2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_map_private.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
55 struct isl_context_op
{
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab
*(*detect_nonnegative_parameters
)(
58 struct isl_context
*context
, struct isl_tab
*tab
);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
67 int check
, int update
);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
72 int check
, int update
);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
77 isl_int
*ineq
, int strict
);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
83 /* add div "div" to context and return non-negativity */
84 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
85 int (*detect_equalities
)(struct isl_context
*context
,
87 /* return row index of "best" split */
88 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
89 /* check if context has already been determined to be empty */
90 int (*is_empty
)(struct isl_context
*context
);
91 /* check if context is still usable */
92 int (*is_ok
)(struct isl_context
*context
);
93 /* save a copy/snapshot of context */
94 void *(*save
)(struct isl_context
*context
);
95 /* restore saved context */
96 void (*restore
)(struct isl_context
*context
, void *);
97 /* invalidate context */
98 void (*invalidate
)(struct isl_context
*context
);
100 void (*free
)(struct isl_context
*context
);
104 struct isl_context_op
*op
;
107 struct isl_context_lex
{
108 struct isl_context context
;
112 struct isl_partial_sol
{
114 struct isl_basic_set
*dom
;
117 struct isl_partial_sol
*next
;
121 struct isl_sol_callback
{
122 struct isl_tab_callback callback
;
126 /* isl_sol is an interface for constructing a solution to
127 * a parametric integer linear programming problem.
128 * Every time the algorithm reaches a state where a solution
129 * can be read off from the tableau (including cases where the tableau
130 * is empty), the function "add" is called on the isl_sol passed
131 * to find_solutions_main.
133 * The context tableau is owned by isl_sol and is updated incrementally.
135 * There are currently two implementations of this interface,
136 * isl_sol_map, which simply collects the solutions in an isl_map
137 * and (optionally) the parts of the context where there is no solution
139 * isl_sol_for, which calls a user-defined function for each part of
148 struct isl_context
*context
;
149 struct isl_partial_sol
*partial
;
150 void (*add
)(struct isl_sol
*sol
,
151 struct isl_basic_set
*dom
, struct isl_mat
*M
);
152 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
153 void (*free
)(struct isl_sol
*sol
);
154 struct isl_sol_callback dec_level
;
157 static void sol_free(struct isl_sol
*sol
)
159 struct isl_partial_sol
*partial
, *next
;
162 for (partial
= sol
->partial
; partial
; partial
= next
) {
163 next
= partial
->next
;
164 isl_basic_set_free(partial
->dom
);
165 isl_mat_free(partial
->M
);
171 /* Push a partial solution represented by a domain and mapping M
172 * onto the stack of partial solutions.
174 static void sol_push_sol(struct isl_sol
*sol
,
175 struct isl_basic_set
*dom
, struct isl_mat
*M
)
177 struct isl_partial_sol
*partial
;
179 if (sol
->error
|| !dom
)
182 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
186 partial
->level
= sol
->level
;
189 partial
->next
= sol
->partial
;
191 sol
->partial
= partial
;
195 isl_basic_set_free(dom
);
199 /* Pop one partial solution from the partial solution stack and
200 * pass it on to sol->add or sol->add_empty.
202 static void sol_pop_one(struct isl_sol
*sol
)
204 struct isl_partial_sol
*partial
;
206 partial
= sol
->partial
;
207 sol
->partial
= partial
->next
;
210 sol
->add(sol
, partial
->dom
, partial
->M
);
212 sol
->add_empty(sol
, partial
->dom
);
216 /* Return a fresh copy of the domain represented by the context tableau.
218 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
220 struct isl_basic_set
*bset
;
225 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
226 bset
= isl_basic_set_update_from_tab(bset
,
227 sol
->context
->op
->peek_tab(sol
->context
));
232 /* Check whether two partial solutions have the same mapping, where n_div
233 * is the number of divs that the two partial solutions have in common.
235 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
241 if (!s1
->M
!= !s2
->M
)
246 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
248 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
249 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
250 s1
->M
->n_col
-1-dim
-n_div
) != -1)
252 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
253 s2
->M
->n_col
-1-dim
-n_div
) != -1)
255 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
261 /* Pop all solutions from the partial solution stack that were pushed onto
262 * the stack at levels that are deeper than the current level.
263 * If the two topmost elements on the stack have the same level
264 * and represent the same solution, then their domains are combined.
265 * This combined domain is the same as the current context domain
266 * as sol_pop is called each time we move back to a higher level.
268 static void sol_pop(struct isl_sol
*sol
)
270 struct isl_partial_sol
*partial
;
276 if (sol
->level
== 0) {
277 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
282 partial
= sol
->partial
;
286 if (partial
->level
<= sol
->level
)
289 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
290 n_div
= isl_basic_set_dim(
291 sol
->context
->op
->peek_basic_set(sol
->context
),
294 if (!same_solution(partial
, partial
->next
, n_div
)) {
298 struct isl_basic_set
*bset
;
300 bset
= sol_domain(sol
);
302 isl_basic_set_free(partial
->next
->dom
);
303 partial
->next
->dom
= bset
;
304 partial
->next
->level
= sol
->level
;
306 sol
->partial
= partial
->next
;
307 isl_basic_set_free(partial
->dom
);
308 isl_mat_free(partial
->M
);
315 static void sol_dec_level(struct isl_sol
*sol
)
325 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
327 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
329 sol_dec_level(callback
->sol
);
331 return callback
->sol
->error
? -1 : 0;
334 /* Move down to next level and push callback onto context tableau
335 * to decrease the level again when it gets rolled back across
336 * the current state. That is, dec_level will be called with
337 * the context tableau in the same state as it is when inc_level
340 static void sol_inc_level(struct isl_sol
*sol
)
348 tab
= sol
->context
->op
->peek_tab(sol
->context
);
349 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
353 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
357 if (isl_int_is_one(m
))
360 for (i
= 0; i
< n_row
; ++i
)
361 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
364 /* Add the solution identified by the tableau and the context tableau.
366 * The layout of the variables is as follows.
367 * tab->n_var is equal to the total number of variables in the input
368 * map (including divs that were copied from the context)
369 * + the number of extra divs constructed
370 * Of these, the first tab->n_param and the last tab->n_div variables
371 * correspond to the variables in the context, i.e.,
372 * tab->n_param + tab->n_div = context_tab->n_var
373 * tab->n_param is equal to the number of parameters and input
374 * dimensions in the input map
375 * tab->n_div is equal to the number of divs in the context
377 * If there is no solution, then call add_empty with a basic set
378 * that corresponds to the context tableau. (If add_empty is NULL,
381 * If there is a solution, then first construct a matrix that maps
382 * all dimensions of the context to the output variables, i.e.,
383 * the output dimensions in the input map.
384 * The divs in the input map (if any) that do not correspond to any
385 * div in the context do not appear in the solution.
386 * The algorithm will make sure that they have an integer value,
387 * but these values themselves are of no interest.
388 * We have to be careful not to drop or rearrange any divs in the
389 * context because that would change the meaning of the matrix.
391 * To extract the value of the output variables, it should be noted
392 * that we always use a big parameter M in the main tableau and so
393 * the variable stored in this tableau is not an output variable x itself, but
394 * x' = M + x (in case of minimization)
396 * x' = M - x (in case of maximization)
397 * If x' appears in a column, then its optimal value is zero,
398 * which means that the optimal value of x is an unbounded number
399 * (-M for minimization and M for maximization).
400 * We currently assume that the output dimensions in the original map
401 * are bounded, so this cannot occur.
402 * Similarly, when x' appears in a row, then the coefficient of M in that
403 * row is necessarily 1.
404 * If the row in the tableau represents
405 * d x' = c + d M + e(y)
406 * then, in case of minimization, the corresponding row in the matrix
409 * with a d = m, the (updated) common denominator of the matrix.
410 * In case of maximization, the row will be
413 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
415 struct isl_basic_set
*bset
= NULL
;
416 struct isl_mat
*mat
= NULL
;
421 if (sol
->error
|| !tab
)
424 if (tab
->empty
&& !sol
->add_empty
)
427 bset
= sol_domain(sol
);
430 sol_push_sol(sol
, bset
, NULL
);
436 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
437 1 + tab
->n_param
+ tab
->n_div
);
443 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
444 isl_int_set_si(mat
->row
[0][0], 1);
445 for (row
= 0; row
< sol
->n_out
; ++row
) {
446 int i
= tab
->n_param
+ row
;
449 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
450 if (!tab
->var
[i
].is_row
) {
452 isl_assert(mat
->ctx
, !tab
->M
, goto error2
);
456 r
= tab
->var
[i
].index
;
459 isl_assert(mat
->ctx
, isl_int_eq(tab
->mat
->row
[r
][2],
460 tab
->mat
->row
[r
][0]),
462 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
463 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
464 scale_rows(mat
, m
, 1 + row
);
465 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
466 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
467 for (j
= 0; j
< tab
->n_param
; ++j
) {
469 if (tab
->var
[j
].is_row
)
471 col
= tab
->var
[j
].index
;
472 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
473 tab
->mat
->row
[r
][off
+ col
]);
475 for (j
= 0; j
< tab
->n_div
; ++j
) {
477 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
479 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
480 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
481 tab
->mat
->row
[r
][off
+ col
]);
484 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
490 sol_push_sol(sol
, bset
, mat
);
495 isl_basic_set_free(bset
);
503 struct isl_set
*empty
;
506 static void sol_map_free(struct isl_sol_map
*sol_map
)
510 if (sol_map
->sol
.context
)
511 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
512 isl_map_free(sol_map
->map
);
513 isl_set_free(sol_map
->empty
);
517 static void sol_map_free_wrap(struct isl_sol
*sol
)
519 sol_map_free((struct isl_sol_map
*)sol
);
522 /* This function is called for parts of the context where there is
523 * no solution, with "bset" corresponding to the context tableau.
524 * Simply add the basic set to the set "empty".
526 static void sol_map_add_empty(struct isl_sol_map
*sol
,
527 struct isl_basic_set
*bset
)
531 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
533 sol
->empty
= isl_set_grow(sol
->empty
, 1);
534 bset
= isl_basic_set_simplify(bset
);
535 bset
= isl_basic_set_finalize(bset
);
536 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
539 isl_basic_set_free(bset
);
542 isl_basic_set_free(bset
);
546 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
547 struct isl_basic_set
*bset
)
549 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
552 /* Add bset to sol's empty, but only if we are actually collecting
555 static void sol_map_add_empty_if_needed(struct isl_sol_map
*sol
,
556 struct isl_basic_set
*bset
)
559 sol_map_add_empty(sol
, bset
);
561 isl_basic_set_free(bset
);
564 /* Given a basic map "dom" that represents the context and an affine
565 * matrix "M" that maps the dimensions of the context to the
566 * output variables, construct a basic map with the same parameters
567 * and divs as the context, the dimensions of the context as input
568 * dimensions and a number of output dimensions that is equal to
569 * the number of output dimensions in the input map.
571 * The constraints and divs of the context are simply copied
572 * from "dom". For each row
576 * is added, with d the common denominator of M.
578 static void sol_map_add(struct isl_sol_map
*sol
,
579 struct isl_basic_set
*dom
, struct isl_mat
*M
)
582 struct isl_basic_map
*bmap
= NULL
;
583 isl_basic_set
*context_bset
;
591 if (sol
->sol
.error
|| !dom
|| !M
)
594 n_out
= sol
->sol
.n_out
;
595 n_eq
= dom
->n_eq
+ n_out
;
596 n_ineq
= dom
->n_ineq
;
598 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
599 total
= isl_map_dim(sol
->map
, isl_dim_all
);
600 bmap
= isl_basic_map_alloc_dim(isl_map_get_dim(sol
->map
),
601 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
604 if (sol
->sol
.rational
)
605 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
606 for (i
= 0; i
< dom
->n_div
; ++i
) {
607 int k
= isl_basic_map_alloc_div(bmap
);
610 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
611 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
612 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
613 dom
->div
[i
] + 1 + 1 + nparam
, i
);
615 for (i
= 0; i
< dom
->n_eq
; ++i
) {
616 int k
= isl_basic_map_alloc_equality(bmap
);
619 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
620 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
621 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
622 dom
->eq
[i
] + 1 + nparam
, n_div
);
624 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
625 int k
= isl_basic_map_alloc_inequality(bmap
);
628 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
629 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
630 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
631 dom
->ineq
[i
] + 1 + nparam
, n_div
);
633 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
634 int k
= isl_basic_map_alloc_equality(bmap
);
637 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
638 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
639 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
640 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
641 M
->row
[1 + i
] + 1 + nparam
, n_div
);
643 bmap
= isl_basic_map_simplify(bmap
);
644 bmap
= isl_basic_map_finalize(bmap
);
645 sol
->map
= isl_map_grow(sol
->map
, 1);
646 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
649 isl_basic_set_free(dom
);
653 isl_basic_set_free(dom
);
655 isl_basic_map_free(bmap
);
659 static void sol_map_add_wrap(struct isl_sol
*sol
,
660 struct isl_basic_set
*dom
, struct isl_mat
*M
)
662 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
666 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
667 * i.e., the constant term and the coefficients of all variables that
668 * appear in the context tableau.
669 * Note that the coefficient of the big parameter M is NOT copied.
670 * The context tableau may not have a big parameter and even when it
671 * does, it is a different big parameter.
673 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
676 unsigned off
= 2 + tab
->M
;
678 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
679 for (i
= 0; i
< tab
->n_param
; ++i
) {
680 if (tab
->var
[i
].is_row
)
681 isl_int_set_si(line
[1 + i
], 0);
683 int col
= tab
->var
[i
].index
;
684 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
687 for (i
= 0; i
< tab
->n_div
; ++i
) {
688 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
689 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
691 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
692 isl_int_set(line
[1 + tab
->n_param
+ i
],
693 tab
->mat
->row
[row
][off
+ col
]);
698 /* Check if rows "row1" and "row2" have identical "parametric constants",
699 * as explained above.
700 * In this case, we also insist that the coefficients of the big parameter
701 * be the same as the values of the constants will only be the same
702 * if these coefficients are also the same.
704 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
707 unsigned off
= 2 + tab
->M
;
709 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
712 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
713 tab
->mat
->row
[row2
][2]))
716 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
717 int pos
= i
< tab
->n_param
? i
:
718 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
721 if (tab
->var
[pos
].is_row
)
723 col
= tab
->var
[pos
].index
;
724 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
725 tab
->mat
->row
[row2
][off
+ col
]))
731 /* Return an inequality that expresses that the "parametric constant"
732 * should be non-negative.
733 * This function is only called when the coefficient of the big parameter
736 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
738 struct isl_vec
*ineq
;
740 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
744 get_row_parameter_line(tab
, row
, ineq
->el
);
746 ineq
= isl_vec_normalize(ineq
);
751 /* Return a integer division for use in a parametric cut based on the given row.
752 * In particular, let the parametric constant of the row be
756 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
757 * The div returned is equal to
759 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
761 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
765 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
769 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
770 get_row_parameter_line(tab
, row
, div
->el
+ 1);
771 div
= isl_vec_normalize(div
);
772 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
773 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
778 /* Return a integer division for use in transferring an integrality constraint
780 * In particular, let the parametric constant of the row be
784 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
785 * The the returned div is equal to
787 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
789 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
793 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
797 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
798 get_row_parameter_line(tab
, row
, div
->el
+ 1);
799 div
= isl_vec_normalize(div
);
800 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
805 /* Construct and return an inequality that expresses an upper bound
807 * In particular, if the div is given by
811 * then the inequality expresses
815 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
819 struct isl_vec
*ineq
;
824 total
= isl_basic_set_total_dim(bset
);
825 div_pos
= 1 + total
- bset
->n_div
+ div
;
827 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
831 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
832 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
836 /* Given a row in the tableau and a div that was created
837 * using get_row_split_div and that been constrained to equality, i.e.,
839 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
841 * replace the expression "\sum_i {a_i} y_i" in the row by d,
842 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
843 * The coefficients of the non-parameters in the tableau have been
844 * verified to be integral. We can therefore simply replace coefficient b
845 * by floor(b). For the coefficients of the parameters we have
846 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
849 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
851 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
852 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
854 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
856 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
857 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
859 isl_assert(tab
->mat
->ctx
,
860 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
861 isl_seq_combine(tab
->mat
->row
[row
] + 1,
862 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
863 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
864 1 + tab
->M
+ tab
->n_col
);
866 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
868 isl_int_set_si(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
877 /* Check if the (parametric) constant of the given row is obviously
878 * negative, meaning that we don't need to consult the context tableau.
879 * If there is a big parameter and its coefficient is non-zero,
880 * then this coefficient determines the outcome.
881 * Otherwise, we check whether the constant is negative and
882 * all non-zero coefficients of parameters are negative and
883 * belong to non-negative parameters.
885 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
889 unsigned off
= 2 + tab
->M
;
892 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
894 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
898 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
900 for (i
= 0; i
< tab
->n_param
; ++i
) {
901 /* Eliminated parameter */
902 if (tab
->var
[i
].is_row
)
904 col
= tab
->var
[i
].index
;
905 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
907 if (!tab
->var
[i
].is_nonneg
)
909 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
912 for (i
= 0; i
< tab
->n_div
; ++i
) {
913 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
915 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
916 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
918 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
920 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
926 /* Check if the (parametric) constant of the given row is obviously
927 * non-negative, meaning that we don't need to consult the context tableau.
928 * If there is a big parameter and its coefficient is non-zero,
929 * then this coefficient determines the outcome.
930 * Otherwise, we check whether the constant is non-negative and
931 * all non-zero coefficients of parameters are positive and
932 * belong to non-negative parameters.
934 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
938 unsigned off
= 2 + tab
->M
;
941 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
943 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
947 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
949 for (i
= 0; i
< tab
->n_param
; ++i
) {
950 /* Eliminated parameter */
951 if (tab
->var
[i
].is_row
)
953 col
= tab
->var
[i
].index
;
954 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
956 if (!tab
->var
[i
].is_nonneg
)
958 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
961 for (i
= 0; i
< tab
->n_div
; ++i
) {
962 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
964 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
965 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
967 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
969 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
975 /* Given a row r and two columns, return the column that would
976 * lead to the lexicographically smallest increment in the sample
977 * solution when leaving the basis in favor of the row.
978 * Pivoting with column c will increment the sample value by a non-negative
979 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
980 * corresponding to the non-parametric variables.
981 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
982 * with all other entries in this virtual row equal to zero.
983 * If variable v appears in a row, then a_{v,c} is the element in column c
986 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
987 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
988 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
989 * increment. Otherwise, it's c2.
991 static int lexmin_col_pair(struct isl_tab
*tab
,
992 int row
, int col1
, int col2
, isl_int tmp
)
997 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
999 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1003 if (!tab
->var
[i
].is_row
) {
1004 if (tab
->var
[i
].index
== col1
)
1006 if (tab
->var
[i
].index
== col2
)
1011 if (tab
->var
[i
].index
== row
)
1014 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1015 s1
= isl_int_sgn(r
[col1
]);
1016 s2
= isl_int_sgn(r
[col2
]);
1017 if (s1
== 0 && s2
== 0)
1024 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1025 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1026 if (isl_int_is_pos(tmp
))
1028 if (isl_int_is_neg(tmp
))
1034 /* Given a row in the tableau, find and return the column that would
1035 * result in the lexicographically smallest, but positive, increment
1036 * in the sample point.
1037 * If there is no such column, then return tab->n_col.
1038 * If anything goes wrong, return -1.
1040 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1043 int col
= tab
->n_col
;
1047 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1051 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1052 if (tab
->col_var
[j
] >= 0 &&
1053 (tab
->col_var
[j
] < tab
->n_param
||
1054 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1057 if (!isl_int_is_pos(tr
[j
]))
1060 if (col
== tab
->n_col
)
1063 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1064 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1074 /* Return the first known violated constraint, i.e., a non-negative
1075 * contraint that currently has an either obviously negative value
1076 * or a previously determined to be negative value.
1078 * If any constraint has a negative coefficient for the big parameter,
1079 * if any, then we return one of these first.
1081 static int first_neg(struct isl_tab
*tab
)
1086 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1087 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1089 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1092 tab
->row_sign
[row
] = isl_tab_row_neg
;
1095 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1096 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1098 if (tab
->row_sign
) {
1099 if (tab
->row_sign
[row
] == 0 &&
1100 is_obviously_neg(tab
, row
))
1101 tab
->row_sign
[row
] = isl_tab_row_neg
;
1102 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1104 } else if (!is_obviously_neg(tab
, row
))
1111 /* Resolve all known or obviously violated constraints through pivoting.
1112 * In particular, as long as we can find any violated constraint, we
1113 * look for a pivoting column that would result in the lexicographicallly
1114 * smallest increment in the sample point. If there is no such column
1115 * then the tableau is infeasible.
1117 static struct isl_tab
*restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1118 static struct isl_tab
*restore_lexmin(struct isl_tab
*tab
)
1126 while ((row
= first_neg(tab
)) != -1) {
1127 col
= lexmin_pivot_col(tab
, row
);
1128 if (col
>= tab
->n_col
) {
1129 if (isl_tab_mark_empty(tab
) < 0)
1135 if (isl_tab_pivot(tab
, row
, col
) < 0)
1144 /* Given a row that represents an equality, look for an appropriate
1146 * In particular, if there are any non-zero coefficients among
1147 * the non-parameter variables, then we take the last of these
1148 * variables. Eliminating this variable in terms of the other
1149 * variables and/or parameters does not influence the property
1150 * that all column in the initial tableau are lexicographically
1151 * positive. The row corresponding to the eliminated variable
1152 * will only have non-zero entries below the diagonal of the
1153 * initial tableau. That is, we transform
1159 * If there is no such non-parameter variable, then we are dealing with
1160 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1161 * for elimination. This will ensure that the eliminated parameter
1162 * always has an integer value whenever all the other parameters are integral.
1163 * If there is no such parameter then we return -1.
1165 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1167 unsigned off
= 2 + tab
->M
;
1170 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1172 if (tab
->var
[i
].is_row
)
1174 col
= tab
->var
[i
].index
;
1175 if (col
<= tab
->n_dead
)
1177 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1180 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1181 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1183 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1189 /* Add an equality that is known to be valid to the tableau.
1190 * We first check if we can eliminate a variable or a parameter.
1191 * If not, we add the equality as two inequalities.
1192 * In this case, the equality was a pure parameter equality and there
1193 * is no need to resolve any constraint violations.
1195 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1202 r
= isl_tab_add_row(tab
, eq
);
1206 r
= tab
->con
[r
].index
;
1207 i
= last_var_col_or_int_par_col(tab
, r
);
1209 tab
->con
[r
].is_nonneg
= 1;
1210 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1212 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1213 r
= isl_tab_add_row(tab
, eq
);
1216 tab
->con
[r
].is_nonneg
= 1;
1217 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1220 if (isl_tab_pivot(tab
, r
, i
) < 0)
1222 if (isl_tab_kill_col(tab
, i
) < 0)
1226 tab
= restore_lexmin(tab
);
1235 /* Check if the given row is a pure constant.
1237 static int is_constant(struct isl_tab
*tab
, int row
)
1239 unsigned off
= 2 + tab
->M
;
1241 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1242 tab
->n_col
- tab
->n_dead
) == -1;
1245 /* Add an equality that may or may not be valid to the tableau.
1246 * If the resulting row is a pure constant, then it must be zero.
1247 * Otherwise, the resulting tableau is empty.
1249 * If the row is not a pure constant, then we add two inequalities,
1250 * each time checking that they can be satisfied.
1251 * In the end we try to use one of the two constraints to eliminate
1254 static struct isl_tab
*add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1255 static struct isl_tab
*add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1259 struct isl_tab_undo
*snap
;
1263 snap
= isl_tab_snap(tab
);
1264 r1
= isl_tab_add_row(tab
, eq
);
1267 tab
->con
[r1
].is_nonneg
= 1;
1268 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1271 row
= tab
->con
[r1
].index
;
1272 if (is_constant(tab
, row
)) {
1273 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1274 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1275 if (isl_tab_mark_empty(tab
) < 0)
1279 if (isl_tab_rollback(tab
, snap
) < 0)
1284 tab
= restore_lexmin(tab
);
1285 if (!tab
|| tab
->empty
)
1288 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1290 r2
= isl_tab_add_row(tab
, eq
);
1293 tab
->con
[r2
].is_nonneg
= 1;
1294 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1297 tab
= restore_lexmin(tab
);
1298 if (!tab
|| tab
->empty
)
1301 if (!tab
->con
[r1
].is_row
) {
1302 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1304 } else if (!tab
->con
[r2
].is_row
) {
1305 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1307 } else if (isl_int_is_zero(tab
->mat
->row
[tab
->con
[r1
].index
][1])) {
1308 unsigned off
= 2 + tab
->M
;
1310 int row
= tab
->con
[r1
].index
;
1311 i
= isl_seq_first_non_zero(tab
->mat
->row
[row
]+off
+tab
->n_dead
,
1312 tab
->n_col
- tab
->n_dead
);
1314 if (isl_tab_pivot(tab
, row
, tab
->n_dead
+ i
) < 0)
1316 if (isl_tab_kill_col(tab
, tab
->n_dead
+ i
) < 0)
1322 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1323 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1325 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1326 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1327 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1328 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1340 /* Add an inequality to the tableau, resolving violations using
1343 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1350 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1351 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1356 r
= isl_tab_add_row(tab
, ineq
);
1359 tab
->con
[r
].is_nonneg
= 1;
1360 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1362 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1363 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1368 tab
= restore_lexmin(tab
);
1369 if (tab
&& !tab
->empty
&& tab
->con
[r
].is_row
&&
1370 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1371 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1379 /* Check if the coefficients of the parameters are all integral.
1381 static int integer_parameter(struct isl_tab
*tab
, int row
)
1385 unsigned off
= 2 + tab
->M
;
1387 for (i
= 0; i
< tab
->n_param
; ++i
) {
1388 /* Eliminated parameter */
1389 if (tab
->var
[i
].is_row
)
1391 col
= tab
->var
[i
].index
;
1392 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1393 tab
->mat
->row
[row
][0]))
1396 for (i
= 0; i
< tab
->n_div
; ++i
) {
1397 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1399 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1400 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1401 tab
->mat
->row
[row
][0]))
1407 /* Check if the coefficients of the non-parameter variables are all integral.
1409 static int integer_variable(struct isl_tab
*tab
, int row
)
1412 unsigned off
= 2 + tab
->M
;
1414 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1415 if (tab
->col_var
[i
] >= 0 &&
1416 (tab
->col_var
[i
] < tab
->n_param
||
1417 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1419 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1420 tab
->mat
->row
[row
][0]))
1426 /* Check if the constant term is integral.
1428 static int integer_constant(struct isl_tab
*tab
, int row
)
1430 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1431 tab
->mat
->row
[row
][0]);
1434 #define I_CST 1 << 0
1435 #define I_PAR 1 << 1
1436 #define I_VAR 1 << 2
1438 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1439 * that is non-integer and therefore requires a cut and return
1440 * the index of the variable.
1441 * For parametric tableaus, there are three parts in a row,
1442 * the constant, the coefficients of the parameters and the rest.
1443 * For each part, we check whether the coefficients in that part
1444 * are all integral and if so, set the corresponding flag in *f.
1445 * If the constant and the parameter part are integral, then the
1446 * current sample value is integral and no cut is required
1447 * (irrespective of whether the variable part is integral).
1449 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1451 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1453 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1456 if (!tab
->var
[var
].is_row
)
1458 row
= tab
->var
[var
].index
;
1459 if (integer_constant(tab
, row
))
1460 ISL_FL_SET(flags
, I_CST
);
1461 if (integer_parameter(tab
, row
))
1462 ISL_FL_SET(flags
, I_PAR
);
1463 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1465 if (integer_variable(tab
, row
))
1466 ISL_FL_SET(flags
, I_VAR
);
1473 /* Check for first (non-parameter) variable that is non-integer and
1474 * therefore requires a cut and return the corresponding row.
1475 * For parametric tableaus, there are three parts in a row,
1476 * the constant, the coefficients of the parameters and the rest.
1477 * For each part, we check whether the coefficients in that part
1478 * are all integral and if so, set the corresponding flag in *f.
1479 * If the constant and the parameter part are integral, then the
1480 * current sample value is integral and no cut is required
1481 * (irrespective of whether the variable part is integral).
1483 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1485 int var
= next_non_integer_var(tab
, -1, f
);
1487 return var
< 0 ? -1 : tab
->var
[var
].index
;
1490 /* Add a (non-parametric) cut to cut away the non-integral sample
1491 * value of the given row.
1493 * If the row is given by
1495 * m r = f + \sum_i a_i y_i
1499 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1501 * The big parameter, if any, is ignored, since it is assumed to be big
1502 * enough to be divisible by any integer.
1503 * If the tableau is actually a parametric tableau, then this function
1504 * is only called when all coefficients of the parameters are integral.
1505 * The cut therefore has zero coefficients for the parameters.
1507 * The current value is known to be negative, so row_sign, if it
1508 * exists, is set accordingly.
1510 * Return the row of the cut or -1.
1512 static int add_cut(struct isl_tab
*tab
, int row
)
1517 unsigned off
= 2 + tab
->M
;
1519 if (isl_tab_extend_cons(tab
, 1) < 0)
1521 r
= isl_tab_allocate_con(tab
);
1525 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1526 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1527 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1528 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1529 isl_int_neg(r_row
[1], r_row
[1]);
1531 isl_int_set_si(r_row
[2], 0);
1532 for (i
= 0; i
< tab
->n_col
; ++i
)
1533 isl_int_fdiv_r(r_row
[off
+ i
],
1534 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1536 tab
->con
[r
].is_nonneg
= 1;
1537 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1540 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1542 return tab
->con
[r
].index
;
1545 /* Given a non-parametric tableau, add cuts until an integer
1546 * sample point is obtained or until the tableau is determined
1547 * to be integer infeasible.
1548 * As long as there is any non-integer value in the sample point,
1549 * we add appropriate cuts, if possible, for each of these
1550 * non-integer values and then resolve the violated
1551 * cut constraints using restore_lexmin.
1552 * If one of the corresponding rows is equal to an integral
1553 * combination of variables/constraints plus a non-integral constant,
1554 * then there is no way to obtain an integer point and we return
1555 * a tableau that is marked empty.
1557 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
)
1568 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1570 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1571 if (isl_tab_mark_empty(tab
) < 0)
1575 row
= tab
->var
[var
].index
;
1576 row
= add_cut(tab
, row
);
1579 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1580 tab
= restore_lexmin(tab
);
1581 if (!tab
|| tab
->empty
)
1590 /* Check whether all the currently active samples also satisfy the inequality
1591 * "ineq" (treated as an equality if eq is set).
1592 * Remove those samples that do not.
1594 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1602 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1603 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1604 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1607 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1609 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1610 1 + tab
->n_var
, &v
);
1611 sgn
= isl_int_sgn(v
);
1612 if (eq
? (sgn
== 0) : (sgn
>= 0))
1614 tab
= isl_tab_drop_sample(tab
, i
);
1626 /* Check whether the sample value of the tableau is finite,
1627 * i.e., either the tableau does not use a big parameter, or
1628 * all values of the variables are equal to the big parameter plus
1629 * some constant. This constant is the actual sample value.
1631 static int sample_is_finite(struct isl_tab
*tab
)
1638 for (i
= 0; i
< tab
->n_var
; ++i
) {
1640 if (!tab
->var
[i
].is_row
)
1642 row
= tab
->var
[i
].index
;
1643 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1649 /* Check if the context tableau of sol has any integer points.
1650 * Leave tab in empty state if no integer point can be found.
1651 * If an integer point can be found and if moreover it is finite,
1652 * then it is added to the list of sample values.
1654 * This function is only called when none of the currently active sample
1655 * values satisfies the most recently added constraint.
1657 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1659 struct isl_tab_undo
*snap
;
1665 snap
= isl_tab_snap(tab
);
1666 if (isl_tab_push_basis(tab
) < 0)
1669 tab
= cut_to_integer_lexmin(tab
);
1673 if (!tab
->empty
&& sample_is_finite(tab
)) {
1674 struct isl_vec
*sample
;
1676 sample
= isl_tab_get_sample_value(tab
);
1678 tab
= isl_tab_add_sample(tab
, sample
);
1681 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1690 /* Check if any of the currently active sample values satisfies
1691 * the inequality "ineq" (an equality if eq is set).
1693 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1701 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1702 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1703 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1706 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1708 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1709 1 + tab
->n_var
, &v
);
1710 sgn
= isl_int_sgn(v
);
1711 if (eq
? (sgn
== 0) : (sgn
>= 0))
1716 return i
< tab
->n_sample
;
1719 /* Add a div specifed by "div" to the tableau "tab" and return
1720 * 1 if the div is obviously non-negative.
1722 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1723 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1727 struct isl_mat
*samples
;
1730 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1733 nonneg
= tab
->var
[r
].is_nonneg
;
1734 tab
->var
[r
].frozen
= 1;
1736 samples
= isl_mat_extend(tab
->samples
,
1737 tab
->n_sample
, 1 + tab
->n_var
);
1738 tab
->samples
= samples
;
1741 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1742 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1743 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1744 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1745 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1751 /* Add a div specified by "div" to both the main tableau and
1752 * the context tableau. In case of the main tableau, we only
1753 * need to add an extra div. In the context tableau, we also
1754 * need to express the meaning of the div.
1755 * Return the index of the div or -1 if anything went wrong.
1757 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1758 struct isl_vec
*div
)
1763 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1766 if (!context
->op
->is_ok(context
))
1769 if (isl_tab_extend_vars(tab
, 1) < 0)
1771 r
= isl_tab_allocate_var(tab
);
1775 tab
->var
[r
].is_nonneg
= 1;
1776 tab
->var
[r
].frozen
= 1;
1779 return tab
->n_div
- 1;
1781 context
->op
->invalidate(context
);
1785 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1788 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1790 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1791 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1793 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1800 /* Return the index of a div that corresponds to "div".
1801 * We first check if we already have such a div and if not, we create one.
1803 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1804 struct isl_vec
*div
)
1807 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1812 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1816 return add_div(tab
, context
, div
);
1819 /* Add a parametric cut to cut away the non-integral sample value
1821 * Let a_i be the coefficients of the constant term and the parameters
1822 * and let b_i be the coefficients of the variables or constraints
1823 * in basis of the tableau.
1824 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1826 * The cut is expressed as
1828 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1830 * If q did not already exist in the context tableau, then it is added first.
1831 * If q is in a column of the main tableau then the "+ q" can be accomplished
1832 * by setting the corresponding entry to the denominator of the constraint.
1833 * If q happens to be in a row of the main tableau, then the corresponding
1834 * row needs to be added instead (taking care of the denominators).
1835 * Note that this is very unlikely, but perhaps not entirely impossible.
1837 * The current value of the cut is known to be negative (or at least
1838 * non-positive), so row_sign is set accordingly.
1840 * Return the row of the cut or -1.
1842 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1843 struct isl_context
*context
)
1845 struct isl_vec
*div
;
1852 unsigned off
= 2 + tab
->M
;
1857 div
= get_row_parameter_div(tab
, row
);
1862 d
= context
->op
->get_div(context
, tab
, div
);
1866 if (isl_tab_extend_cons(tab
, 1) < 0)
1868 r
= isl_tab_allocate_con(tab
);
1872 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1873 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1874 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1875 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1876 isl_int_neg(r_row
[1], r_row
[1]);
1878 isl_int_set_si(r_row
[2], 0);
1879 for (i
= 0; i
< tab
->n_param
; ++i
) {
1880 if (tab
->var
[i
].is_row
)
1882 col
= tab
->var
[i
].index
;
1883 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1884 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1885 tab
->mat
->row
[row
][0]);
1886 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1888 for (i
= 0; i
< tab
->n_div
; ++i
) {
1889 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1891 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1892 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1893 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1894 tab
->mat
->row
[row
][0]);
1895 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1897 for (i
= 0; i
< tab
->n_col
; ++i
) {
1898 if (tab
->col_var
[i
] >= 0 &&
1899 (tab
->col_var
[i
] < tab
->n_param
||
1900 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1902 isl_int_fdiv_r(r_row
[off
+ i
],
1903 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1905 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
1907 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1909 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
1910 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
1911 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
1912 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
1913 r_row
[0], tab
->mat
->row
[d_row
] + 1,
1914 off
- 1 + tab
->n_col
);
1915 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
1918 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1919 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
1922 tab
->con
[r
].is_nonneg
= 1;
1923 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1926 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1930 row
= tab
->con
[r
].index
;
1932 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
1938 /* Construct a tableau for bmap that can be used for computing
1939 * the lexicographic minimum (or maximum) of bmap.
1940 * If not NULL, then dom is the domain where the minimum
1941 * should be computed. In this case, we set up a parametric
1942 * tableau with row signs (initialized to "unknown").
1943 * If M is set, then the tableau will use a big parameter.
1944 * If max is set, then a maximum should be computed instead of a minimum.
1945 * This means that for each variable x, the tableau will contain the variable
1946 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1947 * of the variables in all constraints are negated prior to adding them
1950 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
1951 struct isl_basic_set
*dom
, unsigned M
, int max
)
1954 struct isl_tab
*tab
;
1956 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
1957 isl_basic_map_total_dim(bmap
), M
);
1961 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
1963 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
1964 tab
->n_div
= dom
->n_div
;
1965 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
1966 enum isl_tab_row_sign
, tab
->mat
->n_row
);
1970 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
1971 if (isl_tab_mark_empty(tab
) < 0)
1976 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1977 tab
->var
[i
].is_nonneg
= 1;
1978 tab
->var
[i
].frozen
= 1;
1980 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1982 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
1983 bmap
->eq
[i
] + 1 + tab
->n_param
,
1984 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1985 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
1987 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
1988 bmap
->eq
[i
] + 1 + tab
->n_param
,
1989 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1990 if (!tab
|| tab
->empty
)
1993 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1995 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
1996 bmap
->ineq
[i
] + 1 + tab
->n_param
,
1997 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1998 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2000 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2001 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2002 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2003 if (!tab
|| tab
->empty
)
2012 /* Given a main tableau where more than one row requires a split,
2013 * determine and return the "best" row to split on.
2015 * Given two rows in the main tableau, if the inequality corresponding
2016 * to the first row is redundant with respect to that of the second row
2017 * in the current tableau, then it is better to split on the second row,
2018 * since in the positive part, both row will be positive.
2019 * (In the negative part a pivot will have to be performed and just about
2020 * anything can happen to the sign of the other row.)
2022 * As a simple heuristic, we therefore select the row that makes the most
2023 * of the other rows redundant.
2025 * Perhaps it would also be useful to look at the number of constraints
2026 * that conflict with any given constraint.
2028 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2030 struct isl_tab_undo
*snap
;
2036 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2039 snap
= isl_tab_snap(context_tab
);
2041 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2042 struct isl_tab_undo
*snap2
;
2043 struct isl_vec
*ineq
= NULL
;
2047 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2049 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2052 ineq
= get_row_parameter_ineq(tab
, split
);
2055 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2060 snap2
= isl_tab_snap(context_tab
);
2062 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2063 struct isl_tab_var
*var
;
2067 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2069 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2072 ineq
= get_row_parameter_ineq(tab
, row
);
2075 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2079 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2080 if (!context_tab
->empty
&&
2081 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2083 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2086 if (best
== -1 || r
> best_r
) {
2090 if (isl_tab_rollback(context_tab
, snap
) < 0)
2097 static struct isl_basic_set
*context_lex_peek_basic_set(
2098 struct isl_context
*context
)
2100 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2103 return isl_tab_peek_bset(clex
->tab
);
2106 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2108 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2112 static void context_lex_extend(struct isl_context
*context
, int n
)
2114 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2117 if (isl_tab_extend_cons(clex
->tab
, n
) >= 0)
2119 isl_tab_free(clex
->tab
);
2123 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2124 int check
, int update
)
2126 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2127 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2129 clex
->tab
= add_lexmin_eq(clex
->tab
, eq
);
2131 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2135 clex
->tab
= check_integer_feasible(clex
->tab
);
2138 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2141 isl_tab_free(clex
->tab
);
2145 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2146 int check
, int update
)
2148 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2149 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2151 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2153 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2157 clex
->tab
= check_integer_feasible(clex
->tab
);
2160 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2163 isl_tab_free(clex
->tab
);
2167 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2169 struct isl_context
*context
= (struct isl_context
*)user
;
2170 context_lex_add_ineq(context
, ineq
, 0, 0);
2171 return context
->op
->is_ok(context
) ? 0 : -1;
2174 /* Check which signs can be obtained by "ineq" on all the currently
2175 * active sample values. See row_sign for more information.
2177 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2183 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2185 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2186 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2187 return isl_tab_row_unknown
);
2190 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2191 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2192 1 + tab
->n_var
, &tmp
);
2193 sgn
= isl_int_sgn(tmp
);
2194 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2195 if (res
== isl_tab_row_unknown
)
2196 res
= isl_tab_row_pos
;
2197 if (res
== isl_tab_row_neg
)
2198 res
= isl_tab_row_any
;
2201 if (res
== isl_tab_row_unknown
)
2202 res
= isl_tab_row_neg
;
2203 if (res
== isl_tab_row_pos
)
2204 res
= isl_tab_row_any
;
2206 if (res
== isl_tab_row_any
)
2214 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2215 isl_int
*ineq
, int strict
)
2217 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2218 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2221 /* Check whether "ineq" can be added to the tableau without rendering
2224 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2226 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2227 struct isl_tab_undo
*snap
;
2233 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2236 snap
= isl_tab_snap(clex
->tab
);
2237 if (isl_tab_push_basis(clex
->tab
) < 0)
2239 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2240 clex
->tab
= check_integer_feasible(clex
->tab
);
2243 feasible
= !clex
->tab
->empty
;
2244 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2250 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2251 struct isl_vec
*div
)
2253 return get_div(tab
, context
, div
);
2256 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2258 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2259 return context_tab_add_div(clex
->tab
, div
,
2260 context_lex_add_ineq_wrap
, context
);
2263 static int context_lex_detect_equalities(struct isl_context
*context
,
2264 struct isl_tab
*tab
)
2269 static int context_lex_best_split(struct isl_context
*context
,
2270 struct isl_tab
*tab
)
2272 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2273 struct isl_tab_undo
*snap
;
2276 snap
= isl_tab_snap(clex
->tab
);
2277 if (isl_tab_push_basis(clex
->tab
) < 0)
2279 r
= best_split(tab
, clex
->tab
);
2281 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2287 static int context_lex_is_empty(struct isl_context
*context
)
2289 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2292 return clex
->tab
->empty
;
2295 static void *context_lex_save(struct isl_context
*context
)
2297 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2298 struct isl_tab_undo
*snap
;
2300 snap
= isl_tab_snap(clex
->tab
);
2301 if (isl_tab_push_basis(clex
->tab
) < 0)
2303 if (isl_tab_save_samples(clex
->tab
) < 0)
2309 static void context_lex_restore(struct isl_context
*context
, void *save
)
2311 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2312 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2313 isl_tab_free(clex
->tab
);
2318 static int context_lex_is_ok(struct isl_context
*context
)
2320 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2324 /* For each variable in the context tableau, check if the variable can
2325 * only attain non-negative values. If so, mark the parameter as non-negative
2326 * in the main tableau. This allows for a more direct identification of some
2327 * cases of violated constraints.
2329 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2330 struct isl_tab
*context_tab
)
2333 struct isl_tab_undo
*snap
;
2334 struct isl_vec
*ineq
= NULL
;
2335 struct isl_tab_var
*var
;
2338 if (context_tab
->n_var
== 0)
2341 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2345 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2348 snap
= isl_tab_snap(context_tab
);
2351 isl_seq_clr(ineq
->el
, ineq
->size
);
2352 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2353 isl_int_set_si(ineq
->el
[1 + i
], 1);
2354 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2356 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2357 if (!context_tab
->empty
&&
2358 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2360 if (i
>= tab
->n_param
)
2361 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2362 tab
->var
[j
].is_nonneg
= 1;
2365 isl_int_set_si(ineq
->el
[1 + i
], 0);
2366 if (isl_tab_rollback(context_tab
, snap
) < 0)
2370 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2371 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2383 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2384 struct isl_context
*context
, struct isl_tab
*tab
)
2386 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2387 struct isl_tab_undo
*snap
;
2392 snap
= isl_tab_snap(clex
->tab
);
2393 if (isl_tab_push_basis(clex
->tab
) < 0)
2396 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2398 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2407 static void context_lex_invalidate(struct isl_context
*context
)
2409 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2410 isl_tab_free(clex
->tab
);
2414 static void context_lex_free(struct isl_context
*context
)
2416 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2417 isl_tab_free(clex
->tab
);
2421 struct isl_context_op isl_context_lex_op
= {
2422 context_lex_detect_nonnegative_parameters
,
2423 context_lex_peek_basic_set
,
2424 context_lex_peek_tab
,
2426 context_lex_add_ineq
,
2427 context_lex_ineq_sign
,
2428 context_lex_test_ineq
,
2429 context_lex_get_div
,
2430 context_lex_add_div
,
2431 context_lex_detect_equalities
,
2432 context_lex_best_split
,
2433 context_lex_is_empty
,
2436 context_lex_restore
,
2437 context_lex_invalidate
,
2441 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2443 struct isl_tab
*tab
;
2445 bset
= isl_basic_set_cow(bset
);
2448 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2451 if (isl_tab_track_bset(tab
, bset
) < 0)
2453 tab
= isl_tab_init_samples(tab
);
2456 isl_basic_set_free(bset
);
2460 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2462 struct isl_context_lex
*clex
;
2467 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2471 clex
->context
.op
= &isl_context_lex_op
;
2473 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2474 clex
->tab
= restore_lexmin(clex
->tab
);
2475 clex
->tab
= check_integer_feasible(clex
->tab
);
2479 return &clex
->context
;
2481 clex
->context
.op
->free(&clex
->context
);
2485 struct isl_context_gbr
{
2486 struct isl_context context
;
2487 struct isl_tab
*tab
;
2488 struct isl_tab
*shifted
;
2489 struct isl_tab
*cone
;
2492 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2493 struct isl_context
*context
, struct isl_tab
*tab
)
2495 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2498 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2501 static struct isl_basic_set
*context_gbr_peek_basic_set(
2502 struct isl_context
*context
)
2504 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2507 return isl_tab_peek_bset(cgbr
->tab
);
2510 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2512 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2516 /* Initialize the "shifted" tableau of the context, which
2517 * contains the constraints of the original tableau shifted
2518 * by the sum of all negative coefficients. This ensures
2519 * that any rational point in the shifted tableau can
2520 * be rounded up to yield an integer point in the original tableau.
2522 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2525 struct isl_vec
*cst
;
2526 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2527 unsigned dim
= isl_basic_set_total_dim(bset
);
2529 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2533 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2534 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2535 for (j
= 0; j
< dim
; ++j
) {
2536 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2538 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2539 bset
->ineq
[i
][1 + j
]);
2543 cgbr
->shifted
= isl_tab_from_basic_set(bset
);
2545 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2546 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2551 /* Check if the shifted tableau is non-empty, and if so
2552 * use the sample point to construct an integer point
2553 * of the context tableau.
2555 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2557 struct isl_vec
*sample
;
2560 gbr_init_shifted(cgbr
);
2563 if (cgbr
->shifted
->empty
)
2564 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2566 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2567 sample
= isl_vec_ceil(sample
);
2572 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2579 for (i
= 0; i
< bset
->n_eq
; ++i
)
2580 isl_int_set_si(bset
->eq
[i
][0], 0);
2582 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2583 isl_int_set_si(bset
->ineq
[i
][0], 0);
2588 static int use_shifted(struct isl_context_gbr
*cgbr
)
2590 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2593 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2595 struct isl_basic_set
*bset
;
2596 struct isl_basic_set
*cone
;
2598 if (isl_tab_sample_is_integer(cgbr
->tab
))
2599 return isl_tab_get_sample_value(cgbr
->tab
);
2601 if (use_shifted(cgbr
)) {
2602 struct isl_vec
*sample
;
2604 sample
= gbr_get_shifted_sample(cgbr
);
2605 if (!sample
|| sample
->size
> 0)
2608 isl_vec_free(sample
);
2612 bset
= isl_tab_peek_bset(cgbr
->tab
);
2613 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2616 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2619 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2622 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2623 struct isl_vec
*sample
;
2624 struct isl_tab_undo
*snap
;
2626 if (cgbr
->tab
->basis
) {
2627 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2628 isl_mat_free(cgbr
->tab
->basis
);
2629 cgbr
->tab
->basis
= NULL
;
2631 cgbr
->tab
->n_zero
= 0;
2632 cgbr
->tab
->n_unbounded
= 0;
2635 snap
= isl_tab_snap(cgbr
->tab
);
2637 sample
= isl_tab_sample(cgbr
->tab
);
2639 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2640 isl_vec_free(sample
);
2647 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2648 cone
= drop_constant_terms(cone
);
2649 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2650 cone
= isl_basic_set_underlying_set(cone
);
2651 cone
= isl_basic_set_gauss(cone
, NULL
);
2653 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2654 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2655 bset
= isl_basic_set_underlying_set(bset
);
2656 bset
= isl_basic_set_gauss(bset
, NULL
);
2658 return isl_basic_set_sample_with_cone(bset
, cone
);
2661 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2663 struct isl_vec
*sample
;
2668 if (cgbr
->tab
->empty
)
2671 sample
= gbr_get_sample(cgbr
);
2675 if (sample
->size
== 0) {
2676 isl_vec_free(sample
);
2677 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2682 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2686 isl_tab_free(cgbr
->tab
);
2690 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2697 if (isl_tab_extend_cons(tab
, 2) < 0)
2700 if (isl_tab_add_eq(tab
, eq
) < 0)
2709 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2710 int check
, int update
)
2712 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2714 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2716 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2717 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2719 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2724 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2728 check_gbr_integer_feasible(cgbr
);
2731 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2734 isl_tab_free(cgbr
->tab
);
2738 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2743 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2746 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2749 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2752 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2754 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2757 for (i
= 0; i
< dim
; ++i
) {
2758 if (!isl_int_is_neg(ineq
[1 + i
]))
2760 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2763 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2766 for (i
= 0; i
< dim
; ++i
) {
2767 if (!isl_int_is_neg(ineq
[1 + i
]))
2769 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2773 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2774 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2776 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2782 isl_tab_free(cgbr
->tab
);
2786 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2787 int check
, int update
)
2789 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2791 add_gbr_ineq(cgbr
, ineq
);
2796 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2800 check_gbr_integer_feasible(cgbr
);
2803 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2806 isl_tab_free(cgbr
->tab
);
2810 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2812 struct isl_context
*context
= (struct isl_context
*)user
;
2813 context_gbr_add_ineq(context
, ineq
, 0, 0);
2814 return context
->op
->is_ok(context
) ? 0 : -1;
2817 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2818 isl_int
*ineq
, int strict
)
2820 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2821 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2824 /* Check whether "ineq" can be added to the tableau without rendering
2827 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2829 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2830 struct isl_tab_undo
*snap
;
2831 struct isl_tab_undo
*shifted_snap
= NULL
;
2832 struct isl_tab_undo
*cone_snap
= NULL
;
2838 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2841 snap
= isl_tab_snap(cgbr
->tab
);
2843 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
2845 cone_snap
= isl_tab_snap(cgbr
->cone
);
2846 add_gbr_ineq(cgbr
, ineq
);
2847 check_gbr_integer_feasible(cgbr
);
2850 feasible
= !cgbr
->tab
->empty
;
2851 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
2854 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
2856 } else if (cgbr
->shifted
) {
2857 isl_tab_free(cgbr
->shifted
);
2858 cgbr
->shifted
= NULL
;
2861 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
2863 } else if (cgbr
->cone
) {
2864 isl_tab_free(cgbr
->cone
);
2871 /* Return the column of the last of the variables associated to
2872 * a column that has a non-zero coefficient.
2873 * This function is called in a context where only coefficients
2874 * of parameters or divs can be non-zero.
2876 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
2880 unsigned dim
= tab
->n_var
- tab
->n_param
- tab
->n_div
;
2882 if (tab
->n_var
== 0)
2885 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
2886 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
2888 if (tab
->var
[i
].is_row
)
2890 col
= tab
->var
[i
].index
;
2891 if (!isl_int_is_zero(p
[col
]))
2898 /* Look through all the recently added equalities in the context
2899 * to see if we can propagate any of them to the main tableau.
2901 * The newly added equalities in the context are encoded as pairs
2902 * of inequalities starting at inequality "first".
2904 * We tentatively add each of these equalities to the main tableau
2905 * and if this happens to result in a row with a final coefficient
2906 * that is one or negative one, we use it to kill a column
2907 * in the main tableau. Otherwise, we discard the tentatively
2910 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
2911 struct isl_tab
*tab
, unsigned first
)
2914 struct isl_vec
*eq
= NULL
;
2916 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2920 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
2923 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
2924 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2925 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
2928 struct isl_tab_undo
*snap
;
2929 snap
= isl_tab_snap(tab
);
2931 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
2932 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
2933 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
2936 r
= isl_tab_add_row(tab
, eq
->el
);
2939 r
= tab
->con
[r
].index
;
2940 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
2941 if (j
< 0 || j
< tab
->n_dead
||
2942 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
2943 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
2944 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
2945 if (isl_tab_rollback(tab
, snap
) < 0)
2949 if (isl_tab_pivot(tab
, r
, j
) < 0)
2951 if (isl_tab_kill_col(tab
, j
) < 0)
2954 tab
= restore_lexmin(tab
);
2962 isl_tab_free(cgbr
->tab
);
2966 static int context_gbr_detect_equalities(struct isl_context
*context
,
2967 struct isl_tab
*tab
)
2969 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2970 struct isl_ctx
*ctx
;
2972 enum isl_lp_result res
;
2975 ctx
= cgbr
->tab
->mat
->ctx
;
2978 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2979 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2982 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2985 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2988 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
2989 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
2990 if (cgbr
->tab
&& cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
2991 propagate_equalities(cgbr
, tab
, n_ineq
);
2995 isl_tab_free(cgbr
->tab
);
3000 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3001 struct isl_vec
*div
)
3003 return get_div(tab
, context
, div
);
3006 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3008 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3012 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3014 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3016 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3019 cgbr
->cone
->bmap
= isl_basic_map_extend_dim(cgbr
->cone
->bmap
,
3020 isl_basic_map_get_dim(cgbr
->cone
->bmap
), 1, 0, 2);
3021 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3024 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3025 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3028 return context_tab_add_div(cgbr
->tab
, div
,
3029 context_gbr_add_ineq_wrap
, context
);
3032 static int context_gbr_best_split(struct isl_context
*context
,
3033 struct isl_tab
*tab
)
3035 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3036 struct isl_tab_undo
*snap
;
3039 snap
= isl_tab_snap(cgbr
->tab
);
3040 r
= best_split(tab
, cgbr
->tab
);
3042 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3048 static int context_gbr_is_empty(struct isl_context
*context
)
3050 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3053 return cgbr
->tab
->empty
;
3056 struct isl_gbr_tab_undo
{
3057 struct isl_tab_undo
*tab_snap
;
3058 struct isl_tab_undo
*shifted_snap
;
3059 struct isl_tab_undo
*cone_snap
;
3062 static void *context_gbr_save(struct isl_context
*context
)
3064 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3065 struct isl_gbr_tab_undo
*snap
;
3067 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3071 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3072 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3076 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3078 snap
->shifted_snap
= NULL
;
3081 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3083 snap
->cone_snap
= NULL
;
3091 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3093 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3094 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3097 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3098 isl_tab_free(cgbr
->tab
);
3102 if (snap
->shifted_snap
) {
3103 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3105 } else if (cgbr
->shifted
) {
3106 isl_tab_free(cgbr
->shifted
);
3107 cgbr
->shifted
= NULL
;
3110 if (snap
->cone_snap
) {
3111 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3113 } else if (cgbr
->cone
) {
3114 isl_tab_free(cgbr
->cone
);
3123 isl_tab_free(cgbr
->tab
);
3127 static int context_gbr_is_ok(struct isl_context
*context
)
3129 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3133 static void context_gbr_invalidate(struct isl_context
*context
)
3135 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3136 isl_tab_free(cgbr
->tab
);
3140 static void context_gbr_free(struct isl_context
*context
)
3142 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3143 isl_tab_free(cgbr
->tab
);
3144 isl_tab_free(cgbr
->shifted
);
3145 isl_tab_free(cgbr
->cone
);
3149 struct isl_context_op isl_context_gbr_op
= {
3150 context_gbr_detect_nonnegative_parameters
,
3151 context_gbr_peek_basic_set
,
3152 context_gbr_peek_tab
,
3154 context_gbr_add_ineq
,
3155 context_gbr_ineq_sign
,
3156 context_gbr_test_ineq
,
3157 context_gbr_get_div
,
3158 context_gbr_add_div
,
3159 context_gbr_detect_equalities
,
3160 context_gbr_best_split
,
3161 context_gbr_is_empty
,
3164 context_gbr_restore
,
3165 context_gbr_invalidate
,
3169 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3171 struct isl_context_gbr
*cgbr
;
3176 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3180 cgbr
->context
.op
= &isl_context_gbr_op
;
3182 cgbr
->shifted
= NULL
;
3184 cgbr
->tab
= isl_tab_from_basic_set(dom
);
3185 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3188 if (isl_tab_track_bset(cgbr
->tab
,
3189 isl_basic_set_cow(isl_basic_set_copy(dom
))) < 0)
3191 check_gbr_integer_feasible(cgbr
);
3193 return &cgbr
->context
;
3195 cgbr
->context
.op
->free(&cgbr
->context
);
3199 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3204 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3205 return isl_context_lex_alloc(dom
);
3207 return isl_context_gbr_alloc(dom
);
3210 /* Construct an isl_sol_map structure for accumulating the solution.
3211 * If track_empty is set, then we also keep track of the parts
3212 * of the context where there is no solution.
3213 * If max is set, then we are solving a maximization, rather than
3214 * a minimization problem, which means that the variables in the
3215 * tableau have value "M - x" rather than "M + x".
3217 static struct isl_sol_map
*sol_map_init(struct isl_basic_map
*bmap
,
3218 struct isl_basic_set
*dom
, int track_empty
, int max
)
3220 struct isl_sol_map
*sol_map
= NULL
;
3225 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3229 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3230 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3231 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3232 sol_map
->sol
.max
= max
;
3233 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3234 sol_map
->sol
.add
= &sol_map_add_wrap
;
3235 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3236 sol_map
->sol
.free
= &sol_map_free_wrap
;
3237 sol_map
->map
= isl_map_alloc_dim(isl_basic_map_get_dim(bmap
), 1,
3242 sol_map
->sol
.context
= isl_context_alloc(dom
);
3243 if (!sol_map
->sol
.context
)
3247 sol_map
->empty
= isl_set_alloc_dim(isl_basic_set_get_dim(dom
),
3248 1, ISL_SET_DISJOINT
);
3249 if (!sol_map
->empty
)
3253 isl_basic_set_free(dom
);
3256 isl_basic_set_free(dom
);
3257 sol_map_free(sol_map
);
3261 /* Check whether all coefficients of (non-parameter) variables
3262 * are non-positive, meaning that no pivots can be performed on the row.
3264 static int is_critical(struct isl_tab
*tab
, int row
)
3267 unsigned off
= 2 + tab
->M
;
3269 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3270 if (tab
->col_var
[j
] >= 0 &&
3271 (tab
->col_var
[j
] < tab
->n_param
||
3272 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3275 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3282 /* Check whether the inequality represented by vec is strict over the integers,
3283 * i.e., there are no integer values satisfying the constraint with
3284 * equality. This happens if the gcd of the coefficients is not a divisor
3285 * of the constant term. If so, scale the constraint down by the gcd
3286 * of the coefficients.
3288 static int is_strict(struct isl_vec
*vec
)
3294 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3295 if (!isl_int_is_one(gcd
)) {
3296 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3297 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3298 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3305 /* Determine the sign of the given row of the main tableau.
3306 * The result is one of
3307 * isl_tab_row_pos: always non-negative; no pivot needed
3308 * isl_tab_row_neg: always non-positive; pivot
3309 * isl_tab_row_any: can be both positive and negative; split
3311 * We first handle some simple cases
3312 * - the row sign may be known already
3313 * - the row may be obviously non-negative
3314 * - the parametric constant may be equal to that of another row
3315 * for which we know the sign. This sign will be either "pos" or
3316 * "any". If it had been "neg" then we would have pivoted before.
3318 * If none of these cases hold, we check the value of the row for each
3319 * of the currently active samples. Based on the signs of these values
3320 * we make an initial determination of the sign of the row.
3322 * all zero -> unk(nown)
3323 * all non-negative -> pos
3324 * all non-positive -> neg
3325 * both negative and positive -> all
3327 * If we end up with "all", we are done.
3328 * Otherwise, we perform a check for positive and/or negative
3329 * values as follows.
3331 * samples neg unk pos
3337 * There is no special sign for "zero", because we can usually treat zero
3338 * as either non-negative or non-positive, whatever works out best.
3339 * However, if the row is "critical", meaning that pivoting is impossible
3340 * then we don't want to limp zero with the non-positive case, because
3341 * then we we would lose the solution for those values of the parameters
3342 * where the value of the row is zero. Instead, we treat 0 as non-negative
3343 * ensuring a split if the row can attain both zero and negative values.
3344 * The same happens when the original constraint was one that could not
3345 * be satisfied with equality by any integer values of the parameters.
3346 * In this case, we normalize the constraint, but then a value of zero
3347 * for the normalized constraint is actually a positive value for the
3348 * original constraint, so again we need to treat zero as non-negative.
3349 * In both these cases, we have the following decision tree instead:
3351 * all non-negative -> pos
3352 * all negative -> neg
3353 * both negative and non-negative -> all
3361 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3362 struct isl_sol
*sol
, int row
)
3364 struct isl_vec
*ineq
= NULL
;
3365 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3370 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3371 return tab
->row_sign
[row
];
3372 if (is_obviously_nonneg(tab
, row
))
3373 return isl_tab_row_pos
;
3374 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3375 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3377 if (identical_parameter_line(tab
, row
, row2
))
3378 return tab
->row_sign
[row2
];
3381 critical
= is_critical(tab
, row
);
3383 ineq
= get_row_parameter_ineq(tab
, row
);
3387 strict
= is_strict(ineq
);
3389 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3390 critical
|| strict
);
3392 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3393 /* test for negative values */
3395 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3396 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3398 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3402 res
= isl_tab_row_pos
;
3404 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3406 if (res
== isl_tab_row_neg
) {
3407 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3408 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3412 if (res
== isl_tab_row_neg
) {
3413 /* test for positive values */
3415 if (!critical
&& !strict
)
3416 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3418 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3422 res
= isl_tab_row_any
;
3429 return isl_tab_row_unknown
;
3432 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3434 /* Find solutions for values of the parameters that satisfy the given
3437 * We currently take a snapshot of the context tableau that is reset
3438 * when we return from this function, while we make a copy of the main
3439 * tableau, leaving the original main tableau untouched.
3440 * These are fairly arbitrary choices. Making a copy also of the context
3441 * tableau would obviate the need to undo any changes made to it later,
3442 * while taking a snapshot of the main tableau could reduce memory usage.
3443 * If we were to switch to taking a snapshot of the main tableau,
3444 * we would have to keep in mind that we need to save the row signs
3445 * and that we need to do this before saving the current basis
3446 * such that the basis has been restore before we restore the row signs.
3448 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3454 saved
= sol
->context
->op
->save(sol
->context
);
3456 tab
= isl_tab_dup(tab
);
3460 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3462 find_solutions(sol
, tab
);
3465 sol
->context
->op
->restore(sol
->context
, saved
);
3471 /* Record the absence of solutions for those values of the parameters
3472 * that do not satisfy the given inequality with equality.
3474 static void no_sol_in_strict(struct isl_sol
*sol
,
3475 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3482 saved
= sol
->context
->op
->save(sol
->context
);
3484 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3486 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3495 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3497 sol
->context
->op
->restore(sol
->context
, saved
);
3503 /* Compute the lexicographic minimum of the set represented by the main
3504 * tableau "tab" within the context "sol->context_tab".
3505 * On entry the sample value of the main tableau is lexicographically
3506 * less than or equal to this lexicographic minimum.
3507 * Pivots are performed until a feasible point is found, which is then
3508 * necessarily equal to the minimum, or until the tableau is found to
3509 * be infeasible. Some pivots may need to be performed for only some
3510 * feasible values of the context tableau. If so, the context tableau
3511 * is split into a part where the pivot is needed and a part where it is not.
3513 * Whenever we enter the main loop, the main tableau is such that no
3514 * "obvious" pivots need to be performed on it, where "obvious" means
3515 * that the given row can be seen to be negative without looking at
3516 * the context tableau. In particular, for non-parametric problems,
3517 * no pivots need to be performed on the main tableau.
3518 * The caller of find_solutions is responsible for making this property
3519 * hold prior to the first iteration of the loop, while restore_lexmin
3520 * is called before every other iteration.
3522 * Inside the main loop, we first examine the signs of the rows of
3523 * the main tableau within the context of the context tableau.
3524 * If we find a row that is always non-positive for all values of
3525 * the parameters satisfying the context tableau and negative for at
3526 * least one value of the parameters, we perform the appropriate pivot
3527 * and start over. An exception is the case where no pivot can be
3528 * performed on the row. In this case, we require that the sign of
3529 * the row is negative for all values of the parameters (rather than just
3530 * non-positive). This special case is handled inside row_sign, which
3531 * will say that the row can have any sign if it determines that it can
3532 * attain both negative and zero values.
3534 * If we can't find a row that always requires a pivot, but we can find
3535 * one or more rows that require a pivot for some values of the parameters
3536 * (i.e., the row can attain both positive and negative signs), then we split
3537 * the context tableau into two parts, one where we force the sign to be
3538 * non-negative and one where we force is to be negative.
3539 * The non-negative part is handled by a recursive call (through find_in_pos).
3540 * Upon returning from this call, we continue with the negative part and
3541 * perform the required pivot.
3543 * If no such rows can be found, all rows are non-negative and we have
3544 * found a (rational) feasible point. If we only wanted a rational point
3546 * Otherwise, we check if all values of the sample point of the tableau
3547 * are integral for the variables. If so, we have found the minimal
3548 * integral point and we are done.
3549 * If the sample point is not integral, then we need to make a distinction
3550 * based on whether the constant term is non-integral or the coefficients
3551 * of the parameters. Furthermore, in order to decide how to handle
3552 * the non-integrality, we also need to know whether the coefficients
3553 * of the other columns in the tableau are integral. This leads
3554 * to the following table. The first two rows do not correspond
3555 * to a non-integral sample point and are only mentioned for completeness.
3557 * constant parameters other
3560 * int int rat | -> no problem
3562 * rat int int -> fail
3564 * rat int rat -> cut
3567 * rat rat rat | -> parametric cut
3570 * rat rat int | -> split context
3572 * If the parametric constant is completely integral, then there is nothing
3573 * to be done. If the constant term is non-integral, but all the other
3574 * coefficient are integral, then there is nothing that can be done
3575 * and the tableau has no integral solution.
3576 * If, on the other hand, one or more of the other columns have rational
3577 * coeffcients, but the parameter coefficients are all integral, then
3578 * we can perform a regular (non-parametric) cut.
3579 * Finally, if there is any parameter coefficient that is non-integral,
3580 * then we need to involve the context tableau. There are two cases here.
3581 * If at least one other column has a rational coefficient, then we
3582 * can perform a parametric cut in the main tableau by adding a new
3583 * integer division in the context tableau.
3584 * If all other columns have integral coefficients, then we need to
3585 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3586 * is always integral. We do this by introducing an integer division
3587 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3588 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3589 * Since q is expressed in the tableau as
3590 * c + \sum a_i y_i - m q >= 0
3591 * -c - \sum a_i y_i + m q + m - 1 >= 0
3592 * it is sufficient to add the inequality
3593 * -c - \sum a_i y_i + m q >= 0
3594 * In the part of the context where this inequality does not hold, the
3595 * main tableau is marked as being empty.
3597 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3599 struct isl_context
*context
;
3601 if (!tab
|| sol
->error
)
3604 context
= sol
->context
;
3608 if (context
->op
->is_empty(context
))
3611 for (; tab
&& !tab
->empty
; tab
= restore_lexmin(tab
)) {
3614 enum isl_tab_row_sign sgn
;
3618 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3619 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3621 sgn
= row_sign(tab
, sol
, row
);
3624 tab
->row_sign
[row
] = sgn
;
3625 if (sgn
== isl_tab_row_any
)
3627 if (sgn
== isl_tab_row_any
&& split
== -1)
3629 if (sgn
== isl_tab_row_neg
)
3632 if (row
< tab
->n_row
)
3635 struct isl_vec
*ineq
;
3637 split
= context
->op
->best_split(context
, tab
);
3640 ineq
= get_row_parameter_ineq(tab
, split
);
3644 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3645 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3647 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3648 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3650 tab
->row_sign
[split
] = isl_tab_row_pos
;
3652 find_in_pos(sol
, tab
, ineq
->el
);
3653 tab
->row_sign
[split
] = isl_tab_row_neg
;
3655 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3656 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3658 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3666 row
= first_non_integer_row(tab
, &flags
);
3669 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3670 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3671 if (isl_tab_mark_empty(tab
) < 0)
3675 row
= add_cut(tab
, row
);
3676 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3677 struct isl_vec
*div
;
3678 struct isl_vec
*ineq
;
3680 div
= get_row_split_div(tab
, row
);
3683 d
= context
->op
->get_div(context
, tab
, div
);
3687 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3691 no_sol_in_strict(sol
, tab
, ineq
);
3692 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3693 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3695 if (sol
->error
|| !context
->op
->is_ok(context
))
3697 tab
= set_row_cst_to_div(tab
, row
, d
);
3698 if (context
->op
->is_empty(context
))
3701 row
= add_parametric_cut(tab
, row
, context
);
3714 /* Compute the lexicographic minimum of the set represented by the main
3715 * tableau "tab" within the context "sol->context_tab".
3717 * As a preprocessing step, we first transfer all the purely parametric
3718 * equalities from the main tableau to the context tableau, i.e.,
3719 * parameters that have been pivoted to a row.
3720 * These equalities are ignored by the main algorithm, because the
3721 * corresponding rows may not be marked as being non-negative.
3722 * In parts of the context where the added equality does not hold,
3723 * the main tableau is marked as being empty.
3725 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3734 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3738 if (tab
->row_var
[row
] < 0)
3740 if (tab
->row_var
[row
] >= tab
->n_param
&&
3741 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3743 if (tab
->row_var
[row
] < tab
->n_param
)
3744 p
= tab
->row_var
[row
];
3746 p
= tab
->row_var
[row
]
3747 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3749 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3752 get_row_parameter_line(tab
, row
, eq
->el
);
3753 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3754 eq
= isl_vec_normalize(eq
);
3757 no_sol_in_strict(sol
, tab
, eq
);
3759 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3761 no_sol_in_strict(sol
, tab
, eq
);
3762 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3764 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3768 if (isl_tab_mark_redundant(tab
, row
) < 0)
3771 if (sol
->context
->op
->is_empty(sol
->context
))
3774 row
= tab
->n_redundant
- 1;
3777 find_solutions(sol
, tab
);
3788 static void sol_map_find_solutions(struct isl_sol_map
*sol_map
,
3789 struct isl_tab
*tab
)
3791 find_solutions_main(&sol_map
->sol
, tab
);
3794 /* Check if integer division "div" of "dom" also occurs in "bmap".
3795 * If so, return its position within the divs.
3796 * If not, return -1.
3798 static int find_context_div(struct isl_basic_map
*bmap
,
3799 struct isl_basic_set
*dom
, unsigned div
)
3802 unsigned b_dim
= isl_dim_total(bmap
->dim
);
3803 unsigned d_dim
= isl_dim_total(dom
->dim
);
3805 if (isl_int_is_zero(dom
->div
[div
][0]))
3807 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
3810 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3811 if (isl_int_is_zero(bmap
->div
[i
][0]))
3813 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
3814 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
3816 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
3822 /* The correspondence between the variables in the main tableau,
3823 * the context tableau, and the input map and domain is as follows.
3824 * The first n_param and the last n_div variables of the main tableau
3825 * form the variables of the context tableau.
3826 * In the basic map, these n_param variables correspond to the
3827 * parameters and the input dimensions. In the domain, they correspond
3828 * to the parameters and the set dimensions.
3829 * The n_div variables correspond to the integer divisions in the domain.
3830 * To ensure that everything lines up, we may need to copy some of the
3831 * integer divisions of the domain to the map. These have to be placed
3832 * in the same order as those in the context and they have to be placed
3833 * after any other integer divisions that the map may have.
3834 * This function performs the required reordering.
3836 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
3837 struct isl_basic_set
*dom
)
3843 for (i
= 0; i
< dom
->n_div
; ++i
)
3844 if (find_context_div(bmap
, dom
, i
) != -1)
3846 other
= bmap
->n_div
- common
;
3847 if (dom
->n_div
- common
> 0) {
3848 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
3849 dom
->n_div
- common
, 0, 0);
3853 for (i
= 0; i
< dom
->n_div
; ++i
) {
3854 int pos
= find_context_div(bmap
, dom
, i
);
3856 pos
= isl_basic_map_alloc_div(bmap
);
3859 isl_int_set_si(bmap
->div
[pos
][0], 0);
3861 if (pos
!= other
+ i
)
3862 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
3866 isl_basic_map_free(bmap
);
3870 /* Compute the lexicographic minimum (or maximum if "max" is set)
3871 * of "bmap" over the domain "dom" and return the result as a map.
3872 * If "empty" is not NULL, then *empty is assigned a set that
3873 * contains those parts of the domain where there is no solution.
3874 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3875 * then we compute the rational optimum. Otherwise, we compute
3876 * the integral optimum.
3878 * We perform some preprocessing. As the PILP solver does not
3879 * handle implicit equalities very well, we first make sure all
3880 * the equalities are explicitly available.
3881 * We also make sure the divs in the domain are properly order,
3882 * because they will be added one by one in the given order
3883 * during the construction of the solution map.
3885 struct isl_map
*isl_tab_basic_map_partial_lexopt(
3886 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
3887 struct isl_set
**empty
, int max
)
3889 struct isl_tab
*tab
;
3890 struct isl_map
*result
= NULL
;
3891 struct isl_sol_map
*sol_map
= NULL
;
3892 struct isl_context
*context
;
3893 struct isl_basic_map
*eq
;
3900 isl_assert(bmap
->ctx
,
3901 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
3903 eq
= isl_basic_map_copy(bmap
);
3904 eq
= isl_basic_map_intersect_domain(eq
, isl_basic_set_copy(dom
));
3905 eq
= isl_basic_map_affine_hull(eq
);
3906 bmap
= isl_basic_map_intersect(bmap
, eq
);
3909 dom
= isl_basic_set_order_divs(dom
);
3910 bmap
= align_context_divs(bmap
, dom
);
3912 sol_map
= sol_map_init(bmap
, dom
, !!empty
, max
);
3916 context
= sol_map
->sol
.context
;
3917 if (isl_basic_set_fast_is_empty(context
->op
->peek_basic_set(context
)))
3919 else if (isl_basic_map_fast_is_empty(bmap
))
3920 sol_map_add_empty_if_needed(sol_map
,
3921 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
3923 tab
= tab_for_lexmin(bmap
,
3924 context
->op
->peek_basic_set(context
), 1, max
);
3925 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
3926 sol_map_find_solutions(sol_map
, tab
);
3928 if (sol_map
->sol
.error
)
3931 result
= isl_map_copy(sol_map
->map
);
3933 *empty
= isl_set_copy(sol_map
->empty
);
3934 sol_free(&sol_map
->sol
);
3935 isl_basic_map_free(bmap
);
3938 sol_free(&sol_map
->sol
);
3939 isl_basic_map_free(bmap
);
3943 struct isl_sol_for
{
3945 int (*fn
)(__isl_take isl_basic_set
*dom
,
3946 __isl_take isl_mat
*map
, void *user
);
3950 static void sol_for_free(struct isl_sol_for
*sol_for
)
3952 if (sol_for
->sol
.context
)
3953 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
3957 static void sol_for_free_wrap(struct isl_sol
*sol
)
3959 sol_for_free((struct isl_sol_for
*)sol
);
3962 /* Add the solution identified by the tableau and the context tableau.
3964 * See documentation of sol_add for more details.
3966 * Instead of constructing a basic map, this function calls a user
3967 * defined function with the current context as a basic set and
3968 * an affine matrix reprenting the relation between the input and output.
3969 * The number of rows in this matrix is equal to one plus the number
3970 * of output variables. The number of columns is equal to one plus
3971 * the total dimension of the context, i.e., the number of parameters,
3972 * input variables and divs. Since some of the columns in the matrix
3973 * may refer to the divs, the basic set is not simplified.
3974 * (Simplification may reorder or remove divs.)
3976 static void sol_for_add(struct isl_sol_for
*sol
,
3977 struct isl_basic_set
*dom
, struct isl_mat
*M
)
3979 if (sol
->sol
.error
|| !dom
|| !M
)
3982 dom
= isl_basic_set_simplify(dom
);
3983 dom
= isl_basic_set_finalize(dom
);
3985 if (sol
->fn(isl_basic_set_copy(dom
), isl_mat_copy(M
), sol
->user
) < 0)
3988 isl_basic_set_free(dom
);
3992 isl_basic_set_free(dom
);
3997 static void sol_for_add_wrap(struct isl_sol
*sol
,
3998 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4000 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4003 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4004 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4008 struct isl_sol_for
*sol_for
= NULL
;
4009 struct isl_dim
*dom_dim
;
4010 struct isl_basic_set
*dom
= NULL
;
4012 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4016 dom_dim
= isl_dim_domain(isl_dim_copy(bmap
->dim
));
4017 dom
= isl_basic_set_universe(dom_dim
);
4019 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4020 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4021 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4023 sol_for
->user
= user
;
4024 sol_for
->sol
.max
= max
;
4025 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4026 sol_for
->sol
.add
= &sol_for_add_wrap
;
4027 sol_for
->sol
.add_empty
= NULL
;
4028 sol_for
->sol
.free
= &sol_for_free_wrap
;
4030 sol_for
->sol
.context
= isl_context_alloc(dom
);
4031 if (!sol_for
->sol
.context
)
4034 isl_basic_set_free(dom
);
4037 isl_basic_set_free(dom
);
4038 sol_for_free(sol_for
);
4042 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4043 struct isl_tab
*tab
)
4045 find_solutions_main(&sol_for
->sol
, tab
);
4048 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4049 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4053 struct isl_sol_for
*sol_for
= NULL
;
4055 bmap
= isl_basic_map_copy(bmap
);
4059 bmap
= isl_basic_map_detect_equalities(bmap
);
4060 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4062 if (isl_basic_map_fast_is_empty(bmap
))
4065 struct isl_tab
*tab
;
4066 struct isl_context
*context
= sol_for
->sol
.context
;
4067 tab
= tab_for_lexmin(bmap
,
4068 context
->op
->peek_basic_set(context
), 1, max
);
4069 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4070 sol_for_find_solutions(sol_for
, tab
);
4071 if (sol_for
->sol
.error
)
4075 sol_free(&sol_for
->sol
);
4076 isl_basic_map_free(bmap
);
4079 sol_free(&sol_for
->sol
);
4080 isl_basic_map_free(bmap
);
4084 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map
*bmap
,
4085 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4089 return isl_basic_map_foreach_lexopt(bmap
, 0, fn
, user
);
4092 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map
*bmap
,
4093 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4097 return isl_basic_map_foreach_lexopt(bmap
, 1, fn
, user
);