1 #include <isl_constraint.h>
3 #include <isl_polynomial_private.h>
8 struct isl_bound
*bound
;
11 int test_monotonicity
;
14 isl_qpolynomial
*poly
;
15 isl_pw_qpolynomial_fold
*pwf
;
16 isl_pw_qpolynomial_fold
*pwf_tight
;
19 static int propagate_on_domain(__isl_take isl_basic_set
*bset
,
20 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
);
22 /* Check whether the polynomial "poly" has sign "sign" over "bset",
23 * i.e., if sign == 1, check that the lower bound on the polynomial
24 * is non-negative and if sign == -1, check that the upper bound on
25 * the polynomial is non-positive.
27 static int has_sign(__isl_keep isl_basic_set
*bset
,
28 __isl_keep isl_qpolynomial
*poly
, int sign
, int *signs
)
30 struct range_data data_m
;
37 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
38 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
40 bset
= isl_basic_set_copy(bset
);
41 poly
= isl_qpolynomial_copy(poly
);
43 bset
= isl_basic_set_move_dims(bset
, isl_dim_set
, 0,
44 isl_dim_param
, 0, nparam
);
45 poly
= isl_qpolynomial_move_dims(poly
, isl_dim_set
, 0,
46 isl_dim_param
, 0, nparam
);
48 dim
= isl_qpolynomial_get_dim(poly
);
49 dim
= isl_dim_drop(dim
, isl_dim_set
, 0, isl_dim_size(dim
, isl_dim_set
));
51 data_m
.test_monotonicity
= 0;
53 data_m
.pwf
= isl_pw_qpolynomial_fold_zero(dim
);
56 data_m
.pwf_tight
= NULL
;
58 if (propagate_on_domain(bset
, poly
, &data_m
) < 0)
62 opt
= isl_pw_qpolynomial_fold_min(data_m
.pwf
);
64 opt
= isl_pw_qpolynomial_fold_max(data_m
.pwf
);
68 else if (isl_qpolynomial_is_nan(opt
) ||
69 isl_qpolynomial_is_infty(opt
) ||
70 isl_qpolynomial_is_neginfty(opt
))
73 r
= sign
* isl_qpolynomial_sgn(opt
) >= 0;
75 isl_qpolynomial_free(opt
);
79 isl_pw_qpolynomial_fold_free(data_m
.pwf
);
83 /* Return 1 if poly is monotonically increasing in the last set variable,
84 * -1 if poly is monotonically decreasing in the last set variable,
88 * We simply check the sign of p(x+1)-p(x)
90 static int monotonicity(__isl_keep isl_basic_set
*bset
,
91 __isl_keep isl_qpolynomial
*poly
, struct range_data
*data
)
95 isl_qpolynomial
*sub
= NULL
;
96 isl_qpolynomial
*diff
= NULL
;
101 ctx
= isl_qpolynomial_get_ctx(poly
);
102 dim
= isl_qpolynomial_get_dim(poly
);
104 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
106 sub
= isl_qpolynomial_var(isl_dim_copy(dim
), isl_dim_set
, nvar
- 1);
107 sub
= isl_qpolynomial_add(sub
,
108 isl_qpolynomial_rat_cst(dim
, ctx
->one
, ctx
->one
));
110 diff
= isl_qpolynomial_substitute(isl_qpolynomial_copy(poly
),
111 isl_dim_set
, nvar
- 1, 1, &sub
);
112 diff
= isl_qpolynomial_sub(diff
, isl_qpolynomial_copy(poly
));
114 s
= has_sign(bset
, diff
, 1, data
->signs
);
120 s
= has_sign(bset
, diff
, -1, data
->signs
);
127 isl_qpolynomial_free(diff
);
128 isl_qpolynomial_free(sub
);
132 isl_qpolynomial_free(diff
);
133 isl_qpolynomial_free(sub
);
137 static __isl_give isl_qpolynomial
*bound2poly(__isl_take isl_constraint
*bound
,
138 __isl_take isl_dim
*dim
, unsigned pos
, int sign
)
142 return isl_qpolynomial_infty(dim
);
144 return isl_qpolynomial_neginfty(dim
);
147 return isl_qpolynomial_from_constraint(bound
, isl_dim_set
, pos
);
150 static int bound_is_integer(__isl_take isl_constraint
*bound
, unsigned pos
)
159 isl_constraint_get_coefficient(bound
, isl_dim_set
, pos
, &c
);
160 is_int
= isl_int_is_one(c
) || isl_int_is_negone(c
);
166 struct isl_fixed_sign_data
{
169 isl_qpolynomial
*poly
;
172 /* Add term "term" to data->poly if it has sign data->sign.
173 * The sign is determined based on the signs of the parameters
174 * and variables in data->signs.
176 static int collect_fixed_sign_terms(__isl_take isl_term
*term
, void *user
)
178 struct isl_fixed_sign_data
*data
= (struct isl_fixed_sign_data
*)user
;
188 nparam
= isl_term_dim(term
, isl_dim_param
);
189 nvar
= isl_term_dim(term
, isl_dim_set
);
191 isl_assert(isl_term_get_ctx(term
), isl_term_dim(term
, isl_dim_div
) == 0,
197 isl_term_get_num(term
, &n
);
198 isl_term_get_den(term
, &d
);
200 sign
= isl_int_sgn(n
);
201 for (i
= 0; i
< nparam
; ++i
) {
202 if (data
->signs
[i
] > 0)
204 if (isl_term_get_exp(term
, isl_dim_param
, i
) % 2)
207 for (i
= 0; i
< nvar
; ++i
) {
208 if (data
->signs
[nparam
+ i
] > 0)
210 if (isl_term_get_exp(term
, isl_dim_set
, i
) % 2)
214 if (sign
== data
->sign
) {
215 isl_qpolynomial
*t
= isl_qpolynomial_from_term(term
);
217 data
->poly
= isl_qpolynomial_add(data
->poly
, t
);
227 /* Construct and return a polynomial that consists of the terms
228 * in "poly" that have sign "sign".
230 static __isl_give isl_qpolynomial
*fixed_sign_terms(
231 __isl_keep isl_qpolynomial
*poly
, int *signs
, int sign
)
233 struct isl_fixed_sign_data data
= { signs
, sign
};
234 data
.poly
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(poly
));
236 if (isl_qpolynomial_foreach_term(poly
, collect_fixed_sign_terms
, &data
) < 0)
241 isl_qpolynomial_free(data
.poly
);
245 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
246 * depending on whether the result has been determined to be tight.
248 static int add_guarded_poly(__isl_take isl_basic_set
*bset
,
249 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
251 enum isl_fold type
= data
->sign
< 0 ? isl_fold_min
: isl_fold_max
;
253 isl_qpolynomial_fold
*fold
;
254 isl_pw_qpolynomial_fold
*pwf
;
256 fold
= isl_qpolynomial_fold_alloc(type
, poly
);
257 set
= isl_set_from_basic_set(bset
);
258 pwf
= isl_pw_qpolynomial_fold_alloc(set
, fold
);
260 data
->pwf_tight
= isl_pw_qpolynomial_fold_add(
261 data
->pwf_tight
, pwf
);
263 data
->pwf
= isl_pw_qpolynomial_fold_add(data
->pwf
, pwf
);
268 /* Given a lower and upper bound on the final variable and constraints
269 * on the remaining variables where these bounds are active,
270 * eliminate the variable from data->poly based on these bounds.
271 * If the polynomial has been determined to be monotonic
272 * in the variable, then simply plug in the appropriate bound.
273 * If the current polynomial is tight and if this bound is integer,
274 * then the result is still tight. In all other cases, the results
276 * Otherwise, plug in the largest bound (in absolute value) in
277 * the positive terms (if an upper bound is wanted) or the negative terms
278 * (if a lower bounded is wanted) and the other bound in the other terms.
280 * If all variables have been eliminated, then record the result.
281 * Ohterwise, recurse on the next variable.
283 static int propagate_on_bound_pair(__isl_take isl_constraint
*lower
,
284 __isl_take isl_constraint
*upper
, __isl_take isl_basic_set
*bset
,
287 struct range_data
*data
= (struct range_data
*)user
;
288 int save_tight
= data
->tight
;
289 isl_qpolynomial
*poly
;
293 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
295 if (data
->monotonicity
) {
296 isl_qpolynomial
*sub
;
297 isl_dim
*dim
= isl_qpolynomial_get_dim(data
->poly
);
298 if (data
->monotonicity
* data
->sign
> 0) {
300 data
->tight
= bound_is_integer(upper
, nvar
);
301 sub
= bound2poly(upper
, dim
, nvar
, 1);
302 isl_constraint_free(lower
);
305 data
->tight
= bound_is_integer(lower
, nvar
);
306 sub
= bound2poly(lower
, dim
, nvar
, -1);
307 isl_constraint_free(upper
);
309 poly
= isl_qpolynomial_copy(data
->poly
);
310 poly
= isl_qpolynomial_substitute(poly
, isl_dim_set
, nvar
, 1, &sub
);
311 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_set
, nvar
, 1);
313 isl_qpolynomial_free(sub
);
315 isl_qpolynomial
*l
, *u
;
316 isl_qpolynomial
*pos
, *neg
;
317 isl_dim
*dim
= isl_qpolynomial_get_dim(data
->poly
);
318 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
319 int sign
= data
->sign
* data
->signs
[nparam
+ nvar
];
323 u
= bound2poly(upper
, isl_dim_copy(dim
), nvar
, 1);
324 l
= bound2poly(lower
, dim
, nvar
, -1);
326 pos
= fixed_sign_terms(data
->poly
, data
->signs
, sign
);
327 neg
= fixed_sign_terms(data
->poly
, data
->signs
, -sign
);
329 pos
= isl_qpolynomial_substitute(pos
, isl_dim_set
, nvar
, 1, &u
);
330 neg
= isl_qpolynomial_substitute(neg
, isl_dim_set
, nvar
, 1, &l
);
332 poly
= isl_qpolynomial_add(pos
, neg
);
333 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_set
, nvar
, 1);
335 isl_qpolynomial_free(u
);
336 isl_qpolynomial_free(l
);
339 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
340 r
= add_guarded_poly(bset
, poly
, data
);
342 r
= propagate_on_domain(bset
, poly
, data
);
344 data
->tight
= save_tight
;
349 /* Recursively perform range propagation on the polynomial "poly"
350 * defined over the basic set "bset" and collect the results in "data".
352 static int propagate_on_domain(__isl_take isl_basic_set
*bset
,
353 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
355 isl_qpolynomial
*save_poly
= data
->poly
;
356 int save_monotonicity
= data
->monotonicity
;
362 d
= isl_basic_set_dim(bset
, isl_dim_set
);
363 isl_assert(bset
->ctx
, d
>= 1, goto error
);
365 if (isl_qpolynomial_is_cst(poly
, NULL
, NULL
)) {
366 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, 0, d
);
367 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_set
, 0, d
);
368 return add_guarded_poly(bset
, poly
, data
);
371 if (data
->test_monotonicity
)
372 data
->monotonicity
= monotonicity(bset
, poly
, data
);
374 data
->monotonicity
= 0;
375 if (data
->monotonicity
< -1)
379 if (isl_basic_set_foreach_bound_pair(bset
, isl_dim_set
, d
- 1,
380 &propagate_on_bound_pair
, data
) < 0)
383 isl_basic_set_free(bset
);
384 isl_qpolynomial_free(poly
);
385 data
->monotonicity
= save_monotonicity
;
386 data
->poly
= save_poly
;
390 isl_basic_set_free(bset
);
391 isl_qpolynomial_free(poly
);
392 data
->monotonicity
= save_monotonicity
;
393 data
->poly
= save_poly
;
397 static int basic_guarded_poly_bound(__isl_take isl_basic_set
*bset
, void *user
)
399 struct range_data
*data
= (struct range_data
*)user
;
400 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
401 unsigned dim
= isl_basic_set_dim(bset
, isl_dim_set
);
406 data
->signs
= isl_alloc_array(bset
->ctx
, int,
407 isl_basic_set_dim(bset
, isl_dim_all
));
409 if (isl_basic_set_dims_get_sign(bset
, isl_dim_set
, 0, dim
,
410 data
->signs
+ nparam
) < 0)
412 if (isl_basic_set_dims_get_sign(bset
, isl_dim_param
, 0, nparam
,
416 r
= propagate_on_domain(bset
, isl_qpolynomial_copy(data
->poly
), data
);
423 isl_basic_set_free(bset
);
427 static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set
*bset
,
428 __isl_take isl_qpolynomial
*poly
, struct range_data
*data
)
430 unsigned nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
431 unsigned nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
438 return add_guarded_poly(bset
, poly
, data
);
440 set
= isl_set_from_basic_set(bset
);
441 set
= isl_set_split_dims(set
, isl_dim_param
, 0, nparam
);
442 set
= isl_set_split_dims(set
, isl_dim_set
, 0, nvar
);
446 data
->test_monotonicity
= 1;
447 if (isl_set_foreach_basic_set(set
, &basic_guarded_poly_bound
, data
) < 0)
451 isl_qpolynomial_free(poly
);
456 isl_qpolynomial_free(poly
);
460 int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set
*bset
,
461 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
463 struct range_data data
;
466 data
.pwf
= bound
->pwf
;
467 data
.pwf_tight
= bound
->pwf_tight
;
468 data
.tight
= bound
->check_tight
;
469 if (bound
->type
== isl_fold_min
)
474 r
= qpolynomial_bound_on_domain_range(bset
, poly
, &data
);
476 bound
->pwf
= data
.pwf
;
477 bound
->pwf_tight
= data
.pwf_tight
;