isl_basic_map_detect_equalities: keep track of sample
[isl.git] / isl_affine_hull.c
blob3303d3b508a7e0076b78f3c3bdc2d30ad10db573
1 #include "isl_ctx.h"
2 #include "isl_seq.h"
3 #include "isl_set.h"
4 #include "isl_lp.h"
5 #include "isl_map.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_sample.h"
9 #include "isl_tab.h"
11 struct isl_basic_map *isl_basic_map_implicit_equalities(
12 struct isl_basic_map *bmap)
14 struct isl_tab *tab;
16 if (!bmap)
17 return bmap;
19 bmap = isl_basic_map_gauss(bmap, NULL);
20 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
21 return bmap;
22 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
23 return bmap;
24 if (bmap->n_ineq <= 1)
25 return bmap;
27 tab = isl_tab_from_basic_map(bmap);
28 tab = isl_tab_detect_implicit_equalities(tab);
29 bmap = isl_basic_map_update_from_tab(bmap, tab);
30 isl_tab_free(tab);
31 bmap = isl_basic_map_gauss(bmap, NULL);
32 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
33 return bmap;
36 struct isl_basic_set *isl_basic_set_implicit_equalities(
37 struct isl_basic_set *bset)
39 return (struct isl_basic_set *)
40 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
43 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
45 int i;
47 if (!map)
48 return map;
50 for (i = 0; i < map->n; ++i) {
51 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
52 if (!map->p[i])
53 goto error;
56 return map;
57 error:
58 isl_map_free(map);
59 return NULL;
62 /* Make eq[row][col] of both bmaps equal so we can add the row
63 * add the column to the common matrix.
64 * Note that because of the echelon form, the columns of row row
65 * after column col are zero.
67 static void set_common_multiple(
68 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
69 unsigned row, unsigned col)
71 isl_int m, c;
73 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
74 return;
76 isl_int_init(c);
77 isl_int_init(m);
78 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
79 isl_int_divexact(c, m, bset1->eq[row][col]);
80 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
81 isl_int_divexact(c, m, bset2->eq[row][col]);
82 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
83 isl_int_clear(c);
84 isl_int_clear(m);
87 /* Delete a given equality, moving all the following equalities one up.
89 static void delete_row(struct isl_basic_set *bset, unsigned row)
91 isl_int *t;
92 int r;
94 t = bset->eq[row];
95 bset->n_eq--;
96 for (r = row; r < bset->n_eq; ++r)
97 bset->eq[r] = bset->eq[r+1];
98 bset->eq[bset->n_eq] = t;
101 /* Make first row entries in column col of bset1 identical to
102 * those of bset2, using the fact that entry bset1->eq[row][col]=a
103 * is non-zero. Initially, these elements of bset1 are all zero.
104 * For each row i < row, we set
105 * A[i] = a * A[i] + B[i][col] * A[row]
106 * B[i] = a * B[i]
107 * so that
108 * A[i][col] = B[i][col] = a * old(B[i][col])
110 static void construct_column(
111 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
112 unsigned row, unsigned col)
114 int r;
115 isl_int a;
116 isl_int b;
117 unsigned total;
119 isl_int_init(a);
120 isl_int_init(b);
121 total = 1 + isl_basic_set_n_dim(bset1);
122 for (r = 0; r < row; ++r) {
123 if (isl_int_is_zero(bset2->eq[r][col]))
124 continue;
125 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
126 isl_int_divexact(a, bset1->eq[row][col], b);
127 isl_int_divexact(b, bset2->eq[r][col], b);
128 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
129 b, bset1->eq[row], total);
130 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
132 isl_int_clear(a);
133 isl_int_clear(b);
134 delete_row(bset1, row);
137 /* Make first row entries in column col of bset1 identical to
138 * those of bset2, using only these entries of the two matrices.
139 * Let t be the last row with different entries.
140 * For each row i < t, we set
141 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
142 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
143 * so that
144 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
146 static int transform_column(
147 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
148 unsigned row, unsigned col)
150 int i, t;
151 isl_int a, b, g;
152 unsigned total;
154 for (t = row-1; t >= 0; --t)
155 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
156 break;
157 if (t < 0)
158 return 0;
160 total = 1 + isl_basic_set_n_dim(bset1);
161 isl_int_init(a);
162 isl_int_init(b);
163 isl_int_init(g);
164 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
165 for (i = 0; i < t; ++i) {
166 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
167 isl_int_gcd(g, a, b);
168 isl_int_divexact(a, a, g);
169 isl_int_divexact(g, b, g);
170 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
171 total);
172 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
173 total);
175 isl_int_clear(a);
176 isl_int_clear(b);
177 isl_int_clear(g);
178 delete_row(bset1, t);
179 delete_row(bset2, t);
180 return 1;
183 /* The implementation is based on Section 5.2 of Michael Karr,
184 * "Affine Relationships Among Variables of a Program",
185 * except that the echelon form we use starts from the last column
186 * and that we are dealing with integer coefficients.
188 static struct isl_basic_set *affine_hull(
189 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
191 unsigned total;
192 int col;
193 int row;
195 total = 1 + isl_basic_set_n_dim(bset1);
197 row = 0;
198 for (col = total-1; col >= 0; --col) {
199 int is_zero1 = row >= bset1->n_eq ||
200 isl_int_is_zero(bset1->eq[row][col]);
201 int is_zero2 = row >= bset2->n_eq ||
202 isl_int_is_zero(bset2->eq[row][col]);
203 if (!is_zero1 && !is_zero2) {
204 set_common_multiple(bset1, bset2, row, col);
205 ++row;
206 } else if (!is_zero1 && is_zero2) {
207 construct_column(bset1, bset2, row, col);
208 } else if (is_zero1 && !is_zero2) {
209 construct_column(bset2, bset1, row, col);
210 } else {
211 if (transform_column(bset1, bset2, row, col))
212 --row;
215 isl_basic_set_free(bset2);
216 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
217 bset1 = isl_basic_set_normalize_constraints(bset1);
218 return bset1;
219 error:
220 isl_basic_set_free(bset1);
221 return NULL;
224 /* Find an integer point in "bset" that lies outside of the equality
225 * "eq" e(x) = 0.
226 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
227 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
228 * The point, if found, is returned as a singleton set.
229 * If no point can be found, the empty set is returned.
231 * Before solving an ILP problem, we first check if simply
232 * adding the normal of the constraint to one of the known
233 * integer points in the basic set yields another point
234 * inside the basic set.
236 * The caller of this function ensures that "bset" is bounded.
238 static struct isl_basic_set *outside_point(struct isl_ctx *ctx,
239 struct isl_basic_set *bset, isl_int *eq, int up)
241 struct isl_basic_set *slice = NULL;
242 struct isl_vec *sample;
243 struct isl_basic_set *point;
244 unsigned dim;
245 int k;
247 dim = isl_basic_set_n_dim(bset);
248 sample = isl_vec_alloc(ctx, 1 + dim);
249 if (!sample)
250 return NULL;
251 isl_int_set_si(sample->block.data[0], 1);
252 isl_seq_combine(sample->block.data + 1,
253 ctx->one, bset->sample->block.data + 1,
254 up ? ctx->one : ctx->negone, eq + 1, dim);
255 if (isl_basic_set_contains(bset, sample))
256 return isl_basic_set_from_vec(sample);
257 isl_vec_free(sample);
258 sample = NULL;
260 slice = isl_basic_set_copy(bset);
261 if (!slice)
262 goto error;
263 slice = isl_basic_set_cow(slice);
264 slice = isl_basic_set_extend(slice, 0, dim, 0, 0, 1);
265 k = isl_basic_set_alloc_inequality(slice);
266 if (k < 0)
267 goto error;
268 if (up)
269 isl_seq_cpy(slice->ineq[k], eq, 1 + dim);
270 else
271 isl_seq_neg(slice->ineq[k], eq, 1 + dim);
272 isl_int_sub_ui(slice->ineq[k][0], slice->ineq[k][0], 1);
274 sample = isl_basic_set_sample_bounded(slice);
275 if (!sample)
276 goto error;
277 if (sample->size == 0) {
278 isl_vec_free(sample);
279 point = isl_basic_set_empty_like(bset);
280 } else
281 point = isl_basic_set_from_vec(sample);
283 return point;
284 error:
285 isl_basic_set_free(slice);
286 return NULL;
289 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
291 int i;
293 bset = isl_basic_set_cow(bset);
294 if (!bset)
295 return NULL;
296 isl_assert(bset->ctx, bset->n_div == 0, goto error);
298 for (i = 0; i < bset->n_eq; ++i)
299 isl_int_set_si(bset->eq[i][0], 0);
301 for (i = 0; i < bset->n_ineq; ++i)
302 isl_int_set_si(bset->ineq[i][0], 0);
304 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
305 return isl_basic_set_implicit_equalities(bset);
306 error:
307 isl_basic_set_free(bset);
308 return NULL;
311 /* Extend an initial (under-)approximation of the affine hull of "bset"
312 * by looking for points that do not satisfy one of the equalities
313 * in the current approximation and adding them to that approximation
314 * until no such points can be found any more.
316 * The caller of this function ensures that "bset" is bounded.
318 static struct isl_basic_set *extend_affine_hull(struct isl_basic_set *bset,
319 struct isl_basic_set *hull)
321 int i, j, k;
322 struct isl_ctx *ctx;
323 unsigned dim;
325 ctx = bset->ctx;
326 dim = isl_basic_set_n_dim(bset);
327 for (i = 0; i < dim; ++i) {
328 struct isl_basic_set *point;
329 for (j = 0; j < hull->n_eq; ++j) {
330 point = outside_point(ctx, bset, hull->eq[j], 1);
331 if (!point)
332 goto error;
333 if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
334 break;
335 isl_basic_set_free(point);
336 point = outside_point(ctx, bset, hull->eq[j], 0);
337 if (!point)
338 goto error;
339 if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
340 break;
341 isl_basic_set_free(point);
343 bset = isl_basic_set_extend_constraints(bset, 1, 0);
344 k = isl_basic_set_alloc_equality(bset);
345 if (k < 0)
346 goto error;
347 isl_seq_cpy(bset->eq[k], hull->eq[j],
348 1 + isl_basic_set_total_dim(hull));
349 bset = isl_basic_set_gauss(bset, NULL);
350 if (!bset)
351 goto error;
353 if (j == hull->n_eq)
354 break;
355 hull = affine_hull(hull, point);
357 isl_basic_set_free(bset);
359 return hull;
360 error:
361 isl_basic_set_free(bset);
362 isl_basic_set_free(hull);
363 return NULL;
366 /* Drop all constraints in bset that involve any of the dimensions
367 * first to first+n-1.
369 static struct isl_basic_set *drop_constraints_involving
370 (struct isl_basic_set *bset, unsigned first, unsigned n)
372 int i;
374 if (!bset)
375 return NULL;
377 bset = isl_basic_set_cow(bset);
379 for (i = bset->n_eq - 1; i >= 0; --i) {
380 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
381 continue;
382 isl_basic_set_drop_equality(bset, i);
385 for (i = bset->n_ineq - 1; i >= 0; --i) {
386 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
387 continue;
388 isl_basic_set_drop_inequality(bset, i);
391 return bset;
394 /* Look for all equalities satisfied by the integer points in bset,
395 * which is assumed to be bounded.
397 * The equalities are obtained by successively looking for
398 * a point that is affinely independent of the points found so far.
399 * In particular, for each equality satisfied by the points so far,
400 * we check if there is any point on a hyperplane parallel to the
401 * corresponding hyperplane shifted by at least one (in either direction).
403 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
405 struct isl_vec *sample = NULL;
406 struct isl_basic_set *hull;
408 if (isl_basic_set_is_empty(bset))
409 return bset;
411 sample = isl_basic_set_sample_vec(isl_basic_set_copy(bset));
412 if (!sample)
413 goto error;
414 if (sample->size == 0) {
415 struct isl_basic_set *hull;
416 isl_vec_free(sample);
417 hull = isl_basic_set_empty_like(bset);
418 isl_basic_set_free(bset);
419 return hull;
421 if (sample->size == 1) {
422 isl_vec_free(sample);
423 return bset;
426 hull = isl_basic_set_from_vec(sample);
428 return extend_affine_hull(bset, hull);
429 error:
430 isl_basic_set_free(bset);
431 return NULL;
434 /* Compute the affine hull of "bset", where "cone" is the recession cone
435 * of "bset".
437 * We first compute a unimodular transformation that puts the unbounded
438 * directions in the last dimensions. In particular, we take a transformation
439 * that maps all equalities to equalities (in HNF) on the first dimensions.
440 * Let x be the original dimensions and y the transformed, with y_1 bounded
441 * and y_2 unbounded.
443 * [ y_1 ] [ y_1 ] [ Q_1 ]
444 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
446 * Let's call the input basic set S. We compute S' = preimage(S, U)
447 * and drop the final dimensions including any constraints involving them.
448 * This results in set S''.
449 * Then we compute the affine hull A'' of S''.
450 * Let F y_1 >= g be the constraint system of A''. In the transformed
451 * space the y_2 are unbounded, so we can add them back without any constraints,
452 * resulting in
454 * [ y_1 ]
455 * [ F 0 ] [ y_2 ] >= g
456 * or
457 * [ Q_1 ]
458 * [ F 0 ] [ Q_2 ] x >= g
459 * or
460 * F Q_1 x >= g
462 * The affine hull in the original space is then obtained as
463 * A = preimage(A'', Q_1).
465 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
466 struct isl_basic_set *cone)
468 unsigned total;
469 unsigned cone_dim;
470 struct isl_basic_set *hull;
471 struct isl_mat *M, *U, *Q;
473 if (!bset || !cone)
474 goto error;
476 total = isl_basic_set_total_dim(cone);
477 cone_dim = total - cone->n_eq;
479 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
480 M = isl_mat_left_hermite(M, 0, &U, &Q);
481 if (!M)
482 goto error;
483 isl_mat_free(M);
485 U = isl_mat_lin_to_aff(U);
486 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
488 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
489 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
491 Q = isl_mat_lin_to_aff(Q);
492 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
494 if (bset && bset->sample && bset->sample->size == 1 + total)
495 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
497 hull = uset_affine_hull_bounded(bset);
499 if (!hull)
500 isl_mat_free(U);
501 else {
502 struct isl_vec *sample = isl_vec_copy(hull->sample);
503 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
504 if (sample && sample->size > 0)
505 sample = isl_mat_vec_product(U, sample);
506 else
507 isl_mat_free(U);
508 hull = isl_basic_set_preimage(hull, Q);
509 isl_vec_free(hull->sample);
510 hull->sample = sample;
513 isl_basic_set_free(cone);
515 return hull;
516 error:
517 isl_basic_set_free(bset);
518 isl_basic_set_free(cone);
519 return NULL;
522 /* Look for all equalities satisfied by the integer points in bset,
523 * which is assumed not to have any explicit equalities.
525 * The equalities are obtained by successively looking for
526 * a point that is affinely independent of the points found so far.
527 * In particular, for each equality satisfied by the points so far,
528 * we check if there is any point on a hyperplane parallel to the
529 * corresponding hyperplane shifted by at least one (in either direction).
531 * Before looking for any outside points, we first compute the recession
532 * cone. The directions of this recession cone will always be part
533 * of the affine hull, so there is no need for looking for any points
534 * in these directions.
535 * In particular, if the recession cone is full-dimensional, then
536 * the affine hull is simply the whole universe.
538 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
540 struct isl_basic_set *cone;
542 if (isl_basic_set_fast_is_empty(bset))
543 return bset;
545 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
546 if (!cone)
547 goto error;
548 if (cone->n_eq == 0) {
549 struct isl_basic_set *hull;
550 isl_basic_set_free(cone);
551 hull = isl_basic_set_universe_like(bset);
552 isl_basic_set_free(bset);
553 return hull;
556 if (cone->n_eq < isl_basic_set_total_dim(cone))
557 return affine_hull_with_cone(bset, cone);
559 isl_basic_set_free(cone);
560 return uset_affine_hull_bounded(bset);
561 error:
562 isl_basic_set_free(bset);
563 return NULL;
566 /* Look for all equalities satisfied by the integer points in bmap
567 * that are independent of the equalities already explicitly available
568 * in bmap.
570 * We first remove all equalities already explicitly available,
571 * then look for additional equalities in the reduced space
572 * and then transform the result to the original space.
573 * The original equalities are _not_ added to this set. This is
574 * the responsibility of the calling function.
575 * The resulting basic set has all meaning about the dimensions removed.
576 * In particular, dimensions that correspond to existential variables
577 * in bmap and that are found to be fixed are not removed.
579 static struct isl_basic_set *equalities_in_underlying_set(
580 struct isl_basic_map *bmap)
582 struct isl_mat *T1 = NULL;
583 struct isl_mat *T2 = NULL;
584 struct isl_basic_set *bset = NULL;
585 struct isl_basic_set *hull = NULL;
587 bset = isl_basic_map_underlying_set(bmap);
588 if (!bset)
589 return NULL;
590 if (bset->n_eq)
591 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
592 if (!bset)
593 goto error;
595 hull = uset_affine_hull(bset);
596 if (!T2)
597 return hull;
599 if (!hull)
600 isl_mat_free(T1);
601 else {
602 struct isl_vec *sample = isl_vec_copy(hull->sample);
603 if (sample && sample->size > 0)
604 sample = isl_mat_vec_product(T1, sample);
605 else
606 isl_mat_free(T1);
607 hull = isl_basic_set_preimage(hull, T2);
608 isl_vec_free(hull->sample);
609 hull->sample = sample;
612 return hull;
613 error:
614 isl_mat_free(T2);
615 isl_basic_set_free(bset);
616 isl_basic_set_free(hull);
617 return NULL;
620 /* Detect and make explicit all equalities satisfied by the (integer)
621 * points in bmap.
623 struct isl_basic_map *isl_basic_map_detect_equalities(
624 struct isl_basic_map *bmap)
626 int i, j;
627 struct isl_basic_set *hull = NULL;
629 if (!bmap)
630 return NULL;
631 if (bmap->n_ineq == 0)
632 return bmap;
633 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
634 return bmap;
635 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
636 return bmap;
637 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
638 return isl_basic_map_implicit_equalities(bmap);
640 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
641 if (!hull)
642 goto error;
643 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
644 isl_basic_set_free(hull);
645 return isl_basic_map_set_to_empty(bmap);
647 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
648 hull->n_eq, 0);
649 for (i = 0; i < hull->n_eq; ++i) {
650 j = isl_basic_map_alloc_equality(bmap);
651 if (j < 0)
652 goto error;
653 isl_seq_cpy(bmap->eq[j], hull->eq[i],
654 1 + isl_basic_set_total_dim(hull));
656 isl_vec_free(bmap->sample);
657 bmap->sample = isl_vec_copy(hull->sample);
658 isl_basic_set_free(hull);
659 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
660 bmap = isl_basic_map_simplify(bmap);
661 return isl_basic_map_finalize(bmap);
662 error:
663 isl_basic_set_free(hull);
664 isl_basic_map_free(bmap);
665 return NULL;
668 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
669 __isl_take isl_basic_set *bset)
671 return (isl_basic_set *)
672 isl_basic_map_detect_equalities((isl_basic_map *)bset);
675 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
677 struct isl_basic_map *bmap;
678 int i;
680 if (!map)
681 return NULL;
683 for (i = 0; i < map->n; ++i) {
684 bmap = isl_basic_map_copy(map->p[i]);
685 bmap = isl_basic_map_detect_equalities(bmap);
686 if (!bmap)
687 goto error;
688 isl_basic_map_free(map->p[i]);
689 map->p[i] = bmap;
692 return map;
693 error:
694 isl_map_free(map);
695 return NULL;
698 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
700 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
703 /* After computing the rational affine hull (by detecting the implicit
704 * equalities), we compute the additional equalities satisfied by
705 * the integer points (if any) and add the original equalities back in.
707 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
709 bmap = isl_basic_map_detect_equalities(bmap);
710 bmap = isl_basic_map_cow(bmap);
711 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
712 return bmap;
715 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
717 return (struct isl_basic_set *)
718 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
721 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
723 int i;
724 struct isl_basic_map *model = NULL;
725 struct isl_basic_map *hull = NULL;
726 struct isl_set *set;
728 if (!map)
729 return NULL;
731 if (map->n == 0) {
732 hull = isl_basic_map_empty_like_map(map);
733 isl_map_free(map);
734 return hull;
737 map = isl_map_detect_equalities(map);
738 map = isl_map_align_divs(map);
739 if (!map)
740 return NULL;
741 model = isl_basic_map_copy(map->p[0]);
742 set = isl_map_underlying_set(map);
743 set = isl_set_cow(set);
744 if (!set)
745 goto error;
747 for (i = 0; i < set->n; ++i) {
748 set->p[i] = isl_basic_set_cow(set->p[i]);
749 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
750 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
751 if (!set->p[i])
752 goto error;
754 set = isl_set_remove_empty_parts(set);
755 if (set->n == 0) {
756 hull = isl_basic_map_empty_like(model);
757 isl_basic_map_free(model);
758 } else {
759 struct isl_basic_set *bset;
760 while (set->n > 1) {
761 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
762 if (!set->p[0])
763 goto error;
765 bset = isl_basic_set_copy(set->p[0]);
766 hull = isl_basic_map_overlying_set(bset, model);
768 isl_set_free(set);
769 hull = isl_basic_map_simplify(hull);
770 return isl_basic_map_finalize(hull);
771 error:
772 isl_basic_map_free(model);
773 isl_set_free(set);
774 return NULL;
777 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
779 return (struct isl_basic_set *)
780 isl_map_affine_hull((struct isl_map *)set);