(graph->lp->eq[k][1], -1);
2085 for (i = 0; i < 2 * nparam; ++i)
2086 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
2088 if (parametric) {
2089 k = isl_basic_set_alloc_equality(graph->lp);
2090 if (k < 0)
2091 return -1;
2092 isl_seq_clr(graph->lp->eq[k], 1 + total);
2093 isl_int_set_si(graph->lp->eq[k][3], -1);
2094 for (i = 0; i < graph->n; ++i) {
2095 int pos = 1 + graph->node[i].start + 1;
2097 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2098 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2102 k = isl_basic_set_alloc_equality(graph->lp);
2103 if (k < 0)
2104 return -1;
2105 isl_seq_clr(graph->lp->eq[k], 1 + total);
2106 isl_int_set_si(graph->lp->eq[k][4], -1);
2107 for (i = 0; i < graph->n; ++i) {
2108 struct isl_sched_node *node = &graph->node[i];
2109 int pos = 1 + node->start + 1 + 2 * node->nparam;
2111 for (j = 0; j < 2 * node->nvar; ++j)
2112 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2115 if (max_constant_term != -1)
2116 for (i = 0; i < graph->n; ++i) {
2117 struct isl_sched_node *node = &graph->node[i];
2118 k = isl_basic_set_alloc_inequality(graph->lp);
2119 if (k < 0)
2120 return -1;
2121 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2122 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2123 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
2126 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2127 return -1;
2128 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2129 return -1;
2130 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2131 return -1;
2133 return 0;
2136 /* Analyze the conflicting constraint found by
2137 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2138 * constraint of one of the edges between distinct nodes, living, moreover
2139 * in distinct SCCs, then record the source and sink SCC as this may
2140 * be a good place to cut between SCCs.
2142 static int check_conflict(int con, void *user)
2144 int i;
2145 struct isl_sched_graph *graph = user;
2147 if (graph->src_scc >= 0)
2148 return 0;
2150 con -= graph->lp->n_eq;
2152 if (con >= graph->lp->n_ineq)
2153 return 0;
2155 for (i = 0; i < graph->n_edge; ++i) {
2156 if (!graph->edge[i].validity)
2157 continue;
2158 if (graph->edge[i].src == graph->edge[i].dst)
2159 continue;
2160 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2161 continue;
2162 if (graph->edge[i].start > con)
2163 continue;
2164 if (graph->edge[i].end <= con)
2165 continue;
2166 graph->src_scc = graph->edge[i].src->scc;
2167 graph->dst_scc = graph->edge[i].dst->scc;
2170 return 0;
2173 /* Check whether the next schedule row of the given node needs to be
2174 * non-trivial. Lower-dimensional domains may have some trivial rows,
2175 * but as soon as the number of remaining required non-trivial rows
2176 * is as large as the number or remaining rows to be computed,
2177 * all remaining rows need to be non-trivial.
2179 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2181 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2184 /* Solve the ILP problem constructed in setup_lp.
2185 * For each node such that all the remaining rows of its schedule
2186 * need to be non-trivial, we construct a non-triviality region.
2187 * This region imposes that the next row is independent of previous rows.
2188 * In particular the coefficients c_i_x are represented by t_i_x
2189 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2190 * its first columns span the rows of the previously computed part
2191 * of the schedule. The non-triviality region enforces that at least
2192 * one of the remaining components of t_i_x is non-zero, i.e.,
2193 * that the new schedule row depends on at least one of the remaining
2194 * columns of Q.
2196 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2198 int i;
2199 isl_vec *sol;
2200 isl_basic_set *lp;
2202 for (i = 0; i < graph->n; ++i) {
2203 struct isl_sched_node *node = &graph->node[i];
2204 int skip = node->rank;
2205 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
2206 if (needs_row(graph, node))
2207 graph->region[i].len = 2 * (node->nvar - skip);
2208 else
2209 graph->region[i].len = 0;
2211 lp = isl_basic_set_copy(graph->lp);
2212 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2213 graph->region, &check_conflict, graph);
2214 return sol;
2217 /* Update the schedules of all nodes based on the given solution
2218 * of the LP problem.
2219 * The new row is added to the current band.
2220 * All possibly negative coefficients are encoded as a difference
2221 * of two non-negative variables, so we need to perform the subtraction
2222 * here. Moreover, if use_cmap is set, then the solution does
2223 * not refer to the actual coefficients c_i_x, but instead to variables
2224 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2225 * In this case, we then also need to perform this multiplication
2226 * to obtain the values of c_i_x.
2228 * If coincident is set, then the caller guarantees that the new
2229 * row satisfies the coincidence constraints.
2231 static int update_schedule(struct isl_sched_graph *graph,
2232 __isl_take isl_vec *sol, int use_cmap, int coincident)
2234 int i, j;
2235 isl_vec *csol = NULL;
2237 if (!sol)
2238 goto error;
2239 if (sol->size == 0)
2240 isl_die(sol->ctx, isl_error_internal,
2241 "no solution found", goto error);
2242 if (graph->n_total_row >= graph->max_row)
2243 isl_die(sol->ctx, isl_error_internal,
2244 "too many schedule rows", goto error);
2246 for (i = 0; i < graph->n; ++i) {
2247 struct isl_sched_node *node = &graph->node[i];
2248 int pos = node->start;
2249 int row = isl_mat_rows(node->sched);
2251 isl_vec_free(csol);
2252 csol = isl_vec_alloc(sol->ctx, node->nvar);
2253 if (!csol)
2254 goto error;
2256 isl_map_free(node->sched_map);
2257 node->sched_map = NULL;
2258 node->sched = isl_mat_add_rows(node->sched, 1);
2259 if (!node->sched)
2260 goto error;
2261 node->sched = isl_mat_set_element(node->sched, row, 0,
2262 sol->el[1 + pos]);
2263 for (j = 0; j < node->nparam + node->nvar; ++j)
2264 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
2265 sol->el[1 + pos + 1 + 2 * j + 1],
2266 sol->el[1 + pos + 1 + 2 * j]);
2267 for (j = 0; j < node->nparam; ++j)
2268 node->sched = isl_mat_set_element(node->sched,
2269 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2270 for (j = 0; j < node->nvar; ++j)
2271 isl_int_set(csol->el[j],
2272 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2273 if (use_cmap)
2274 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2275 csol);
2276 if (!csol)
2277 goto error;
2278 for (j = 0; j < node->nvar; ++j)
2279 node->sched = isl_mat_set_element(node->sched,
2280 row, 1 + node->nparam + j, csol->el[j]);
2281 node->coincident[graph->n_total_row] = coincident;
2283 isl_vec_free(sol);
2284 isl_vec_free(csol);
2286 graph->n_row++;
2287 graph->n_total_row++;
2289 return 0;
2290 error:
2291 isl_vec_free(sol);
2292 isl_vec_free(csol);
2293 return -1;
2296 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2297 * and return this isl_aff.
2299 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2300 struct isl_sched_node *node, int row)
2302 int j;
2303 isl_int v;
2304 isl_aff *aff;
2306 isl_int_init(v);
2308 aff = isl_aff_zero_on_domain(ls);
2309 isl_mat_get_element(node->sched, row, 0, &v);
2310 aff = isl_aff_set_constant(aff, v);
2311 for (j = 0; j < node->nparam; ++j) {
2312 isl_mat_get_element(node->sched, row, 1 + j, &v);
2313 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2315 for (j = 0; j < node->nvar; ++j) {
2316 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2317 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2320 isl_int_clear(v);
2322 return aff;
2325 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2326 * and return this multi_aff.
2328 * The result is defined over the uncompressed node domain.
2330 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2331 struct isl_sched_node *node, int first, int n)
2333 int i;
2334 isl_space *space;
2335 isl_local_space *ls;
2336 isl_aff *aff;
2337 isl_multi_aff *ma;
2338 int nrow, ncol;
2340 nrow = isl_mat_rows(node->sched);
2341 ncol = isl_mat_cols(node->sched) - 1;
2342 if (node->compressed)
2343 space = isl_multi_aff_get_domain_space(node->decompress);
2344 else
2345 space = isl_space_copy(node->space);
2346 ls = isl_local_space_from_space(isl_space_copy(space));
2347 space = isl_space_from_domain(space);
2348 space = isl_space_add_dims(space, isl_dim_out, n);
2349 ma = isl_multi_aff_zero(space);
2351 for (i = first; i < first + n; ++i) {
2352 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2353 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2356 isl_local_space_free(ls);
2358 if (node->compressed)
2359 ma = isl_multi_aff_pullback_multi_aff(ma,
2360 isl_multi_aff_copy(node->compress));
2362 return ma;
2365 /* Convert node->sched into a multi_aff and return this multi_aff.
2367 * The result is defined over the uncompressed node domain.
2369 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2370 struct isl_sched_node *node)
2372 int nrow;
2374 nrow = isl_mat_rows(node->sched);
2375 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2378 /* Convert node->sched into a map and return this map.
2380 * The result is cached in node->sched_map, which needs to be released
2381 * whenever node->sched is updated.
2382 * It is defined over the uncompressed node domain.
2384 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2386 if (!node->sched_map) {
2387 isl_multi_aff *ma;
2389 ma = node_extract_schedule_multi_aff(node);
2390 node->sched_map = isl_map_from_multi_aff(ma);
2393 return isl_map_copy(node->sched_map);
2396 /* Construct a map that can be used to update a dependence relation
2397 * based on the current schedule.
2398 * That is, construct a map expressing that source and sink
2399 * are executed within the same iteration of the current schedule.
2400 * This map can then be intersected with the dependence relation.
2401 * This is not the most efficient way, but this shouldn't be a critical
2402 * operation.
2404 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2405 struct isl_sched_node *dst)
2407 isl_map *src_sched, *dst_sched;
2409 src_sched = node_extract_schedule(src);
2410 dst_sched = node_extract_schedule(dst);
2411 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2414 /* Intersect the domains of the nested relations in domain and range
2415 * of "umap" with "map".
2417 static __isl_give isl_union_map *intersect_domains(
2418 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2420 isl_union_set *uset;
2422 umap = isl_union_map_zip(umap);
2423 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2424 umap = isl_union_map_intersect_domain(umap, uset);
2425 umap = isl_union_map_zip(umap);
2426 return umap;
2429 /* Update the dependence relation of the given edge based
2430 * on the current schedule.
2431 * If the dependence is carried completely by the current schedule, then
2432 * it is removed from the edge_tables. It is kept in the list of edges
2433 * as otherwise all edge_tables would have to be recomputed.
2435 static int update_edge(struct isl_sched_graph *graph,
2436 struct isl_sched_edge *edge)
2438 isl_map *id;
2440 id = specializer(edge->src, edge->dst);
2441 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2442 if (!edge->map)
2443 goto error;
2445 if (edge->tagged_condition) {
2446 edge->tagged_condition =
2447 intersect_domains(edge->tagged_condition, id);
2448 if (!edge->tagged_condition)
2449 goto error;
2451 if (edge->tagged_validity) {
2452 edge->tagged_validity =
2453 intersect_domains(edge->tagged_validity, id);
2454 if (!edge->tagged_validity)
2455 goto error;
2458 isl_map_free(id);
2459 if (isl_map_plain_is_empty(edge->map))
2460 graph_remove_edge(graph, edge);
2462 return 0;
2463 error:
2464 isl_map_free(id);
2465 return -1;
2468 /* Update the dependence relations of all edges based on the current schedule.
2470 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2472 int i;
2474 for (i = graph->n_edge - 1; i >= 0; --i) {
2475 if (update_edge(graph, &graph->edge[i]) < 0)
2476 return -1;
2479 return 0;
2482 static void next_band(struct isl_sched_graph *graph)
2484 graph->band_start = graph->n_total_row;
2487 /* Return the union of the universe domains of the nodes in "graph"
2488 * that satisfy "pred".
2490 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
2491 struct isl_sched_graph *graph,
2492 int (*pred)(struct isl_sched_node *node, int data), int data)
2494 int i;
2495 isl_set *set;
2496 isl_union_set *dom;
2498 for (i = 0; i < graph->n; ++i)
2499 if (pred(&graph->node[i], data))
2500 break;
2502 if (i >= graph->n)
2503 isl_die(ctx, isl_error_internal,
2504 "empty component", return NULL);
2506 set = isl_set_universe(isl_space_copy(graph->node[i].space));
2507 dom = isl_union_set_from_set(set);
2509 for (i = i + 1; i < graph->n; ++i) {
2510 if (!pred(&graph->node[i], data))
2511 continue;
2512 set = isl_set_universe(isl_space_copy(graph->node[i].space));
2513 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
2516 return dom;
2519 /* Return a list of unions of universe domains, where each element
2520 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
2522 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
2523 struct isl_sched_graph *graph)
2525 int i;
2526 isl_union_set_list *filters;
2528 filters = isl_union_set_list_alloc(ctx, graph->scc);
2529 for (i = 0; i < graph->scc; ++i) {
2530 isl_union_set *dom;
2532 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
2533 filters = isl_union_set_list_add(filters, dom);
2536 return filters;
2539 /* Return a list of two unions of universe domains, one for the SCCs up
2540 * to and including graph->src_scc and another for the other SCCS.
2542 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
2543 struct isl_sched_graph *graph)
2545 isl_union_set *dom;
2546 isl_union_set_list *filters;
2548 filters = isl_union_set_list_alloc(ctx, 2);
2549 dom = isl_sched_graph_domain(ctx, graph,
2550 &node_scc_at_most, graph->src_scc);
2551 filters = isl_union_set_list_add(filters, dom);
2552 dom = isl_sched_graph_domain(ctx, graph,
2553 &node_scc_at_least, graph->src_scc + 1);
2554 filters = isl_union_set_list_add(filters, dom);
2556 return filters;
2559 /* Topologically sort statements mapped to the same schedule iteration
2560 * and add insert a sequence node in front of "node"
2561 * corresponding to this order.
2563 static __isl_give isl_schedule_node *sort_statements(
2564 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
2566 isl_ctx *ctx;
2567 isl_union_set_list *filters;
2569 if (!node)
2570 return NULL;
2572 ctx = isl_schedule_node_get_ctx(node);
2573 if (graph->n < 1)
2574 isl_die(ctx, isl_error_internal,
2575 "graph should have at least one node",
2576 return isl_schedule_node_free(node));
2578 if (graph->n == 1)
2579 return node;
2581 if (update_edges(ctx, graph) < 0)
2582 return isl_schedule_node_free(node);
2584 if (graph->n_edge == 0)
2585 return node;
2587 if (detect_sccs(ctx, graph) < 0)
2588 return isl_schedule_node_free(node);
2590 filters = extract_sccs(ctx, graph);
2591 node = isl_schedule_node_insert_sequence(node, filters);
2593 return node;
2596 /* Copy nodes that satisfy node_pred from the src dependence graph
2597 * to the dst dependence graph.
2599 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2600 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2602 int i;
2604 dst->n = 0;
2605 for (i = 0; i < src->n; ++i) {
2606 int j;
2608 if (!node_pred(&src->node[i], data))
2609 continue;
2611 j = dst->n;
2612 dst->node[j].space = isl_space_copy(src->node[i].space);
2613 dst->node[j].compressed = src->node[i].compressed;
2614 dst->node[j].hull = isl_set_copy(src->node[i].hull);
2615 dst->node[j].compress =
2616 isl_multi_aff_copy(src->node[i].compress);
2617 dst->node[j].decompress =
2618 isl_multi_aff_copy(src->node[i].decompress);
2619 dst->node[j].nvar = src->node[i].nvar;
2620 dst->node[j].nparam = src->node[i].nparam;
2621 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
2622 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
2623 dst->node[j].coincident = src->node[i].coincident;
2624 dst->n++;
2626 if (!dst->node[j].space || !dst->node[j].sched)
2627 return -1;
2628 if (dst->node[j].compressed &&
2629 (!dst->node[j].hull || !dst->node[j].compress ||
2630 !dst->node[j].decompress))
2631 return -1;
2634 return 0;
2637 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2638 * to the dst dependence graph.
2639 * If the source or destination node of the edge is not in the destination
2640 * graph, then it must be a backward proximity edge and it should simply
2641 * be ignored.
2643 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2644 struct isl_sched_graph *src,
2645 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2647 int i;
2648 enum isl_edge_type t;
2650 dst->n_edge = 0;
2651 for (i = 0; i < src->n_edge; ++i) {
2652 struct isl_sched_edge *edge = &src->edge[i];
2653 isl_map *map;
2654 isl_union_map *tagged_condition;
2655 isl_union_map *tagged_validity;
2656 struct isl_sched_node *dst_src, *dst_dst;
2658 if (!edge_pred(edge, data))
2659 continue;
2661 if (isl_map_plain_is_empty(edge->map))
2662 continue;
2664 dst_src = graph_find_node(ctx, dst, edge->src->space);
2665 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
2666 if (!dst_src || !dst_dst) {
2667 if (edge->validity || edge->conditional_validity)
2668 isl_die(ctx, isl_error_internal,
2669 "backward (conditional) validity edge",
2670 return -1);
2671 continue;
2674 map = isl_map_copy(edge->map);
2675 tagged_condition = isl_union_map_copy(edge->tagged_condition);
2676 tagged_validity = isl_union_map_copy(edge->tagged_validity);
2678 dst->edge[dst->n_edge].src = dst_src;
2679 dst->edge[dst->n_edge].dst = dst_dst;
2680 dst->edge[dst->n_edge].map = map;
2681 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
2682 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
2683 dst->edge[dst->n_edge].validity = edge->validity;
2684 dst->edge[dst->n_edge].proximity = edge->proximity;
2685 dst->edge[dst->n_edge].coincidence = edge->coincidence;
2686 dst->edge[dst->n_edge].condition = edge->condition;
2687 dst->edge[dst->n_edge].conditional_validity =
2688 edge->conditional_validity;
2689 dst->n_edge++;
2691 if (edge->tagged_condition && !tagged_condition)
2692 return -1;
2693 if (edge->tagged_validity && !tagged_validity)
2694 return -1;
2696 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2697 if (edge !=
2698 graph_find_edge(src, t, edge->src, edge->dst))
2699 continue;
2700 if (graph_edge_table_add(ctx, dst, t,
2701 &dst->edge[dst->n_edge - 1]) < 0)
2702 return -1;
2706 return 0;
2709 /* Compute the maximal number of variables over all nodes.
2710 * This is the maximal number of linearly independent schedule
2711 * rows that we need to compute.
2712 * Just in case we end up in a part of the dependence graph
2713 * with only lower-dimensional domains, we make sure we will
2714 * compute the required amount of extra linearly independent rows.
2716 static int compute_maxvar(struct isl_sched_graph *graph)
2718 int i;
2720 graph->maxvar = 0;
2721 for (i = 0; i < graph->n; ++i) {
2722 struct isl_sched_node *node = &graph->node[i];
2723 int nvar;
2725 if (node_update_cmap(node) < 0)
2726 return -1;
2727 nvar = node->nvar + graph->n_row - node->rank;
2728 if (nvar > graph->maxvar)
2729 graph->maxvar = nvar;
2732 return 0;
2735 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
2736 struct isl_sched_graph *graph);
2737 static __isl_give isl_schedule_node *compute_schedule_wcc(
2738 isl_schedule_node *node, struct isl_sched_graph *graph);
2740 /* Compute a schedule for a subgraph of "graph". In particular, for
2741 * the graph composed of nodes that satisfy node_pred and edges that
2742 * that satisfy edge_pred. The caller should precompute the number
2743 * of nodes and edges that satisfy these predicates and pass them along
2744 * as "n" and "n_edge".
2745 * If the subgraph is known to consist of a single component, then wcc should
2746 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2747 * Otherwise, we call compute_schedule, which will check whether the subgraph
2748 * is connected.
2750 * The schedule is inserted at "node" and the updated schedule node
2751 * is returned.
2753 static __isl_give isl_schedule_node *compute_sub_schedule(
2754 __isl_take isl_schedule_node *node, isl_ctx *ctx,
2755 struct isl_sched_graph *graph, int n, int n_edge,
2756 int (*node_pred)(struct isl_sched_node *node, int data),
2757 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2758 int data, int wcc)
2760 struct isl_sched_graph split = { 0 };
2761 int t;
2763 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2764 goto error;
2765 if (copy_nodes(&split, graph, node_pred, data) < 0)
2766 goto error;
2767 if (graph_init_table(ctx, &split) < 0)
2768 goto error;
2769 for (t = 0; t <= isl_edge_last; ++t)
2770 split.max_edge[t] = graph->max_edge[t];
2771 if (graph_init_edge_tables(ctx, &split) < 0)
2772 goto error;
2773 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2774 goto error;
2775 split.n_row = graph->n_row;
2776 split.max_row = graph->max_row;
2777 split.n_total_row = graph->n_total_row;
2778 split.band_start = graph->band_start;
2780 if (wcc)
2781 node = compute_schedule_wcc(node, &split);
2782 else
2783 node = compute_schedule(node, &split);
2785 graph_free(ctx, &split);
2786 return node;
2787 error:
2788 graph_free(ctx, &split);
2789 return isl_schedule_node_free(node);
2792 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2794 return edge->src->scc == scc && edge->dst->scc == scc;
2797 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2799 return edge->dst->scc <= scc;
2802 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2804 return edge->src->scc >= scc;
2807 /* Reset the current band by dropping all its schedule rows.
2809 static int reset_band(struct isl_sched_graph *graph)
2811 int i;
2812 int drop;
2814 drop = graph->n_total_row - graph->band_start;
2815 graph->n_total_row -= drop;
2816 graph->n_row -= drop;
2818 for (i = 0; i < graph->n; ++i) {
2819 struct isl_sched_node *node = &graph->node[i];
2821 isl_map_free(node->sched_map);
2822 node->sched_map = NULL;
2824 node->sched = isl_mat_drop_rows(node->sched,
2825 graph->band_start, drop);
2827 if (!node->sched)
2828 return -1;
2831 return 0;
2834 /* Split the current graph into two parts and compute a schedule for each
2835 * part individually. In particular, one part consists of all SCCs up
2836 * to and including graph->src_scc, while the other part contains the other
2837 * SCCS. The split is enforced by a sequence node inserted at position "node"
2838 * in the schedule tree. Return the updated schedule node.
2840 * The current band is reset. It would be possible to reuse
2841 * the previously computed rows as the first rows in the next
2842 * band, but recomputing them may result in better rows as we are looking
2843 * at a smaller part of the dependence graph.
2845 static __isl_give isl_schedule_node *compute_split_schedule(
2846 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
2848 int i, n, e1, e2;
2849 int orig_total_row;
2850 isl_ctx *ctx;
2851 isl_union_set_list *filters;
2853 if (!node)
2854 return NULL;
2856 if (reset_band(graph) < 0)
2857 return isl_schedule_node_free(node);
2859 n = 0;
2860 for (i = 0; i < graph->n; ++i) {
2861 struct isl_sched_node *node = &graph->node[i];
2862 int before = node->scc <= graph->src_scc;
2864 if (before)
2865 n++;
2868 e1 = e2 = 0;
2869 for (i = 0; i < graph->n_edge; ++i) {
2870 if (graph->edge[i].dst->scc <= graph->src_scc)
2871 e1++;
2872 if (graph->edge[i].src->scc > graph->src_scc)
2873 e2++;
2876 next_band(graph);
2878 ctx = isl_schedule_node_get_ctx(node);
2879 filters = extract_split(ctx, graph);
2880 node = isl_schedule_node_insert_sequence(node, filters);
2881 node = isl_schedule_node_child(node, 0);
2882 node = isl_schedule_node_child(node, 0);
2884 orig_total_row = graph->n_total_row;
2885 node = compute_sub_schedule(node, ctx, graph, n, e1,
2886 &node_scc_at_most, &edge_dst_scc_at_most,
2887 graph->src_scc, 0);
2888 node = isl_schedule_node_parent(node);
2889 node = isl_schedule_node_next_sibling(node);
2890 node = isl_schedule_node_child(node, 0);
2891 graph->n_total_row = orig_total_row;
2892 node = compute_sub_schedule(node, ctx, graph, graph->n - n, e2,
2893 &node_scc_at_least, &edge_src_scc_at_least,
2894 graph->src_scc + 1, 0);
2895 node = isl_schedule_node_parent(node);
2896 node = isl_schedule_node_parent(node);
2898 return node;
2901 /* Insert a band node at position "node" in the schedule tree corresponding
2902 * to the current band in "graph". Mark the band node permutable
2903 * if "permutable" is set.
2904 * The partial schedules and the coincidence property are extracted
2905 * from the graph nodes.
2906 * Return the updated schedule node.
2908 static __isl_give isl_schedule_node *insert_current_band(
2909 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
2910 int permutable)
2912 int i;
2913 int start, end, n;
2914 isl_multi_aff *ma;
2915 isl_multi_pw_aff *mpa;
2916 isl_multi_union_pw_aff *mupa;
2918 if (!node)
2919 return NULL;
2921 if (graph->n < 1)
2922 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
2923 "graph should have at least one node",
2924 return isl_schedule_node_free(node));
2926 start = graph->band_start;
2927 end = graph->n_total_row;
2928 n = end - start;
2930 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
2931 mpa = isl_multi_pw_aff_from_multi_aff(ma);
2932 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
2934 for (i = 1; i < graph->n; ++i) {
2935 isl_multi_union_pw_aff *mupa_i;
2937 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
2938 start, n);
2939 mpa = isl_multi_pw_aff_from_multi_aff(ma);
2940 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
2941 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
2943 node = isl_schedule_node_insert_partial_schedule(node, mupa);
2945 for (i = 0; i < n; ++i)
2946 node = isl_schedule_node_band_member_set_coincident(node, i,
2947 graph->node[0].coincident[start + i]);
2948 node = isl_schedule_node_band_set_permutable(node, permutable);
2950 return node;
2953 /* Update the dependence relations based on the current schedule,
2954 * add the current band to "node" and the continue with the computation
2955 * of the next band.
2956 * Return the updated schedule node.
2958 static __isl_give isl_schedule_node *compute_next_band(
2959 __isl_take isl_schedule_node *node,
2960 struct isl_sched_graph *graph, int permutable)
2962 isl_ctx *ctx;
2964 if (!node)
2965 return NULL;
2967 ctx = isl_schedule_node_get_ctx(node);
2968 if (update_edges(ctx, graph) < 0)
2969 return isl_schedule_node_free(node);
2970 node = insert_current_band(node, graph, permutable);
2971 next_band(graph);
2973 node = isl_schedule_node_child(node, 0);
2974 node = compute_schedule(node, graph);
2975 node = isl_schedule_node_parent(node);
2977 return node;
2980 /* Add constraints to graph->lp that force the dependence "map" (which
2981 * is part of the dependence relation of "edge")
2982 * to be respected and attempt to carry it, where the edge is one from
2983 * a node j to itself. "pos" is the sequence number of the given map.
2984 * That is, add constraints that enforce
2986 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2987 * = c_j_x (y - x) >= e_i
2989 * for each (x,y) in R.
2990 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2991 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2992 * with each coefficient in c_j_x represented as a pair of non-negative
2993 * coefficients.
2995 static int add_intra_constraints(struct isl_sched_graph *graph,
2996 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2998 unsigned total;
2999 isl_ctx *ctx = isl_map_get_ctx(map);
3000 isl_space *dim;
3001 isl_dim_map *dim_map;
3002 isl_basic_set *coef;
3003 struct isl_sched_node *node = edge->src;
3005 coef = intra_coefficients(graph, node, map);
3006 if (!coef)
3007 return -1;
3009 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3011 total = isl_basic_set_total_dim(graph->lp);
3012 dim_map = isl_dim_map_alloc(ctx, total);
3013 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3014 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
3015 isl_space_dim(dim, isl_dim_set), 1,
3016 node->nvar, -1);
3017 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
3018 isl_space_dim(dim, isl_dim_set), 1,
3019 node->nvar, 1);
3020 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3021 coef->n_eq, coef->n_ineq);
3022 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3023 coef, dim_map);
3024 isl_space_free(dim);
3026 return 0;
3029 /* Add constraints to graph->lp that force the dependence "map" (which
3030 * is part of the dependence relation of "edge")
3031 * to be respected and attempt to carry it, where the edge is one from
3032 * node j to node k. "pos" is the sequence number of the given map.
3033 * That is, add constraints that enforce
3035 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3037 * for each (x,y) in R.
3038 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3039 * of valid constraints for R and then plug in
3040 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3041 * with each coefficient (except e_i, c_k_0 and c_j_0)
3042 * represented as a pair of non-negative coefficients.
3044 static int add_inter_constraints(struct isl_sched_graph *graph,
3045 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3047 unsigned total;
3048 isl_ctx *ctx = isl_map_get_ctx(map);
3049 isl_space *dim;
3050 isl_dim_map *dim_map;
3051 isl_basic_set *coef;
3052 struct isl_sched_node *src = edge->src;
3053 struct isl_sched_node *dst = edge->dst;
3055 coef = inter_coefficients(graph, edge, map);
3056 if (!coef)
3057 return -1;
3059 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
3061 total = isl_basic_set_total_dim(graph->lp);
3062 dim_map = isl_dim_map_alloc(ctx, total);
3064 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3066 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
3067 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
3068 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
3069 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
3070 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3071 dst->nvar, -1);
3072 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
3073 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
3074 dst->nvar, 1);
3076 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
3077 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
3078 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
3079 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
3080 isl_space_dim(dim, isl_dim_set), 1,
3081 src->nvar, 1);
3082 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
3083 isl_space_dim(dim, isl_dim_set), 1,
3084 src->nvar, -1);
3086 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3087 coef->n_eq, coef->n_ineq);
3088 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3089 coef, dim_map);
3090 isl_space_free(dim);
3092 return 0;
3095 /* Add constraints to graph->lp that force all (conditional) validity
3096 * dependences to be respected and attempt to carry them.
3098 static int add_all_constraints(struct isl_sched_graph *graph)
3100 int i, j;
3101 int pos;
3103 pos = 0;
3104 for (i = 0; i < graph->n_edge; ++i) {
3105 struct isl_sched_edge *edge= &graph->edge[i];
3107 if (!edge->validity && !edge->conditional_validity)
3108 continue;
3110 for (j = 0; j < edge->map->n; ++j) {
3111 isl_basic_map *bmap;
3112 isl_map *map;
3114 bmap = isl_basic_map_copy(edge->map->p[j]);
3115 map = isl_map_from_basic_map(bmap);
3117 if (edge->src == edge->dst &&
3118 add_intra_constraints(graph, edge, map, pos) < 0)
3119 return -1;
3120 if (edge->src != edge->dst &&
3121 add_inter_constraints(graph, edge, map, pos) < 0)
3122 return -1;
3123 ++pos;
3127 return 0;
3130 /* Count the number of equality and inequality constraints
3131 * that will be added to the carry_lp problem.
3132 * We count each edge exactly once.
3134 static int count_all_constraints(struct isl_sched_graph *graph,
3135 int *n_eq, int *n_ineq)
3137 int i, j;
3139 *n_eq = *n_ineq = 0;
3140 for (i = 0; i < graph->n_edge; ++i) {
3141 struct isl_sched_edge *edge= &graph->edge[i];
3142 for (j = 0; j < edge->map->n; ++j) {
3143 isl_basic_map *bmap;
3144 isl_map *map;
3146 bmap = isl_basic_map_copy(edge->map->p[j]);
3147 map = isl_map_from_basic_map(bmap);
3149 if (count_map_constraints(graph, edge, map,
3150 n_eq, n_ineq, 1, 0) < 0)
3151 return -1;
3155 return 0;
3158 /* Construct an LP problem for finding schedule coefficients
3159 * such that the schedule carries as many dependences as possible.
3160 * In particular, for each dependence i, we bound the dependence distance
3161 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3162 * of all e_i's. Dependence with e_i = 0 in the solution are simply
3163 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3164 * Note that if the dependence relation is a union of basic maps,
3165 * then we have to consider each basic map individually as it may only
3166 * be possible to carry the dependences expressed by some of those
3167 * basic maps and not all off them.
3168 * Below, we consider each of those basic maps as a separate "edge".
3170 * All variables of the LP are non-negative. The actual coefficients
3171 * may be negative, so each coefficient is represented as the difference
3172 * of two non-negative variables. The negative part always appears
3173 * immediately before the positive part.
3174 * Other than that, the variables have the following order
3176 * - sum of (1 - e_i) over all edges
3177 * - sum of positive and negative parts of all c_n coefficients
3178 * (unconstrained when computing non-parametric schedules)
3179 * - sum of positive and negative parts of all c_x coefficients
3180 * - for each edge
3181 * - e_i
3182 * - for each node
3183 * - c_i_0
3184 * - positive and negative parts of c_i_n (if parametric)
3185 * - positive and negative parts of c_i_x
3187 * The constraints are those from the (validity) edges plus three equalities
3188 * to express the sums and n_edge inequalities to express e_i <= 1.
3190 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
3192 int i, j;
3193 int k;
3194 isl_space *dim;
3195 unsigned total;
3196 int n_eq, n_ineq;
3197 int n_edge;
3199 n_edge = 0;
3200 for (i = 0; i < graph->n_edge; ++i)
3201 n_edge += graph->edge[i].map->n;
3203 total = 3 + n_edge;
3204 for (i = 0; i < graph->n; ++i) {
3205 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3206 node->start = total;
3207 total += 1 + 2 * (node->nparam + node->nvar);
3210 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3211 return -1;
3212 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
3213 return -1;
3215 dim = isl_space_set_alloc(ctx, 0, total);
3216 isl_basic_set_free(graph->lp);
3217 n_eq += 3;
3218 n_ineq += n_edge;
3219 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3220 graph->lp = isl_basic_set_set_rational(graph->lp);
3222 k = isl_basic_set_alloc_equality(graph->lp);
3223 if (k < 0)
3224 return -1;
3225 isl_seq_clr(graph->lp->eq[k], 1 + total);
3226 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3227 isl_int_set_si(graph->lp->eq[k][1], 1);
3228 for (i = 0; i < n_edge; ++i)
3229 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3231 k = isl_basic_set_alloc_equality(graph->lp);
3232 if (k < 0)
3233 return -1;
3234 isl_seq_clr(graph->lp->eq[k], 1 + total);
3235 isl_int_set_si(graph->lp->eq[k][2], -1);
3236 for (i = 0; i < graph->n; ++i) {
3237 int pos = 1 + graph->node[i].start + 1;
3239 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
3240 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3243 k = isl_basic_set_alloc_equality(graph->lp);
3244 if (k < 0)
3245 return -1;
3246 isl_seq_clr(graph->lp->eq[k], 1 + total);
3247 isl_int_set_si(graph->lp->eq[k][3], -1);
3248 for (i = 0; i < graph->n; ++i) {
3249 struct isl_sched_node *node = &graph->node[i];
3250 int pos = 1 + node->start + 1 + 2 * node->nparam;
3252 for (j = 0; j < 2 * node->nvar; ++j)
3253 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
3256 for (i = 0; i < n_edge; ++i) {
3257 k = isl_basic_set_alloc_inequality(graph->lp);
3258 if (k < 0)
3259 return -1;
3260 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3261 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3262 isl_int_set_si(graph->lp->ineq[k][0], 1);
3265 if (add_bound_coefficient_constraints(ctx, graph) < 0)
3266 return -1;
3267 if (add_all_constraints(graph) < 0)
3268 return -1;
3270 return 0;
3273 static __isl_give isl_schedule_node *compute_component_schedule(
3274 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3275 int wcc);
3277 /* Comparison function for sorting the statements based on
3278 * the corresponding value in "r".
3280 static int smaller_value(const void *a, const void *b, void *data)
3282 isl_vec *r = data;
3283 const int *i1 = a;
3284 const int *i2 = b;
3286 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3289 /* If the schedule_split_scaled option is set and if the linear
3290 * parts of the scheduling rows for all nodes in the graphs have
3291 * a non-trivial common divisor, then split off the remainder of the
3292 * constant term modulo this common divisor from the linear part.
3293 * Otherwise, insert a band node directly and continue with
3294 * the construction of the schedule.
3296 * If a non-trivial common divisor is found, then
3297 * the linear part is reduced and the remainder is enforced
3298 * by a sequence node with the children placed in the order
3299 * of this remainder.
3300 * In particular, we assign an scc index based on the remainder and
3301 * then rely on compute_component_schedule to insert the sequence and
3302 * to continue the schedule construction on each part.
3304 static __isl_give isl_schedule_node *split_scaled(
3305 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3307 int i;
3308 int row;
3309 int scc;
3310 isl_ctx *ctx;
3311 isl_int gcd, gcd_i;
3312 isl_vec *r;
3313 int *order;
3315 if (!node)
3316 return NULL;
3318 ctx = isl_schedule_node_get_ctx(node);
3319 if (!ctx->opt->schedule_split_scaled)
3320 return compute_next_band(node, graph, 0);
3321 if (graph->n <= 1)
3322 return compute_next_band(node, graph, 0);
3324 isl_int_init(gcd);
3325 isl_int_init(gcd_i);
3327 isl_int_set_si(gcd, 0);
3329 row = isl_mat_rows(graph->node[0].sched) - 1;
3331 for (i = 0; i < graph->n; ++i) {
3332 struct isl_sched_node *node = &graph->node[i];
3333 int cols = isl_mat_cols(node->sched);
3335 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3336 isl_int_gcd(gcd, gcd, gcd_i);
3339 isl_int_clear(gcd_i);
3341 if (isl_int_cmp_si(gcd, 1) <= 0) {
3342 isl_int_clear(gcd);
3343 return compute_next_band(node, graph, 0);
3346 r = isl_vec_alloc(ctx, graph->n);
3347 order = isl_calloc_array(ctx, int, graph->n);
3348 if (!r || !order)
3349 goto error;
3351 for (i = 0; i < graph->n; ++i) {
3352 struct isl_sched_node *node = &graph->node[i];
3354 order[i] = i;
3355 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3356 isl_int_fdiv_q(node->sched->row[row][0],
3357 node->sched->row[row][0], gcd);
3358 isl_int_mul(node->sched->row[row][0],
3359 node->sched->row[row][0], gcd);
3360 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3361 if (!node->sched)
3362 goto error;
3365 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3366 goto error;
3368 scc = 0;
3369 for (i = 0; i < graph->n; ++i) {
3370 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3371 ++scc;
3372 graph->node[order[i]].scc = scc;
3374 graph->scc = ++scc;
3375 graph->weak = 0;
3377 isl_int_clear(gcd);
3378 isl_vec_free(r);
3379 free(order);
3381 if (update_edges(ctx, graph) < 0)
3382 return isl_schedule_node_free(node);
3383 node = insert_current_band(node, graph, 0);
3384 next_band(graph);
3386 node = isl_schedule_node_child(node, 0);
3387 node = compute_component_schedule(node, graph, 0);
3388 node = isl_schedule_node_parent(node);
3390 return node;
3391 error:
3392 isl_vec_free(r);
3393 free(order);
3394 isl_int_clear(gcd);
3395 return isl_schedule_node_free(node);
3398 /* Is the schedule row "sol" trivial on node "node"?
3399 * That is, is the solution zero on the dimensions orthogonal to
3400 * the previously found solutions?
3401 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3403 * Each coefficient is represented as the difference between
3404 * two non-negative values in "sol". "sol" has been computed
3405 * in terms of the original iterators (i.e., without use of cmap).
3406 * We construct the schedule row s and write it as a linear
3407 * combination of (linear combinations of) previously computed schedule rows.
3408 * s = Q c or c = U s.
3409 * If the final entries of c are all zero, then the solution is trivial.
3411 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3413 int i;
3414 int pos;
3415 int trivial;
3416 isl_ctx *ctx;
3417 isl_vec *node_sol;
3419 if (!sol)
3420 return -1;
3421 if (node->nvar == node->rank)
3422 return 0;
3424 ctx = isl_vec_get_ctx(sol);
3425 node_sol = isl_vec_alloc(ctx, node->nvar);
3426 if (!node_sol)
3427 return -1;
3429 pos = 1 + node->start + 1 + 2 * node->nparam;
3431 for (i = 0; i < node->nvar; ++i)
3432 isl_int_sub(node_sol->el[i],
3433 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3435 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3437 if (!node_sol)
3438 return -1;
3440 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3441 node->nvar - node->rank) == -1;
3443 isl_vec_free(node_sol);
3445 return trivial;
3448 /* Is the schedule row "sol" trivial on any node where it should
3449 * not be trivial?
3450 * "sol" has been computed in terms of the original iterators
3451 * (i.e., without use of cmap).
3452 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3454 static int is_any_trivial(struct isl_sched_graph *graph,
3455 __isl_keep isl_vec *sol)
3457 int i;
3459 for (i = 0; i < graph->n; ++i) {
3460 struct isl_sched_node *node = &graph->node[i];
3461 int trivial;
3463 if (!needs_row(graph, node))
3464 continue;
3465 trivial = is_trivial(node, sol);
3466 if (trivial < 0 || trivial)
3467 return trivial;
3470 return 0;
3473 /* Construct a schedule row for each node such that as many dependences
3474 * as possible are carried and then continue with the next band.
3476 * If the computed schedule row turns out to be trivial on one or
3477 * more nodes where it should not be trivial, then we throw it away
3478 * and try again on each component separately.
3480 * If there is only one component, then we accept the schedule row anyway,
3481 * but we do not consider it as a complete row and therefore do not
3482 * increment graph->n_row. Note that the ranks of the nodes that
3483 * do get a non-trivial schedule part will get updated regardless and
3484 * graph->maxvar is computed based on these ranks. The test for
3485 * whether more schedule rows are required in compute_schedule_wcc
3486 * is therefore not affected.
3488 * Insert a band corresponding to the schedule row at position "node"
3489 * of the schedule tree and continue with the construction of the schedule.
3490 * This insertion and the continued construction is performed by split_scaled
3491 * after optionally checking for non-trivial common divisors.
3493 static __isl_give isl_schedule_node *carry_dependences(
3494 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3496 int i;
3497 int n_edge;
3498 int trivial;
3499 isl_ctx *ctx;
3500 isl_vec *sol;
3501 isl_basic_set *lp;
3503 if (!node)
3504 return NULL;
3506 n_edge = 0;
3507 for (i = 0; i < graph->n_edge; ++i)
3508 n_edge += graph->edge[i].map->n;
3510 ctx = isl_schedule_node_get_ctx(node);
3511 if (setup_carry_lp(ctx, graph) < 0)
3512 return isl_schedule_node_free(node);
3514 lp = isl_basic_set_copy(graph->lp);
3515 sol = isl_tab_basic_set_non_neg_lexmin(lp);
3516 if (!sol)
3517 return isl_schedule_node_free(node);
3519 if (sol->size == 0) {
3520 isl_vec_free(sol);
3521 isl_die(ctx, isl_error_internal,
3522 "error in schedule construction",
3523 return isl_schedule_node_free(node));
3526 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
3527 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
3528 isl_vec_free(sol);
3529 isl_die(ctx, isl_error_unknown,
3530 "unable to carry dependences",
3531 return isl_schedule_node_free(node));
3534 trivial = is_any_trivial(graph, sol);
3535 if (trivial < 0) {
3536 sol = isl_vec_free(sol);
3537 } else if (trivial && graph->scc > 1) {
3538 isl_vec_free(sol);
3539 return compute_component_schedule(node, graph, 1);
3542 if (update_schedule(graph, sol, 0, 0) < 0)
3543 return isl_schedule_node_free(node);
3544 if (trivial)
3545 graph->n_row--;
3547 return split_scaled(node, graph);
3550 /* Are there any (non-empty) (conditional) validity edges in the graph?
3552 static int has_validity_edges(struct isl_sched_graph *graph)
3554 int i;
3556 for (i = 0; i < graph->n_edge; ++i) {
3557 int empty;
3559 empty = isl_map_plain_is_empty(graph->edge[i].map);
3560 if (empty < 0)
3561 return -1;
3562 if (empty)
3563 continue;
3564 if (graph->edge[i].validity ||
3565 graph->edge[i].conditional_validity)
3566 return 1;
3569 return 0;
3572 /* Should we apply a Feautrier step?
3573 * That is, did the user request the Feautrier algorithm and are
3574 * there any validity dependences (left)?
3576 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
3578 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
3579 return 0;
3581 return has_validity_edges(graph);
3584 /* Compute a schedule for a connected dependence graph using Feautrier's
3585 * multi-dimensional scheduling algorithm and return the updated schedule node.
3587 * The original algorithm is described in [1].
3588 * The main idea is to minimize the number of scheduling dimensions, by
3589 * trying to satisfy as many dependences as possible per scheduling dimension.
3591 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3592 * Problem, Part II: Multi-Dimensional Time.
3593 * In Intl. Journal of Parallel Programming, 1992.
3595 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
3596 isl_schedule_node *node, struct isl_sched_graph *graph)
3598 return carry_dependences(node, graph);
3601 /* Turn off the "local" bit on all (condition) edges.
3603 static void clear_local_edges(struct isl_sched_graph *graph)
3605 int i;
3607 for (i = 0; i < graph->n_edge; ++i)
3608 if (graph->edge[i].condition)
3609 graph->edge[i].local = 0;
3612 /* Does "graph" have both condition and conditional validity edges?
3614 static int need_condition_check(struct isl_sched_graph *graph)
3616 int i;
3617 int any_condition = 0;
3618 int any_conditional_validity = 0;
3620 for (i = 0; i < graph->n_edge; ++i) {
3621 if (graph->edge[i].condition)
3622 any_condition = 1;
3623 if (graph->edge[i].conditional_validity)
3624 any_conditional_validity = 1;
3627 return any_condition && any_conditional_validity;
3630 /* Does "graph" contain any coincidence edge?
3632 static int has_any_coincidence(struct isl_sched_graph *graph)
3634 int i;
3636 for (i = 0; i < graph->n_edge; ++i)
3637 if (graph->edge[i].coincidence)
3638 return 1;
3640 return 0;
3643 /* Extract the final schedule row as a map with the iteration domain
3644 * of "node" as domain.
3646 static __isl_give isl_map *final_row(struct isl_sched_node *node)
3648 isl_local_space *ls;
3649 isl_aff *aff;
3650 int row;
3652 row = isl_mat_rows(node->sched) - 1;
3653 ls = isl_local_space_from_space(isl_space_copy(node->space));
3654 aff = extract_schedule_row(ls, node, row);
3655 return isl_map_from_aff(aff);
3658 /* Is the conditional validity dependence in the edge with index "edge_index"
3659 * violated by the latest (i.e., final) row of the schedule?
3660 * That is, is i scheduled after j
3661 * for any conditional validity dependence i -> j?
3663 static int is_violated(struct isl_sched_graph *graph, int edge_index)
3665 isl_map *src_sched, *dst_sched, *map;
3666 struct isl_sched_edge *edge = &graph->edge[edge_index];
3667 int empty;
3669 src_sched = final_row(edge->src);
3670 dst_sched = final_row(edge->dst);
3671 map = isl_map_copy(edge->map);
3672 map = isl_map_apply_domain(map, src_sched);
3673 map = isl_map_apply_range(map, dst_sched);
3674 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
3675 empty = isl_map_is_empty(map);
3676 isl_map_free(map);
3678 if (empty < 0)
3679 return -1;
3681 return !empty;
3684 /* Does the domain of "umap" intersect "uset"?
3686 static int domain_intersects(__isl_keep isl_union_map *umap,
3687 __isl_keep isl_union_set *uset)
3689 int empty;
3691 umap = isl_union_map_copy(umap);
3692 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3693 empty = isl_union_map_is_empty(umap);
3694 isl_union_map_free(umap);
3696 return empty < 0 ? -1 : !empty;
3699 /* Does the range of "umap" intersect "uset"?
3701 static int range_intersects(__isl_keep isl_union_map *umap,
3702 __isl_keep isl_union_set *uset)
3704 int empty;
3706 umap = isl_union_map_copy(umap);
3707 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3708 empty = isl_union_map_is_empty(umap);
3709 isl_union_map_free(umap);
3711 return empty < 0 ? -1 : !empty;
3714 /* Are the condition dependences of "edge" local with respect to
3715 * the current schedule?
3717 * That is, are domain and range of the condition dependences mapped
3718 * to the same point?
3720 * In other words, is the condition false?
3722 static int is_condition_false(struct isl_sched_edge *edge)
3724 isl_union_map *umap;
3725 isl_map *map, *sched, *test;
3726 int local;
3728 umap = isl_union_map_copy(edge->tagged_condition);
3729 umap = isl_union_map_zip(umap);
3730 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3731 map = isl_map_from_union_map(umap);
3733 sched = node_extract_schedule(edge->src);
3734 map = isl_map_apply_domain(map, sched);
3735 sched = node_extract_schedule(edge->dst);
3736 map = isl_map_apply_range(map, sched);
3738 test = isl_map_identity(isl_map_get_space(map));
3739 local = isl_map_is_subset(map, test);
3740 isl_map_free(map);
3741 isl_map_free(test);
3743 return local;
3746 /* Does "graph" have any satisfied condition edges that
3747 * are adjacent to the conditional validity constraint with
3748 * domain "conditional_source" and range "conditional_sink"?
3750 * A satisfied condition is one that is not local.
3751 * If a condition was forced to be local already (i.e., marked as local)
3752 * then there is no need to check if it is in fact local.
3754 * Additionally, mark all adjacent condition edges found as local.
3756 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
3757 __isl_keep isl_union_set *conditional_source,
3758 __isl_keep isl_union_set *conditional_sink)
3760 int i;
3761 int any = 0;
3763 for (i = 0; i < graph->n_edge; ++i) {
3764 int adjacent, local;
3765 isl_union_map *condition;
3767 if (!graph->edge[i].condition)
3768 continue;
3769 if (graph->edge[i].local)
3770 continue;
3772 condition = graph->edge[i].tagged_condition;
3773 adjacent = domain_intersects(condition, conditional_sink);
3774 if (adjacent >= 0 && !adjacent)
3775 adjacent = range_intersects(condition,
3776 conditional_source);
3777 if (adjacent < 0)
3778 return -1;
3779 if (!adjacent)
3780 continue;
3782 graph->edge[i].local = 1;
3784 local = is_condition_false(&graph->edge[i]);
3785 if (local < 0)
3786 return -1;
3787 if (!local)
3788 any = 1;
3791 return any;
3794 /* Are there any violated conditional validity dependences with
3795 * adjacent condition dependences that are not local with respect
3796 * to the current schedule?
3797 * That is, is the conditional validity constraint violated?
3799 * Additionally, mark all those adjacent condition dependences as local.
3800 * We also mark those adjacent condition dependences that were not marked
3801 * as local before, but just happened to be local already. This ensures
3802 * that they remain local if the schedule is recomputed.
3804 * We first collect domain and range of all violated conditional validity
3805 * dependences and then check if there are any adjacent non-local
3806 * condition dependences.
3808 static int has_violated_conditional_constraint(isl_ctx *ctx,
3809 struct isl_sched_graph *graph)
3811 int i;
3812 int any = 0;
3813 isl_union_set *source, *sink;
3815 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3816 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3817 for (i = 0; i < graph->n_edge; ++i) {
3818 isl_union_set *uset;
3819 isl_union_map *umap;
3820 int violated;
3822 if (!graph->edge[i].conditional_validity)
3823 continue;
3825 violated = is_violated(graph, i);
3826 if (violated < 0)
3827 goto error;
3828 if (!violated)
3829 continue;
3831 any = 1;
3833 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3834 uset = isl_union_map_domain(umap);
3835 source = isl_union_set_union(source, uset);
3836 source = isl_union_set_coalesce(source);
3838 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3839 uset = isl_union_map_range(umap);
3840 sink = isl_union_set_union(sink, uset);
3841 sink = isl_union_set_coalesce(sink);
3844 if (any)
3845 any = has_adjacent_true_conditions(graph, source, sink);
3847 isl_union_set_free(source);
3848 isl_union_set_free(sink);
3849 return any;
3850 error:
3851 isl_union_set_free(source);
3852 isl_union_set_free(sink);
3853 return -1;
3856 /* Compute a schedule for a connected dependence graph and return
3857 * the updated schedule node.
3859 * We try to find a sequence of as many schedule rows as possible that result
3860 * in non-negative dependence distances (independent of the previous rows
3861 * in the sequence, i.e., such that the sequence is tilable), with as
3862 * many of the initial rows as possible satisfying the coincidence constraints.
3863 * If we can't find any more rows we either
3864 * - split between SCCs and start over (assuming we found an interesting
3865 * pair of SCCs between which to split)
3866 * - continue with the next band (assuming the current band has at least
3867 * one row)
3868 * - try to carry as many dependences as possible and continue with the next
3869 * band
3870 * In each case, we first insert a band node in the schedule tree
3871 * if any rows have been computed.
3873 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3874 * as many validity dependences as possible. When all validity dependences
3875 * are satisfied we extend the schedule to a full-dimensional schedule.
3877 * If we manage to complete the schedule, we insert a band node
3878 * (if any schedule rows were computed) and we finish off by topologically
3879 * sorting the statements based on the remaining dependences.
3881 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3882 * outermost dimension to satisfy the coincidence constraints. If this
3883 * turns out to be impossible, we fall back on the general scheme above
3884 * and try to carry as many dependences as possible.
3886 * If "graph" contains both condition and conditional validity dependences,
3887 * then we need to check that that the conditional schedule constraint
3888 * is satisfied, i.e., there are no violated conditional validity dependences
3889 * that are adjacent to any non-local condition dependences.
3890 * If there are, then we mark all those adjacent condition dependences
3891 * as local and recompute the current band. Those dependences that
3892 * are marked local will then be forced to be local.
3893 * The initial computation is performed with no dependences marked as local.
3894 * If we are lucky, then there will be no violated conditional validity
3895 * dependences adjacent to any non-local condition dependences.
3896 * Otherwise, we mark some additional condition dependences as local and
3897 * recompute. We continue this process until there are no violations left or
3898 * until we are no longer able to compute a schedule.
3899 * Since there are only a finite number of dependences,
3900 * there will only be a finite number of iterations.
3902 static __isl_give isl_schedule_node *compute_schedule_wcc(
3903 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3905 int has_coincidence;
3906 int use_coincidence;
3907 int force_coincidence = 0;
3908 int check_conditional;
3909 isl_ctx *ctx;
3911 if (!node)
3912 return NULL;
3914 ctx = isl_schedule_node_get_ctx(node);
3915 if (detect_sccs(ctx, graph) < 0)
3916 return isl_schedule_node_free(node);
3917 if (sort_sccs(graph) < 0)
3918 return isl_schedule_node_free(node);
3920 if (compute_maxvar(graph) < 0)
3921 return isl_schedule_node_free(node);
3923 if (need_feautrier_step(ctx, graph))
3924 return compute_schedule_wcc_feautrier(node, graph);
3926 clear_local_edges(graph);
3927 check_conditional = need_condition_check(graph);
3928 has_coincidence = has_any_coincidence(graph);
3930 if (ctx->opt->schedule_outer_coincidence)
3931 force_coincidence = 1;
3933 use_coincidence = has_coincidence;
3934 while (graph->n_row < graph->maxvar) {
3935 isl_vec *sol;
3936 int violated;
3937 int coincident;
3939 graph->src_scc = -1;
3940 graph->dst_scc = -1;
3942 if (setup_lp(ctx, graph, use_coincidence) < 0)
3943 return isl_schedule_node_free(node);
3944 sol = solve_lp(graph);
3945 if (!sol)
3946 return isl_schedule_node_free(node);
3947 if (sol->size == 0) {
3948 int empty = graph->n_total_row == graph->band_start;
3950 isl_vec_free(sol);
3951 if (use_coincidence && (!force_coincidence || !empty)) {
3952 use_coincidence = 0;
3953 continue;
3955 if (!ctx->opt->schedule_maximize_band_depth && !empty)
3956 return compute_next_band(node, graph, 1);
3957 if (graph->src_scc >= 0)
3958 return compute_split_schedule(node, graph);
3959 if (!empty)
3960 return compute_next_band(node, graph, 1);
3961 return carry_dependences(node, graph);
3963 coincident = !has_coincidence || use_coincidence;
3964 if (update_schedule(graph, sol, 1, coincident) < 0)
3965 return isl_schedule_node_free(node);
3967 if (!check_conditional)
3968 continue;
3969 violated = has_violated_conditional_constraint(ctx, graph);
3970 if (violated < 0)
3971 return isl_schedule_node_free(node);
3972 if (!violated)
3973 continue;
3974 if (reset_band(graph) < 0)
3975 return isl_schedule_node_free(node);
3976 use_coincidence = has_coincidence;
3979 if (graph->n_total_row > graph->band_start) {
3980 node = insert_current_band(node, graph, 1);
3981 node = isl_schedule_node_child(node, 0);
3983 node = sort_statements(node, graph);
3984 if (graph->n_total_row > graph->band_start)
3985 node = isl_schedule_node_parent(node);
3987 return node;
3990 /* Compute a schedule for each group of nodes identified by node->scc
3991 * separately and then combine them in a sequence node (or as set node
3992 * if graph->weak is set) inserted at position "node" of the schedule tree.
3993 * Return the updated schedule node.
3995 * If "wcc" is set then each of the groups belongs to a single
3996 * weakly connected component in the dependence graph so that
3997 * there is no need for compute_sub_schedule to look for weakly
3998 * connected components.
4000 static __isl_give isl_schedule_node *compute_component_schedule(
4001 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4002 int wcc)
4004 int component, i;
4005 int n, n_edge;
4006 int orig_total_row;
4007 isl_ctx *ctx;
4008 isl_union_set_list *filters;
4010 if (!node)
4011 return NULL;
4012 ctx = isl_schedule_node_get_ctx(node);
4014 filters = extract_sccs(ctx, graph);
4015 if (graph->weak)
4016 node = isl_schedule_node_insert_set(node, filters);
4017 else
4018 node = isl_schedule_node_insert_sequence(node, filters);
4020 orig_total_row = graph->n_total_row;
4021 for (component = 0; component < graph->scc; ++component) {
4022 n = 0;
4023 for (i = 0; i < graph->n; ++i)
4024 if (graph->node[i].scc == component)
4025 n++;
4026 n_edge = 0;
4027 for (i = 0; i < graph->n_edge; ++i)
4028 if (graph->edge[i].src->scc == component &&
4029 graph->edge[i].dst->scc == component)
4030 n_edge++;
4032 node = isl_schedule_node_child(node, component);
4033 node = isl_schedule_node_child(node, 0);
4034 node = compute_sub_schedule(node, ctx, graph, n, n_edge,
4035 &node_scc_exactly,
4036 &edge_scc_exactly, component, wcc);
4037 node = isl_schedule_node_parent(node);
4038 node = isl_schedule_node_parent(node);
4039 graph->n_total_row = orig_total_row;
4042 return node;
4045 /* Compute a schedule for the given dependence graph and insert it at "node".
4046 * Return the updated schedule node.
4048 * We first check if the graph is connected (through validity and conditional
4049 * validity dependences) and, if not, compute a schedule
4050 * for each component separately.
4051 * If schedule_fuse is set to minimal fusion, then we check for strongly
4052 * connected components instead and compute a separate schedule for
4053 * each such strongly connected component.
4055 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
4056 struct isl_sched_graph *graph)
4058 isl_ctx *ctx;
4060 if (!node)
4061 return NULL;
4063 ctx = isl_schedule_node_get_ctx(node);
4064 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
4065 if (detect_sccs(ctx, graph) < 0)
4066 return isl_schedule_node_free(node);
4067 } else {
4068 if (detect_wccs(ctx, graph) < 0)
4069 return isl_schedule_node_free(node);
4072 if (graph->scc > 1)
4073 return compute_component_schedule(node, graph, 1);
4075 return compute_schedule_wcc(node, graph);
4078 /* Compute a schedule on sc->domain that respects the given schedule
4079 * constraints.
4081 * In particular, the schedule respects all the validity dependences.
4082 * If the default isl scheduling algorithm is used, it tries to minimize
4083 * the dependence distances over the proximity dependences.
4084 * If Feautrier's scheduling algorithm is used, the proximity dependence
4085 * distances are only minimized during the extension to a full-dimensional
4086 * schedule.
4088 * If there are any condition and conditional validity dependences,
4089 * then the conditional validity dependences may be violated inside
4090 * a tilable band, provided they have no adjacent non-local
4091 * condition dependences.
4093 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
4094 __isl_take isl_schedule_constraints *sc)
4096 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
4097 struct isl_sched_graph graph = { 0 };
4098 isl_schedule *sched;
4099 isl_schedule_node *node;
4100 struct isl_extract_edge_data data;
4101 enum isl_edge_type i;
4103 sc = isl_schedule_constraints_align_params(sc);
4104 if (!sc)
4105 return NULL;
4107 graph.n = isl_union_set_n_set(sc->domain);
4108 if (graph.n == 0) {
4109 isl_union_set *domain = isl_union_set_copy(sc->domain);
4110 sched = isl_schedule_from_domain(domain);
4111 goto done;
4113 if (graph_alloc(ctx, &graph, graph.n,
4114 isl_schedule_constraints_n_map(sc)) < 0)
4115 goto error;
4116 if (compute_max_row(&graph, sc) < 0)
4117 goto error;
4118 graph.root = 1;
4119 graph.n = 0;
4120 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
4121 goto error;
4122 if (graph_init_table(ctx, &graph) < 0)
4123 goto error;
4124 for (i = isl_edge_first; i <= isl_edge_last; ++i)
4125 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
4126 if (graph_init_edge_tables(ctx, &graph) < 0)
4127 goto error;
4128 graph.n_edge = 0;
4129 data.graph = &graph;
4130 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
4131 data.type = i;
4132 if (isl_union_map_foreach_map(sc->constraint[i],
4133 &extract_edge, &data) < 0)
4134 goto error;
4137 node = isl_schedule_node_from_domain(isl_union_set_copy(sc->domain));
4138 node = isl_schedule_node_child(node, 0);
4139 node = compute_schedule(node, &graph);
4140 sched = isl_schedule_node_get_schedule(node);
4141 isl_schedule_node_free(node);
4143 done:
4144 graph_free(ctx, &graph);
4145 isl_schedule_constraints_free(sc);
4147 return sched;
4148 error:
4149 graph_free(ctx, &graph);
4150 isl_schedule_constraints_free(sc);
4151 return NULL;
4154 /* Compute a schedule for the given union of domains that respects
4155 * all the validity dependences and minimizes
4156 * the dependence distances over the proximity dependences.
4158 * This function is kept for backward compatibility.
4160 __isl_give isl_schedule *isl_union_set_compute_schedule(
4161 __isl_take isl_union_set *domain,
4162 __isl_take isl_union_map *validity,
4163 __isl_take isl_union_map *proximity)
4165 isl_schedule_constraints *sc;
4167 sc = isl_schedule_constraints_on_domain(domain);
4168 sc = isl_schedule_constraints_set_validity(sc, validity);
4169 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4171 return isl_schedule_constraints_compute_schedule(sc);