isl_*_partial_lex{min,max}_pw_multi_aff: handle existentially quantified vars
[isl.git] / isl_scheduler.c
blob034580acbeb424f6435c63a48fb57f51d51e2c39
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
18 #include <isl/hash.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl/set.h>
25 #include <isl/union_set.h>
26 #include <isl_seq.h>
27 #include <isl_tab.h>
28 #include <isl_dim_map.h>
29 #include <isl/map_to_basic_set.h>
30 #include <isl_sort.h>
31 #include <isl_options_private.h>
32 #include <isl_tarjan.h>
33 #include <isl_morph.h>
34 #include <isl/ilp.h>
35 #include <isl_val_private.h>
38 * The scheduling algorithm implemented in this file was inspired by
39 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
40 * Parallelization and Locality Optimization in the Polyhedral Model".
43 enum isl_edge_type {
44 isl_edge_validity = 0,
45 isl_edge_first = isl_edge_validity,
46 isl_edge_coincidence,
47 isl_edge_condition,
48 isl_edge_conditional_validity,
49 isl_edge_proximity,
50 isl_edge_last = isl_edge_proximity,
51 isl_edge_local
54 /* The constraints that need to be satisfied by a schedule on "domain".
56 * "context" specifies extra constraints on the parameters.
58 * "validity" constraints map domain elements i to domain elements
59 * that should be scheduled after i. (Hard constraint)
60 * "proximity" constraints map domain elements i to domains elements
61 * that should be scheduled as early as possible after i (or before i).
62 * (Soft constraint)
64 * "condition" and "conditional_validity" constraints map possibly "tagged"
65 * domain elements i -> s to "tagged" domain elements j -> t.
66 * The elements of the "conditional_validity" constraints, but without the
67 * tags (i.e., the elements i -> j) are treated as validity constraints,
68 * except that during the construction of a tilable band,
69 * the elements of the "conditional_validity" constraints may be violated
70 * provided that all adjacent elements of the "condition" constraints
71 * are local within the band.
72 * A dependence is local within a band if domain and range are mapped
73 * to the same schedule point by the band.
75 struct isl_schedule_constraints {
76 isl_union_set *domain;
77 isl_set *context;
79 isl_union_map *constraint[isl_edge_last + 1];
82 __isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
83 __isl_keep isl_schedule_constraints *sc)
85 isl_ctx *ctx;
86 isl_schedule_constraints *sc_copy;
87 enum isl_edge_type i;
89 ctx = isl_union_set_get_ctx(sc->domain);
90 sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
91 if (!sc_copy)
92 return NULL;
94 sc_copy->domain = isl_union_set_copy(sc->domain);
95 sc_copy->context = isl_set_copy(sc->context);
96 if (!sc_copy->domain || !sc_copy->context)
97 return isl_schedule_constraints_free(sc_copy);
99 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
100 sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
101 if (!sc_copy->constraint[i])
102 return isl_schedule_constraints_free(sc_copy);
105 return sc_copy;
109 /* Construct an isl_schedule_constraints object for computing a schedule
110 * on "domain". The initial object does not impose any constraints.
112 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
113 __isl_take isl_union_set *domain)
115 isl_ctx *ctx;
116 isl_space *space;
117 isl_schedule_constraints *sc;
118 isl_union_map *empty;
119 enum isl_edge_type i;
121 if (!domain)
122 return NULL;
124 ctx = isl_union_set_get_ctx(domain);
125 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
126 if (!sc)
127 goto error;
129 space = isl_union_set_get_space(domain);
130 sc->domain = domain;
131 sc->context = isl_set_universe(isl_space_copy(space));
132 empty = isl_union_map_empty(space);
133 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
134 sc->constraint[i] = isl_union_map_copy(empty);
135 if (!sc->constraint[i])
136 sc->domain = isl_union_set_free(sc->domain);
138 isl_union_map_free(empty);
140 if (!sc->domain || !sc->context)
141 return isl_schedule_constraints_free(sc);
143 return sc;
144 error:
145 isl_union_set_free(domain);
146 return NULL;
149 /* Replace the context of "sc" by "context".
151 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context(
152 __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context)
154 if (!sc || !context)
155 goto error;
157 isl_set_free(sc->context);
158 sc->context = context;
160 return sc;
161 error:
162 isl_schedule_constraints_free(sc);
163 isl_set_free(context);
164 return NULL;
167 /* Replace the validity constraints of "sc" by "validity".
169 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
170 __isl_take isl_schedule_constraints *sc,
171 __isl_take isl_union_map *validity)
173 if (!sc || !validity)
174 goto error;
176 isl_union_map_free(sc->constraint[isl_edge_validity]);
177 sc->constraint[isl_edge_validity] = validity;
179 return sc;
180 error:
181 isl_schedule_constraints_free(sc);
182 isl_union_map_free(validity);
183 return NULL;
186 /* Replace the coincidence constraints of "sc" by "coincidence".
188 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
189 __isl_take isl_schedule_constraints *sc,
190 __isl_take isl_union_map *coincidence)
192 if (!sc || !coincidence)
193 goto error;
195 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
196 sc->constraint[isl_edge_coincidence] = coincidence;
198 return sc;
199 error:
200 isl_schedule_constraints_free(sc);
201 isl_union_map_free(coincidence);
202 return NULL;
205 /* Replace the proximity constraints of "sc" by "proximity".
207 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
208 __isl_take isl_schedule_constraints *sc,
209 __isl_take isl_union_map *proximity)
211 if (!sc || !proximity)
212 goto error;
214 isl_union_map_free(sc->constraint[isl_edge_proximity]);
215 sc->constraint[isl_edge_proximity] = proximity;
217 return sc;
218 error:
219 isl_schedule_constraints_free(sc);
220 isl_union_map_free(proximity);
221 return NULL;
224 /* Replace the conditional validity constraints of "sc" by "condition"
225 * and "validity".
227 __isl_give isl_schedule_constraints *
228 isl_schedule_constraints_set_conditional_validity(
229 __isl_take isl_schedule_constraints *sc,
230 __isl_take isl_union_map *condition,
231 __isl_take isl_union_map *validity)
233 if (!sc || !condition || !validity)
234 goto error;
236 isl_union_map_free(sc->constraint[isl_edge_condition]);
237 sc->constraint[isl_edge_condition] = condition;
238 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
239 sc->constraint[isl_edge_conditional_validity] = validity;
241 return sc;
242 error:
243 isl_schedule_constraints_free(sc);
244 isl_union_map_free(condition);
245 isl_union_map_free(validity);
246 return NULL;
249 __isl_null isl_schedule_constraints *isl_schedule_constraints_free(
250 __isl_take isl_schedule_constraints *sc)
252 enum isl_edge_type i;
254 if (!sc)
255 return NULL;
257 isl_union_set_free(sc->domain);
258 isl_set_free(sc->context);
259 for (i = isl_edge_first; i <= isl_edge_last; ++i)
260 isl_union_map_free(sc->constraint[i]);
262 free(sc);
264 return NULL;
267 isl_ctx *isl_schedule_constraints_get_ctx(
268 __isl_keep isl_schedule_constraints *sc)
270 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
273 /* Return the domain of "sc".
275 __isl_give isl_union_set *isl_schedule_constraints_get_domain(
276 __isl_keep isl_schedule_constraints *sc)
278 if (!sc)
279 return NULL;
281 return isl_union_set_copy(sc->domain);
284 /* Return the validity constraints of "sc".
286 __isl_give isl_union_map *isl_schedule_constraints_get_validity(
287 __isl_keep isl_schedule_constraints *sc)
289 if (!sc)
290 return NULL;
292 return isl_union_map_copy(sc->constraint[isl_edge_validity]);
295 /* Return the coincidence constraints of "sc".
297 __isl_give isl_union_map *isl_schedule_constraints_get_coincidence(
298 __isl_keep isl_schedule_constraints *sc)
300 if (!sc)
301 return NULL;
303 return isl_union_map_copy(sc->constraint[isl_edge_coincidence]);
306 /* Return the proximity constraints of "sc".
308 __isl_give isl_union_map *isl_schedule_constraints_get_proximity(
309 __isl_keep isl_schedule_constraints *sc)
311 if (!sc)
312 return NULL;
314 return isl_union_map_copy(sc->constraint[isl_edge_proximity]);
317 /* Return the conditional validity constraints of "sc".
319 __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity(
320 __isl_keep isl_schedule_constraints *sc)
322 if (!sc)
323 return NULL;
325 return
326 isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]);
329 /* Return the conditions for the conditional validity constraints of "sc".
331 __isl_give isl_union_map *
332 isl_schedule_constraints_get_conditional_validity_condition(
333 __isl_keep isl_schedule_constraints *sc)
335 if (!sc)
336 return NULL;
338 return isl_union_map_copy(sc->constraint[isl_edge_condition]);
341 /* Can a schedule constraint of type "type" be tagged?
343 static int may_be_tagged(enum isl_edge_type type)
345 if (type == isl_edge_condition || type == isl_edge_conditional_validity)
346 return 1;
347 return 0;
350 /* Apply "umap" to the domains of the wrapped relations
351 * inside the domain and range of "c".
353 * That is, for each map of the form
355 * [D -> S] -> [E -> T]
357 * in "c", apply "umap" to D and E.
359 * D is exposed by currying the relation to
361 * D -> [S -> [E -> T]]
363 * E is exposed by doing the same to the inverse of "c".
365 static __isl_give isl_union_map *apply_factor_domain(
366 __isl_take isl_union_map *c, __isl_keep isl_union_map *umap)
368 c = isl_union_map_curry(c);
369 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
370 c = isl_union_map_uncurry(c);
372 c = isl_union_map_reverse(c);
373 c = isl_union_map_curry(c);
374 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
375 c = isl_union_map_uncurry(c);
376 c = isl_union_map_reverse(c);
378 return c;
381 /* Apply "umap" to domain and range of "c".
382 * If "tag" is set, then "c" may contain tags and then "umap"
383 * needs to be applied to the domains of the wrapped relations
384 * inside the domain and range of "c".
386 static __isl_give isl_union_map *apply(__isl_take isl_union_map *c,
387 __isl_keep isl_union_map *umap, int tag)
389 isl_union_map *t;
391 if (tag)
392 t = isl_union_map_copy(c);
393 c = isl_union_map_apply_domain(c, isl_union_map_copy(umap));
394 c = isl_union_map_apply_range(c, isl_union_map_copy(umap));
395 if (!tag)
396 return c;
397 t = apply_factor_domain(t, umap);
398 c = isl_union_map_union(c, t);
399 return c;
402 /* Apply "umap" to the domain of the schedule constraints "sc".
404 * The two sides of the various schedule constraints are adjusted
405 * accordingly.
407 __isl_give isl_schedule_constraints *isl_schedule_constraints_apply(
408 __isl_take isl_schedule_constraints *sc,
409 __isl_take isl_union_map *umap)
411 enum isl_edge_type i;
413 if (!sc || !umap)
414 goto error;
416 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
417 int tag = may_be_tagged(i);
419 sc->constraint[i] = apply(sc->constraint[i], umap, tag);
420 if (!sc->constraint[i])
421 goto error;
423 sc->domain = isl_union_set_apply(sc->domain, umap);
424 if (!sc->domain)
425 return isl_schedule_constraints_free(sc);
427 return sc;
428 error:
429 isl_schedule_constraints_free(sc);
430 isl_union_map_free(umap);
431 return NULL;
434 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
436 if (!sc)
437 return;
439 fprintf(stderr, "domain: ");
440 isl_union_set_dump(sc->domain);
441 fprintf(stderr, "context: ");
442 isl_set_dump(sc->context);
443 fprintf(stderr, "validity: ");
444 isl_union_map_dump(sc->constraint[isl_edge_validity]);
445 fprintf(stderr, "proximity: ");
446 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
447 fprintf(stderr, "coincidence: ");
448 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
449 fprintf(stderr, "condition: ");
450 isl_union_map_dump(sc->constraint[isl_edge_condition]);
451 fprintf(stderr, "conditional_validity: ");
452 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
455 /* Align the parameters of the fields of "sc".
457 static __isl_give isl_schedule_constraints *
458 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
460 isl_space *space;
461 enum isl_edge_type i;
463 if (!sc)
464 return NULL;
466 space = isl_union_set_get_space(sc->domain);
467 space = isl_space_align_params(space, isl_set_get_space(sc->context));
468 for (i = isl_edge_first; i <= isl_edge_last; ++i)
469 space = isl_space_align_params(space,
470 isl_union_map_get_space(sc->constraint[i]));
472 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
473 sc->constraint[i] = isl_union_map_align_params(
474 sc->constraint[i], isl_space_copy(space));
475 if (!sc->constraint[i])
476 space = isl_space_free(space);
478 sc->context = isl_set_align_params(sc->context, isl_space_copy(space));
479 sc->domain = isl_union_set_align_params(sc->domain, space);
480 if (!sc->context || !sc->domain)
481 return isl_schedule_constraints_free(sc);
483 return sc;
486 /* Return the total number of isl_maps in the constraints of "sc".
488 static __isl_give int isl_schedule_constraints_n_map(
489 __isl_keep isl_schedule_constraints *sc)
491 enum isl_edge_type i;
492 int n = 0;
494 for (i = isl_edge_first; i <= isl_edge_last; ++i)
495 n += isl_union_map_n_map(sc->constraint[i]);
497 return n;
500 /* Internal information about a node that is used during the construction
501 * of a schedule.
502 * space represents the space in which the domain lives
503 * sched is a matrix representation of the schedule being constructed
504 * for this node; if compressed is set, then this schedule is
505 * defined over the compressed domain space
506 * sched_map is an isl_map representation of the same (partial) schedule
507 * sched_map may be NULL; if compressed is set, then this map
508 * is defined over the uncompressed domain space
509 * rank is the number of linearly independent rows in the linear part
510 * of sched
511 * the columns of cmap represent a change of basis for the schedule
512 * coefficients; the first rank columns span the linear part of
513 * the schedule rows
514 * cinv is the inverse of cmap.
515 * ctrans is the transpose of cmap.
516 * start is the first variable in the LP problem in the sequences that
517 * represents the schedule coefficients of this node
518 * nvar is the dimension of the domain
519 * nparam is the number of parameters or 0 if we are not constructing
520 * a parametric schedule
522 * If compressed is set, then hull represents the constraints
523 * that were used to derive the compression, while compress and
524 * decompress map the original space to the compressed space and
525 * vice versa.
527 * scc is the index of SCC (or WCC) this node belongs to
529 * "cluster" is only used inside extract_clusters and identifies
530 * the cluster of SCCs that the node belongs to.
532 * coincident contains a boolean for each of the rows of the schedule,
533 * indicating whether the corresponding scheduling dimension satisfies
534 * the coincidence constraints in the sense that the corresponding
535 * dependence distances are zero.
537 * If the schedule_treat_coalescing option is set, then
538 * "sizes" contains the sizes of the (compressed) instance set
539 * in each direction. If there is no fixed size in a given direction,
540 * then the corresponding size value is set to infinity.
541 * If the schedule_treat_coalescing option or the schedule_max_coefficient
542 * option is set, then "max" contains the maximal values for
543 * schedule coefficients of the (compressed) variables. If no bound
544 * needs to be imposed on a particular variable, then the corresponding
545 * value is negative.
547 struct isl_sched_node {
548 isl_space *space;
549 int compressed;
550 isl_set *hull;
551 isl_multi_aff *compress;
552 isl_multi_aff *decompress;
553 isl_mat *sched;
554 isl_map *sched_map;
555 int rank;
556 isl_mat *cmap;
557 isl_mat *cinv;
558 isl_mat *ctrans;
559 int start;
560 int nvar;
561 int nparam;
563 int scc;
564 int cluster;
566 int *coincident;
568 isl_multi_val *sizes;
569 isl_vec *max;
572 static int node_has_space(const void *entry, const void *val)
574 struct isl_sched_node *node = (struct isl_sched_node *)entry;
575 isl_space *dim = (isl_space *)val;
577 return isl_space_is_equal(node->space, dim);
580 static int node_scc_exactly(struct isl_sched_node *node, int scc)
582 return node->scc == scc;
585 static int node_scc_at_most(struct isl_sched_node *node, int scc)
587 return node->scc <= scc;
590 static int node_scc_at_least(struct isl_sched_node *node, int scc)
592 return node->scc >= scc;
595 /* An edge in the dependence graph. An edge may be used to
596 * ensure validity of the generated schedule, to minimize the dependence
597 * distance or both
599 * map is the dependence relation, with i -> j in the map if j depends on i
600 * tagged_condition and tagged_validity contain the union of all tagged
601 * condition or conditional validity dependence relations that
602 * specialize the dependence relation "map"; that is,
603 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
604 * or "tagged_validity", then i -> j is an element of "map".
605 * If these fields are NULL, then they represent the empty relation.
606 * src is the source node
607 * dst is the sink node
609 * types is a bit vector containing the types of this edge.
610 * validity is set if the edge is used to ensure correctness
611 * coincidence is used to enforce zero dependence distances
612 * proximity is set if the edge is used to minimize dependence distances
613 * condition is set if the edge represents a condition
614 * for a conditional validity schedule constraint
615 * local can only be set for condition edges and indicates that
616 * the dependence distance over the edge should be zero
617 * conditional_validity is set if the edge is used to conditionally
618 * ensure correctness
620 * For validity edges, start and end mark the sequence of inequality
621 * constraints in the LP problem that encode the validity constraint
622 * corresponding to this edge.
624 * During clustering, an edge may be marked "no_merge" if it should
625 * not be used to merge clusters.
626 * The weight is also only used during clustering and it is
627 * an indication of how many schedule dimensions on either side
628 * of the schedule constraints can be aligned.
629 * If the weight is negative, then this means that this edge was postponed
630 * by has_bounded_distances or any_no_merge. The original weight can
631 * be retrieved by adding 1 + graph->max_weight, with "graph"
632 * the graph containing this edge.
634 struct isl_sched_edge {
635 isl_map *map;
636 isl_union_map *tagged_condition;
637 isl_union_map *tagged_validity;
639 struct isl_sched_node *src;
640 struct isl_sched_node *dst;
642 unsigned types;
644 int start;
645 int end;
647 int no_merge;
648 int weight;
651 /* Is "edge" marked as being of type "type"?
653 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
655 return ISL_FL_ISSET(edge->types, 1 << type);
658 /* Mark "edge" as being of type "type".
660 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
662 ISL_FL_SET(edge->types, 1 << type);
665 /* No longer mark "edge" as being of type "type"?
667 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
669 ISL_FL_CLR(edge->types, 1 << type);
672 /* Is "edge" marked as a validity edge?
674 static int is_validity(struct isl_sched_edge *edge)
676 return is_type(edge, isl_edge_validity);
679 /* Mark "edge" as a validity edge.
681 static void set_validity(struct isl_sched_edge *edge)
683 set_type(edge, isl_edge_validity);
686 /* Is "edge" marked as a proximity edge?
688 static int is_proximity(struct isl_sched_edge *edge)
690 return is_type(edge, isl_edge_proximity);
693 /* Is "edge" marked as a local edge?
695 static int is_local(struct isl_sched_edge *edge)
697 return is_type(edge, isl_edge_local);
700 /* Mark "edge" as a local edge.
702 static void set_local(struct isl_sched_edge *edge)
704 set_type(edge, isl_edge_local);
707 /* No longer mark "edge" as a local edge.
709 static void clear_local(struct isl_sched_edge *edge)
711 clear_type(edge, isl_edge_local);
714 /* Is "edge" marked as a coincidence edge?
716 static int is_coincidence(struct isl_sched_edge *edge)
718 return is_type(edge, isl_edge_coincidence);
721 /* Is "edge" marked as a condition edge?
723 static int is_condition(struct isl_sched_edge *edge)
725 return is_type(edge, isl_edge_condition);
728 /* Is "edge" marked as a conditional validity edge?
730 static int is_conditional_validity(struct isl_sched_edge *edge)
732 return is_type(edge, isl_edge_conditional_validity);
735 /* Internal information about the dependence graph used during
736 * the construction of the schedule.
738 * intra_hmap is a cache, mapping dependence relations to their dual,
739 * for dependences from a node to itself
740 * inter_hmap is a cache, mapping dependence relations to their dual,
741 * for dependences between distinct nodes
742 * if compression is involved then the key for these maps
743 * is the original, uncompressed dependence relation, while
744 * the value is the dual of the compressed dependence relation.
746 * n is the number of nodes
747 * node is the list of nodes
748 * maxvar is the maximal number of variables over all nodes
749 * max_row is the allocated number of rows in the schedule
750 * n_row is the current (maximal) number of linearly independent
751 * rows in the node schedules
752 * n_total_row is the current number of rows in the node schedules
753 * band_start is the starting row in the node schedules of the current band
754 * root is set if this graph is the original dependence graph,
755 * without any splitting
757 * sorted contains a list of node indices sorted according to the
758 * SCC to which a node belongs
760 * n_edge is the number of edges
761 * edge is the list of edges
762 * max_edge contains the maximal number of edges of each type;
763 * in particular, it contains the number of edges in the inital graph.
764 * edge_table contains pointers into the edge array, hashed on the source
765 * and sink spaces; there is one such table for each type;
766 * a given edge may be referenced from more than one table
767 * if the corresponding relation appears in more than one of the
768 * sets of dependences; however, for each type there is only
769 * a single edge between a given pair of source and sink space
770 * in the entire graph
772 * node_table contains pointers into the node array, hashed on the space
774 * region contains a list of variable sequences that should be non-trivial
776 * lp contains the (I)LP problem used to obtain new schedule rows
778 * src_scc and dst_scc are the source and sink SCCs of an edge with
779 * conflicting constraints
781 * scc represents the number of components
782 * weak is set if the components are weakly connected
784 * max_weight is used during clustering and represents the maximal
785 * weight of the relevant proximity edges.
787 struct isl_sched_graph {
788 isl_map_to_basic_set *intra_hmap;
789 isl_map_to_basic_set *inter_hmap;
791 struct isl_sched_node *node;
792 int n;
793 int maxvar;
794 int max_row;
795 int n_row;
797 int *sorted;
799 int n_total_row;
800 int band_start;
802 int root;
804 struct isl_sched_edge *edge;
805 int n_edge;
806 int max_edge[isl_edge_last + 1];
807 struct isl_hash_table *edge_table[isl_edge_last + 1];
809 struct isl_hash_table *node_table;
810 struct isl_region *region;
812 isl_basic_set *lp;
814 int src_scc;
815 int dst_scc;
817 int scc;
818 int weak;
820 int max_weight;
823 /* Initialize node_table based on the list of nodes.
825 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
827 int i;
829 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
830 if (!graph->node_table)
831 return -1;
833 for (i = 0; i < graph->n; ++i) {
834 struct isl_hash_table_entry *entry;
835 uint32_t hash;
837 hash = isl_space_get_hash(graph->node[i].space);
838 entry = isl_hash_table_find(ctx, graph->node_table, hash,
839 &node_has_space,
840 graph->node[i].space, 1);
841 if (!entry)
842 return -1;
843 entry->data = &graph->node[i];
846 return 0;
849 /* Return a pointer to the node that lives within the given space,
850 * or NULL if there is no such node.
852 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
853 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
855 struct isl_hash_table_entry *entry;
856 uint32_t hash;
858 hash = isl_space_get_hash(dim);
859 entry = isl_hash_table_find(ctx, graph->node_table, hash,
860 &node_has_space, dim, 0);
862 return entry ? entry->data : NULL;
865 static int edge_has_src_and_dst(const void *entry, const void *val)
867 const struct isl_sched_edge *edge = entry;
868 const struct isl_sched_edge *temp = val;
870 return edge->src == temp->src && edge->dst == temp->dst;
873 /* Add the given edge to graph->edge_table[type].
875 static isl_stat graph_edge_table_add(isl_ctx *ctx,
876 struct isl_sched_graph *graph, enum isl_edge_type type,
877 struct isl_sched_edge *edge)
879 struct isl_hash_table_entry *entry;
880 uint32_t hash;
882 hash = isl_hash_init();
883 hash = isl_hash_builtin(hash, edge->src);
884 hash = isl_hash_builtin(hash, edge->dst);
885 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
886 &edge_has_src_and_dst, edge, 1);
887 if (!entry)
888 return isl_stat_error;
889 entry->data = edge;
891 return isl_stat_ok;
894 /* Allocate the edge_tables based on the maximal number of edges of
895 * each type.
897 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
899 int i;
901 for (i = 0; i <= isl_edge_last; ++i) {
902 graph->edge_table[i] = isl_hash_table_alloc(ctx,
903 graph->max_edge[i]);
904 if (!graph->edge_table[i])
905 return -1;
908 return 0;
911 /* If graph->edge_table[type] contains an edge from the given source
912 * to the given destination, then return the hash table entry of this edge.
913 * Otherwise, return NULL.
915 static struct isl_hash_table_entry *graph_find_edge_entry(
916 struct isl_sched_graph *graph,
917 enum isl_edge_type type,
918 struct isl_sched_node *src, struct isl_sched_node *dst)
920 isl_ctx *ctx = isl_space_get_ctx(src->space);
921 uint32_t hash;
922 struct isl_sched_edge temp = { .src = src, .dst = dst };
924 hash = isl_hash_init();
925 hash = isl_hash_builtin(hash, temp.src);
926 hash = isl_hash_builtin(hash, temp.dst);
927 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
928 &edge_has_src_and_dst, &temp, 0);
932 /* If graph->edge_table[type] contains an edge from the given source
933 * to the given destination, then return this edge.
934 * Otherwise, return NULL.
936 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
937 enum isl_edge_type type,
938 struct isl_sched_node *src, struct isl_sched_node *dst)
940 struct isl_hash_table_entry *entry;
942 entry = graph_find_edge_entry(graph, type, src, dst);
943 if (!entry)
944 return NULL;
946 return entry->data;
949 /* Check whether the dependence graph has an edge of the given type
950 * between the given two nodes.
952 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
953 enum isl_edge_type type,
954 struct isl_sched_node *src, struct isl_sched_node *dst)
956 struct isl_sched_edge *edge;
957 isl_bool empty;
959 edge = graph_find_edge(graph, type, src, dst);
960 if (!edge)
961 return 0;
963 empty = isl_map_plain_is_empty(edge->map);
964 if (empty < 0)
965 return isl_bool_error;
967 return !empty;
970 /* Look for any edge with the same src, dst and map fields as "model".
972 * Return the matching edge if one can be found.
973 * Return "model" if no matching edge is found.
974 * Return NULL on error.
976 static struct isl_sched_edge *graph_find_matching_edge(
977 struct isl_sched_graph *graph, struct isl_sched_edge *model)
979 enum isl_edge_type i;
980 struct isl_sched_edge *edge;
982 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
983 int is_equal;
985 edge = graph_find_edge(graph, i, model->src, model->dst);
986 if (!edge)
987 continue;
988 is_equal = isl_map_plain_is_equal(model->map, edge->map);
989 if (is_equal < 0)
990 return NULL;
991 if (is_equal)
992 return edge;
995 return model;
998 /* Remove the given edge from all the edge_tables that refer to it.
1000 static void graph_remove_edge(struct isl_sched_graph *graph,
1001 struct isl_sched_edge *edge)
1003 isl_ctx *ctx = isl_map_get_ctx(edge->map);
1004 enum isl_edge_type i;
1006 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1007 struct isl_hash_table_entry *entry;
1009 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
1010 if (!entry)
1011 continue;
1012 if (entry->data != edge)
1013 continue;
1014 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
1018 /* Check whether the dependence graph has any edge
1019 * between the given two nodes.
1021 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
1022 struct isl_sched_node *src, struct isl_sched_node *dst)
1024 enum isl_edge_type i;
1025 isl_bool r;
1027 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1028 r = graph_has_edge(graph, i, src, dst);
1029 if (r < 0 || r)
1030 return r;
1033 return r;
1036 /* Check whether the dependence graph has a validity edge
1037 * between the given two nodes.
1039 * Conditional validity edges are essentially validity edges that
1040 * can be ignored if the corresponding condition edges are iteration private.
1041 * Here, we are only checking for the presence of validity
1042 * edges, so we need to consider the conditional validity edges too.
1043 * In particular, this function is used during the detection
1044 * of strongly connected components and we cannot ignore
1045 * conditional validity edges during this detection.
1047 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
1048 struct isl_sched_node *src, struct isl_sched_node *dst)
1050 isl_bool r;
1052 r = graph_has_edge(graph, isl_edge_validity, src, dst);
1053 if (r < 0 || r)
1054 return r;
1056 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
1059 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
1060 int n_node, int n_edge)
1062 int i;
1064 graph->n = n_node;
1065 graph->n_edge = n_edge;
1066 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
1067 graph->sorted = isl_calloc_array(ctx, int, graph->n);
1068 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
1069 graph->edge = isl_calloc_array(ctx,
1070 struct isl_sched_edge, graph->n_edge);
1072 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1073 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
1075 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
1076 !graph->sorted)
1077 return -1;
1079 for(i = 0; i < graph->n; ++i)
1080 graph->sorted[i] = i;
1082 return 0;
1085 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
1087 int i;
1089 isl_map_to_basic_set_free(graph->intra_hmap);
1090 isl_map_to_basic_set_free(graph->inter_hmap);
1092 if (graph->node)
1093 for (i = 0; i < graph->n; ++i) {
1094 isl_space_free(graph->node[i].space);
1095 isl_set_free(graph->node[i].hull);
1096 isl_multi_aff_free(graph->node[i].compress);
1097 isl_multi_aff_free(graph->node[i].decompress);
1098 isl_mat_free(graph->node[i].sched);
1099 isl_map_free(graph->node[i].sched_map);
1100 isl_mat_free(graph->node[i].cmap);
1101 isl_mat_free(graph->node[i].cinv);
1102 isl_mat_free(graph->node[i].ctrans);
1103 if (graph->root)
1104 free(graph->node[i].coincident);
1105 isl_multi_val_free(graph->node[i].sizes);
1106 isl_vec_free(graph->node[i].max);
1108 free(graph->node);
1109 free(graph->sorted);
1110 if (graph->edge)
1111 for (i = 0; i < graph->n_edge; ++i) {
1112 isl_map_free(graph->edge[i].map);
1113 isl_union_map_free(graph->edge[i].tagged_condition);
1114 isl_union_map_free(graph->edge[i].tagged_validity);
1116 free(graph->edge);
1117 free(graph->region);
1118 for (i = 0; i <= isl_edge_last; ++i)
1119 isl_hash_table_free(ctx, graph->edge_table[i]);
1120 isl_hash_table_free(ctx, graph->node_table);
1121 isl_basic_set_free(graph->lp);
1124 /* For each "set" on which this function is called, increment
1125 * graph->n by one and update graph->maxvar.
1127 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
1129 struct isl_sched_graph *graph = user;
1130 int nvar = isl_set_dim(set, isl_dim_set);
1132 graph->n++;
1133 if (nvar > graph->maxvar)
1134 graph->maxvar = nvar;
1136 isl_set_free(set);
1138 return isl_stat_ok;
1141 /* Add the number of basic maps in "map" to *n.
1143 static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user)
1145 int *n = user;
1147 *n += isl_map_n_basic_map(map);
1148 isl_map_free(map);
1150 return isl_stat_ok;
1153 /* Compute the number of rows that should be allocated for the schedule.
1154 * In particular, we need one row for each variable or one row
1155 * for each basic map in the dependences.
1156 * Note that it is practically impossible to exhaust both
1157 * the number of dependences and the number of variables.
1159 static int compute_max_row(struct isl_sched_graph *graph,
1160 __isl_keep isl_schedule_constraints *sc)
1162 enum isl_edge_type i;
1163 int n_edge;
1165 graph->n = 0;
1166 graph->maxvar = 0;
1167 if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
1168 return -1;
1169 n_edge = 0;
1170 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1171 if (isl_union_map_foreach_map(sc->constraint[i],
1172 &add_n_basic_map, &n_edge) < 0)
1173 return -1;
1174 graph->max_row = n_edge + graph->maxvar;
1176 return 0;
1179 /* Does "bset" have any defining equalities for its set variables?
1181 static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
1183 int i, n;
1185 if (!bset)
1186 return -1;
1188 n = isl_basic_set_dim(bset, isl_dim_set);
1189 for (i = 0; i < n; ++i) {
1190 int has;
1192 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
1193 NULL);
1194 if (has < 0 || has)
1195 return has;
1198 return 0;
1201 /* Set the entries of node->max to the value of the schedule_max_coefficient
1202 * option, if set.
1204 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
1206 int max;
1208 max = isl_options_get_schedule_max_coefficient(ctx);
1209 if (max == -1)
1210 return isl_stat_ok;
1212 node->max = isl_vec_alloc(ctx, node->nvar);
1213 node->max = isl_vec_set_si(node->max, max);
1214 if (!node->max)
1215 return isl_stat_error;
1217 return isl_stat_ok;
1220 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
1221 * option (if set) and half of the minimum of the sizes in the other
1222 * dimensions. If the minimum of the sizes is one, half of the size
1223 * is zero and this value is reset to one.
1224 * If the global minimum is unbounded (i.e., if both
1225 * the schedule_max_coefficient is not set and the sizes in the other
1226 * dimensions are unbounded), then store a negative value.
1227 * If the schedule coefficient is close to the size of the instance set
1228 * in another dimension, then the schedule may represent a loop
1229 * coalescing transformation (especially if the coefficient
1230 * in that other dimension is one). Forcing the coefficient to be
1231 * smaller than or equal to half the minimal size should avoid this
1232 * situation.
1234 static isl_stat compute_max_coefficient(isl_ctx *ctx,
1235 struct isl_sched_node *node)
1237 int max;
1238 int i, j;
1239 isl_vec *v;
1241 max = isl_options_get_schedule_max_coefficient(ctx);
1242 v = isl_vec_alloc(ctx, node->nvar);
1243 if (!v)
1244 return isl_stat_error;
1246 for (i = 0; i < node->nvar; ++i) {
1247 isl_int_set_si(v->el[i], max);
1248 isl_int_mul_si(v->el[i], v->el[i], 2);
1251 for (i = 0; i < node->nvar; ++i) {
1252 isl_val *size;
1254 size = isl_multi_val_get_val(node->sizes, i);
1255 if (!size)
1256 goto error;
1257 if (!isl_val_is_int(size)) {
1258 isl_val_free(size);
1259 continue;
1261 for (j = 0; j < node->nvar; ++j) {
1262 if (j == i)
1263 continue;
1264 if (isl_int_is_neg(v->el[j]) ||
1265 isl_int_gt(v->el[j], size->n))
1266 isl_int_set(v->el[j], size->n);
1268 isl_val_free(size);
1271 for (i = 0; i < node->nvar; ++i) {
1272 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
1273 if (isl_int_is_zero(v->el[i]))
1274 isl_int_set_si(v->el[i], 1);
1277 node->max = v;
1278 return isl_stat_ok;
1279 error:
1280 isl_vec_free(v);
1281 return isl_stat_error;
1284 /* Compute and return the size of "set" in dimension "dim".
1285 * The size is taken to be the difference in values for that variable
1286 * for fixed values of the other variables.
1287 * In particular, the variable is first isolated from the other variables
1288 * in the range of a map
1290 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
1292 * and then duplicated
1294 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
1296 * The shared variables are then projected out and the maximal value
1297 * of i_dim' - i_dim is computed.
1299 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
1301 isl_map *map;
1302 isl_local_space *ls;
1303 isl_aff *obj;
1304 isl_val *v;
1306 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
1307 map = isl_map_project_out(map, isl_dim_in, dim, 1);
1308 map = isl_map_range_product(map, isl_map_copy(map));
1309 map = isl_set_unwrap(isl_map_range(map));
1310 set = isl_map_deltas(map);
1311 ls = isl_local_space_from_space(isl_set_get_space(set));
1312 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1313 v = isl_set_max_val(set, obj);
1314 isl_aff_free(obj);
1315 isl_set_free(set);
1317 return v;
1320 /* Compute the size of the instance set "set" of "node", after compression,
1321 * as well as bounds on the corresponding coefficients, if needed.
1323 * The sizes are needed when the schedule_treat_coalescing option is set.
1324 * The bounds are needed when the schedule_treat_coalescing option or
1325 * the schedule_max_coefficient option is set.
1327 * If the schedule_treat_coalescing option is not set, then at most
1328 * the bounds need to be set and this is done in set_max_coefficient.
1329 * Otherwise, compress the domain if needed, compute the size
1330 * in each direction and store the results in node->size.
1331 * Finally, set the bounds on the coefficients based on the sizes
1332 * and the schedule_max_coefficient option in compute_max_coefficient.
1334 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
1335 __isl_take isl_set *set)
1337 int j, n;
1338 isl_multi_val *mv;
1340 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
1341 isl_set_free(set);
1342 return set_max_coefficient(ctx, node);
1345 if (node->compressed)
1346 set = isl_set_preimage_multi_aff(set,
1347 isl_multi_aff_copy(node->decompress));
1348 mv = isl_multi_val_zero(isl_set_get_space(set));
1349 n = isl_set_dim(set, isl_dim_set);
1350 for (j = 0; j < n; ++j) {
1351 isl_val *v;
1353 v = compute_size(isl_set_copy(set), j);
1354 mv = isl_multi_val_set_val(mv, j, v);
1356 node->sizes = mv;
1357 isl_set_free(set);
1358 if (!node->sizes)
1359 return isl_stat_error;
1360 return compute_max_coefficient(ctx, node);
1363 /* Add a new node to the graph representing the given instance set.
1364 * "nvar" is the (possibly compressed) number of variables and
1365 * may be smaller than then number of set variables in "set"
1366 * if "compressed" is set.
1367 * If "compressed" is set, then "hull" represents the constraints
1368 * that were used to derive the compression, while "compress" and
1369 * "decompress" map the original space to the compressed space and
1370 * vice versa.
1371 * If "compressed" is not set, then "hull", "compress" and "decompress"
1372 * should be NULL.
1374 * Compute the size of the instance set and bounds on the coefficients,
1375 * if needed.
1377 static isl_stat add_node(struct isl_sched_graph *graph,
1378 __isl_take isl_set *set, int nvar, int compressed,
1379 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
1380 __isl_take isl_multi_aff *decompress)
1382 int nparam;
1383 isl_ctx *ctx;
1384 isl_mat *sched;
1385 isl_space *space;
1386 int *coincident;
1387 struct isl_sched_node *node;
1389 if (!set)
1390 return isl_stat_error;
1392 ctx = isl_set_get_ctx(set);
1393 nparam = isl_set_dim(set, isl_dim_param);
1394 if (!ctx->opt->schedule_parametric)
1395 nparam = 0;
1396 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1397 node = &graph->node[graph->n];
1398 graph->n++;
1399 space = isl_set_get_space(set);
1400 node->space = space;
1401 node->nvar = nvar;
1402 node->nparam = nparam;
1403 node->sched = sched;
1404 node->sched_map = NULL;
1405 coincident = isl_calloc_array(ctx, int, graph->max_row);
1406 node->coincident = coincident;
1407 node->compressed = compressed;
1408 node->hull = hull;
1409 node->compress = compress;
1410 node->decompress = decompress;
1411 if (compute_sizes_and_max(ctx, node, set) < 0)
1412 return isl_stat_error;
1414 if (!space || !sched || (graph->max_row && !coincident))
1415 return isl_stat_error;
1416 if (compressed && (!hull || !compress || !decompress))
1417 return isl_stat_error;
1419 return isl_stat_ok;
1422 /* Add a new node to the graph representing the given set.
1424 * If any of the set variables is defined by an equality, then
1425 * we perform variable compression such that we can perform
1426 * the scheduling on the compressed domain.
1428 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1430 int nvar;
1431 int has_equality;
1432 isl_basic_set *hull;
1433 isl_set *hull_set;
1434 isl_morph *morph;
1435 isl_multi_aff *compress, *decompress;
1436 struct isl_sched_graph *graph = user;
1438 hull = isl_set_affine_hull(isl_set_copy(set));
1439 hull = isl_basic_set_remove_divs(hull);
1440 nvar = isl_set_dim(set, isl_dim_set);
1441 has_equality = has_any_defining_equality(hull);
1443 if (has_equality < 0)
1444 goto error;
1445 if (!has_equality) {
1446 isl_basic_set_free(hull);
1447 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1450 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
1451 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1452 compress = isl_morph_get_var_multi_aff(morph);
1453 morph = isl_morph_inverse(morph);
1454 decompress = isl_morph_get_var_multi_aff(morph);
1455 isl_morph_free(morph);
1457 hull_set = isl_set_from_basic_set(hull);
1458 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1459 error:
1460 isl_basic_set_free(hull);
1461 isl_set_free(set);
1462 return isl_stat_error;
1465 struct isl_extract_edge_data {
1466 enum isl_edge_type type;
1467 struct isl_sched_graph *graph;
1470 /* Merge edge2 into edge1, freeing the contents of edge2.
1471 * Return 0 on success and -1 on failure.
1473 * edge1 and edge2 are assumed to have the same value for the map field.
1475 static int merge_edge(struct isl_sched_edge *edge1,
1476 struct isl_sched_edge *edge2)
1478 edge1->types |= edge2->types;
1479 isl_map_free(edge2->map);
1481 if (is_condition(edge2)) {
1482 if (!edge1->tagged_condition)
1483 edge1->tagged_condition = edge2->tagged_condition;
1484 else
1485 edge1->tagged_condition =
1486 isl_union_map_union(edge1->tagged_condition,
1487 edge2->tagged_condition);
1490 if (is_conditional_validity(edge2)) {
1491 if (!edge1->tagged_validity)
1492 edge1->tagged_validity = edge2->tagged_validity;
1493 else
1494 edge1->tagged_validity =
1495 isl_union_map_union(edge1->tagged_validity,
1496 edge2->tagged_validity);
1499 if (is_condition(edge2) && !edge1->tagged_condition)
1500 return -1;
1501 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1502 return -1;
1504 return 0;
1507 /* Insert dummy tags in domain and range of "map".
1509 * In particular, if "map" is of the form
1511 * A -> B
1513 * then return
1515 * [A -> dummy_tag] -> [B -> dummy_tag]
1517 * where the dummy_tags are identical and equal to any dummy tags
1518 * introduced by any other call to this function.
1520 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1522 static char dummy;
1523 isl_ctx *ctx;
1524 isl_id *id;
1525 isl_space *space;
1526 isl_set *domain, *range;
1528 ctx = isl_map_get_ctx(map);
1530 id = isl_id_alloc(ctx, NULL, &dummy);
1531 space = isl_space_params(isl_map_get_space(map));
1532 space = isl_space_set_from_params(space);
1533 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1534 space = isl_space_map_from_set(space);
1536 domain = isl_map_wrap(map);
1537 range = isl_map_wrap(isl_map_universe(space));
1538 map = isl_map_from_domain_and_range(domain, range);
1539 map = isl_map_zip(map);
1541 return map;
1544 /* Given that at least one of "src" or "dst" is compressed, return
1545 * a map between the spaces of these nodes restricted to the affine
1546 * hull that was used in the compression.
1548 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1549 struct isl_sched_node *dst)
1551 isl_set *dom, *ran;
1553 if (src->compressed)
1554 dom = isl_set_copy(src->hull);
1555 else
1556 dom = isl_set_universe(isl_space_copy(src->space));
1557 if (dst->compressed)
1558 ran = isl_set_copy(dst->hull);
1559 else
1560 ran = isl_set_universe(isl_space_copy(dst->space));
1562 return isl_map_from_domain_and_range(dom, ran);
1565 /* Intersect the domains of the nested relations in domain and range
1566 * of "tagged" with "map".
1568 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1569 __isl_keep isl_map *map)
1571 isl_set *set;
1573 tagged = isl_map_zip(tagged);
1574 set = isl_map_wrap(isl_map_copy(map));
1575 tagged = isl_map_intersect_domain(tagged, set);
1576 tagged = isl_map_zip(tagged);
1577 return tagged;
1580 /* Return a pointer to the node that lives in the domain space of "map"
1581 * or NULL if there is no such node.
1583 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1584 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1586 struct isl_sched_node *node;
1587 isl_space *space;
1589 space = isl_space_domain(isl_map_get_space(map));
1590 node = graph_find_node(ctx, graph, space);
1591 isl_space_free(space);
1593 return node;
1596 /* Return a pointer to the node that lives in the range space of "map"
1597 * or NULL if there is no such node.
1599 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1600 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1602 struct isl_sched_node *node;
1603 isl_space *space;
1605 space = isl_space_range(isl_map_get_space(map));
1606 node = graph_find_node(ctx, graph, space);
1607 isl_space_free(space);
1609 return node;
1612 /* Add a new edge to the graph based on the given map
1613 * and add it to data->graph->edge_table[data->type].
1614 * If a dependence relation of a given type happens to be identical
1615 * to one of the dependence relations of a type that was added before,
1616 * then we don't create a new edge, but instead mark the original edge
1617 * as also representing a dependence of the current type.
1619 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1620 * may be specified as "tagged" dependence relations. That is, "map"
1621 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1622 * the dependence on iterations and a and b are tags.
1623 * edge->map is set to the relation containing the elements i -> j,
1624 * while edge->tagged_condition and edge->tagged_validity contain
1625 * the union of all the "map" relations
1626 * for which extract_edge is called that result in the same edge->map.
1628 * If the source or the destination node is compressed, then
1629 * intersect both "map" and "tagged" with the constraints that
1630 * were used to construct the compression.
1631 * This ensures that there are no schedule constraints defined
1632 * outside of these domains, while the scheduler no longer has
1633 * any control over those outside parts.
1635 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1637 isl_ctx *ctx = isl_map_get_ctx(map);
1638 struct isl_extract_edge_data *data = user;
1639 struct isl_sched_graph *graph = data->graph;
1640 struct isl_sched_node *src, *dst;
1641 struct isl_sched_edge *edge;
1642 isl_map *tagged = NULL;
1644 if (data->type == isl_edge_condition ||
1645 data->type == isl_edge_conditional_validity) {
1646 if (isl_map_can_zip(map)) {
1647 tagged = isl_map_copy(map);
1648 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1649 } else {
1650 tagged = insert_dummy_tags(isl_map_copy(map));
1654 src = find_domain_node(ctx, graph, map);
1655 dst = find_range_node(ctx, graph, map);
1657 if (!src || !dst) {
1658 isl_map_free(map);
1659 isl_map_free(tagged);
1660 return isl_stat_ok;
1663 if (src->compressed || dst->compressed) {
1664 isl_map *hull;
1665 hull = extract_hull(src, dst);
1666 if (tagged)
1667 tagged = map_intersect_domains(tagged, hull);
1668 map = isl_map_intersect(map, hull);
1671 graph->edge[graph->n_edge].src = src;
1672 graph->edge[graph->n_edge].dst = dst;
1673 graph->edge[graph->n_edge].map = map;
1674 graph->edge[graph->n_edge].types = 0;
1675 graph->edge[graph->n_edge].tagged_condition = NULL;
1676 graph->edge[graph->n_edge].tagged_validity = NULL;
1677 set_type(&graph->edge[graph->n_edge], data->type);
1678 if (data->type == isl_edge_condition)
1679 graph->edge[graph->n_edge].tagged_condition =
1680 isl_union_map_from_map(tagged);
1681 if (data->type == isl_edge_conditional_validity)
1682 graph->edge[graph->n_edge].tagged_validity =
1683 isl_union_map_from_map(tagged);
1685 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1686 if (!edge) {
1687 graph->n_edge++;
1688 return isl_stat_error;
1690 if (edge == &graph->edge[graph->n_edge])
1691 return graph_edge_table_add(ctx, graph, data->type,
1692 &graph->edge[graph->n_edge++]);
1694 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1695 return -1;
1697 return graph_edge_table_add(ctx, graph, data->type, edge);
1700 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1702 * The context is included in the domain before the nodes of
1703 * the graphs are extracted in order to be able to exploit
1704 * any possible additional equalities.
1705 * Note that this intersection is only performed locally here.
1707 static isl_stat graph_init(struct isl_sched_graph *graph,
1708 __isl_keep isl_schedule_constraints *sc)
1710 isl_ctx *ctx;
1711 isl_union_set *domain;
1712 struct isl_extract_edge_data data;
1713 enum isl_edge_type i;
1714 isl_stat r;
1716 if (!sc)
1717 return isl_stat_error;
1719 ctx = isl_schedule_constraints_get_ctx(sc);
1721 domain = isl_schedule_constraints_get_domain(sc);
1722 graph->n = isl_union_set_n_set(domain);
1723 isl_union_set_free(domain);
1725 if (graph_alloc(ctx, graph, graph->n,
1726 isl_schedule_constraints_n_map(sc)) < 0)
1727 return isl_stat_error;
1729 if (compute_max_row(graph, sc) < 0)
1730 return isl_stat_error;
1731 graph->root = 1;
1732 graph->n = 0;
1733 domain = isl_schedule_constraints_get_domain(sc);
1734 domain = isl_union_set_intersect_params(domain,
1735 isl_set_copy(sc->context));
1736 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1737 isl_union_set_free(domain);
1738 if (r < 0)
1739 return isl_stat_error;
1740 if (graph_init_table(ctx, graph) < 0)
1741 return isl_stat_error;
1742 for (i = isl_edge_first; i <= isl_edge_last; ++i)
1743 graph->max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
1744 if (graph_init_edge_tables(ctx, graph) < 0)
1745 return isl_stat_error;
1746 graph->n_edge = 0;
1747 data.graph = graph;
1748 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1749 data.type = i;
1750 if (isl_union_map_foreach_map(sc->constraint[i],
1751 &extract_edge, &data) < 0)
1752 return isl_stat_error;
1755 return isl_stat_ok;
1758 /* Check whether there is any dependence from node[j] to node[i]
1759 * or from node[i] to node[j].
1761 static isl_bool node_follows_weak(int i, int j, void *user)
1763 isl_bool f;
1764 struct isl_sched_graph *graph = user;
1766 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1767 if (f < 0 || f)
1768 return f;
1769 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1772 /* Check whether there is a (conditional) validity dependence from node[j]
1773 * to node[i], forcing node[i] to follow node[j].
1775 static isl_bool node_follows_strong(int i, int j, void *user)
1777 struct isl_sched_graph *graph = user;
1779 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1782 /* Use Tarjan's algorithm for computing the strongly connected components
1783 * in the dependence graph only considering those edges defined by "follows".
1785 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1786 isl_bool (*follows)(int i, int j, void *user))
1788 int i, n;
1789 struct isl_tarjan_graph *g = NULL;
1791 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1792 if (!g)
1793 return -1;
1795 graph->scc = 0;
1796 i = 0;
1797 n = graph->n;
1798 while (n) {
1799 while (g->order[i] != -1) {
1800 graph->node[g->order[i]].scc = graph->scc;
1801 --n;
1802 ++i;
1804 ++i;
1805 graph->scc++;
1808 isl_tarjan_graph_free(g);
1810 return 0;
1813 /* Apply Tarjan's algorithm to detect the strongly connected components
1814 * in the dependence graph.
1815 * Only consider the (conditional) validity dependences and clear "weak".
1817 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1819 graph->weak = 0;
1820 return detect_ccs(ctx, graph, &node_follows_strong);
1823 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1824 * in the dependence graph.
1825 * Consider all dependences and set "weak".
1827 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1829 graph->weak = 1;
1830 return detect_ccs(ctx, graph, &node_follows_weak);
1833 static int cmp_scc(const void *a, const void *b, void *data)
1835 struct isl_sched_graph *graph = data;
1836 const int *i1 = a;
1837 const int *i2 = b;
1839 return graph->node[*i1].scc - graph->node[*i2].scc;
1842 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1844 static int sort_sccs(struct isl_sched_graph *graph)
1846 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1849 /* Given a dependence relation R from "node" to itself,
1850 * construct the set of coefficients of valid constraints for elements
1851 * in that dependence relation.
1852 * In particular, the result contains tuples of coefficients
1853 * c_0, c_n, c_x such that
1855 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1857 * or, equivalently,
1859 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1861 * We choose here to compute the dual of delta R.
1862 * Alternatively, we could have computed the dual of R, resulting
1863 * in a set of tuples c_0, c_n, c_x, c_y, and then
1864 * plugged in (c_0, c_n, c_x, -c_x).
1866 * If "node" has been compressed, then the dependence relation
1867 * is also compressed before the set of coefficients is computed.
1869 static __isl_give isl_basic_set *intra_coefficients(
1870 struct isl_sched_graph *graph, struct isl_sched_node *node,
1871 __isl_take isl_map *map)
1873 isl_set *delta;
1874 isl_map *key;
1875 isl_basic_set *coef;
1876 isl_maybe_isl_basic_set m;
1878 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1879 if (m.valid < 0 || m.valid) {
1880 isl_map_free(map);
1881 return m.value;
1884 key = isl_map_copy(map);
1885 if (node->compressed) {
1886 map = isl_map_preimage_domain_multi_aff(map,
1887 isl_multi_aff_copy(node->decompress));
1888 map = isl_map_preimage_range_multi_aff(map,
1889 isl_multi_aff_copy(node->decompress));
1891 delta = isl_set_remove_divs(isl_map_deltas(map));
1892 coef = isl_set_coefficients(delta);
1893 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1894 isl_basic_set_copy(coef));
1896 return coef;
1899 /* Given a dependence relation R, construct the set of coefficients
1900 * of valid constraints for elements in that dependence relation.
1901 * In particular, the result contains tuples of coefficients
1902 * c_0, c_n, c_x, c_y such that
1904 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1906 * If the source or destination nodes of "edge" have been compressed,
1907 * then the dependence relation is also compressed before
1908 * the set of coefficients is computed.
1910 static __isl_give isl_basic_set *inter_coefficients(
1911 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1912 __isl_take isl_map *map)
1914 isl_set *set;
1915 isl_map *key;
1916 isl_basic_set *coef;
1917 isl_maybe_isl_basic_set m;
1919 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1920 if (m.valid < 0 || m.valid) {
1921 isl_map_free(map);
1922 return m.value;
1925 key = isl_map_copy(map);
1926 if (edge->src->compressed)
1927 map = isl_map_preimage_domain_multi_aff(map,
1928 isl_multi_aff_copy(edge->src->decompress));
1929 if (edge->dst->compressed)
1930 map = isl_map_preimage_range_multi_aff(map,
1931 isl_multi_aff_copy(edge->dst->decompress));
1932 set = isl_map_wrap(isl_map_remove_divs(map));
1933 coef = isl_set_coefficients(set);
1934 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1935 isl_basic_set_copy(coef));
1937 return coef;
1940 /* Return the position of the coefficients of the variables in
1941 * the coefficients constraints "coef".
1943 * The space of "coef" is of the form
1945 * { coefficients[[cst, params] -> S] }
1947 * Return the position of S.
1949 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1951 int offset;
1952 isl_space *space;
1954 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1955 offset = isl_space_dim(space, isl_dim_in);
1956 isl_space_free(space);
1958 return offset;
1961 /* Return the offset of the coefficients of the variables of "node"
1962 * within the (I)LP.
1964 * Within each node, the coefficients have the following order:
1965 * - c_i_0
1966 * - c_i_n (if parametric)
1967 * - positive and negative parts of c_i_x
1969 static int node_var_coef_offset(struct isl_sched_node *node)
1971 return node->start + 1 + node->nparam;
1974 /* Construct an isl_dim_map for mapping constraints on coefficients
1975 * for "node" to the corresponding positions in graph->lp.
1976 * "offset" is the offset of the coefficients for the variables
1977 * in the input constraints.
1978 * "s" is the sign of the mapping.
1980 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1981 * The mapping produced by this function essentially plugs in
1982 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1983 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1984 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1986 * The caller can extend the mapping to also map the other coefficients
1987 * (and therefore not plug in 0).
1989 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1990 struct isl_sched_graph *graph, struct isl_sched_node *node,
1991 int offset, int s)
1993 int pos;
1994 unsigned total;
1995 isl_dim_map *dim_map;
1997 total = isl_basic_set_total_dim(graph->lp);
1998 pos = node_var_coef_offset(node);
1999 dim_map = isl_dim_map_alloc(ctx, total);
2000 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
2001 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
2003 return dim_map;
2006 /* Construct an isl_dim_map for mapping constraints on coefficients
2007 * for "src" (node i) and "dst" (node j) to the corresponding positions
2008 * in graph->lp.
2009 * "offset" is the offset of the coefficients for the variables of "src"
2010 * in the input constraints.
2011 * "s" is the sign of the mapping.
2013 * The input constraints are given in terms of the coefficients
2014 * (c_0, c_n, c_x, c_y).
2015 * The mapping produced by this function essentially plugs in
2016 * (c_j_0 - c_i_0, c_j_n - c_i_n,
2017 * c_j_x^+ - c_j_x^-, -(c_i_x^+ - c_i_x^-)) if s = 1 and
2018 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
2019 * - (c_j_x^+ - c_j_x^-), c_i_x^+ - c_i_x^-) if s = -1.
2020 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
2022 * The caller can further extend the mapping.
2024 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
2025 struct isl_sched_graph *graph, struct isl_sched_node *src,
2026 struct isl_sched_node *dst, int offset, int s)
2028 int pos;
2029 unsigned total;
2030 isl_dim_map *dim_map;
2032 total = isl_basic_set_total_dim(graph->lp);
2033 dim_map = isl_dim_map_alloc(ctx, total);
2035 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
2036 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
2037 pos = node_var_coef_offset(dst);
2038 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
2039 dst->nvar, -s);
2040 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
2041 dst->nvar, s);
2043 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
2044 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
2045 pos = node_var_coef_offset(src);
2046 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
2047 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
2049 return dim_map;
2052 /* Add constraints to graph->lp that force validity for the given
2053 * dependence from a node i to itself.
2054 * That is, add constraints that enforce
2056 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
2057 * = c_i_x (y - x) >= 0
2059 * for each (x,y) in R.
2060 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2061 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
2062 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
2063 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
2065 * Actually, we do not construct constraints for the c_i_x themselves,
2066 * but for the coefficients of c_i_x written as a linear combination
2067 * of the columns in node->cmap.
2069 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
2070 struct isl_sched_edge *edge)
2072 int offset;
2073 isl_map *map = isl_map_copy(edge->map);
2074 isl_ctx *ctx = isl_map_get_ctx(map);
2075 isl_dim_map *dim_map;
2076 isl_basic_set *coef;
2077 struct isl_sched_node *node = edge->src;
2079 coef = intra_coefficients(graph, node, map);
2081 offset = coef_var_offset(coef);
2083 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2084 offset, isl_mat_copy(node->cmap));
2085 if (!coef)
2086 return isl_stat_error;
2088 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
2089 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2090 coef->n_eq, coef->n_ineq);
2091 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2092 coef, dim_map);
2094 return isl_stat_ok;
2097 /* Add constraints to graph->lp that force validity for the given
2098 * dependence from node i to node j.
2099 * That is, add constraints that enforce
2101 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
2103 * for each (x,y) in R.
2104 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2105 * of valid constraints for R and then plug in
2106 * (c_j_0 - c_i_0, c_j_n - c_i_n, c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
2107 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
2108 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
2110 * Actually, we do not construct constraints for the c_*_x themselves,
2111 * but for the coefficients of c_*_x written as a linear combination
2112 * of the columns in node->cmap.
2114 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
2115 struct isl_sched_edge *edge)
2117 int offset;
2118 isl_map *map = isl_map_copy(edge->map);
2119 isl_ctx *ctx = isl_map_get_ctx(map);
2120 isl_dim_map *dim_map;
2121 isl_basic_set *coef;
2122 struct isl_sched_node *src = edge->src;
2123 struct isl_sched_node *dst = edge->dst;
2125 coef = inter_coefficients(graph, edge, map);
2127 offset = coef_var_offset(coef);
2129 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2130 offset, isl_mat_copy(src->cmap));
2131 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2132 offset + src->nvar, isl_mat_copy(dst->cmap));
2133 if (!coef)
2134 return isl_stat_error;
2136 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
2138 edge->start = graph->lp->n_ineq;
2139 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2140 coef->n_eq, coef->n_ineq);
2141 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2142 coef, dim_map);
2143 if (!graph->lp)
2144 return isl_stat_error;
2145 edge->end = graph->lp->n_ineq;
2147 return isl_stat_ok;
2150 /* Add constraints to graph->lp that bound the dependence distance for the given
2151 * dependence from a node i to itself.
2152 * If s = 1, we add the constraint
2154 * c_i_x (y - x) <= m_0 + m_n n
2156 * or
2158 * -c_i_x (y - x) + m_0 + m_n n >= 0
2160 * for each (x,y) in R.
2161 * If s = -1, we add the constraint
2163 * -c_i_x (y - x) <= m_0 + m_n n
2165 * or
2167 * c_i_x (y - x) + m_0 + m_n n >= 0
2169 * for each (x,y) in R.
2170 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2171 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2172 * with each coefficient (except m_0) represented as a pair of non-negative
2173 * coefficients.
2175 * Actually, we do not construct constraints for the c_i_x themselves,
2176 * but for the coefficients of c_i_x written as a linear combination
2177 * of the columns in node->cmap.
2180 * If "local" is set, then we add constraints
2182 * c_i_x (y - x) <= 0
2184 * or
2186 * -c_i_x (y - x) <= 0
2188 * instead, forcing the dependence distance to be (less than or) equal to 0.
2189 * That is, we plug in (0, 0, -s * c_i_x),
2190 * Note that dependences marked local are treated as validity constraints
2191 * by add_all_validity_constraints and therefore also have
2192 * their distances bounded by 0 from below.
2194 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2195 struct isl_sched_edge *edge, int s, int local)
2197 int offset;
2198 unsigned nparam;
2199 isl_map *map = isl_map_copy(edge->map);
2200 isl_ctx *ctx = isl_map_get_ctx(map);
2201 isl_dim_map *dim_map;
2202 isl_basic_set *coef;
2203 struct isl_sched_node *node = edge->src;
2205 coef = intra_coefficients(graph, node, map);
2207 offset = coef_var_offset(coef);
2209 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2210 offset, isl_mat_copy(node->cmap));
2211 if (!coef)
2212 return isl_stat_error;
2214 nparam = isl_space_dim(node->space, isl_dim_param);
2215 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2217 if (!local) {
2218 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2219 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2220 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2222 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2223 coef->n_eq, coef->n_ineq);
2224 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2225 coef, dim_map);
2227 return isl_stat_ok;
2230 /* Add constraints to graph->lp that bound the dependence distance for the given
2231 * dependence from node i to node j.
2232 * If s = 1, we add the constraint
2234 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2235 * <= m_0 + m_n n
2237 * or
2239 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2240 * m_0 + m_n n >= 0
2242 * for each (x,y) in R.
2243 * If s = -1, we add the constraint
2245 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2246 * <= m_0 + m_n n
2248 * or
2250 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2251 * m_0 + m_n n >= 0
2253 * for each (x,y) in R.
2254 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2255 * of valid constraints for R and then plug in
2256 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2257 * -s*c_j_x+s*c_i_x)
2258 * with each coefficient (except m_0, c_*_0 and c_*_n)
2259 * represented as a pair of non-negative coefficients.
2261 * Actually, we do not construct constraints for the c_*_x themselves,
2262 * but for the coefficients of c_*_x written as a linear combination
2263 * of the columns in node->cmap.
2266 * If "local" is set, then we add constraints
2268 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2270 * or
2272 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
2274 * instead, forcing the dependence distance to be (less than or) equal to 0.
2275 * That is, we plug in
2276 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
2277 * Note that dependences marked local are treated as validity constraints
2278 * by add_all_validity_constraints and therefore also have
2279 * their distances bounded by 0 from below.
2281 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2282 struct isl_sched_edge *edge, int s, int local)
2284 int offset;
2285 unsigned nparam;
2286 isl_map *map = isl_map_copy(edge->map);
2287 isl_ctx *ctx = isl_map_get_ctx(map);
2288 isl_dim_map *dim_map;
2289 isl_basic_set *coef;
2290 struct isl_sched_node *src = edge->src;
2291 struct isl_sched_node *dst = edge->dst;
2293 coef = inter_coefficients(graph, edge, map);
2295 offset = coef_var_offset(coef);
2297 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2298 offset, isl_mat_copy(src->cmap));
2299 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
2300 offset + src->nvar, isl_mat_copy(dst->cmap));
2301 if (!coef)
2302 return isl_stat_error;
2304 nparam = isl_space_dim(src->space, isl_dim_param);
2305 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2307 if (!local) {
2308 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2309 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2310 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2313 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2314 coef->n_eq, coef->n_ineq);
2315 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2316 coef, dim_map);
2318 return isl_stat_ok;
2321 /* Add all validity constraints to graph->lp.
2323 * An edge that is forced to be local needs to have its dependence
2324 * distances equal to zero. We take care of bounding them by 0 from below
2325 * here. add_all_proximity_constraints takes care of bounding them by 0
2326 * from above.
2328 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2329 * Otherwise, we ignore them.
2331 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2332 int use_coincidence)
2334 int i;
2336 for (i = 0; i < graph->n_edge; ++i) {
2337 struct isl_sched_edge *edge= &graph->edge[i];
2338 int local;
2340 local = is_local(edge) ||
2341 (is_coincidence(edge) && use_coincidence);
2342 if (!is_validity(edge) && !local)
2343 continue;
2344 if (edge->src != edge->dst)
2345 continue;
2346 if (add_intra_validity_constraints(graph, edge) < 0)
2347 return -1;
2350 for (i = 0; i < graph->n_edge; ++i) {
2351 struct isl_sched_edge *edge = &graph->edge[i];
2352 int local;
2354 local = is_local(edge) ||
2355 (is_coincidence(edge) && use_coincidence);
2356 if (!is_validity(edge) && !local)
2357 continue;
2358 if (edge->src == edge->dst)
2359 continue;
2360 if (add_inter_validity_constraints(graph, edge) < 0)
2361 return -1;
2364 return 0;
2367 /* Add constraints to graph->lp that bound the dependence distance
2368 * for all dependence relations.
2369 * If a given proximity dependence is identical to a validity
2370 * dependence, then the dependence distance is already bounded
2371 * from below (by zero), so we only need to bound the distance
2372 * from above. (This includes the case of "local" dependences
2373 * which are treated as validity dependence by add_all_validity_constraints.)
2374 * Otherwise, we need to bound the distance both from above and from below.
2376 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2377 * Otherwise, we ignore them.
2379 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2380 int use_coincidence)
2382 int i;
2384 for (i = 0; i < graph->n_edge; ++i) {
2385 struct isl_sched_edge *edge= &graph->edge[i];
2386 int local;
2388 local = is_local(edge) ||
2389 (is_coincidence(edge) && use_coincidence);
2390 if (!is_proximity(edge) && !local)
2391 continue;
2392 if (edge->src == edge->dst &&
2393 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
2394 return -1;
2395 if (edge->src != edge->dst &&
2396 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
2397 return -1;
2398 if (is_validity(edge) || local)
2399 continue;
2400 if (edge->src == edge->dst &&
2401 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2402 return -1;
2403 if (edge->src != edge->dst &&
2404 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2405 return -1;
2408 return 0;
2411 /* Compute a basis for the rows in the linear part of the schedule
2412 * and extend this basis to a full basis. The remaining rows
2413 * can then be used to force linear independence from the rows
2414 * in the schedule.
2416 * In particular, given the schedule rows S, we compute
2418 * S = H Q
2419 * S U = H
2421 * with H the Hermite normal form of S. That is, all but the
2422 * first rank columns of H are zero and so each row in S is
2423 * a linear combination of the first rank rows of Q.
2424 * The matrix Q is then transposed because we will write the
2425 * coefficients of the next schedule row as a column vector s
2426 * and express this s as a linear combination s = Q c of the
2427 * computed basis.
2428 * Similarly, the matrix U is transposed such that we can
2429 * compute the coefficients c = U s from a schedule row s.
2431 static int node_update_cmap(struct isl_sched_node *node)
2433 isl_mat *H, *U, *Q;
2434 int n_row = isl_mat_rows(node->sched);
2436 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2437 1 + node->nparam, node->nvar);
2439 H = isl_mat_left_hermite(H, 0, &U, &Q);
2440 isl_mat_free(node->cmap);
2441 isl_mat_free(node->cinv);
2442 isl_mat_free(node->ctrans);
2443 node->ctrans = isl_mat_copy(Q);
2444 node->cmap = isl_mat_transpose(Q);
2445 node->cinv = isl_mat_transpose(U);
2446 node->rank = isl_mat_initial_non_zero_cols(H);
2447 isl_mat_free(H);
2449 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2450 return -1;
2451 return 0;
2454 /* Is "edge" marked as a validity or a conditional validity edge?
2456 static int is_any_validity(struct isl_sched_edge *edge)
2458 return is_validity(edge) || is_conditional_validity(edge);
2461 /* How many times should we count the constraints in "edge"?
2463 * If carry is set, then we are counting the number of
2464 * (validity or conditional validity) constraints that will be added
2465 * in setup_carry_lp and we count each edge exactly once.
2467 * Otherwise, we count as follows
2468 * validity -> 1 (>= 0)
2469 * validity+proximity -> 2 (>= 0 and upper bound)
2470 * proximity -> 2 (lower and upper bound)
2471 * local(+any) -> 2 (>= 0 and <= 0)
2473 * If an edge is only marked conditional_validity then it counts
2474 * as zero since it is only checked afterwards.
2476 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2477 * Otherwise, we ignore them.
2479 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2480 int use_coincidence)
2482 if (carry)
2483 return 1;
2484 if (is_proximity(edge) || is_local(edge))
2485 return 2;
2486 if (use_coincidence && is_coincidence(edge))
2487 return 2;
2488 if (is_validity(edge))
2489 return 1;
2490 return 0;
2493 /* Count the number of equality and inequality constraints
2494 * that will be added for the given map.
2496 * "use_coincidence" is set if we should take into account coincidence edges.
2498 static int count_map_constraints(struct isl_sched_graph *graph,
2499 struct isl_sched_edge *edge, __isl_take isl_map *map,
2500 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2502 isl_basic_set *coef;
2503 int f = edge_multiplicity(edge, carry, use_coincidence);
2505 if (f == 0) {
2506 isl_map_free(map);
2507 return 0;
2510 if (edge->src == edge->dst)
2511 coef = intra_coefficients(graph, edge->src, map);
2512 else
2513 coef = inter_coefficients(graph, edge, map);
2514 if (!coef)
2515 return -1;
2516 *n_eq += f * coef->n_eq;
2517 *n_ineq += f * coef->n_ineq;
2518 isl_basic_set_free(coef);
2520 return 0;
2523 /* Count the number of equality and inequality constraints
2524 * that will be added to the main lp problem.
2525 * We count as follows
2526 * validity -> 1 (>= 0)
2527 * validity+proximity -> 2 (>= 0 and upper bound)
2528 * proximity -> 2 (lower and upper bound)
2529 * local(+any) -> 2 (>= 0 and <= 0)
2531 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2532 * Otherwise, we ignore them.
2534 static int count_constraints(struct isl_sched_graph *graph,
2535 int *n_eq, int *n_ineq, int use_coincidence)
2537 int i;
2539 *n_eq = *n_ineq = 0;
2540 for (i = 0; i < graph->n_edge; ++i) {
2541 struct isl_sched_edge *edge= &graph->edge[i];
2542 isl_map *map = isl_map_copy(edge->map);
2544 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2545 0, use_coincidence) < 0)
2546 return -1;
2549 return 0;
2552 /* Count the number of constraints that will be added by
2553 * add_bound_constant_constraints to bound the values of the constant terms
2554 * and increment *n_eq and *n_ineq accordingly.
2556 * In practice, add_bound_constant_constraints only adds inequalities.
2558 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2559 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2561 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2562 return isl_stat_ok;
2564 *n_ineq += graph->n;
2566 return isl_stat_ok;
2569 /* Add constraints to bound the values of the constant terms in the schedule,
2570 * if requested by the user.
2572 * The maximal value of the constant terms is defined by the option
2573 * "schedule_max_constant_term".
2575 * Within each node, the coefficients have the following order:
2576 * - c_i_0
2577 * - c_i_n (if parametric)
2578 * - positive and negative parts of c_i_x
2580 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2581 struct isl_sched_graph *graph)
2583 int i, k;
2584 int max;
2585 int total;
2587 max = isl_options_get_schedule_max_constant_term(ctx);
2588 if (max == -1)
2589 return isl_stat_ok;
2591 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2593 for (i = 0; i < graph->n; ++i) {
2594 struct isl_sched_node *node = &graph->node[i];
2595 k = isl_basic_set_alloc_inequality(graph->lp);
2596 if (k < 0)
2597 return isl_stat_error;
2598 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2599 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2600 isl_int_set_si(graph->lp->ineq[k][0], max);
2603 return isl_stat_ok;
2606 /* Count the number of constraints that will be added by
2607 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2608 * accordingly.
2610 * In practice, add_bound_coefficient_constraints only adds inequalities.
2612 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2613 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2615 int i;
2617 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2618 !isl_options_get_schedule_treat_coalescing(ctx))
2619 return 0;
2621 for (i = 0; i < graph->n; ++i)
2622 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2624 return 0;
2627 /* Add constraints to graph->lp that bound the values of
2628 * the parameter schedule coefficients of "node" to "max" and
2629 * the variable schedule coefficients to the corresponding entry
2630 * in node->max.
2631 * In either case, a negative value means that no bound needs to be imposed.
2633 * For parameter coefficients, this amounts to adding a constraint
2635 * c_n <= max
2637 * i.e.,
2639 * -c_n + max >= 0
2641 * The variables coefficients are, however, not represented directly.
2642 * Instead, the variables coefficients c_x are written as a linear
2643 * combination c_x = cmap c_z of some other coefficients c_z,
2644 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2645 * Let a_j be the elements of row i of node->cmap, then
2647 * -max_i <= c_x_i <= max_i
2649 * is encoded as
2651 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2653 * or
2655 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2656 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2658 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2659 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2661 int i, j, k;
2662 int total;
2663 isl_vec *ineq;
2665 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2667 for (j = 0; j < node->nparam; ++j) {
2668 int dim;
2670 if (max < 0)
2671 continue;
2673 k = isl_basic_set_alloc_inequality(graph->lp);
2674 if (k < 0)
2675 return isl_stat_error;
2676 dim = 1 + node->start + 1 + j;
2677 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2678 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2679 isl_int_set_si(graph->lp->ineq[k][0], max);
2682 ineq = isl_vec_alloc(ctx, 1 + total);
2683 ineq = isl_vec_clr(ineq);
2684 if (!ineq)
2685 return isl_stat_error;
2686 for (i = 0; i < node->nvar; ++i) {
2687 int pos = 1 + node_var_coef_offset(node);
2689 if (isl_int_is_neg(node->max->el[i]))
2690 continue;
2692 for (j = 0; j < node->nvar; ++j) {
2693 isl_int_set(ineq->el[pos + 2 * j],
2694 node->cmap->row[i][j]);
2695 isl_int_neg(ineq->el[pos + 2 * j + 1],
2696 node->cmap->row[i][j]);
2698 isl_int_set(ineq->el[0], node->max->el[i]);
2700 k = isl_basic_set_alloc_inequality(graph->lp);
2701 if (k < 0)
2702 goto error;
2703 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2705 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2706 k = isl_basic_set_alloc_inequality(graph->lp);
2707 if (k < 0)
2708 goto error;
2709 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2711 isl_vec_free(ineq);
2713 return isl_stat_ok;
2714 error:
2715 isl_vec_free(ineq);
2716 return isl_stat_error;
2719 /* Add constraints that bound the values of the variable and parameter
2720 * coefficients of the schedule.
2722 * The maximal value of the coefficients is defined by the option
2723 * 'schedule_max_coefficient' and the entries in node->max.
2724 * These latter entries are only set if either the schedule_max_coefficient
2725 * option or the schedule_treat_coalescing option is set.
2727 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2728 struct isl_sched_graph *graph)
2730 int i;
2731 int max;
2733 max = isl_options_get_schedule_max_coefficient(ctx);
2735 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2736 return isl_stat_ok;
2738 for (i = 0; i < graph->n; ++i) {
2739 struct isl_sched_node *node = &graph->node[i];
2741 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2742 return isl_stat_error;
2745 return isl_stat_ok;
2748 /* Add a constraint to graph->lp that equates the value at position
2749 * "sum_pos" to the sum of the "n" values starting at "first".
2751 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2752 int sum_pos, int first, int n)
2754 int i, k;
2755 int total;
2757 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2759 k = isl_basic_set_alloc_equality(graph->lp);
2760 if (k < 0)
2761 return isl_stat_error;
2762 isl_seq_clr(graph->lp->eq[k], 1 + total);
2763 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2764 for (i = 0; i < n; ++i)
2765 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2767 return isl_stat_ok;
2770 /* Add a constraint to graph->lp that equates the value at position
2771 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2773 * Within each node, the coefficients have the following order:
2774 * - c_i_0
2775 * - c_i_n (if parametric)
2776 * - positive and negative parts of c_i_x
2778 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2779 int sum_pos)
2781 int i, j, k;
2782 int total;
2784 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2786 k = isl_basic_set_alloc_equality(graph->lp);
2787 if (k < 0)
2788 return isl_stat_error;
2789 isl_seq_clr(graph->lp->eq[k], 1 + total);
2790 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2791 for (i = 0; i < graph->n; ++i) {
2792 int pos = 1 + graph->node[i].start + 1;
2794 for (j = 0; j < graph->node[i].nparam; ++j)
2795 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2798 return isl_stat_ok;
2801 /* Add a constraint to graph->lp that equates the value at position
2802 * "sum_pos" to the sum of the variable coefficients of all nodes.
2804 * Within each node, the coefficients have the following order:
2805 * - c_i_0
2806 * - c_i_n (if parametric)
2807 * - positive and negative parts of c_i_x
2809 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2810 int sum_pos)
2812 int i, j, k;
2813 int total;
2815 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2817 k = isl_basic_set_alloc_equality(graph->lp);
2818 if (k < 0)
2819 return isl_stat_error;
2820 isl_seq_clr(graph->lp->eq[k], 1 + total);
2821 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2822 for (i = 0; i < graph->n; ++i) {
2823 struct isl_sched_node *node = &graph->node[i];
2824 int pos = 1 + node_var_coef_offset(node);
2826 for (j = 0; j < 2 * node->nvar; ++j)
2827 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2830 return isl_stat_ok;
2833 /* Construct an ILP problem for finding schedule coefficients
2834 * that result in non-negative, but small dependence distances
2835 * over all dependences.
2836 * In particular, the dependence distances over proximity edges
2837 * are bounded by m_0 + m_n n and we compute schedule coefficients
2838 * with small values (preferably zero) of m_n and m_0.
2840 * All variables of the ILP are non-negative. The actual coefficients
2841 * may be negative, so each coefficient is represented as the difference
2842 * of two non-negative variables. The negative part always appears
2843 * immediately before the positive part.
2844 * Other than that, the variables have the following order
2846 * - sum of positive and negative parts of m_n coefficients
2847 * - m_0
2848 * - sum of all c_n coefficients
2849 * (unconstrained when computing non-parametric schedules)
2850 * - sum of positive and negative parts of all c_x coefficients
2851 * - positive and negative parts of m_n coefficients
2852 * - for each node
2853 * - c_i_0
2854 * - c_i_n (if parametric)
2855 * - positive and negative parts of c_i_x
2857 * The c_i_x are not represented directly, but through the columns of
2858 * node->cmap. That is, the computed values are for variable t_i_x
2859 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2861 * The constraints are those from the edges plus two or three equalities
2862 * to express the sums.
2864 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2865 * Otherwise, we ignore them.
2867 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2868 int use_coincidence)
2870 int i;
2871 unsigned nparam;
2872 unsigned total;
2873 isl_space *space;
2874 int parametric;
2875 int param_pos;
2876 int n_eq, n_ineq;
2878 parametric = ctx->opt->schedule_parametric;
2879 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2880 param_pos = 4;
2881 total = param_pos + 2 * nparam;
2882 for (i = 0; i < graph->n; ++i) {
2883 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2884 if (node_update_cmap(node) < 0)
2885 return isl_stat_error;
2886 node->start = total;
2887 total += 1 + node->nparam + 2 * node->nvar;
2890 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2891 return isl_stat_error;
2892 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2893 return isl_stat_error;
2894 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2895 return isl_stat_error;
2897 space = isl_space_set_alloc(ctx, 0, total);
2898 isl_basic_set_free(graph->lp);
2899 n_eq += 2 + parametric;
2901 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2903 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2904 return isl_stat_error;
2905 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2906 return isl_stat_error;
2907 if (add_var_sum_constraint(graph, 3) < 0)
2908 return isl_stat_error;
2909 if (add_bound_constant_constraints(ctx, graph) < 0)
2910 return isl_stat_error;
2911 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2912 return isl_stat_error;
2913 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2914 return isl_stat_error;
2915 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2916 return isl_stat_error;
2918 return isl_stat_ok;
2921 /* Analyze the conflicting constraint found by
2922 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2923 * constraint of one of the edges between distinct nodes, living, moreover
2924 * in distinct SCCs, then record the source and sink SCC as this may
2925 * be a good place to cut between SCCs.
2927 static int check_conflict(int con, void *user)
2929 int i;
2930 struct isl_sched_graph *graph = user;
2932 if (graph->src_scc >= 0)
2933 return 0;
2935 con -= graph->lp->n_eq;
2937 if (con >= graph->lp->n_ineq)
2938 return 0;
2940 for (i = 0; i < graph->n_edge; ++i) {
2941 if (!is_validity(&graph->edge[i]))
2942 continue;
2943 if (graph->edge[i].src == graph->edge[i].dst)
2944 continue;
2945 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2946 continue;
2947 if (graph->edge[i].start > con)
2948 continue;
2949 if (graph->edge[i].end <= con)
2950 continue;
2951 graph->src_scc = graph->edge[i].src->scc;
2952 graph->dst_scc = graph->edge[i].dst->scc;
2955 return 0;
2958 /* Check whether the next schedule row of the given node needs to be
2959 * non-trivial. Lower-dimensional domains may have some trivial rows,
2960 * but as soon as the number of remaining required non-trivial rows
2961 * is as large as the number or remaining rows to be computed,
2962 * all remaining rows need to be non-trivial.
2964 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2966 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2969 /* Solve the ILP problem constructed in setup_lp.
2970 * For each node such that all the remaining rows of its schedule
2971 * need to be non-trivial, we construct a non-triviality region.
2972 * This region imposes that the next row is independent of previous rows.
2973 * In particular the coefficients c_i_x are represented by t_i_x
2974 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2975 * its first columns span the rows of the previously computed part
2976 * of the schedule. The non-triviality region enforces that at least
2977 * one of the remaining components of t_i_x is non-zero, i.e.,
2978 * that the new schedule row depends on at least one of the remaining
2979 * columns of Q.
2981 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2983 int i;
2984 isl_vec *sol;
2985 isl_basic_set *lp;
2987 for (i = 0; i < graph->n; ++i) {
2988 struct isl_sched_node *node = &graph->node[i];
2989 int skip = node->rank;
2990 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
2991 if (needs_row(graph, node))
2992 graph->region[i].len = 2 * (node->nvar - skip);
2993 else
2994 graph->region[i].len = 0;
2996 lp = isl_basic_set_copy(graph->lp);
2997 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2998 graph->region, &check_conflict, graph);
2999 return sol;
3002 /* Extract the coefficients for the variables of "node" from "sol".
3004 * Within each node, the coefficients have the following order:
3005 * - c_i_0
3006 * - c_i_n (if parametric)
3007 * - positive and negative parts of c_i_x
3009 * The c_i_x^- appear before their c_i_x^+ counterpart.
3011 * Return c_i_x = c_i_x^+ - c_i_x^-
3013 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
3014 __isl_keep isl_vec *sol)
3016 int i;
3017 int pos;
3018 isl_vec *csol;
3020 if (!sol)
3021 return NULL;
3022 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
3023 if (!csol)
3024 return NULL;
3026 pos = 1 + node_var_coef_offset(node);
3027 for (i = 0; i < node->nvar; ++i)
3028 isl_int_sub(csol->el[i],
3029 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3031 return csol;
3034 /* Update the schedules of all nodes based on the given solution
3035 * of the LP problem.
3036 * The new row is added to the current band.
3037 * All possibly negative coefficients are encoded as a difference
3038 * of two non-negative variables, so we need to perform the subtraction
3039 * here. Moreover, if use_cmap is set, then the solution does
3040 * not refer to the actual coefficients c_i_x, but instead to variables
3041 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
3042 * In this case, we then also need to perform this multiplication
3043 * to obtain the values of c_i_x.
3045 * If coincident is set, then the caller guarantees that the new
3046 * row satisfies the coincidence constraints.
3048 static int update_schedule(struct isl_sched_graph *graph,
3049 __isl_take isl_vec *sol, int use_cmap, int coincident)
3051 int i, j;
3052 isl_vec *csol = NULL;
3054 if (!sol)
3055 goto error;
3056 if (sol->size == 0)
3057 isl_die(sol->ctx, isl_error_internal,
3058 "no solution found", goto error);
3059 if (graph->n_total_row >= graph->max_row)
3060 isl_die(sol->ctx, isl_error_internal,
3061 "too many schedule rows", goto error);
3063 for (i = 0; i < graph->n; ++i) {
3064 struct isl_sched_node *node = &graph->node[i];
3065 int pos = node->start;
3066 int row = isl_mat_rows(node->sched);
3068 isl_vec_free(csol);
3069 csol = extract_var_coef(node, sol);
3070 if (!csol)
3071 goto error;
3073 isl_map_free(node->sched_map);
3074 node->sched_map = NULL;
3075 node->sched = isl_mat_add_rows(node->sched, 1);
3076 if (!node->sched)
3077 goto error;
3078 for (j = 0; j < 1 + node->nparam; ++j)
3079 node->sched = isl_mat_set_element(node->sched,
3080 row, j, sol->el[1 + pos + j]);
3081 if (use_cmap)
3082 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
3083 csol);
3084 if (!csol)
3085 goto error;
3086 for (j = 0; j < node->nvar; ++j)
3087 node->sched = isl_mat_set_element(node->sched,
3088 row, 1 + node->nparam + j, csol->el[j]);
3089 node->coincident[graph->n_total_row] = coincident;
3091 isl_vec_free(sol);
3092 isl_vec_free(csol);
3094 graph->n_row++;
3095 graph->n_total_row++;
3097 return 0;
3098 error:
3099 isl_vec_free(sol);
3100 isl_vec_free(csol);
3101 return -1;
3104 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3105 * and return this isl_aff.
3107 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3108 struct isl_sched_node *node, int row)
3110 int j;
3111 isl_int v;
3112 isl_aff *aff;
3114 isl_int_init(v);
3116 aff = isl_aff_zero_on_domain(ls);
3117 isl_mat_get_element(node->sched, row, 0, &v);
3118 aff = isl_aff_set_constant(aff, v);
3119 for (j = 0; j < node->nparam; ++j) {
3120 isl_mat_get_element(node->sched, row, 1 + j, &v);
3121 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3123 for (j = 0; j < node->nvar; ++j) {
3124 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
3125 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3128 isl_int_clear(v);
3130 return aff;
3133 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3134 * and return this multi_aff.
3136 * The result is defined over the uncompressed node domain.
3138 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
3139 struct isl_sched_node *node, int first, int n)
3141 int i;
3142 isl_space *space;
3143 isl_local_space *ls;
3144 isl_aff *aff;
3145 isl_multi_aff *ma;
3146 int nrow;
3148 if (!node)
3149 return NULL;
3150 nrow = isl_mat_rows(node->sched);
3151 if (node->compressed)
3152 space = isl_multi_aff_get_domain_space(node->decompress);
3153 else
3154 space = isl_space_copy(node->space);
3155 ls = isl_local_space_from_space(isl_space_copy(space));
3156 space = isl_space_from_domain(space);
3157 space = isl_space_add_dims(space, isl_dim_out, n);
3158 ma = isl_multi_aff_zero(space);
3160 for (i = first; i < first + n; ++i) {
3161 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3162 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3165 isl_local_space_free(ls);
3167 if (node->compressed)
3168 ma = isl_multi_aff_pullback_multi_aff(ma,
3169 isl_multi_aff_copy(node->compress));
3171 return ma;
3174 /* Convert node->sched into a multi_aff and return this multi_aff.
3176 * The result is defined over the uncompressed node domain.
3178 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3179 struct isl_sched_node *node)
3181 int nrow;
3183 nrow = isl_mat_rows(node->sched);
3184 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3187 /* Convert node->sched into a map and return this map.
3189 * The result is cached in node->sched_map, which needs to be released
3190 * whenever node->sched is updated.
3191 * It is defined over the uncompressed node domain.
3193 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3195 if (!node->sched_map) {
3196 isl_multi_aff *ma;
3198 ma = node_extract_schedule_multi_aff(node);
3199 node->sched_map = isl_map_from_multi_aff(ma);
3202 return isl_map_copy(node->sched_map);
3205 /* Construct a map that can be used to update a dependence relation
3206 * based on the current schedule.
3207 * That is, construct a map expressing that source and sink
3208 * are executed within the same iteration of the current schedule.
3209 * This map can then be intersected with the dependence relation.
3210 * This is not the most efficient way, but this shouldn't be a critical
3211 * operation.
3213 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3214 struct isl_sched_node *dst)
3216 isl_map *src_sched, *dst_sched;
3218 src_sched = node_extract_schedule(src);
3219 dst_sched = node_extract_schedule(dst);
3220 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3223 /* Intersect the domains of the nested relations in domain and range
3224 * of "umap" with "map".
3226 static __isl_give isl_union_map *intersect_domains(
3227 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3229 isl_union_set *uset;
3231 umap = isl_union_map_zip(umap);
3232 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3233 umap = isl_union_map_intersect_domain(umap, uset);
3234 umap = isl_union_map_zip(umap);
3235 return umap;
3238 /* Update the dependence relation of the given edge based
3239 * on the current schedule.
3240 * If the dependence is carried completely by the current schedule, then
3241 * it is removed from the edge_tables. It is kept in the list of edges
3242 * as otherwise all edge_tables would have to be recomputed.
3244 static int update_edge(struct isl_sched_graph *graph,
3245 struct isl_sched_edge *edge)
3247 int empty;
3248 isl_map *id;
3250 id = specializer(edge->src, edge->dst);
3251 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3252 if (!edge->map)
3253 goto error;
3255 if (edge->tagged_condition) {
3256 edge->tagged_condition =
3257 intersect_domains(edge->tagged_condition, id);
3258 if (!edge->tagged_condition)
3259 goto error;
3261 if (edge->tagged_validity) {
3262 edge->tagged_validity =
3263 intersect_domains(edge->tagged_validity, id);
3264 if (!edge->tagged_validity)
3265 goto error;
3268 empty = isl_map_plain_is_empty(edge->map);
3269 if (empty < 0)
3270 goto error;
3271 if (empty)
3272 graph_remove_edge(graph, edge);
3274 isl_map_free(id);
3275 return 0;
3276 error:
3277 isl_map_free(id);
3278 return -1;
3281 /* Does the domain of "umap" intersect "uset"?
3283 static int domain_intersects(__isl_keep isl_union_map *umap,
3284 __isl_keep isl_union_set *uset)
3286 int empty;
3288 umap = isl_union_map_copy(umap);
3289 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3290 empty = isl_union_map_is_empty(umap);
3291 isl_union_map_free(umap);
3293 return empty < 0 ? -1 : !empty;
3296 /* Does the range of "umap" intersect "uset"?
3298 static int range_intersects(__isl_keep isl_union_map *umap,
3299 __isl_keep isl_union_set *uset)
3301 int empty;
3303 umap = isl_union_map_copy(umap);
3304 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3305 empty = isl_union_map_is_empty(umap);
3306 isl_union_map_free(umap);
3308 return empty < 0 ? -1 : !empty;
3311 /* Are the condition dependences of "edge" local with respect to
3312 * the current schedule?
3314 * That is, are domain and range of the condition dependences mapped
3315 * to the same point?
3317 * In other words, is the condition false?
3319 static int is_condition_false(struct isl_sched_edge *edge)
3321 isl_union_map *umap;
3322 isl_map *map, *sched, *test;
3323 int empty, local;
3325 empty = isl_union_map_is_empty(edge->tagged_condition);
3326 if (empty < 0 || empty)
3327 return empty;
3329 umap = isl_union_map_copy(edge->tagged_condition);
3330 umap = isl_union_map_zip(umap);
3331 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3332 map = isl_map_from_union_map(umap);
3334 sched = node_extract_schedule(edge->src);
3335 map = isl_map_apply_domain(map, sched);
3336 sched = node_extract_schedule(edge->dst);
3337 map = isl_map_apply_range(map, sched);
3339 test = isl_map_identity(isl_map_get_space(map));
3340 local = isl_map_is_subset(map, test);
3341 isl_map_free(map);
3342 isl_map_free(test);
3344 return local;
3347 /* For each conditional validity constraint that is adjacent
3348 * to a condition with domain in condition_source or range in condition_sink,
3349 * turn it into an unconditional validity constraint.
3351 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3352 __isl_take isl_union_set *condition_source,
3353 __isl_take isl_union_set *condition_sink)
3355 int i;
3357 condition_source = isl_union_set_coalesce(condition_source);
3358 condition_sink = isl_union_set_coalesce(condition_sink);
3360 for (i = 0; i < graph->n_edge; ++i) {
3361 int adjacent;
3362 isl_union_map *validity;
3364 if (!is_conditional_validity(&graph->edge[i]))
3365 continue;
3366 if (is_validity(&graph->edge[i]))
3367 continue;
3369 validity = graph->edge[i].tagged_validity;
3370 adjacent = domain_intersects(validity, condition_sink);
3371 if (adjacent >= 0 && !adjacent)
3372 adjacent = range_intersects(validity, condition_source);
3373 if (adjacent < 0)
3374 goto error;
3375 if (!adjacent)
3376 continue;
3378 set_validity(&graph->edge[i]);
3381 isl_union_set_free(condition_source);
3382 isl_union_set_free(condition_sink);
3383 return 0;
3384 error:
3385 isl_union_set_free(condition_source);
3386 isl_union_set_free(condition_sink);
3387 return -1;
3390 /* Update the dependence relations of all edges based on the current schedule
3391 * and enforce conditional validity constraints that are adjacent
3392 * to satisfied condition constraints.
3394 * First check if any of the condition constraints are satisfied
3395 * (i.e., not local to the outer schedule) and keep track of
3396 * their domain and range.
3397 * Then update all dependence relations (which removes the non-local
3398 * constraints).
3399 * Finally, if any condition constraints turned out to be satisfied,
3400 * then turn all adjacent conditional validity constraints into
3401 * unconditional validity constraints.
3403 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3405 int i;
3406 int any = 0;
3407 isl_union_set *source, *sink;
3409 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3410 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3411 for (i = 0; i < graph->n_edge; ++i) {
3412 int local;
3413 isl_union_set *uset;
3414 isl_union_map *umap;
3416 if (!is_condition(&graph->edge[i]))
3417 continue;
3418 if (is_local(&graph->edge[i]))
3419 continue;
3420 local = is_condition_false(&graph->edge[i]);
3421 if (local < 0)
3422 goto error;
3423 if (local)
3424 continue;
3426 any = 1;
3428 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3429 uset = isl_union_map_domain(umap);
3430 source = isl_union_set_union(source, uset);
3432 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3433 uset = isl_union_map_range(umap);
3434 sink = isl_union_set_union(sink, uset);
3437 for (i = graph->n_edge - 1; i >= 0; --i) {
3438 if (update_edge(graph, &graph->edge[i]) < 0)
3439 goto error;
3442 if (any)
3443 return unconditionalize_adjacent_validity(graph, source, sink);
3445 isl_union_set_free(source);
3446 isl_union_set_free(sink);
3447 return 0;
3448 error:
3449 isl_union_set_free(source);
3450 isl_union_set_free(sink);
3451 return -1;
3454 static void next_band(struct isl_sched_graph *graph)
3456 graph->band_start = graph->n_total_row;
3459 /* Return the union of the universe domains of the nodes in "graph"
3460 * that satisfy "pred".
3462 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3463 struct isl_sched_graph *graph,
3464 int (*pred)(struct isl_sched_node *node, int data), int data)
3466 int i;
3467 isl_set *set;
3468 isl_union_set *dom;
3470 for (i = 0; i < graph->n; ++i)
3471 if (pred(&graph->node[i], data))
3472 break;
3474 if (i >= graph->n)
3475 isl_die(ctx, isl_error_internal,
3476 "empty component", return NULL);
3478 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3479 dom = isl_union_set_from_set(set);
3481 for (i = i + 1; i < graph->n; ++i) {
3482 if (!pred(&graph->node[i], data))
3483 continue;
3484 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3485 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3488 return dom;
3491 /* Return a list of unions of universe domains, where each element
3492 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3494 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3495 struct isl_sched_graph *graph)
3497 int i;
3498 isl_union_set_list *filters;
3500 filters = isl_union_set_list_alloc(ctx, graph->scc);
3501 for (i = 0; i < graph->scc; ++i) {
3502 isl_union_set *dom;
3504 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3505 filters = isl_union_set_list_add(filters, dom);
3508 return filters;
3511 /* Return a list of two unions of universe domains, one for the SCCs up
3512 * to and including graph->src_scc and another for the other SCCs.
3514 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3515 struct isl_sched_graph *graph)
3517 isl_union_set *dom;
3518 isl_union_set_list *filters;
3520 filters = isl_union_set_list_alloc(ctx, 2);
3521 dom = isl_sched_graph_domain(ctx, graph,
3522 &node_scc_at_most, graph->src_scc);
3523 filters = isl_union_set_list_add(filters, dom);
3524 dom = isl_sched_graph_domain(ctx, graph,
3525 &node_scc_at_least, graph->src_scc + 1);
3526 filters = isl_union_set_list_add(filters, dom);
3528 return filters;
3531 /* Copy nodes that satisfy node_pred from the src dependence graph
3532 * to the dst dependence graph.
3534 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3535 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3537 int i;
3539 dst->n = 0;
3540 for (i = 0; i < src->n; ++i) {
3541 int j;
3543 if (!node_pred(&src->node[i], data))
3544 continue;
3546 j = dst->n;
3547 dst->node[j].space = isl_space_copy(src->node[i].space);
3548 dst->node[j].compressed = src->node[i].compressed;
3549 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3550 dst->node[j].compress =
3551 isl_multi_aff_copy(src->node[i].compress);
3552 dst->node[j].decompress =
3553 isl_multi_aff_copy(src->node[i].decompress);
3554 dst->node[j].nvar = src->node[i].nvar;
3555 dst->node[j].nparam = src->node[i].nparam;
3556 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3557 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3558 dst->node[j].coincident = src->node[i].coincident;
3559 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3560 dst->node[j].max = isl_vec_copy(src->node[i].max);
3561 dst->n++;
3563 if (!dst->node[j].space || !dst->node[j].sched)
3564 return -1;
3565 if (dst->node[j].compressed &&
3566 (!dst->node[j].hull || !dst->node[j].compress ||
3567 !dst->node[j].decompress))
3568 return -1;
3571 return 0;
3574 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3575 * to the dst dependence graph.
3576 * If the source or destination node of the edge is not in the destination
3577 * graph, then it must be a backward proximity edge and it should simply
3578 * be ignored.
3580 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3581 struct isl_sched_graph *src,
3582 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3584 int i;
3585 enum isl_edge_type t;
3587 dst->n_edge = 0;
3588 for (i = 0; i < src->n_edge; ++i) {
3589 struct isl_sched_edge *edge = &src->edge[i];
3590 isl_map *map;
3591 isl_union_map *tagged_condition;
3592 isl_union_map *tagged_validity;
3593 struct isl_sched_node *dst_src, *dst_dst;
3595 if (!edge_pred(edge, data))
3596 continue;
3598 if (isl_map_plain_is_empty(edge->map))
3599 continue;
3601 dst_src = graph_find_node(ctx, dst, edge->src->space);
3602 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3603 if (!dst_src || !dst_dst) {
3604 if (is_validity(edge) || is_conditional_validity(edge))
3605 isl_die(ctx, isl_error_internal,
3606 "backward (conditional) validity edge",
3607 return -1);
3608 continue;
3611 map = isl_map_copy(edge->map);
3612 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3613 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3615 dst->edge[dst->n_edge].src = dst_src;
3616 dst->edge[dst->n_edge].dst = dst_dst;
3617 dst->edge[dst->n_edge].map = map;
3618 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3619 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3620 dst->edge[dst->n_edge].types = edge->types;
3621 dst->n_edge++;
3623 if (edge->tagged_condition && !tagged_condition)
3624 return -1;
3625 if (edge->tagged_validity && !tagged_validity)
3626 return -1;
3628 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3629 if (edge !=
3630 graph_find_edge(src, t, edge->src, edge->dst))
3631 continue;
3632 if (graph_edge_table_add(ctx, dst, t,
3633 &dst->edge[dst->n_edge - 1]) < 0)
3634 return -1;
3638 return 0;
3641 /* Compute the maximal number of variables over all nodes.
3642 * This is the maximal number of linearly independent schedule
3643 * rows that we need to compute.
3644 * Just in case we end up in a part of the dependence graph
3645 * with only lower-dimensional domains, we make sure we will
3646 * compute the required amount of extra linearly independent rows.
3648 static int compute_maxvar(struct isl_sched_graph *graph)
3650 int i;
3652 graph->maxvar = 0;
3653 for (i = 0; i < graph->n; ++i) {
3654 struct isl_sched_node *node = &graph->node[i];
3655 int nvar;
3657 if (node_update_cmap(node) < 0)
3658 return -1;
3659 nvar = node->nvar + graph->n_row - node->rank;
3660 if (nvar > graph->maxvar)
3661 graph->maxvar = nvar;
3664 return 0;
3667 /* Extract the subgraph of "graph" that consists of the node satisfying
3668 * "node_pred" and the edges satisfying "edge_pred" and store
3669 * the result in "sub".
3671 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3672 int (*node_pred)(struct isl_sched_node *node, int data),
3673 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3674 int data, struct isl_sched_graph *sub)
3676 int i, n = 0, n_edge = 0;
3677 int t;
3679 for (i = 0; i < graph->n; ++i)
3680 if (node_pred(&graph->node[i], data))
3681 ++n;
3682 for (i = 0; i < graph->n_edge; ++i)
3683 if (edge_pred(&graph->edge[i], data))
3684 ++n_edge;
3685 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3686 return -1;
3687 if (copy_nodes(sub, graph, node_pred, data) < 0)
3688 return -1;
3689 if (graph_init_table(ctx, sub) < 0)
3690 return -1;
3691 for (t = 0; t <= isl_edge_last; ++t)
3692 sub->max_edge[t] = graph->max_edge[t];
3693 if (graph_init_edge_tables(ctx, sub) < 0)
3694 return -1;
3695 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3696 return -1;
3697 sub->n_row = graph->n_row;
3698 sub->max_row = graph->max_row;
3699 sub->n_total_row = graph->n_total_row;
3700 sub->band_start = graph->band_start;
3702 return 0;
3705 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3706 struct isl_sched_graph *graph);
3707 static __isl_give isl_schedule_node *compute_schedule_wcc(
3708 isl_schedule_node *node, struct isl_sched_graph *graph);
3710 /* Compute a schedule for a subgraph of "graph". In particular, for
3711 * the graph composed of nodes that satisfy node_pred and edges that
3712 * that satisfy edge_pred.
3713 * If the subgraph is known to consist of a single component, then wcc should
3714 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3715 * Otherwise, we call compute_schedule, which will check whether the subgraph
3716 * is connected.
3718 * The schedule is inserted at "node" and the updated schedule node
3719 * is returned.
3721 static __isl_give isl_schedule_node *compute_sub_schedule(
3722 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3723 struct isl_sched_graph *graph,
3724 int (*node_pred)(struct isl_sched_node *node, int data),
3725 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3726 int data, int wcc)
3728 struct isl_sched_graph split = { 0 };
3730 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3731 &split) < 0)
3732 goto error;
3734 if (wcc)
3735 node = compute_schedule_wcc(node, &split);
3736 else
3737 node = compute_schedule(node, &split);
3739 graph_free(ctx, &split);
3740 return node;
3741 error:
3742 graph_free(ctx, &split);
3743 return isl_schedule_node_free(node);
3746 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3748 return edge->src->scc == scc && edge->dst->scc == scc;
3751 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3753 return edge->dst->scc <= scc;
3756 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3758 return edge->src->scc >= scc;
3761 /* Reset the current band by dropping all its schedule rows.
3763 static int reset_band(struct isl_sched_graph *graph)
3765 int i;
3766 int drop;
3768 drop = graph->n_total_row - graph->band_start;
3769 graph->n_total_row -= drop;
3770 graph->n_row -= drop;
3772 for (i = 0; i < graph->n; ++i) {
3773 struct isl_sched_node *node = &graph->node[i];
3775 isl_map_free(node->sched_map);
3776 node->sched_map = NULL;
3778 node->sched = isl_mat_drop_rows(node->sched,
3779 graph->band_start, drop);
3781 if (!node->sched)
3782 return -1;
3785 return 0;
3788 /* Split the current graph into two parts and compute a schedule for each
3789 * part individually. In particular, one part consists of all SCCs up
3790 * to and including graph->src_scc, while the other part contains the other
3791 * SCCs. The split is enforced by a sequence node inserted at position "node"
3792 * in the schedule tree. Return the updated schedule node.
3793 * If either of these two parts consists of a sequence, then it is spliced
3794 * into the sequence containing the two parts.
3796 * The current band is reset. It would be possible to reuse
3797 * the previously computed rows as the first rows in the next
3798 * band, but recomputing them may result in better rows as we are looking
3799 * at a smaller part of the dependence graph.
3801 static __isl_give isl_schedule_node *compute_split_schedule(
3802 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3804 int is_seq;
3805 isl_ctx *ctx;
3806 isl_union_set_list *filters;
3808 if (!node)
3809 return NULL;
3811 if (reset_band(graph) < 0)
3812 return isl_schedule_node_free(node);
3814 next_band(graph);
3816 ctx = isl_schedule_node_get_ctx(node);
3817 filters = extract_split(ctx, graph);
3818 node = isl_schedule_node_insert_sequence(node, filters);
3819 node = isl_schedule_node_child(node, 1);
3820 node = isl_schedule_node_child(node, 0);
3822 node = compute_sub_schedule(node, ctx, graph,
3823 &node_scc_at_least, &edge_src_scc_at_least,
3824 graph->src_scc + 1, 0);
3825 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3826 node = isl_schedule_node_parent(node);
3827 node = isl_schedule_node_parent(node);
3828 if (is_seq)
3829 node = isl_schedule_node_sequence_splice_child(node, 1);
3830 node = isl_schedule_node_child(node, 0);
3831 node = isl_schedule_node_child(node, 0);
3832 node = compute_sub_schedule(node, ctx, graph,
3833 &node_scc_at_most, &edge_dst_scc_at_most,
3834 graph->src_scc, 0);
3835 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3836 node = isl_schedule_node_parent(node);
3837 node = isl_schedule_node_parent(node);
3838 if (is_seq)
3839 node = isl_schedule_node_sequence_splice_child(node, 0);
3841 return node;
3844 /* Insert a band node at position "node" in the schedule tree corresponding
3845 * to the current band in "graph". Mark the band node permutable
3846 * if "permutable" is set.
3847 * The partial schedules and the coincidence property are extracted
3848 * from the graph nodes.
3849 * Return the updated schedule node.
3851 static __isl_give isl_schedule_node *insert_current_band(
3852 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3853 int permutable)
3855 int i;
3856 int start, end, n;
3857 isl_multi_aff *ma;
3858 isl_multi_pw_aff *mpa;
3859 isl_multi_union_pw_aff *mupa;
3861 if (!node)
3862 return NULL;
3864 if (graph->n < 1)
3865 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3866 "graph should have at least one node",
3867 return isl_schedule_node_free(node));
3869 start = graph->band_start;
3870 end = graph->n_total_row;
3871 n = end - start;
3873 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3874 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3875 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3877 for (i = 1; i < graph->n; ++i) {
3878 isl_multi_union_pw_aff *mupa_i;
3880 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3881 start, n);
3882 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3883 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3884 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3886 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3888 for (i = 0; i < n; ++i)
3889 node = isl_schedule_node_band_member_set_coincident(node, i,
3890 graph->node[0].coincident[start + i]);
3891 node = isl_schedule_node_band_set_permutable(node, permutable);
3893 return node;
3896 /* Update the dependence relations based on the current schedule,
3897 * add the current band to "node" and then continue with the computation
3898 * of the next band.
3899 * Return the updated schedule node.
3901 static __isl_give isl_schedule_node *compute_next_band(
3902 __isl_take isl_schedule_node *node,
3903 struct isl_sched_graph *graph, int permutable)
3905 isl_ctx *ctx;
3907 if (!node)
3908 return NULL;
3910 ctx = isl_schedule_node_get_ctx(node);
3911 if (update_edges(ctx, graph) < 0)
3912 return isl_schedule_node_free(node);
3913 node = insert_current_band(node, graph, permutable);
3914 next_band(graph);
3916 node = isl_schedule_node_child(node, 0);
3917 node = compute_schedule(node, graph);
3918 node = isl_schedule_node_parent(node);
3920 return node;
3923 /* Add constraints to graph->lp that force the dependence "map" (which
3924 * is part of the dependence relation of "edge")
3925 * to be respected and attempt to carry it, where the edge is one from
3926 * a node j to itself. "pos" is the sequence number of the given map.
3927 * That is, add constraints that enforce
3929 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3930 * = c_j_x (y - x) >= e_i
3932 * for each (x,y) in R.
3933 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3934 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3935 * with each coefficient in c_j_x represented as a pair of non-negative
3936 * coefficients.
3938 static int add_intra_constraints(struct isl_sched_graph *graph,
3939 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3941 int offset;
3942 isl_ctx *ctx = isl_map_get_ctx(map);
3943 isl_dim_map *dim_map;
3944 isl_basic_set *coef;
3945 struct isl_sched_node *node = edge->src;
3947 coef = intra_coefficients(graph, node, map);
3948 if (!coef)
3949 return -1;
3951 offset = coef_var_offset(coef);
3952 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3953 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3954 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3955 coef->n_eq, coef->n_ineq);
3956 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3957 coef, dim_map);
3959 return 0;
3962 /* Add constraints to graph->lp that force the dependence "map" (which
3963 * is part of the dependence relation of "edge")
3964 * to be respected and attempt to carry it, where the edge is one from
3965 * node j to node k. "pos" is the sequence number of the given map.
3966 * That is, add constraints that enforce
3968 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3970 * for each (x,y) in R.
3971 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3972 * of valid constraints for R and then plug in
3973 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3974 * with each coefficient (except e_i, c_*_0 and c_*_n)
3975 * represented as a pair of non-negative coefficients.
3977 static int add_inter_constraints(struct isl_sched_graph *graph,
3978 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3980 int offset;
3981 isl_ctx *ctx = isl_map_get_ctx(map);
3982 isl_dim_map *dim_map;
3983 isl_basic_set *coef;
3984 struct isl_sched_node *src = edge->src;
3985 struct isl_sched_node *dst = edge->dst;
3987 coef = inter_coefficients(graph, edge, map);
3988 if (!coef)
3989 return -1;
3991 offset = coef_var_offset(coef);
3992 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3993 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3994 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3995 coef->n_eq, coef->n_ineq);
3996 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3997 coef, dim_map);
3999 return 0;
4002 /* Add constraints to graph->lp that force all (conditional) validity
4003 * dependences to be respected and attempt to carry them.
4005 static int add_all_constraints(struct isl_sched_graph *graph)
4007 int i, j;
4008 int pos;
4010 pos = 0;
4011 for (i = 0; i < graph->n_edge; ++i) {
4012 struct isl_sched_edge *edge= &graph->edge[i];
4014 if (!is_any_validity(edge))
4015 continue;
4017 for (j = 0; j < edge->map->n; ++j) {
4018 isl_basic_map *bmap;
4019 isl_map *map;
4021 bmap = isl_basic_map_copy(edge->map->p[j]);
4022 map = isl_map_from_basic_map(bmap);
4024 if (edge->src == edge->dst &&
4025 add_intra_constraints(graph, edge, map, pos) < 0)
4026 return -1;
4027 if (edge->src != edge->dst &&
4028 add_inter_constraints(graph, edge, map, pos) < 0)
4029 return -1;
4030 ++pos;
4034 return 0;
4037 /* Count the number of equality and inequality constraints
4038 * that will be added to the carry_lp problem.
4039 * We count each edge exactly once.
4041 static int count_all_constraints(struct isl_sched_graph *graph,
4042 int *n_eq, int *n_ineq)
4044 int i, j;
4046 *n_eq = *n_ineq = 0;
4047 for (i = 0; i < graph->n_edge; ++i) {
4048 struct isl_sched_edge *edge= &graph->edge[i];
4050 if (!is_any_validity(edge))
4051 continue;
4053 for (j = 0; j < edge->map->n; ++j) {
4054 isl_basic_map *bmap;
4055 isl_map *map;
4057 bmap = isl_basic_map_copy(edge->map->p[j]);
4058 map = isl_map_from_basic_map(bmap);
4060 if (count_map_constraints(graph, edge, map,
4061 n_eq, n_ineq, 1, 0) < 0)
4062 return -1;
4066 return 0;
4069 /* Construct an LP problem for finding schedule coefficients
4070 * such that the schedule carries as many dependences as possible.
4071 * In particular, for each dependence i, we bound the dependence distance
4072 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4073 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4074 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4075 * Note that if the dependence relation is a union of basic maps,
4076 * then we have to consider each basic map individually as it may only
4077 * be possible to carry the dependences expressed by some of those
4078 * basic maps and not all of them.
4079 * Below, we consider each of those basic maps as a separate "edge".
4081 * All variables of the LP are non-negative. The actual coefficients
4082 * may be negative, so each coefficient is represented as the difference
4083 * of two non-negative variables. The negative part always appears
4084 * immediately before the positive part.
4085 * Other than that, the variables have the following order
4087 * - sum of (1 - e_i) over all edges
4088 * - sum of all c_n coefficients
4089 * (unconstrained when computing non-parametric schedules)
4090 * - sum of positive and negative parts of all c_x coefficients
4091 * - for each edge
4092 * - e_i
4093 * - for each node
4094 * - c_i_0
4095 * - c_i_n (if parametric)
4096 * - positive and negative parts of c_i_x
4098 * The constraints are those from the (validity) edges plus three equalities
4099 * to express the sums and n_edge inequalities to express e_i <= 1.
4101 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
4103 int i;
4104 int k;
4105 isl_space *dim;
4106 unsigned total;
4107 int n_eq, n_ineq;
4108 int n_edge;
4110 n_edge = 0;
4111 for (i = 0; i < graph->n_edge; ++i)
4112 n_edge += graph->edge[i].map->n;
4114 total = 3 + n_edge;
4115 for (i = 0; i < graph->n; ++i) {
4116 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4117 node->start = total;
4118 total += 1 + node->nparam + 2 * node->nvar;
4121 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
4122 return isl_stat_error;
4124 dim = isl_space_set_alloc(ctx, 0, total);
4125 isl_basic_set_free(graph->lp);
4126 n_eq += 3;
4127 n_ineq += n_edge;
4128 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4129 graph->lp = isl_basic_set_set_rational(graph->lp);
4131 k = isl_basic_set_alloc_equality(graph->lp);
4132 if (k < 0)
4133 return isl_stat_error;
4134 isl_seq_clr(graph->lp->eq[k], 1 + total);
4135 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4136 isl_int_set_si(graph->lp->eq[k][1], 1);
4137 for (i = 0; i < n_edge; ++i)
4138 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4140 if (add_param_sum_constraint(graph, 1) < 0)
4141 return isl_stat_error;
4142 if (add_var_sum_constraint(graph, 2) < 0)
4143 return isl_stat_error;
4145 for (i = 0; i < n_edge; ++i) {
4146 k = isl_basic_set_alloc_inequality(graph->lp);
4147 if (k < 0)
4148 return isl_stat_error;
4149 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4150 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4151 isl_int_set_si(graph->lp->ineq[k][0], 1);
4154 if (add_all_constraints(graph) < 0)
4155 return isl_stat_error;
4157 return isl_stat_ok;
4160 static __isl_give isl_schedule_node *compute_component_schedule(
4161 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4162 int wcc);
4164 /* Comparison function for sorting the statements based on
4165 * the corresponding value in "r".
4167 static int smaller_value(const void *a, const void *b, void *data)
4169 isl_vec *r = data;
4170 const int *i1 = a;
4171 const int *i2 = b;
4173 return isl_int_cmp(r->el[*i1], r->el[*i2]);
4176 /* If the schedule_split_scaled option is set and if the linear
4177 * parts of the scheduling rows for all nodes in the graphs have
4178 * a non-trivial common divisor, then split off the remainder of the
4179 * constant term modulo this common divisor from the linear part.
4180 * Otherwise, insert a band node directly and continue with
4181 * the construction of the schedule.
4183 * If a non-trivial common divisor is found, then
4184 * the linear part is reduced and the remainder is enforced
4185 * by a sequence node with the children placed in the order
4186 * of this remainder.
4187 * In particular, we assign an scc index based on the remainder and
4188 * then rely on compute_component_schedule to insert the sequence and
4189 * to continue the schedule construction on each part.
4191 static __isl_give isl_schedule_node *split_scaled(
4192 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4194 int i;
4195 int row;
4196 int scc;
4197 isl_ctx *ctx;
4198 isl_int gcd, gcd_i;
4199 isl_vec *r;
4200 int *order;
4202 if (!node)
4203 return NULL;
4205 ctx = isl_schedule_node_get_ctx(node);
4206 if (!ctx->opt->schedule_split_scaled)
4207 return compute_next_band(node, graph, 0);
4208 if (graph->n <= 1)
4209 return compute_next_band(node, graph, 0);
4211 isl_int_init(gcd);
4212 isl_int_init(gcd_i);
4214 isl_int_set_si(gcd, 0);
4216 row = isl_mat_rows(graph->node[0].sched) - 1;
4218 for (i = 0; i < graph->n; ++i) {
4219 struct isl_sched_node *node = &graph->node[i];
4220 int cols = isl_mat_cols(node->sched);
4222 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4223 isl_int_gcd(gcd, gcd, gcd_i);
4226 isl_int_clear(gcd_i);
4228 if (isl_int_cmp_si(gcd, 1) <= 0) {
4229 isl_int_clear(gcd);
4230 return compute_next_band(node, graph, 0);
4233 r = isl_vec_alloc(ctx, graph->n);
4234 order = isl_calloc_array(ctx, int, graph->n);
4235 if (!r || !order)
4236 goto error;
4238 for (i = 0; i < graph->n; ++i) {
4239 struct isl_sched_node *node = &graph->node[i];
4241 order[i] = i;
4242 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
4243 isl_int_fdiv_q(node->sched->row[row][0],
4244 node->sched->row[row][0], gcd);
4245 isl_int_mul(node->sched->row[row][0],
4246 node->sched->row[row][0], gcd);
4247 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4248 if (!node->sched)
4249 goto error;
4252 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
4253 goto error;
4255 scc = 0;
4256 for (i = 0; i < graph->n; ++i) {
4257 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
4258 ++scc;
4259 graph->node[order[i]].scc = scc;
4261 graph->scc = ++scc;
4262 graph->weak = 0;
4264 isl_int_clear(gcd);
4265 isl_vec_free(r);
4266 free(order);
4268 if (update_edges(ctx, graph) < 0)
4269 return isl_schedule_node_free(node);
4270 node = insert_current_band(node, graph, 0);
4271 next_band(graph);
4273 node = isl_schedule_node_child(node, 0);
4274 node = compute_component_schedule(node, graph, 0);
4275 node = isl_schedule_node_parent(node);
4277 return node;
4278 error:
4279 isl_vec_free(r);
4280 free(order);
4281 isl_int_clear(gcd);
4282 return isl_schedule_node_free(node);
4285 /* Is the schedule row "sol" trivial on node "node"?
4286 * That is, is the solution zero on the dimensions orthogonal to
4287 * the previously found solutions?
4288 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4290 * Each coefficient is represented as the difference between
4291 * two non-negative values in "sol". "sol" has been computed
4292 * in terms of the original iterators (i.e., without use of cmap).
4293 * We construct the schedule row s and write it as a linear
4294 * combination of (linear combinations of) previously computed schedule rows.
4295 * s = Q c or c = U s.
4296 * If the final entries of c are all zero, then the solution is trivial.
4298 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4300 int trivial;
4301 isl_vec *node_sol;
4303 if (!sol)
4304 return -1;
4305 if (node->nvar == node->rank)
4306 return 0;
4308 node_sol = extract_var_coef(node, sol);
4309 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
4310 if (!node_sol)
4311 return -1;
4313 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
4314 node->nvar - node->rank) == -1;
4316 isl_vec_free(node_sol);
4318 return trivial;
4321 /* Is the schedule row "sol" trivial on any node where it should
4322 * not be trivial?
4323 * "sol" has been computed in terms of the original iterators
4324 * (i.e., without use of cmap).
4325 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4327 static int is_any_trivial(struct isl_sched_graph *graph,
4328 __isl_keep isl_vec *sol)
4330 int i;
4332 for (i = 0; i < graph->n; ++i) {
4333 struct isl_sched_node *node = &graph->node[i];
4334 int trivial;
4336 if (!needs_row(graph, node))
4337 continue;
4338 trivial = is_trivial(node, sol);
4339 if (trivial < 0 || trivial)
4340 return trivial;
4343 return 0;
4346 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4347 * If so, return the position of the coalesced dimension.
4348 * Otherwise, return node->nvar or -1 on error.
4350 * In particular, look for pairs of coefficients c_i and c_j such that
4351 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
4352 * If any such pair is found, then return i.
4353 * If size_i is infinity, then no check on c_i needs to be performed.
4355 static int find_node_coalescing(struct isl_sched_node *node,
4356 __isl_keep isl_vec *sol)
4358 int i, j;
4359 isl_int max;
4360 isl_vec *csol;
4362 if (node->nvar <= 1)
4363 return node->nvar;
4365 csol = extract_var_coef(node, sol);
4366 if (!csol)
4367 return -1;
4368 isl_int_init(max);
4369 for (i = 0; i < node->nvar; ++i) {
4370 isl_val *v;
4372 if (isl_int_is_zero(csol->el[i]))
4373 continue;
4374 v = isl_multi_val_get_val(node->sizes, i);
4375 if (!v)
4376 goto error;
4377 if (!isl_val_is_int(v)) {
4378 isl_val_free(v);
4379 continue;
4381 isl_int_mul(max, v->n, csol->el[i]);
4382 isl_val_free(v);
4384 for (j = 0; j < node->nvar; ++j) {
4385 if (j == i)
4386 continue;
4387 if (isl_int_abs_ge(csol->el[j], max))
4388 break;
4390 if (j < node->nvar)
4391 break;
4394 isl_int_clear(max);
4395 isl_vec_free(csol);
4396 return i;
4397 error:
4398 isl_int_clear(max);
4399 isl_vec_free(csol);
4400 return -1;
4403 /* Force the schedule coefficient at position "pos" of "node" to be zero
4404 * in "tl".
4405 * The coefficient is encoded as the difference between two non-negative
4406 * variables. Force these two variables to have the same value.
4408 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4409 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4411 int dim;
4412 isl_ctx *ctx;
4413 isl_vec *eq;
4415 ctx = isl_space_get_ctx(node->space);
4416 dim = isl_tab_lexmin_dim(tl);
4417 if (dim < 0)
4418 return isl_tab_lexmin_free(tl);
4419 eq = isl_vec_alloc(ctx, 1 + dim);
4420 eq = isl_vec_clr(eq);
4421 if (!eq)
4422 return isl_tab_lexmin_free(tl);
4424 pos = 1 + node_var_coef_offset(node) + 2 * pos;
4425 isl_int_set_si(eq->el[pos], 1);
4426 isl_int_set_si(eq->el[pos + 1], -1);
4427 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4428 isl_vec_free(eq);
4430 return tl;
4433 /* Return the lexicographically smallest rational point in the basic set
4434 * from which "tl" was constructed, double checking that this input set
4435 * was not empty.
4437 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4439 isl_vec *sol;
4441 sol = isl_tab_lexmin_get_solution(tl);
4442 if (!sol)
4443 return NULL;
4444 if (sol->size == 0)
4445 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4446 "error in schedule construction",
4447 return isl_vec_free(sol));
4448 return sol;
4451 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4452 * carry any of the "n_edge" groups of dependences?
4453 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4454 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4455 * by the edge are carried by the solution.
4456 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4457 * one of those is carried.
4459 * Note that despite the fact that the problem is solved using a rational
4460 * solver, the solution is guaranteed to be integral.
4461 * Specifically, the dependence distance lower bounds e_i (and therefore
4462 * also their sum) are integers. See Lemma 5 of [1].
4464 * Any potential denominator of the sum is cleared by this function.
4465 * The denominator is not relevant for any of the other elements
4466 * in the solution.
4468 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4469 * Problem, Part II: Multi-Dimensional Time.
4470 * In Intl. Journal of Parallel Programming, 1992.
4472 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4474 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4475 isl_int_set_si(sol->el[0], 1);
4476 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4479 /* Return the lexicographically smallest rational point in "lp",
4480 * assuming that all variables are non-negative and performing some
4481 * additional sanity checks.
4482 * In particular, "lp" should not be empty by construction.
4483 * Double check that this is the case.
4484 * Also, check that dependences are carried for at least one of
4485 * the "n_edge" edges.
4487 * If the computed schedule performs loop coalescing on a given node,
4488 * i.e., if it is of the form
4490 * c_i i + c_j j + ...
4492 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4493 * to cut out this solution. Repeat this process until no more loop
4494 * coalescing occurs or until no more dependences can be carried.
4495 * In the latter case, revert to the previously computed solution.
4497 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4498 __isl_take isl_basic_set *lp, int n_edge)
4500 int i, pos;
4501 isl_ctx *ctx;
4502 isl_tab_lexmin *tl;
4503 isl_vec *sol, *prev = NULL;
4504 int treat_coalescing;
4506 if (!lp)
4507 return NULL;
4508 ctx = isl_basic_set_get_ctx(lp);
4509 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4510 tl = isl_tab_lexmin_from_basic_set(lp);
4512 do {
4513 sol = non_empty_solution(tl);
4514 if (!sol)
4515 goto error;
4517 if (!carries_dependences(sol, n_edge)) {
4518 if (!prev)
4519 isl_die(ctx, isl_error_unknown,
4520 "unable to carry dependences",
4521 goto error);
4522 isl_vec_free(sol);
4523 sol = prev;
4524 break;
4526 prev = isl_vec_free(prev);
4527 if (!treat_coalescing)
4528 break;
4529 for (i = 0; i < graph->n; ++i) {
4530 struct isl_sched_node *node = &graph->node[i];
4532 pos = find_node_coalescing(node, sol);
4533 if (pos < 0)
4534 goto error;
4535 if (pos < node->nvar)
4536 break;
4538 if (i < graph->n) {
4539 prev = sol;
4540 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4542 } while (i < graph->n);
4544 isl_tab_lexmin_free(tl);
4546 return sol;
4547 error:
4548 isl_tab_lexmin_free(tl);
4549 isl_vec_free(prev);
4550 isl_vec_free(sol);
4551 return NULL;
4554 /* Construct a schedule row for each node such that as many dependences
4555 * as possible are carried and then continue with the next band.
4557 * If the computed schedule row turns out to be trivial on one or
4558 * more nodes where it should not be trivial, then we throw it away
4559 * and try again on each component separately.
4561 * If there is only one component, then we accept the schedule row anyway,
4562 * but we do not consider it as a complete row and therefore do not
4563 * increment graph->n_row. Note that the ranks of the nodes that
4564 * do get a non-trivial schedule part will get updated regardless and
4565 * graph->maxvar is computed based on these ranks. The test for
4566 * whether more schedule rows are required in compute_schedule_wcc
4567 * is therefore not affected.
4569 * Insert a band corresponding to the schedule row at position "node"
4570 * of the schedule tree and continue with the construction of the schedule.
4571 * This insertion and the continued construction is performed by split_scaled
4572 * after optionally checking for non-trivial common divisors.
4574 static __isl_give isl_schedule_node *carry_dependences(
4575 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4577 int i;
4578 int n_edge;
4579 int trivial;
4580 isl_ctx *ctx;
4581 isl_vec *sol;
4582 isl_basic_set *lp;
4584 if (!node)
4585 return NULL;
4587 n_edge = 0;
4588 for (i = 0; i < graph->n_edge; ++i)
4589 n_edge += graph->edge[i].map->n;
4591 ctx = isl_schedule_node_get_ctx(node);
4592 if (setup_carry_lp(ctx, graph) < 0)
4593 return isl_schedule_node_free(node);
4595 lp = isl_basic_set_copy(graph->lp);
4596 sol = non_neg_lexmin(graph, lp, n_edge);
4597 if (!sol)
4598 return isl_schedule_node_free(node);
4600 trivial = is_any_trivial(graph, sol);
4601 if (trivial < 0) {
4602 sol = isl_vec_free(sol);
4603 } else if (trivial && graph->scc > 1) {
4604 isl_vec_free(sol);
4605 return compute_component_schedule(node, graph, 1);
4608 if (update_schedule(graph, sol, 0, 0) < 0)
4609 return isl_schedule_node_free(node);
4610 if (trivial)
4611 graph->n_row--;
4613 return split_scaled(node, graph);
4616 /* Topologically sort statements mapped to the same schedule iteration
4617 * and add insert a sequence node in front of "node"
4618 * corresponding to this order.
4619 * If "initialized" is set, then it may be assumed that compute_maxvar
4620 * has been called on the current band. Otherwise, call
4621 * compute_maxvar if and before carry_dependences gets called.
4623 * If it turns out to be impossible to sort the statements apart,
4624 * because different dependences impose different orderings
4625 * on the statements, then we extend the schedule such that
4626 * it carries at least one more dependence.
4628 static __isl_give isl_schedule_node *sort_statements(
4629 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4630 int initialized)
4632 isl_ctx *ctx;
4633 isl_union_set_list *filters;
4635 if (!node)
4636 return NULL;
4638 ctx = isl_schedule_node_get_ctx(node);
4639 if (graph->n < 1)
4640 isl_die(ctx, isl_error_internal,
4641 "graph should have at least one node",
4642 return isl_schedule_node_free(node));
4644 if (graph->n == 1)
4645 return node;
4647 if (update_edges(ctx, graph) < 0)
4648 return isl_schedule_node_free(node);
4650 if (graph->n_edge == 0)
4651 return node;
4653 if (detect_sccs(ctx, graph) < 0)
4654 return isl_schedule_node_free(node);
4656 next_band(graph);
4657 if (graph->scc < graph->n) {
4658 if (!initialized && compute_maxvar(graph) < 0)
4659 return isl_schedule_node_free(node);
4660 return carry_dependences(node, graph);
4663 filters = extract_sccs(ctx, graph);
4664 node = isl_schedule_node_insert_sequence(node, filters);
4666 return node;
4669 /* Are there any (non-empty) (conditional) validity edges in the graph?
4671 static int has_validity_edges(struct isl_sched_graph *graph)
4673 int i;
4675 for (i = 0; i < graph->n_edge; ++i) {
4676 int empty;
4678 empty = isl_map_plain_is_empty(graph->edge[i].map);
4679 if (empty < 0)
4680 return -1;
4681 if (empty)
4682 continue;
4683 if (is_any_validity(&graph->edge[i]))
4684 return 1;
4687 return 0;
4690 /* Should we apply a Feautrier step?
4691 * That is, did the user request the Feautrier algorithm and are
4692 * there any validity dependences (left)?
4694 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4696 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4697 return 0;
4699 return has_validity_edges(graph);
4702 /* Compute a schedule for a connected dependence graph using Feautrier's
4703 * multi-dimensional scheduling algorithm and return the updated schedule node.
4705 * The original algorithm is described in [1].
4706 * The main idea is to minimize the number of scheduling dimensions, by
4707 * trying to satisfy as many dependences as possible per scheduling dimension.
4709 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4710 * Problem, Part II: Multi-Dimensional Time.
4711 * In Intl. Journal of Parallel Programming, 1992.
4713 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4714 isl_schedule_node *node, struct isl_sched_graph *graph)
4716 return carry_dependences(node, graph);
4719 /* Turn off the "local" bit on all (condition) edges.
4721 static void clear_local_edges(struct isl_sched_graph *graph)
4723 int i;
4725 for (i = 0; i < graph->n_edge; ++i)
4726 if (is_condition(&graph->edge[i]))
4727 clear_local(&graph->edge[i]);
4730 /* Does "graph" have both condition and conditional validity edges?
4732 static int need_condition_check(struct isl_sched_graph *graph)
4734 int i;
4735 int any_condition = 0;
4736 int any_conditional_validity = 0;
4738 for (i = 0; i < graph->n_edge; ++i) {
4739 if (is_condition(&graph->edge[i]))
4740 any_condition = 1;
4741 if (is_conditional_validity(&graph->edge[i]))
4742 any_conditional_validity = 1;
4745 return any_condition && any_conditional_validity;
4748 /* Does "graph" contain any coincidence edge?
4750 static int has_any_coincidence(struct isl_sched_graph *graph)
4752 int i;
4754 for (i = 0; i < graph->n_edge; ++i)
4755 if (is_coincidence(&graph->edge[i]))
4756 return 1;
4758 return 0;
4761 /* Extract the final schedule row as a map with the iteration domain
4762 * of "node" as domain.
4764 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4766 isl_local_space *ls;
4767 isl_aff *aff;
4768 int row;
4770 row = isl_mat_rows(node->sched) - 1;
4771 ls = isl_local_space_from_space(isl_space_copy(node->space));
4772 aff = extract_schedule_row(ls, node, row);
4773 return isl_map_from_aff(aff);
4776 /* Is the conditional validity dependence in the edge with index "edge_index"
4777 * violated by the latest (i.e., final) row of the schedule?
4778 * That is, is i scheduled after j
4779 * for any conditional validity dependence i -> j?
4781 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4783 isl_map *src_sched, *dst_sched, *map;
4784 struct isl_sched_edge *edge = &graph->edge[edge_index];
4785 int empty;
4787 src_sched = final_row(edge->src);
4788 dst_sched = final_row(edge->dst);
4789 map = isl_map_copy(edge->map);
4790 map = isl_map_apply_domain(map, src_sched);
4791 map = isl_map_apply_range(map, dst_sched);
4792 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4793 empty = isl_map_is_empty(map);
4794 isl_map_free(map);
4796 if (empty < 0)
4797 return -1;
4799 return !empty;
4802 /* Does "graph" have any satisfied condition edges that
4803 * are adjacent to the conditional validity constraint with
4804 * domain "conditional_source" and range "conditional_sink"?
4806 * A satisfied condition is one that is not local.
4807 * If a condition was forced to be local already (i.e., marked as local)
4808 * then there is no need to check if it is in fact local.
4810 * Additionally, mark all adjacent condition edges found as local.
4812 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4813 __isl_keep isl_union_set *conditional_source,
4814 __isl_keep isl_union_set *conditional_sink)
4816 int i;
4817 int any = 0;
4819 for (i = 0; i < graph->n_edge; ++i) {
4820 int adjacent, local;
4821 isl_union_map *condition;
4823 if (!is_condition(&graph->edge[i]))
4824 continue;
4825 if (is_local(&graph->edge[i]))
4826 continue;
4828 condition = graph->edge[i].tagged_condition;
4829 adjacent = domain_intersects(condition, conditional_sink);
4830 if (adjacent >= 0 && !adjacent)
4831 adjacent = range_intersects(condition,
4832 conditional_source);
4833 if (adjacent < 0)
4834 return -1;
4835 if (!adjacent)
4836 continue;
4838 set_local(&graph->edge[i]);
4840 local = is_condition_false(&graph->edge[i]);
4841 if (local < 0)
4842 return -1;
4843 if (!local)
4844 any = 1;
4847 return any;
4850 /* Are there any violated conditional validity dependences with
4851 * adjacent condition dependences that are not local with respect
4852 * to the current schedule?
4853 * That is, is the conditional validity constraint violated?
4855 * Additionally, mark all those adjacent condition dependences as local.
4856 * We also mark those adjacent condition dependences that were not marked
4857 * as local before, but just happened to be local already. This ensures
4858 * that they remain local if the schedule is recomputed.
4860 * We first collect domain and range of all violated conditional validity
4861 * dependences and then check if there are any adjacent non-local
4862 * condition dependences.
4864 static int has_violated_conditional_constraint(isl_ctx *ctx,
4865 struct isl_sched_graph *graph)
4867 int i;
4868 int any = 0;
4869 isl_union_set *source, *sink;
4871 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4872 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4873 for (i = 0; i < graph->n_edge; ++i) {
4874 isl_union_set *uset;
4875 isl_union_map *umap;
4876 int violated;
4878 if (!is_conditional_validity(&graph->edge[i]))
4879 continue;
4881 violated = is_violated(graph, i);
4882 if (violated < 0)
4883 goto error;
4884 if (!violated)
4885 continue;
4887 any = 1;
4889 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4890 uset = isl_union_map_domain(umap);
4891 source = isl_union_set_union(source, uset);
4892 source = isl_union_set_coalesce(source);
4894 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4895 uset = isl_union_map_range(umap);
4896 sink = isl_union_set_union(sink, uset);
4897 sink = isl_union_set_coalesce(sink);
4900 if (any)
4901 any = has_adjacent_true_conditions(graph, source, sink);
4903 isl_union_set_free(source);
4904 isl_union_set_free(sink);
4905 return any;
4906 error:
4907 isl_union_set_free(source);
4908 isl_union_set_free(sink);
4909 return -1;
4912 /* Examine the current band (the rows between graph->band_start and
4913 * graph->n_total_row), deciding whether to drop it or add it to "node"
4914 * and then continue with the computation of the next band, if any.
4915 * If "initialized" is set, then it may be assumed that compute_maxvar
4916 * has been called on the current band. Otherwise, call
4917 * compute_maxvar if and before carry_dependences gets called.
4919 * The caller keeps looking for a new row as long as
4920 * graph->n_row < graph->maxvar. If the latest attempt to find
4921 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4922 * then we either
4923 * - split between SCCs and start over (assuming we found an interesting
4924 * pair of SCCs between which to split)
4925 * - continue with the next band (assuming the current band has at least
4926 * one row)
4927 * - try to carry as many dependences as possible and continue with the next
4928 * band
4929 * In each case, we first insert a band node in the schedule tree
4930 * if any rows have been computed.
4932 * If the caller managed to complete the schedule, we insert a band node
4933 * (if any schedule rows were computed) and we finish off by topologically
4934 * sorting the statements based on the remaining dependences.
4936 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4937 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4938 int initialized)
4940 int insert;
4942 if (!node)
4943 return NULL;
4945 if (graph->n_row < graph->maxvar) {
4946 isl_ctx *ctx;
4947 int empty = graph->n_total_row == graph->band_start;
4949 ctx = isl_schedule_node_get_ctx(node);
4950 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4951 return compute_next_band(node, graph, 1);
4952 if (graph->src_scc >= 0)
4953 return compute_split_schedule(node, graph);
4954 if (!empty)
4955 return compute_next_band(node, graph, 1);
4956 if (!initialized && compute_maxvar(graph) < 0)
4957 return isl_schedule_node_free(node);
4958 return carry_dependences(node, graph);
4961 insert = graph->n_total_row > graph->band_start;
4962 if (insert) {
4963 node = insert_current_band(node, graph, 1);
4964 node = isl_schedule_node_child(node, 0);
4966 node = sort_statements(node, graph, initialized);
4967 if (insert)
4968 node = isl_schedule_node_parent(node);
4970 return node;
4973 /* Construct a band of schedule rows for a connected dependence graph.
4974 * The caller is responsible for determining the strongly connected
4975 * components and calling compute_maxvar first.
4977 * We try to find a sequence of as many schedule rows as possible that result
4978 * in non-negative dependence distances (independent of the previous rows
4979 * in the sequence, i.e., such that the sequence is tilable), with as
4980 * many of the initial rows as possible satisfying the coincidence constraints.
4981 * The computation stops if we can't find any more rows or if we have found
4982 * all the rows we wanted to find.
4984 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4985 * outermost dimension to satisfy the coincidence constraints. If this
4986 * turns out to be impossible, we fall back on the general scheme above
4987 * and try to carry as many dependences as possible.
4989 * If "graph" contains both condition and conditional validity dependences,
4990 * then we need to check that that the conditional schedule constraint
4991 * is satisfied, i.e., there are no violated conditional validity dependences
4992 * that are adjacent to any non-local condition dependences.
4993 * If there are, then we mark all those adjacent condition dependences
4994 * as local and recompute the current band. Those dependences that
4995 * are marked local will then be forced to be local.
4996 * The initial computation is performed with no dependences marked as local.
4997 * If we are lucky, then there will be no violated conditional validity
4998 * dependences adjacent to any non-local condition dependences.
4999 * Otherwise, we mark some additional condition dependences as local and
5000 * recompute. We continue this process until there are no violations left or
5001 * until we are no longer able to compute a schedule.
5002 * Since there are only a finite number of dependences,
5003 * there will only be a finite number of iterations.
5005 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5006 struct isl_sched_graph *graph)
5008 int has_coincidence;
5009 int use_coincidence;
5010 int force_coincidence = 0;
5011 int check_conditional;
5013 if (sort_sccs(graph) < 0)
5014 return isl_stat_error;
5016 clear_local_edges(graph);
5017 check_conditional = need_condition_check(graph);
5018 has_coincidence = has_any_coincidence(graph);
5020 if (ctx->opt->schedule_outer_coincidence)
5021 force_coincidence = 1;
5023 use_coincidence = has_coincidence;
5024 while (graph->n_row < graph->maxvar) {
5025 isl_vec *sol;
5026 int violated;
5027 int coincident;
5029 graph->src_scc = -1;
5030 graph->dst_scc = -1;
5032 if (setup_lp(ctx, graph, use_coincidence) < 0)
5033 return isl_stat_error;
5034 sol = solve_lp(graph);
5035 if (!sol)
5036 return isl_stat_error;
5037 if (sol->size == 0) {
5038 int empty = graph->n_total_row == graph->band_start;
5040 isl_vec_free(sol);
5041 if (use_coincidence && (!force_coincidence || !empty)) {
5042 use_coincidence = 0;
5043 continue;
5045 return isl_stat_ok;
5047 coincident = !has_coincidence || use_coincidence;
5048 if (update_schedule(graph, sol, 1, coincident) < 0)
5049 return isl_stat_error;
5051 if (!check_conditional)
5052 continue;
5053 violated = has_violated_conditional_constraint(ctx, graph);
5054 if (violated < 0)
5055 return isl_stat_error;
5056 if (!violated)
5057 continue;
5058 if (reset_band(graph) < 0)
5059 return isl_stat_error;
5060 use_coincidence = has_coincidence;
5063 return isl_stat_ok;
5066 /* Compute a schedule for a connected dependence graph by considering
5067 * the graph as a whole and return the updated schedule node.
5069 * The actual schedule rows of the current band are computed by
5070 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5071 * care of integrating the band into "node" and continuing
5072 * the computation.
5074 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5075 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5077 isl_ctx *ctx;
5079 if (!node)
5080 return NULL;
5082 ctx = isl_schedule_node_get_ctx(node);
5083 if (compute_schedule_wcc_band(ctx, graph) < 0)
5084 return isl_schedule_node_free(node);
5086 return compute_schedule_finish_band(node, graph, 1);
5089 /* Clustering information used by compute_schedule_wcc_clustering.
5091 * "n" is the number of SCCs in the original dependence graph
5092 * "scc" is an array of "n" elements, each representing an SCC
5093 * of the original dependence graph. All entries in the same cluster
5094 * have the same number of schedule rows.
5095 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5096 * where each cluster is represented by the index of the first SCC
5097 * in the cluster. Initially, each SCC belongs to a cluster containing
5098 * only that SCC.
5100 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5101 * track of which SCCs need to be merged.
5103 * "cluster" contains the merged clusters of SCCs after the clustering
5104 * has completed.
5106 * "scc_node" is a temporary data structure used inside copy_partial.
5107 * For each SCC, it keeps track of the number of nodes in the SCC
5108 * that have already been copied.
5110 struct isl_clustering {
5111 int n;
5112 struct isl_sched_graph *scc;
5113 struct isl_sched_graph *cluster;
5114 int *scc_cluster;
5115 int *scc_node;
5116 int *scc_in_merge;
5119 /* Initialize the clustering data structure "c" from "graph".
5121 * In particular, allocate memory, extract the SCCs from "graph"
5122 * into c->scc, initialize scc_cluster and construct
5123 * a band of schedule rows for each SCC.
5124 * Within each SCC, there is only one SCC by definition.
5125 * Each SCC initially belongs to a cluster containing only that SCC.
5127 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5128 struct isl_sched_graph *graph)
5130 int i;
5132 c->n = graph->scc;
5133 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5134 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5135 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5136 c->scc_node = isl_calloc_array(ctx, int, c->n);
5137 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5138 if (!c->scc || !c->cluster ||
5139 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5140 return isl_stat_error;
5142 for (i = 0; i < c->n; ++i) {
5143 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5144 &edge_scc_exactly, i, &c->scc[i]) < 0)
5145 return isl_stat_error;
5146 c->scc[i].scc = 1;
5147 if (compute_maxvar(&c->scc[i]) < 0)
5148 return isl_stat_error;
5149 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5150 return isl_stat_error;
5151 c->scc_cluster[i] = i;
5154 return isl_stat_ok;
5157 /* Free all memory allocated for "c".
5159 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5161 int i;
5163 if (c->scc)
5164 for (i = 0; i < c->n; ++i)
5165 graph_free(ctx, &c->scc[i]);
5166 free(c->scc);
5167 if (c->cluster)
5168 for (i = 0; i < c->n; ++i)
5169 graph_free(ctx, &c->cluster[i]);
5170 free(c->cluster);
5171 free(c->scc_cluster);
5172 free(c->scc_node);
5173 free(c->scc_in_merge);
5176 /* Should we refrain from merging the cluster in "graph" with
5177 * any other cluster?
5178 * In particular, is its current schedule band empty and incomplete.
5180 static int bad_cluster(struct isl_sched_graph *graph)
5182 return graph->n_row < graph->maxvar &&
5183 graph->n_total_row == graph->band_start;
5186 /* Return the index of an edge in "graph" that can be used to merge
5187 * two clusters in "c".
5188 * Return graph->n_edge if no such edge can be found.
5189 * Return -1 on error.
5191 * In particular, return a proximity edge between two clusters
5192 * that is not marked "no_merge" and such that neither of the
5193 * two clusters has an incomplete, empty band.
5195 * If there are multiple such edges, then try and find the most
5196 * appropriate edge to use for merging. In particular, pick the edge
5197 * with the greatest weight. If there are multiple of those,
5198 * then pick one with the shortest distance between
5199 * the two cluster representatives.
5201 static int find_proximity(struct isl_sched_graph *graph,
5202 struct isl_clustering *c)
5204 int i, best = graph->n_edge, best_dist, best_weight;
5206 for (i = 0; i < graph->n_edge; ++i) {
5207 struct isl_sched_edge *edge = &graph->edge[i];
5208 int dist, weight;
5210 if (!is_proximity(edge))
5211 continue;
5212 if (edge->no_merge)
5213 continue;
5214 if (bad_cluster(&c->scc[edge->src->scc]) ||
5215 bad_cluster(&c->scc[edge->dst->scc]))
5216 continue;
5217 dist = c->scc_cluster[edge->dst->scc] -
5218 c->scc_cluster[edge->src->scc];
5219 if (dist == 0)
5220 continue;
5221 weight = edge->weight;
5222 if (best < graph->n_edge) {
5223 if (best_weight > weight)
5224 continue;
5225 if (best_weight == weight && best_dist <= dist)
5226 continue;
5228 best = i;
5229 best_dist = dist;
5230 best_weight = weight;
5233 return best;
5236 /* Internal data structure used in mark_merge_sccs.
5238 * "graph" is the dependence graph in which a strongly connected
5239 * component is constructed.
5240 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5241 * "src" and "dst" are the indices of the nodes that are being merged.
5243 struct isl_mark_merge_sccs_data {
5244 struct isl_sched_graph *graph;
5245 int *scc_cluster;
5246 int src;
5247 int dst;
5250 /* Check whether the cluster containing node "i" depends on the cluster
5251 * containing node "j". If "i" and "j" belong to the same cluster,
5252 * then they are taken to depend on each other to ensure that
5253 * the resulting strongly connected component consists of complete
5254 * clusters. Furthermore, if "i" and "j" are the two nodes that
5255 * are being merged, then they are taken to depend on each other as well.
5256 * Otherwise, check if there is a (conditional) validity dependence
5257 * from node[j] to node[i], forcing node[i] to follow node[j].
5259 static isl_bool cluster_follows(int i, int j, void *user)
5261 struct isl_mark_merge_sccs_data *data = user;
5262 struct isl_sched_graph *graph = data->graph;
5263 int *scc_cluster = data->scc_cluster;
5265 if (data->src == i && data->dst == j)
5266 return isl_bool_true;
5267 if (data->src == j && data->dst == i)
5268 return isl_bool_true;
5269 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5270 return isl_bool_true;
5272 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5275 /* Mark all SCCs that belong to either of the two clusters in "c"
5276 * connected by the edge in "graph" with index "edge", or to any
5277 * of the intermediate clusters.
5278 * The marking is recorded in c->scc_in_merge.
5280 * The given edge has been selected for merging two clusters,
5281 * meaning that there is at least a proximity edge between the two nodes.
5282 * However, there may also be (indirect) validity dependences
5283 * between the two nodes. When merging the two clusters, all clusters
5284 * containing one or more of the intermediate nodes along the
5285 * indirect validity dependences need to be merged in as well.
5287 * First collect all such nodes by computing the strongly connected
5288 * component (SCC) containing the two nodes connected by the edge, where
5289 * the two nodes are considered to depend on each other to make
5290 * sure they end up in the same SCC. Similarly, each node is considered
5291 * to depend on every other node in the same cluster to ensure
5292 * that the SCC consists of complete clusters.
5294 * Then the original SCCs that contain any of these nodes are marked
5295 * in c->scc_in_merge.
5297 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5298 int edge, struct isl_clustering *c)
5300 struct isl_mark_merge_sccs_data data;
5301 struct isl_tarjan_graph *g;
5302 int i;
5304 for (i = 0; i < c->n; ++i)
5305 c->scc_in_merge[i] = 0;
5307 data.graph = graph;
5308 data.scc_cluster = c->scc_cluster;
5309 data.src = graph->edge[edge].src - graph->node;
5310 data.dst = graph->edge[edge].dst - graph->node;
5312 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5313 &cluster_follows, &data);
5314 if (!g)
5315 goto error;
5317 i = g->op;
5318 if (i < 3)
5319 isl_die(ctx, isl_error_internal,
5320 "expecting at least two nodes in component",
5321 goto error);
5322 if (g->order[--i] != -1)
5323 isl_die(ctx, isl_error_internal,
5324 "expecting end of component marker", goto error);
5326 for (--i; i >= 0 && g->order[i] != -1; --i) {
5327 int scc = graph->node[g->order[i]].scc;
5328 c->scc_in_merge[scc] = 1;
5331 isl_tarjan_graph_free(g);
5332 return isl_stat_ok;
5333 error:
5334 isl_tarjan_graph_free(g);
5335 return isl_stat_error;
5338 /* Construct the identifier "cluster_i".
5340 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5342 char name[40];
5344 snprintf(name, sizeof(name), "cluster_%d", i);
5345 return isl_id_alloc(ctx, name, NULL);
5348 /* Construct the space of the cluster with index "i" containing
5349 * the strongly connected component "scc".
5351 * In particular, construct a space called cluster_i with dimension equal
5352 * to the number of schedule rows in the current band of "scc".
5354 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5356 int nvar;
5357 isl_space *space;
5358 isl_id *id;
5360 nvar = scc->n_total_row - scc->band_start;
5361 space = isl_space_copy(scc->node[0].space);
5362 space = isl_space_params(space);
5363 space = isl_space_set_from_params(space);
5364 space = isl_space_add_dims(space, isl_dim_set, nvar);
5365 id = cluster_id(isl_space_get_ctx(space), i);
5366 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5368 return space;
5371 /* Collect the domain of the graph for merging clusters.
5373 * In particular, for each cluster with first SCC "i", construct
5374 * a set in the space called cluster_i with dimension equal
5375 * to the number of schedule rows in the current band of the cluster.
5377 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5378 struct isl_sched_graph *graph, struct isl_clustering *c)
5380 int i;
5381 isl_space *space;
5382 isl_union_set *domain;
5384 space = isl_space_params_alloc(ctx, 0);
5385 domain = isl_union_set_empty(space);
5387 for (i = 0; i < graph->scc; ++i) {
5388 isl_space *space;
5390 if (!c->scc_in_merge[i])
5391 continue;
5392 if (c->scc_cluster[i] != i)
5393 continue;
5394 space = cluster_space(&c->scc[i], i);
5395 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5398 return domain;
5401 /* Construct a map from the original instances to the corresponding
5402 * cluster instance in the current bands of the clusters in "c".
5404 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5405 struct isl_sched_graph *graph, struct isl_clustering *c)
5407 int i, j;
5408 isl_space *space;
5409 isl_union_map *cluster_map;
5411 space = isl_space_params_alloc(ctx, 0);
5412 cluster_map = isl_union_map_empty(space);
5413 for (i = 0; i < graph->scc; ++i) {
5414 int start, n;
5415 isl_id *id;
5417 if (!c->scc_in_merge[i])
5418 continue;
5420 id = cluster_id(ctx, c->scc_cluster[i]);
5421 start = c->scc[i].band_start;
5422 n = c->scc[i].n_total_row - start;
5423 for (j = 0; j < c->scc[i].n; ++j) {
5424 isl_multi_aff *ma;
5425 isl_map *map;
5426 struct isl_sched_node *node = &c->scc[i].node[j];
5428 ma = node_extract_partial_schedule_multi_aff(node,
5429 start, n);
5430 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5431 isl_id_copy(id));
5432 map = isl_map_from_multi_aff(ma);
5433 cluster_map = isl_union_map_add_map(cluster_map, map);
5435 isl_id_free(id);
5438 return cluster_map;
5441 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5442 * that are not isl_edge_condition or isl_edge_conditional_validity.
5444 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5445 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5446 __isl_take isl_schedule_constraints *sc)
5448 enum isl_edge_type t;
5450 if (!sc)
5451 return NULL;
5453 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5454 if (t == isl_edge_condition ||
5455 t == isl_edge_conditional_validity)
5456 continue;
5457 if (!is_type(edge, t))
5458 continue;
5459 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
5460 isl_union_map_copy(umap));
5461 if (!sc->constraint[t])
5462 return isl_schedule_constraints_free(sc);
5465 return sc;
5468 /* Add schedule constraints of types isl_edge_condition and
5469 * isl_edge_conditional_validity to "sc" by applying "umap" to
5470 * the domains of the wrapped relations in domain and range
5471 * of the corresponding tagged constraints of "edge".
5473 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5474 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5475 __isl_take isl_schedule_constraints *sc)
5477 enum isl_edge_type t;
5478 isl_union_map *tagged;
5480 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5481 if (!is_type(edge, t))
5482 continue;
5483 if (t == isl_edge_condition)
5484 tagged = isl_union_map_copy(edge->tagged_condition);
5485 else
5486 tagged = isl_union_map_copy(edge->tagged_validity);
5487 tagged = isl_union_map_zip(tagged);
5488 tagged = isl_union_map_apply_domain(tagged,
5489 isl_union_map_copy(umap));
5490 tagged = isl_union_map_zip(tagged);
5491 sc->constraint[t] = isl_union_map_union(sc->constraint[t],
5492 tagged);
5493 if (!sc->constraint[t])
5494 return isl_schedule_constraints_free(sc);
5497 return sc;
5500 /* Given a mapping "cluster_map" from the original instances to
5501 * the cluster instances, add schedule constraints on the clusters
5502 * to "sc" corresponding to the original constraints represented by "edge".
5504 * For non-tagged dependence constraints, the cluster constraints
5505 * are obtained by applying "cluster_map" to the edge->map.
5507 * For tagged dependence constraints, "cluster_map" needs to be applied
5508 * to the domains of the wrapped relations in domain and range
5509 * of the tagged dependence constraints. Pick out the mappings
5510 * from these domains from "cluster_map" and construct their product.
5511 * This mapping can then be applied to the pair of domains.
5513 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5514 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5515 __isl_take isl_schedule_constraints *sc)
5517 isl_union_map *umap;
5518 isl_space *space;
5519 isl_union_set *uset;
5520 isl_union_map *umap1, *umap2;
5522 if (!sc)
5523 return NULL;
5525 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5526 umap = isl_union_map_apply_domain(umap,
5527 isl_union_map_copy(cluster_map));
5528 umap = isl_union_map_apply_range(umap,
5529 isl_union_map_copy(cluster_map));
5530 sc = add_non_conditional_constraints(edge, umap, sc);
5531 isl_union_map_free(umap);
5533 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5534 return sc;
5536 space = isl_space_domain(isl_map_get_space(edge->map));
5537 uset = isl_union_set_from_set(isl_set_universe(space));
5538 umap1 = isl_union_map_copy(cluster_map);
5539 umap1 = isl_union_map_intersect_domain(umap1, uset);
5540 space = isl_space_range(isl_map_get_space(edge->map));
5541 uset = isl_union_set_from_set(isl_set_universe(space));
5542 umap2 = isl_union_map_copy(cluster_map);
5543 umap2 = isl_union_map_intersect_domain(umap2, uset);
5544 umap = isl_union_map_product(umap1, umap2);
5546 sc = add_conditional_constraints(edge, umap, sc);
5548 isl_union_map_free(umap);
5549 return sc;
5552 /* Given a mapping "cluster_map" from the original instances to
5553 * the cluster instances, add schedule constraints on the clusters
5554 * to "sc" corresponding to all edges in "graph" between nodes that
5555 * belong to SCCs that are marked for merging in "scc_in_merge".
5557 static __isl_give isl_schedule_constraints *collect_constraints(
5558 struct isl_sched_graph *graph, int *scc_in_merge,
5559 __isl_keep isl_union_map *cluster_map,
5560 __isl_take isl_schedule_constraints *sc)
5562 int i;
5564 for (i = 0; i < graph->n_edge; ++i) {
5565 struct isl_sched_edge *edge = &graph->edge[i];
5567 if (!scc_in_merge[edge->src->scc])
5568 continue;
5569 if (!scc_in_merge[edge->dst->scc])
5570 continue;
5571 sc = collect_edge_constraints(edge, cluster_map, sc);
5574 return sc;
5577 /* Construct a dependence graph for scheduling clusters with respect
5578 * to each other and store the result in "merge_graph".
5579 * In particular, the nodes of the graph correspond to the schedule
5580 * dimensions of the current bands of those clusters that have been
5581 * marked for merging in "c".
5583 * First construct an isl_schedule_constraints object for this domain
5584 * by transforming the edges in "graph" to the domain.
5585 * Then initialize a dependence graph for scheduling from these
5586 * constraints.
5588 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5589 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5591 isl_union_set *domain;
5592 isl_union_map *cluster_map;
5593 isl_schedule_constraints *sc;
5594 isl_stat r;
5596 domain = collect_domain(ctx, graph, c);
5597 sc = isl_schedule_constraints_on_domain(domain);
5598 if (!sc)
5599 return isl_stat_error;
5600 cluster_map = collect_cluster_map(ctx, graph, c);
5601 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5602 isl_union_map_free(cluster_map);
5604 r = graph_init(merge_graph, sc);
5606 isl_schedule_constraints_free(sc);
5608 return r;
5611 /* Compute the maximal number of remaining schedule rows that still need
5612 * to be computed for the nodes that belong to clusters with the maximal
5613 * dimension for the current band (i.e., the band that is to be merged).
5614 * Only clusters that are about to be merged are considered.
5615 * "maxvar" is the maximal dimension for the current band.
5616 * "c" contains information about the clusters.
5618 * Return the maximal number of remaining schedule rows or -1 on error.
5620 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5622 int i, j;
5623 int max_slack;
5625 max_slack = 0;
5626 for (i = 0; i < c->n; ++i) {
5627 int nvar;
5628 struct isl_sched_graph *scc;
5630 if (!c->scc_in_merge[i])
5631 continue;
5632 scc = &c->scc[i];
5633 nvar = scc->n_total_row - scc->band_start;
5634 if (nvar != maxvar)
5635 continue;
5636 for (j = 0; j < scc->n; ++j) {
5637 struct isl_sched_node *node = &scc->node[j];
5638 int slack;
5640 if (node_update_cmap(node) < 0)
5641 return -1;
5642 slack = node->nvar - node->rank;
5643 if (slack > max_slack)
5644 max_slack = slack;
5648 return max_slack;
5651 /* If there are any clusters where the dimension of the current band
5652 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5653 * if there are any nodes in such a cluster where the number
5654 * of remaining schedule rows that still need to be computed
5655 * is greater than "max_slack", then return the smallest current band
5656 * dimension of all these clusters. Otherwise return the original value
5657 * of "maxvar". Return -1 in case of any error.
5658 * Only clusters that are about to be merged are considered.
5659 * "c" contains information about the clusters.
5661 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5662 struct isl_clustering *c)
5664 int i, j;
5666 for (i = 0; i < c->n; ++i) {
5667 int nvar;
5668 struct isl_sched_graph *scc;
5670 if (!c->scc_in_merge[i])
5671 continue;
5672 scc = &c->scc[i];
5673 nvar = scc->n_total_row - scc->band_start;
5674 if (nvar >= maxvar)
5675 continue;
5676 for (j = 0; j < scc->n; ++j) {
5677 struct isl_sched_node *node = &scc->node[j];
5678 int slack;
5680 if (node_update_cmap(node) < 0)
5681 return -1;
5682 slack = node->nvar - node->rank;
5683 if (slack > max_slack) {
5684 maxvar = nvar;
5685 break;
5690 return maxvar;
5693 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5694 * that still need to be computed. In particular, if there is a node
5695 * in a cluster where the dimension of the current band is smaller
5696 * than merge_graph->maxvar, but the number of remaining schedule rows
5697 * is greater than that of any node in a cluster with the maximal
5698 * dimension for the current band (i.e., merge_graph->maxvar),
5699 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5700 * of those clusters. Without this adjustment, the total number of
5701 * schedule dimensions would be increased, resulting in a skewed view
5702 * of the number of coincident dimensions.
5703 * "c" contains information about the clusters.
5705 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5706 * then there is no point in attempting any merge since it will be rejected
5707 * anyway. Set merge_graph->maxvar to zero in such cases.
5709 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5710 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5712 int max_slack, maxvar;
5714 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5715 if (max_slack < 0)
5716 return isl_stat_error;
5717 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5718 if (maxvar < 0)
5719 return isl_stat_error;
5721 if (maxvar < merge_graph->maxvar) {
5722 if (isl_options_get_schedule_maximize_band_depth(ctx))
5723 merge_graph->maxvar = 0;
5724 else
5725 merge_graph->maxvar = maxvar;
5728 return isl_stat_ok;
5731 /* Return the number of coincident dimensions in the current band of "graph",
5732 * where the nodes of "graph" are assumed to be scheduled by a single band.
5734 static int get_n_coincident(struct isl_sched_graph *graph)
5736 int i;
5738 for (i = graph->band_start; i < graph->n_total_row; ++i)
5739 if (!graph->node[0].coincident[i])
5740 break;
5742 return i - graph->band_start;
5745 /* Should the clusters be merged based on the cluster schedule
5746 * in the current (and only) band of "merge_graph", given that
5747 * coincidence should be maximized?
5749 * If the number of coincident schedule dimensions in the merged band
5750 * would be less than the maximal number of coincident schedule dimensions
5751 * in any of the merged clusters, then the clusters should not be merged.
5753 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5754 struct isl_sched_graph *merge_graph)
5756 int i;
5757 int n_coincident;
5758 int max_coincident;
5760 max_coincident = 0;
5761 for (i = 0; i < c->n; ++i) {
5762 if (!c->scc_in_merge[i])
5763 continue;
5764 n_coincident = get_n_coincident(&c->scc[i]);
5765 if (n_coincident > max_coincident)
5766 max_coincident = n_coincident;
5769 n_coincident = get_n_coincident(merge_graph);
5771 return n_coincident >= max_coincident;
5774 /* Return the transformation on "node" expressed by the current (and only)
5775 * band of "merge_graph" applied to the clusters in "c".
5777 * First find the representation of "node" in its SCC in "c" and
5778 * extract the transformation expressed by the current band.
5779 * Then extract the transformation applied by "merge_graph"
5780 * to the cluster to which this SCC belongs.
5781 * Combine the two to obtain the complete transformation on the node.
5783 * Note that the range of the first transformation is an anonymous space,
5784 * while the domain of the second is named "cluster_X". The range
5785 * of the former therefore needs to be adjusted before the two
5786 * can be combined.
5788 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5789 struct isl_sched_node *node, struct isl_clustering *c,
5790 struct isl_sched_graph *merge_graph)
5792 struct isl_sched_node *scc_node, *cluster_node;
5793 int start, n;
5794 isl_id *id;
5795 isl_space *space;
5796 isl_multi_aff *ma, *ma2;
5798 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5799 start = c->scc[node->scc].band_start;
5800 n = c->scc[node->scc].n_total_row - start;
5801 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5802 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5803 cluster_node = graph_find_node(ctx, merge_graph, space);
5804 if (space && !cluster_node)
5805 isl_die(ctx, isl_error_internal, "unable to find cluster",
5806 space = isl_space_free(space));
5807 id = isl_space_get_tuple_id(space, isl_dim_set);
5808 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5809 isl_space_free(space);
5810 n = merge_graph->n_total_row;
5811 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5812 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5814 return isl_map_from_multi_aff(ma);
5817 /* Give a set of distances "set", are they bounded by a small constant
5818 * in direction "pos"?
5819 * In practice, check if they are bounded by 2 by checking that there
5820 * are no elements with a value greater than or equal to 3 or
5821 * smaller than or equal to -3.
5823 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5825 isl_bool bounded;
5826 isl_set *test;
5828 if (!set)
5829 return isl_bool_error;
5831 test = isl_set_copy(set);
5832 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5833 bounded = isl_set_is_empty(test);
5834 isl_set_free(test);
5836 if (bounded < 0 || !bounded)
5837 return bounded;
5839 test = isl_set_copy(set);
5840 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5841 bounded = isl_set_is_empty(test);
5842 isl_set_free(test);
5844 return bounded;
5847 /* Does the set "set" have a fixed (but possible parametric) value
5848 * at dimension "pos"?
5850 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5852 int n;
5853 isl_bool single;
5855 if (!set)
5856 return isl_bool_error;
5857 set = isl_set_copy(set);
5858 n = isl_set_dim(set, isl_dim_set);
5859 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5860 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5861 single = isl_set_is_singleton(set);
5862 isl_set_free(set);
5864 return single;
5867 /* Does "map" have a fixed (but possible parametric) value
5868 * at dimension "pos" of either its domain or its range?
5870 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5872 isl_set *set;
5873 isl_bool single;
5875 set = isl_map_domain(isl_map_copy(map));
5876 single = has_single_value(set, pos);
5877 isl_set_free(set);
5879 if (single < 0 || single)
5880 return single;
5882 set = isl_map_range(isl_map_copy(map));
5883 single = has_single_value(set, pos);
5884 isl_set_free(set);
5886 return single;
5889 /* Does the edge "edge" from "graph" have bounded dependence distances
5890 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5892 * Extract the complete transformations of the source and destination
5893 * nodes of the edge, apply them to the edge constraints and
5894 * compute the differences. Finally, check if these differences are bounded
5895 * in each direction.
5897 * If the dimension of the band is greater than the number of
5898 * dimensions that can be expected to be optimized by the edge
5899 * (based on its weight), then also allow the differences to be unbounded
5900 * in the remaining dimensions, but only if either the source or
5901 * the destination has a fixed value in that direction.
5902 * This allows a statement that produces values that are used by
5903 * several instances of another statement to be merged with that
5904 * other statement.
5905 * However, merging such clusters will introduce an inherently
5906 * large proximity distance inside the merged cluster, meaning
5907 * that proximity distances will no longer be optimized in
5908 * subsequent merges. These merges are therefore only allowed
5909 * after all other possible merges have been tried.
5910 * The first time such a merge is encountered, the weight of the edge
5911 * is replaced by a negative weight. The second time (i.e., after
5912 * all merges over edges with a non-negative weight have been tried),
5913 * the merge is allowed.
5915 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5916 struct isl_sched_graph *graph, struct isl_clustering *c,
5917 struct isl_sched_graph *merge_graph)
5919 int i, n, n_slack;
5920 isl_bool bounded;
5921 isl_map *map, *t;
5922 isl_set *dist;
5924 map = isl_map_copy(edge->map);
5925 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5926 map = isl_map_apply_domain(map, t);
5927 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5928 map = isl_map_apply_range(map, t);
5929 dist = isl_map_deltas(isl_map_copy(map));
5931 bounded = isl_bool_true;
5932 n = isl_set_dim(dist, isl_dim_set);
5933 n_slack = n - edge->weight;
5934 if (edge->weight < 0)
5935 n_slack -= graph->max_weight + 1;
5936 for (i = 0; i < n; ++i) {
5937 isl_bool bounded_i, singular_i;
5939 bounded_i = distance_is_bounded(dist, i);
5940 if (bounded_i < 0)
5941 goto error;
5942 if (bounded_i)
5943 continue;
5944 if (edge->weight >= 0)
5945 bounded = isl_bool_false;
5946 n_slack--;
5947 if (n_slack < 0)
5948 break;
5949 singular_i = has_singular_src_or_dst(map, i);
5950 if (singular_i < 0)
5951 goto error;
5952 if (singular_i)
5953 continue;
5954 bounded = isl_bool_false;
5955 break;
5957 if (!bounded && i >= n && edge->weight >= 0)
5958 edge->weight -= graph->max_weight + 1;
5959 isl_map_free(map);
5960 isl_set_free(dist);
5962 return bounded;
5963 error:
5964 isl_map_free(map);
5965 isl_set_free(dist);
5966 return isl_bool_error;
5969 /* Should the clusters be merged based on the cluster schedule
5970 * in the current (and only) band of "merge_graph"?
5971 * "graph" is the original dependence graph, while "c" records
5972 * which SCCs are involved in the latest merge.
5974 * In particular, is there at least one proximity constraint
5975 * that is optimized by the merge?
5977 * A proximity constraint is considered to be optimized
5978 * if the dependence distances are small.
5980 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5981 struct isl_sched_graph *graph, struct isl_clustering *c,
5982 struct isl_sched_graph *merge_graph)
5984 int i;
5986 for (i = 0; i < graph->n_edge; ++i) {
5987 struct isl_sched_edge *edge = &graph->edge[i];
5988 isl_bool bounded;
5990 if (!is_proximity(edge))
5991 continue;
5992 if (!c->scc_in_merge[edge->src->scc])
5993 continue;
5994 if (!c->scc_in_merge[edge->dst->scc])
5995 continue;
5996 if (c->scc_cluster[edge->dst->scc] ==
5997 c->scc_cluster[edge->src->scc])
5998 continue;
5999 bounded = has_bounded_distances(ctx, edge, graph, c,
6000 merge_graph);
6001 if (bounded < 0 || bounded)
6002 return bounded;
6005 return isl_bool_false;
6008 /* Should the clusters be merged based on the cluster schedule
6009 * in the current (and only) band of "merge_graph"?
6010 * "graph" is the original dependence graph, while "c" records
6011 * which SCCs are involved in the latest merge.
6013 * If the current band is empty, then the clusters should not be merged.
6015 * If the band depth should be maximized and the merge schedule
6016 * is incomplete (meaning that the dimension of some of the schedule
6017 * bands in the original schedule will be reduced), then the clusters
6018 * should not be merged.
6020 * If the schedule_maximize_coincidence option is set, then check that
6021 * the number of coincident schedule dimensions is not reduced.
6023 * Finally, only allow the merge if at least one proximity
6024 * constraint is optimized.
6026 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6027 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6029 if (merge_graph->n_total_row == merge_graph->band_start)
6030 return isl_bool_false;
6032 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6033 merge_graph->n_total_row < merge_graph->maxvar)
6034 return isl_bool_false;
6036 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6037 isl_bool ok;
6039 ok = ok_to_merge_coincident(c, merge_graph);
6040 if (ok < 0 || !ok)
6041 return ok;
6044 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6047 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6048 * of the schedule in "node" and return the result.
6050 * That is, essentially compute
6052 * T * N(first:first+n-1)
6054 * taking into account the constant term and the parameter coefficients
6055 * in "t_node".
6057 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6058 struct isl_sched_node *t_node, struct isl_sched_node *node,
6059 int first, int n)
6061 int i, j;
6062 isl_mat *t;
6063 int n_row, n_col, n_param, n_var;
6065 n_param = node->nparam;
6066 n_var = node->nvar;
6067 n_row = isl_mat_rows(t_node->sched);
6068 n_col = isl_mat_cols(node->sched);
6069 t = isl_mat_alloc(ctx, n_row, n_col);
6070 if (!t)
6071 return NULL;
6072 for (i = 0; i < n_row; ++i) {
6073 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6074 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6075 for (j = 0; j < n; ++j)
6076 isl_seq_addmul(t->row[i],
6077 t_node->sched->row[i][1 + n_param + j],
6078 node->sched->row[first + j],
6079 1 + n_param + n_var);
6081 return t;
6084 /* Apply the cluster schedule in "t_node" to the current band
6085 * schedule of the nodes in "graph".
6087 * In particular, replace the rows starting at band_start
6088 * by the result of applying the cluster schedule in "t_node"
6089 * to the original rows.
6091 * The coincidence of the schedule is determined by the coincidence
6092 * of the cluster schedule.
6094 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6095 struct isl_sched_node *t_node)
6097 int i, j;
6098 int n_new;
6099 int start, n;
6101 start = graph->band_start;
6102 n = graph->n_total_row - start;
6104 n_new = isl_mat_rows(t_node->sched);
6105 for (i = 0; i < graph->n; ++i) {
6106 struct isl_sched_node *node = &graph->node[i];
6107 isl_mat *t;
6109 t = node_transformation(ctx, t_node, node, start, n);
6110 node->sched = isl_mat_drop_rows(node->sched, start, n);
6111 node->sched = isl_mat_concat(node->sched, t);
6112 node->sched_map = isl_map_free(node->sched_map);
6113 if (!node->sched)
6114 return isl_stat_error;
6115 for (j = 0; j < n_new; ++j)
6116 node->coincident[start + j] = t_node->coincident[j];
6118 graph->n_total_row -= n;
6119 graph->n_row -= n;
6120 graph->n_total_row += n_new;
6121 graph->n_row += n_new;
6123 return isl_stat_ok;
6126 /* Merge the clusters marked for merging in "c" into a single
6127 * cluster using the cluster schedule in the current band of "merge_graph".
6128 * The representative SCC for the new cluster is the SCC with
6129 * the smallest index.
6131 * The current band schedule of each SCC in the new cluster is obtained
6132 * by applying the schedule of the corresponding original cluster
6133 * to the original band schedule.
6134 * All SCCs in the new cluster have the same number of schedule rows.
6136 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6137 struct isl_sched_graph *merge_graph)
6139 int i;
6140 int cluster = -1;
6141 isl_space *space;
6143 for (i = 0; i < c->n; ++i) {
6144 struct isl_sched_node *node;
6146 if (!c->scc_in_merge[i])
6147 continue;
6148 if (cluster < 0)
6149 cluster = i;
6150 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6151 if (!space)
6152 return isl_stat_error;
6153 node = graph_find_node(ctx, merge_graph, space);
6154 isl_space_free(space);
6155 if (!node)
6156 isl_die(ctx, isl_error_internal,
6157 "unable to find cluster",
6158 return isl_stat_error);
6159 if (transform(ctx, &c->scc[i], node) < 0)
6160 return isl_stat_error;
6161 c->scc_cluster[i] = cluster;
6164 return isl_stat_ok;
6167 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6168 * by scheduling the current cluster bands with respect to each other.
6170 * Construct a dependence graph with a space for each cluster and
6171 * with the coordinates of each space corresponding to the schedule
6172 * dimensions of the current band of that cluster.
6173 * Construct a cluster schedule in this cluster dependence graph and
6174 * apply it to the current cluster bands if it is applicable
6175 * according to ok_to_merge.
6177 * If the number of remaining schedule dimensions in a cluster
6178 * with a non-maximal current schedule dimension is greater than
6179 * the number of remaining schedule dimensions in clusters
6180 * with a maximal current schedule dimension, then restrict
6181 * the number of rows to be computed in the cluster schedule
6182 * to the minimal such non-maximal current schedule dimension.
6183 * Do this by adjusting merge_graph.maxvar.
6185 * Return isl_bool_true if the clusters have effectively been merged
6186 * into a single cluster.
6188 * Note that since the standard scheduling algorithm minimizes the maximal
6189 * distance over proximity constraints, the proximity constraints between
6190 * the merged clusters may not be optimized any further than what is
6191 * sufficient to bring the distances within the limits of the internal
6192 * proximity constraints inside the individual clusters.
6193 * It may therefore make sense to perform an additional translation step
6194 * to bring the clusters closer to each other, while maintaining
6195 * the linear part of the merging schedule found using the standard
6196 * scheduling algorithm.
6198 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6199 struct isl_clustering *c)
6201 struct isl_sched_graph merge_graph = { 0 };
6202 isl_bool merged;
6204 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6205 goto error;
6207 if (compute_maxvar(&merge_graph) < 0)
6208 goto error;
6209 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6210 goto error;
6211 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6212 goto error;
6213 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6214 if (merged && merge(ctx, c, &merge_graph) < 0)
6215 goto error;
6217 graph_free(ctx, &merge_graph);
6218 return merged;
6219 error:
6220 graph_free(ctx, &merge_graph);
6221 return isl_bool_error;
6224 /* Is there any edge marked "no_merge" between two SCCs that are
6225 * about to be merged (i.e., that are set in "scc_in_merge")?
6226 * "merge_edge" is the proximity edge along which the clusters of SCCs
6227 * are going to be merged.
6229 * If there is any edge between two SCCs with a negative weight,
6230 * while the weight of "merge_edge" is non-negative, then this
6231 * means that the edge was postponed. "merge_edge" should then
6232 * also be postponed since merging along the edge with negative weight should
6233 * be postponed until all edges with non-negative weight have been tried.
6234 * Replace the weight of "merge_edge" by a negative weight as well and
6235 * tell the caller not to attempt a merge.
6237 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6238 struct isl_sched_edge *merge_edge)
6240 int i;
6242 for (i = 0; i < graph->n_edge; ++i) {
6243 struct isl_sched_edge *edge = &graph->edge[i];
6245 if (!scc_in_merge[edge->src->scc])
6246 continue;
6247 if (!scc_in_merge[edge->dst->scc])
6248 continue;
6249 if (edge->no_merge)
6250 return 1;
6251 if (merge_edge->weight >= 0 && edge->weight < 0) {
6252 merge_edge->weight -= graph->max_weight + 1;
6253 return 1;
6257 return 0;
6260 /* Merge the two clusters in "c" connected by the edge in "graph"
6261 * with index "edge" into a single cluster.
6262 * If it turns out to be impossible to merge these two clusters,
6263 * then mark the edge as "no_merge" such that it will not be
6264 * considered again.
6266 * First mark all SCCs that need to be merged. This includes the SCCs
6267 * in the two clusters, but it may also include the SCCs
6268 * of intermediate clusters.
6269 * If there is already a no_merge edge between any pair of such SCCs,
6270 * then simply mark the current edge as no_merge as well.
6271 * Likewise, if any of those edges was postponed by has_bounded_distances,
6272 * then postpone the current edge as well.
6273 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6274 * if the clusters did not end up getting merged, unless the non-merge
6275 * is due to the fact that the edge was postponed. This postponement
6276 * can be recognized by a change in weight (from non-negative to negative).
6278 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6279 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6281 isl_bool merged;
6282 int edge_weight = graph->edge[edge].weight;
6284 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6285 return isl_stat_error;
6287 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6288 merged = isl_bool_false;
6289 else
6290 merged = try_merge(ctx, graph, c);
6291 if (merged < 0)
6292 return isl_stat_error;
6293 if (!merged && edge_weight == graph->edge[edge].weight)
6294 graph->edge[edge].no_merge = 1;
6296 return isl_stat_ok;
6299 /* Does "node" belong to the cluster identified by "cluster"?
6301 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6303 return node->cluster == cluster;
6306 /* Does "edge" connect two nodes belonging to the cluster
6307 * identified by "cluster"?
6309 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6311 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6314 /* Swap the schedule of "node1" and "node2".
6315 * Both nodes have been derived from the same node in a common parent graph.
6316 * Since the "coincident" field is shared with that node
6317 * in the parent graph, there is no need to also swap this field.
6319 static void swap_sched(struct isl_sched_node *node1,
6320 struct isl_sched_node *node2)
6322 isl_mat *sched;
6323 isl_map *sched_map;
6325 sched = node1->sched;
6326 node1->sched = node2->sched;
6327 node2->sched = sched;
6329 sched_map = node1->sched_map;
6330 node1->sched_map = node2->sched_map;
6331 node2->sched_map = sched_map;
6334 /* Copy the current band schedule from the SCCs that form the cluster
6335 * with index "pos" to the actual cluster at position "pos".
6336 * By construction, the index of the first SCC that belongs to the cluster
6337 * is also "pos".
6339 * The order of the nodes inside both the SCCs and the cluster
6340 * is assumed to be same as the order in the original "graph".
6342 * Since the SCC graphs will no longer be used after this function,
6343 * the schedules are actually swapped rather than copied.
6345 static isl_stat copy_partial(struct isl_sched_graph *graph,
6346 struct isl_clustering *c, int pos)
6348 int i, j;
6350 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6351 c->cluster[pos].n_row = c->scc[pos].n_row;
6352 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6353 j = 0;
6354 for (i = 0; i < graph->n; ++i) {
6355 int k;
6356 int s;
6358 if (graph->node[i].cluster != pos)
6359 continue;
6360 s = graph->node[i].scc;
6361 k = c->scc_node[s]++;
6362 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6363 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6364 c->cluster[pos].maxvar = c->scc[s].maxvar;
6365 ++j;
6368 return isl_stat_ok;
6371 /* Is there a (conditional) validity dependence from node[j] to node[i],
6372 * forcing node[i] to follow node[j] or do the nodes belong to the same
6373 * cluster?
6375 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6377 struct isl_sched_graph *graph = user;
6379 if (graph->node[i].cluster == graph->node[j].cluster)
6380 return isl_bool_true;
6381 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6384 /* Extract the merged clusters of SCCs in "graph", sort them, and
6385 * store them in c->clusters. Update c->scc_cluster accordingly.
6387 * First keep track of the cluster containing the SCC to which a node
6388 * belongs in the node itself.
6389 * Then extract the clusters into c->clusters, copying the current
6390 * band schedule from the SCCs that belong to the cluster.
6391 * Do this only once per cluster.
6393 * Finally, topologically sort the clusters and update c->scc_cluster
6394 * to match the new scc numbering. While the SCCs were originally
6395 * sorted already, some SCCs that depend on some other SCCs may
6396 * have been merged with SCCs that appear before these other SCCs.
6397 * A reordering may therefore be required.
6399 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6400 struct isl_clustering *c)
6402 int i;
6404 for (i = 0; i < graph->n; ++i)
6405 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6407 for (i = 0; i < graph->scc; ++i) {
6408 if (c->scc_cluster[i] != i)
6409 continue;
6410 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6411 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6412 return isl_stat_error;
6413 c->cluster[i].src_scc = -1;
6414 c->cluster[i].dst_scc = -1;
6415 if (copy_partial(graph, c, i) < 0)
6416 return isl_stat_error;
6419 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6420 return isl_stat_error;
6421 for (i = 0; i < graph->n; ++i)
6422 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6424 return isl_stat_ok;
6427 /* Compute weights on the proximity edges of "graph" that can
6428 * be used by find_proximity to find the most appropriate
6429 * proximity edge to use to merge two clusters in "c".
6430 * The weights are also used by has_bounded_distances to determine
6431 * whether the merge should be allowed.
6432 * Store the maximum of the computed weights in graph->max_weight.
6434 * The computed weight is a measure for the number of remaining schedule
6435 * dimensions that can still be completely aligned.
6436 * In particular, compute the number of equalities between
6437 * input dimensions and output dimensions in the proximity constraints.
6438 * The directions that are already handled by outer schedule bands
6439 * are projected out prior to determining this number.
6441 * Edges that will never be considered by find_proximity are ignored.
6443 static isl_stat compute_weights(struct isl_sched_graph *graph,
6444 struct isl_clustering *c)
6446 int i;
6448 graph->max_weight = 0;
6450 for (i = 0; i < graph->n_edge; ++i) {
6451 struct isl_sched_edge *edge = &graph->edge[i];
6452 struct isl_sched_node *src = edge->src;
6453 struct isl_sched_node *dst = edge->dst;
6454 isl_basic_map *hull;
6455 int n_in, n_out;
6457 if (!is_proximity(edge))
6458 continue;
6459 if (bad_cluster(&c->scc[edge->src->scc]) ||
6460 bad_cluster(&c->scc[edge->dst->scc]))
6461 continue;
6462 if (c->scc_cluster[edge->dst->scc] ==
6463 c->scc_cluster[edge->src->scc])
6464 continue;
6466 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6467 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6468 isl_mat_copy(src->ctrans));
6469 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6470 isl_mat_copy(dst->ctrans));
6471 hull = isl_basic_map_project_out(hull,
6472 isl_dim_in, 0, src->rank);
6473 hull = isl_basic_map_project_out(hull,
6474 isl_dim_out, 0, dst->rank);
6475 hull = isl_basic_map_remove_divs(hull);
6476 n_in = isl_basic_map_dim(hull, isl_dim_in);
6477 n_out = isl_basic_map_dim(hull, isl_dim_out);
6478 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6479 isl_dim_in, 0, n_in);
6480 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6481 isl_dim_out, 0, n_out);
6482 if (!hull)
6483 return isl_stat_error;
6484 edge->weight = hull->n_eq;
6485 isl_basic_map_free(hull);
6487 if (edge->weight > graph->max_weight)
6488 graph->max_weight = edge->weight;
6491 return isl_stat_ok;
6494 /* Call compute_schedule_finish_band on each of the clusters in "c"
6495 * in their topological order. This order is determined by the scc
6496 * fields of the nodes in "graph".
6497 * Combine the results in a sequence expressing the topological order.
6499 * If there is only one cluster left, then there is no need to introduce
6500 * a sequence node. Also, in this case, the cluster necessarily contains
6501 * the SCC at position 0 in the original graph and is therefore also
6502 * stored in the first cluster of "c".
6504 static __isl_give isl_schedule_node *finish_bands_clustering(
6505 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6506 struct isl_clustering *c)
6508 int i;
6509 isl_ctx *ctx;
6510 isl_union_set_list *filters;
6512 if (graph->scc == 1)
6513 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6515 ctx = isl_schedule_node_get_ctx(node);
6517 filters = extract_sccs(ctx, graph);
6518 node = isl_schedule_node_insert_sequence(node, filters);
6520 for (i = 0; i < graph->scc; ++i) {
6521 int j = c->scc_cluster[i];
6522 node = isl_schedule_node_child(node, i);
6523 node = isl_schedule_node_child(node, 0);
6524 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6525 node = isl_schedule_node_parent(node);
6526 node = isl_schedule_node_parent(node);
6529 return node;
6532 /* Compute a schedule for a connected dependence graph by first considering
6533 * each strongly connected component (SCC) in the graph separately and then
6534 * incrementally combining them into clusters.
6535 * Return the updated schedule node.
6537 * Initially, each cluster consists of a single SCC, each with its
6538 * own band schedule. The algorithm then tries to merge pairs
6539 * of clusters along a proximity edge until no more suitable
6540 * proximity edges can be found. During this merging, the schedule
6541 * is maintained in the individual SCCs.
6542 * After the merging is completed, the full resulting clusters
6543 * are extracted and in finish_bands_clustering,
6544 * compute_schedule_finish_band is called on each of them to integrate
6545 * the band into "node" and to continue the computation.
6547 * compute_weights initializes the weights that are used by find_proximity.
6549 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6550 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6552 isl_ctx *ctx;
6553 struct isl_clustering c;
6554 int i;
6556 ctx = isl_schedule_node_get_ctx(node);
6558 if (clustering_init(ctx, &c, graph) < 0)
6559 goto error;
6561 if (compute_weights(graph, &c) < 0)
6562 goto error;
6564 for (;;) {
6565 i = find_proximity(graph, &c);
6566 if (i < 0)
6567 goto error;
6568 if (i >= graph->n_edge)
6569 break;
6570 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6571 goto error;
6574 if (extract_clusters(ctx, graph, &c) < 0)
6575 goto error;
6577 node = finish_bands_clustering(node, graph, &c);
6579 clustering_free(ctx, &c);
6580 return node;
6581 error:
6582 clustering_free(ctx, &c);
6583 return isl_schedule_node_free(node);
6586 /* Compute a schedule for a connected dependence graph and return
6587 * the updated schedule node.
6589 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6590 * as many validity dependences as possible. When all validity dependences
6591 * are satisfied we extend the schedule to a full-dimensional schedule.
6593 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6594 * depending on whether the user has selected the option to try and
6595 * compute a schedule for the entire (weakly connected) component first.
6596 * If there is only a single strongly connected component (SCC), then
6597 * there is no point in trying to combine SCCs
6598 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6599 * is called instead.
6601 static __isl_give isl_schedule_node *compute_schedule_wcc(
6602 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6604 isl_ctx *ctx;
6606 if (!node)
6607 return NULL;
6609 ctx = isl_schedule_node_get_ctx(node);
6610 if (detect_sccs(ctx, graph) < 0)
6611 return isl_schedule_node_free(node);
6613 if (compute_maxvar(graph) < 0)
6614 return isl_schedule_node_free(node);
6616 if (need_feautrier_step(ctx, graph))
6617 return compute_schedule_wcc_feautrier(node, graph);
6619 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6620 return compute_schedule_wcc_whole(node, graph);
6621 else
6622 return compute_schedule_wcc_clustering(node, graph);
6625 /* Compute a schedule for each group of nodes identified by node->scc
6626 * separately and then combine them in a sequence node (or as set node
6627 * if graph->weak is set) inserted at position "node" of the schedule tree.
6628 * Return the updated schedule node.
6630 * If "wcc" is set then each of the groups belongs to a single
6631 * weakly connected component in the dependence graph so that
6632 * there is no need for compute_sub_schedule to look for weakly
6633 * connected components.
6635 static __isl_give isl_schedule_node *compute_component_schedule(
6636 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6637 int wcc)
6639 int component;
6640 isl_ctx *ctx;
6641 isl_union_set_list *filters;
6643 if (!node)
6644 return NULL;
6645 ctx = isl_schedule_node_get_ctx(node);
6647 filters = extract_sccs(ctx, graph);
6648 if (graph->weak)
6649 node = isl_schedule_node_insert_set(node, filters);
6650 else
6651 node = isl_schedule_node_insert_sequence(node, filters);
6653 for (component = 0; component < graph->scc; ++component) {
6654 node = isl_schedule_node_child(node, component);
6655 node = isl_schedule_node_child(node, 0);
6656 node = compute_sub_schedule(node, ctx, graph,
6657 &node_scc_exactly,
6658 &edge_scc_exactly, component, wcc);
6659 node = isl_schedule_node_parent(node);
6660 node = isl_schedule_node_parent(node);
6663 return node;
6666 /* Compute a schedule for the given dependence graph and insert it at "node".
6667 * Return the updated schedule node.
6669 * We first check if the graph is connected (through validity and conditional
6670 * validity dependences) and, if not, compute a schedule
6671 * for each component separately.
6672 * If the schedule_serialize_sccs option is set, then we check for strongly
6673 * connected components instead and compute a separate schedule for
6674 * each such strongly connected component.
6676 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6677 struct isl_sched_graph *graph)
6679 isl_ctx *ctx;
6681 if (!node)
6682 return NULL;
6684 ctx = isl_schedule_node_get_ctx(node);
6685 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6686 if (detect_sccs(ctx, graph) < 0)
6687 return isl_schedule_node_free(node);
6688 } else {
6689 if (detect_wccs(ctx, graph) < 0)
6690 return isl_schedule_node_free(node);
6693 if (graph->scc > 1)
6694 return compute_component_schedule(node, graph, 1);
6696 return compute_schedule_wcc(node, graph);
6699 /* Compute a schedule on sc->domain that respects the given schedule
6700 * constraints.
6702 * In particular, the schedule respects all the validity dependences.
6703 * If the default isl scheduling algorithm is used, it tries to minimize
6704 * the dependence distances over the proximity dependences.
6705 * If Feautrier's scheduling algorithm is used, the proximity dependence
6706 * distances are only minimized during the extension to a full-dimensional
6707 * schedule.
6709 * If there are any condition and conditional validity dependences,
6710 * then the conditional validity dependences may be violated inside
6711 * a tilable band, provided they have no adjacent non-local
6712 * condition dependences.
6714 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6715 __isl_take isl_schedule_constraints *sc)
6717 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6718 struct isl_sched_graph graph = { 0 };
6719 isl_schedule *sched;
6720 isl_schedule_node *node;
6721 isl_union_set *domain;
6723 sc = isl_schedule_constraints_align_params(sc);
6725 domain = isl_schedule_constraints_get_domain(sc);
6726 if (isl_union_set_n_set(domain) == 0) {
6727 isl_schedule_constraints_free(sc);
6728 return isl_schedule_from_domain(domain);
6731 if (graph_init(&graph, sc) < 0)
6732 domain = isl_union_set_free(domain);
6734 node = isl_schedule_node_from_domain(domain);
6735 node = isl_schedule_node_child(node, 0);
6736 if (graph.n > 0)
6737 node = compute_schedule(node, &graph);
6738 sched = isl_schedule_node_get_schedule(node);
6739 isl_schedule_node_free(node);
6741 graph_free(ctx, &graph);
6742 isl_schedule_constraints_free(sc);
6744 return sched;
6747 /* Compute a schedule for the given union of domains that respects
6748 * all the validity dependences and minimizes
6749 * the dependence distances over the proximity dependences.
6751 * This function is kept for backward compatibility.
6753 __isl_give isl_schedule *isl_union_set_compute_schedule(
6754 __isl_take isl_union_set *domain,
6755 __isl_take isl_union_map *validity,
6756 __isl_take isl_union_map *proximity)
6758 isl_schedule_constraints *sc;
6760 sc = isl_schedule_constraints_on_domain(domain);
6761 sc = isl_schedule_constraints_set_validity(sc, validity);
6762 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6764 return isl_schedule_constraints_compute_schedule(sc);