isl_union_*_n_*: return isl_size
[isl.git] / isl_scheduler.c
blob285fa19636cfbc7baf42b0dd98c0a8b41dd26f98
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/id.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
30 #include <isl/set.h>
31 #include <isl_union_set_private.h>
32 #include <isl_seq.h>
33 #include <isl_tab.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
36 #include <isl_sort.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
40 #include <isl/ilp.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
54 * of a schedule.
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
64 * of sched
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
80 * vice versa.
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
100 * value is negative.
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node {
105 isl_space *space;
106 int compressed;
107 isl_set *hull;
108 isl_multi_aff *compress;
109 isl_multi_aff *decompress;
110 isl_mat *sched;
111 isl_map *sched_map;
112 int rank;
113 isl_mat *indep;
114 isl_mat *vmap;
115 int start;
116 int nvar;
117 int nparam;
119 int scc;
120 int cluster;
122 int *coincident;
124 isl_multi_val *sizes;
125 isl_basic_set *bounds;
126 isl_vec *max;
129 static int node_has_tuples(const void *entry, const void *val)
131 struct isl_sched_node *node = (struct isl_sched_node *)entry;
132 isl_space *space = (isl_space *) val;
134 return isl_space_has_equal_tuples(node->space, space);
137 static int node_scc_exactly(struct isl_sched_node *node, int scc)
139 return node->scc == scc;
142 static int node_scc_at_most(struct isl_sched_node *node, int scc)
144 return node->scc <= scc;
147 static int node_scc_at_least(struct isl_sched_node *node, int scc)
149 return node->scc >= scc;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
154 * distance or both
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
175 * ensure correctness
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge {
192 isl_map *map;
193 isl_union_map *tagged_condition;
194 isl_union_map *tagged_validity;
196 struct isl_sched_node *src;
197 struct isl_sched_node *dst;
199 unsigned types;
201 int start;
202 int end;
204 int no_merge;
205 int weight;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 return ISL_FL_ISSET(edge->types, 1 << type);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_SET(edge->types, 1 << type);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
226 ISL_FL_CLR(edge->types, 1 << type);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge *edge)
233 return is_type(edge, isl_edge_validity);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge *edge)
240 set_type(edge, isl_edge_validity);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_proximity);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge *edge)
254 return is_type(edge, isl_edge_local);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge *edge)
261 set_type(edge, isl_edge_local);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge *edge)
268 clear_type(edge, isl_edge_local);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_coincidence);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_condition);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge *edge)
289 return is_type(edge, isl_edge_conditional_validity);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
297 * pair of tags.
299 static int is_multi_edge_type(struct isl_sched_edge *edge)
301 return is_condition(edge) || is_conditional_validity(edge);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
312 * for the parameters
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph {
362 isl_map_to_basic_set *intra_hmap;
363 isl_map_to_basic_set *intra_hmap_param;
364 isl_map_to_basic_set *inter_hmap;
366 struct isl_sched_node *node;
367 int n;
368 int maxvar;
369 int max_row;
370 int n_row;
372 int *sorted;
374 int n_total_row;
375 int band_start;
377 struct isl_sched_graph *root;
379 struct isl_sched_edge *edge;
380 int n_edge;
381 int max_edge[isl_edge_last + 1];
382 struct isl_hash_table *edge_table[isl_edge_last + 1];
384 struct isl_hash_table *node_table;
385 struct isl_trivial_region *region;
387 isl_basic_set *lp;
389 int src_scc;
390 int dst_scc;
392 int scc;
393 int weak;
395 int max_weight;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
402 int i;
404 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
405 if (!graph->node_table)
406 return -1;
408 for (i = 0; i < graph->n; ++i) {
409 struct isl_hash_table_entry *entry;
410 uint32_t hash;
412 hash = isl_space_get_tuple_hash(graph->node[i].space);
413 entry = isl_hash_table_find(ctx, graph->node_table, hash,
414 &node_has_tuples,
415 graph->node[i].space, 1);
416 if (!entry)
417 return -1;
418 entry->data = &graph->node[i];
421 return 0;
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
428 struct isl_sched_graph *graph, __isl_keep isl_space *space)
430 struct isl_hash_table_entry *entry;
431 uint32_t hash;
433 if (!space)
434 return NULL;
436 hash = isl_space_get_tuple_hash(space);
437 entry = isl_hash_table_find(ctx, graph->node_table, hash,
438 &node_has_tuples, space, 0);
440 return entry ? entry->data : graph->node + graph->n;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph *graph,
446 struct isl_sched_node *node)
448 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
451 static int edge_has_src_and_dst(const void *entry, const void *val)
453 const struct isl_sched_edge *edge = entry;
454 const struct isl_sched_edge *temp = val;
456 return edge->src == temp->src && edge->dst == temp->dst;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat graph_edge_table_add(isl_ctx *ctx,
462 struct isl_sched_graph *graph, enum isl_edge_type type,
463 struct isl_sched_edge *edge)
465 struct isl_hash_table_entry *entry;
466 uint32_t hash;
468 hash = isl_hash_init();
469 hash = isl_hash_builtin(hash, edge->src);
470 hash = isl_hash_builtin(hash, edge->dst);
471 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
472 &edge_has_src_and_dst, edge, 1);
473 if (!entry)
474 return isl_stat_error;
475 entry->data = edge;
477 return isl_stat_ok;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat graph_edge_tables_add(isl_ctx *ctx,
484 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
486 enum isl_edge_type t;
488 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
489 if (!is_type(edge, t))
490 continue;
491 if (graph_edge_table_add(ctx, graph, t, edge) < 0)
492 return isl_stat_error;
495 return isl_stat_ok;
498 /* Allocate the edge_tables based on the maximal number of edges of
499 * each type.
501 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
503 int i;
505 for (i = 0; i <= isl_edge_last; ++i) {
506 graph->edge_table[i] = isl_hash_table_alloc(ctx,
507 graph->max_edge[i]);
508 if (!graph->edge_table[i])
509 return -1;
512 return 0;
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry *graph_find_edge_entry(
520 struct isl_sched_graph *graph,
521 enum isl_edge_type type,
522 struct isl_sched_node *src, struct isl_sched_node *dst)
524 isl_ctx *ctx = isl_space_get_ctx(src->space);
525 uint32_t hash;
526 struct isl_sched_edge temp = { .src = src, .dst = dst };
528 hash = isl_hash_init();
529 hash = isl_hash_builtin(hash, temp.src);
530 hash = isl_hash_builtin(hash, temp.dst);
531 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
532 &edge_has_src_and_dst, &temp, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
541 enum isl_edge_type type,
542 struct isl_sched_node *src, struct isl_sched_node *dst)
544 struct isl_hash_table_entry *entry;
546 entry = graph_find_edge_entry(graph, type, src, dst);
547 if (!entry)
548 return NULL;
550 return entry->data;
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
557 enum isl_edge_type type,
558 struct isl_sched_node *src, struct isl_sched_node *dst)
560 struct isl_sched_edge *edge;
561 isl_bool empty;
563 edge = graph_find_edge(graph, type, src, dst);
564 if (!edge)
565 return isl_bool_false;
567 empty = isl_map_plain_is_empty(edge->map);
569 return isl_bool_not(empty);
572 /* Look for any edge with the same src, dst and map fields as "model".
574 * Return the matching edge if one can be found.
575 * Return "model" if no matching edge is found.
576 * Return NULL on error.
578 static struct isl_sched_edge *graph_find_matching_edge(
579 struct isl_sched_graph *graph, struct isl_sched_edge *model)
581 enum isl_edge_type i;
582 struct isl_sched_edge *edge;
584 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
585 int is_equal;
587 edge = graph_find_edge(graph, i, model->src, model->dst);
588 if (!edge)
589 continue;
590 is_equal = isl_map_plain_is_equal(model->map, edge->map);
591 if (is_equal < 0)
592 return NULL;
593 if (is_equal)
594 return edge;
597 return model;
600 /* Remove the given edge from all the edge_tables that refer to it.
602 static void graph_remove_edge(struct isl_sched_graph *graph,
603 struct isl_sched_edge *edge)
605 isl_ctx *ctx = isl_map_get_ctx(edge->map);
606 enum isl_edge_type i;
608 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
609 struct isl_hash_table_entry *entry;
611 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
612 if (!entry)
613 continue;
614 if (entry->data != edge)
615 continue;
616 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
620 /* Check whether the dependence graph has any edge
621 * between the given two nodes.
623 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
624 struct isl_sched_node *src, struct isl_sched_node *dst)
626 enum isl_edge_type i;
627 isl_bool r;
629 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
630 r = graph_has_edge(graph, i, src, dst);
631 if (r < 0 || r)
632 return r;
635 return r;
638 /* Check whether the dependence graph has a validity edge
639 * between the given two nodes.
641 * Conditional validity edges are essentially validity edges that
642 * can be ignored if the corresponding condition edges are iteration private.
643 * Here, we are only checking for the presence of validity
644 * edges, so we need to consider the conditional validity edges too.
645 * In particular, this function is used during the detection
646 * of strongly connected components and we cannot ignore
647 * conditional validity edges during this detection.
649 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
650 struct isl_sched_node *src, struct isl_sched_node *dst)
652 isl_bool r;
654 r = graph_has_edge(graph, isl_edge_validity, src, dst);
655 if (r < 0 || r)
656 return r;
658 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
661 /* Perform all the required memory allocations for a schedule graph "graph"
662 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
663 * fields.
665 static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
666 int n_node, int n_edge)
668 int i;
670 graph->n = n_node;
671 graph->n_edge = n_edge;
672 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
673 graph->sorted = isl_calloc_array(ctx, int, graph->n);
674 graph->region = isl_alloc_array(ctx,
675 struct isl_trivial_region, graph->n);
676 graph->edge = isl_calloc_array(ctx,
677 struct isl_sched_edge, graph->n_edge);
679 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
680 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
681 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
683 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
684 !graph->sorted)
685 return isl_stat_error;
687 for(i = 0; i < graph->n; ++i)
688 graph->sorted[i] = i;
690 return isl_stat_ok;
693 /* Free the memory associated to node "node" in "graph".
694 * The "coincident" field is shared by nodes in a graph and its subgraph.
695 * It therefore only needs to be freed for the original dependence graph,
696 * i.e., one that is not the result of splitting.
698 static void clear_node(struct isl_sched_graph *graph,
699 struct isl_sched_node *node)
701 isl_space_free(node->space);
702 isl_set_free(node->hull);
703 isl_multi_aff_free(node->compress);
704 isl_multi_aff_free(node->decompress);
705 isl_mat_free(node->sched);
706 isl_map_free(node->sched_map);
707 isl_mat_free(node->indep);
708 isl_mat_free(node->vmap);
709 if (graph->root == graph)
710 free(node->coincident);
711 isl_multi_val_free(node->sizes);
712 isl_basic_set_free(node->bounds);
713 isl_vec_free(node->max);
716 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
718 int i;
720 isl_map_to_basic_set_free(graph->intra_hmap);
721 isl_map_to_basic_set_free(graph->intra_hmap_param);
722 isl_map_to_basic_set_free(graph->inter_hmap);
724 if (graph->node)
725 for (i = 0; i < graph->n; ++i)
726 clear_node(graph, &graph->node[i]);
727 free(graph->node);
728 free(graph->sorted);
729 if (graph->edge)
730 for (i = 0; i < graph->n_edge; ++i) {
731 isl_map_free(graph->edge[i].map);
732 isl_union_map_free(graph->edge[i].tagged_condition);
733 isl_union_map_free(graph->edge[i].tagged_validity);
735 free(graph->edge);
736 free(graph->region);
737 for (i = 0; i <= isl_edge_last; ++i)
738 isl_hash_table_free(ctx, graph->edge_table[i]);
739 isl_hash_table_free(ctx, graph->node_table);
740 isl_basic_set_free(graph->lp);
743 /* For each "set" on which this function is called, increment
744 * graph->n by one and update graph->maxvar.
746 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
748 struct isl_sched_graph *graph = user;
749 isl_size nvar = isl_set_dim(set, isl_dim_set);
751 graph->n++;
752 if (nvar > graph->maxvar)
753 graph->maxvar = nvar;
755 isl_set_free(set);
757 if (nvar < 0)
758 return isl_stat_error;
759 return isl_stat_ok;
762 /* Compute the number of rows that should be allocated for the schedule.
763 * In particular, we need one row for each variable or one row
764 * for each basic map in the dependences.
765 * Note that it is practically impossible to exhaust both
766 * the number of dependences and the number of variables.
768 static isl_stat compute_max_row(struct isl_sched_graph *graph,
769 __isl_keep isl_schedule_constraints *sc)
771 int n_edge;
772 isl_stat r;
773 isl_union_set *domain;
775 graph->n = 0;
776 graph->maxvar = 0;
777 domain = isl_schedule_constraints_get_domain(sc);
778 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
779 isl_union_set_free(domain);
780 if (r < 0)
781 return isl_stat_error;
782 n_edge = isl_schedule_constraints_n_basic_map(sc);
783 if (n_edge < 0)
784 return isl_stat_error;
785 graph->max_row = n_edge + graph->maxvar;
787 return isl_stat_ok;
790 /* Does "bset" have any defining equalities for its set variables?
792 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
794 int i;
795 isl_size n;
797 n = isl_basic_set_dim(bset, isl_dim_set);
798 if (n < 0)
799 return isl_bool_error;
801 for (i = 0; i < n; ++i) {
802 isl_bool has;
804 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
805 NULL);
806 if (has < 0 || has)
807 return has;
810 return isl_bool_false;
813 /* Set the entries of node->max to the value of the schedule_max_coefficient
814 * option, if set.
816 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
818 int max;
820 max = isl_options_get_schedule_max_coefficient(ctx);
821 if (max == -1)
822 return isl_stat_ok;
824 node->max = isl_vec_alloc(ctx, node->nvar);
825 node->max = isl_vec_set_si(node->max, max);
826 if (!node->max)
827 return isl_stat_error;
829 return isl_stat_ok;
832 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
833 * option (if set) and half of the minimum of the sizes in the other
834 * dimensions. Round up when computing the half such that
835 * if the minimum of the sizes is one, half of the size is taken to be one
836 * rather than zero.
837 * If the global minimum is unbounded (i.e., if both
838 * the schedule_max_coefficient is not set and the sizes in the other
839 * dimensions are unbounded), then store a negative value.
840 * If the schedule coefficient is close to the size of the instance set
841 * in another dimension, then the schedule may represent a loop
842 * coalescing transformation (especially if the coefficient
843 * in that other dimension is one). Forcing the coefficient to be
844 * smaller than or equal to half the minimal size should avoid this
845 * situation.
847 static isl_stat compute_max_coefficient(isl_ctx *ctx,
848 struct isl_sched_node *node)
850 int max;
851 int i, j;
852 isl_vec *v;
854 max = isl_options_get_schedule_max_coefficient(ctx);
855 v = isl_vec_alloc(ctx, node->nvar);
856 if (!v)
857 return isl_stat_error;
859 for (i = 0; i < node->nvar; ++i) {
860 isl_int_set_si(v->el[i], max);
861 isl_int_mul_si(v->el[i], v->el[i], 2);
864 for (i = 0; i < node->nvar; ++i) {
865 isl_val *size;
867 size = isl_multi_val_get_val(node->sizes, i);
868 if (!size)
869 goto error;
870 if (!isl_val_is_int(size)) {
871 isl_val_free(size);
872 continue;
874 for (j = 0; j < node->nvar; ++j) {
875 if (j == i)
876 continue;
877 if (isl_int_is_neg(v->el[j]) ||
878 isl_int_gt(v->el[j], size->n))
879 isl_int_set(v->el[j], size->n);
881 isl_val_free(size);
884 for (i = 0; i < node->nvar; ++i)
885 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
887 node->max = v;
888 return isl_stat_ok;
889 error:
890 isl_vec_free(v);
891 return isl_stat_error;
894 /* Compute and return the size of "set" in dimension "dim".
895 * The size is taken to be the difference in values for that variable
896 * for fixed values of the other variables.
897 * This assumes that "set" is convex.
898 * In particular, the variable is first isolated from the other variables
899 * in the range of a map
901 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
903 * and then duplicated
905 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
907 * The shared variables are then projected out and the maximal value
908 * of i_dim' - i_dim is computed.
910 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
912 isl_map *map;
913 isl_local_space *ls;
914 isl_aff *obj;
915 isl_val *v;
917 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
918 map = isl_map_project_out(map, isl_dim_in, dim, 1);
919 map = isl_map_range_product(map, isl_map_copy(map));
920 map = isl_set_unwrap(isl_map_range(map));
921 set = isl_map_deltas(map);
922 ls = isl_local_space_from_space(isl_set_get_space(set));
923 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
924 v = isl_set_max_val(set, obj);
925 isl_aff_free(obj);
926 isl_set_free(set);
928 return v;
931 /* Compute the size of the instance set "set" of "node", after compression,
932 * as well as bounds on the corresponding coefficients, if needed.
934 * The sizes are needed when the schedule_treat_coalescing option is set.
935 * The bounds are needed when the schedule_treat_coalescing option or
936 * the schedule_max_coefficient option is set.
938 * If the schedule_treat_coalescing option is not set, then at most
939 * the bounds need to be set and this is done in set_max_coefficient.
940 * Otherwise, compress the domain if needed, compute the size
941 * in each direction and store the results in node->size.
942 * If the domain is not convex, then the sizes are computed
943 * on a convex superset in order to avoid picking up sizes
944 * that are valid for the individual disjuncts, but not for
945 * the domain as a whole.
946 * Finally, set the bounds on the coefficients based on the sizes
947 * and the schedule_max_coefficient option in compute_max_coefficient.
949 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
950 __isl_take isl_set *set)
952 int j;
953 isl_size n;
954 isl_multi_val *mv;
956 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
957 isl_set_free(set);
958 return set_max_coefficient(ctx, node);
961 if (node->compressed)
962 set = isl_set_preimage_multi_aff(set,
963 isl_multi_aff_copy(node->decompress));
964 set = isl_set_from_basic_set(isl_set_simple_hull(set));
965 mv = isl_multi_val_zero(isl_set_get_space(set));
966 n = isl_set_dim(set, isl_dim_set);
967 if (n < 0)
968 mv = isl_multi_val_free(mv);
969 for (j = 0; j < n; ++j) {
970 isl_val *v;
972 v = compute_size(isl_set_copy(set), j);
973 mv = isl_multi_val_set_val(mv, j, v);
975 node->sizes = mv;
976 isl_set_free(set);
977 if (!node->sizes)
978 return isl_stat_error;
979 return compute_max_coefficient(ctx, node);
982 /* Add a new node to the graph representing the given instance set.
983 * "nvar" is the (possibly compressed) number of variables and
984 * may be smaller than then number of set variables in "set"
985 * if "compressed" is set.
986 * If "compressed" is set, then "hull" represents the constraints
987 * that were used to derive the compression, while "compress" and
988 * "decompress" map the original space to the compressed space and
989 * vice versa.
990 * If "compressed" is not set, then "hull", "compress" and "decompress"
991 * should be NULL.
993 * Compute the size of the instance set and bounds on the coefficients,
994 * if needed.
996 static isl_stat add_node(struct isl_sched_graph *graph,
997 __isl_take isl_set *set, int nvar, int compressed,
998 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
999 __isl_take isl_multi_aff *decompress)
1001 isl_size nparam;
1002 isl_ctx *ctx;
1003 isl_mat *sched;
1004 isl_space *space;
1005 int *coincident;
1006 struct isl_sched_node *node;
1008 nparam = isl_set_dim(set, isl_dim_param);
1009 if (nparam < 0)
1010 goto error;
1012 ctx = isl_set_get_ctx(set);
1013 if (!ctx->opt->schedule_parametric)
1014 nparam = 0;
1015 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
1016 node = &graph->node[graph->n];
1017 graph->n++;
1018 space = isl_set_get_space(set);
1019 node->space = space;
1020 node->nvar = nvar;
1021 node->nparam = nparam;
1022 node->sched = sched;
1023 node->sched_map = NULL;
1024 coincident = isl_calloc_array(ctx, int, graph->max_row);
1025 node->coincident = coincident;
1026 node->compressed = compressed;
1027 node->hull = hull;
1028 node->compress = compress;
1029 node->decompress = decompress;
1030 if (compute_sizes_and_max(ctx, node, set) < 0)
1031 return isl_stat_error;
1033 if (!space || !sched || (graph->max_row && !coincident))
1034 return isl_stat_error;
1035 if (compressed && (!hull || !compress || !decompress))
1036 return isl_stat_error;
1038 return isl_stat_ok;
1039 error:
1040 isl_set_free(set);
1041 isl_set_free(hull);
1042 isl_multi_aff_free(compress);
1043 isl_multi_aff_free(decompress);
1044 return isl_stat_error;
1047 /* Construct an identifier for node "node", which will represent "set".
1048 * The name of the identifier is either "compressed" or
1049 * "compressed_<name>", with <name> the name of the space of "set".
1050 * The user pointer of the identifier points to "node".
1052 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
1053 struct isl_sched_node *node)
1055 isl_bool has_name;
1056 isl_ctx *ctx;
1057 isl_id *id;
1058 isl_printer *p;
1059 const char *name;
1060 char *id_name;
1062 has_name = isl_set_has_tuple_name(set);
1063 if (has_name < 0)
1064 return NULL;
1066 ctx = isl_set_get_ctx(set);
1067 if (!has_name)
1068 return isl_id_alloc(ctx, "compressed", node);
1070 p = isl_printer_to_str(ctx);
1071 name = isl_set_get_tuple_name(set);
1072 p = isl_printer_print_str(p, "compressed_");
1073 p = isl_printer_print_str(p, name);
1074 id_name = isl_printer_get_str(p);
1075 isl_printer_free(p);
1077 id = isl_id_alloc(ctx, id_name, node);
1078 free(id_name);
1080 return id;
1083 /* Add a new node to the graph representing the given set.
1085 * If any of the set variables is defined by an equality, then
1086 * we perform variable compression such that we can perform
1087 * the scheduling on the compressed domain.
1088 * In this case, an identifier is used that references the new node
1089 * such that each compressed space is unique and
1090 * such that the node can be recovered from the compressed space.
1092 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1094 isl_size nvar;
1095 isl_bool has_equality;
1096 isl_id *id;
1097 isl_basic_set *hull;
1098 isl_set *hull_set;
1099 isl_morph *morph;
1100 isl_multi_aff *compress, *decompress;
1101 struct isl_sched_graph *graph = user;
1103 hull = isl_set_affine_hull(isl_set_copy(set));
1104 hull = isl_basic_set_remove_divs(hull);
1105 nvar = isl_set_dim(set, isl_dim_set);
1106 has_equality = has_any_defining_equality(hull);
1108 if (nvar < 0 || has_equality < 0)
1109 goto error;
1110 if (!has_equality) {
1111 isl_basic_set_free(hull);
1112 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1115 id = construct_compressed_id(set, &graph->node[graph->n]);
1116 morph = isl_basic_set_variable_compression_with_id(hull,
1117 isl_dim_set, id);
1118 isl_id_free(id);
1119 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1120 if (nvar < 0)
1121 set = isl_set_free(set);
1122 compress = isl_morph_get_var_multi_aff(morph);
1123 morph = isl_morph_inverse(morph);
1124 decompress = isl_morph_get_var_multi_aff(morph);
1125 isl_morph_free(morph);
1127 hull_set = isl_set_from_basic_set(hull);
1128 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1129 error:
1130 isl_basic_set_free(hull);
1131 isl_set_free(set);
1132 return isl_stat_error;
1135 struct isl_extract_edge_data {
1136 enum isl_edge_type type;
1137 struct isl_sched_graph *graph;
1140 /* Merge edge2 into edge1, freeing the contents of edge2.
1141 * Return 0 on success and -1 on failure.
1143 * edge1 and edge2 are assumed to have the same value for the map field.
1145 static int merge_edge(struct isl_sched_edge *edge1,
1146 struct isl_sched_edge *edge2)
1148 edge1->types |= edge2->types;
1149 isl_map_free(edge2->map);
1151 if (is_condition(edge2)) {
1152 if (!edge1->tagged_condition)
1153 edge1->tagged_condition = edge2->tagged_condition;
1154 else
1155 edge1->tagged_condition =
1156 isl_union_map_union(edge1->tagged_condition,
1157 edge2->tagged_condition);
1160 if (is_conditional_validity(edge2)) {
1161 if (!edge1->tagged_validity)
1162 edge1->tagged_validity = edge2->tagged_validity;
1163 else
1164 edge1->tagged_validity =
1165 isl_union_map_union(edge1->tagged_validity,
1166 edge2->tagged_validity);
1169 if (is_condition(edge2) && !edge1->tagged_condition)
1170 return -1;
1171 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1172 return -1;
1174 return 0;
1177 /* Insert dummy tags in domain and range of "map".
1179 * In particular, if "map" is of the form
1181 * A -> B
1183 * then return
1185 * [A -> dummy_tag] -> [B -> dummy_tag]
1187 * where the dummy_tags are identical and equal to any dummy tags
1188 * introduced by any other call to this function.
1190 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1192 static char dummy;
1193 isl_ctx *ctx;
1194 isl_id *id;
1195 isl_space *space;
1196 isl_set *domain, *range;
1198 ctx = isl_map_get_ctx(map);
1200 id = isl_id_alloc(ctx, NULL, &dummy);
1201 space = isl_space_params(isl_map_get_space(map));
1202 space = isl_space_set_from_params(space);
1203 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1204 space = isl_space_map_from_set(space);
1206 domain = isl_map_wrap(map);
1207 range = isl_map_wrap(isl_map_universe(space));
1208 map = isl_map_from_domain_and_range(domain, range);
1209 map = isl_map_zip(map);
1211 return map;
1214 /* Given that at least one of "src" or "dst" is compressed, return
1215 * a map between the spaces of these nodes restricted to the affine
1216 * hull that was used in the compression.
1218 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1219 struct isl_sched_node *dst)
1221 isl_set *dom, *ran;
1223 if (src->compressed)
1224 dom = isl_set_copy(src->hull);
1225 else
1226 dom = isl_set_universe(isl_space_copy(src->space));
1227 if (dst->compressed)
1228 ran = isl_set_copy(dst->hull);
1229 else
1230 ran = isl_set_universe(isl_space_copy(dst->space));
1232 return isl_map_from_domain_and_range(dom, ran);
1235 /* Intersect the domains of the nested relations in domain and range
1236 * of "tagged" with "map".
1238 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1239 __isl_keep isl_map *map)
1241 isl_set *set;
1243 tagged = isl_map_zip(tagged);
1244 set = isl_map_wrap(isl_map_copy(map));
1245 tagged = isl_map_intersect_domain(tagged, set);
1246 tagged = isl_map_zip(tagged);
1247 return tagged;
1250 /* Return a pointer to the node that lives in the domain space of "map",
1251 * an invalid node if there is no such node, or NULL in case of error.
1253 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1254 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1256 struct isl_sched_node *node;
1257 isl_space *space;
1259 space = isl_space_domain(isl_map_get_space(map));
1260 node = graph_find_node(ctx, graph, space);
1261 isl_space_free(space);
1263 return node;
1266 /* Return a pointer to the node that lives in the range space of "map",
1267 * an invalid node if there is no such node, or NULL in case of error.
1269 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1270 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1272 struct isl_sched_node *node;
1273 isl_space *space;
1275 space = isl_space_range(isl_map_get_space(map));
1276 node = graph_find_node(ctx, graph, space);
1277 isl_space_free(space);
1279 return node;
1282 /* Refrain from adding a new edge based on "map".
1283 * Instead, just free the map.
1284 * "tagged" is either a copy of "map" with additional tags or NULL.
1286 static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1288 isl_map_free(map);
1289 isl_map_free(tagged);
1291 return isl_stat_ok;
1294 /* Add a new edge to the graph based on the given map
1295 * and add it to data->graph->edge_table[data->type].
1296 * If a dependence relation of a given type happens to be identical
1297 * to one of the dependence relations of a type that was added before,
1298 * then we don't create a new edge, but instead mark the original edge
1299 * as also representing a dependence of the current type.
1301 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1302 * may be specified as "tagged" dependence relations. That is, "map"
1303 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1304 * the dependence on iterations and a and b are tags.
1305 * edge->map is set to the relation containing the elements i -> j,
1306 * while edge->tagged_condition and edge->tagged_validity contain
1307 * the union of all the "map" relations
1308 * for which extract_edge is called that result in the same edge->map.
1310 * If the source or the destination node is compressed, then
1311 * intersect both "map" and "tagged" with the constraints that
1312 * were used to construct the compression.
1313 * This ensures that there are no schedule constraints defined
1314 * outside of these domains, while the scheduler no longer has
1315 * any control over those outside parts.
1317 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1319 isl_bool empty;
1320 isl_ctx *ctx = isl_map_get_ctx(map);
1321 struct isl_extract_edge_data *data = user;
1322 struct isl_sched_graph *graph = data->graph;
1323 struct isl_sched_node *src, *dst;
1324 struct isl_sched_edge *edge;
1325 isl_map *tagged = NULL;
1327 if (data->type == isl_edge_condition ||
1328 data->type == isl_edge_conditional_validity) {
1329 if (isl_map_can_zip(map)) {
1330 tagged = isl_map_copy(map);
1331 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1332 } else {
1333 tagged = insert_dummy_tags(isl_map_copy(map));
1337 src = find_domain_node(ctx, graph, map);
1338 dst = find_range_node(ctx, graph, map);
1340 if (!src || !dst)
1341 goto error;
1342 if (!is_node(graph, src) || !is_node(graph, dst))
1343 return skip_edge(map, tagged);
1345 if (src->compressed || dst->compressed) {
1346 isl_map *hull;
1347 hull = extract_hull(src, dst);
1348 if (tagged)
1349 tagged = map_intersect_domains(tagged, hull);
1350 map = isl_map_intersect(map, hull);
1353 empty = isl_map_plain_is_empty(map);
1354 if (empty < 0)
1355 goto error;
1356 if (empty)
1357 return skip_edge(map, tagged);
1359 graph->edge[graph->n_edge].src = src;
1360 graph->edge[graph->n_edge].dst = dst;
1361 graph->edge[graph->n_edge].map = map;
1362 graph->edge[graph->n_edge].types = 0;
1363 graph->edge[graph->n_edge].tagged_condition = NULL;
1364 graph->edge[graph->n_edge].tagged_validity = NULL;
1365 set_type(&graph->edge[graph->n_edge], data->type);
1366 if (data->type == isl_edge_condition)
1367 graph->edge[graph->n_edge].tagged_condition =
1368 isl_union_map_from_map(tagged);
1369 if (data->type == isl_edge_conditional_validity)
1370 graph->edge[graph->n_edge].tagged_validity =
1371 isl_union_map_from_map(tagged);
1373 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1374 if (!edge) {
1375 graph->n_edge++;
1376 return isl_stat_error;
1378 if (edge == &graph->edge[graph->n_edge])
1379 return graph_edge_table_add(ctx, graph, data->type,
1380 &graph->edge[graph->n_edge++]);
1382 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1383 return isl_stat_error;
1385 return graph_edge_table_add(ctx, graph, data->type, edge);
1386 error:
1387 isl_map_free(map);
1388 isl_map_free(tagged);
1389 return isl_stat_error;
1392 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1394 * The context is included in the domain before the nodes of
1395 * the graphs are extracted in order to be able to exploit
1396 * any possible additional equalities.
1397 * Note that this intersection is only performed locally here.
1399 static isl_stat graph_init(struct isl_sched_graph *graph,
1400 __isl_keep isl_schedule_constraints *sc)
1402 isl_ctx *ctx;
1403 isl_union_set *domain;
1404 isl_union_map *c;
1405 struct isl_extract_edge_data data;
1406 enum isl_edge_type i;
1407 isl_stat r;
1408 isl_size n;
1410 if (!sc)
1411 return isl_stat_error;
1413 ctx = isl_schedule_constraints_get_ctx(sc);
1415 domain = isl_schedule_constraints_get_domain(sc);
1416 n = isl_union_set_n_set(domain);
1417 graph->n = n;
1418 isl_union_set_free(domain);
1419 if (n < 0)
1420 return isl_stat_error;
1422 n = isl_schedule_constraints_n_map(sc);
1423 if (n < 0 || graph_alloc(ctx, graph, graph->n, n) < 0)
1424 return isl_stat_error;
1426 if (compute_max_row(graph, sc) < 0)
1427 return isl_stat_error;
1428 graph->root = graph;
1429 graph->n = 0;
1430 domain = isl_schedule_constraints_get_domain(sc);
1431 domain = isl_union_set_intersect_params(domain,
1432 isl_schedule_constraints_get_context(sc));
1433 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1434 isl_union_set_free(domain);
1435 if (r < 0)
1436 return isl_stat_error;
1437 if (graph_init_table(ctx, graph) < 0)
1438 return isl_stat_error;
1439 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1440 isl_size n;
1442 c = isl_schedule_constraints_get(sc, i);
1443 n = isl_union_map_n_map(c);
1444 graph->max_edge[i] = n;
1445 isl_union_map_free(c);
1446 if (n < 0)
1447 return isl_stat_error;
1449 if (graph_init_edge_tables(ctx, graph) < 0)
1450 return isl_stat_error;
1451 graph->n_edge = 0;
1452 data.graph = graph;
1453 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1454 isl_stat r;
1456 data.type = i;
1457 c = isl_schedule_constraints_get(sc, i);
1458 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1459 isl_union_map_free(c);
1460 if (r < 0)
1461 return isl_stat_error;
1464 return isl_stat_ok;
1467 /* Check whether there is any dependence from node[j] to node[i]
1468 * or from node[i] to node[j].
1470 static isl_bool node_follows_weak(int i, int j, void *user)
1472 isl_bool f;
1473 struct isl_sched_graph *graph = user;
1475 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1476 if (f < 0 || f)
1477 return f;
1478 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1481 /* Check whether there is a (conditional) validity dependence from node[j]
1482 * to node[i], forcing node[i] to follow node[j].
1484 static isl_bool node_follows_strong(int i, int j, void *user)
1486 struct isl_sched_graph *graph = user;
1488 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1491 /* Use Tarjan's algorithm for computing the strongly connected components
1492 * in the dependence graph only considering those edges defined by "follows".
1494 static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1495 isl_bool (*follows)(int i, int j, void *user))
1497 int i, n;
1498 struct isl_tarjan_graph *g = NULL;
1500 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1501 if (!g)
1502 return isl_stat_error;
1504 graph->scc = 0;
1505 i = 0;
1506 n = graph->n;
1507 while (n) {
1508 while (g->order[i] != -1) {
1509 graph->node[g->order[i]].scc = graph->scc;
1510 --n;
1511 ++i;
1513 ++i;
1514 graph->scc++;
1517 isl_tarjan_graph_free(g);
1519 return isl_stat_ok;
1522 /* Apply Tarjan's algorithm to detect the strongly connected components
1523 * in the dependence graph.
1524 * Only consider the (conditional) validity dependences and clear "weak".
1526 static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1528 graph->weak = 0;
1529 return detect_ccs(ctx, graph, &node_follows_strong);
1532 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1533 * in the dependence graph.
1534 * Consider all dependences and set "weak".
1536 static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1538 graph->weak = 1;
1539 return detect_ccs(ctx, graph, &node_follows_weak);
1542 static int cmp_scc(const void *a, const void *b, void *data)
1544 struct isl_sched_graph *graph = data;
1545 const int *i1 = a;
1546 const int *i2 = b;
1548 return graph->node[*i1].scc - graph->node[*i2].scc;
1551 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1553 static int sort_sccs(struct isl_sched_graph *graph)
1555 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1558 /* Return a non-parametric set in the compressed space of "node" that is
1559 * bounded by the size in each direction
1561 * { [x] : -S_i <= x_i <= S_i }
1563 * If S_i is infinity in direction i, then there are no constraints
1564 * in that direction.
1566 * Cache the result in node->bounds.
1568 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1570 isl_space *space;
1571 isl_basic_set *bounds;
1572 int i;
1574 if (node->bounds)
1575 return isl_basic_set_copy(node->bounds);
1577 if (node->compressed)
1578 space = isl_multi_aff_get_domain_space(node->decompress);
1579 else
1580 space = isl_space_copy(node->space);
1581 space = isl_space_drop_all_params(space);
1582 bounds = isl_basic_set_universe(space);
1584 for (i = 0; i < node->nvar; ++i) {
1585 isl_val *size;
1587 size = isl_multi_val_get_val(node->sizes, i);
1588 if (!size)
1589 return isl_basic_set_free(bounds);
1590 if (!isl_val_is_int(size)) {
1591 isl_val_free(size);
1592 continue;
1594 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1595 isl_val_copy(size));
1596 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1597 isl_val_neg(size));
1600 node->bounds = isl_basic_set_copy(bounds);
1601 return bounds;
1604 /* Drop some constraints from "delta" that could be exploited
1605 * to construct loop coalescing schedules.
1606 * In particular, drop those constraint that bound the difference
1607 * to the size of the domain.
1608 * First project out the parameters to improve the effectiveness.
1610 static __isl_give isl_set *drop_coalescing_constraints(
1611 __isl_take isl_set *delta, struct isl_sched_node *node)
1613 isl_size nparam;
1614 isl_basic_set *bounds;
1616 nparam = isl_set_dim(delta, isl_dim_param);
1617 if (nparam < 0)
1618 return isl_set_free(delta);
1620 bounds = get_size_bounds(node);
1622 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1623 delta = isl_set_remove_divs(delta);
1624 delta = isl_set_plain_gist_basic_set(delta, bounds);
1625 return delta;
1628 /* Given a dependence relation R from "node" to itself,
1629 * construct the set of coefficients of valid constraints for elements
1630 * in that dependence relation.
1631 * In particular, the result contains tuples of coefficients
1632 * c_0, c_n, c_x such that
1634 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1636 * or, equivalently,
1638 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1640 * We choose here to compute the dual of delta R.
1641 * Alternatively, we could have computed the dual of R, resulting
1642 * in a set of tuples c_0, c_n, c_x, c_y, and then
1643 * plugged in (c_0, c_n, c_x, -c_x).
1645 * If "need_param" is set, then the resulting coefficients effectively
1646 * include coefficients for the parameters c_n. Otherwise, they may
1647 * have been projected out already.
1648 * Since the constraints may be different for these two cases,
1649 * they are stored in separate caches.
1650 * In particular, if no parameter coefficients are required and
1651 * the schedule_treat_coalescing option is set, then the parameters
1652 * are projected out and some constraints that could be exploited
1653 * to construct coalescing schedules are removed before the dual
1654 * is computed.
1656 * If "node" has been compressed, then the dependence relation
1657 * is also compressed before the set of coefficients is computed.
1659 static __isl_give isl_basic_set *intra_coefficients(
1660 struct isl_sched_graph *graph, struct isl_sched_node *node,
1661 __isl_take isl_map *map, int need_param)
1663 isl_ctx *ctx;
1664 isl_set *delta;
1665 isl_map *key;
1666 isl_basic_set *coef;
1667 isl_maybe_isl_basic_set m;
1668 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1669 int treat;
1671 if (!map)
1672 return NULL;
1674 ctx = isl_map_get_ctx(map);
1675 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1676 if (!treat)
1677 hmap = &graph->intra_hmap_param;
1678 m = isl_map_to_basic_set_try_get(*hmap, map);
1679 if (m.valid < 0 || m.valid) {
1680 isl_map_free(map);
1681 return m.value;
1684 key = isl_map_copy(map);
1685 if (node->compressed) {
1686 map = isl_map_preimage_domain_multi_aff(map,
1687 isl_multi_aff_copy(node->decompress));
1688 map = isl_map_preimage_range_multi_aff(map,
1689 isl_multi_aff_copy(node->decompress));
1691 delta = isl_map_deltas(map);
1692 if (treat)
1693 delta = drop_coalescing_constraints(delta, node);
1694 delta = isl_set_remove_divs(delta);
1695 coef = isl_set_coefficients(delta);
1696 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1698 return coef;
1701 /* Given a dependence relation R, construct the set of coefficients
1702 * of valid constraints for elements in that dependence relation.
1703 * In particular, the result contains tuples of coefficients
1704 * c_0, c_n, c_x, c_y such that
1706 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1708 * If the source or destination nodes of "edge" have been compressed,
1709 * then the dependence relation is also compressed before
1710 * the set of coefficients is computed.
1712 static __isl_give isl_basic_set *inter_coefficients(
1713 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1714 __isl_take isl_map *map)
1716 isl_set *set;
1717 isl_map *key;
1718 isl_basic_set *coef;
1719 isl_maybe_isl_basic_set m;
1721 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1722 if (m.valid < 0 || m.valid) {
1723 isl_map_free(map);
1724 return m.value;
1727 key = isl_map_copy(map);
1728 if (edge->src->compressed)
1729 map = isl_map_preimage_domain_multi_aff(map,
1730 isl_multi_aff_copy(edge->src->decompress));
1731 if (edge->dst->compressed)
1732 map = isl_map_preimage_range_multi_aff(map,
1733 isl_multi_aff_copy(edge->dst->decompress));
1734 set = isl_map_wrap(isl_map_remove_divs(map));
1735 coef = isl_set_coefficients(set);
1736 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1737 isl_basic_set_copy(coef));
1739 return coef;
1742 /* Return the position of the coefficients of the variables in
1743 * the coefficients constraints "coef".
1745 * The space of "coef" is of the form
1747 * { coefficients[[cst, params] -> S] }
1749 * Return the position of S.
1751 static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
1753 isl_size offset;
1754 isl_space *space;
1756 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1757 offset = isl_space_dim(space, isl_dim_in);
1758 isl_space_free(space);
1760 return offset;
1763 /* Return the offset of the coefficient of the constant term of "node"
1764 * within the (I)LP.
1766 * Within each node, the coefficients have the following order:
1767 * - positive and negative parts of c_i_x
1768 * - c_i_n (if parametric)
1769 * - c_i_0
1771 static int node_cst_coef_offset(struct isl_sched_node *node)
1773 return node->start + 2 * node->nvar + node->nparam;
1776 /* Return the offset of the coefficients of the parameters of "node"
1777 * within the (I)LP.
1779 * Within each node, the coefficients have the following order:
1780 * - positive and negative parts of c_i_x
1781 * - c_i_n (if parametric)
1782 * - c_i_0
1784 static int node_par_coef_offset(struct isl_sched_node *node)
1786 return node->start + 2 * node->nvar;
1789 /* Return the offset of the coefficients of the variables of "node"
1790 * within the (I)LP.
1792 * Within each node, the coefficients have the following order:
1793 * - positive and negative parts of c_i_x
1794 * - c_i_n (if parametric)
1795 * - c_i_0
1797 static int node_var_coef_offset(struct isl_sched_node *node)
1799 return node->start;
1802 /* Return the position of the pair of variables encoding
1803 * coefficient "i" of "node".
1805 * The order of these variable pairs is the opposite of
1806 * that of the coefficients, with 2 variables per coefficient.
1808 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1810 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1813 /* Construct an isl_dim_map for mapping constraints on coefficients
1814 * for "node" to the corresponding positions in graph->lp.
1815 * "offset" is the offset of the coefficients for the variables
1816 * in the input constraints.
1817 * "s" is the sign of the mapping.
1819 * The input constraints are given in terms of the coefficients
1820 * (c_0, c_x) or (c_0, c_n, c_x).
1821 * The mapping produced by this function essentially plugs in
1822 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1823 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1824 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1825 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1826 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1827 * Furthermore, the order of these pairs is the opposite of that
1828 * of the corresponding coefficients.
1830 * The caller can extend the mapping to also map the other coefficients
1831 * (and therefore not plug in 0).
1833 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1834 struct isl_sched_graph *graph, struct isl_sched_node *node,
1835 int offset, int s)
1837 int pos;
1838 isl_size total;
1839 isl_dim_map *dim_map;
1841 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1842 if (!node || total < 0)
1843 return NULL;
1845 pos = node_var_coef_pos(node, 0);
1846 dim_map = isl_dim_map_alloc(ctx, total);
1847 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1848 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1850 return dim_map;
1853 /* Construct an isl_dim_map for mapping constraints on coefficients
1854 * for "src" (node i) and "dst" (node j) to the corresponding positions
1855 * in graph->lp.
1856 * "offset" is the offset of the coefficients for the variables of "src"
1857 * in the input constraints.
1858 * "s" is the sign of the mapping.
1860 * The input constraints are given in terms of the coefficients
1861 * (c_0, c_n, c_x, c_y).
1862 * The mapping produced by this function essentially plugs in
1863 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1864 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1865 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1866 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1867 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1868 * Furthermore, the order of these pairs is the opposite of that
1869 * of the corresponding coefficients.
1871 * The caller can further extend the mapping.
1873 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1874 struct isl_sched_graph *graph, struct isl_sched_node *src,
1875 struct isl_sched_node *dst, int offset, int s)
1877 int pos;
1878 isl_size total;
1879 isl_dim_map *dim_map;
1881 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1882 if (!src || !dst || total < 0)
1883 return NULL;
1885 dim_map = isl_dim_map_alloc(ctx, total);
1887 pos = node_cst_coef_offset(dst);
1888 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1889 pos = node_par_coef_offset(dst);
1890 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1891 pos = node_var_coef_pos(dst, 0);
1892 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1893 dst->nvar, -s);
1894 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1895 dst->nvar, s);
1897 pos = node_cst_coef_offset(src);
1898 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1899 pos = node_par_coef_offset(src);
1900 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1901 pos = node_var_coef_pos(src, 0);
1902 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1903 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1905 return dim_map;
1908 /* Add the constraints from "src" to "dst" using "dim_map",
1909 * after making sure there is enough room in "dst" for the extra constraints.
1911 static __isl_give isl_basic_set *add_constraints_dim_map(
1912 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1913 __isl_take isl_dim_map *dim_map)
1915 int n_eq, n_ineq;
1917 n_eq = isl_basic_set_n_equality(src);
1918 n_ineq = isl_basic_set_n_inequality(src);
1919 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1920 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1921 return dst;
1924 /* Add constraints to graph->lp that force validity for the given
1925 * dependence from a node i to itself.
1926 * That is, add constraints that enforce
1928 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1929 * = c_i_x (y - x) >= 0
1931 * for each (x,y) in R.
1932 * We obtain general constraints on coefficients (c_0, c_x)
1933 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1934 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1935 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1936 * Note that the result of intra_coefficients may also contain
1937 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1939 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1940 struct isl_sched_edge *edge)
1942 isl_size offset;
1943 isl_map *map = isl_map_copy(edge->map);
1944 isl_ctx *ctx = isl_map_get_ctx(map);
1945 isl_dim_map *dim_map;
1946 isl_basic_set *coef;
1947 struct isl_sched_node *node = edge->src;
1949 coef = intra_coefficients(graph, node, map, 0);
1951 offset = coef_var_offset(coef);
1952 if (offset < 0)
1953 coef = isl_basic_set_free(coef);
1954 if (!coef)
1955 return isl_stat_error;
1957 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1958 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1960 return isl_stat_ok;
1963 /* Add constraints to graph->lp that force validity for the given
1964 * dependence from node i to node j.
1965 * That is, add constraints that enforce
1967 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1969 * for each (x,y) in R.
1970 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1971 * of valid constraints for R and then plug in
1972 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1973 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1974 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1976 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1977 struct isl_sched_edge *edge)
1979 isl_size offset;
1980 isl_map *map;
1981 isl_ctx *ctx;
1982 isl_dim_map *dim_map;
1983 isl_basic_set *coef;
1984 struct isl_sched_node *src = edge->src;
1985 struct isl_sched_node *dst = edge->dst;
1987 if (!graph->lp)
1988 return isl_stat_error;
1990 map = isl_map_copy(edge->map);
1991 ctx = isl_map_get_ctx(map);
1992 coef = inter_coefficients(graph, edge, map);
1994 offset = coef_var_offset(coef);
1995 if (offset < 0)
1996 coef = isl_basic_set_free(coef);
1997 if (!coef)
1998 return isl_stat_error;
2000 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
2002 edge->start = graph->lp->n_ineq;
2003 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2004 if (!graph->lp)
2005 return isl_stat_error;
2006 edge->end = graph->lp->n_ineq;
2008 return isl_stat_ok;
2011 /* Add constraints to graph->lp that bound the dependence distance for the given
2012 * dependence from a node i to itself.
2013 * If s = 1, we add the constraint
2015 * c_i_x (y - x) <= m_0 + m_n n
2017 * or
2019 * -c_i_x (y - x) + m_0 + m_n n >= 0
2021 * for each (x,y) in R.
2022 * If s = -1, we add the constraint
2024 * -c_i_x (y - x) <= m_0 + m_n n
2026 * or
2028 * c_i_x (y - x) + m_0 + m_n n >= 0
2030 * for each (x,y) in R.
2031 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2032 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2033 * with each coefficient (except m_0) represented as a pair of non-negative
2034 * coefficients.
2037 * If "local" is set, then we add constraints
2039 * c_i_x (y - x) <= 0
2041 * or
2043 * -c_i_x (y - x) <= 0
2045 * instead, forcing the dependence distance to be (less than or) equal to 0.
2046 * That is, we plug in (0, 0, -s * c_i_x),
2047 * intra_coefficients is not required to have c_n in its result when
2048 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2049 * Note that dependences marked local are treated as validity constraints
2050 * by add_all_validity_constraints and therefore also have
2051 * their distances bounded by 0 from below.
2053 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2054 struct isl_sched_edge *edge, int s, int local)
2056 isl_size offset;
2057 isl_size nparam;
2058 isl_map *map = isl_map_copy(edge->map);
2059 isl_ctx *ctx = isl_map_get_ctx(map);
2060 isl_dim_map *dim_map;
2061 isl_basic_set *coef;
2062 struct isl_sched_node *node = edge->src;
2064 coef = intra_coefficients(graph, node, map, !local);
2065 nparam = isl_space_dim(node->space, isl_dim_param);
2067 offset = coef_var_offset(coef);
2068 if (nparam < 0 || offset < 0)
2069 coef = isl_basic_set_free(coef);
2070 if (!coef)
2071 return isl_stat_error;
2073 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2075 if (!local) {
2076 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2077 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2078 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2080 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2082 return isl_stat_ok;
2085 /* Add constraints to graph->lp that bound the dependence distance for the given
2086 * dependence from node i to node j.
2087 * If s = 1, we add the constraint
2089 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2090 * <= m_0 + m_n n
2092 * or
2094 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2095 * m_0 + m_n n >= 0
2097 * for each (x,y) in R.
2098 * If s = -1, we add the constraint
2100 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2101 * <= m_0 + m_n n
2103 * or
2105 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2106 * m_0 + m_n n >= 0
2108 * for each (x,y) in R.
2109 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2110 * of valid constraints for R and then plug in
2111 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2112 * s*c_i_x, -s*c_j_x)
2113 * with each coefficient (except m_0, c_*_0 and c_*_n)
2114 * represented as a pair of non-negative coefficients.
2117 * If "local" is set (and s = 1), then we add constraints
2119 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2121 * or
2123 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2125 * instead, forcing the dependence distance to be (less than or) equal to 0.
2126 * That is, we plug in
2127 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2128 * Note that dependences marked local are treated as validity constraints
2129 * by add_all_validity_constraints and therefore also have
2130 * their distances bounded by 0 from below.
2132 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2133 struct isl_sched_edge *edge, int s, int local)
2135 isl_size offset;
2136 isl_size nparam;
2137 isl_map *map = isl_map_copy(edge->map);
2138 isl_ctx *ctx = isl_map_get_ctx(map);
2139 isl_dim_map *dim_map;
2140 isl_basic_set *coef;
2141 struct isl_sched_node *src = edge->src;
2142 struct isl_sched_node *dst = edge->dst;
2144 coef = inter_coefficients(graph, edge, map);
2145 nparam = isl_space_dim(src->space, isl_dim_param);
2147 offset = coef_var_offset(coef);
2148 if (nparam < 0 || offset < 0)
2149 coef = isl_basic_set_free(coef);
2150 if (!coef)
2151 return isl_stat_error;
2153 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2155 if (!local) {
2156 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2157 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2158 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2161 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2163 return isl_stat_ok;
2166 /* Should the distance over "edge" be forced to zero?
2167 * That is, is it marked as a local edge?
2168 * If "use_coincidence" is set, then coincidence edges are treated
2169 * as local edges.
2171 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2173 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2176 /* Add all validity constraints to graph->lp.
2178 * An edge that is forced to be local needs to have its dependence
2179 * distances equal to zero. We take care of bounding them by 0 from below
2180 * here. add_all_proximity_constraints takes care of bounding them by 0
2181 * from above.
2183 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2184 * Otherwise, we ignore them.
2186 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2187 int use_coincidence)
2189 int i;
2191 for (i = 0; i < graph->n_edge; ++i) {
2192 struct isl_sched_edge *edge = &graph->edge[i];
2193 int zero;
2195 zero = force_zero(edge, use_coincidence);
2196 if (!is_validity(edge) && !zero)
2197 continue;
2198 if (edge->src != edge->dst)
2199 continue;
2200 if (add_intra_validity_constraints(graph, edge) < 0)
2201 return -1;
2204 for (i = 0; i < graph->n_edge; ++i) {
2205 struct isl_sched_edge *edge = &graph->edge[i];
2206 int zero;
2208 zero = force_zero(edge, use_coincidence);
2209 if (!is_validity(edge) && !zero)
2210 continue;
2211 if (edge->src == edge->dst)
2212 continue;
2213 if (add_inter_validity_constraints(graph, edge) < 0)
2214 return -1;
2217 return 0;
2220 /* Add constraints to graph->lp that bound the dependence distance
2221 * for all dependence relations.
2222 * If a given proximity dependence is identical to a validity
2223 * dependence, then the dependence distance is already bounded
2224 * from below (by zero), so we only need to bound the distance
2225 * from above. (This includes the case of "local" dependences
2226 * which are treated as validity dependence by add_all_validity_constraints.)
2227 * Otherwise, we need to bound the distance both from above and from below.
2229 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2230 * Otherwise, we ignore them.
2232 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2233 int use_coincidence)
2235 int i;
2237 for (i = 0; i < graph->n_edge; ++i) {
2238 struct isl_sched_edge *edge = &graph->edge[i];
2239 int zero;
2241 zero = force_zero(edge, use_coincidence);
2242 if (!is_proximity(edge) && !zero)
2243 continue;
2244 if (edge->src == edge->dst &&
2245 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2246 return -1;
2247 if (edge->src != edge->dst &&
2248 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2249 return -1;
2250 if (is_validity(edge) || zero)
2251 continue;
2252 if (edge->src == edge->dst &&
2253 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2254 return -1;
2255 if (edge->src != edge->dst &&
2256 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2257 return -1;
2260 return 0;
2263 /* Normalize the rows of "indep" such that all rows are lexicographically
2264 * positive and such that each row contains as many final zeros as possible,
2265 * given the choice for the previous rows.
2266 * Do this by performing elementary row operations.
2268 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2270 indep = isl_mat_reverse_gauss(indep);
2271 indep = isl_mat_lexnonneg_rows(indep);
2272 return indep;
2275 /* Extract the linear part of the current schedule for node "node".
2277 static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
2279 isl_size n_row = isl_mat_rows(node->sched);
2281 if (n_row < 0)
2282 return NULL;
2283 return isl_mat_sub_alloc(node->sched, 0, n_row,
2284 1 + node->nparam, node->nvar);
2287 /* Compute a basis for the rows in the linear part of the schedule
2288 * and extend this basis to a full basis. The remaining rows
2289 * can then be used to force linear independence from the rows
2290 * in the schedule.
2292 * In particular, given the schedule rows S, we compute
2294 * S = H Q
2295 * S U = H
2297 * with H the Hermite normal form of S. That is, all but the
2298 * first rank columns of H are zero and so each row in S is
2299 * a linear combination of the first rank rows of Q.
2300 * The matrix Q can be used as a variable transformation
2301 * that isolates the directions of S in the first rank rows.
2302 * Transposing S U = H yields
2304 * U^T S^T = H^T
2306 * with all but the first rank rows of H^T zero.
2307 * The last rows of U^T are therefore linear combinations
2308 * of schedule coefficients that are all zero on schedule
2309 * coefficients that are linearly dependent on the rows of S.
2310 * At least one of these combinations is non-zero on
2311 * linearly independent schedule coefficients.
2312 * The rows are normalized to involve as few of the last
2313 * coefficients as possible and to have a positive initial value.
2315 static int node_update_vmap(struct isl_sched_node *node)
2317 isl_mat *H, *U, *Q;
2319 H = extract_linear_schedule(node);
2321 H = isl_mat_left_hermite(H, 0, &U, &Q);
2322 isl_mat_free(node->indep);
2323 isl_mat_free(node->vmap);
2324 node->vmap = Q;
2325 node->indep = isl_mat_transpose(U);
2326 node->rank = isl_mat_initial_non_zero_cols(H);
2327 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2328 node->indep = normalize_independent(node->indep);
2329 isl_mat_free(H);
2331 if (!node->indep || !node->vmap || node->rank < 0)
2332 return -1;
2333 return 0;
2336 /* Is "edge" marked as a validity or a conditional validity edge?
2338 static int is_any_validity(struct isl_sched_edge *edge)
2340 return is_validity(edge) || is_conditional_validity(edge);
2343 /* How many times should we count the constraints in "edge"?
2345 * We count as follows
2346 * validity -> 1 (>= 0)
2347 * validity+proximity -> 2 (>= 0 and upper bound)
2348 * proximity -> 2 (lower and upper bound)
2349 * local(+any) -> 2 (>= 0 and <= 0)
2351 * If an edge is only marked conditional_validity then it counts
2352 * as zero since it is only checked afterwards.
2354 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2355 * Otherwise, we ignore them.
2357 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2359 if (is_proximity(edge) || force_zero(edge, use_coincidence))
2360 return 2;
2361 if (is_validity(edge))
2362 return 1;
2363 return 0;
2366 /* How many times should the constraints in "edge" be counted
2367 * as a parametric intra-node constraint?
2369 * Only proximity edges that are not forced zero need
2370 * coefficient constraints that include coefficients for parameters.
2371 * If the edge is also a validity edge, then only
2372 * an upper bound is introduced. Otherwise, both lower and upper bounds
2373 * are introduced.
2375 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2376 int use_coincidence)
2378 if (edge->src != edge->dst)
2379 return 0;
2380 if (!is_proximity(edge))
2381 return 0;
2382 if (force_zero(edge, use_coincidence))
2383 return 0;
2384 if (is_validity(edge))
2385 return 1;
2386 else
2387 return 2;
2390 /* Add "f" times the number of equality and inequality constraints of "bset"
2391 * to "n_eq" and "n_ineq" and free "bset".
2393 static isl_stat update_count(__isl_take isl_basic_set *bset,
2394 int f, int *n_eq, int *n_ineq)
2396 if (!bset)
2397 return isl_stat_error;
2399 *n_eq += isl_basic_set_n_equality(bset);
2400 *n_ineq += isl_basic_set_n_inequality(bset);
2401 isl_basic_set_free(bset);
2403 return isl_stat_ok;
2406 /* Count the number of equality and inequality constraints
2407 * that will be added for the given map.
2409 * The edges that require parameter coefficients are counted separately.
2411 * "use_coincidence" is set if we should take into account coincidence edges.
2413 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2414 struct isl_sched_edge *edge, __isl_take isl_map *map,
2415 int *n_eq, int *n_ineq, int use_coincidence)
2417 isl_map *copy;
2418 isl_basic_set *coef;
2419 int f = edge_multiplicity(edge, use_coincidence);
2420 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2422 if (f == 0) {
2423 isl_map_free(map);
2424 return isl_stat_ok;
2427 if (edge->src != edge->dst) {
2428 coef = inter_coefficients(graph, edge, map);
2429 return update_count(coef, f, n_eq, n_ineq);
2432 if (fp > 0) {
2433 copy = isl_map_copy(map);
2434 coef = intra_coefficients(graph, edge->src, copy, 1);
2435 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2436 goto error;
2439 if (f > fp) {
2440 copy = isl_map_copy(map);
2441 coef = intra_coefficients(graph, edge->src, copy, 0);
2442 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2443 goto error;
2446 isl_map_free(map);
2447 return isl_stat_ok;
2448 error:
2449 isl_map_free(map);
2450 return isl_stat_error;
2453 /* Count the number of equality and inequality constraints
2454 * that will be added to the main lp problem.
2455 * We count as follows
2456 * validity -> 1 (>= 0)
2457 * validity+proximity -> 2 (>= 0 and upper bound)
2458 * proximity -> 2 (lower and upper bound)
2459 * local(+any) -> 2 (>= 0 and <= 0)
2461 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2462 * Otherwise, we ignore them.
2464 static int count_constraints(struct isl_sched_graph *graph,
2465 int *n_eq, int *n_ineq, int use_coincidence)
2467 int i;
2469 *n_eq = *n_ineq = 0;
2470 for (i = 0; i < graph->n_edge; ++i) {
2471 struct isl_sched_edge *edge = &graph->edge[i];
2472 isl_map *map = isl_map_copy(edge->map);
2474 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2475 use_coincidence) < 0)
2476 return -1;
2479 return 0;
2482 /* Count the number of constraints that will be added by
2483 * add_bound_constant_constraints to bound the values of the constant terms
2484 * and increment *n_eq and *n_ineq accordingly.
2486 * In practice, add_bound_constant_constraints only adds inequalities.
2488 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2489 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2491 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2492 return isl_stat_ok;
2494 *n_ineq += graph->n;
2496 return isl_stat_ok;
2499 /* Add constraints to bound the values of the constant terms in the schedule,
2500 * if requested by the user.
2502 * The maximal value of the constant terms is defined by the option
2503 * "schedule_max_constant_term".
2505 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2506 struct isl_sched_graph *graph)
2508 int i, k;
2509 int max;
2510 isl_size total;
2512 max = isl_options_get_schedule_max_constant_term(ctx);
2513 if (max == -1)
2514 return isl_stat_ok;
2516 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2517 if (total < 0)
2518 return isl_stat_error;
2520 for (i = 0; i < graph->n; ++i) {
2521 struct isl_sched_node *node = &graph->node[i];
2522 int pos;
2524 k = isl_basic_set_alloc_inequality(graph->lp);
2525 if (k < 0)
2526 return isl_stat_error;
2527 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2528 pos = node_cst_coef_offset(node);
2529 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2530 isl_int_set_si(graph->lp->ineq[k][0], max);
2533 return isl_stat_ok;
2536 /* Count the number of constraints that will be added by
2537 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2538 * accordingly.
2540 * In practice, add_bound_coefficient_constraints only adds inequalities.
2542 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2543 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2545 int i;
2547 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2548 !isl_options_get_schedule_treat_coalescing(ctx))
2549 return 0;
2551 for (i = 0; i < graph->n; ++i)
2552 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2554 return 0;
2557 /* Add constraints to graph->lp that bound the values of
2558 * the parameter schedule coefficients of "node" to "max" and
2559 * the variable schedule coefficients to the corresponding entry
2560 * in node->max.
2561 * In either case, a negative value means that no bound needs to be imposed.
2563 * For parameter coefficients, this amounts to adding a constraint
2565 * c_n <= max
2567 * i.e.,
2569 * -c_n + max >= 0
2571 * The variables coefficients are, however, not represented directly.
2572 * Instead, the variable coefficients c_x are written as differences
2573 * c_x = c_x^+ - c_x^-.
2574 * That is,
2576 * -max_i <= c_x_i <= max_i
2578 * is encoded as
2580 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2582 * or
2584 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2585 * c_x_i^+ - c_x_i^- + max_i >= 0
2587 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2588 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2590 int i, j, k;
2591 isl_size total;
2592 isl_vec *ineq;
2594 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2595 if (total < 0)
2596 return isl_stat_error;
2598 for (j = 0; j < node->nparam; ++j) {
2599 int dim;
2601 if (max < 0)
2602 continue;
2604 k = isl_basic_set_alloc_inequality(graph->lp);
2605 if (k < 0)
2606 return isl_stat_error;
2607 dim = 1 + node_par_coef_offset(node) + j;
2608 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2609 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2610 isl_int_set_si(graph->lp->ineq[k][0], max);
2613 ineq = isl_vec_alloc(ctx, 1 + total);
2614 ineq = isl_vec_clr(ineq);
2615 if (!ineq)
2616 return isl_stat_error;
2617 for (i = 0; i < node->nvar; ++i) {
2618 int pos = 1 + node_var_coef_pos(node, i);
2620 if (isl_int_is_neg(node->max->el[i]))
2621 continue;
2623 isl_int_set_si(ineq->el[pos], 1);
2624 isl_int_set_si(ineq->el[pos + 1], -1);
2625 isl_int_set(ineq->el[0], node->max->el[i]);
2627 k = isl_basic_set_alloc_inequality(graph->lp);
2628 if (k < 0)
2629 goto error;
2630 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2632 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
2633 k = isl_basic_set_alloc_inequality(graph->lp);
2634 if (k < 0)
2635 goto error;
2636 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2638 isl_seq_clr(ineq->el + pos, 2);
2640 isl_vec_free(ineq);
2642 return isl_stat_ok;
2643 error:
2644 isl_vec_free(ineq);
2645 return isl_stat_error;
2648 /* Add constraints that bound the values of the variable and parameter
2649 * coefficients of the schedule.
2651 * The maximal value of the coefficients is defined by the option
2652 * 'schedule_max_coefficient' and the entries in node->max.
2653 * These latter entries are only set if either the schedule_max_coefficient
2654 * option or the schedule_treat_coalescing option is set.
2656 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2657 struct isl_sched_graph *graph)
2659 int i;
2660 int max;
2662 max = isl_options_get_schedule_max_coefficient(ctx);
2664 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2665 return isl_stat_ok;
2667 for (i = 0; i < graph->n; ++i) {
2668 struct isl_sched_node *node = &graph->node[i];
2670 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2671 return isl_stat_error;
2674 return isl_stat_ok;
2677 /* Add a constraint to graph->lp that equates the value at position
2678 * "sum_pos" to the sum of the "n" values starting at "first".
2680 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2681 int sum_pos, int first, int n)
2683 int i, k;
2684 isl_size total;
2686 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2687 if (total < 0)
2688 return isl_stat_error;
2690 k = isl_basic_set_alloc_equality(graph->lp);
2691 if (k < 0)
2692 return isl_stat_error;
2693 isl_seq_clr(graph->lp->eq[k], 1 + total);
2694 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2695 for (i = 0; i < n; ++i)
2696 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2698 return isl_stat_ok;
2701 /* Add a constraint to graph->lp that equates the value at position
2702 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2704 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2705 int sum_pos)
2707 int i, j, k;
2708 isl_size total;
2710 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2711 if (total < 0)
2712 return isl_stat_error;
2714 k = isl_basic_set_alloc_equality(graph->lp);
2715 if (k < 0)
2716 return isl_stat_error;
2717 isl_seq_clr(graph->lp->eq[k], 1 + total);
2718 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2719 for (i = 0; i < graph->n; ++i) {
2720 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2722 for (j = 0; j < graph->node[i].nparam; ++j)
2723 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2726 return isl_stat_ok;
2729 /* Add a constraint to graph->lp that equates the value at position
2730 * "sum_pos" to the sum of the variable coefficients of all nodes.
2732 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2733 int sum_pos)
2735 int i, j, k;
2736 isl_size total;
2738 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2739 if (total < 0)
2740 return isl_stat_error;
2742 k = isl_basic_set_alloc_equality(graph->lp);
2743 if (k < 0)
2744 return isl_stat_error;
2745 isl_seq_clr(graph->lp->eq[k], 1 + total);
2746 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2747 for (i = 0; i < graph->n; ++i) {
2748 struct isl_sched_node *node = &graph->node[i];
2749 int pos = 1 + node_var_coef_offset(node);
2751 for (j = 0; j < 2 * node->nvar; ++j)
2752 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2755 return isl_stat_ok;
2758 /* Construct an ILP problem for finding schedule coefficients
2759 * that result in non-negative, but small dependence distances
2760 * over all dependences.
2761 * In particular, the dependence distances over proximity edges
2762 * are bounded by m_0 + m_n n and we compute schedule coefficients
2763 * with small values (preferably zero) of m_n and m_0.
2765 * All variables of the ILP are non-negative. The actual coefficients
2766 * may be negative, so each coefficient is represented as the difference
2767 * of two non-negative variables. The negative part always appears
2768 * immediately before the positive part.
2769 * Other than that, the variables have the following order
2771 * - sum of positive and negative parts of m_n coefficients
2772 * - m_0
2773 * - sum of all c_n coefficients
2774 * (unconstrained when computing non-parametric schedules)
2775 * - sum of positive and negative parts of all c_x coefficients
2776 * - positive and negative parts of m_n coefficients
2777 * - for each node
2778 * - positive and negative parts of c_i_x, in opposite order
2779 * - c_i_n (if parametric)
2780 * - c_i_0
2782 * The constraints are those from the edges plus two or three equalities
2783 * to express the sums.
2785 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2786 * Otherwise, we ignore them.
2788 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2789 int use_coincidence)
2791 int i;
2792 isl_size nparam;
2793 unsigned total;
2794 isl_space *space;
2795 int parametric;
2796 int param_pos;
2797 int n_eq, n_ineq;
2799 parametric = ctx->opt->schedule_parametric;
2800 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2801 if (nparam < 0)
2802 return isl_stat_error;
2803 param_pos = 4;
2804 total = param_pos + 2 * nparam;
2805 for (i = 0; i < graph->n; ++i) {
2806 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2807 if (node_update_vmap(node) < 0)
2808 return isl_stat_error;
2809 node->start = total;
2810 total += 1 + node->nparam + 2 * node->nvar;
2813 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2814 return isl_stat_error;
2815 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2816 return isl_stat_error;
2817 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2818 return isl_stat_error;
2820 space = isl_space_set_alloc(ctx, 0, total);
2821 isl_basic_set_free(graph->lp);
2822 n_eq += 2 + parametric;
2824 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2826 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2827 return isl_stat_error;
2828 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2829 return isl_stat_error;
2830 if (add_var_sum_constraint(graph, 3) < 0)
2831 return isl_stat_error;
2832 if (add_bound_constant_constraints(ctx, graph) < 0)
2833 return isl_stat_error;
2834 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2835 return isl_stat_error;
2836 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2837 return isl_stat_error;
2838 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2839 return isl_stat_error;
2841 return isl_stat_ok;
2844 /* Analyze the conflicting constraint found by
2845 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2846 * constraint of one of the edges between distinct nodes, living, moreover
2847 * in distinct SCCs, then record the source and sink SCC as this may
2848 * be a good place to cut between SCCs.
2850 static int check_conflict(int con, void *user)
2852 int i;
2853 struct isl_sched_graph *graph = user;
2855 if (graph->src_scc >= 0)
2856 return 0;
2858 con -= graph->lp->n_eq;
2860 if (con >= graph->lp->n_ineq)
2861 return 0;
2863 for (i = 0; i < graph->n_edge; ++i) {
2864 if (!is_validity(&graph->edge[i]))
2865 continue;
2866 if (graph->edge[i].src == graph->edge[i].dst)
2867 continue;
2868 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2869 continue;
2870 if (graph->edge[i].start > con)
2871 continue;
2872 if (graph->edge[i].end <= con)
2873 continue;
2874 graph->src_scc = graph->edge[i].src->scc;
2875 graph->dst_scc = graph->edge[i].dst->scc;
2878 return 0;
2881 /* Check whether the next schedule row of the given node needs to be
2882 * non-trivial. Lower-dimensional domains may have some trivial rows,
2883 * but as soon as the number of remaining required non-trivial rows
2884 * is as large as the number or remaining rows to be computed,
2885 * all remaining rows need to be non-trivial.
2887 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2889 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2892 /* Construct a non-triviality region with triviality directions
2893 * corresponding to the rows of "indep".
2894 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2895 * while the triviality directions are expressed in terms of
2896 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2897 * before c^+_i. Furthermore,
2898 * the pairs of non-negative variables representing the coefficients
2899 * are stored in the opposite order.
2901 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2903 isl_ctx *ctx;
2904 isl_mat *mat;
2905 int i, j;
2906 isl_size n, n_var;
2908 n = isl_mat_rows(indep);
2909 n_var = isl_mat_cols(indep);
2910 if (n < 0 || n_var < 0)
2911 return NULL;
2913 ctx = isl_mat_get_ctx(indep);
2914 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2915 if (!mat)
2916 return NULL;
2917 for (i = 0; i < n; ++i) {
2918 for (j = 0; j < n_var; ++j) {
2919 int nj = n_var - 1 - j;
2920 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2921 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2925 return mat;
2928 /* Solve the ILP problem constructed in setup_lp.
2929 * For each node such that all the remaining rows of its schedule
2930 * need to be non-trivial, we construct a non-triviality region.
2931 * This region imposes that the next row is independent of previous rows.
2932 * In particular, the non-triviality region enforces that at least
2933 * one of the linear combinations in the rows of node->indep is non-zero.
2935 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2937 int i;
2938 isl_vec *sol;
2939 isl_basic_set *lp;
2941 for (i = 0; i < graph->n; ++i) {
2942 struct isl_sched_node *node = &graph->node[i];
2943 isl_mat *trivial;
2945 graph->region[i].pos = node_var_coef_offset(node);
2946 if (needs_row(graph, node))
2947 trivial = construct_trivial(node->indep);
2948 else
2949 trivial = isl_mat_zero(ctx, 0, 0);
2950 graph->region[i].trivial = trivial;
2952 lp = isl_basic_set_copy(graph->lp);
2953 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2954 graph->region, &check_conflict, graph);
2955 for (i = 0; i < graph->n; ++i)
2956 isl_mat_free(graph->region[i].trivial);
2957 return sol;
2960 /* Extract the coefficients for the variables of "node" from "sol".
2962 * Each schedule coefficient c_i_x is represented as the difference
2963 * between two non-negative variables c_i_x^+ - c_i_x^-.
2964 * The c_i_x^- appear before their c_i_x^+ counterpart.
2965 * Furthermore, the order of these pairs is the opposite of that
2966 * of the corresponding coefficients.
2968 * Return c_i_x = c_i_x^+ - c_i_x^-
2970 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2971 __isl_keep isl_vec *sol)
2973 int i;
2974 int pos;
2975 isl_vec *csol;
2977 if (!sol)
2978 return NULL;
2979 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2980 if (!csol)
2981 return NULL;
2983 pos = 1 + node_var_coef_offset(node);
2984 for (i = 0; i < node->nvar; ++i)
2985 isl_int_sub(csol->el[node->nvar - 1 - i],
2986 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2988 return csol;
2991 /* Update the schedules of all nodes based on the given solution
2992 * of the LP problem.
2993 * The new row is added to the current band.
2994 * All possibly negative coefficients are encoded as a difference
2995 * of two non-negative variables, so we need to perform the subtraction
2996 * here.
2998 * If coincident is set, then the caller guarantees that the new
2999 * row satisfies the coincidence constraints.
3001 static int update_schedule(struct isl_sched_graph *graph,
3002 __isl_take isl_vec *sol, int coincident)
3004 int i, j;
3005 isl_vec *csol = NULL;
3007 if (!sol)
3008 goto error;
3009 if (sol->size == 0)
3010 isl_die(sol->ctx, isl_error_internal,
3011 "no solution found", goto error);
3012 if (graph->n_total_row >= graph->max_row)
3013 isl_die(sol->ctx, isl_error_internal,
3014 "too many schedule rows", goto error);
3016 for (i = 0; i < graph->n; ++i) {
3017 struct isl_sched_node *node = &graph->node[i];
3018 int pos;
3019 isl_size row = isl_mat_rows(node->sched);
3021 isl_vec_free(csol);
3022 csol = extract_var_coef(node, sol);
3023 if (row < 0 || !csol)
3024 goto error;
3026 isl_map_free(node->sched_map);
3027 node->sched_map = NULL;
3028 node->sched = isl_mat_add_rows(node->sched, 1);
3029 if (!node->sched)
3030 goto error;
3031 pos = node_cst_coef_offset(node);
3032 node->sched = isl_mat_set_element(node->sched,
3033 row, 0, sol->el[1 + pos]);
3034 pos = node_par_coef_offset(node);
3035 for (j = 0; j < node->nparam; ++j)
3036 node->sched = isl_mat_set_element(node->sched,
3037 row, 1 + j, sol->el[1 + pos + j]);
3038 for (j = 0; j < node->nvar; ++j)
3039 node->sched = isl_mat_set_element(node->sched,
3040 row, 1 + node->nparam + j, csol->el[j]);
3041 node->coincident[graph->n_total_row] = coincident;
3043 isl_vec_free(sol);
3044 isl_vec_free(csol);
3046 graph->n_row++;
3047 graph->n_total_row++;
3049 return 0;
3050 error:
3051 isl_vec_free(sol);
3052 isl_vec_free(csol);
3053 return -1;
3056 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3057 * and return this isl_aff.
3059 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3060 struct isl_sched_node *node, int row)
3062 int j;
3063 isl_int v;
3064 isl_aff *aff;
3066 isl_int_init(v);
3068 aff = isl_aff_zero_on_domain(ls);
3069 if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
3070 goto error;
3071 aff = isl_aff_set_constant(aff, v);
3072 for (j = 0; j < node->nparam; ++j) {
3073 if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
3074 goto error;
3075 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3077 for (j = 0; j < node->nvar; ++j) {
3078 if (isl_mat_get_element(node->sched, row,
3079 1 + node->nparam + j, &v) < 0)
3080 goto error;
3081 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3084 isl_int_clear(v);
3086 return aff;
3087 error:
3088 isl_int_clear(v);
3089 isl_aff_free(aff);
3090 return NULL;
3093 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3094 * and return this multi_aff.
3096 * The result is defined over the uncompressed node domain.
3098 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
3099 struct isl_sched_node *node, int first, int n)
3101 int i;
3102 isl_space *space;
3103 isl_local_space *ls;
3104 isl_aff *aff;
3105 isl_multi_aff *ma;
3106 isl_size nrow;
3108 if (!node)
3109 return NULL;
3110 nrow = isl_mat_rows(node->sched);
3111 if (nrow < 0)
3112 return NULL;
3113 if (node->compressed)
3114 space = isl_multi_aff_get_domain_space(node->decompress);
3115 else
3116 space = isl_space_copy(node->space);
3117 ls = isl_local_space_from_space(isl_space_copy(space));
3118 space = isl_space_from_domain(space);
3119 space = isl_space_add_dims(space, isl_dim_out, n);
3120 ma = isl_multi_aff_zero(space);
3122 for (i = first; i < first + n; ++i) {
3123 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3124 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3127 isl_local_space_free(ls);
3129 if (node->compressed)
3130 ma = isl_multi_aff_pullback_multi_aff(ma,
3131 isl_multi_aff_copy(node->compress));
3133 return ma;
3136 /* Convert node->sched into a multi_aff and return this multi_aff.
3138 * The result is defined over the uncompressed node domain.
3140 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3141 struct isl_sched_node *node)
3143 isl_size nrow;
3145 nrow = isl_mat_rows(node->sched);
3146 if (nrow < 0)
3147 return NULL;
3148 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
3151 /* Convert node->sched into a map and return this map.
3153 * The result is cached in node->sched_map, which needs to be released
3154 * whenever node->sched is updated.
3155 * It is defined over the uncompressed node domain.
3157 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3159 if (!node->sched_map) {
3160 isl_multi_aff *ma;
3162 ma = node_extract_schedule_multi_aff(node);
3163 node->sched_map = isl_map_from_multi_aff(ma);
3166 return isl_map_copy(node->sched_map);
3169 /* Construct a map that can be used to update a dependence relation
3170 * based on the current schedule.
3171 * That is, construct a map expressing that source and sink
3172 * are executed within the same iteration of the current schedule.
3173 * This map can then be intersected with the dependence relation.
3174 * This is not the most efficient way, but this shouldn't be a critical
3175 * operation.
3177 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3178 struct isl_sched_node *dst)
3180 isl_map *src_sched, *dst_sched;
3182 src_sched = node_extract_schedule(src);
3183 dst_sched = node_extract_schedule(dst);
3184 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3187 /* Intersect the domains of the nested relations in domain and range
3188 * of "umap" with "map".
3190 static __isl_give isl_union_map *intersect_domains(
3191 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3193 isl_union_set *uset;
3195 umap = isl_union_map_zip(umap);
3196 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3197 umap = isl_union_map_intersect_domain(umap, uset);
3198 umap = isl_union_map_zip(umap);
3199 return umap;
3202 /* Update the dependence relation of the given edge based
3203 * on the current schedule.
3204 * If the dependence is carried completely by the current schedule, then
3205 * it is removed from the edge_tables. It is kept in the list of edges
3206 * as otherwise all edge_tables would have to be recomputed.
3208 * If the edge is of a type that can appear multiple times
3209 * between the same pair of nodes, then it is added to
3210 * the edge table (again). This prevents the situation
3211 * where none of these edges is referenced from the edge table
3212 * because the one that was referenced turned out to be empty and
3213 * was therefore removed from the table.
3215 static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3216 struct isl_sched_edge *edge)
3218 int empty;
3219 isl_map *id;
3221 id = specializer(edge->src, edge->dst);
3222 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3223 if (!edge->map)
3224 goto error;
3226 if (edge->tagged_condition) {
3227 edge->tagged_condition =
3228 intersect_domains(edge->tagged_condition, id);
3229 if (!edge->tagged_condition)
3230 goto error;
3232 if (edge->tagged_validity) {
3233 edge->tagged_validity =
3234 intersect_domains(edge->tagged_validity, id);
3235 if (!edge->tagged_validity)
3236 goto error;
3239 empty = isl_map_plain_is_empty(edge->map);
3240 if (empty < 0)
3241 goto error;
3242 if (empty) {
3243 graph_remove_edge(graph, edge);
3244 } else if (is_multi_edge_type(edge)) {
3245 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3246 goto error;
3249 isl_map_free(id);
3250 return isl_stat_ok;
3251 error:
3252 isl_map_free(id);
3253 return isl_stat_error;
3256 /* Does the domain of "umap" intersect "uset"?
3258 static int domain_intersects(__isl_keep isl_union_map *umap,
3259 __isl_keep isl_union_set *uset)
3261 int empty;
3263 umap = isl_union_map_copy(umap);
3264 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3265 empty = isl_union_map_is_empty(umap);
3266 isl_union_map_free(umap);
3268 return empty < 0 ? -1 : !empty;
3271 /* Does the range of "umap" intersect "uset"?
3273 static int range_intersects(__isl_keep isl_union_map *umap,
3274 __isl_keep isl_union_set *uset)
3276 int empty;
3278 umap = isl_union_map_copy(umap);
3279 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3280 empty = isl_union_map_is_empty(umap);
3281 isl_union_map_free(umap);
3283 return empty < 0 ? -1 : !empty;
3286 /* Are the condition dependences of "edge" local with respect to
3287 * the current schedule?
3289 * That is, are domain and range of the condition dependences mapped
3290 * to the same point?
3292 * In other words, is the condition false?
3294 static int is_condition_false(struct isl_sched_edge *edge)
3296 isl_union_map *umap;
3297 isl_map *map, *sched, *test;
3298 int empty, local;
3300 empty = isl_union_map_is_empty(edge->tagged_condition);
3301 if (empty < 0 || empty)
3302 return empty;
3304 umap = isl_union_map_copy(edge->tagged_condition);
3305 umap = isl_union_map_zip(umap);
3306 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3307 map = isl_map_from_union_map(umap);
3309 sched = node_extract_schedule(edge->src);
3310 map = isl_map_apply_domain(map, sched);
3311 sched = node_extract_schedule(edge->dst);
3312 map = isl_map_apply_range(map, sched);
3314 test = isl_map_identity(isl_map_get_space(map));
3315 local = isl_map_is_subset(map, test);
3316 isl_map_free(map);
3317 isl_map_free(test);
3319 return local;
3322 /* For each conditional validity constraint that is adjacent
3323 * to a condition with domain in condition_source or range in condition_sink,
3324 * turn it into an unconditional validity constraint.
3326 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3327 __isl_take isl_union_set *condition_source,
3328 __isl_take isl_union_set *condition_sink)
3330 int i;
3332 condition_source = isl_union_set_coalesce(condition_source);
3333 condition_sink = isl_union_set_coalesce(condition_sink);
3335 for (i = 0; i < graph->n_edge; ++i) {
3336 int adjacent;
3337 isl_union_map *validity;
3339 if (!is_conditional_validity(&graph->edge[i]))
3340 continue;
3341 if (is_validity(&graph->edge[i]))
3342 continue;
3344 validity = graph->edge[i].tagged_validity;
3345 adjacent = domain_intersects(validity, condition_sink);
3346 if (adjacent >= 0 && !adjacent)
3347 adjacent = range_intersects(validity, condition_source);
3348 if (adjacent < 0)
3349 goto error;
3350 if (!adjacent)
3351 continue;
3353 set_validity(&graph->edge[i]);
3356 isl_union_set_free(condition_source);
3357 isl_union_set_free(condition_sink);
3358 return 0;
3359 error:
3360 isl_union_set_free(condition_source);
3361 isl_union_set_free(condition_sink);
3362 return -1;
3365 /* Update the dependence relations of all edges based on the current schedule
3366 * and enforce conditional validity constraints that are adjacent
3367 * to satisfied condition constraints.
3369 * First check if any of the condition constraints are satisfied
3370 * (i.e., not local to the outer schedule) and keep track of
3371 * their domain and range.
3372 * Then update all dependence relations (which removes the non-local
3373 * constraints).
3374 * Finally, if any condition constraints turned out to be satisfied,
3375 * then turn all adjacent conditional validity constraints into
3376 * unconditional validity constraints.
3378 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3380 int i;
3381 int any = 0;
3382 isl_union_set *source, *sink;
3384 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3385 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3386 for (i = 0; i < graph->n_edge; ++i) {
3387 int local;
3388 isl_union_set *uset;
3389 isl_union_map *umap;
3391 if (!is_condition(&graph->edge[i]))
3392 continue;
3393 if (is_local(&graph->edge[i]))
3394 continue;
3395 local = is_condition_false(&graph->edge[i]);
3396 if (local < 0)
3397 goto error;
3398 if (local)
3399 continue;
3401 any = 1;
3403 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3404 uset = isl_union_map_domain(umap);
3405 source = isl_union_set_union(source, uset);
3407 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3408 uset = isl_union_map_range(umap);
3409 sink = isl_union_set_union(sink, uset);
3412 for (i = 0; i < graph->n_edge; ++i) {
3413 if (update_edge(ctx, graph, &graph->edge[i]) < 0)
3414 goto error;
3417 if (any)
3418 return unconditionalize_adjacent_validity(graph, source, sink);
3420 isl_union_set_free(source);
3421 isl_union_set_free(sink);
3422 return 0;
3423 error:
3424 isl_union_set_free(source);
3425 isl_union_set_free(sink);
3426 return -1;
3429 static void next_band(struct isl_sched_graph *graph)
3431 graph->band_start = graph->n_total_row;
3434 /* Return the union of the universe domains of the nodes in "graph"
3435 * that satisfy "pred".
3437 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3438 struct isl_sched_graph *graph,
3439 int (*pred)(struct isl_sched_node *node, int data), int data)
3441 int i;
3442 isl_set *set;
3443 isl_union_set *dom;
3445 for (i = 0; i < graph->n; ++i)
3446 if (pred(&graph->node[i], data))
3447 break;
3449 if (i >= graph->n)
3450 isl_die(ctx, isl_error_internal,
3451 "empty component", return NULL);
3453 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3454 dom = isl_union_set_from_set(set);
3456 for (i = i + 1; i < graph->n; ++i) {
3457 if (!pred(&graph->node[i], data))
3458 continue;
3459 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3460 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3463 return dom;
3466 /* Return a list of unions of universe domains, where each element
3467 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3469 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3470 struct isl_sched_graph *graph)
3472 int i;
3473 isl_union_set_list *filters;
3475 filters = isl_union_set_list_alloc(ctx, graph->scc);
3476 for (i = 0; i < graph->scc; ++i) {
3477 isl_union_set *dom;
3479 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3480 filters = isl_union_set_list_add(filters, dom);
3483 return filters;
3486 /* Return a list of two unions of universe domains, one for the SCCs up
3487 * to and including graph->src_scc and another for the other SCCs.
3489 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3490 struct isl_sched_graph *graph)
3492 isl_union_set *dom;
3493 isl_union_set_list *filters;
3495 filters = isl_union_set_list_alloc(ctx, 2);
3496 dom = isl_sched_graph_domain(ctx, graph,
3497 &node_scc_at_most, graph->src_scc);
3498 filters = isl_union_set_list_add(filters, dom);
3499 dom = isl_sched_graph_domain(ctx, graph,
3500 &node_scc_at_least, graph->src_scc + 1);
3501 filters = isl_union_set_list_add(filters, dom);
3503 return filters;
3506 /* Copy nodes that satisfy node_pred from the src dependence graph
3507 * to the dst dependence graph.
3509 static isl_stat copy_nodes(struct isl_sched_graph *dst,
3510 struct isl_sched_graph *src,
3511 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3513 int i;
3515 dst->n = 0;
3516 for (i = 0; i < src->n; ++i) {
3517 int j;
3519 if (!node_pred(&src->node[i], data))
3520 continue;
3522 j = dst->n;
3523 dst->node[j].space = isl_space_copy(src->node[i].space);
3524 dst->node[j].compressed = src->node[i].compressed;
3525 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3526 dst->node[j].compress =
3527 isl_multi_aff_copy(src->node[i].compress);
3528 dst->node[j].decompress =
3529 isl_multi_aff_copy(src->node[i].decompress);
3530 dst->node[j].nvar = src->node[i].nvar;
3531 dst->node[j].nparam = src->node[i].nparam;
3532 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3533 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3534 dst->node[j].coincident = src->node[i].coincident;
3535 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3536 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3537 dst->node[j].max = isl_vec_copy(src->node[i].max);
3538 dst->n++;
3540 if (!dst->node[j].space || !dst->node[j].sched)
3541 return isl_stat_error;
3542 if (dst->node[j].compressed &&
3543 (!dst->node[j].hull || !dst->node[j].compress ||
3544 !dst->node[j].decompress))
3545 return isl_stat_error;
3548 return isl_stat_ok;
3551 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3552 * to the dst dependence graph.
3553 * If the source or destination node of the edge is not in the destination
3554 * graph, then it must be a backward proximity edge and it should simply
3555 * be ignored.
3557 static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3558 struct isl_sched_graph *src,
3559 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3561 int i;
3563 dst->n_edge = 0;
3564 for (i = 0; i < src->n_edge; ++i) {
3565 struct isl_sched_edge *edge = &src->edge[i];
3566 isl_map *map;
3567 isl_union_map *tagged_condition;
3568 isl_union_map *tagged_validity;
3569 struct isl_sched_node *dst_src, *dst_dst;
3571 if (!edge_pred(edge, data))
3572 continue;
3574 if (isl_map_plain_is_empty(edge->map))
3575 continue;
3577 dst_src = graph_find_node(ctx, dst, edge->src->space);
3578 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3579 if (!dst_src || !dst_dst)
3580 return isl_stat_error;
3581 if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
3582 if (is_validity(edge) || is_conditional_validity(edge))
3583 isl_die(ctx, isl_error_internal,
3584 "backward (conditional) validity edge",
3585 return isl_stat_error);
3586 continue;
3589 map = isl_map_copy(edge->map);
3590 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3591 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3593 dst->edge[dst->n_edge].src = dst_src;
3594 dst->edge[dst->n_edge].dst = dst_dst;
3595 dst->edge[dst->n_edge].map = map;
3596 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3597 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3598 dst->edge[dst->n_edge].types = edge->types;
3599 dst->n_edge++;
3601 if (edge->tagged_condition && !tagged_condition)
3602 return isl_stat_error;
3603 if (edge->tagged_validity && !tagged_validity)
3604 return isl_stat_error;
3606 if (graph_edge_tables_add(ctx, dst,
3607 &dst->edge[dst->n_edge - 1]) < 0)
3608 return isl_stat_error;
3611 return isl_stat_ok;
3614 /* Compute the maximal number of variables over all nodes.
3615 * This is the maximal number of linearly independent schedule
3616 * rows that we need to compute.
3617 * Just in case we end up in a part of the dependence graph
3618 * with only lower-dimensional domains, we make sure we will
3619 * compute the required amount of extra linearly independent rows.
3621 static int compute_maxvar(struct isl_sched_graph *graph)
3623 int i;
3625 graph->maxvar = 0;
3626 for (i = 0; i < graph->n; ++i) {
3627 struct isl_sched_node *node = &graph->node[i];
3628 int nvar;
3630 if (node_update_vmap(node) < 0)
3631 return -1;
3632 nvar = node->nvar + graph->n_row - node->rank;
3633 if (nvar > graph->maxvar)
3634 graph->maxvar = nvar;
3637 return 0;
3640 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3641 * "node_pred" and the edges satisfying "edge_pred" and store
3642 * the result in "sub".
3644 static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3645 int (*node_pred)(struct isl_sched_node *node, int data),
3646 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3647 int data, struct isl_sched_graph *sub)
3649 int i, n = 0, n_edge = 0;
3650 int t;
3652 for (i = 0; i < graph->n; ++i)
3653 if (node_pred(&graph->node[i], data))
3654 ++n;
3655 for (i = 0; i < graph->n_edge; ++i)
3656 if (edge_pred(&graph->edge[i], data))
3657 ++n_edge;
3658 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3659 return isl_stat_error;
3660 sub->root = graph->root;
3661 if (copy_nodes(sub, graph, node_pred, data) < 0)
3662 return isl_stat_error;
3663 if (graph_init_table(ctx, sub) < 0)
3664 return isl_stat_error;
3665 for (t = 0; t <= isl_edge_last; ++t)
3666 sub->max_edge[t] = graph->max_edge[t];
3667 if (graph_init_edge_tables(ctx, sub) < 0)
3668 return isl_stat_error;
3669 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3670 return isl_stat_error;
3671 sub->n_row = graph->n_row;
3672 sub->max_row = graph->max_row;
3673 sub->n_total_row = graph->n_total_row;
3674 sub->band_start = graph->band_start;
3676 return isl_stat_ok;
3679 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3680 struct isl_sched_graph *graph);
3681 static __isl_give isl_schedule_node *compute_schedule_wcc(
3682 isl_schedule_node *node, struct isl_sched_graph *graph);
3684 /* Compute a schedule for a subgraph of "graph". In particular, for
3685 * the graph composed of nodes that satisfy node_pred and edges that
3686 * that satisfy edge_pred.
3687 * If the subgraph is known to consist of a single component, then wcc should
3688 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3689 * Otherwise, we call compute_schedule, which will check whether the subgraph
3690 * is connected.
3692 * The schedule is inserted at "node" and the updated schedule node
3693 * is returned.
3695 static __isl_give isl_schedule_node *compute_sub_schedule(
3696 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3697 struct isl_sched_graph *graph,
3698 int (*node_pred)(struct isl_sched_node *node, int data),
3699 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3700 int data, int wcc)
3702 struct isl_sched_graph split = { 0 };
3704 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3705 &split) < 0)
3706 goto error;
3708 if (wcc)
3709 node = compute_schedule_wcc(node, &split);
3710 else
3711 node = compute_schedule(node, &split);
3713 graph_free(ctx, &split);
3714 return node;
3715 error:
3716 graph_free(ctx, &split);
3717 return isl_schedule_node_free(node);
3720 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3722 return edge->src->scc == scc && edge->dst->scc == scc;
3725 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3727 return edge->dst->scc <= scc;
3730 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3732 return edge->src->scc >= scc;
3735 /* Reset the current band by dropping all its schedule rows.
3737 static isl_stat reset_band(struct isl_sched_graph *graph)
3739 int i;
3740 int drop;
3742 drop = graph->n_total_row - graph->band_start;
3743 graph->n_total_row -= drop;
3744 graph->n_row -= drop;
3746 for (i = 0; i < graph->n; ++i) {
3747 struct isl_sched_node *node = &graph->node[i];
3749 isl_map_free(node->sched_map);
3750 node->sched_map = NULL;
3752 node->sched = isl_mat_drop_rows(node->sched,
3753 graph->band_start, drop);
3755 if (!node->sched)
3756 return isl_stat_error;
3759 return isl_stat_ok;
3762 /* Split the current graph into two parts and compute a schedule for each
3763 * part individually. In particular, one part consists of all SCCs up
3764 * to and including graph->src_scc, while the other part contains the other
3765 * SCCs. The split is enforced by a sequence node inserted at position "node"
3766 * in the schedule tree. Return the updated schedule node.
3767 * If either of these two parts consists of a sequence, then it is spliced
3768 * into the sequence containing the two parts.
3770 * The current band is reset. It would be possible to reuse
3771 * the previously computed rows as the first rows in the next
3772 * band, but recomputing them may result in better rows as we are looking
3773 * at a smaller part of the dependence graph.
3775 static __isl_give isl_schedule_node *compute_split_schedule(
3776 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3778 int is_seq;
3779 isl_ctx *ctx;
3780 isl_union_set_list *filters;
3782 if (!node)
3783 return NULL;
3785 if (reset_band(graph) < 0)
3786 return isl_schedule_node_free(node);
3788 next_band(graph);
3790 ctx = isl_schedule_node_get_ctx(node);
3791 filters = extract_split(ctx, graph);
3792 node = isl_schedule_node_insert_sequence(node, filters);
3793 node = isl_schedule_node_child(node, 1);
3794 node = isl_schedule_node_child(node, 0);
3796 node = compute_sub_schedule(node, ctx, graph,
3797 &node_scc_at_least, &edge_src_scc_at_least,
3798 graph->src_scc + 1, 0);
3799 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3800 node = isl_schedule_node_parent(node);
3801 node = isl_schedule_node_parent(node);
3802 if (is_seq)
3803 node = isl_schedule_node_sequence_splice_child(node, 1);
3804 node = isl_schedule_node_child(node, 0);
3805 node = isl_schedule_node_child(node, 0);
3806 node = compute_sub_schedule(node, ctx, graph,
3807 &node_scc_at_most, &edge_dst_scc_at_most,
3808 graph->src_scc, 0);
3809 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3810 node = isl_schedule_node_parent(node);
3811 node = isl_schedule_node_parent(node);
3812 if (is_seq)
3813 node = isl_schedule_node_sequence_splice_child(node, 0);
3815 return node;
3818 /* Insert a band node at position "node" in the schedule tree corresponding
3819 * to the current band in "graph". Mark the band node permutable
3820 * if "permutable" is set.
3821 * The partial schedules and the coincidence property are extracted
3822 * from the graph nodes.
3823 * Return the updated schedule node.
3825 static __isl_give isl_schedule_node *insert_current_band(
3826 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3827 int permutable)
3829 int i;
3830 int start, end, n;
3831 isl_multi_aff *ma;
3832 isl_multi_pw_aff *mpa;
3833 isl_multi_union_pw_aff *mupa;
3835 if (!node)
3836 return NULL;
3838 if (graph->n < 1)
3839 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3840 "graph should have at least one node",
3841 return isl_schedule_node_free(node));
3843 start = graph->band_start;
3844 end = graph->n_total_row;
3845 n = end - start;
3847 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3848 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3849 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3851 for (i = 1; i < graph->n; ++i) {
3852 isl_multi_union_pw_aff *mupa_i;
3854 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3855 start, n);
3856 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3857 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3858 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3860 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3862 for (i = 0; i < n; ++i)
3863 node = isl_schedule_node_band_member_set_coincident(node, i,
3864 graph->node[0].coincident[start + i]);
3865 node = isl_schedule_node_band_set_permutable(node, permutable);
3867 return node;
3870 /* Update the dependence relations based on the current schedule,
3871 * add the current band to "node" and then continue with the computation
3872 * of the next band.
3873 * Return the updated schedule node.
3875 static __isl_give isl_schedule_node *compute_next_band(
3876 __isl_take isl_schedule_node *node,
3877 struct isl_sched_graph *graph, int permutable)
3879 isl_ctx *ctx;
3881 if (!node)
3882 return NULL;
3884 ctx = isl_schedule_node_get_ctx(node);
3885 if (update_edges(ctx, graph) < 0)
3886 return isl_schedule_node_free(node);
3887 node = insert_current_band(node, graph, permutable);
3888 next_band(graph);
3890 node = isl_schedule_node_child(node, 0);
3891 node = compute_schedule(node, graph);
3892 node = isl_schedule_node_parent(node);
3894 return node;
3897 /* Add the constraints "coef" derived from an edge from "node" to itself
3898 * to graph->lp in order to respect the dependences and to try and carry them.
3899 * "pos" is the sequence number of the edge that needs to be carried.
3900 * "coef" represents general constraints on coefficients (c_0, c_x)
3901 * of valid constraints for (y - x) with x and y instances of the node.
3903 * The constraints added to graph->lp need to enforce
3905 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3906 * = c_j_x (y - x) >= e_i
3908 * for each (x,y) in the dependence relation of the edge.
3909 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3910 * taking into account that each coefficient in c_j_x is represented
3911 * as a pair of non-negative coefficients.
3913 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3914 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3916 isl_size offset;
3917 isl_ctx *ctx;
3918 isl_dim_map *dim_map;
3920 offset = coef_var_offset(coef);
3921 if (offset < 0)
3922 coef = isl_basic_set_free(coef);
3923 if (!coef)
3924 return isl_stat_error;
3926 ctx = isl_basic_set_get_ctx(coef);
3927 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3928 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3929 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3931 return isl_stat_ok;
3934 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3935 * to graph->lp in order to respect the dependences and to try and carry them.
3936 * "pos" is the sequence number of the edge that needs to be carried or
3937 * -1 if no attempt should be made to carry the dependences.
3938 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3939 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3941 * The constraints added to graph->lp need to enforce
3943 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3945 * for each (x,y) in the dependence relation of the edge or
3947 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3949 * if pos is -1.
3950 * That is,
3951 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3952 * or
3953 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3954 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3955 * taking into account that each coefficient in c_j_x and c_k_x is represented
3956 * as a pair of non-negative coefficients.
3958 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3959 struct isl_sched_node *src, struct isl_sched_node *dst,
3960 __isl_take isl_basic_set *coef, int pos)
3962 isl_size offset;
3963 isl_ctx *ctx;
3964 isl_dim_map *dim_map;
3966 offset = coef_var_offset(coef);
3967 if (offset < 0)
3968 coef = isl_basic_set_free(coef);
3969 if (!coef)
3970 return isl_stat_error;
3972 ctx = isl_basic_set_get_ctx(coef);
3973 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3974 if (pos >= 0)
3975 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3976 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3978 return isl_stat_ok;
3981 /* Data structure for keeping track of the data needed
3982 * to exploit non-trivial lineality spaces.
3984 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3985 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3986 * "equivalent" connects instances to other instances on the same line(s).
3987 * "mask" contains the domain spaces of "equivalent".
3988 * Any instance set not in "mask" does not have a non-trivial lineality space.
3990 struct isl_exploit_lineality_data {
3991 isl_bool any_non_trivial;
3992 isl_union_map *equivalent;
3993 isl_union_set *mask;
3996 /* Data structure collecting information used during the construction
3997 * of an LP for carrying dependences.
3999 * "intra" is a sequence of coefficient constraints for intra-node edges.
4000 * "inter" is a sequence of coefficient constraints for inter-node edges.
4001 * "lineality" contains data used to exploit non-trivial lineality spaces.
4003 struct isl_carry {
4004 isl_basic_set_list *intra;
4005 isl_basic_set_list *inter;
4006 struct isl_exploit_lineality_data lineality;
4009 /* Free all the data stored in "carry".
4011 static void isl_carry_clear(struct isl_carry *carry)
4013 isl_basic_set_list_free(carry->intra);
4014 isl_basic_set_list_free(carry->inter);
4015 isl_union_map_free(carry->lineality.equivalent);
4016 isl_union_set_free(carry->lineality.mask);
4019 /* Return a pointer to the node in "graph" that lives in "space".
4020 * If the requested node has been compressed, then "space"
4021 * corresponds to the compressed space.
4022 * The graph is assumed to have such a node.
4023 * Return NULL in case of error.
4025 * First try and see if "space" is the space of an uncompressed node.
4026 * If so, return that node.
4027 * Otherwise, "space" was constructed by construct_compressed_id and
4028 * contains a user pointer pointing to the node in the tuple id.
4029 * However, this node belongs to the original dependence graph.
4030 * If "graph" is a subgraph of this original dependence graph,
4031 * then the node with the same space still needs to be looked up
4032 * in the current graph.
4034 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
4035 struct isl_sched_graph *graph, __isl_keep isl_space *space)
4037 isl_id *id;
4038 struct isl_sched_node *node;
4040 if (!space)
4041 return NULL;
4043 node = graph_find_node(ctx, graph, space);
4044 if (!node)
4045 return NULL;
4046 if (is_node(graph, node))
4047 return node;
4049 id = isl_space_get_tuple_id(space, isl_dim_set);
4050 node = isl_id_get_user(id);
4051 isl_id_free(id);
4053 if (!node)
4054 return NULL;
4056 if (!is_node(graph->root, node))
4057 isl_die(ctx, isl_error_internal,
4058 "space points to invalid node", return NULL);
4059 if (graph != graph->root)
4060 node = graph_find_node(ctx, graph, node->space);
4061 if (!is_node(graph, node))
4062 isl_die(ctx, isl_error_internal,
4063 "unable to find node", return NULL);
4065 return node;
4068 /* Internal data structure for add_all_constraints.
4070 * "graph" is the schedule constraint graph for which an LP problem
4071 * is being constructed.
4072 * "carry_inter" indicates whether inter-node edges should be carried.
4073 * "pos" is the position of the next edge that needs to be carried.
4075 struct isl_add_all_constraints_data {
4076 isl_ctx *ctx;
4077 struct isl_sched_graph *graph;
4078 int carry_inter;
4079 int pos;
4082 /* Add the constraints "coef" derived from an edge from a node to itself
4083 * to data->graph->lp in order to respect the dependences and
4084 * to try and carry them.
4086 * The space of "coef" is of the form
4088 * coefficients[[c_cst] -> S[c_x]]
4090 * with S[c_x] the (compressed) space of the node.
4091 * Extract the node from the space and call add_intra_constraints.
4093 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4095 struct isl_add_all_constraints_data *data = user;
4096 isl_space *space;
4097 struct isl_sched_node *node;
4099 space = isl_basic_set_get_space(coef);
4100 space = isl_space_range(isl_space_unwrap(space));
4101 node = graph_find_compressed_node(data->ctx, data->graph, space);
4102 isl_space_free(space);
4103 return add_intra_constraints(data->graph, node, coef, data->pos++);
4106 /* Add the constraints "coef" derived from an edge from a node j
4107 * to a node k to data->graph->lp in order to respect the dependences and
4108 * to try and carry them (provided data->carry_inter is set).
4110 * The space of "coef" is of the form
4112 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4114 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4115 * Extract the nodes from the space and call add_inter_constraints.
4117 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4119 struct isl_add_all_constraints_data *data = user;
4120 isl_space *space, *dom;
4121 struct isl_sched_node *src, *dst;
4122 int pos;
4124 space = isl_basic_set_get_space(coef);
4125 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
4126 dom = isl_space_domain(isl_space_copy(space));
4127 src = graph_find_compressed_node(data->ctx, data->graph, dom);
4128 isl_space_free(dom);
4129 space = isl_space_range(space);
4130 dst = graph_find_compressed_node(data->ctx, data->graph, space);
4131 isl_space_free(space);
4133 pos = data->carry_inter ? data->pos++ : -1;
4134 return add_inter_constraints(data->graph, src, dst, coef, pos);
4137 /* Add constraints to graph->lp that force all (conditional) validity
4138 * dependences to be respected and attempt to carry them.
4139 * "intra" is the sequence of coefficient constraints for intra-node edges.
4140 * "inter" is the sequence of coefficient constraints for inter-node edges.
4141 * "carry_inter" indicates whether inter-node edges should be carried or
4142 * only respected.
4144 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4145 __isl_keep isl_basic_set_list *intra,
4146 __isl_keep isl_basic_set_list *inter, int carry_inter)
4148 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4150 data.pos = 0;
4151 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
4152 return isl_stat_error;
4153 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
4154 return isl_stat_error;
4155 return isl_stat_ok;
4158 /* Internal data structure for count_all_constraints
4159 * for keeping track of the number of equality and inequality constraints.
4161 struct isl_sched_count {
4162 int n_eq;
4163 int n_ineq;
4166 /* Add the number of equality and inequality constraints of "bset"
4167 * to data->n_eq and data->n_ineq.
4169 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4171 struct isl_sched_count *data = user;
4173 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4176 /* Count the number of equality and inequality constraints
4177 * that will be added to the carry_lp problem.
4178 * We count each edge exactly once.
4179 * "intra" is the sequence of coefficient constraints for intra-node edges.
4180 * "inter" is the sequence of coefficient constraints for inter-node edges.
4182 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4183 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4185 struct isl_sched_count data;
4187 data.n_eq = data.n_ineq = 0;
4188 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4189 return isl_stat_error;
4190 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4191 return isl_stat_error;
4193 *n_eq = data.n_eq;
4194 *n_ineq = data.n_ineq;
4196 return isl_stat_ok;
4199 /* Construct an LP problem for finding schedule coefficients
4200 * such that the schedule carries as many validity dependences as possible.
4201 * In particular, for each dependence i, we bound the dependence distance
4202 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4203 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4204 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4205 * "intra" is the sequence of coefficient constraints for intra-node edges.
4206 * "inter" is the sequence of coefficient constraints for inter-node edges.
4207 * "n_edge" is the total number of edges.
4208 * "carry_inter" indicates whether inter-node edges should be carried or
4209 * only respected. That is, if "carry_inter" is not set, then
4210 * no e_i variables are introduced for the inter-node edges.
4212 * All variables of the LP are non-negative. The actual coefficients
4213 * may be negative, so each coefficient is represented as the difference
4214 * of two non-negative variables. The negative part always appears
4215 * immediately before the positive part.
4216 * Other than that, the variables have the following order
4218 * - sum of (1 - e_i) over all edges
4219 * - sum of all c_n coefficients
4220 * (unconstrained when computing non-parametric schedules)
4221 * - sum of positive and negative parts of all c_x coefficients
4222 * - for each edge
4223 * - e_i
4224 * - for each node
4225 * - positive and negative parts of c_i_x, in opposite order
4226 * - c_i_n (if parametric)
4227 * - c_i_0
4229 * The constraints are those from the (validity) edges plus three equalities
4230 * to express the sums and n_edge inequalities to express e_i <= 1.
4232 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4233 int n_edge, __isl_keep isl_basic_set_list *intra,
4234 __isl_keep isl_basic_set_list *inter, int carry_inter)
4236 int i;
4237 int k;
4238 isl_space *dim;
4239 unsigned total;
4240 int n_eq, n_ineq;
4242 total = 3 + n_edge;
4243 for (i = 0; i < graph->n; ++i) {
4244 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4245 node->start = total;
4246 total += 1 + node->nparam + 2 * node->nvar;
4249 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4250 return isl_stat_error;
4252 dim = isl_space_set_alloc(ctx, 0, total);
4253 isl_basic_set_free(graph->lp);
4254 n_eq += 3;
4255 n_ineq += n_edge;
4256 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
4257 graph->lp = isl_basic_set_set_rational(graph->lp);
4259 k = isl_basic_set_alloc_equality(graph->lp);
4260 if (k < 0)
4261 return isl_stat_error;
4262 isl_seq_clr(graph->lp->eq[k], 1 + total);
4263 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4264 isl_int_set_si(graph->lp->eq[k][1], 1);
4265 for (i = 0; i < n_edge; ++i)
4266 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4268 if (add_param_sum_constraint(graph, 1) < 0)
4269 return isl_stat_error;
4270 if (add_var_sum_constraint(graph, 2) < 0)
4271 return isl_stat_error;
4273 for (i = 0; i < n_edge; ++i) {
4274 k = isl_basic_set_alloc_inequality(graph->lp);
4275 if (k < 0)
4276 return isl_stat_error;
4277 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4278 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4279 isl_int_set_si(graph->lp->ineq[k][0], 1);
4282 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4283 return isl_stat_error;
4285 return isl_stat_ok;
4288 static __isl_give isl_schedule_node *compute_component_schedule(
4289 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4290 int wcc);
4292 /* If the schedule_split_scaled option is set and if the linear
4293 * parts of the scheduling rows for all nodes in the graphs have
4294 * a non-trivial common divisor, then remove this
4295 * common divisor from the linear part.
4296 * Otherwise, insert a band node directly and continue with
4297 * the construction of the schedule.
4299 * If a non-trivial common divisor is found, then
4300 * the linear part is reduced and the remainder is ignored.
4301 * The pieces of the graph that are assigned different remainders
4302 * form (groups of) strongly connected components within
4303 * the scaled down band. If needed, they can therefore
4304 * be ordered along this remainder in a sequence node.
4305 * However, this ordering is not enforced here in order to allow
4306 * the scheduler to combine some of the strongly connected components.
4308 static __isl_give isl_schedule_node *split_scaled(
4309 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4311 int i;
4312 int row;
4313 isl_ctx *ctx;
4314 isl_int gcd, gcd_i;
4315 isl_size n_row;
4317 if (!node)
4318 return NULL;
4320 ctx = isl_schedule_node_get_ctx(node);
4321 if (!ctx->opt->schedule_split_scaled)
4322 return compute_next_band(node, graph, 0);
4323 if (graph->n <= 1)
4324 return compute_next_band(node, graph, 0);
4325 n_row = isl_mat_rows(graph->node[0].sched);
4326 if (n_row < 0)
4327 return isl_schedule_node_free(node);
4329 isl_int_init(gcd);
4330 isl_int_init(gcd_i);
4332 isl_int_set_si(gcd, 0);
4334 row = n_row - 1;
4336 for (i = 0; i < graph->n; ++i) {
4337 struct isl_sched_node *node = &graph->node[i];
4338 isl_size cols = isl_mat_cols(node->sched);
4340 if (cols < 0)
4341 break;
4342 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4343 isl_int_gcd(gcd, gcd, gcd_i);
4346 isl_int_clear(gcd_i);
4347 if (i < graph->n)
4348 goto error;
4350 if (isl_int_cmp_si(gcd, 1) <= 0) {
4351 isl_int_clear(gcd);
4352 return compute_next_band(node, graph, 0);
4355 for (i = 0; i < graph->n; ++i) {
4356 struct isl_sched_node *node = &graph->node[i];
4358 isl_int_fdiv_q(node->sched->row[row][0],
4359 node->sched->row[row][0], gcd);
4360 isl_int_mul(node->sched->row[row][0],
4361 node->sched->row[row][0], gcd);
4362 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4363 if (!node->sched)
4364 goto error;
4367 isl_int_clear(gcd);
4369 return compute_next_band(node, graph, 0);
4370 error:
4371 isl_int_clear(gcd);
4372 return isl_schedule_node_free(node);
4375 /* Is the schedule row "sol" trivial on node "node"?
4376 * That is, is the solution zero on the dimensions linearly independent of
4377 * the previously found solutions?
4378 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4380 * Each coefficient is represented as the difference between
4381 * two non-negative values in "sol".
4382 * We construct the schedule row s and check if it is linearly
4383 * independent of previously computed schedule rows
4384 * by computing T s, with T the linear combinations that are zero
4385 * on linearly dependent schedule rows.
4386 * If the result consists of all zeros, then the solution is trivial.
4388 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4390 int trivial;
4391 isl_vec *node_sol;
4393 if (!sol)
4394 return -1;
4395 if (node->nvar == node->rank)
4396 return 0;
4398 node_sol = extract_var_coef(node, sol);
4399 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4400 if (!node_sol)
4401 return -1;
4403 trivial = isl_seq_first_non_zero(node_sol->el,
4404 node->nvar - node->rank) == -1;
4406 isl_vec_free(node_sol);
4408 return trivial;
4411 /* Is the schedule row "sol" trivial on any node where it should
4412 * not be trivial?
4413 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4415 static int is_any_trivial(struct isl_sched_graph *graph,
4416 __isl_keep isl_vec *sol)
4418 int i;
4420 for (i = 0; i < graph->n; ++i) {
4421 struct isl_sched_node *node = &graph->node[i];
4422 int trivial;
4424 if (!needs_row(graph, node))
4425 continue;
4426 trivial = is_trivial(node, sol);
4427 if (trivial < 0 || trivial)
4428 return trivial;
4431 return 0;
4434 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4435 * If so, return the position of the coalesced dimension.
4436 * Otherwise, return node->nvar or -1 on error.
4438 * In particular, look for pairs of coefficients c_i and c_j such that
4439 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4440 * If any such pair is found, then return i.
4441 * If size_i is infinity, then no check on c_i needs to be performed.
4443 static int find_node_coalescing(struct isl_sched_node *node,
4444 __isl_keep isl_vec *sol)
4446 int i, j;
4447 isl_int max;
4448 isl_vec *csol;
4450 if (node->nvar <= 1)
4451 return node->nvar;
4453 csol = extract_var_coef(node, sol);
4454 if (!csol)
4455 return -1;
4456 isl_int_init(max);
4457 for (i = 0; i < node->nvar; ++i) {
4458 isl_val *v;
4460 if (isl_int_is_zero(csol->el[i]))
4461 continue;
4462 v = isl_multi_val_get_val(node->sizes, i);
4463 if (!v)
4464 goto error;
4465 if (!isl_val_is_int(v)) {
4466 isl_val_free(v);
4467 continue;
4469 v = isl_val_div_ui(v, 2);
4470 v = isl_val_ceil(v);
4471 if (!v)
4472 goto error;
4473 isl_int_mul(max, v->n, csol->el[i]);
4474 isl_val_free(v);
4476 for (j = 0; j < node->nvar; ++j) {
4477 if (j == i)
4478 continue;
4479 if (isl_int_abs_gt(csol->el[j], max))
4480 break;
4482 if (j < node->nvar)
4483 break;
4486 isl_int_clear(max);
4487 isl_vec_free(csol);
4488 return i;
4489 error:
4490 isl_int_clear(max);
4491 isl_vec_free(csol);
4492 return -1;
4495 /* Force the schedule coefficient at position "pos" of "node" to be zero
4496 * in "tl".
4497 * The coefficient is encoded as the difference between two non-negative
4498 * variables. Force these two variables to have the same value.
4500 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4501 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4503 int dim;
4504 isl_ctx *ctx;
4505 isl_vec *eq;
4507 ctx = isl_space_get_ctx(node->space);
4508 dim = isl_tab_lexmin_dim(tl);
4509 if (dim < 0)
4510 return isl_tab_lexmin_free(tl);
4511 eq = isl_vec_alloc(ctx, 1 + dim);
4512 eq = isl_vec_clr(eq);
4513 if (!eq)
4514 return isl_tab_lexmin_free(tl);
4516 pos = 1 + node_var_coef_pos(node, pos);
4517 isl_int_set_si(eq->el[pos], 1);
4518 isl_int_set_si(eq->el[pos + 1], -1);
4519 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4520 isl_vec_free(eq);
4522 return tl;
4525 /* Return the lexicographically smallest rational point in the basic set
4526 * from which "tl" was constructed, double checking that this input set
4527 * was not empty.
4529 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4531 isl_vec *sol;
4533 sol = isl_tab_lexmin_get_solution(tl);
4534 if (!sol)
4535 return NULL;
4536 if (sol->size == 0)
4537 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4538 "error in schedule construction",
4539 return isl_vec_free(sol));
4540 return sol;
4543 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4544 * carry any of the "n_edge" groups of dependences?
4545 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4546 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4547 * by the edge are carried by the solution.
4548 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4549 * one of those is carried.
4551 * Note that despite the fact that the problem is solved using a rational
4552 * solver, the solution is guaranteed to be integral.
4553 * Specifically, the dependence distance lower bounds e_i (and therefore
4554 * also their sum) are integers. See Lemma 5 of [1].
4556 * Any potential denominator of the sum is cleared by this function.
4557 * The denominator is not relevant for any of the other elements
4558 * in the solution.
4560 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4561 * Problem, Part II: Multi-Dimensional Time.
4562 * In Intl. Journal of Parallel Programming, 1992.
4564 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4566 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4567 isl_int_set_si(sol->el[0], 1);
4568 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4571 /* Return the lexicographically smallest rational point in "lp",
4572 * assuming that all variables are non-negative and performing some
4573 * additional sanity checks.
4574 * If "want_integral" is set, then compute the lexicographically smallest
4575 * integer point instead.
4576 * In particular, "lp" should not be empty by construction.
4577 * Double check that this is the case.
4578 * If dependences are not carried for any of the "n_edge" edges,
4579 * then return an empty vector.
4581 * If the schedule_treat_coalescing option is set and
4582 * if the computed schedule performs loop coalescing on a given node,
4583 * i.e., if it is of the form
4585 * c_i i + c_j j + ...
4587 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4588 * to cut out this solution. Repeat this process until no more loop
4589 * coalescing occurs or until no more dependences can be carried.
4590 * In the latter case, revert to the previously computed solution.
4592 * If the caller requests an integral solution and if coalescing should
4593 * be treated, then perform the coalescing treatment first as
4594 * an integral solution computed before coalescing treatment
4595 * would carry the same number of edges and would therefore probably
4596 * also be coalescing.
4598 * To allow the coalescing treatment to be performed first,
4599 * the initial solution is allowed to be rational and it is only
4600 * cut out (if needed) in the next iteration, if no coalescing measures
4601 * were taken.
4603 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4604 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4606 int i, pos, cut;
4607 isl_ctx *ctx;
4608 isl_tab_lexmin *tl;
4609 isl_vec *sol = NULL, *prev;
4610 int treat_coalescing;
4611 int try_again;
4613 if (!lp)
4614 return NULL;
4615 ctx = isl_basic_set_get_ctx(lp);
4616 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4617 tl = isl_tab_lexmin_from_basic_set(lp);
4619 cut = 0;
4620 do {
4621 int integral;
4623 try_again = 0;
4624 if (cut)
4625 tl = isl_tab_lexmin_cut_to_integer(tl);
4626 prev = sol;
4627 sol = non_empty_solution(tl);
4628 if (!sol)
4629 goto error;
4631 integral = isl_int_is_one(sol->el[0]);
4632 if (!carries_dependences(sol, n_edge)) {
4633 if (!prev)
4634 prev = isl_vec_alloc(ctx, 0);
4635 isl_vec_free(sol);
4636 sol = prev;
4637 break;
4639 prev = isl_vec_free(prev);
4640 cut = want_integral && !integral;
4641 if (cut)
4642 try_again = 1;
4643 if (!treat_coalescing)
4644 continue;
4645 for (i = 0; i < graph->n; ++i) {
4646 struct isl_sched_node *node = &graph->node[i];
4648 pos = find_node_coalescing(node, sol);
4649 if (pos < 0)
4650 goto error;
4651 if (pos < node->nvar)
4652 break;
4654 if (i < graph->n) {
4655 try_again = 1;
4656 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4657 cut = 0;
4659 } while (try_again);
4661 isl_tab_lexmin_free(tl);
4663 return sol;
4664 error:
4665 isl_tab_lexmin_free(tl);
4666 isl_vec_free(prev);
4667 isl_vec_free(sol);
4668 return NULL;
4671 /* If "edge" is an edge from a node to itself, then add the corresponding
4672 * dependence relation to "umap".
4673 * If "node" has been compressed, then the dependence relation
4674 * is also compressed first.
4676 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4677 struct isl_sched_edge *edge)
4679 isl_map *map;
4680 struct isl_sched_node *node = edge->src;
4682 if (edge->src != edge->dst)
4683 return umap;
4685 map = isl_map_copy(edge->map);
4686 if (node->compressed) {
4687 map = isl_map_preimage_domain_multi_aff(map,
4688 isl_multi_aff_copy(node->decompress));
4689 map = isl_map_preimage_range_multi_aff(map,
4690 isl_multi_aff_copy(node->decompress));
4692 umap = isl_union_map_add_map(umap, map);
4693 return umap;
4696 /* If "edge" is an edge from a node to another node, then add the corresponding
4697 * dependence relation to "umap".
4698 * If the source or destination nodes of "edge" have been compressed,
4699 * then the dependence relation is also compressed first.
4701 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4702 struct isl_sched_edge *edge)
4704 isl_map *map;
4706 if (edge->src == edge->dst)
4707 return umap;
4709 map = isl_map_copy(edge->map);
4710 if (edge->src->compressed)
4711 map = isl_map_preimage_domain_multi_aff(map,
4712 isl_multi_aff_copy(edge->src->decompress));
4713 if (edge->dst->compressed)
4714 map = isl_map_preimage_range_multi_aff(map,
4715 isl_multi_aff_copy(edge->dst->decompress));
4716 umap = isl_union_map_add_map(umap, map);
4717 return umap;
4720 /* Internal data structure used by union_drop_coalescing_constraints
4721 * to collect bounds on all relevant statements.
4723 * "graph" is the schedule constraint graph for which an LP problem
4724 * is being constructed.
4725 * "bounds" collects the bounds.
4727 struct isl_collect_bounds_data {
4728 isl_ctx *ctx;
4729 struct isl_sched_graph *graph;
4730 isl_union_set *bounds;
4733 /* Add the size bounds for the node with instance deltas in "set"
4734 * to data->bounds.
4736 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4738 struct isl_collect_bounds_data *data = user;
4739 struct isl_sched_node *node;
4740 isl_space *space;
4741 isl_set *bounds;
4743 space = isl_set_get_space(set);
4744 isl_set_free(set);
4746 node = graph_find_compressed_node(data->ctx, data->graph, space);
4747 isl_space_free(space);
4749 bounds = isl_set_from_basic_set(get_size_bounds(node));
4750 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4752 return isl_stat_ok;
4755 /* Drop some constraints from "delta" that could be exploited
4756 * to construct loop coalescing schedules.
4757 * In particular, drop those constraint that bound the difference
4758 * to the size of the domain.
4759 * Do this for each set/node in "delta" separately.
4760 * The parameters are assumed to have been projected out by the caller.
4762 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4763 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4765 struct isl_collect_bounds_data data = { ctx, graph };
4767 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4768 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4769 data.bounds = isl_union_set_free(data.bounds);
4770 delta = isl_union_set_plain_gist(delta, data.bounds);
4772 return delta;
4775 /* Given a non-trivial lineality space "lineality", add the corresponding
4776 * universe set to data->mask and add a map from elements to
4777 * other elements along the lines in "lineality" to data->equivalent.
4778 * If this is the first time this function gets called
4779 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4780 * initialize data->mask and data->equivalent.
4782 * In particular, if the lineality space is defined by equality constraints
4784 * E x = 0
4786 * then construct an affine mapping
4788 * f : x -> E x
4790 * and compute the equivalence relation of having the same image under f:
4792 * { x -> x' : E x = E x' }
4794 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4795 struct isl_exploit_lineality_data *data)
4797 isl_mat *eq;
4798 isl_space *space;
4799 isl_set *univ;
4800 isl_multi_aff *ma;
4801 isl_multi_pw_aff *mpa;
4802 isl_map *map;
4803 isl_size n;
4805 if (isl_basic_set_check_no_locals(lineality) < 0)
4806 goto error;
4808 space = isl_basic_set_get_space(lineality);
4809 if (!data->any_non_trivial) {
4810 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4811 data->mask = isl_union_set_empty(isl_space_copy(space));
4813 data->any_non_trivial = isl_bool_true;
4815 univ = isl_set_universe(isl_space_copy(space));
4816 data->mask = isl_union_set_add_set(data->mask, univ);
4818 eq = isl_basic_set_extract_equalities(lineality);
4819 n = isl_mat_rows(eq);
4820 if (n < 0)
4821 space = isl_space_free(space);
4822 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4823 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4824 space = isl_space_from_domain(space);
4825 space = isl_space_add_dims(space, isl_dim_out, n);
4826 ma = isl_multi_aff_from_aff_mat(space, eq);
4827 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4828 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4829 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4831 isl_basic_set_free(lineality);
4832 return isl_stat_ok;
4833 error:
4834 isl_basic_set_free(lineality);
4835 return isl_stat_error;
4838 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4839 * the origin or, in other words, satisfies a number of equality constraints
4840 * that is smaller than the dimension of the set).
4841 * If so, extend data->mask and data->equivalent accordingly.
4843 * The input should not have any local variables already, but
4844 * isl_set_remove_divs is called to make sure it does not.
4846 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4848 struct isl_exploit_lineality_data *data = user;
4849 isl_basic_set *hull;
4850 isl_size dim;
4851 int n_eq;
4853 set = isl_set_remove_divs(set);
4854 hull = isl_set_unshifted_simple_hull(set);
4855 dim = isl_basic_set_dim(hull, isl_dim_set);
4856 n_eq = isl_basic_set_n_equality(hull);
4857 if (dim < 0)
4858 goto error;
4859 if (dim != n_eq)
4860 return add_non_trivial_lineality(hull, data);
4861 isl_basic_set_free(hull);
4862 return isl_stat_ok;
4863 error:
4864 isl_basic_set_free(hull);
4865 return isl_stat_error;
4868 /* Check if the difference set on intra-node schedule constraints "intra"
4869 * has any non-trivial lineality space.
4870 * If so, then extend the difference set to a difference set
4871 * on equivalent elements. That is, if "intra" is
4873 * { y - x : (x,y) \in V }
4875 * and elements are equivalent if they have the same image under f,
4876 * then return
4878 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4880 * or, since f is linear,
4882 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4884 * The results of the search for non-trivial lineality spaces is stored
4885 * in "data".
4887 static __isl_give isl_union_set *exploit_intra_lineality(
4888 __isl_take isl_union_set *intra,
4889 struct isl_exploit_lineality_data *data)
4891 isl_union_set *lineality;
4892 isl_union_set *uset;
4894 data->any_non_trivial = isl_bool_false;
4895 lineality = isl_union_set_copy(intra);
4896 lineality = isl_union_set_combined_lineality_space(lineality);
4897 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4898 data->any_non_trivial = isl_bool_error;
4899 isl_union_set_free(lineality);
4901 if (data->any_non_trivial < 0)
4902 return isl_union_set_free(intra);
4903 if (!data->any_non_trivial)
4904 return intra;
4906 uset = isl_union_set_copy(intra);
4907 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4908 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4909 intra = isl_union_set_union(intra, uset);
4911 intra = isl_union_set_remove_divs(intra);
4913 return intra;
4916 /* If the difference set on intra-node schedule constraints was found to have
4917 * any non-trivial lineality space by exploit_intra_lineality,
4918 * as recorded in "data", then extend the inter-node
4919 * schedule constraints "inter" to schedule constraints on equivalent elements.
4920 * That is, if "inter" is V and
4921 * elements are equivalent if they have the same image under f, then return
4923 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4925 static __isl_give isl_union_map *exploit_inter_lineality(
4926 __isl_take isl_union_map *inter,
4927 struct isl_exploit_lineality_data *data)
4929 isl_union_map *umap;
4931 if (data->any_non_trivial < 0)
4932 return isl_union_map_free(inter);
4933 if (!data->any_non_trivial)
4934 return inter;
4936 umap = isl_union_map_copy(inter);
4937 inter = isl_union_map_subtract_range(inter,
4938 isl_union_set_copy(data->mask));
4939 umap = isl_union_map_apply_range(umap,
4940 isl_union_map_copy(data->equivalent));
4941 inter = isl_union_map_union(inter, umap);
4942 umap = isl_union_map_copy(inter);
4943 inter = isl_union_map_subtract_domain(inter,
4944 isl_union_set_copy(data->mask));
4945 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4946 umap);
4947 inter = isl_union_map_union(inter, umap);
4949 inter = isl_union_map_remove_divs(inter);
4951 return inter;
4954 /* For each (conditional) validity edge in "graph",
4955 * add the corresponding dependence relation using "add"
4956 * to a collection of dependence relations and return the result.
4957 * If "coincidence" is set, then coincidence edges are considered as well.
4959 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4960 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4961 struct isl_sched_edge *edge), int coincidence)
4963 int i;
4964 isl_space *space;
4965 isl_union_map *umap;
4967 space = isl_space_copy(graph->node[0].space);
4968 umap = isl_union_map_empty(space);
4970 for (i = 0; i < graph->n_edge; ++i) {
4971 struct isl_sched_edge *edge = &graph->edge[i];
4973 if (!is_any_validity(edge) &&
4974 (!coincidence || !is_coincidence(edge)))
4975 continue;
4977 umap = add(umap, edge);
4980 return umap;
4983 /* For each dependence relation on a (conditional) validity edge
4984 * from a node to itself,
4985 * construct the set of coefficients of valid constraints for elements
4986 * in that dependence relation and collect the results.
4987 * If "coincidence" is set, then coincidence edges are considered as well.
4989 * In particular, for each dependence relation R, constraints
4990 * on coefficients (c_0, c_x) are constructed such that
4992 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4994 * If the schedule_treat_coalescing option is set, then some constraints
4995 * that could be exploited to construct coalescing schedules
4996 * are removed before the dual is computed, but after the parameters
4997 * have been projected out.
4998 * The entire computation is essentially the same as that performed
4999 * by intra_coefficients, except that it operates on multiple
5000 * edges together and that the parameters are always projected out.
5002 * Additionally, exploit any non-trivial lineality space
5003 * in the difference set after removing coalescing constraints and
5004 * store the results of the non-trivial lineality space detection in "data".
5005 * The procedure is currently run unconditionally, but it is unlikely
5006 * to find any non-trivial lineality spaces if no coalescing constraints
5007 * have been removed.
5009 * Note that if a dependence relation is a union of basic maps,
5010 * then each basic map needs to be treated individually as it may only
5011 * be possible to carry the dependences expressed by some of those
5012 * basic maps and not all of them.
5013 * The collected validity constraints are therefore not coalesced and
5014 * it is assumed that they are not coalesced automatically.
5015 * Duplicate basic maps can be removed, however.
5016 * In particular, if the same basic map appears as a disjunct
5017 * in multiple edges, then it only needs to be carried once.
5019 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
5020 struct isl_sched_graph *graph, int coincidence,
5021 struct isl_exploit_lineality_data *data)
5023 isl_union_map *intra;
5024 isl_union_set *delta;
5025 isl_basic_set_list *list;
5027 intra = collect_validity(graph, &add_intra, coincidence);
5028 delta = isl_union_map_deltas(intra);
5029 delta = isl_union_set_project_out_all_params(delta);
5030 delta = isl_union_set_remove_divs(delta);
5031 if (isl_options_get_schedule_treat_coalescing(ctx))
5032 delta = union_drop_coalescing_constraints(ctx, graph, delta);
5033 delta = exploit_intra_lineality(delta, data);
5034 list = isl_union_set_get_basic_set_list(delta);
5035 isl_union_set_free(delta);
5037 return isl_basic_set_list_coefficients(list);
5040 /* For each dependence relation on a (conditional) validity edge
5041 * from a node to some other node,
5042 * construct the set of coefficients of valid constraints for elements
5043 * in that dependence relation and collect the results.
5044 * If "coincidence" is set, then coincidence edges are considered as well.
5046 * In particular, for each dependence relation R, constraints
5047 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
5049 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
5051 * This computation is essentially the same as that performed
5052 * by inter_coefficients, except that it operates on multiple
5053 * edges together.
5055 * Additionally, exploit any non-trivial lineality space
5056 * that may have been discovered by collect_intra_validity
5057 * (as stored in "data").
5059 * Note that if a dependence relation is a union of basic maps,
5060 * then each basic map needs to be treated individually as it may only
5061 * be possible to carry the dependences expressed by some of those
5062 * basic maps and not all of them.
5063 * The collected validity constraints are therefore not coalesced and
5064 * it is assumed that they are not coalesced automatically.
5065 * Duplicate basic maps can be removed, however.
5066 * In particular, if the same basic map appears as a disjunct
5067 * in multiple edges, then it only needs to be carried once.
5069 static __isl_give isl_basic_set_list *collect_inter_validity(
5070 struct isl_sched_graph *graph, int coincidence,
5071 struct isl_exploit_lineality_data *data)
5073 isl_union_map *inter;
5074 isl_union_set *wrap;
5075 isl_basic_set_list *list;
5077 inter = collect_validity(graph, &add_inter, coincidence);
5078 inter = exploit_inter_lineality(inter, data);
5079 inter = isl_union_map_remove_divs(inter);
5080 wrap = isl_union_map_wrap(inter);
5081 list = isl_union_set_get_basic_set_list(wrap);
5082 isl_union_set_free(wrap);
5083 return isl_basic_set_list_coefficients(list);
5086 /* Construct an LP problem for finding schedule coefficients
5087 * such that the schedule carries as many of the "n_edge" groups of
5088 * dependences as possible based on the corresponding coefficient
5089 * constraints and return the lexicographically smallest non-trivial solution.
5090 * "intra" is the sequence of coefficient constraints for intra-node edges.
5091 * "inter" is the sequence of coefficient constraints for inter-node edges.
5092 * If "want_integral" is set, then compute an integral solution
5093 * for the coefficients rather than using the numerators
5094 * of a rational solution.
5095 * "carry_inter" indicates whether inter-node edges should be carried or
5096 * only respected.
5098 * If none of the "n_edge" groups can be carried
5099 * then return an empty vector.
5101 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5102 struct isl_sched_graph *graph, int n_edge,
5103 __isl_keep isl_basic_set_list *intra,
5104 __isl_keep isl_basic_set_list *inter, int want_integral,
5105 int carry_inter)
5107 isl_basic_set *lp;
5109 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5110 return NULL;
5112 lp = isl_basic_set_copy(graph->lp);
5113 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5116 /* Construct an LP problem for finding schedule coefficients
5117 * such that the schedule carries as many of the validity dependences
5118 * as possible and
5119 * return the lexicographically smallest non-trivial solution.
5120 * If "fallback" is set, then the carrying is performed as a fallback
5121 * for the Pluto-like scheduler.
5122 * If "coincidence" is set, then try and carry coincidence edges as well.
5124 * The variable "n_edge" stores the number of groups that should be carried.
5125 * If none of the "n_edge" groups can be carried
5126 * then return an empty vector.
5127 * If, moreover, "n_edge" is zero, then the LP problem does not even
5128 * need to be constructed.
5130 * If a fallback solution is being computed, then compute an integral solution
5131 * for the coefficients rather than using the numerators
5132 * of a rational solution.
5134 * If a fallback solution is being computed, if there are any intra-node
5135 * dependences, and if requested by the user, then first try
5136 * to only carry those intra-node dependences.
5137 * If this fails to carry any dependences, then try again
5138 * with the inter-node dependences included.
5140 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5141 struct isl_sched_graph *graph, int fallback, int coincidence)
5143 int n_intra, n_inter;
5144 int n_edge;
5145 struct isl_carry carry = { 0 };
5146 isl_vec *sol;
5148 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5149 &carry.lineality);
5150 carry.inter = collect_inter_validity(graph, coincidence,
5151 &carry.lineality);
5152 if (!carry.intra || !carry.inter)
5153 goto error;
5154 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
5155 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
5157 if (fallback && n_intra > 0 &&
5158 isl_options_get_schedule_carry_self_first(ctx)) {
5159 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
5160 carry.intra, carry.inter, fallback, 0);
5161 if (!sol || sol->size != 0 || n_inter == 0) {
5162 isl_carry_clear(&carry);
5163 return sol;
5165 isl_vec_free(sol);
5168 n_edge = n_intra + n_inter;
5169 if (n_edge == 0) {
5170 isl_carry_clear(&carry);
5171 return isl_vec_alloc(ctx, 0);
5174 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5175 carry.intra, carry.inter, fallback, 1);
5176 isl_carry_clear(&carry);
5177 return sol;
5178 error:
5179 isl_carry_clear(&carry);
5180 return NULL;
5183 /* Construct a schedule row for each node such that as many validity dependences
5184 * as possible are carried and then continue with the next band.
5185 * If "fallback" is set, then the carrying is performed as a fallback
5186 * for the Pluto-like scheduler.
5187 * If "coincidence" is set, then try and carry coincidence edges as well.
5189 * If there are no validity dependences, then no dependence can be carried and
5190 * the procedure is guaranteed to fail. If there is more than one component,
5191 * then try computing a schedule on each component separately
5192 * to prevent or at least postpone this failure.
5194 * If a schedule row is computed, then check that dependences are carried
5195 * for at least one of the edges.
5197 * If the computed schedule row turns out to be trivial on one or
5198 * more nodes where it should not be trivial, then we throw it away
5199 * and try again on each component separately.
5201 * If there is only one component, then we accept the schedule row anyway,
5202 * but we do not consider it as a complete row and therefore do not
5203 * increment graph->n_row. Note that the ranks of the nodes that
5204 * do get a non-trivial schedule part will get updated regardless and
5205 * graph->maxvar is computed based on these ranks. The test for
5206 * whether more schedule rows are required in compute_schedule_wcc
5207 * is therefore not affected.
5209 * Insert a band corresponding to the schedule row at position "node"
5210 * of the schedule tree and continue with the construction of the schedule.
5211 * This insertion and the continued construction is performed by split_scaled
5212 * after optionally checking for non-trivial common divisors.
5214 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5215 struct isl_sched_graph *graph, int fallback, int coincidence)
5217 int trivial;
5218 isl_ctx *ctx;
5219 isl_vec *sol;
5221 if (!node)
5222 return NULL;
5224 ctx = isl_schedule_node_get_ctx(node);
5225 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5226 if (!sol)
5227 return isl_schedule_node_free(node);
5228 if (sol->size == 0) {
5229 isl_vec_free(sol);
5230 if (graph->scc > 1)
5231 return compute_component_schedule(node, graph, 1);
5232 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5233 return isl_schedule_node_free(node));
5236 trivial = is_any_trivial(graph, sol);
5237 if (trivial < 0) {
5238 sol = isl_vec_free(sol);
5239 } else if (trivial && graph->scc > 1) {
5240 isl_vec_free(sol);
5241 return compute_component_schedule(node, graph, 1);
5244 if (update_schedule(graph, sol, 0) < 0)
5245 return isl_schedule_node_free(node);
5246 if (trivial)
5247 graph->n_row--;
5249 return split_scaled(node, graph);
5252 /* Construct a schedule row for each node such that as many validity dependences
5253 * as possible are carried and then continue with the next band.
5254 * Do so as a fallback for the Pluto-like scheduler.
5255 * If "coincidence" is set, then try and carry coincidence edges as well.
5257 static __isl_give isl_schedule_node *carry_fallback(
5258 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5259 int coincidence)
5261 return carry(node, graph, 1, coincidence);
5264 /* Construct a schedule row for each node such that as many validity dependences
5265 * as possible are carried and then continue with the next band.
5266 * Do so for the case where the Feautrier scheduler was selected
5267 * by the user.
5269 static __isl_give isl_schedule_node *carry_feautrier(
5270 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5272 return carry(node, graph, 0, 0);
5275 /* Construct a schedule row for each node such that as many validity dependences
5276 * as possible are carried and then continue with the next band.
5277 * Do so as a fallback for the Pluto-like scheduler.
5279 static __isl_give isl_schedule_node *carry_dependences(
5280 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5282 return carry_fallback(node, graph, 0);
5285 /* Construct a schedule row for each node such that as many validity or
5286 * coincidence dependences as possible are carried and
5287 * then continue with the next band.
5288 * Do so as a fallback for the Pluto-like scheduler.
5290 static __isl_give isl_schedule_node *carry_coincidence(
5291 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5293 return carry_fallback(node, graph, 1);
5296 /* Topologically sort statements mapped to the same schedule iteration
5297 * and add insert a sequence node in front of "node"
5298 * corresponding to this order.
5299 * If "initialized" is set, then it may be assumed that compute_maxvar
5300 * has been called on the current band. Otherwise, call
5301 * compute_maxvar if and before carry_dependences gets called.
5303 * If it turns out to be impossible to sort the statements apart,
5304 * because different dependences impose different orderings
5305 * on the statements, then we extend the schedule such that
5306 * it carries at least one more dependence.
5308 static __isl_give isl_schedule_node *sort_statements(
5309 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5310 int initialized)
5312 isl_ctx *ctx;
5313 isl_union_set_list *filters;
5315 if (!node)
5316 return NULL;
5318 ctx = isl_schedule_node_get_ctx(node);
5319 if (graph->n < 1)
5320 isl_die(ctx, isl_error_internal,
5321 "graph should have at least one node",
5322 return isl_schedule_node_free(node));
5324 if (graph->n == 1)
5325 return node;
5327 if (update_edges(ctx, graph) < 0)
5328 return isl_schedule_node_free(node);
5330 if (graph->n_edge == 0)
5331 return node;
5333 if (detect_sccs(ctx, graph) < 0)
5334 return isl_schedule_node_free(node);
5336 next_band(graph);
5337 if (graph->scc < graph->n) {
5338 if (!initialized && compute_maxvar(graph) < 0)
5339 return isl_schedule_node_free(node);
5340 return carry_dependences(node, graph);
5343 filters = extract_sccs(ctx, graph);
5344 node = isl_schedule_node_insert_sequence(node, filters);
5346 return node;
5349 /* Are there any (non-empty) (conditional) validity edges in the graph?
5351 static int has_validity_edges(struct isl_sched_graph *graph)
5353 int i;
5355 for (i = 0; i < graph->n_edge; ++i) {
5356 int empty;
5358 empty = isl_map_plain_is_empty(graph->edge[i].map);
5359 if (empty < 0)
5360 return -1;
5361 if (empty)
5362 continue;
5363 if (is_any_validity(&graph->edge[i]))
5364 return 1;
5367 return 0;
5370 /* Should we apply a Feautrier step?
5371 * That is, did the user request the Feautrier algorithm and are
5372 * there any validity dependences (left)?
5374 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5376 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5377 return 0;
5379 return has_validity_edges(graph);
5382 /* Compute a schedule for a connected dependence graph using Feautrier's
5383 * multi-dimensional scheduling algorithm and return the updated schedule node.
5385 * The original algorithm is described in [1].
5386 * The main idea is to minimize the number of scheduling dimensions, by
5387 * trying to satisfy as many dependences as possible per scheduling dimension.
5389 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5390 * Problem, Part II: Multi-Dimensional Time.
5391 * In Intl. Journal of Parallel Programming, 1992.
5393 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5394 isl_schedule_node *node, struct isl_sched_graph *graph)
5396 return carry_feautrier(node, graph);
5399 /* Turn off the "local" bit on all (condition) edges.
5401 static void clear_local_edges(struct isl_sched_graph *graph)
5403 int i;
5405 for (i = 0; i < graph->n_edge; ++i)
5406 if (is_condition(&graph->edge[i]))
5407 clear_local(&graph->edge[i]);
5410 /* Does "graph" have both condition and conditional validity edges?
5412 static int need_condition_check(struct isl_sched_graph *graph)
5414 int i;
5415 int any_condition = 0;
5416 int any_conditional_validity = 0;
5418 for (i = 0; i < graph->n_edge; ++i) {
5419 if (is_condition(&graph->edge[i]))
5420 any_condition = 1;
5421 if (is_conditional_validity(&graph->edge[i]))
5422 any_conditional_validity = 1;
5425 return any_condition && any_conditional_validity;
5428 /* Does "graph" contain any coincidence edge?
5430 static int has_any_coincidence(struct isl_sched_graph *graph)
5432 int i;
5434 for (i = 0; i < graph->n_edge; ++i)
5435 if (is_coincidence(&graph->edge[i]))
5436 return 1;
5438 return 0;
5441 /* Extract the final schedule row as a map with the iteration domain
5442 * of "node" as domain.
5444 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5446 isl_multi_aff *ma;
5447 isl_size n_row;
5449 n_row = isl_mat_rows(node->sched);
5450 if (n_row < 0)
5451 return NULL;
5452 ma = node_extract_partial_schedule_multi_aff(node, n_row - 1, 1);
5453 return isl_map_from_multi_aff(ma);
5456 /* Is the conditional validity dependence in the edge with index "edge_index"
5457 * violated by the latest (i.e., final) row of the schedule?
5458 * That is, is i scheduled after j
5459 * for any conditional validity dependence i -> j?
5461 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5463 isl_map *src_sched, *dst_sched, *map;
5464 struct isl_sched_edge *edge = &graph->edge[edge_index];
5465 int empty;
5467 src_sched = final_row(edge->src);
5468 dst_sched = final_row(edge->dst);
5469 map = isl_map_copy(edge->map);
5470 map = isl_map_apply_domain(map, src_sched);
5471 map = isl_map_apply_range(map, dst_sched);
5472 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5473 empty = isl_map_is_empty(map);
5474 isl_map_free(map);
5476 if (empty < 0)
5477 return -1;
5479 return !empty;
5482 /* Does "graph" have any satisfied condition edges that
5483 * are adjacent to the conditional validity constraint with
5484 * domain "conditional_source" and range "conditional_sink"?
5486 * A satisfied condition is one that is not local.
5487 * If a condition was forced to be local already (i.e., marked as local)
5488 * then there is no need to check if it is in fact local.
5490 * Additionally, mark all adjacent condition edges found as local.
5492 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5493 __isl_keep isl_union_set *conditional_source,
5494 __isl_keep isl_union_set *conditional_sink)
5496 int i;
5497 int any = 0;
5499 for (i = 0; i < graph->n_edge; ++i) {
5500 int adjacent, local;
5501 isl_union_map *condition;
5503 if (!is_condition(&graph->edge[i]))
5504 continue;
5505 if (is_local(&graph->edge[i]))
5506 continue;
5508 condition = graph->edge[i].tagged_condition;
5509 adjacent = domain_intersects(condition, conditional_sink);
5510 if (adjacent >= 0 && !adjacent)
5511 adjacent = range_intersects(condition,
5512 conditional_source);
5513 if (adjacent < 0)
5514 return -1;
5515 if (!adjacent)
5516 continue;
5518 set_local(&graph->edge[i]);
5520 local = is_condition_false(&graph->edge[i]);
5521 if (local < 0)
5522 return -1;
5523 if (!local)
5524 any = 1;
5527 return any;
5530 /* Are there any violated conditional validity dependences with
5531 * adjacent condition dependences that are not local with respect
5532 * to the current schedule?
5533 * That is, is the conditional validity constraint violated?
5535 * Additionally, mark all those adjacent condition dependences as local.
5536 * We also mark those adjacent condition dependences that were not marked
5537 * as local before, but just happened to be local already. This ensures
5538 * that they remain local if the schedule is recomputed.
5540 * We first collect domain and range of all violated conditional validity
5541 * dependences and then check if there are any adjacent non-local
5542 * condition dependences.
5544 static int has_violated_conditional_constraint(isl_ctx *ctx,
5545 struct isl_sched_graph *graph)
5547 int i;
5548 int any = 0;
5549 isl_union_set *source, *sink;
5551 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5552 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5553 for (i = 0; i < graph->n_edge; ++i) {
5554 isl_union_set *uset;
5555 isl_union_map *umap;
5556 int violated;
5558 if (!is_conditional_validity(&graph->edge[i]))
5559 continue;
5561 violated = is_violated(graph, i);
5562 if (violated < 0)
5563 goto error;
5564 if (!violated)
5565 continue;
5567 any = 1;
5569 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5570 uset = isl_union_map_domain(umap);
5571 source = isl_union_set_union(source, uset);
5572 source = isl_union_set_coalesce(source);
5574 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5575 uset = isl_union_map_range(umap);
5576 sink = isl_union_set_union(sink, uset);
5577 sink = isl_union_set_coalesce(sink);
5580 if (any)
5581 any = has_adjacent_true_conditions(graph, source, sink);
5583 isl_union_set_free(source);
5584 isl_union_set_free(sink);
5585 return any;
5586 error:
5587 isl_union_set_free(source);
5588 isl_union_set_free(sink);
5589 return -1;
5592 /* Examine the current band (the rows between graph->band_start and
5593 * graph->n_total_row), deciding whether to drop it or add it to "node"
5594 * and then continue with the computation of the next band, if any.
5595 * If "initialized" is set, then it may be assumed that compute_maxvar
5596 * has been called on the current band. Otherwise, call
5597 * compute_maxvar if and before carry_dependences gets called.
5599 * The caller keeps looking for a new row as long as
5600 * graph->n_row < graph->maxvar. If the latest attempt to find
5601 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5602 * then we either
5603 * - split between SCCs and start over (assuming we found an interesting
5604 * pair of SCCs between which to split)
5605 * - continue with the next band (assuming the current band has at least
5606 * one row)
5607 * - if there is more than one SCC left, then split along all SCCs
5608 * - if outer coincidence needs to be enforced, then try to carry as many
5609 * validity or coincidence dependences as possible and
5610 * continue with the next band
5611 * - try to carry as many validity dependences as possible and
5612 * continue with the next band
5613 * In each case, we first insert a band node in the schedule tree
5614 * if any rows have been computed.
5616 * If the caller managed to complete the schedule and the current band
5617 * is empty, then finish off by topologically
5618 * sorting the statements based on the remaining dependences.
5619 * If, on the other hand, the current band has at least one row,
5620 * then continue with the next band. Note that this next band
5621 * will necessarily be empty, but the graph may still be split up
5622 * into weakly connected components before arriving back here.
5624 static __isl_give isl_schedule_node *compute_schedule_finish_band(
5625 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5626 int initialized)
5628 int empty;
5630 if (!node)
5631 return NULL;
5633 empty = graph->n_total_row == graph->band_start;
5634 if (graph->n_row < graph->maxvar) {
5635 isl_ctx *ctx;
5637 ctx = isl_schedule_node_get_ctx(node);
5638 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5639 return compute_next_band(node, graph, 1);
5640 if (graph->src_scc >= 0)
5641 return compute_split_schedule(node, graph);
5642 if (!empty)
5643 return compute_next_band(node, graph, 1);
5644 if (graph->scc > 1)
5645 return compute_component_schedule(node, graph, 1);
5646 if (!initialized && compute_maxvar(graph) < 0)
5647 return isl_schedule_node_free(node);
5648 if (isl_options_get_schedule_outer_coincidence(ctx))
5649 return carry_coincidence(node, graph);
5650 return carry_dependences(node, graph);
5653 if (!empty)
5654 return compute_next_band(node, graph, 1);
5655 return sort_statements(node, graph, initialized);
5658 /* Construct a band of schedule rows for a connected dependence graph.
5659 * The caller is responsible for determining the strongly connected
5660 * components and calling compute_maxvar first.
5662 * We try to find a sequence of as many schedule rows as possible that result
5663 * in non-negative dependence distances (independent of the previous rows
5664 * in the sequence, i.e., such that the sequence is tilable), with as
5665 * many of the initial rows as possible satisfying the coincidence constraints.
5666 * The computation stops if we can't find any more rows or if we have found
5667 * all the rows we wanted to find.
5669 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5670 * outermost dimension to satisfy the coincidence constraints. If this
5671 * turns out to be impossible, we fall back on the general scheme above
5672 * and try to carry as many dependences as possible.
5674 * If "graph" contains both condition and conditional validity dependences,
5675 * then we need to check that that the conditional schedule constraint
5676 * is satisfied, i.e., there are no violated conditional validity dependences
5677 * that are adjacent to any non-local condition dependences.
5678 * If there are, then we mark all those adjacent condition dependences
5679 * as local and recompute the current band. Those dependences that
5680 * are marked local will then be forced to be local.
5681 * The initial computation is performed with no dependences marked as local.
5682 * If we are lucky, then there will be no violated conditional validity
5683 * dependences adjacent to any non-local condition dependences.
5684 * Otherwise, we mark some additional condition dependences as local and
5685 * recompute. We continue this process until there are no violations left or
5686 * until we are no longer able to compute a schedule.
5687 * Since there are only a finite number of dependences,
5688 * there will only be a finite number of iterations.
5690 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5691 struct isl_sched_graph *graph)
5693 int has_coincidence;
5694 int use_coincidence;
5695 int force_coincidence = 0;
5696 int check_conditional;
5698 if (sort_sccs(graph) < 0)
5699 return isl_stat_error;
5701 clear_local_edges(graph);
5702 check_conditional = need_condition_check(graph);
5703 has_coincidence = has_any_coincidence(graph);
5705 if (ctx->opt->schedule_outer_coincidence)
5706 force_coincidence = 1;
5708 use_coincidence = has_coincidence;
5709 while (graph->n_row < graph->maxvar) {
5710 isl_vec *sol;
5711 int violated;
5712 int coincident;
5714 graph->src_scc = -1;
5715 graph->dst_scc = -1;
5717 if (setup_lp(ctx, graph, use_coincidence) < 0)
5718 return isl_stat_error;
5719 sol = solve_lp(ctx, graph);
5720 if (!sol)
5721 return isl_stat_error;
5722 if (sol->size == 0) {
5723 int empty = graph->n_total_row == graph->band_start;
5725 isl_vec_free(sol);
5726 if (use_coincidence && (!force_coincidence || !empty)) {
5727 use_coincidence = 0;
5728 continue;
5730 return isl_stat_ok;
5732 coincident = !has_coincidence || use_coincidence;
5733 if (update_schedule(graph, sol, coincident) < 0)
5734 return isl_stat_error;
5736 if (!check_conditional)
5737 continue;
5738 violated = has_violated_conditional_constraint(ctx, graph);
5739 if (violated < 0)
5740 return isl_stat_error;
5741 if (!violated)
5742 continue;
5743 if (reset_band(graph) < 0)
5744 return isl_stat_error;
5745 use_coincidence = has_coincidence;
5748 return isl_stat_ok;
5751 /* Compute a schedule for a connected dependence graph by considering
5752 * the graph as a whole and return the updated schedule node.
5754 * The actual schedule rows of the current band are computed by
5755 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5756 * care of integrating the band into "node" and continuing
5757 * the computation.
5759 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5760 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5762 isl_ctx *ctx;
5764 if (!node)
5765 return NULL;
5767 ctx = isl_schedule_node_get_ctx(node);
5768 if (compute_schedule_wcc_band(ctx, graph) < 0)
5769 return isl_schedule_node_free(node);
5771 return compute_schedule_finish_band(node, graph, 1);
5774 /* Clustering information used by compute_schedule_wcc_clustering.
5776 * "n" is the number of SCCs in the original dependence graph
5777 * "scc" is an array of "n" elements, each representing an SCC
5778 * of the original dependence graph. All entries in the same cluster
5779 * have the same number of schedule rows.
5780 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5781 * where each cluster is represented by the index of the first SCC
5782 * in the cluster. Initially, each SCC belongs to a cluster containing
5783 * only that SCC.
5785 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5786 * track of which SCCs need to be merged.
5788 * "cluster" contains the merged clusters of SCCs after the clustering
5789 * has completed.
5791 * "scc_node" is a temporary data structure used inside copy_partial.
5792 * For each SCC, it keeps track of the number of nodes in the SCC
5793 * that have already been copied.
5795 struct isl_clustering {
5796 int n;
5797 struct isl_sched_graph *scc;
5798 struct isl_sched_graph *cluster;
5799 int *scc_cluster;
5800 int *scc_node;
5801 int *scc_in_merge;
5804 /* Initialize the clustering data structure "c" from "graph".
5806 * In particular, allocate memory, extract the SCCs from "graph"
5807 * into c->scc, initialize scc_cluster and construct
5808 * a band of schedule rows for each SCC.
5809 * Within each SCC, there is only one SCC by definition.
5810 * Each SCC initially belongs to a cluster containing only that SCC.
5812 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5813 struct isl_sched_graph *graph)
5815 int i;
5817 c->n = graph->scc;
5818 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5819 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5820 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5821 c->scc_node = isl_calloc_array(ctx, int, c->n);
5822 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5823 if (!c->scc || !c->cluster ||
5824 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5825 return isl_stat_error;
5827 for (i = 0; i < c->n; ++i) {
5828 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5829 &edge_scc_exactly, i, &c->scc[i]) < 0)
5830 return isl_stat_error;
5831 c->scc[i].scc = 1;
5832 if (compute_maxvar(&c->scc[i]) < 0)
5833 return isl_stat_error;
5834 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5835 return isl_stat_error;
5836 c->scc_cluster[i] = i;
5839 return isl_stat_ok;
5842 /* Free all memory allocated for "c".
5844 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5846 int i;
5848 if (c->scc)
5849 for (i = 0; i < c->n; ++i)
5850 graph_free(ctx, &c->scc[i]);
5851 free(c->scc);
5852 if (c->cluster)
5853 for (i = 0; i < c->n; ++i)
5854 graph_free(ctx, &c->cluster[i]);
5855 free(c->cluster);
5856 free(c->scc_cluster);
5857 free(c->scc_node);
5858 free(c->scc_in_merge);
5861 /* Should we refrain from merging the cluster in "graph" with
5862 * any other cluster?
5863 * In particular, is its current schedule band empty and incomplete.
5865 static int bad_cluster(struct isl_sched_graph *graph)
5867 return graph->n_row < graph->maxvar &&
5868 graph->n_total_row == graph->band_start;
5871 /* Is "edge" a proximity edge with a non-empty dependence relation?
5873 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5875 if (!is_proximity(edge))
5876 return isl_bool_false;
5877 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5880 /* Return the index of an edge in "graph" that can be used to merge
5881 * two clusters in "c".
5882 * Return graph->n_edge if no such edge can be found.
5883 * Return -1 on error.
5885 * In particular, return a proximity edge between two clusters
5886 * that is not marked "no_merge" and such that neither of the
5887 * two clusters has an incomplete, empty band.
5889 * If there are multiple such edges, then try and find the most
5890 * appropriate edge to use for merging. In particular, pick the edge
5891 * with the greatest weight. If there are multiple of those,
5892 * then pick one with the shortest distance between
5893 * the two cluster representatives.
5895 static int find_proximity(struct isl_sched_graph *graph,
5896 struct isl_clustering *c)
5898 int i, best = graph->n_edge, best_dist, best_weight;
5900 for (i = 0; i < graph->n_edge; ++i) {
5901 struct isl_sched_edge *edge = &graph->edge[i];
5902 int dist, weight;
5903 isl_bool prox;
5905 prox = is_non_empty_proximity(edge);
5906 if (prox < 0)
5907 return -1;
5908 if (!prox)
5909 continue;
5910 if (edge->no_merge)
5911 continue;
5912 if (bad_cluster(&c->scc[edge->src->scc]) ||
5913 bad_cluster(&c->scc[edge->dst->scc]))
5914 continue;
5915 dist = c->scc_cluster[edge->dst->scc] -
5916 c->scc_cluster[edge->src->scc];
5917 if (dist == 0)
5918 continue;
5919 weight = edge->weight;
5920 if (best < graph->n_edge) {
5921 if (best_weight > weight)
5922 continue;
5923 if (best_weight == weight && best_dist <= dist)
5924 continue;
5926 best = i;
5927 best_dist = dist;
5928 best_weight = weight;
5931 return best;
5934 /* Internal data structure used in mark_merge_sccs.
5936 * "graph" is the dependence graph in which a strongly connected
5937 * component is constructed.
5938 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5939 * "src" and "dst" are the indices of the nodes that are being merged.
5941 struct isl_mark_merge_sccs_data {
5942 struct isl_sched_graph *graph;
5943 int *scc_cluster;
5944 int src;
5945 int dst;
5948 /* Check whether the cluster containing node "i" depends on the cluster
5949 * containing node "j". If "i" and "j" belong to the same cluster,
5950 * then they are taken to depend on each other to ensure that
5951 * the resulting strongly connected component consists of complete
5952 * clusters. Furthermore, if "i" and "j" are the two nodes that
5953 * are being merged, then they are taken to depend on each other as well.
5954 * Otherwise, check if there is a (conditional) validity dependence
5955 * from node[j] to node[i], forcing node[i] to follow node[j].
5957 static isl_bool cluster_follows(int i, int j, void *user)
5959 struct isl_mark_merge_sccs_data *data = user;
5960 struct isl_sched_graph *graph = data->graph;
5961 int *scc_cluster = data->scc_cluster;
5963 if (data->src == i && data->dst == j)
5964 return isl_bool_true;
5965 if (data->src == j && data->dst == i)
5966 return isl_bool_true;
5967 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5968 return isl_bool_true;
5970 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5973 /* Mark all SCCs that belong to either of the two clusters in "c"
5974 * connected by the edge in "graph" with index "edge", or to any
5975 * of the intermediate clusters.
5976 * The marking is recorded in c->scc_in_merge.
5978 * The given edge has been selected for merging two clusters,
5979 * meaning that there is at least a proximity edge between the two nodes.
5980 * However, there may also be (indirect) validity dependences
5981 * between the two nodes. When merging the two clusters, all clusters
5982 * containing one or more of the intermediate nodes along the
5983 * indirect validity dependences need to be merged in as well.
5985 * First collect all such nodes by computing the strongly connected
5986 * component (SCC) containing the two nodes connected by the edge, where
5987 * the two nodes are considered to depend on each other to make
5988 * sure they end up in the same SCC. Similarly, each node is considered
5989 * to depend on every other node in the same cluster to ensure
5990 * that the SCC consists of complete clusters.
5992 * Then the original SCCs that contain any of these nodes are marked
5993 * in c->scc_in_merge.
5995 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5996 int edge, struct isl_clustering *c)
5998 struct isl_mark_merge_sccs_data data;
5999 struct isl_tarjan_graph *g;
6000 int i;
6002 for (i = 0; i < c->n; ++i)
6003 c->scc_in_merge[i] = 0;
6005 data.graph = graph;
6006 data.scc_cluster = c->scc_cluster;
6007 data.src = graph->edge[edge].src - graph->node;
6008 data.dst = graph->edge[edge].dst - graph->node;
6010 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
6011 &cluster_follows, &data);
6012 if (!g)
6013 goto error;
6015 i = g->op;
6016 if (i < 3)
6017 isl_die(ctx, isl_error_internal,
6018 "expecting at least two nodes in component",
6019 goto error);
6020 if (g->order[--i] != -1)
6021 isl_die(ctx, isl_error_internal,
6022 "expecting end of component marker", goto error);
6024 for (--i; i >= 0 && g->order[i] != -1; --i) {
6025 int scc = graph->node[g->order[i]].scc;
6026 c->scc_in_merge[scc] = 1;
6029 isl_tarjan_graph_free(g);
6030 return isl_stat_ok;
6031 error:
6032 isl_tarjan_graph_free(g);
6033 return isl_stat_error;
6036 /* Construct the identifier "cluster_i".
6038 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
6040 char name[40];
6042 snprintf(name, sizeof(name), "cluster_%d", i);
6043 return isl_id_alloc(ctx, name, NULL);
6046 /* Construct the space of the cluster with index "i" containing
6047 * the strongly connected component "scc".
6049 * In particular, construct a space called cluster_i with dimension equal
6050 * to the number of schedule rows in the current band of "scc".
6052 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
6054 int nvar;
6055 isl_space *space;
6056 isl_id *id;
6058 nvar = scc->n_total_row - scc->band_start;
6059 space = isl_space_copy(scc->node[0].space);
6060 space = isl_space_params(space);
6061 space = isl_space_set_from_params(space);
6062 space = isl_space_add_dims(space, isl_dim_set, nvar);
6063 id = cluster_id(isl_space_get_ctx(space), i);
6064 space = isl_space_set_tuple_id(space, isl_dim_set, id);
6066 return space;
6069 /* Collect the domain of the graph for merging clusters.
6071 * In particular, for each cluster with first SCC "i", construct
6072 * a set in the space called cluster_i with dimension equal
6073 * to the number of schedule rows in the current band of the cluster.
6075 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
6076 struct isl_sched_graph *graph, struct isl_clustering *c)
6078 int i;
6079 isl_space *space;
6080 isl_union_set *domain;
6082 space = isl_space_params_alloc(ctx, 0);
6083 domain = isl_union_set_empty(space);
6085 for (i = 0; i < graph->scc; ++i) {
6086 isl_space *space;
6088 if (!c->scc_in_merge[i])
6089 continue;
6090 if (c->scc_cluster[i] != i)
6091 continue;
6092 space = cluster_space(&c->scc[i], i);
6093 domain = isl_union_set_add_set(domain, isl_set_universe(space));
6096 return domain;
6099 /* Construct a map from the original instances to the corresponding
6100 * cluster instance in the current bands of the clusters in "c".
6102 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
6103 struct isl_sched_graph *graph, struct isl_clustering *c)
6105 int i, j;
6106 isl_space *space;
6107 isl_union_map *cluster_map;
6109 space = isl_space_params_alloc(ctx, 0);
6110 cluster_map = isl_union_map_empty(space);
6111 for (i = 0; i < graph->scc; ++i) {
6112 int start, n;
6113 isl_id *id;
6115 if (!c->scc_in_merge[i])
6116 continue;
6118 id = cluster_id(ctx, c->scc_cluster[i]);
6119 start = c->scc[i].band_start;
6120 n = c->scc[i].n_total_row - start;
6121 for (j = 0; j < c->scc[i].n; ++j) {
6122 isl_multi_aff *ma;
6123 isl_map *map;
6124 struct isl_sched_node *node = &c->scc[i].node[j];
6126 ma = node_extract_partial_schedule_multi_aff(node,
6127 start, n);
6128 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
6129 isl_id_copy(id));
6130 map = isl_map_from_multi_aff(ma);
6131 cluster_map = isl_union_map_add_map(cluster_map, map);
6133 isl_id_free(id);
6136 return cluster_map;
6139 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6140 * that are not isl_edge_condition or isl_edge_conditional_validity.
6142 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
6143 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6144 __isl_take isl_schedule_constraints *sc)
6146 enum isl_edge_type t;
6148 if (!sc)
6149 return NULL;
6151 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
6152 if (t == isl_edge_condition ||
6153 t == isl_edge_conditional_validity)
6154 continue;
6155 if (!is_type(edge, t))
6156 continue;
6157 sc = isl_schedule_constraints_add(sc, t,
6158 isl_union_map_copy(umap));
6161 return sc;
6164 /* Add schedule constraints of types isl_edge_condition and
6165 * isl_edge_conditional_validity to "sc" by applying "umap" to
6166 * the domains of the wrapped relations in domain and range
6167 * of the corresponding tagged constraints of "edge".
6169 static __isl_give isl_schedule_constraints *add_conditional_constraints(
6170 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
6171 __isl_take isl_schedule_constraints *sc)
6173 enum isl_edge_type t;
6174 isl_union_map *tagged;
6176 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
6177 if (!is_type(edge, t))
6178 continue;
6179 if (t == isl_edge_condition)
6180 tagged = isl_union_map_copy(edge->tagged_condition);
6181 else
6182 tagged = isl_union_map_copy(edge->tagged_validity);
6183 tagged = isl_union_map_zip(tagged);
6184 tagged = isl_union_map_apply_domain(tagged,
6185 isl_union_map_copy(umap));
6186 tagged = isl_union_map_zip(tagged);
6187 sc = isl_schedule_constraints_add(sc, t, tagged);
6188 if (!sc)
6189 return NULL;
6192 return sc;
6195 /* Given a mapping "cluster_map" from the original instances to
6196 * the cluster instances, add schedule constraints on the clusters
6197 * to "sc" corresponding to the original constraints represented by "edge".
6199 * For non-tagged dependence constraints, the cluster constraints
6200 * are obtained by applying "cluster_map" to the edge->map.
6202 * For tagged dependence constraints, "cluster_map" needs to be applied
6203 * to the domains of the wrapped relations in domain and range
6204 * of the tagged dependence constraints. Pick out the mappings
6205 * from these domains from "cluster_map" and construct their product.
6206 * This mapping can then be applied to the pair of domains.
6208 static __isl_give isl_schedule_constraints *collect_edge_constraints(
6209 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
6210 __isl_take isl_schedule_constraints *sc)
6212 isl_union_map *umap;
6213 isl_space *space;
6214 isl_union_set *uset;
6215 isl_union_map *umap1, *umap2;
6217 if (!sc)
6218 return NULL;
6220 umap = isl_union_map_from_map(isl_map_copy(edge->map));
6221 umap = isl_union_map_apply_domain(umap,
6222 isl_union_map_copy(cluster_map));
6223 umap = isl_union_map_apply_range(umap,
6224 isl_union_map_copy(cluster_map));
6225 sc = add_non_conditional_constraints(edge, umap, sc);
6226 isl_union_map_free(umap);
6228 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
6229 return sc;
6231 space = isl_space_domain(isl_map_get_space(edge->map));
6232 uset = isl_union_set_from_set(isl_set_universe(space));
6233 umap1 = isl_union_map_copy(cluster_map);
6234 umap1 = isl_union_map_intersect_domain(umap1, uset);
6235 space = isl_space_range(isl_map_get_space(edge->map));
6236 uset = isl_union_set_from_set(isl_set_universe(space));
6237 umap2 = isl_union_map_copy(cluster_map);
6238 umap2 = isl_union_map_intersect_domain(umap2, uset);
6239 umap = isl_union_map_product(umap1, umap2);
6241 sc = add_conditional_constraints(edge, umap, sc);
6243 isl_union_map_free(umap);
6244 return sc;
6247 /* Given a mapping "cluster_map" from the original instances to
6248 * the cluster instances, add schedule constraints on the clusters
6249 * to "sc" corresponding to all edges in "graph" between nodes that
6250 * belong to SCCs that are marked for merging in "scc_in_merge".
6252 static __isl_give isl_schedule_constraints *collect_constraints(
6253 struct isl_sched_graph *graph, int *scc_in_merge,
6254 __isl_keep isl_union_map *cluster_map,
6255 __isl_take isl_schedule_constraints *sc)
6257 int i;
6259 for (i = 0; i < graph->n_edge; ++i) {
6260 struct isl_sched_edge *edge = &graph->edge[i];
6262 if (!scc_in_merge[edge->src->scc])
6263 continue;
6264 if (!scc_in_merge[edge->dst->scc])
6265 continue;
6266 sc = collect_edge_constraints(edge, cluster_map, sc);
6269 return sc;
6272 /* Construct a dependence graph for scheduling clusters with respect
6273 * to each other and store the result in "merge_graph".
6274 * In particular, the nodes of the graph correspond to the schedule
6275 * dimensions of the current bands of those clusters that have been
6276 * marked for merging in "c".
6278 * First construct an isl_schedule_constraints object for this domain
6279 * by transforming the edges in "graph" to the domain.
6280 * Then initialize a dependence graph for scheduling from these
6281 * constraints.
6283 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
6284 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6286 isl_union_set *domain;
6287 isl_union_map *cluster_map;
6288 isl_schedule_constraints *sc;
6289 isl_stat r;
6291 domain = collect_domain(ctx, graph, c);
6292 sc = isl_schedule_constraints_on_domain(domain);
6293 if (!sc)
6294 return isl_stat_error;
6295 cluster_map = collect_cluster_map(ctx, graph, c);
6296 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
6297 isl_union_map_free(cluster_map);
6299 r = graph_init(merge_graph, sc);
6301 isl_schedule_constraints_free(sc);
6303 return r;
6306 /* Compute the maximal number of remaining schedule rows that still need
6307 * to be computed for the nodes that belong to clusters with the maximal
6308 * dimension for the current band (i.e., the band that is to be merged).
6309 * Only clusters that are about to be merged are considered.
6310 * "maxvar" is the maximal dimension for the current band.
6311 * "c" contains information about the clusters.
6313 * Return the maximal number of remaining schedule rows or -1 on error.
6315 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
6317 int i, j;
6318 int max_slack;
6320 max_slack = 0;
6321 for (i = 0; i < c->n; ++i) {
6322 int nvar;
6323 struct isl_sched_graph *scc;
6325 if (!c->scc_in_merge[i])
6326 continue;
6327 scc = &c->scc[i];
6328 nvar = scc->n_total_row - scc->band_start;
6329 if (nvar != maxvar)
6330 continue;
6331 for (j = 0; j < scc->n; ++j) {
6332 struct isl_sched_node *node = &scc->node[j];
6333 int slack;
6335 if (node_update_vmap(node) < 0)
6336 return -1;
6337 slack = node->nvar - node->rank;
6338 if (slack > max_slack)
6339 max_slack = slack;
6343 return max_slack;
6346 /* If there are any clusters where the dimension of the current band
6347 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6348 * if there are any nodes in such a cluster where the number
6349 * of remaining schedule rows that still need to be computed
6350 * is greater than "max_slack", then return the smallest current band
6351 * dimension of all these clusters. Otherwise return the original value
6352 * of "maxvar". Return -1 in case of any error.
6353 * Only clusters that are about to be merged are considered.
6354 * "c" contains information about the clusters.
6356 static int limit_maxvar_to_slack(int maxvar, int max_slack,
6357 struct isl_clustering *c)
6359 int i, j;
6361 for (i = 0; i < c->n; ++i) {
6362 int nvar;
6363 struct isl_sched_graph *scc;
6365 if (!c->scc_in_merge[i])
6366 continue;
6367 scc = &c->scc[i];
6368 nvar = scc->n_total_row - scc->band_start;
6369 if (nvar >= maxvar)
6370 continue;
6371 for (j = 0; j < scc->n; ++j) {
6372 struct isl_sched_node *node = &scc->node[j];
6373 int slack;
6375 if (node_update_vmap(node) < 0)
6376 return -1;
6377 slack = node->nvar - node->rank;
6378 if (slack > max_slack) {
6379 maxvar = nvar;
6380 break;
6385 return maxvar;
6388 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6389 * that still need to be computed. In particular, if there is a node
6390 * in a cluster where the dimension of the current band is smaller
6391 * than merge_graph->maxvar, but the number of remaining schedule rows
6392 * is greater than that of any node in a cluster with the maximal
6393 * dimension for the current band (i.e., merge_graph->maxvar),
6394 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6395 * of those clusters. Without this adjustment, the total number of
6396 * schedule dimensions would be increased, resulting in a skewed view
6397 * of the number of coincident dimensions.
6398 * "c" contains information about the clusters.
6400 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6401 * then there is no point in attempting any merge since it will be rejected
6402 * anyway. Set merge_graph->maxvar to zero in such cases.
6404 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
6405 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
6407 int max_slack, maxvar;
6409 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
6410 if (max_slack < 0)
6411 return isl_stat_error;
6412 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
6413 if (maxvar < 0)
6414 return isl_stat_error;
6416 if (maxvar < merge_graph->maxvar) {
6417 if (isl_options_get_schedule_maximize_band_depth(ctx))
6418 merge_graph->maxvar = 0;
6419 else
6420 merge_graph->maxvar = maxvar;
6423 return isl_stat_ok;
6426 /* Return the number of coincident dimensions in the current band of "graph",
6427 * where the nodes of "graph" are assumed to be scheduled by a single band.
6429 static int get_n_coincident(struct isl_sched_graph *graph)
6431 int i;
6433 for (i = graph->band_start; i < graph->n_total_row; ++i)
6434 if (!graph->node[0].coincident[i])
6435 break;
6437 return i - graph->band_start;
6440 /* Should the clusters be merged based on the cluster schedule
6441 * in the current (and only) band of "merge_graph", given that
6442 * coincidence should be maximized?
6444 * If the number of coincident schedule dimensions in the merged band
6445 * would be less than the maximal number of coincident schedule dimensions
6446 * in any of the merged clusters, then the clusters should not be merged.
6448 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
6449 struct isl_sched_graph *merge_graph)
6451 int i;
6452 int n_coincident;
6453 int max_coincident;
6455 max_coincident = 0;
6456 for (i = 0; i < c->n; ++i) {
6457 if (!c->scc_in_merge[i])
6458 continue;
6459 n_coincident = get_n_coincident(&c->scc[i]);
6460 if (n_coincident > max_coincident)
6461 max_coincident = n_coincident;
6464 n_coincident = get_n_coincident(merge_graph);
6466 return n_coincident >= max_coincident;
6469 /* Return the transformation on "node" expressed by the current (and only)
6470 * band of "merge_graph" applied to the clusters in "c".
6472 * First find the representation of "node" in its SCC in "c" and
6473 * extract the transformation expressed by the current band.
6474 * Then extract the transformation applied by "merge_graph"
6475 * to the cluster to which this SCC belongs.
6476 * Combine the two to obtain the complete transformation on the node.
6478 * Note that the range of the first transformation is an anonymous space,
6479 * while the domain of the second is named "cluster_X". The range
6480 * of the former therefore needs to be adjusted before the two
6481 * can be combined.
6483 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
6484 struct isl_sched_node *node, struct isl_clustering *c,
6485 struct isl_sched_graph *merge_graph)
6487 struct isl_sched_node *scc_node, *cluster_node;
6488 int start, n;
6489 isl_id *id;
6490 isl_space *space;
6491 isl_multi_aff *ma, *ma2;
6493 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
6494 if (scc_node && !is_node(&c->scc[node->scc], scc_node))
6495 isl_die(ctx, isl_error_internal, "unable to find node",
6496 return NULL);
6497 start = c->scc[node->scc].band_start;
6498 n = c->scc[node->scc].n_total_row - start;
6499 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
6500 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
6501 cluster_node = graph_find_node(ctx, merge_graph, space);
6502 if (cluster_node && !is_node(merge_graph, cluster_node))
6503 isl_die(ctx, isl_error_internal, "unable to find cluster",
6504 space = isl_space_free(space));
6505 id = isl_space_get_tuple_id(space, isl_dim_set);
6506 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
6507 isl_space_free(space);
6508 n = merge_graph->n_total_row;
6509 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
6510 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
6512 return isl_map_from_multi_aff(ma);
6515 /* Give a set of distances "set", are they bounded by a small constant
6516 * in direction "pos"?
6517 * In practice, check if they are bounded by 2 by checking that there
6518 * are no elements with a value greater than or equal to 3 or
6519 * smaller than or equal to -3.
6521 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
6523 isl_bool bounded;
6524 isl_set *test;
6526 if (!set)
6527 return isl_bool_error;
6529 test = isl_set_copy(set);
6530 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
6531 bounded = isl_set_is_empty(test);
6532 isl_set_free(test);
6534 if (bounded < 0 || !bounded)
6535 return bounded;
6537 test = isl_set_copy(set);
6538 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
6539 bounded = isl_set_is_empty(test);
6540 isl_set_free(test);
6542 return bounded;
6545 /* Does the set "set" have a fixed (but possible parametric) value
6546 * at dimension "pos"?
6548 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
6550 isl_size n;
6551 isl_bool single;
6553 n = isl_set_dim(set, isl_dim_set);
6554 if (n < 0)
6555 return isl_bool_error;
6556 set = isl_set_copy(set);
6557 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
6558 set = isl_set_project_out(set, isl_dim_set, 0, pos);
6559 single = isl_set_is_singleton(set);
6560 isl_set_free(set);
6562 return single;
6565 /* Does "map" have a fixed (but possible parametric) value
6566 * at dimension "pos" of either its domain or its range?
6568 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
6570 isl_set *set;
6571 isl_bool single;
6573 set = isl_map_domain(isl_map_copy(map));
6574 single = has_single_value(set, pos);
6575 isl_set_free(set);
6577 if (single < 0 || single)
6578 return single;
6580 set = isl_map_range(isl_map_copy(map));
6581 single = has_single_value(set, pos);
6582 isl_set_free(set);
6584 return single;
6587 /* Does the edge "edge" from "graph" have bounded dependence distances
6588 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6590 * Extract the complete transformations of the source and destination
6591 * nodes of the edge, apply them to the edge constraints and
6592 * compute the differences. Finally, check if these differences are bounded
6593 * in each direction.
6595 * If the dimension of the band is greater than the number of
6596 * dimensions that can be expected to be optimized by the edge
6597 * (based on its weight), then also allow the differences to be unbounded
6598 * in the remaining dimensions, but only if either the source or
6599 * the destination has a fixed value in that direction.
6600 * This allows a statement that produces values that are used by
6601 * several instances of another statement to be merged with that
6602 * other statement.
6603 * However, merging such clusters will introduce an inherently
6604 * large proximity distance inside the merged cluster, meaning
6605 * that proximity distances will no longer be optimized in
6606 * subsequent merges. These merges are therefore only allowed
6607 * after all other possible merges have been tried.
6608 * The first time such a merge is encountered, the weight of the edge
6609 * is replaced by a negative weight. The second time (i.e., after
6610 * all merges over edges with a non-negative weight have been tried),
6611 * the merge is allowed.
6613 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
6614 struct isl_sched_graph *graph, struct isl_clustering *c,
6615 struct isl_sched_graph *merge_graph)
6617 int i, n_slack;
6618 isl_size n;
6619 isl_bool bounded;
6620 isl_map *map, *t;
6621 isl_set *dist;
6623 map = isl_map_copy(edge->map);
6624 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
6625 map = isl_map_apply_domain(map, t);
6626 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
6627 map = isl_map_apply_range(map, t);
6628 dist = isl_map_deltas(isl_map_copy(map));
6630 bounded = isl_bool_true;
6631 n = isl_set_dim(dist, isl_dim_set);
6632 if (n < 0)
6633 goto error;
6634 n_slack = n - edge->weight;
6635 if (edge->weight < 0)
6636 n_slack -= graph->max_weight + 1;
6637 for (i = 0; i < n; ++i) {
6638 isl_bool bounded_i, singular_i;
6640 bounded_i = distance_is_bounded(dist, i);
6641 if (bounded_i < 0)
6642 goto error;
6643 if (bounded_i)
6644 continue;
6645 if (edge->weight >= 0)
6646 bounded = isl_bool_false;
6647 n_slack--;
6648 if (n_slack < 0)
6649 break;
6650 singular_i = has_singular_src_or_dst(map, i);
6651 if (singular_i < 0)
6652 goto error;
6653 if (singular_i)
6654 continue;
6655 bounded = isl_bool_false;
6656 break;
6658 if (!bounded && i >= n && edge->weight >= 0)
6659 edge->weight -= graph->max_weight + 1;
6660 isl_map_free(map);
6661 isl_set_free(dist);
6663 return bounded;
6664 error:
6665 isl_map_free(map);
6666 isl_set_free(dist);
6667 return isl_bool_error;
6670 /* Should the clusters be merged based on the cluster schedule
6671 * in the current (and only) band of "merge_graph"?
6672 * "graph" is the original dependence graph, while "c" records
6673 * which SCCs are involved in the latest merge.
6675 * In particular, is there at least one proximity constraint
6676 * that is optimized by the merge?
6678 * A proximity constraint is considered to be optimized
6679 * if the dependence distances are small.
6681 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6682 struct isl_sched_graph *graph, struct isl_clustering *c,
6683 struct isl_sched_graph *merge_graph)
6685 int i;
6687 for (i = 0; i < graph->n_edge; ++i) {
6688 struct isl_sched_edge *edge = &graph->edge[i];
6689 isl_bool bounded;
6691 if (!is_proximity(edge))
6692 continue;
6693 if (!c->scc_in_merge[edge->src->scc])
6694 continue;
6695 if (!c->scc_in_merge[edge->dst->scc])
6696 continue;
6697 if (c->scc_cluster[edge->dst->scc] ==
6698 c->scc_cluster[edge->src->scc])
6699 continue;
6700 bounded = has_bounded_distances(ctx, edge, graph, c,
6701 merge_graph);
6702 if (bounded < 0 || bounded)
6703 return bounded;
6706 return isl_bool_false;
6709 /* Should the clusters be merged based on the cluster schedule
6710 * in the current (and only) band of "merge_graph"?
6711 * "graph" is the original dependence graph, while "c" records
6712 * which SCCs are involved in the latest merge.
6714 * If the current band is empty, then the clusters should not be merged.
6716 * If the band depth should be maximized and the merge schedule
6717 * is incomplete (meaning that the dimension of some of the schedule
6718 * bands in the original schedule will be reduced), then the clusters
6719 * should not be merged.
6721 * If the schedule_maximize_coincidence option is set, then check that
6722 * the number of coincident schedule dimensions is not reduced.
6724 * Finally, only allow the merge if at least one proximity
6725 * constraint is optimized.
6727 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6728 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6730 if (merge_graph->n_total_row == merge_graph->band_start)
6731 return isl_bool_false;
6733 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6734 merge_graph->n_total_row < merge_graph->maxvar)
6735 return isl_bool_false;
6737 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6738 isl_bool ok;
6740 ok = ok_to_merge_coincident(c, merge_graph);
6741 if (ok < 0 || !ok)
6742 return ok;
6745 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6748 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6749 * of the schedule in "node" and return the result.
6751 * That is, essentially compute
6753 * T * N(first:first+n-1)
6755 * taking into account the constant term and the parameter coefficients
6756 * in "t_node".
6758 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6759 struct isl_sched_node *t_node, struct isl_sched_node *node,
6760 int first, int n)
6762 int i, j;
6763 isl_mat *t;
6764 isl_size n_row, n_col;
6765 int n_param, n_var;
6767 n_param = node->nparam;
6768 n_var = node->nvar;
6769 n_row = isl_mat_rows(t_node->sched);
6770 n_col = isl_mat_cols(node->sched);
6771 if (n_row < 0 || n_col < 0)
6772 return NULL;
6773 t = isl_mat_alloc(ctx, n_row, n_col);
6774 if (!t)
6775 return NULL;
6776 for (i = 0; i < n_row; ++i) {
6777 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6778 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6779 for (j = 0; j < n; ++j)
6780 isl_seq_addmul(t->row[i],
6781 t_node->sched->row[i][1 + n_param + j],
6782 node->sched->row[first + j],
6783 1 + n_param + n_var);
6785 return t;
6788 /* Apply the cluster schedule in "t_node" to the current band
6789 * schedule of the nodes in "graph".
6791 * In particular, replace the rows starting at band_start
6792 * by the result of applying the cluster schedule in "t_node"
6793 * to the original rows.
6795 * The coincidence of the schedule is determined by the coincidence
6796 * of the cluster schedule.
6798 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6799 struct isl_sched_node *t_node)
6801 int i, j;
6802 isl_size n_new;
6803 int start, n;
6805 start = graph->band_start;
6806 n = graph->n_total_row - start;
6808 n_new = isl_mat_rows(t_node->sched);
6809 if (n_new < 0)
6810 return isl_stat_error;
6811 for (i = 0; i < graph->n; ++i) {
6812 struct isl_sched_node *node = &graph->node[i];
6813 isl_mat *t;
6815 t = node_transformation(ctx, t_node, node, start, n);
6816 node->sched = isl_mat_drop_rows(node->sched, start, n);
6817 node->sched = isl_mat_concat(node->sched, t);
6818 node->sched_map = isl_map_free(node->sched_map);
6819 if (!node->sched)
6820 return isl_stat_error;
6821 for (j = 0; j < n_new; ++j)
6822 node->coincident[start + j] = t_node->coincident[j];
6824 graph->n_total_row -= n;
6825 graph->n_row -= n;
6826 graph->n_total_row += n_new;
6827 graph->n_row += n_new;
6829 return isl_stat_ok;
6832 /* Merge the clusters marked for merging in "c" into a single
6833 * cluster using the cluster schedule in the current band of "merge_graph".
6834 * The representative SCC for the new cluster is the SCC with
6835 * the smallest index.
6837 * The current band schedule of each SCC in the new cluster is obtained
6838 * by applying the schedule of the corresponding original cluster
6839 * to the original band schedule.
6840 * All SCCs in the new cluster have the same number of schedule rows.
6842 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6843 struct isl_sched_graph *merge_graph)
6845 int i;
6846 int cluster = -1;
6847 isl_space *space;
6849 for (i = 0; i < c->n; ++i) {
6850 struct isl_sched_node *node;
6852 if (!c->scc_in_merge[i])
6853 continue;
6854 if (cluster < 0)
6855 cluster = i;
6856 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6857 node = graph_find_node(ctx, merge_graph, space);
6858 isl_space_free(space);
6859 if (!node)
6860 return isl_stat_error;
6861 if (!is_node(merge_graph, node))
6862 isl_die(ctx, isl_error_internal,
6863 "unable to find cluster",
6864 return isl_stat_error);
6865 if (transform(ctx, &c->scc[i], node) < 0)
6866 return isl_stat_error;
6867 c->scc_cluster[i] = cluster;
6870 return isl_stat_ok;
6873 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6874 * by scheduling the current cluster bands with respect to each other.
6876 * Construct a dependence graph with a space for each cluster and
6877 * with the coordinates of each space corresponding to the schedule
6878 * dimensions of the current band of that cluster.
6879 * Construct a cluster schedule in this cluster dependence graph and
6880 * apply it to the current cluster bands if it is applicable
6881 * according to ok_to_merge.
6883 * If the number of remaining schedule dimensions in a cluster
6884 * with a non-maximal current schedule dimension is greater than
6885 * the number of remaining schedule dimensions in clusters
6886 * with a maximal current schedule dimension, then restrict
6887 * the number of rows to be computed in the cluster schedule
6888 * to the minimal such non-maximal current schedule dimension.
6889 * Do this by adjusting merge_graph.maxvar.
6891 * Return isl_bool_true if the clusters have effectively been merged
6892 * into a single cluster.
6894 * Note that since the standard scheduling algorithm minimizes the maximal
6895 * distance over proximity constraints, the proximity constraints between
6896 * the merged clusters may not be optimized any further than what is
6897 * sufficient to bring the distances within the limits of the internal
6898 * proximity constraints inside the individual clusters.
6899 * It may therefore make sense to perform an additional translation step
6900 * to bring the clusters closer to each other, while maintaining
6901 * the linear part of the merging schedule found using the standard
6902 * scheduling algorithm.
6904 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6905 struct isl_clustering *c)
6907 struct isl_sched_graph merge_graph = { 0 };
6908 isl_bool merged;
6910 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6911 goto error;
6913 if (compute_maxvar(&merge_graph) < 0)
6914 goto error;
6915 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6916 goto error;
6917 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6918 goto error;
6919 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6920 if (merged && merge(ctx, c, &merge_graph) < 0)
6921 goto error;
6923 graph_free(ctx, &merge_graph);
6924 return merged;
6925 error:
6926 graph_free(ctx, &merge_graph);
6927 return isl_bool_error;
6930 /* Is there any edge marked "no_merge" between two SCCs that are
6931 * about to be merged (i.e., that are set in "scc_in_merge")?
6932 * "merge_edge" is the proximity edge along which the clusters of SCCs
6933 * are going to be merged.
6935 * If there is any edge between two SCCs with a negative weight,
6936 * while the weight of "merge_edge" is non-negative, then this
6937 * means that the edge was postponed. "merge_edge" should then
6938 * also be postponed since merging along the edge with negative weight should
6939 * be postponed until all edges with non-negative weight have been tried.
6940 * Replace the weight of "merge_edge" by a negative weight as well and
6941 * tell the caller not to attempt a merge.
6943 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6944 struct isl_sched_edge *merge_edge)
6946 int i;
6948 for (i = 0; i < graph->n_edge; ++i) {
6949 struct isl_sched_edge *edge = &graph->edge[i];
6951 if (!scc_in_merge[edge->src->scc])
6952 continue;
6953 if (!scc_in_merge[edge->dst->scc])
6954 continue;
6955 if (edge->no_merge)
6956 return 1;
6957 if (merge_edge->weight >= 0 && edge->weight < 0) {
6958 merge_edge->weight -= graph->max_weight + 1;
6959 return 1;
6963 return 0;
6966 /* Merge the two clusters in "c" connected by the edge in "graph"
6967 * with index "edge" into a single cluster.
6968 * If it turns out to be impossible to merge these two clusters,
6969 * then mark the edge as "no_merge" such that it will not be
6970 * considered again.
6972 * First mark all SCCs that need to be merged. This includes the SCCs
6973 * in the two clusters, but it may also include the SCCs
6974 * of intermediate clusters.
6975 * If there is already a no_merge edge between any pair of such SCCs,
6976 * then simply mark the current edge as no_merge as well.
6977 * Likewise, if any of those edges was postponed by has_bounded_distances,
6978 * then postpone the current edge as well.
6979 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6980 * if the clusters did not end up getting merged, unless the non-merge
6981 * is due to the fact that the edge was postponed. This postponement
6982 * can be recognized by a change in weight (from non-negative to negative).
6984 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6985 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6987 isl_bool merged;
6988 int edge_weight = graph->edge[edge].weight;
6990 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6991 return isl_stat_error;
6993 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6994 merged = isl_bool_false;
6995 else
6996 merged = try_merge(ctx, graph, c);
6997 if (merged < 0)
6998 return isl_stat_error;
6999 if (!merged && edge_weight == graph->edge[edge].weight)
7000 graph->edge[edge].no_merge = 1;
7002 return isl_stat_ok;
7005 /* Does "node" belong to the cluster identified by "cluster"?
7007 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
7009 return node->cluster == cluster;
7012 /* Does "edge" connect two nodes belonging to the cluster
7013 * identified by "cluster"?
7015 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
7017 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
7020 /* Swap the schedule of "node1" and "node2".
7021 * Both nodes have been derived from the same node in a common parent graph.
7022 * Since the "coincident" field is shared with that node
7023 * in the parent graph, there is no need to also swap this field.
7025 static void swap_sched(struct isl_sched_node *node1,
7026 struct isl_sched_node *node2)
7028 isl_mat *sched;
7029 isl_map *sched_map;
7031 sched = node1->sched;
7032 node1->sched = node2->sched;
7033 node2->sched = sched;
7035 sched_map = node1->sched_map;
7036 node1->sched_map = node2->sched_map;
7037 node2->sched_map = sched_map;
7040 /* Copy the current band schedule from the SCCs that form the cluster
7041 * with index "pos" to the actual cluster at position "pos".
7042 * By construction, the index of the first SCC that belongs to the cluster
7043 * is also "pos".
7045 * The order of the nodes inside both the SCCs and the cluster
7046 * is assumed to be same as the order in the original "graph".
7048 * Since the SCC graphs will no longer be used after this function,
7049 * the schedules are actually swapped rather than copied.
7051 static isl_stat copy_partial(struct isl_sched_graph *graph,
7052 struct isl_clustering *c, int pos)
7054 int i, j;
7056 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
7057 c->cluster[pos].n_row = c->scc[pos].n_row;
7058 c->cluster[pos].maxvar = c->scc[pos].maxvar;
7059 j = 0;
7060 for (i = 0; i < graph->n; ++i) {
7061 int k;
7062 int s;
7064 if (graph->node[i].cluster != pos)
7065 continue;
7066 s = graph->node[i].scc;
7067 k = c->scc_node[s]++;
7068 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
7069 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
7070 c->cluster[pos].maxvar = c->scc[s].maxvar;
7071 ++j;
7074 return isl_stat_ok;
7077 /* Is there a (conditional) validity dependence from node[j] to node[i],
7078 * forcing node[i] to follow node[j] or do the nodes belong to the same
7079 * cluster?
7081 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
7083 struct isl_sched_graph *graph = user;
7085 if (graph->node[i].cluster == graph->node[j].cluster)
7086 return isl_bool_true;
7087 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
7090 /* Extract the merged clusters of SCCs in "graph", sort them, and
7091 * store them in c->clusters. Update c->scc_cluster accordingly.
7093 * First keep track of the cluster containing the SCC to which a node
7094 * belongs in the node itself.
7095 * Then extract the clusters into c->clusters, copying the current
7096 * band schedule from the SCCs that belong to the cluster.
7097 * Do this only once per cluster.
7099 * Finally, topologically sort the clusters and update c->scc_cluster
7100 * to match the new scc numbering. While the SCCs were originally
7101 * sorted already, some SCCs that depend on some other SCCs may
7102 * have been merged with SCCs that appear before these other SCCs.
7103 * A reordering may therefore be required.
7105 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
7106 struct isl_clustering *c)
7108 int i;
7110 for (i = 0; i < graph->n; ++i)
7111 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
7113 for (i = 0; i < graph->scc; ++i) {
7114 if (c->scc_cluster[i] != i)
7115 continue;
7116 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
7117 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
7118 return isl_stat_error;
7119 c->cluster[i].src_scc = -1;
7120 c->cluster[i].dst_scc = -1;
7121 if (copy_partial(graph, c, i) < 0)
7122 return isl_stat_error;
7125 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
7126 return isl_stat_error;
7127 for (i = 0; i < graph->n; ++i)
7128 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
7130 return isl_stat_ok;
7133 /* Compute weights on the proximity edges of "graph" that can
7134 * be used by find_proximity to find the most appropriate
7135 * proximity edge to use to merge two clusters in "c".
7136 * The weights are also used by has_bounded_distances to determine
7137 * whether the merge should be allowed.
7138 * Store the maximum of the computed weights in graph->max_weight.
7140 * The computed weight is a measure for the number of remaining schedule
7141 * dimensions that can still be completely aligned.
7142 * In particular, compute the number of equalities between
7143 * input dimensions and output dimensions in the proximity constraints.
7144 * The directions that are already handled by outer schedule bands
7145 * are projected out prior to determining this number.
7147 * Edges that will never be considered by find_proximity are ignored.
7149 static isl_stat compute_weights(struct isl_sched_graph *graph,
7150 struct isl_clustering *c)
7152 int i;
7154 graph->max_weight = 0;
7156 for (i = 0; i < graph->n_edge; ++i) {
7157 struct isl_sched_edge *edge = &graph->edge[i];
7158 struct isl_sched_node *src = edge->src;
7159 struct isl_sched_node *dst = edge->dst;
7160 isl_basic_map *hull;
7161 isl_bool prox;
7162 isl_size n_in, n_out;
7164 prox = is_non_empty_proximity(edge);
7165 if (prox < 0)
7166 return isl_stat_error;
7167 if (!prox)
7168 continue;
7169 if (bad_cluster(&c->scc[edge->src->scc]) ||
7170 bad_cluster(&c->scc[edge->dst->scc]))
7171 continue;
7172 if (c->scc_cluster[edge->dst->scc] ==
7173 c->scc_cluster[edge->src->scc])
7174 continue;
7176 hull = isl_map_affine_hull(isl_map_copy(edge->map));
7177 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
7178 isl_mat_copy(src->vmap));
7179 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
7180 isl_mat_copy(dst->vmap));
7181 hull = isl_basic_map_project_out(hull,
7182 isl_dim_in, 0, src->rank);
7183 hull = isl_basic_map_project_out(hull,
7184 isl_dim_out, 0, dst->rank);
7185 hull = isl_basic_map_remove_divs(hull);
7186 n_in = isl_basic_map_dim(hull, isl_dim_in);
7187 n_out = isl_basic_map_dim(hull, isl_dim_out);
7188 if (n_in < 0 || n_out < 0)
7189 hull = isl_basic_map_free(hull);
7190 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7191 isl_dim_in, 0, n_in);
7192 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
7193 isl_dim_out, 0, n_out);
7194 if (!hull)
7195 return isl_stat_error;
7196 edge->weight = isl_basic_map_n_equality(hull);
7197 isl_basic_map_free(hull);
7199 if (edge->weight > graph->max_weight)
7200 graph->max_weight = edge->weight;
7203 return isl_stat_ok;
7206 /* Call compute_schedule_finish_band on each of the clusters in "c"
7207 * in their topological order. This order is determined by the scc
7208 * fields of the nodes in "graph".
7209 * Combine the results in a sequence expressing the topological order.
7211 * If there is only one cluster left, then there is no need to introduce
7212 * a sequence node. Also, in this case, the cluster necessarily contains
7213 * the SCC at position 0 in the original graph and is therefore also
7214 * stored in the first cluster of "c".
7216 static __isl_give isl_schedule_node *finish_bands_clustering(
7217 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7218 struct isl_clustering *c)
7220 int i;
7221 isl_ctx *ctx;
7222 isl_union_set_list *filters;
7224 if (graph->scc == 1)
7225 return compute_schedule_finish_band(node, &c->cluster[0], 0);
7227 ctx = isl_schedule_node_get_ctx(node);
7229 filters = extract_sccs(ctx, graph);
7230 node = isl_schedule_node_insert_sequence(node, filters);
7232 for (i = 0; i < graph->scc; ++i) {
7233 int j = c->scc_cluster[i];
7234 node = isl_schedule_node_child(node, i);
7235 node = isl_schedule_node_child(node, 0);
7236 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
7237 node = isl_schedule_node_parent(node);
7238 node = isl_schedule_node_parent(node);
7241 return node;
7244 /* Compute a schedule for a connected dependence graph by first considering
7245 * each strongly connected component (SCC) in the graph separately and then
7246 * incrementally combining them into clusters.
7247 * Return the updated schedule node.
7249 * Initially, each cluster consists of a single SCC, each with its
7250 * own band schedule. The algorithm then tries to merge pairs
7251 * of clusters along a proximity edge until no more suitable
7252 * proximity edges can be found. During this merging, the schedule
7253 * is maintained in the individual SCCs.
7254 * After the merging is completed, the full resulting clusters
7255 * are extracted and in finish_bands_clustering,
7256 * compute_schedule_finish_band is called on each of them to integrate
7257 * the band into "node" and to continue the computation.
7259 * compute_weights initializes the weights that are used by find_proximity.
7261 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
7262 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7264 isl_ctx *ctx;
7265 struct isl_clustering c;
7266 int i;
7268 ctx = isl_schedule_node_get_ctx(node);
7270 if (clustering_init(ctx, &c, graph) < 0)
7271 goto error;
7273 if (compute_weights(graph, &c) < 0)
7274 goto error;
7276 for (;;) {
7277 i = find_proximity(graph, &c);
7278 if (i < 0)
7279 goto error;
7280 if (i >= graph->n_edge)
7281 break;
7282 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
7283 goto error;
7286 if (extract_clusters(ctx, graph, &c) < 0)
7287 goto error;
7289 node = finish_bands_clustering(node, graph, &c);
7291 clustering_free(ctx, &c);
7292 return node;
7293 error:
7294 clustering_free(ctx, &c);
7295 return isl_schedule_node_free(node);
7298 /* Compute a schedule for a connected dependence graph and return
7299 * the updated schedule node.
7301 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7302 * as many validity dependences as possible. When all validity dependences
7303 * are satisfied we extend the schedule to a full-dimensional schedule.
7305 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7306 * depending on whether the user has selected the option to try and
7307 * compute a schedule for the entire (weakly connected) component first.
7308 * If there is only a single strongly connected component (SCC), then
7309 * there is no point in trying to combine SCCs
7310 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7311 * is called instead.
7313 static __isl_give isl_schedule_node *compute_schedule_wcc(
7314 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
7316 isl_ctx *ctx;
7318 if (!node)
7319 return NULL;
7321 ctx = isl_schedule_node_get_ctx(node);
7322 if (detect_sccs(ctx, graph) < 0)
7323 return isl_schedule_node_free(node);
7325 if (compute_maxvar(graph) < 0)
7326 return isl_schedule_node_free(node);
7328 if (need_feautrier_step(ctx, graph))
7329 return compute_schedule_wcc_feautrier(node, graph);
7331 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
7332 return compute_schedule_wcc_whole(node, graph);
7333 else
7334 return compute_schedule_wcc_clustering(node, graph);
7337 /* Compute a schedule for each group of nodes identified by node->scc
7338 * separately and then combine them in a sequence node (or as set node
7339 * if graph->weak is set) inserted at position "node" of the schedule tree.
7340 * Return the updated schedule node.
7342 * If "wcc" is set then each of the groups belongs to a single
7343 * weakly connected component in the dependence graph so that
7344 * there is no need for compute_sub_schedule to look for weakly
7345 * connected components.
7347 * If a set node would be introduced and if the number of components
7348 * is equal to the number of nodes, then check if the schedule
7349 * is already complete. If so, a redundant set node would be introduced
7350 * (without any further descendants) stating that the statements
7351 * can be executed in arbitrary order, which is also expressed
7352 * by the absence of any node. Refrain from inserting any nodes
7353 * in this case and simply return.
7355 static __isl_give isl_schedule_node *compute_component_schedule(
7356 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
7357 int wcc)
7359 int component;
7360 isl_ctx *ctx;
7361 isl_union_set_list *filters;
7363 if (!node)
7364 return NULL;
7366 if (graph->weak && graph->scc == graph->n) {
7367 if (compute_maxvar(graph) < 0)
7368 return isl_schedule_node_free(node);
7369 if (graph->n_row >= graph->maxvar)
7370 return node;
7373 ctx = isl_schedule_node_get_ctx(node);
7374 filters = extract_sccs(ctx, graph);
7375 if (graph->weak)
7376 node = isl_schedule_node_insert_set(node, filters);
7377 else
7378 node = isl_schedule_node_insert_sequence(node, filters);
7380 for (component = 0; component < graph->scc; ++component) {
7381 node = isl_schedule_node_child(node, component);
7382 node = isl_schedule_node_child(node, 0);
7383 node = compute_sub_schedule(node, ctx, graph,
7384 &node_scc_exactly,
7385 &edge_scc_exactly, component, wcc);
7386 node = isl_schedule_node_parent(node);
7387 node = isl_schedule_node_parent(node);
7390 return node;
7393 /* Compute a schedule for the given dependence graph and insert it at "node".
7394 * Return the updated schedule node.
7396 * We first check if the graph is connected (through validity and conditional
7397 * validity dependences) and, if not, compute a schedule
7398 * for each component separately.
7399 * If the schedule_serialize_sccs option is set, then we check for strongly
7400 * connected components instead and compute a separate schedule for
7401 * each such strongly connected component.
7403 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
7404 struct isl_sched_graph *graph)
7406 isl_ctx *ctx;
7408 if (!node)
7409 return NULL;
7411 ctx = isl_schedule_node_get_ctx(node);
7412 if (isl_options_get_schedule_serialize_sccs(ctx)) {
7413 if (detect_sccs(ctx, graph) < 0)
7414 return isl_schedule_node_free(node);
7415 } else {
7416 if (detect_wccs(ctx, graph) < 0)
7417 return isl_schedule_node_free(node);
7420 if (graph->scc > 1)
7421 return compute_component_schedule(node, graph, 1);
7423 return compute_schedule_wcc(node, graph);
7426 /* Compute a schedule on sc->domain that respects the given schedule
7427 * constraints.
7429 * In particular, the schedule respects all the validity dependences.
7430 * If the default isl scheduling algorithm is used, it tries to minimize
7431 * the dependence distances over the proximity dependences.
7432 * If Feautrier's scheduling algorithm is used, the proximity dependence
7433 * distances are only minimized during the extension to a full-dimensional
7434 * schedule.
7436 * If there are any condition and conditional validity dependences,
7437 * then the conditional validity dependences may be violated inside
7438 * a tilable band, provided they have no adjacent non-local
7439 * condition dependences.
7441 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
7442 __isl_take isl_schedule_constraints *sc)
7444 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
7445 struct isl_sched_graph graph = { 0 };
7446 isl_schedule *sched;
7447 isl_schedule_node *node;
7448 isl_union_set *domain;
7449 isl_size n;
7451 sc = isl_schedule_constraints_align_params(sc);
7453 domain = isl_schedule_constraints_get_domain(sc);
7454 n = isl_union_set_n_set(domain);
7455 if (n == 0) {
7456 isl_schedule_constraints_free(sc);
7457 return isl_schedule_from_domain(domain);
7460 if (n < 0 || graph_init(&graph, sc) < 0)
7461 domain = isl_union_set_free(domain);
7463 node = isl_schedule_node_from_domain(domain);
7464 node = isl_schedule_node_child(node, 0);
7465 if (graph.n > 0)
7466 node = compute_schedule(node, &graph);
7467 sched = isl_schedule_node_get_schedule(node);
7468 isl_schedule_node_free(node);
7470 graph_free(ctx, &graph);
7471 isl_schedule_constraints_free(sc);
7473 return sched;
7476 /* Compute a schedule for the given union of domains that respects
7477 * all the validity dependences and minimizes
7478 * the dependence distances over the proximity dependences.
7480 * This function is kept for backward compatibility.
7482 __isl_give isl_schedule *isl_union_set_compute_schedule(
7483 __isl_take isl_union_set *domain,
7484 __isl_take isl_union_map *validity,
7485 __isl_take isl_union_map *proximity)
7487 isl_schedule_constraints *sc;
7489 sc = isl_schedule_constraints_on_domain(domain);
7490 sc = isl_schedule_constraints_set_validity(sc, validity);
7491 sc = isl_schedule_constraints_set_proximity(sc, proximity);
7493 return isl_schedule_constraints_compute_schedule(sc);