2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
17 #include <isl_union_map_private.h>
18 #include <isl_polynomial_private.h>
19 #include <isl_point_private.h>
20 #include <isl_dim_private.h>
21 #include <isl_div_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_range.h>
25 static unsigned pos(__isl_keep isl_dim
*dim
, enum isl_dim_type type
)
28 case isl_dim_param
: return 0;
29 case isl_dim_in
: return dim
->nparam
;
30 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
35 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
43 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
48 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
50 return (struct isl_upoly_cst
*)up
;
53 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
58 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
60 return (struct isl_upoly_rec
*)up
;
63 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
64 __isl_keep
struct isl_upoly
*up2
)
67 struct isl_upoly_rec
*rec1
, *rec2
;
73 if (up1
->var
!= up2
->var
)
75 if (isl_upoly_is_cst(up1
)) {
76 struct isl_upoly_cst
*cst1
, *cst2
;
77 cst1
= isl_upoly_as_cst(up1
);
78 cst2
= isl_upoly_as_cst(up2
);
81 return isl_int_eq(cst1
->n
, cst2
->n
) &&
82 isl_int_eq(cst1
->d
, cst2
->d
);
85 rec1
= isl_upoly_as_rec(up1
);
86 rec2
= isl_upoly_as_rec(up2
);
90 if (rec1
->n
!= rec2
->n
)
93 for (i
= 0; i
< rec1
->n
; ++i
) {
94 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
102 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
104 struct isl_upoly_cst
*cst
;
108 if (!isl_upoly_is_cst(up
))
111 cst
= isl_upoly_as_cst(up
);
115 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
118 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
120 struct isl_upoly_cst
*cst
;
124 if (!isl_upoly_is_cst(up
))
127 cst
= isl_upoly_as_cst(up
);
131 return isl_int_sgn(cst
->n
);
134 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
136 struct isl_upoly_cst
*cst
;
140 if (!isl_upoly_is_cst(up
))
143 cst
= isl_upoly_as_cst(up
);
147 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
150 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
152 struct isl_upoly_cst
*cst
;
156 if (!isl_upoly_is_cst(up
))
159 cst
= isl_upoly_as_cst(up
);
163 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
166 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
168 struct isl_upoly_cst
*cst
;
172 if (!isl_upoly_is_cst(up
))
175 cst
= isl_upoly_as_cst(up
);
179 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
182 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
184 struct isl_upoly_cst
*cst
;
188 if (!isl_upoly_is_cst(up
))
191 cst
= isl_upoly_as_cst(up
);
195 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
198 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
200 struct isl_upoly_cst
*cst
;
204 if (!isl_upoly_is_cst(up
))
207 cst
= isl_upoly_as_cst(up
);
211 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
214 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
216 struct isl_upoly_cst
*cst
;
218 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
227 isl_int_init(cst
->n
);
228 isl_int_init(cst
->d
);
233 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
235 struct isl_upoly_cst
*cst
;
237 cst
= isl_upoly_cst_alloc(ctx
);
241 isl_int_set_si(cst
->n
, 0);
242 isl_int_set_si(cst
->d
, 1);
247 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
249 struct isl_upoly_cst
*cst
;
251 cst
= isl_upoly_cst_alloc(ctx
);
255 isl_int_set_si(cst
->n
, 1);
256 isl_int_set_si(cst
->d
, 1);
261 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
263 struct isl_upoly_cst
*cst
;
265 cst
= isl_upoly_cst_alloc(ctx
);
269 isl_int_set_si(cst
->n
, 1);
270 isl_int_set_si(cst
->d
, 0);
275 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
277 struct isl_upoly_cst
*cst
;
279 cst
= isl_upoly_cst_alloc(ctx
);
283 isl_int_set_si(cst
->n
, -1);
284 isl_int_set_si(cst
->d
, 0);
289 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
291 struct isl_upoly_cst
*cst
;
293 cst
= isl_upoly_cst_alloc(ctx
);
297 isl_int_set_si(cst
->n
, 0);
298 isl_int_set_si(cst
->d
, 0);
303 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
304 isl_int n
, isl_int d
)
306 struct isl_upoly_cst
*cst
;
308 cst
= isl_upoly_cst_alloc(ctx
);
312 isl_int_set(cst
->n
, n
);
313 isl_int_set(cst
->d
, d
);
318 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
321 struct isl_upoly_rec
*rec
;
323 isl_assert(ctx
, var
>= 0, return NULL
);
324 isl_assert(ctx
, size
>= 0, return NULL
);
325 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
326 sizeof(struct isl_upoly_rec
) +
327 (size
- 1) * sizeof(struct isl_upoly
*));
342 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_dim(
343 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*dim
)
345 qp
= isl_qpolynomial_cow(qp
);
349 isl_dim_free(qp
->dim
);
354 isl_qpolynomial_free(qp
);
359 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
361 return qp
? qp
->dim
->ctx
: NULL
;
364 __isl_give isl_dim
*isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial
*qp
)
366 return qp
? isl_dim_copy(qp
->dim
) : NULL
;
369 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
370 enum isl_dim_type type
)
372 return qp
? isl_dim_size(qp
->dim
, type
) : 0;
375 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
377 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
380 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
382 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
385 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
387 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
390 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
392 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
395 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
397 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
400 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
402 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
405 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
407 isl_int_clear(cst
->n
);
408 isl_int_clear(cst
->d
);
411 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
415 for (i
= 0; i
< rec
->n
; ++i
)
416 isl_upoly_free(rec
->p
[i
]);
419 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
428 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
430 struct isl_upoly_cst
*cst
;
431 struct isl_upoly_cst
*dup
;
433 cst
= isl_upoly_as_cst(up
);
437 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
440 isl_int_set(dup
->n
, cst
->n
);
441 isl_int_set(dup
->d
, cst
->d
);
446 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
449 struct isl_upoly_rec
*rec
;
450 struct isl_upoly_rec
*dup
;
452 rec
= isl_upoly_as_rec(up
);
456 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
460 for (i
= 0; i
< rec
->n
; ++i
) {
461 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
469 isl_upoly_free(&dup
->up
);
473 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
475 struct isl_upoly
*dup
;
480 if (isl_upoly_is_cst(up
))
481 return isl_upoly_dup_cst(up
);
483 return isl_upoly_dup_rec(up
);
486 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
494 return isl_upoly_dup(up
);
497 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
506 upoly_free_cst((struct isl_upoly_cst
*)up
);
508 upoly_free_rec((struct isl_upoly_rec
*)up
);
510 isl_ctx_deref(up
->ctx
);
514 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
519 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
520 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
521 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
522 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
527 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
528 __isl_take
struct isl_upoly
*up2
)
530 struct isl_upoly_cst
*cst1
;
531 struct isl_upoly_cst
*cst2
;
533 up1
= isl_upoly_cow(up1
);
537 cst1
= isl_upoly_as_cst(up1
);
538 cst2
= isl_upoly_as_cst(up2
);
540 if (isl_int_eq(cst1
->d
, cst2
->d
))
541 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
543 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
544 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
545 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
548 isl_upoly_cst_reduce(cst1
);
558 static __isl_give
struct isl_upoly
*replace_by_zero(
559 __isl_take
struct isl_upoly
*up
)
567 return isl_upoly_zero(ctx
);
570 static __isl_give
struct isl_upoly
*replace_by_constant_term(
571 __isl_take
struct isl_upoly
*up
)
573 struct isl_upoly_rec
*rec
;
574 struct isl_upoly
*cst
;
579 rec
= isl_upoly_as_rec(up
);
582 cst
= isl_upoly_copy(rec
->p
[0]);
590 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
591 __isl_take
struct isl_upoly
*up2
)
594 struct isl_upoly_rec
*rec1
, *rec2
;
599 if (isl_upoly_is_nan(up1
)) {
604 if (isl_upoly_is_nan(up2
)) {
609 if (isl_upoly_is_zero(up1
)) {
614 if (isl_upoly_is_zero(up2
)) {
619 if (up1
->var
< up2
->var
)
620 return isl_upoly_sum(up2
, up1
);
622 if (up2
->var
< up1
->var
) {
623 struct isl_upoly_rec
*rec
;
624 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
628 up1
= isl_upoly_cow(up1
);
629 rec
= isl_upoly_as_rec(up1
);
632 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
634 up1
= replace_by_constant_term(up1
);
638 if (isl_upoly_is_cst(up1
))
639 return isl_upoly_sum_cst(up1
, up2
);
641 rec1
= isl_upoly_as_rec(up1
);
642 rec2
= isl_upoly_as_rec(up2
);
646 if (rec1
->n
< rec2
->n
)
647 return isl_upoly_sum(up2
, up1
);
649 up1
= isl_upoly_cow(up1
);
650 rec1
= isl_upoly_as_rec(up1
);
654 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
655 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
656 isl_upoly_copy(rec2
->p
[i
]));
659 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
660 isl_upoly_free(rec1
->p
[i
]);
666 up1
= replace_by_zero(up1
);
667 else if (rec1
->n
== 1)
668 up1
= replace_by_constant_term(up1
);
679 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
680 __isl_take
struct isl_upoly
*up
, isl_int v
)
682 struct isl_upoly_cst
*cst
;
684 up
= isl_upoly_cow(up
);
688 cst
= isl_upoly_as_cst(up
);
690 isl_int_addmul(cst
->n
, cst
->d
, v
);
695 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
696 __isl_take
struct isl_upoly
*up
, isl_int v
)
698 struct isl_upoly_rec
*rec
;
703 if (isl_upoly_is_cst(up
))
704 return isl_upoly_cst_add_isl_int(up
, v
);
706 up
= isl_upoly_cow(up
);
707 rec
= isl_upoly_as_rec(up
);
711 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
721 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
722 __isl_take
struct isl_upoly
*up
, isl_int v
)
724 struct isl_upoly_cst
*cst
;
726 if (isl_upoly_is_zero(up
))
729 up
= isl_upoly_cow(up
);
733 cst
= isl_upoly_as_cst(up
);
735 isl_int_mul(cst
->n
, cst
->n
, v
);
740 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
741 __isl_take
struct isl_upoly
*up
, isl_int v
)
744 struct isl_upoly_rec
*rec
;
749 if (isl_upoly_is_cst(up
))
750 return isl_upoly_cst_mul_isl_int(up
, v
);
752 up
= isl_upoly_cow(up
);
753 rec
= isl_upoly_as_rec(up
);
757 for (i
= 0; i
< rec
->n
; ++i
) {
758 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
769 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
770 __isl_take
struct isl_upoly
*up2
)
772 struct isl_upoly_cst
*cst1
;
773 struct isl_upoly_cst
*cst2
;
775 up1
= isl_upoly_cow(up1
);
779 cst1
= isl_upoly_as_cst(up1
);
780 cst2
= isl_upoly_as_cst(up2
);
782 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
783 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
785 isl_upoly_cst_reduce(cst1
);
795 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
796 __isl_take
struct isl_upoly
*up2
)
798 struct isl_upoly_rec
*rec1
;
799 struct isl_upoly_rec
*rec2
;
800 struct isl_upoly_rec
*res
;
804 rec1
= isl_upoly_as_rec(up1
);
805 rec2
= isl_upoly_as_rec(up2
);
808 size
= rec1
->n
+ rec2
->n
- 1;
809 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
813 for (i
= 0; i
< rec1
->n
; ++i
) {
814 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
815 isl_upoly_copy(rec1
->p
[i
]));
820 for (; i
< size
; ++i
) {
821 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
826 for (i
= 0; i
< rec1
->n
; ++i
) {
827 for (j
= 1; j
< rec2
->n
; ++j
) {
828 struct isl_upoly
*up
;
829 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
830 isl_upoly_copy(rec1
->p
[i
]));
831 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
844 isl_upoly_free(&res
->up
);
848 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
849 __isl_take
struct isl_upoly
*up2
)
854 if (isl_upoly_is_nan(up1
)) {
859 if (isl_upoly_is_nan(up2
)) {
864 if (isl_upoly_is_zero(up1
)) {
869 if (isl_upoly_is_zero(up2
)) {
874 if (isl_upoly_is_one(up1
)) {
879 if (isl_upoly_is_one(up2
)) {
884 if (up1
->var
< up2
->var
)
885 return isl_upoly_mul(up2
, up1
);
887 if (up2
->var
< up1
->var
) {
889 struct isl_upoly_rec
*rec
;
890 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
891 isl_ctx
*ctx
= up1
->ctx
;
894 return isl_upoly_nan(ctx
);
896 up1
= isl_upoly_cow(up1
);
897 rec
= isl_upoly_as_rec(up1
);
901 for (i
= 0; i
< rec
->n
; ++i
) {
902 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
903 isl_upoly_copy(up2
));
911 if (isl_upoly_is_cst(up1
))
912 return isl_upoly_mul_cst(up1
, up2
);
914 return isl_upoly_mul_rec(up1
, up2
);
921 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
924 struct isl_upoly
*res
;
932 res
= isl_upoly_copy(up
);
934 res
= isl_upoly_one(up
->ctx
);
936 while (power
>>= 1) {
937 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
939 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
946 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_dim
*dim
,
947 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
949 struct isl_qpolynomial
*qp
= NULL
;
955 total
= isl_dim_total(dim
);
957 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
962 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
973 isl_qpolynomial_free(qp
);
977 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
986 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
988 struct isl_qpolynomial
*dup
;
993 dup
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
,
994 isl_upoly_copy(qp
->upoly
));
997 isl_mat_free(dup
->div
);
998 dup
->div
= isl_mat_copy(qp
->div
);
1004 isl_qpolynomial_free(dup
);
1008 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1016 return isl_qpolynomial_dup(qp
);
1019 void isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1027 isl_dim_free(qp
->dim
);
1028 isl_mat_free(qp
->div
);
1029 isl_upoly_free(qp
->upoly
);
1034 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1037 struct isl_upoly
*up
;
1038 struct isl_upoly_rec
*rec
;
1039 struct isl_upoly_cst
*cst
;
1041 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1044 for (i
= 0; i
< 1 + power
; ++i
) {
1045 rec
->p
[i
] = isl_upoly_zero(ctx
);
1050 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1051 isl_int_set_si(cst
->n
, 1);
1055 isl_upoly_free(&rec
->up
);
1059 /* r array maps original positions to new positions.
1061 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1065 struct isl_upoly_rec
*rec
;
1066 struct isl_upoly
*base
;
1067 struct isl_upoly
*res
;
1069 if (isl_upoly_is_cst(up
))
1072 rec
= isl_upoly_as_rec(up
);
1076 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1078 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1079 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1081 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1082 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1083 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1086 isl_upoly_free(base
);
1095 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1100 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1101 div1
->n_col
>= div2
->n_col
, return -1);
1103 if (div1
->n_row
== div2
->n_row
)
1104 return isl_mat_is_equal(div1
, div2
);
1106 n_row
= div1
->n_row
;
1107 n_col
= div1
->n_col
;
1108 div1
->n_row
= div2
->n_row
;
1109 div1
->n_col
= div2
->n_col
;
1111 equal
= isl_mat_is_equal(div1
, div2
);
1113 div1
->n_row
= n_row
;
1114 div1
->n_col
= n_col
;
1119 static void expand_row(__isl_keep isl_mat
*dst
, int d
,
1120 __isl_keep isl_mat
*src
, int s
, int *exp
)
1123 unsigned c
= src
->n_col
- src
->n_row
;
1125 isl_seq_cpy(dst
->row
[d
], src
->row
[s
], c
);
1126 isl_seq_clr(dst
->row
[d
] + c
, dst
->n_col
- c
);
1128 for (i
= 0; i
< s
; ++i
)
1129 isl_int_set(dst
->row
[d
][c
+ exp
[i
]], src
->row
[s
][c
+ i
]);
1132 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1136 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1137 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1142 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1145 struct isl_div_sort_info
{
1150 static int div_sort_cmp(const void *p1
, const void *p2
)
1152 const struct isl_div_sort_info
*i1
, *i2
;
1153 i1
= (const struct isl_div_sort_info
*) p1
;
1154 i2
= (const struct isl_div_sort_info
*) p2
;
1156 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1159 /* Sort divs and remove duplicates.
1161 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1166 struct isl_div_sort_info
*array
= NULL
;
1167 int *pos
= NULL
, *at
= NULL
;
1168 int *reordering
= NULL
;
1173 if (qp
->div
->n_row
<= 1)
1176 div_pos
= isl_dim_total(qp
->dim
);
1178 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1180 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1181 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1182 len
= qp
->div
->n_col
- 2;
1183 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1184 if (!array
|| !pos
|| !at
|| !reordering
)
1187 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1188 array
[i
].div
= qp
->div
;
1194 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1197 for (i
= 0; i
< div_pos
; ++i
)
1200 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1201 if (pos
[array
[i
].row
] == i
)
1203 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1204 pos
[at
[i
]] = pos
[array
[i
].row
];
1205 at
[pos
[array
[i
].row
]] = at
[i
];
1206 at
[i
] = array
[i
].row
;
1207 pos
[array
[i
].row
] = i
;
1211 for (i
= 0; i
< len
- div_pos
; ++i
) {
1213 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1214 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1215 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1216 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1217 2 + div_pos
+ i
- skip
);
1218 qp
->div
= isl_mat_drop_cols(qp
->div
,
1219 2 + div_pos
+ i
- skip
, 1);
1222 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1225 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1227 if (!qp
->upoly
|| !qp
->div
)
1241 isl_qpolynomial_free(qp
);
1245 static __isl_give isl_mat
*merge_divs(__isl_keep isl_mat
*div1
,
1246 __isl_keep isl_mat
*div2
, int *exp1
, int *exp2
)
1249 isl_mat
*div
= NULL
;
1250 unsigned d
= div1
->n_col
- div1
->n_row
;
1252 div
= isl_mat_alloc(div1
->ctx
, 1 + div1
->n_row
+ div2
->n_row
,
1253 d
+ div1
->n_row
+ div2
->n_row
);
1257 for (i
= 0, j
= 0, k
= 0; i
< div1
->n_row
&& j
< div2
->n_row
; ++k
) {
1260 expand_row(div
, k
, div1
, i
, exp1
);
1261 expand_row(div
, k
+ 1, div2
, j
, exp2
);
1263 cmp
= cmp_row(div
, k
, k
+ 1);
1267 } else if (cmp
< 0) {
1271 isl_seq_cpy(div
->row
[k
], div
->row
[k
+ 1], div
->n_col
);
1274 for (; i
< div1
->n_row
; ++i
, ++k
) {
1275 expand_row(div
, k
, div1
, i
, exp1
);
1278 for (; j
< div2
->n_row
; ++j
, ++k
) {
1279 expand_row(div
, k
, div2
, j
, exp2
);
1289 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1290 int *exp
, int first
)
1293 struct isl_upoly_rec
*rec
;
1295 if (isl_upoly_is_cst(up
))
1298 if (up
->var
< first
)
1301 if (exp
[up
->var
- first
] == up
->var
- first
)
1304 up
= isl_upoly_cow(up
);
1308 up
->var
= exp
[up
->var
- first
] + first
;
1310 rec
= isl_upoly_as_rec(up
);
1314 for (i
= 0; i
< rec
->n
; ++i
) {
1315 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1326 static __isl_give isl_qpolynomial
*with_merged_divs(
1327 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1328 __isl_take isl_qpolynomial
*qp2
),
1329 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1333 isl_mat
*div
= NULL
;
1335 qp1
= isl_qpolynomial_cow(qp1
);
1336 qp2
= isl_qpolynomial_cow(qp2
);
1341 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1342 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1344 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1345 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1349 div
= merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1353 isl_mat_free(qp1
->div
);
1354 qp1
->div
= isl_mat_copy(div
);
1355 isl_mat_free(qp2
->div
);
1356 qp2
->div
= isl_mat_copy(div
);
1358 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1359 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1361 if (!qp1
->upoly
|| !qp2
->upoly
)
1368 return fn(qp1
, qp2
);
1373 isl_qpolynomial_free(qp1
);
1374 isl_qpolynomial_free(qp2
);
1378 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1379 __isl_take isl_qpolynomial
*qp2
)
1381 qp1
= isl_qpolynomial_cow(qp1
);
1386 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1387 return isl_qpolynomial_add(qp2
, qp1
);
1389 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1390 if (!compatible_divs(qp1
->div
, qp2
->div
))
1391 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1393 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1397 isl_qpolynomial_free(qp2
);
1401 isl_qpolynomial_free(qp1
);
1402 isl_qpolynomial_free(qp2
);
1406 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1407 __isl_keep isl_set
*dom
,
1408 __isl_take isl_qpolynomial
*qp1
,
1409 __isl_take isl_qpolynomial
*qp2
)
1411 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1412 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1416 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1417 __isl_take isl_qpolynomial
*qp2
)
1419 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1422 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1423 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1425 if (isl_int_is_zero(v
))
1428 qp
= isl_qpolynomial_cow(qp
);
1432 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1438 isl_qpolynomial_free(qp
);
1443 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1448 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1451 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1452 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1454 if (isl_int_is_one(v
))
1457 if (qp
&& isl_int_is_zero(v
)) {
1458 isl_qpolynomial
*zero
;
1459 zero
= isl_qpolynomial_zero(isl_dim_copy(qp
->dim
));
1460 isl_qpolynomial_free(qp
);
1464 qp
= isl_qpolynomial_cow(qp
);
1468 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1474 isl_qpolynomial_free(qp
);
1478 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1479 __isl_take isl_qpolynomial
*qp2
)
1481 qp1
= isl_qpolynomial_cow(qp1
);
1486 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1487 return isl_qpolynomial_mul(qp2
, qp1
);
1489 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1490 if (!compatible_divs(qp1
->div
, qp2
->div
))
1491 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1493 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1497 isl_qpolynomial_free(qp2
);
1501 isl_qpolynomial_free(qp1
);
1502 isl_qpolynomial_free(qp2
);
1506 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1509 qp
= isl_qpolynomial_cow(qp
);
1514 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1520 isl_qpolynomial_free(qp
);
1524 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_dim
*dim
)
1526 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1529 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_dim
*dim
)
1531 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1534 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_dim
*dim
)
1536 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1539 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_dim
*dim
)
1541 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1544 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_dim
*dim
)
1546 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1549 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_dim
*dim
,
1552 struct isl_qpolynomial
*qp
;
1553 struct isl_upoly_cst
*cst
;
1555 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1559 cst
= isl_upoly_as_cst(qp
->upoly
);
1560 isl_int_set(cst
->n
, v
);
1565 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1566 isl_int
*n
, isl_int
*d
)
1568 struct isl_upoly_cst
*cst
;
1573 if (!isl_upoly_is_cst(qp
->upoly
))
1576 cst
= isl_upoly_as_cst(qp
->upoly
);
1581 isl_int_set(*n
, cst
->n
);
1583 isl_int_set(*d
, cst
->d
);
1588 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1591 struct isl_upoly_rec
*rec
;
1599 rec
= isl_upoly_as_rec(up
);
1606 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1608 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1614 return isl_upoly_is_affine(rec
->p
[0]);
1617 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1622 if (qp
->div
->n_row
> 0)
1625 return isl_upoly_is_affine(qp
->upoly
);
1628 static void update_coeff(__isl_keep isl_vec
*aff
,
1629 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1634 if (isl_int_is_zero(cst
->n
))
1639 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1640 isl_int_divexact(f
, cst
->d
, gcd
);
1641 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1642 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1643 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1648 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1649 __isl_keep isl_vec
*aff
)
1651 struct isl_upoly_cst
*cst
;
1652 struct isl_upoly_rec
*rec
;
1658 struct isl_upoly_cst
*cst
;
1660 cst
= isl_upoly_as_cst(up
);
1663 update_coeff(aff
, cst
, 0);
1667 rec
= isl_upoly_as_rec(up
);
1670 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1672 cst
= isl_upoly_as_cst(rec
->p
[1]);
1675 update_coeff(aff
, cst
, 1 + up
->var
);
1677 return isl_upoly_update_affine(rec
->p
[0], aff
);
1680 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1681 __isl_keep isl_qpolynomial
*qp
)
1689 d
= isl_dim_total(qp
->dim
);
1690 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1694 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1695 isl_int_set_si(aff
->el
[0], 1);
1697 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1706 int isl_qpolynomial_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1707 __isl_keep isl_qpolynomial
*qp2
)
1712 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1715 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1718 struct isl_upoly_rec
*rec
;
1720 if (isl_upoly_is_cst(up
)) {
1721 struct isl_upoly_cst
*cst
;
1722 cst
= isl_upoly_as_cst(up
);
1725 isl_int_lcm(*d
, *d
, cst
->d
);
1729 rec
= isl_upoly_as_rec(up
);
1733 for (i
= 0; i
< rec
->n
; ++i
)
1734 upoly_update_den(rec
->p
[i
], d
);
1737 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1739 isl_int_set_si(*d
, 1);
1742 upoly_update_den(qp
->upoly
, d
);
1745 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_dim
*dim
,
1748 struct isl_ctx
*ctx
;
1755 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1758 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_dim
*dim
,
1759 enum isl_dim_type type
, unsigned pos
)
1764 isl_assert(dim
->ctx
, isl_dim_size(dim
, isl_dim_in
) == 0, goto error
);
1765 isl_assert(dim
->ctx
, pos
< isl_dim_size(dim
, type
), goto error
);
1767 if (type
== isl_dim_set
)
1768 pos
+= isl_dim_size(dim
, isl_dim_param
);
1770 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1776 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1777 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1780 struct isl_upoly_rec
*rec
;
1781 struct isl_upoly
*base
, *res
;
1786 if (isl_upoly_is_cst(up
))
1789 if (up
->var
< first
)
1792 rec
= isl_upoly_as_rec(up
);
1796 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1798 if (up
->var
>= first
+ n
)
1799 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1801 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1803 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1804 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1805 struct isl_upoly
*t
;
1806 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1807 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1808 res
= isl_upoly_sum(res
, t
);
1811 isl_upoly_free(base
);
1820 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1821 isl_int denom
, unsigned len
)
1824 struct isl_upoly
*up
;
1826 isl_assert(ctx
, len
>= 1, return NULL
);
1828 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1829 for (i
= 0; i
< len
- 1; ++i
) {
1830 struct isl_upoly
*t
;
1831 struct isl_upoly
*c
;
1833 if (isl_int_is_zero(f
[1 + i
]))
1836 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1837 t
= isl_upoly_var_pow(ctx
, i
, 1);
1838 t
= isl_upoly_mul(c
, t
);
1839 up
= isl_upoly_sum(up
, t
);
1845 /* Remove common factor of non-constant terms and denominator.
1847 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1849 isl_ctx
*ctx
= qp
->div
->ctx
;
1850 unsigned total
= qp
->div
->n_col
- 2;
1852 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1853 isl_int_gcd(ctx
->normalize_gcd
,
1854 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1855 if (isl_int_is_one(ctx
->normalize_gcd
))
1858 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1859 ctx
->normalize_gcd
, total
);
1860 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1861 ctx
->normalize_gcd
);
1862 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1863 ctx
->normalize_gcd
);
1866 /* Replace the integer division identified by "div" by the polynomial "s".
1867 * The integer division is assumed not to appear in the definition
1868 * of any other integer divisions.
1870 static __isl_give isl_qpolynomial
*substitute_div(
1871 __isl_take isl_qpolynomial
*qp
,
1872 int div
, __isl_take
struct isl_upoly
*s
)
1881 qp
= isl_qpolynomial_cow(qp
);
1885 total
= isl_dim_total(qp
->dim
);
1886 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1890 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1893 for (i
= 0; i
< total
+ div
; ++i
)
1895 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1896 reordering
[i
] = i
- 1;
1897 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1898 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1899 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1902 if (!qp
->upoly
|| !qp
->div
)
1908 isl_qpolynomial_free(qp
);
1913 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1914 * divisions because d is equal to 1 by their definition, i.e., e.
1916 static __isl_give isl_qpolynomial
*substitute_non_divs(
1917 __isl_take isl_qpolynomial
*qp
)
1921 struct isl_upoly
*s
;
1926 total
= isl_dim_total(qp
->dim
);
1927 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1928 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1930 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1931 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1933 isl_seq_combine(qp
->div
->row
[j
] + 1,
1934 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1935 qp
->div
->row
[j
][2 + total
+ i
],
1936 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1937 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1938 normalize_div(qp
, j
);
1940 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1941 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1942 qp
= substitute_div(qp
, i
, s
);
1949 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1950 * with d the denominator. When replacing the coefficient e of x by
1951 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1952 * inside the division, so we need to add floor(e/d) * x outside.
1953 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1954 * to adjust the coefficient of x in each later div that depends on the
1955 * current div "div" and also in the affine expression "aff"
1956 * (if it too depends on "div").
1958 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1959 __isl_keep isl_vec
*aff
)
1963 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1966 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1967 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1968 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1970 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1971 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1972 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1973 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1974 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1975 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1976 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1978 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1979 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1985 /* Check if the last non-zero coefficient is bigger that half of the
1986 * denominator. If so, we will invert the div to further reduce the number
1987 * of distinct divs that may appear.
1988 * If the last non-zero coefficient is exactly half the denominator,
1989 * then we continue looking for earlier coefficients that are bigger
1990 * than half the denominator.
1992 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1997 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1998 if (isl_int_is_zero(div
->row
[row
][i
]))
2000 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2001 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2002 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2012 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2013 * We only invert the coefficients of e (and the coefficient of q in
2014 * later divs and in "aff"). After calling this function, the
2015 * coefficients of e should be reduced again.
2017 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2018 __isl_keep isl_vec
*aff
)
2020 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2022 isl_seq_neg(qp
->div
->row
[div
] + 1,
2023 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2024 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2025 isl_int_add(qp
->div
->row
[div
][1],
2026 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2027 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2028 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2029 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2030 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2033 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2034 * in the interval [0, d-1], with d the denominator and such that the
2035 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2037 * After the reduction, some divs may have become redundant or identical,
2038 * so we call substitute_non_divs and sort_divs. If these functions
2039 * eliminate divs of merge * two or more divs into one, the coefficients
2040 * of the enclosing divs may have to be reduced again, so we call
2041 * ourselves recursively if the number of divs decreases.
2043 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2046 isl_vec
*aff
= NULL
;
2047 struct isl_upoly
*s
;
2053 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2054 aff
= isl_vec_clr(aff
);
2058 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2060 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2061 normalize_div(qp
, i
);
2062 reduce_div(qp
, i
, aff
);
2063 if (needs_invert(qp
->div
, i
)) {
2064 invert_div(qp
, i
, aff
);
2065 reduce_div(qp
, i
, aff
);
2069 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2070 qp
->div
->ctx
->one
, aff
->size
);
2071 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2078 n_div
= qp
->div
->n_row
;
2079 qp
= substitute_non_divs(qp
);
2081 if (qp
&& qp
->div
->n_row
< n_div
)
2082 return reduce_divs(qp
);
2086 isl_qpolynomial_free(qp
);
2091 /* Assumes each div only depends on earlier divs.
2093 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2096 struct isl_qpolynomial
*qp
= NULL
;
2097 struct isl_upoly_rec
*rec
;
2098 struct isl_upoly_cst
*cst
;
2105 d
= div
->line
- div
->bmap
->div
;
2107 pos
= isl_dim_total(div
->bmap
->dim
) + d
;
2108 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2109 qp
= isl_qpolynomial_alloc(isl_basic_map_get_dim(div
->bmap
),
2110 div
->bmap
->n_div
, &rec
->up
);
2114 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2115 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2117 for (i
= 0; i
< 1 + power
; ++i
) {
2118 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2123 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2124 isl_int_set_si(cst
->n
, 1);
2128 qp
= reduce_divs(qp
);
2132 isl_qpolynomial_free(qp
);
2137 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2139 return isl_qpolynomial_div_pow(div
, 1);
2142 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_dim
*dim
,
2143 const isl_int n
, const isl_int d
)
2145 struct isl_qpolynomial
*qp
;
2146 struct isl_upoly_cst
*cst
;
2148 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2152 cst
= isl_upoly_as_cst(qp
->upoly
);
2153 isl_int_set(cst
->n
, n
);
2154 isl_int_set(cst
->d
, d
);
2159 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2161 struct isl_upoly_rec
*rec
;
2167 if (isl_upoly_is_cst(up
))
2171 active
[up
->var
] = 1;
2173 rec
= isl_upoly_as_rec(up
);
2174 for (i
= 0; i
< rec
->n
; ++i
)
2175 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2181 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2184 int d
= isl_dim_total(qp
->dim
);
2189 for (i
= 0; i
< d
; ++i
)
2190 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2191 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2197 return up_set_active(qp
->upoly
, active
, d
);
2200 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2201 enum isl_dim_type type
, unsigned first
, unsigned n
)
2212 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2214 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2215 type
== isl_dim_set
, return -1);
2217 active
= isl_calloc_array(set
->ctx
, int, isl_dim_total(qp
->dim
));
2218 if (set_active(qp
, active
) < 0)
2221 if (type
== isl_dim_set
)
2222 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2223 for (i
= 0; i
< n
; ++i
)
2224 if (active
[first
+ i
]) {
2237 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2238 unsigned first
, unsigned n
)
2241 struct isl_upoly_rec
*rec
;
2245 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2247 if (up
->var
< first
+ n
) {
2248 up
= replace_by_constant_term(up
);
2249 return isl_upoly_drop(up
, first
, n
);
2251 up
= isl_upoly_cow(up
);
2255 rec
= isl_upoly_as_rec(up
);
2259 for (i
= 0; i
< rec
->n
; ++i
) {
2260 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2271 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2272 __isl_take isl_qpolynomial
*qp
,
2273 enum isl_dim_type type
, unsigned pos
, const char *s
)
2275 qp
= isl_qpolynomial_cow(qp
);
2278 qp
->dim
= isl_dim_set_name(qp
->dim
, type
, pos
, s
);
2283 isl_qpolynomial_free(qp
);
2287 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2288 __isl_take isl_qpolynomial
*qp
,
2289 enum isl_dim_type type
, unsigned first
, unsigned n
)
2293 if (n
== 0 && !isl_dim_get_tuple_name(qp
->dim
, type
))
2296 qp
= isl_qpolynomial_cow(qp
);
2300 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2302 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2303 type
== isl_dim_set
, goto error
);
2305 qp
->dim
= isl_dim_drop(qp
->dim
, type
, first
, n
);
2309 if (type
== isl_dim_set
)
2310 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2312 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2316 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2322 isl_qpolynomial_free(qp
);
2326 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2327 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2333 struct isl_upoly
*up
;
2337 if (eq
->n_eq
== 0) {
2338 isl_basic_set_free(eq
);
2342 qp
= isl_qpolynomial_cow(qp
);
2345 qp
->div
= isl_mat_cow(qp
->div
);
2349 total
= 1 + isl_dim_total(eq
->dim
);
2351 isl_int_init(denom
);
2352 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2353 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2354 if (j
< 0 || j
== 0 || j
>= total
)
2357 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2358 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2360 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2361 &qp
->div
->row
[k
][0]);
2362 normalize_div(qp
, k
);
2365 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2366 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2367 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2368 isl_int_set_si(eq
->eq
[i
][j
], 0);
2370 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2371 eq
->eq
[i
], denom
, total
);
2372 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2375 isl_int_clear(denom
);
2380 isl_basic_set_free(eq
);
2382 qp
= substitute_non_divs(qp
);
2387 isl_basic_set_free(eq
);
2388 isl_qpolynomial_free(qp
);
2392 static __isl_give isl_basic_set
*add_div_constraints(
2393 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2401 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2404 total
= isl_basic_set_total_dim(bset
);
2405 for (i
= 0; i
< div
->n_row
; ++i
)
2406 if (isl_basic_set_add_div_constraints_var(bset
,
2407 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2414 isl_basic_set_free(bset
);
2418 /* Look for equalities among the variables shared by context and qp
2419 * and the integer divisions of qp, if any.
2420 * The equalities are then used to eliminate variables and/or integer
2421 * divisions from qp.
2423 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2424 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2430 if (qp
->div
->n_row
> 0) {
2431 isl_basic_set
*bset
;
2432 context
= isl_set_add_dims(context
, isl_dim_set
,
2434 bset
= isl_basic_set_universe(isl_set_get_dim(context
));
2435 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2436 context
= isl_set_intersect(context
,
2437 isl_set_from_basic_set(bset
));
2440 aff
= isl_set_affine_hull(context
);
2441 return isl_qpolynomial_substitute_equalities(qp
, aff
);
2443 isl_qpolynomial_free(qp
);
2444 isl_set_free(context
);
2449 #define PW isl_pw_qpolynomial
2451 #define EL isl_qpolynomial
2453 #define IS_ZERO is_zero
2457 #include <isl_pw_templ.c>
2460 #define UNION isl_union_pw_qpolynomial
2462 #define PART isl_pw_qpolynomial
2464 #define PARTS pw_qpolynomial
2466 #include <isl_union_templ.c>
2468 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2476 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2479 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2482 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2483 __isl_take isl_pw_qpolynomial
*pwqp1
,
2484 __isl_take isl_pw_qpolynomial
*pwqp2
)
2487 struct isl_pw_qpolynomial
*res
;
2490 if (!pwqp1
|| !pwqp2
)
2493 isl_assert(pwqp1
->dim
->ctx
, isl_dim_equal(pwqp1
->dim
, pwqp2
->dim
),
2496 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2497 isl_pw_qpolynomial_free(pwqp2
);
2501 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2502 isl_pw_qpolynomial_free(pwqp1
);
2506 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2507 isl_pw_qpolynomial_free(pwqp1
);
2511 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2512 isl_pw_qpolynomial_free(pwqp2
);
2516 n
= pwqp1
->n
* pwqp2
->n
;
2517 res
= isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1
->dim
), n
);
2519 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2520 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2521 struct isl_set
*common
;
2522 struct isl_qpolynomial
*prod
;
2523 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2524 isl_set_copy(pwqp2
->p
[j
].set
));
2525 if (isl_set_plain_is_empty(common
)) {
2526 isl_set_free(common
);
2530 prod
= isl_qpolynomial_mul(
2531 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2532 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2534 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2538 isl_pw_qpolynomial_free(pwqp1
);
2539 isl_pw_qpolynomial_free(pwqp2
);
2543 isl_pw_qpolynomial_free(pwqp1
);
2544 isl_pw_qpolynomial_free(pwqp2
);
2548 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_neg(
2549 __isl_take isl_pw_qpolynomial
*pwqp
)
2556 if (isl_pw_qpolynomial_is_zero(pwqp
))
2559 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
2563 for (i
= 0; i
< pwqp
->n
; ++i
) {
2564 pwqp
->p
[i
].qp
= isl_qpolynomial_neg(pwqp
->p
[i
].qp
);
2571 isl_pw_qpolynomial_free(pwqp
);
2575 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_sub(
2576 __isl_take isl_pw_qpolynomial
*pwqp1
,
2577 __isl_take isl_pw_qpolynomial
*pwqp2
)
2579 return isl_pw_qpolynomial_add(pwqp1
, isl_pw_qpolynomial_neg(pwqp2
));
2582 __isl_give
struct isl_upoly
*isl_upoly_eval(
2583 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2586 struct isl_upoly_rec
*rec
;
2587 struct isl_upoly
*res
;
2588 struct isl_upoly
*base
;
2590 if (isl_upoly_is_cst(up
)) {
2595 rec
= isl_upoly_as_rec(up
);
2599 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2601 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2603 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2606 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2607 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2608 res
= isl_upoly_sum(res
,
2609 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2610 isl_vec_copy(vec
)));
2613 isl_upoly_free(base
);
2623 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2624 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2627 struct isl_upoly
*up
;
2632 isl_assert(pnt
->dim
->ctx
, isl_dim_equal(pnt
->dim
, qp
->dim
), goto error
);
2634 if (qp
->div
->n_row
== 0)
2635 ext
= isl_vec_copy(pnt
->vec
);
2638 unsigned dim
= isl_dim_total(qp
->dim
);
2639 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2643 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2644 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2645 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2646 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2647 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2648 qp
->div
->row
[i
][0]);
2652 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2656 dim
= isl_dim_copy(qp
->dim
);
2657 isl_qpolynomial_free(qp
);
2658 isl_point_free(pnt
);
2660 return isl_qpolynomial_alloc(dim
, 0, up
);
2662 isl_qpolynomial_free(qp
);
2663 isl_point_free(pnt
);
2667 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2668 __isl_keep
struct isl_upoly_cst
*cst2
)
2673 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2674 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2675 cmp
= isl_int_sgn(t
);
2680 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2681 __isl_keep isl_qpolynomial
*qp2
)
2683 struct isl_upoly_cst
*cst1
, *cst2
;
2687 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2688 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2689 if (isl_qpolynomial_is_nan(qp1
))
2691 if (isl_qpolynomial_is_nan(qp2
))
2693 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2694 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2696 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2699 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2700 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2702 struct isl_upoly_cst
*cst1
, *cst2
;
2707 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2708 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2709 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2710 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2711 cmp
= isl_upoly_cmp(cst1
, cst2
);
2714 isl_qpolynomial_free(qp2
);
2716 isl_qpolynomial_free(qp1
);
2721 isl_qpolynomial_free(qp1
);
2722 isl_qpolynomial_free(qp2
);
2726 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2727 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2729 struct isl_upoly_cst
*cst1
, *cst2
;
2734 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2735 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2736 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2737 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2738 cmp
= isl_upoly_cmp(cst1
, cst2
);
2741 isl_qpolynomial_free(qp2
);
2743 isl_qpolynomial_free(qp1
);
2748 isl_qpolynomial_free(qp1
);
2749 isl_qpolynomial_free(qp2
);
2753 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2754 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2755 unsigned first
, unsigned n
)
2764 qp
= isl_qpolynomial_cow(qp
);
2768 isl_assert(qp
->div
->ctx
, first
<= isl_dim_size(qp
->dim
, type
),
2771 g_pos
= pos(qp
->dim
, type
) + first
;
2773 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + g_pos
, n
);
2777 total
= qp
->div
->n_col
- 2;
2778 if (total
> g_pos
) {
2780 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2783 for (i
= 0; i
< total
- g_pos
; ++i
)
2785 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2791 qp
->dim
= isl_dim_insert(qp
->dim
, type
, first
, n
);
2797 isl_qpolynomial_free(qp
);
2801 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2802 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2806 pos
= isl_qpolynomial_dim(qp
, type
);
2808 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2811 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2812 __isl_take isl_pw_qpolynomial
*pwqp
,
2813 enum isl_dim_type type
, unsigned n
)
2817 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2819 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2822 static int *reordering_move(isl_ctx
*ctx
,
2823 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2828 reordering
= isl_alloc_array(ctx
, int, len
);
2833 for (i
= 0; i
< dst
; ++i
)
2835 for (i
= 0; i
< n
; ++i
)
2836 reordering
[src
+ i
] = dst
+ i
;
2837 for (i
= 0; i
< src
- dst
; ++i
)
2838 reordering
[dst
+ i
] = dst
+ n
+ i
;
2839 for (i
= 0; i
< len
- src
- n
; ++i
)
2840 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2842 for (i
= 0; i
< src
; ++i
)
2844 for (i
= 0; i
< n
; ++i
)
2845 reordering
[src
+ i
] = dst
+ i
;
2846 for (i
= 0; i
< dst
- src
; ++i
)
2847 reordering
[src
+ n
+ i
] = src
+ i
;
2848 for (i
= 0; i
< len
- dst
- n
; ++i
)
2849 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2855 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2856 __isl_take isl_qpolynomial
*qp
,
2857 enum isl_dim_type dst_type
, unsigned dst_pos
,
2858 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2864 qp
= isl_qpolynomial_cow(qp
);
2868 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_dim_size(qp
->dim
, src_type
),
2871 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2872 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2873 if (dst_type
> src_type
)
2876 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2883 reordering
= reordering_move(qp
->dim
->ctx
,
2884 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2888 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2893 qp
->dim
= isl_dim_move(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
2899 isl_qpolynomial_free(qp
);
2903 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_dim
*dim
,
2904 isl_int
*f
, isl_int denom
)
2906 struct isl_upoly
*up
;
2911 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
, 1 + isl_dim_total(dim
));
2913 return isl_qpolynomial_alloc(dim
, 0, up
);
2916 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
2917 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
2921 struct isl_upoly
*up
;
2922 isl_qpolynomial
*qp
;
2928 isl_int_init(denom
);
2930 isl_constraint_get_coefficient(c
, type
, pos
, &denom
);
2931 isl_constraint_set_coefficient(c
, type
, pos
, c
->ctx
->zero
);
2932 sgn
= isl_int_sgn(denom
);
2933 isl_int_abs(denom
, denom
);
2934 up
= isl_upoly_from_affine(c
->ctx
, c
->line
[0], denom
,
2935 1 + isl_constraint_dim(c
, isl_dim_all
));
2937 isl_int_neg(denom
, denom
);
2938 isl_constraint_set_coefficient(c
, type
, pos
, denom
);
2940 dim
= isl_dim_copy(c
->bmap
->dim
);
2942 isl_int_clear(denom
);
2943 isl_constraint_free(c
);
2945 qp
= isl_qpolynomial_alloc(dim
, 0, up
);
2947 qp
= isl_qpolynomial_neg(qp
);
2951 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
2952 * in "qp" by subs[i].
2954 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
2955 __isl_take isl_qpolynomial
*qp
,
2956 enum isl_dim_type type
, unsigned first
, unsigned n
,
2957 __isl_keep isl_qpolynomial
**subs
)
2960 struct isl_upoly
**ups
;
2965 qp
= isl_qpolynomial_cow(qp
);
2968 for (i
= 0; i
< n
; ++i
)
2972 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2975 for (i
= 0; i
< n
; ++i
)
2976 isl_assert(qp
->dim
->ctx
, isl_dim_equal(qp
->dim
, subs
[i
]->dim
),
2979 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
2980 for (i
= 0; i
< n
; ++i
)
2981 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
2983 first
+= pos(qp
->dim
, type
);
2985 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
2988 for (i
= 0; i
< n
; ++i
)
2989 ups
[i
] = subs
[i
]->upoly
;
2991 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3000 isl_qpolynomial_free(qp
);
3004 /* Extend "bset" with extra set dimensions for each integer division
3005 * in "qp" and then call "fn" with the extended bset and the polynomial
3006 * that results from replacing each of the integer divisions by the
3007 * corresponding extra set dimension.
3009 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3010 __isl_keep isl_basic_set
*bset
,
3011 int (*fn
)(__isl_take isl_basic_set
*bset
,
3012 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3016 isl_qpolynomial
*poly
;
3020 if (qp
->div
->n_row
== 0)
3021 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3024 div
= isl_mat_copy(qp
->div
);
3025 dim
= isl_dim_copy(qp
->dim
);
3026 dim
= isl_dim_add(dim
, isl_dim_set
, qp
->div
->n_row
);
3027 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3028 bset
= isl_basic_set_copy(bset
);
3029 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3030 bset
= add_div_constraints(bset
, div
);
3032 return fn(bset
, poly
, user
);
3037 /* Return total degree in variables first (inclusive) up to last (exclusive).
3039 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3043 struct isl_upoly_rec
*rec
;
3047 if (isl_upoly_is_zero(up
))
3049 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3052 rec
= isl_upoly_as_rec(up
);
3056 for (i
= 0; i
< rec
->n
; ++i
) {
3059 if (isl_upoly_is_zero(rec
->p
[i
]))
3061 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3071 /* Return total degree in set variables.
3073 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3081 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3082 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3083 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3086 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3087 unsigned pos
, int deg
)
3090 struct isl_upoly_rec
*rec
;
3095 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3097 return isl_upoly_copy(up
);
3099 return isl_upoly_zero(up
->ctx
);
3102 rec
= isl_upoly_as_rec(up
);
3106 if (up
->var
== pos
) {
3108 return isl_upoly_copy(rec
->p
[deg
]);
3110 return isl_upoly_zero(up
->ctx
);
3113 up
= isl_upoly_copy(up
);
3114 up
= isl_upoly_cow(up
);
3115 rec
= isl_upoly_as_rec(up
);
3119 for (i
= 0; i
< rec
->n
; ++i
) {
3120 struct isl_upoly
*t
;
3121 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3124 isl_upoly_free(rec
->p
[i
]);
3134 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3136 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3137 __isl_keep isl_qpolynomial
*qp
,
3138 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3141 struct isl_upoly
*up
;
3147 isl_assert(qp
->div
->ctx
, t_pos
< isl_dim_size(qp
->dim
, type
),
3150 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3151 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3153 c
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
, up
);
3156 isl_mat_free(c
->div
);
3157 c
->div
= isl_mat_copy(qp
->div
);
3162 isl_qpolynomial_free(c
);
3166 /* Homogenize the polynomial in the variables first (inclusive) up to
3167 * last (exclusive) by inserting powers of variable first.
3168 * Variable first is assumed not to appear in the input.
3170 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3171 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3172 int first
, int last
)
3175 struct isl_upoly_rec
*rec
;
3179 if (isl_upoly_is_zero(up
))
3183 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3184 struct isl_upoly
*hom
;
3186 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3189 rec
= isl_upoly_as_rec(hom
);
3190 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3195 up
= isl_upoly_cow(up
);
3196 rec
= isl_upoly_as_rec(up
);
3200 for (i
= 0; i
< rec
->n
; ++i
) {
3201 if (isl_upoly_is_zero(rec
->p
[i
]))
3203 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3204 up
->var
< last
? deg
+ i
: i
, target
,
3216 /* Homogenize the polynomial in the set variables by introducing
3217 * powers of an extra set variable at position 0.
3219 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3220 __isl_take isl_qpolynomial
*poly
)
3224 int deg
= isl_qpolynomial_degree(poly
);
3229 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3230 poly
= isl_qpolynomial_cow(poly
);
3234 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3235 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3236 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3243 isl_qpolynomial_free(poly
);
3247 __isl_give isl_term
*isl_term_alloc(__isl_take isl_dim
*dim
,
3248 __isl_take isl_mat
*div
)
3256 n
= isl_dim_total(dim
) + div
->n_row
;
3258 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3259 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3266 isl_int_init(term
->n
);
3267 isl_int_init(term
->d
);
3276 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3285 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3294 total
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3296 dup
= isl_term_alloc(isl_dim_copy(term
->dim
), isl_mat_copy(term
->div
));
3300 isl_int_set(dup
->n
, term
->n
);
3301 isl_int_set(dup
->d
, term
->d
);
3303 for (i
= 0; i
< total
; ++i
)
3304 dup
->pow
[i
] = term
->pow
[i
];
3309 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3317 return isl_term_dup(term
);
3320 void isl_term_free(__isl_take isl_term
*term
)
3325 if (--term
->ref
> 0)
3328 isl_dim_free(term
->dim
);
3329 isl_mat_free(term
->div
);
3330 isl_int_clear(term
->n
);
3331 isl_int_clear(term
->d
);
3335 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3343 case isl_dim_out
: return isl_dim_size(term
->dim
, type
);
3344 case isl_dim_div
: return term
->div
->n_row
;
3345 case isl_dim_all
: return isl_dim_total(term
->dim
) + term
->div
->n_row
;
3350 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3352 return term
? term
->dim
->ctx
: NULL
;
3355 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3359 isl_int_set(*n
, term
->n
);
3362 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3366 isl_int_set(*d
, term
->d
);
3369 int isl_term_get_exp(__isl_keep isl_term
*term
,
3370 enum isl_dim_type type
, unsigned pos
)
3375 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3377 if (type
>= isl_dim_set
)
3378 pos
+= isl_dim_size(term
->dim
, isl_dim_param
);
3379 if (type
>= isl_dim_div
)
3380 pos
+= isl_dim_size(term
->dim
, isl_dim_set
);
3382 return term
->pow
[pos
];
3385 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3387 isl_basic_map
*bmap
;
3394 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3397 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3398 /* No nested divs for now */
3399 isl_assert(term
->dim
->ctx
,
3400 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3401 term
->div
->n_row
) == -1,
3404 bmap
= isl_basic_map_alloc_dim(isl_dim_copy(term
->dim
), 1, 0, 0);
3405 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3408 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3410 return isl_basic_map_div(bmap
, k
);
3412 isl_basic_map_free(bmap
);
3416 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3417 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3418 __isl_take isl_term
*term
, void *user
)
3421 struct isl_upoly_rec
*rec
;
3426 if (isl_upoly_is_zero(up
))
3429 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3430 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3431 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3433 if (isl_upoly_is_cst(up
)) {
3434 struct isl_upoly_cst
*cst
;
3435 cst
= isl_upoly_as_cst(up
);
3438 term
= isl_term_cow(term
);
3441 isl_int_set(term
->n
, cst
->n
);
3442 isl_int_set(term
->d
, cst
->d
);
3443 if (fn(isl_term_copy(term
), user
) < 0)
3448 rec
= isl_upoly_as_rec(up
);
3452 for (i
= 0; i
< rec
->n
; ++i
) {
3453 term
= isl_term_cow(term
);
3456 term
->pow
[up
->var
] = i
;
3457 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3461 term
->pow
[up
->var
] = 0;
3465 isl_term_free(term
);
3469 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3470 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3477 term
= isl_term_alloc(isl_dim_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3481 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3483 isl_term_free(term
);
3485 return term
? 0 : -1;
3488 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3490 struct isl_upoly
*up
;
3491 isl_qpolynomial
*qp
;
3497 n
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3499 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3500 for (i
= 0; i
< n
; ++i
) {
3503 up
= isl_upoly_mul(up
,
3504 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3507 qp
= isl_qpolynomial_alloc(isl_dim_copy(term
->dim
), term
->div
->n_row
, up
);
3510 isl_mat_free(qp
->div
);
3511 qp
->div
= isl_mat_copy(term
->div
);
3515 isl_term_free(term
);
3518 isl_qpolynomial_free(qp
);
3519 isl_term_free(term
);
3523 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3524 __isl_take isl_dim
*dim
)
3533 if (isl_dim_equal(qp
->dim
, dim
)) {
3538 qp
= isl_qpolynomial_cow(qp
);
3542 extra
= isl_dim_size(dim
, isl_dim_set
) -
3543 isl_dim_size(qp
->dim
, isl_dim_set
);
3544 total
= isl_dim_total(qp
->dim
);
3545 if (qp
->div
->n_row
) {
3548 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3551 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3553 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3558 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3561 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3562 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3564 isl_dim_free(qp
->dim
);
3570 isl_qpolynomial_free(qp
);
3574 /* For each parameter or variable that does not appear in qp,
3575 * first eliminate the variable from all constraints and then set it to zero.
3577 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3578 __isl_keep isl_qpolynomial
*qp
)
3589 d
= isl_dim_total(set
->dim
);
3590 active
= isl_calloc_array(set
->ctx
, int, d
);
3591 if (set_active(qp
, active
) < 0)
3594 for (i
= 0; i
< d
; ++i
)
3603 nparam
= isl_dim_size(set
->dim
, isl_dim_param
);
3604 nvar
= isl_dim_size(set
->dim
, isl_dim_set
);
3605 for (i
= 0; i
< nparam
; ++i
) {
3608 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3609 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3611 for (i
= 0; i
< nvar
; ++i
) {
3612 if (active
[nparam
+ i
])
3614 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3615 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3627 struct isl_opt_data
{
3628 isl_qpolynomial
*qp
;
3630 isl_qpolynomial
*opt
;
3634 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3636 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3637 isl_qpolynomial
*val
;
3639 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3643 } else if (data
->max
) {
3644 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3646 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3652 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3653 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3655 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3660 if (isl_upoly_is_cst(qp
->upoly
)) {
3665 set
= fix_inactive(set
, qp
);
3668 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3672 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp
));
3675 isl_qpolynomial_free(qp
);
3679 isl_qpolynomial_free(qp
);
3680 isl_qpolynomial_free(data
.opt
);
3684 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3685 __isl_take isl_morph
*morph
)
3690 struct isl_upoly
*up
;
3692 struct isl_upoly
**subs
;
3695 qp
= isl_qpolynomial_cow(qp
);
3700 isl_assert(ctx
, isl_dim_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3702 n_sub
= morph
->inv
->n_row
- 1;
3703 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3704 n_sub
+= qp
->div
->n_row
;
3705 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3709 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3710 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3711 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3712 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3713 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3714 subs
[morph
->inv
->n_row
- 1 + i
] =
3715 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3717 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3719 for (i
= 0; i
< n_sub
; ++i
)
3720 isl_upoly_free(subs
[i
]);
3723 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3724 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3725 qp
->div
= isl_mat_product(qp
->div
, mat
);
3726 isl_dim_free(qp
->dim
);
3727 qp
->dim
= isl_dim_copy(morph
->ran
->dim
);
3729 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3732 isl_morph_free(morph
);
3736 isl_qpolynomial_free(qp
);
3737 isl_morph_free(morph
);
3741 static int neg_entry(void **entry
, void *user
)
3743 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3745 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3747 return *pwqp
? 0 : -1;
3750 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3751 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3753 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3757 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3758 &neg_entry
, NULL
) < 0)
3763 isl_union_pw_qpolynomial_free(upwqp
);
3767 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3768 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3769 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3771 return isl_union_pw_qpolynomial_add(upwqp1
,
3772 isl_union_pw_qpolynomial_neg(upwqp2
));
3775 static int mul_entry(void **entry
, void *user
)
3777 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3779 struct isl_hash_table_entry
*entry2
;
3780 isl_pw_qpolynomial
*pwpq
= *entry
;
3783 hash
= isl_dim_get_hash(pwpq
->dim
);
3784 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3785 hash
, &has_dim
, pwpq
->dim
, 0);
3789 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3790 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3791 isl_pw_qpolynomial_copy(entry2
->data
));
3793 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3795 isl_pw_qpolynomial_free(pwpq
);
3799 isl_pw_qpolynomial_free(pwpq
);
3803 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3808 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3809 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3810 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3812 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3815 /* Reorder the columns of the given div definitions according to the
3818 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3819 __isl_take isl_reordering
*r
)
3828 extra
= isl_dim_total(r
->dim
) + div
->n_row
- r
->len
;
3829 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3833 for (i
= 0; i
< div
->n_row
; ++i
) {
3834 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3835 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3836 for (j
= 0; j
< r
->len
; ++j
)
3837 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3838 div
->row
[i
][2 + j
]);
3841 isl_reordering_free(r
);
3845 isl_reordering_free(r
);
3850 /* Reorder the dimension of "qp" according to the given reordering.
3852 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3853 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3855 qp
= isl_qpolynomial_cow(qp
);
3859 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
3863 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
3867 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
3871 qp
= isl_qpolynomial_reset_dim(qp
, isl_dim_copy(r
->dim
));
3873 isl_reordering_free(r
);
3876 isl_qpolynomial_free(qp
);
3877 isl_reordering_free(r
);
3881 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
3882 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*model
)
3887 if (!isl_dim_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
3888 isl_reordering
*exp
;
3890 model
= isl_dim_drop(model
, isl_dim_in
,
3891 0, isl_dim_size(model
, isl_dim_in
));
3892 model
= isl_dim_drop(model
, isl_dim_out
,
3893 0, isl_dim_size(model
, isl_dim_out
));
3894 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
3895 exp
= isl_reordering_extend_dim(exp
,
3896 isl_qpolynomial_get_dim(qp
));
3897 qp
= isl_qpolynomial_realign(qp
, exp
);
3900 isl_dim_free(model
);
3903 isl_dim_free(model
);
3904 isl_qpolynomial_free(qp
);
3908 struct isl_split_periods_data
{
3910 isl_pw_qpolynomial
*res
;
3913 /* Create a slice where the integer division "div" has the fixed value "v".
3914 * In particular, if "div" refers to floor(f/m), then create a slice
3916 * m v <= f <= m v + (m - 1)
3921 * -f + m v + (m - 1) >= 0
3923 static __isl_give isl_set
*set_div_slice(__isl_take isl_dim
*dim
,
3924 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
3927 isl_basic_set
*bset
= NULL
;
3933 total
= isl_dim_total(dim
);
3934 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0, 0, 2);
3936 k
= isl_basic_set_alloc_inequality(bset
);
3939 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
3940 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
3942 k
= isl_basic_set_alloc_inequality(bset
);
3945 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
3946 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
3947 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
3948 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
3951 return isl_set_from_basic_set(bset
);
3953 isl_basic_set_free(bset
);
3958 static int split_periods(__isl_take isl_set
*set
,
3959 __isl_take isl_qpolynomial
*qp
, void *user
);
3961 /* Create a slice of the domain "set" such that integer division "div"
3962 * has the fixed value "v" and add the results to data->res,
3963 * replacing the integer division by "v" in "qp".
3965 static int set_div(__isl_take isl_set
*set
,
3966 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
3967 struct isl_split_periods_data
*data
)
3972 struct isl_upoly
*cst
;
3974 slice
= set_div_slice(isl_set_get_dim(set
), qp
, div
, v
);
3975 set
= isl_set_intersect(set
, slice
);
3980 total
= isl_dim_total(qp
->dim
);
3982 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
3983 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
3985 isl_int_addmul(qp
->div
->row
[i
][1],
3986 qp
->div
->row
[i
][2 + total
+ div
], v
);
3987 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
3990 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
3991 qp
= substitute_div(qp
, div
, cst
);
3993 return split_periods(set
, qp
, data
);
3996 isl_qpolynomial_free(qp
);
4000 /* Split the domain "set" such that integer division "div"
4001 * has a fixed value (ranging from "min" to "max") on each slice
4002 * and add the results to data->res.
4004 static int split_div(__isl_take isl_set
*set
,
4005 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4006 struct isl_split_periods_data
*data
)
4008 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4009 isl_set
*set_i
= isl_set_copy(set
);
4010 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4012 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4016 isl_qpolynomial_free(qp
);
4020 isl_qpolynomial_free(qp
);
4024 /* If "qp" refers to any integer division
4025 * that can only attain "max_periods" distinct values on "set"
4026 * then split the domain along those distinct values.
4027 * Add the results (or the original if no splitting occurs)
4030 static int split_periods(__isl_take isl_set
*set
,
4031 __isl_take isl_qpolynomial
*qp
, void *user
)
4034 isl_pw_qpolynomial
*pwqp
;
4035 struct isl_split_periods_data
*data
;
4040 data
= (struct isl_split_periods_data
*)user
;
4045 if (qp
->div
->n_row
== 0) {
4046 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4047 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4053 total
= isl_dim_total(qp
->dim
);
4054 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4055 enum isl_lp_result lp_res
;
4057 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4058 qp
->div
->n_row
) != -1)
4061 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4062 set
->ctx
->one
, &min
, NULL
, NULL
);
4063 if (lp_res
== isl_lp_error
)
4065 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4067 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4069 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4070 set
->ctx
->one
, &max
, NULL
, NULL
);
4071 if (lp_res
== isl_lp_error
)
4073 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4075 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4077 isl_int_sub(max
, max
, min
);
4078 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4079 isl_int_add(max
, max
, min
);
4084 if (i
< qp
->div
->n_row
) {
4085 r
= split_div(set
, qp
, i
, min
, max
, data
);
4087 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4088 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4100 isl_qpolynomial_free(qp
);
4104 /* If any quasi-polynomial in pwqp refers to any integer division
4105 * that can only attain "max_periods" distinct values on its domain
4106 * then split the domain along those distinct values.
4108 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4109 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4111 struct isl_split_periods_data data
;
4113 data
.max_periods
= max_periods
;
4114 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4116 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4119 isl_pw_qpolynomial_free(pwqp
);
4123 isl_pw_qpolynomial_free(data
.res
);
4124 isl_pw_qpolynomial_free(pwqp
);
4128 /* Construct a piecewise quasipolynomial that is constant on the given
4129 * domain. In particular, it is
4132 * infinity if cst == -1
4134 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4135 __isl_take isl_basic_set
*bset
, int cst
)
4138 isl_qpolynomial
*qp
;
4143 bset
= isl_basic_map_domain(isl_basic_map_from_range(bset
));
4144 dim
= isl_basic_set_get_dim(bset
);
4146 qp
= isl_qpolynomial_infty(dim
);
4148 qp
= isl_qpolynomial_zero(dim
);
4150 qp
= isl_qpolynomial_one(dim
);
4151 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4154 /* Factor bset, call fn on each of the factors and return the product.
4156 * If no factors can be found, simply call fn on the input.
4157 * Otherwise, construct the factors based on the factorizer,
4158 * call fn on each factor and compute the product.
4160 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4161 __isl_take isl_basic_set
*bset
,
4162 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4168 isl_qpolynomial
*qp
;
4169 isl_pw_qpolynomial
*pwqp
;
4173 f
= isl_basic_set_factorizer(bset
);
4176 if (f
->n_group
== 0) {
4177 isl_factorizer_free(f
);
4181 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4182 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4184 dim
= isl_basic_set_get_dim(bset
);
4185 dim
= isl_dim_domain(dim
);
4186 set
= isl_set_universe(isl_dim_copy(dim
));
4187 qp
= isl_qpolynomial_one(dim
);
4188 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4190 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4192 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4193 isl_basic_set
*bset_i
;
4194 isl_pw_qpolynomial
*pwqp_i
;
4196 bset_i
= isl_basic_set_copy(bset
);
4197 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4198 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4199 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4201 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4202 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4203 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4205 pwqp_i
= fn(bset_i
);
4206 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4211 isl_basic_set_free(bset
);
4212 isl_factorizer_free(f
);
4216 isl_basic_set_free(bset
);
4220 /* Factor bset, call fn on each of the factors and return the product.
4221 * The function is assumed to evaluate to zero on empty domains,
4222 * to one on zero-dimensional domains and to infinity on unbounded domains
4223 * and will not be called explicitly on zero-dimensional or unbounded domains.
4225 * We first check for some special cases and remove all equalities.
4226 * Then we hand over control to compressed_multiplicative_call.
4228 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4229 __isl_take isl_basic_set
*bset
,
4230 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4234 isl_pw_qpolynomial
*pwqp
;
4235 unsigned orig_nvar
, final_nvar
;
4240 if (isl_basic_set_plain_is_empty(bset
))
4241 return constant_on_domain(bset
, 0);
4243 orig_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4246 return constant_on_domain(bset
, 1);
4248 bounded
= isl_basic_set_is_bounded(bset
);
4252 return constant_on_domain(bset
, -1);
4254 if (bset
->n_eq
== 0)
4255 return compressed_multiplicative_call(bset
, fn
);
4257 morph
= isl_basic_set_full_compression(bset
);
4258 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4260 final_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4262 pwqp
= compressed_multiplicative_call(bset
, fn
);
4264 morph
= isl_morph_remove_dom_dims(morph
, isl_dim_set
, 0, orig_nvar
);
4265 morph
= isl_morph_remove_ran_dims(morph
, isl_dim_set
, 0, final_nvar
);
4266 morph
= isl_morph_inverse(morph
);
4268 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4272 isl_basic_set_free(bset
);
4276 /* Drop all floors in "qp", turning each integer division [a/m] into
4277 * a rational division a/m. If "down" is set, then the integer division
4278 * is replaces by (a-(m-1))/m instead.
4280 static __isl_give isl_qpolynomial
*qp_drop_floors(
4281 __isl_take isl_qpolynomial
*qp
, int down
)
4284 struct isl_upoly
*s
;
4288 if (qp
->div
->n_row
== 0)
4291 qp
= isl_qpolynomial_cow(qp
);
4295 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4297 isl_int_sub(qp
->div
->row
[i
][1],
4298 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4299 isl_int_add_ui(qp
->div
->row
[i
][1],
4300 qp
->div
->row
[i
][1], 1);
4302 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4303 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4304 qp
= substitute_div(qp
, i
, s
);
4312 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4313 * a rational division a/m.
4315 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4316 __isl_take isl_pw_qpolynomial
*pwqp
)
4323 if (isl_pw_qpolynomial_is_zero(pwqp
))
4326 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4330 for (i
= 0; i
< pwqp
->n
; ++i
) {
4331 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4338 isl_pw_qpolynomial_free(pwqp
);
4342 /* Adjust all the integer divisions in "qp" such that they are at least
4343 * one over the given orthant (identified by "signs"). This ensures
4344 * that they will still be non-negative even after subtracting (m-1)/m.
4346 * In particular, f is replaced by f' + v, changing f = [a/m]
4347 * to f' = [(a - m v)/m].
4348 * If the constant term k in a is smaller than m,
4349 * the constant term of v is set to floor(k/m) - 1.
4350 * For any other term, if the coefficient c and the variable x have
4351 * the same sign, then no changes are needed.
4352 * Otherwise, if the variable is positive (and c is negative),
4353 * then the coefficient of x in v is set to floor(c/m).
4354 * If the variable is negative (and c is positive),
4355 * then the coefficient of x in v is set to ceil(c/m).
4357 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4363 struct isl_upoly
*s
;
4365 qp
= isl_qpolynomial_cow(qp
);
4368 qp
->div
= isl_mat_cow(qp
->div
);
4372 total
= isl_dim_total(qp
->dim
);
4373 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4375 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4376 isl_int
*row
= qp
->div
->row
[i
];
4380 if (isl_int_lt(row
[1], row
[0])) {
4381 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4382 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4383 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4385 for (j
= 0; j
< total
; ++j
) {
4386 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4389 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4391 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4392 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4394 for (j
= 0; j
< i
; ++j
) {
4395 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4397 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4398 row
[2 + total
+ j
], row
[0]);
4399 isl_int_submul(row
[2 + total
+ j
],
4400 row
[0], v
->el
[1 + total
+ j
]);
4402 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4403 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4405 isl_seq_combine(qp
->div
->row
[j
] + 1,
4406 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4407 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4409 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4410 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4411 qp
->div
->ctx
->one
, v
->size
);
4412 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4422 isl_qpolynomial_free(qp
);
4426 struct isl_to_poly_data
{
4428 isl_pw_qpolynomial
*res
;
4429 isl_qpolynomial
*qp
;
4432 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4433 * We first make all integer divisions positive and then split the
4434 * quasipolynomials into terms with sign data->sign (the direction
4435 * of the requested approximation) and terms with the opposite sign.
4436 * In the first set of terms, each integer division [a/m] is
4437 * overapproximated by a/m, while in the second it is underapproximated
4440 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4443 struct isl_to_poly_data
*data
= user
;
4444 isl_pw_qpolynomial
*t
;
4445 isl_qpolynomial
*qp
, *up
, *down
;
4447 qp
= isl_qpolynomial_copy(data
->qp
);
4448 qp
= make_divs_pos(qp
, signs
);
4450 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4451 up
= qp_drop_floors(up
, 0);
4452 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4453 down
= qp_drop_floors(down
, 1);
4455 isl_qpolynomial_free(qp
);
4456 qp
= isl_qpolynomial_add(up
, down
);
4458 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4459 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4464 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4465 * the polynomial will be an overapproximation. If "sign" is negative,
4466 * it will be an underapproximation. If "sign" is zero, the approximation
4467 * will lie somewhere in between.
4469 * In particular, is sign == 0, we simply drop the floors, turning
4470 * the integer divisions into rational divisions.
4471 * Otherwise, we split the domains into orthants, make all integer divisions
4472 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4473 * depending on the requested sign and the sign of the term in which
4474 * the integer division appears.
4476 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4477 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4480 struct isl_to_poly_data data
;
4483 return pwqp_drop_floors(pwqp
);
4489 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4491 for (i
= 0; i
< pwqp
->n
; ++i
) {
4492 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4493 isl_pw_qpolynomial
*t
;
4494 t
= isl_pw_qpolynomial_alloc(
4495 isl_set_copy(pwqp
->p
[i
].set
),
4496 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4497 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4500 data
.qp
= pwqp
->p
[i
].qp
;
4501 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4502 &to_polynomial_on_orthant
, &data
) < 0)
4506 isl_pw_qpolynomial_free(pwqp
);
4510 isl_pw_qpolynomial_free(pwqp
);
4511 isl_pw_qpolynomial_free(data
.res
);
4515 static int poly_entry(void **entry
, void *user
)
4518 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4520 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4522 return *pwqp
? 0 : -1;
4525 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4526 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4528 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4532 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4533 &poly_entry
, &sign
) < 0)
4538 isl_union_pw_qpolynomial_free(upwqp
);
4542 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4543 __isl_take isl_qpolynomial
*qp
)
4547 isl_vec
*aff
= NULL
;
4548 isl_basic_map
*bmap
= NULL
;
4554 if (!isl_upoly_is_affine(qp
->upoly
))
4555 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4556 "input quasi-polynomial not affine", goto error
);
4557 aff
= isl_qpolynomial_extract_affine(qp
);
4560 dim
= isl_qpolynomial_get_dim(qp
);
4561 dim
= isl_dim_from_domain(dim
);
4562 pos
= 1 + isl_dim_offset(dim
, isl_dim_out
);
4563 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
4564 n_div
= qp
->div
->n_row
;
4565 bmap
= isl_basic_map_alloc_dim(dim
, n_div
, 1, 2 * n_div
);
4567 for (i
= 0; i
< n_div
; ++i
) {
4568 k
= isl_basic_map_alloc_div(bmap
);
4571 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4572 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4573 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4576 k
= isl_basic_map_alloc_equality(bmap
);
4579 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4580 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4581 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4584 isl_qpolynomial_free(qp
);
4585 bmap
= isl_basic_map_finalize(bmap
);
4589 isl_qpolynomial_free(qp
);
4590 isl_basic_map_free(bmap
);