2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include "isl_equalities.h"
17 #include <isl_space_private.h>
18 #include <isl_mat_private.h>
20 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
22 isl_int
*t
= bmap
->eq
[a
];
23 bmap
->eq
[a
] = bmap
->eq
[b
];
27 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
30 isl_int
*t
= bmap
->ineq
[a
];
31 bmap
->ineq
[a
] = bmap
->ineq
[b
];
36 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
38 isl_seq_cpy(c
, c
+ n
, rem
);
39 isl_seq_clr(c
+ rem
, n
);
42 /* Drop n dimensions starting at first.
44 * In principle, this frees up some extra variables as the number
45 * of columns remains constant, but we would have to extend
46 * the div array too as the number of rows in this array is assumed
47 * to be equal to extra.
49 struct isl_basic_set
*isl_basic_set_drop_dims(
50 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
57 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
59 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
62 bset
= isl_basic_set_cow(bset
);
66 for (i
= 0; i
< bset
->n_eq
; ++i
)
67 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
68 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
70 for (i
= 0; i
< bset
->n_ineq
; ++i
)
71 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
72 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
74 for (i
= 0; i
< bset
->n_div
; ++i
)
75 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
76 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
78 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
82 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
83 bset
= isl_basic_set_simplify(bset
);
84 return isl_basic_set_finalize(bset
);
86 isl_basic_set_free(bset
);
90 struct isl_set
*isl_set_drop_dims(
91 struct isl_set
*set
, unsigned first
, unsigned n
)
98 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
100 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
102 set
= isl_set_cow(set
);
105 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
109 for (i
= 0; i
< set
->n
; ++i
) {
110 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
115 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
122 /* Move "n" divs starting at "first" to the end of the list of divs.
124 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
125 unsigned first
, unsigned n
)
130 if (first
+ n
== bmap
->n_div
)
133 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
136 for (i
= 0; i
< n
; ++i
)
137 div
[i
] = bmap
->div
[first
+ i
];
138 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
139 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
140 for (i
= 0; i
< n
; ++i
)
141 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
145 isl_basic_map_free(bmap
);
149 /* Drop "n" dimensions of type "type" starting at "first".
151 * In principle, this frees up some extra variables as the number
152 * of columns remains constant, but we would have to extend
153 * the div array too as the number of rows in this array is assumed
154 * to be equal to extra.
156 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
157 enum isl_dim_type type
, unsigned first
, unsigned n
)
167 dim
= isl_basic_map_dim(bmap
, type
);
168 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
170 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
173 bmap
= isl_basic_map_cow(bmap
);
177 offset
= isl_basic_map_offset(bmap
, type
) + first
;
178 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
179 for (i
= 0; i
< bmap
->n_eq
; ++i
)
180 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
182 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
183 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
185 for (i
= 0; i
< bmap
->n_div
; ++i
)
186 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
188 if (type
== isl_dim_div
) {
189 bmap
= move_divs_last(bmap
, first
, n
);
192 isl_basic_map_free_div(bmap
, n
);
194 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
198 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
199 bmap
= isl_basic_map_simplify(bmap
);
200 return isl_basic_map_finalize(bmap
);
202 isl_basic_map_free(bmap
);
206 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
207 enum isl_dim_type type
, unsigned first
, unsigned n
)
209 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
213 struct isl_basic_map
*isl_basic_map_drop_inputs(
214 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
216 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
219 struct isl_map
*isl_map_drop(struct isl_map
*map
,
220 enum isl_dim_type type
, unsigned first
, unsigned n
)
227 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
229 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
231 map
= isl_map_cow(map
);
234 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
238 for (i
= 0; i
< map
->n
; ++i
) {
239 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
243 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
251 struct isl_set
*isl_set_drop(struct isl_set
*set
,
252 enum isl_dim_type type
, unsigned first
, unsigned n
)
254 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
257 struct isl_map
*isl_map_drop_inputs(
258 struct isl_map
*map
, unsigned first
, unsigned n
)
260 return isl_map_drop(map
, isl_dim_in
, first
, n
);
264 * We don't cow, as the div is assumed to be redundant.
266 static struct isl_basic_map
*isl_basic_map_drop_div(
267 struct isl_basic_map
*bmap
, unsigned div
)
275 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
277 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
279 for (i
= 0; i
< bmap
->n_eq
; ++i
)
280 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
282 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
283 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
284 isl_basic_map_drop_inequality(bmap
, i
);
288 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
291 for (i
= 0; i
< bmap
->n_div
; ++i
)
292 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
294 if (div
!= bmap
->n_div
- 1) {
296 isl_int
*t
= bmap
->div
[div
];
298 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
299 bmap
->div
[j
] = bmap
->div
[j
+1];
301 bmap
->div
[bmap
->n_div
- 1] = t
;
303 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
304 isl_basic_map_free_div(bmap
, 1);
308 isl_basic_map_free(bmap
);
312 struct isl_basic_map
*isl_basic_map_normalize_constraints(
313 struct isl_basic_map
*bmap
)
317 unsigned total
= isl_basic_map_total_dim(bmap
);
323 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
324 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
325 if (isl_int_is_zero(gcd
)) {
326 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
327 bmap
= isl_basic_map_set_to_empty(bmap
);
330 isl_basic_map_drop_equality(bmap
, i
);
333 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
334 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
335 if (isl_int_is_one(gcd
))
337 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
338 bmap
= isl_basic_map_set_to_empty(bmap
);
341 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
344 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
345 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
346 if (isl_int_is_zero(gcd
)) {
347 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
348 bmap
= isl_basic_map_set_to_empty(bmap
);
351 isl_basic_map_drop_inequality(bmap
, i
);
354 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
355 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
356 if (isl_int_is_one(gcd
))
358 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
359 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
366 struct isl_basic_set
*isl_basic_set_normalize_constraints(
367 struct isl_basic_set
*bset
)
369 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
370 (struct isl_basic_map
*)bset
);
373 /* Assumes divs have been ordered if keep_divs is set.
375 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
376 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
379 unsigned space_total
;
383 total
= isl_basic_map_total_dim(bmap
);
384 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
385 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
386 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
387 if (bmap
->eq
[k
] == eq
)
389 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
393 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
394 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
397 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
398 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
402 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
403 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
404 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
407 for (k
= 0; k
< bmap
->n_div
; ++k
) {
408 if (isl_int_is_zero(bmap
->div
[k
][0]))
410 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
414 /* We need to be careful about circular definitions,
415 * so for now we just remove the definition of div k
416 * if the equality contains any divs.
417 * If keep_divs is set, then the divs have been ordered
418 * and we can keep the definition as long as the result
421 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
422 isl_seq_elim(bmap
->div
[k
]+1, eq
,
423 1+pos
, 1+total
, &bmap
->div
[k
][0]);
425 isl_seq_clr(bmap
->div
[k
], 1 + total
);
426 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
430 /* Assumes divs have been ordered if keep_divs is set.
432 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
433 unsigned div
, int keep_divs
)
435 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
437 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
439 isl_basic_map_drop_div(bmap
, div
);
442 /* Check if elimination of div "div" using equality "eq" would not
443 * result in a div depending on a later div.
445 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
450 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
451 unsigned pos
= space_total
+ div
;
453 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
454 if (last_div
< 0 || last_div
<= div
)
457 for (k
= 0; k
<= last_div
; ++k
) {
458 if (isl_int_is_zero(bmap
->div
[k
][0]))
460 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
467 /* Elimininate divs based on equalities
469 static struct isl_basic_map
*eliminate_divs_eq(
470 struct isl_basic_map
*bmap
, int *progress
)
477 bmap
= isl_basic_map_order_divs(bmap
);
482 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
484 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
485 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
486 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
487 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
489 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
493 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
494 isl_basic_map_drop_equality(bmap
, i
);
499 return eliminate_divs_eq(bmap
, progress
);
503 /* Elimininate divs based on inequalities
505 static struct isl_basic_map
*eliminate_divs_ineq(
506 struct isl_basic_map
*bmap
, int *progress
)
517 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
519 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
520 for (i
= 0; i
< bmap
->n_eq
; ++i
)
521 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
525 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
526 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
528 if (i
< bmap
->n_ineq
)
531 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
532 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
534 bmap
= isl_basic_map_drop_div(bmap
, d
);
541 struct isl_basic_map
*isl_basic_map_gauss(
542 struct isl_basic_map
*bmap
, int *progress
)
550 bmap
= isl_basic_map_order_divs(bmap
);
555 total
= isl_basic_map_total_dim(bmap
);
556 total_var
= total
- bmap
->n_div
;
558 last_var
= total
- 1;
559 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
560 for (; last_var
>= 0; --last_var
) {
561 for (k
= done
; k
< bmap
->n_eq
; ++k
)
562 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
570 swap_equality(bmap
, k
, done
);
571 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
572 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
574 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
577 if (last_var
>= total_var
&&
578 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
579 unsigned div
= last_var
- total_var
;
580 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
581 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
582 isl_int_set(bmap
->div
[div
][0],
583 bmap
->eq
[done
][1+last_var
]);
584 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
587 if (done
== bmap
->n_eq
)
589 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
590 if (isl_int_is_zero(bmap
->eq
[k
][0]))
592 return isl_basic_map_set_to_empty(bmap
);
594 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
598 struct isl_basic_set
*isl_basic_set_gauss(
599 struct isl_basic_set
*bset
, int *progress
)
601 return (struct isl_basic_set
*)isl_basic_map_gauss(
602 (struct isl_basic_map
*)bset
, progress
);
606 static unsigned int round_up(unsigned int v
)
617 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
618 struct isl_basic_map
*bmap
, int k
)
621 unsigned total
= isl_basic_map_total_dim(bmap
);
622 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
623 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
624 if (&bmap
->ineq
[k
] != index
[h
] &&
625 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
630 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
631 struct isl_basic_set
*bset
, int k
)
633 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
636 /* If we can eliminate more than one div, then we need to make
637 * sure we do it from last div to first div, in order not to
638 * change the position of the other divs that still need to
641 static struct isl_basic_map
*remove_duplicate_divs(
642 struct isl_basic_map
*bmap
, int *progress
)
654 if (!bmap
|| bmap
->n_div
<= 1)
657 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
658 total
= total_var
+ bmap
->n_div
;
661 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
662 if (!isl_int_is_zero(bmap
->div
[k
][0]))
667 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
668 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
669 bits
= ffs(size
) - 1;
670 index
= isl_calloc_array(ctx
, int, size
);
673 eq
= isl_blk_alloc(ctx
, 1+total
);
674 if (isl_blk_is_error(eq
))
677 isl_seq_clr(eq
.data
, 1+total
);
678 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
679 for (--k
; k
>= 0; --k
) {
682 if (isl_int_is_zero(bmap
->div
[k
][0]))
685 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
686 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
687 if (isl_seq_eq(bmap
->div
[k
],
688 bmap
->div
[index
[h
]-1], 2+total
))
697 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
701 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
702 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
703 eliminate_div(bmap
, eq
.data
, l
, 0);
704 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
705 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
708 isl_blk_free(ctx
, eq
);
715 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
720 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
721 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
722 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
726 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
732 /* Normalize divs that appear in equalities.
734 * In particular, we assume that bmap contains some equalities
739 * and we want to replace the set of e_i by a minimal set and
740 * such that the new e_i have a canonical representation in terms
742 * If any of the equalities involves more than one divs, then
743 * we currently simply bail out.
745 * Let us first additionally assume that all equalities involve
746 * a div. The equalities then express modulo constraints on the
747 * remaining variables and we can use "parameter compression"
748 * to find a minimal set of constraints. The result is a transformation
750 * x = T(x') = x_0 + G x'
752 * with G a lower-triangular matrix with all elements below the diagonal
753 * non-negative and smaller than the diagonal element on the same row.
754 * We first normalize x_0 by making the same property hold in the affine
756 * The rows i of G with a 1 on the diagonal do not impose any modulo
757 * constraint and simply express x_i = x'_i.
758 * For each of the remaining rows i, we introduce a div and a corresponding
759 * equality. In particular
761 * g_ii e_j = x_i - g_i(x')
763 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
764 * corresponding div (if g_kk != 1).
766 * If there are any equalities not involving any div, then we
767 * first apply a variable compression on the variables x:
769 * x = C x'' x'' = C_2 x
771 * and perform the above parameter compression on A C instead of on A.
772 * The resulting compression is then of the form
774 * x'' = T(x') = x_0 + G x'
776 * and in constructing the new divs and the corresponding equalities,
777 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
778 * by the corresponding row from C_2.
780 static struct isl_basic_map
*normalize_divs(
781 struct isl_basic_map
*bmap
, int *progress
)
788 struct isl_mat
*T
= NULL
;
789 struct isl_mat
*C
= NULL
;
790 struct isl_mat
*C2
= NULL
;
798 if (bmap
->n_div
== 0)
804 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
807 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
808 div_eq
= n_pure_div_eq(bmap
);
812 if (div_eq
< bmap
->n_eq
) {
813 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
814 bmap
->n_eq
- div_eq
, 0, 1 + total
);
815 C
= isl_mat_variable_compression(B
, &C2
);
819 bmap
= isl_basic_map_set_to_empty(bmap
);
826 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
829 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
830 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
832 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
834 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
837 B
= isl_mat_product(B
, C
);
841 T
= isl_mat_parameter_compression(B
, d
);
845 bmap
= isl_basic_map_set_to_empty(bmap
);
851 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
852 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
853 if (isl_int_is_zero(v
))
855 isl_mat_col_submul(T
, 0, v
, 1 + i
);
858 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
861 /* We have to be careful because dropping equalities may reorder them */
863 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
864 for (i
= 0; i
< bmap
->n_eq
; ++i
)
865 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
867 if (i
< bmap
->n_eq
) {
868 bmap
= isl_basic_map_drop_div(bmap
, j
);
869 isl_basic_map_drop_equality(bmap
, i
);
875 for (i
= 1; i
< T
->n_row
; ++i
) {
876 if (isl_int_is_one(T
->row
[i
][i
]))
881 if (needed
> dropped
) {
882 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
887 for (i
= 1; i
< T
->n_row
; ++i
) {
888 if (isl_int_is_one(T
->row
[i
][i
]))
890 k
= isl_basic_map_alloc_div(bmap
);
891 pos
[i
] = 1 + total
+ k
;
892 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
893 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
895 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
897 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
898 for (j
= 0; j
< i
; ++j
) {
899 if (isl_int_is_zero(T
->row
[i
][j
]))
901 if (pos
[j
] < T
->n_row
&& C2
)
902 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
903 C2
->row
[pos
[j
]], 1 + total
);
905 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
908 j
= isl_basic_map_alloc_equality(bmap
);
909 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
910 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
919 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
929 static struct isl_basic_map
*set_div_from_lower_bound(
930 struct isl_basic_map
*bmap
, int div
, int ineq
)
932 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
934 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
935 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
936 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
937 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
938 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
943 /* Check whether it is ok to define a div based on an inequality.
944 * To avoid the introduction of circular definitions of divs, we
945 * do not allow such a definition if the resulting expression would refer to
946 * any other undefined divs or if any known div is defined in
947 * terms of the unknown div.
949 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
953 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
955 /* Not defined in terms of unknown divs */
956 for (j
= 0; j
< bmap
->n_div
; ++j
) {
959 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
961 if (isl_int_is_zero(bmap
->div
[j
][0]))
965 /* No other div defined in terms of this one => avoid loops */
966 for (j
= 0; j
< bmap
->n_div
; ++j
) {
969 if (isl_int_is_zero(bmap
->div
[j
][0]))
971 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
978 /* Given two constraints "k" and "l" that are opposite to each other,
979 * except for the constant term, check if we can use them
980 * to obtain an expression for one of the hitherto unknown divs.
981 * "sum" is the sum of the constant terms of the constraints.
982 * If this sum is strictly smaller than the coefficient of one
983 * of the divs, then this pair can be used define the div.
984 * To avoid the introduction of circular definitions of divs, we
985 * do not use the pair if the resulting expression would refer to
986 * any other undefined divs or if any known div is defined in
987 * terms of the unknown div.
989 static struct isl_basic_map
*check_for_div_constraints(
990 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
993 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
995 for (i
= 0; i
< bmap
->n_div
; ++i
) {
996 if (!isl_int_is_zero(bmap
->div
[i
][0]))
998 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1000 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1002 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1004 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1005 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1007 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1015 static struct isl_basic_map
*remove_duplicate_constraints(
1016 struct isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1022 unsigned total
= isl_basic_map_total_dim(bmap
);
1026 if (!bmap
|| bmap
->n_ineq
<= 1)
1029 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1030 bits
= ffs(size
) - 1;
1031 ctx
= isl_basic_map_get_ctx(bmap
);
1032 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1036 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1037 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1038 h
= hash_index(index
, size
, bits
, bmap
, k
);
1040 index
[h
] = &bmap
->ineq
[k
];
1045 l
= index
[h
] - &bmap
->ineq
[0];
1046 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1047 swap_inequality(bmap
, k
, l
);
1048 isl_basic_map_drop_inequality(bmap
, k
);
1052 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1053 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1054 h
= hash_index(index
, size
, bits
, bmap
, k
);
1055 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1058 l
= index
[h
] - &bmap
->ineq
[0];
1059 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1060 if (isl_int_is_pos(sum
)) {
1062 bmap
= check_for_div_constraints(bmap
, k
, l
,
1066 if (isl_int_is_zero(sum
)) {
1067 /* We need to break out of the loop after these
1068 * changes since the contents of the hash
1069 * will no longer be valid.
1070 * Plus, we probably we want to regauss first.
1074 isl_basic_map_drop_inequality(bmap
, l
);
1075 isl_basic_map_inequality_to_equality(bmap
, k
);
1077 bmap
= isl_basic_map_set_to_empty(bmap
);
1087 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1094 bmap
= isl_basic_map_normalize_constraints(bmap
);
1095 bmap
= remove_duplicate_divs(bmap
, &progress
);
1096 bmap
= eliminate_divs_eq(bmap
, &progress
);
1097 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1098 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1099 /* requires equalities in normal form */
1100 bmap
= normalize_divs(bmap
, &progress
);
1101 bmap
= remove_duplicate_constraints(bmap
, &progress
, 1);
1106 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1108 return (struct isl_basic_set
*)
1109 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1113 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1114 isl_int
*constraint
, unsigned div
)
1121 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1123 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1125 isl_int_sub(bmap
->div
[div
][1],
1126 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1127 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1128 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1129 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1130 isl_int_add(bmap
->div
[div
][1],
1131 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1134 if (isl_seq_first_non_zero(constraint
+pos
+1,
1135 bmap
->n_div
-div
-1) != -1)
1137 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1138 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1140 if (isl_seq_first_non_zero(constraint
+pos
+1,
1141 bmap
->n_div
-div
-1) != -1)
1150 /* If the only constraints a div d=floor(f/m)
1151 * appears in are its two defining constraints
1154 * -(f - (m - 1)) + m d >= 0
1156 * then it can safely be removed.
1158 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1161 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1163 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1164 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1167 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1168 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1170 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1174 for (i
= 0; i
< bmap
->n_div
; ++i
)
1175 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1182 * Remove divs that don't occur in any of the constraints or other divs.
1183 * These can arise when dropping some of the variables in a quast
1184 * returned by piplib.
1186 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1193 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1194 if (!div_is_redundant(bmap
, i
))
1196 bmap
= isl_basic_map_drop_div(bmap
, i
);
1201 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1203 bmap
= remove_redundant_divs(bmap
);
1206 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1210 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1212 return (struct isl_basic_set
*)
1213 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1216 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1222 for (i
= 0; i
< set
->n
; ++i
) {
1223 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1233 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1239 for (i
= 0; i
< map
->n
; ++i
) {
1240 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1244 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1252 /* Remove definition of any div that is defined in terms of the given variable.
1253 * The div itself is not removed. Functions such as
1254 * eliminate_divs_ineq depend on the other divs remaining in place.
1256 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1261 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1262 if (isl_int_is_zero(bmap
->div
[i
][0]))
1264 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1266 isl_int_set_si(bmap
->div
[i
][0], 0);
1271 /* Eliminate the specified variables from the constraints using
1272 * Fourier-Motzkin. The variables themselves are not removed.
1274 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1275 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1286 total
= isl_basic_map_total_dim(bmap
);
1288 bmap
= isl_basic_map_cow(bmap
);
1289 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1290 bmap
= remove_dependent_vars(bmap
, d
);
1292 for (d
= pos
+ n
- 1;
1293 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1294 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1295 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1296 int n_lower
, n_upper
;
1299 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1300 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1302 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1303 isl_basic_map_drop_equality(bmap
, i
);
1311 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1312 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1314 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1317 bmap
= isl_basic_map_extend_constraints(bmap
,
1318 0, n_lower
* n_upper
);
1321 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1323 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1326 for (j
= 0; j
< i
; ++j
) {
1327 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1330 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1331 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1333 k
= isl_basic_map_alloc_inequality(bmap
);
1336 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1338 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1339 1+d
, 1+total
, NULL
);
1341 isl_basic_map_drop_inequality(bmap
, i
);
1344 if (n_lower
> 0 && n_upper
> 0) {
1345 bmap
= isl_basic_map_normalize_constraints(bmap
);
1346 bmap
= remove_duplicate_constraints(bmap
, NULL
, 0);
1347 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1348 bmap
= isl_basic_map_remove_redundancies(bmap
);
1352 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1356 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1358 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1361 isl_basic_map_free(bmap
);
1365 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1366 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1368 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1369 (struct isl_basic_map
*)bset
, pos
, n
);
1372 /* Eliminate the specified n dimensions starting at first from the
1373 * constraints using Fourier-Motzkin. The dimensions themselves
1376 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1377 __isl_take isl_basic_map
*bmap
,
1378 enum isl_dim_type type
, unsigned first
, unsigned n
)
1385 if (first
+ n
> isl_basic_map_dim(bmap
, type
))
1386 isl_die(bmap
->ctx
, isl_error_invalid
,
1387 "index out of bounds", goto error
);
1389 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1390 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1391 return isl_basic_map_finalize(bmap
);
1393 isl_basic_map_free(bmap
);
1397 /* Don't assume equalities are in order, because align_divs
1398 * may have changed the order of the divs.
1400 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1405 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1406 for (d
= 0; d
< total
; ++d
)
1408 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1409 for (d
= total
- 1; d
>= 0; --d
) {
1410 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1418 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1420 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1423 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1424 struct isl_basic_map
*bmap
, int *elim
)
1430 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1431 for (d
= total
- 1; d
>= 0; --d
) {
1432 if (isl_int_is_zero(src
[1+d
]))
1437 isl_seq_cpy(dst
, src
, 1 + total
);
1440 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1445 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1446 struct isl_basic_set
*bset
, int *elim
)
1448 return reduced_using_equalities(dst
, src
,
1449 (struct isl_basic_map
*)bset
, elim
);
1452 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1453 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1458 if (!bset
|| !context
)
1461 if (context
->n_eq
== 0) {
1462 isl_basic_set_free(context
);
1466 bset
= isl_basic_set_cow(bset
);
1470 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1473 set_compute_elimination_index(context
, elim
);
1474 for (i
= 0; i
< bset
->n_eq
; ++i
)
1475 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1477 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1478 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1480 isl_basic_set_free(context
);
1482 bset
= isl_basic_set_simplify(bset
);
1483 bset
= isl_basic_set_finalize(bset
);
1486 isl_basic_set_free(bset
);
1487 isl_basic_set_free(context
);
1491 static struct isl_basic_set
*remove_shifted_constraints(
1492 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1503 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1504 bits
= ffs(size
) - 1;
1505 ctx
= isl_basic_set_get_ctx(bset
);
1506 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1510 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1511 h
= set_hash_index(index
, size
, bits
, context
, k
);
1512 index
[h
] = &context
->ineq
[k
];
1514 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1515 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1518 l
= index
[h
] - &context
->ineq
[0];
1519 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1521 bset
= isl_basic_set_cow(bset
);
1524 isl_basic_set_drop_inequality(bset
, k
);
1534 /* Remove all information from bset that is redundant in the context
1535 * of context. Both bset and context are assumed to be full-dimensional.
1537 * We first * remove the inequalities from "bset"
1538 * that are obviously redundant with respect to some inequality in "context".
1540 * If there are any inequalities left, we construct a tableau for
1541 * the context and then add the inequalities of "bset".
1542 * Before adding these inequalities, we freeze all constraints such that
1543 * they won't be considered redundant in terms of the constraints of "bset".
1544 * Then we detect all redundant constraints (among the
1545 * constraints that weren't frozen), first by checking for redundancy in the
1546 * the tableau and then by checking if replacing a constraint by its negation
1547 * would lead to an empty set. This last step is fairly expensive
1548 * and could be optimized by more reuse of the tableau.
1549 * Finally, we update bset according to the results.
1551 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1552 __isl_take isl_basic_set
*context
)
1555 isl_basic_set
*combined
= NULL
;
1556 struct isl_tab
*tab
= NULL
;
1557 unsigned context_ineq
;
1560 if (!bset
|| !context
)
1563 if (isl_basic_set_is_universe(bset
)) {
1564 isl_basic_set_free(context
);
1568 if (isl_basic_set_is_universe(context
)) {
1569 isl_basic_set_free(context
);
1573 bset
= remove_shifted_constraints(bset
, context
);
1576 if (bset
->n_ineq
== 0)
1579 context_ineq
= context
->n_ineq
;
1580 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1581 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1582 tab
= isl_tab_from_basic_set(combined
);
1583 for (i
= 0; i
< context_ineq
; ++i
)
1584 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1586 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1587 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1588 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1590 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1594 if (isl_tab_detect_redundant(tab
) < 0)
1596 total
= isl_basic_set_total_dim(bset
);
1597 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
1599 if (tab
->con
[i
].is_redundant
)
1601 tab
->con
[i
].is_redundant
= 1;
1602 combined
= isl_basic_set_dup(bset
);
1603 combined
= isl_basic_set_update_from_tab(combined
, tab
);
1604 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
1605 k
= isl_basic_set_alloc_inequality(combined
);
1608 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
1609 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
1610 is_empty
= isl_basic_set_is_empty(combined
);
1613 isl_basic_set_free(combined
);
1616 tab
->con
[i
].is_redundant
= 0;
1618 for (i
= 0; i
< context_ineq
; ++i
)
1619 tab
->con
[i
].is_redundant
= 1;
1620 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1622 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1623 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1628 bset
= isl_basic_set_simplify(bset
);
1629 bset
= isl_basic_set_finalize(bset
);
1630 isl_basic_set_free(context
);
1634 isl_basic_set_free(combined
);
1635 isl_basic_set_free(context
);
1636 isl_basic_set_free(bset
);
1640 /* Remove all information from bset that is redundant in the context
1641 * of context. In particular, equalities that are linear combinations
1642 * of those in context are removed. Then the inequalities that are
1643 * redundant in the context of the equalities and inequalities of
1644 * context are removed.
1646 * We first compute the integer affine hull of the intersection,
1647 * compute the gist inside this affine hull and then add back
1648 * those equalities that are not implied by the context.
1650 * If two constraints are mutually redundant, then uset_gist_full
1651 * will remove the second of those constraints. We therefore first
1652 * sort the constraints so that constraints not involving existentially
1653 * quantified variables are given precedence over those that do.
1654 * We have to perform this sorting before the variable compression,
1655 * because that may effect the order of the variables.
1657 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
1658 __isl_take isl_basic_set
*context
)
1663 isl_basic_set
*aff_context
;
1666 if (!bset
|| !context
)
1669 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
1670 if (isl_basic_set_plain_is_empty(bset
)) {
1671 isl_basic_set_free(context
);
1674 bset
= isl_basic_set_sort_constraints(bset
);
1675 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
1678 if (isl_basic_set_plain_is_empty(aff
)) {
1679 isl_basic_set_free(aff
);
1680 isl_basic_set_free(context
);
1683 if (aff
->n_eq
== 0) {
1684 isl_basic_set_free(aff
);
1685 return uset_gist_full(bset
, context
);
1687 total
= isl_basic_set_total_dim(bset
);
1688 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
1689 eq
= isl_mat_cow(eq
);
1690 T
= isl_mat_variable_compression(eq
, &T2
);
1691 if (T
&& T
->n_col
== 0) {
1694 isl_basic_set_free(context
);
1695 isl_basic_set_free(aff
);
1696 return isl_basic_set_set_to_empty(bset
);
1699 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
1701 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
1702 context
= isl_basic_set_preimage(context
, T
);
1704 bset
= uset_gist_full(bset
, context
);
1705 bset
= isl_basic_set_preimage(bset
, T2
);
1706 bset
= isl_basic_set_intersect(bset
, aff
);
1707 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
1710 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1711 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1716 isl_basic_set_free(bset
);
1717 isl_basic_set_free(context
);
1721 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1722 * We simply add the equalities in context to bmap and then do a regular
1723 * div normalizations. Better results can be obtained by normalizing
1724 * only the divs in bmap than do not also appear in context.
1725 * We need to be careful to reduce the divs using the equalities
1726 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1727 * spurious constraints.
1729 static struct isl_basic_map
*normalize_divs_in_context(
1730 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1733 unsigned total_context
;
1736 div_eq
= n_pure_div_eq(bmap
);
1740 if (context
->n_div
> 0)
1741 bmap
= isl_basic_map_align_divs(bmap
, context
);
1743 total_context
= isl_basic_map_total_dim(context
);
1744 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1745 for (i
= 0; i
< context
->n_eq
; ++i
) {
1747 k
= isl_basic_map_alloc_equality(bmap
);
1748 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1749 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1750 isl_basic_map_total_dim(bmap
) - total_context
);
1752 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1753 bmap
= normalize_divs(bmap
, NULL
);
1754 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1758 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1759 struct isl_basic_map
*context
)
1761 struct isl_basic_set
*bset
;
1763 if (!bmap
|| !context
)
1766 if (isl_basic_map_is_universe(bmap
)) {
1767 isl_basic_map_free(context
);
1770 if (isl_basic_map_plain_is_empty(context
)) {
1771 isl_space
*dim
= isl_space_copy(bmap
->dim
);
1772 isl_basic_map_free(context
);
1773 isl_basic_map_free(bmap
);
1774 return isl_basic_map_universe(dim
);
1776 if (isl_basic_map_plain_is_empty(bmap
)) {
1777 isl_basic_map_free(context
);
1781 bmap
= isl_basic_map_remove_redundancies(bmap
);
1782 context
= isl_basic_map_remove_redundancies(context
);
1785 bmap
= normalize_divs_in_context(bmap
, context
);
1787 context
= isl_basic_map_align_divs(context
, bmap
);
1788 bmap
= isl_basic_map_align_divs(bmap
, context
);
1790 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1791 isl_basic_map_underlying_set(context
));
1793 return isl_basic_map_overlying_set(bset
, bmap
);
1795 isl_basic_map_free(bmap
);
1796 isl_basic_map_free(context
);
1801 * Assumes context has no implicit divs.
1803 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
1804 __isl_take isl_basic_map
*context
)
1808 if (!map
|| !context
)
1811 if (isl_basic_map_plain_is_empty(context
)) {
1812 isl_space
*dim
= isl_space_copy(map
->dim
);
1813 isl_basic_map_free(context
);
1815 return isl_map_universe(dim
);
1818 context
= isl_basic_map_remove_redundancies(context
);
1819 map
= isl_map_cow(map
);
1820 if (!map
|| !context
)
1822 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
1823 map
= isl_map_compute_divs(map
);
1824 for (i
= 0; i
< map
->n
; ++i
)
1825 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1826 for (i
= map
->n
- 1; i
>= 0; --i
) {
1827 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1828 isl_basic_map_copy(context
));
1831 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
1832 isl_basic_map_free(map
->p
[i
]);
1833 if (i
!= map
->n
- 1)
1834 map
->p
[i
] = map
->p
[map
->n
- 1];
1838 isl_basic_map_free(context
);
1839 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1843 isl_basic_map_free(context
);
1847 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
1848 __isl_take isl_map
*context
)
1850 context
= isl_map_compute_divs(context
);
1851 return isl_map_gist_basic_map(map
, isl_map_simple_hull(context
));
1854 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
1855 __isl_take isl_map
*context
)
1857 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
1860 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1861 struct isl_basic_set
*context
)
1863 return (struct isl_basic_set
*)isl_basic_map_gist(
1864 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1867 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
1868 __isl_take isl_basic_set
*context
)
1870 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
1871 (struct isl_basic_map
*)context
);
1874 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
1875 __isl_take isl_set
*context
)
1877 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1878 (struct isl_map
*)context
);
1881 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
1882 __isl_take isl_set
*context
)
1884 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
1885 map_context
= isl_map_intersect_params(map_context
, context
);
1886 return isl_map_gist(map
, map_context
);
1889 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
1890 __isl_take isl_set
*context
)
1892 return isl_map_gist_params(set
, context
);
1895 /* Quick check to see if two basic maps are disjoint.
1896 * In particular, we reduce the equalities and inequalities of
1897 * one basic map in the context of the equalities of the other
1898 * basic map and check if we get a contradiction.
1900 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
1901 __isl_keep isl_basic_map
*bmap2
)
1903 struct isl_vec
*v
= NULL
;
1908 if (!bmap1
|| !bmap2
)
1910 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
1912 if (bmap1
->n_div
|| bmap2
->n_div
)
1914 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1917 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
1920 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1923 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1926 compute_elimination_index(bmap1
, elim
);
1927 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1929 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1931 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1932 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1935 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1937 reduced
= reduced_using_equalities(v
->block
.data
,
1938 bmap2
->ineq
[i
], bmap1
, elim
);
1939 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1940 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1943 compute_elimination_index(bmap2
, elim
);
1944 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1946 reduced
= reduced_using_equalities(v
->block
.data
,
1947 bmap1
->ineq
[i
], bmap2
, elim
);
1948 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1949 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1965 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
1966 __isl_keep isl_basic_set
*bset2
)
1968 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
1969 (struct isl_basic_map
*)bset2
);
1972 int isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
1973 __isl_keep isl_map
*map2
)
1980 if (isl_map_plain_is_equal(map1
, map2
))
1983 for (i
= 0; i
< map1
->n
; ++i
) {
1984 for (j
= 0; j
< map2
->n
; ++j
) {
1985 int d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
1994 int isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
1995 __isl_keep isl_set
*set2
)
1997 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
1998 (struct isl_map
*)set2
);
2001 int isl_set_fast_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2003 return isl_set_plain_is_disjoint(set1
, set2
);
2006 /* Check if we can combine a given div with lower bound l and upper
2007 * bound u with some other div and if so return that other div.
2008 * Otherwise return -1.
2010 * We first check that
2011 * - the bounds are opposites of each other (except for the constant
2013 * - the bounds do not reference any other div
2014 * - no div is defined in terms of this div
2016 * Let m be the size of the range allowed on the div by the bounds.
2017 * That is, the bounds are of the form
2019 * e <= a <= e + m - 1
2021 * with e some expression in the other variables.
2022 * We look for another div b such that no third div is defined in terms
2023 * of this second div b and such that in any constraint that contains
2024 * a (except for the given lower and upper bound), also contains b
2025 * with a coefficient that is m times that of b.
2026 * That is, all constraints (execpt for the lower and upper bound)
2029 * e + f (a + m b) >= 0
2031 * If so, we return b so that "a + m b" can be replaced by
2032 * a single div "c = a + m b".
2034 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2035 unsigned div
, unsigned l
, unsigned u
)
2041 if (bmap
->n_div
<= 1)
2043 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2044 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2046 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2047 bmap
->n_div
- div
- 1) != -1)
2049 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2053 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2054 if (isl_int_is_zero(bmap
->div
[i
][0]))
2056 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2060 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2061 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2062 isl_int_sub(bmap
->ineq
[l
][0],
2063 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2064 bmap
= isl_basic_map_copy(bmap
);
2065 bmap
= isl_basic_map_set_to_empty(bmap
);
2066 isl_basic_map_free(bmap
);
2069 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2070 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2075 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2076 if (isl_int_is_zero(bmap
->div
[j
][0]))
2078 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2081 if (j
< bmap
->n_div
)
2083 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2085 if (j
== l
|| j
== u
)
2087 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2089 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2091 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2092 bmap
->ineq
[j
][1 + dim
+ div
],
2094 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2095 bmap
->ineq
[j
][1 + dim
+ i
]);
2096 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2097 bmap
->ineq
[j
][1 + dim
+ div
],
2102 if (j
< bmap
->n_ineq
)
2107 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2108 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2112 /* Given a lower and an upper bound on div i, construct an inequality
2113 * that when nonnegative ensures that this pair of bounds always allows
2114 * for an integer value of the given div.
2115 * The lower bound is inequality l, while the upper bound is inequality u.
2116 * The constructed inequality is stored in ineq.
2117 * g, fl, fu are temporary scalars.
2119 * Let the upper bound be
2123 * and the lower bound
2127 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2130 * - f_u e_l <= f_u f_l g a <= f_l e_u
2132 * Since all variables are integer valued, this is equivalent to
2134 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2136 * If this interval is at least f_u f_l g, then it contains at least
2137 * one integer value for a.
2138 * That is, the test constraint is
2140 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2142 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2143 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2146 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2148 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2149 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2150 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2151 isl_int_neg(fu
, fu
);
2152 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2153 1 + dim
+ bmap
->n_div
);
2154 isl_int_add(ineq
[0], ineq
[0], fl
);
2155 isl_int_add(ineq
[0], ineq
[0], fu
);
2156 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2157 isl_int_mul(g
, g
, fl
);
2158 isl_int_mul(g
, g
, fu
);
2159 isl_int_sub(ineq
[0], ineq
[0], g
);
2162 /* Remove more kinds of divs that are not strictly needed.
2163 * In particular, if all pairs of lower and upper bounds on a div
2164 * are such that they allow at least one integer value of the div,
2165 * the we can eliminate the div using Fourier-Motzkin without
2166 * introducing any spurious solutions.
2168 static struct isl_basic_map
*drop_more_redundant_divs(
2169 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2171 struct isl_tab
*tab
= NULL
;
2172 struct isl_vec
*vec
= NULL
;
2184 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2185 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2189 tab
= isl_tab_from_basic_map(bmap
);
2194 enum isl_lp_result res
;
2196 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2199 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2205 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2206 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2208 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2209 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2211 construct_test_ineq(bmap
, i
, l
, u
,
2212 vec
->el
, g
, fl
, fu
);
2213 res
= isl_tab_min(tab
, vec
->el
,
2214 bmap
->ctx
->one
, &g
, NULL
, 0);
2215 if (res
== isl_lp_error
)
2217 if (res
== isl_lp_empty
) {
2218 bmap
= isl_basic_map_set_to_empty(bmap
);
2221 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2224 if (u
< bmap
->n_ineq
)
2227 if (l
== bmap
->n_ineq
) {
2247 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
2248 return isl_basic_map_drop_redundant_divs(bmap
);
2251 isl_basic_map_free(bmap
);
2260 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2261 * and the upper bound u, div1 always occurs together with div2 in the form
2262 * (div1 + m div2), where m is the constant range on the variable div1
2263 * allowed by l and u, replace the pair div1 and div2 by a single
2264 * div that is equal to div1 + m div2.
2266 * The new div will appear in the location that contains div2.
2267 * We need to modify all constraints that contain
2268 * div2 = (div - div1) / m
2269 * (If a constraint does not contain div2, it will also not contain div1.)
2270 * If the constraint also contains div1, then we know they appear
2271 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2272 * i.e., the coefficient of div is f.
2274 * Otherwise, we first need to introduce div1 into the constraint.
2283 * A lower bound on div2
2287 * can be replaced by
2289 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2291 * with g = gcd(m,n).
2296 * can be replaced by
2298 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2300 * These constraint are those that we would obtain from eliminating
2301 * div1 using Fourier-Motzkin.
2303 * After all constraints have been modified, we drop the lower and upper
2304 * bound and then drop div1.
2306 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2307 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2312 unsigned dim
, total
;
2315 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2316 total
= 1 + dim
+ bmap
->n_div
;
2321 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2322 isl_int_add_ui(m
, m
, 1);
2324 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2325 if (i
== l
|| i
== u
)
2327 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2329 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2330 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2331 isl_int_divexact(a
, m
, b
);
2332 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2333 if (isl_int_is_pos(b
)) {
2334 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2335 b
, bmap
->ineq
[l
], total
);
2338 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2339 b
, bmap
->ineq
[u
], total
);
2342 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2343 bmap
->ineq
[i
][1 + dim
+ div1
]);
2344 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2351 isl_basic_map_drop_inequality(bmap
, l
);
2352 isl_basic_map_drop_inequality(bmap
, u
);
2354 isl_basic_map_drop_inequality(bmap
, u
);
2355 isl_basic_map_drop_inequality(bmap
, l
);
2357 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2361 /* First check if we can coalesce any pair of divs and
2362 * then continue with dropping more redundant divs.
2364 * We loop over all pairs of lower and upper bounds on a div
2365 * with coefficient 1 and -1, respectively, check if there
2366 * is any other div "c" with which we can coalesce the div
2367 * and if so, perform the coalescing.
2369 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2370 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2375 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2377 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2380 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2381 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2383 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2386 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2388 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2392 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2393 return isl_basic_map_drop_redundant_divs(bmap
);
2398 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2401 return drop_more_redundant_divs(bmap
, pairs
, n
);
2404 /* Remove divs that are not strictly needed.
2405 * In particular, if a div only occurs positively (or negatively)
2406 * in constraints, then it can simply be dropped.
2407 * Also, if a div occurs only occurs in two constraints and if moreover
2408 * those two constraints are opposite to each other, except for the constant
2409 * term and if the sum of the constant terms is such that for any value
2410 * of the other values, there is always at least one integer value of the
2411 * div, i.e., if one plus this sum is greater than or equal to
2412 * the (absolute value) of the coefficent of the div in the constraints,
2413 * then we can also simply drop the div.
2415 * If any divs are left after these simple checks then we move on
2416 * to more complicated cases in drop_more_redundant_divs.
2418 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2419 struct isl_basic_map
*bmap
)
2429 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2430 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2434 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2436 int last_pos
, last_neg
;
2440 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2441 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2442 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2448 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2449 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2453 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2458 pairs
[i
] = pos
* neg
;
2459 if (pairs
[i
] == 0) {
2460 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2461 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2462 isl_basic_map_drop_inequality(bmap
, j
);
2463 bmap
= isl_basic_map_drop_div(bmap
, i
);
2465 return isl_basic_map_drop_redundant_divs(bmap
);
2469 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2470 bmap
->ineq
[last_neg
] + 1,
2474 isl_int_add(bmap
->ineq
[last_pos
][0],
2475 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2476 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2477 bmap
->ineq
[last_pos
][0], 1);
2478 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2479 bmap
->ineq
[last_pos
][1+off
+i
]);
2480 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2481 bmap
->ineq
[last_pos
][0], 1);
2482 isl_int_sub(bmap
->ineq
[last_pos
][0],
2483 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2486 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2491 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2492 bmap
= isl_basic_map_simplify(bmap
);
2494 return isl_basic_map_drop_redundant_divs(bmap
);
2496 if (last_pos
> last_neg
) {
2497 isl_basic_map_drop_inequality(bmap
, last_pos
);
2498 isl_basic_map_drop_inequality(bmap
, last_neg
);
2500 isl_basic_map_drop_inequality(bmap
, last_neg
);
2501 isl_basic_map_drop_inequality(bmap
, last_pos
);
2503 bmap
= isl_basic_map_drop_div(bmap
, i
);
2505 return isl_basic_map_drop_redundant_divs(bmap
);
2509 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2515 isl_basic_map_free(bmap
);
2519 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2520 struct isl_basic_set
*bset
)
2522 return (struct isl_basic_set
*)
2523 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2526 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2532 for (i
= 0; i
< map
->n
; ++i
) {
2533 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2537 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2544 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2546 return (struct isl_set
*)
2547 isl_map_drop_redundant_divs((struct isl_map
*)set
);