2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 #include "isl_map_private.h"
16 #include "isl_equalities.h"
19 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
21 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
27 bmap
->ineq
[i
] = bmap
->ineq
[j
];
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
38 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
40 enum isl_lp_result res
;
47 total
= isl_basic_map_total_dim(*bmap
);
48 for (i
= 0; i
< total
; ++i
) {
50 if (isl_int_is_zero(c
[1+i
]))
52 sign
= isl_int_sgn(c
[1+i
]);
53 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
54 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
56 if (j
== (*bmap
)->n_ineq
)
62 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
64 if (res
== isl_lp_unbounded
)
66 if (res
== isl_lp_error
)
68 if (res
== isl_lp_empty
) {
69 *bmap
= isl_basic_map_set_to_empty(*bmap
);
72 return !isl_int_is_neg(*opt_n
);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
76 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
90 struct isl_basic_map
*isl_basic_map_convex_hull(struct isl_basic_map
*bmap
)
97 bmap
= isl_basic_map_gauss(bmap
, NULL
);
98 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
100 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
102 if (bmap
->n_ineq
<= 1)
105 tab
= isl_tab_from_basic_map(bmap
);
106 tab
= isl_tab_detect_implicit_equalities(tab
);
107 if (isl_tab_detect_redundant(tab
) < 0)
109 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
111 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
112 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
116 isl_basic_map_free(bmap
);
120 struct isl_basic_set
*isl_basic_set_convex_hull(struct isl_basic_set
*bset
)
122 return (struct isl_basic_set
*)
123 isl_basic_map_convex_hull((struct isl_basic_map
*)bset
);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
138 isl_int_init(opt_denom
);
140 for (j
= 0; j
< set
->n
; ++j
) {
141 enum isl_lp_result res
;
143 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
146 res
= isl_basic_set_solve_lp(set
->p
[j
],
147 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
148 if (res
== isl_lp_unbounded
)
150 if (res
== isl_lp_error
)
152 if (res
== isl_lp_empty
) {
153 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
158 if (first
|| isl_int_is_neg(opt
)) {
159 if (!isl_int_is_one(opt_denom
))
160 isl_seq_scale(c
, c
, opt_denom
, len
);
161 isl_int_sub(c
[0], c
[0], opt
);
166 isl_int_clear(opt_denom
);
170 isl_int_clear(opt_denom
);
174 /* Check if "c" is a direction that is independent of the previously found "n"
176 * If so, add it to the list, with the negative of the lower bound
177 * in the constant position, i.e., such that c corresponds to a bounding
178 * hyperplane (but not necessarily a facet).
179 * Assumes set "set" is bounded.
181 static int is_independent_bound(struct isl_set
*set
, isl_int
*c
,
182 struct isl_mat
*dirs
, int n
)
187 isl_seq_cpy(dirs
->row
[n
]+1, c
+1, dirs
->n_col
-1);
189 int pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
192 for (i
= 0; i
< n
; ++i
) {
194 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
]+1, dirs
->n_col
-1);
199 isl_seq_elim(dirs
->row
[n
]+1, dirs
->row
[i
]+1, pos
,
200 dirs
->n_col
-1, NULL
);
201 pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
207 is_bound
= uset_is_bound(set
, dirs
->row
[n
], dirs
->n_col
);
210 isl_seq_normalize(set
->ctx
, dirs
->row
[n
], dirs
->n_col
);
213 isl_int
*t
= dirs
->row
[n
];
214 for (k
= n
; k
> i
; --k
)
215 dirs
->row
[k
] = dirs
->row
[k
-1];
221 /* Compute and return a maximal set of linearly independent bounds
222 * on the set "set", based on the constraints of the basic sets
225 static struct isl_mat
*independent_bounds(struct isl_set
*set
)
228 struct isl_mat
*dirs
= NULL
;
229 unsigned dim
= isl_set_n_dim(set
);
231 dirs
= isl_mat_alloc(set
->ctx
, dim
, 1+dim
);
236 for (i
= 0; n
< dim
&& i
< set
->n
; ++i
) {
238 struct isl_basic_set
*bset
= set
->p
[i
];
240 for (j
= 0; n
< dim
&& j
< bset
->n_eq
; ++j
) {
241 f
= is_independent_bound(set
, bset
->eq
[j
], dirs
, n
);
247 for (j
= 0; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
248 f
= is_independent_bound(set
, bset
->ineq
[j
], dirs
, n
);
262 struct isl_basic_set
*isl_basic_set_set_rational(struct isl_basic_set
*bset
)
267 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
270 bset
= isl_basic_set_cow(bset
);
274 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
276 return isl_basic_set_finalize(bset
);
279 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
283 set
= isl_set_cow(set
);
286 for (i
= 0; i
< set
->n
; ++i
) {
287 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
297 static struct isl_basic_set
*isl_basic_set_add_equality(
298 struct isl_basic_set
*bset
, isl_int
*c
)
303 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
306 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
307 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
308 dim
= isl_basic_set_n_dim(bset
);
309 bset
= isl_basic_set_cow(bset
);
310 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
311 i
= isl_basic_set_alloc_equality(bset
);
314 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
317 isl_basic_set_free(bset
);
321 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
325 set
= isl_set_cow(set
);
328 for (i
= 0; i
< set
->n
; ++i
) {
329 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
339 /* Given a union of basic sets, construct the constraints for wrapping
340 * a facet around one of its ridges.
341 * In particular, if each of n the d-dimensional basic sets i in "set"
342 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
343 * and is defined by the constraints
347 * then the resulting set is of dimension n*(1+d) and has as constraints
356 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
358 struct isl_basic_set
*lp
;
362 unsigned dim
, lp_dim
;
367 dim
= 1 + isl_set_n_dim(set
);
370 for (i
= 0; i
< set
->n
; ++i
) {
371 n_eq
+= set
->p
[i
]->n_eq
;
372 n_ineq
+= set
->p
[i
]->n_ineq
;
374 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
377 lp_dim
= isl_basic_set_n_dim(lp
);
378 k
= isl_basic_set_alloc_equality(lp
);
379 isl_int_set_si(lp
->eq
[k
][0], -1);
380 for (i
= 0; i
< set
->n
; ++i
) {
381 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
382 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
383 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
385 for (i
= 0; i
< set
->n
; ++i
) {
386 k
= isl_basic_set_alloc_inequality(lp
);
387 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
388 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
390 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
391 k
= isl_basic_set_alloc_equality(lp
);
392 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
393 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
394 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
397 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
398 k
= isl_basic_set_alloc_inequality(lp
);
399 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
400 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
401 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
407 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
408 * of that facet, compute the other facet of the convex hull that contains
411 * We first transform the set such that the facet constraint becomes
415 * I.e., the facet lies in
419 * and on that facet, the constraint that defines the ridge is
423 * (This transformation is not strictly needed, all that is needed is
424 * that the ridge contains the origin.)
426 * Since the ridge contains the origin, the cone of the convex hull
427 * will be of the form
432 * with this second constraint defining the new facet.
433 * The constant a is obtained by settting x_1 in the cone of the
434 * convex hull to 1 and minimizing x_2.
435 * Now, each element in the cone of the convex hull is the sum
436 * of elements in the cones of the basic sets.
437 * If a_i is the dilation factor of basic set i, then the problem
438 * we need to solve is
451 * the constraints of each (transformed) basic set.
452 * If a = n/d, then the constraint defining the new facet (in the transformed
455 * -n x_1 + d x_2 >= 0
457 * In the original space, we need to take the same combination of the
458 * corresponding constraints "facet" and "ridge".
460 * If a = -infty = "-1/0", then we just return the original facet constraint.
461 * This means that the facet is unbounded, but has a bounded intersection
462 * with the union of sets.
464 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
465 isl_int
*facet
, isl_int
*ridge
)
468 struct isl_mat
*T
= NULL
;
469 struct isl_basic_set
*lp
= NULL
;
471 enum isl_lp_result res
;
475 set
= isl_set_copy(set
);
476 set
= isl_set_set_rational(set
);
478 dim
= 1 + isl_set_n_dim(set
);
479 T
= isl_mat_alloc(set
->ctx
, 3, dim
);
482 isl_int_set_si(T
->row
[0][0], 1);
483 isl_seq_clr(T
->row
[0]+1, dim
- 1);
484 isl_seq_cpy(T
->row
[1], facet
, dim
);
485 isl_seq_cpy(T
->row
[2], ridge
, dim
);
486 T
= isl_mat_right_inverse(T
);
487 set
= isl_set_preimage(set
, T
);
491 lp
= wrap_constraints(set
);
492 obj
= isl_vec_alloc(set
->ctx
, 1 + dim
*set
->n
);
495 isl_int_set_si(obj
->block
.data
[0], 0);
496 for (i
= 0; i
< set
->n
; ++i
) {
497 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
498 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
499 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
503 res
= isl_basic_set_solve_lp(lp
, 0,
504 obj
->block
.data
, set
->ctx
->one
, &num
, &den
, NULL
);
505 if (res
== isl_lp_ok
) {
506 isl_int_neg(num
, num
);
507 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
512 isl_basic_set_free(lp
);
514 isl_assert(set
->ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
518 isl_basic_set_free(lp
);
524 /* Drop rows in "rows" that are redundant with respect to earlier rows,
525 * assuming that "rows" is of full column rank.
527 * We compute the column echelon form. The non-redundant rows are
528 * those that are the first to contain a non-zero entry in a column.
529 * All the other rows can be removed.
531 static __isl_give isl_mat
*drop_redundant_rows(__isl_take isl_mat
*rows
)
533 struct isl_mat
*H
= NULL
;
541 isl_assert(rows
->ctx
, rows
->n_row
>= rows
->n_col
, goto error
);
543 if (rows
->n_row
== rows
->n_col
)
546 H
= isl_mat_left_hermite(isl_mat_copy(rows
), 0, NULL
, NULL
);
550 last_row
= rows
->n_row
;
551 for (col
= rows
->n_col
- 1; col
>= 0; --col
) {
552 for (row
= col
; row
< last_row
; ++row
)
553 if (!isl_int_is_zero(H
->row
[row
][col
]))
555 isl_assert(rows
->ctx
, row
< last_row
, goto error
);
556 if (row
+ 1 < last_row
) {
557 rows
= isl_mat_drop_rows(rows
, row
+ 1, last_row
- (row
+ 1));
558 if (rows
->n_row
== rows
->n_col
)
573 /* Given a set of d linearly independent bounding constraints of the
574 * convex hull of "set", compute the constraint of a facet of "set".
576 * We first compute the intersection with the first bounding hyperplane
577 * and remove the component corresponding to this hyperplane from
578 * other bounds (in homogeneous space).
579 * We then wrap around one of the remaining bounding constraints
580 * and continue the process until all bounding constraints have been
581 * taken into account.
582 * The resulting linear combination of the bounding constraints will
583 * correspond to a facet of the convex hull.
585 static struct isl_mat
*initial_facet_constraint(struct isl_set
*set
,
586 struct isl_mat
*bounds
)
588 struct isl_set
*slice
= NULL
;
589 struct isl_basic_set
*face
= NULL
;
590 struct isl_mat
*m
, *U
, *Q
;
592 unsigned dim
= isl_set_n_dim(set
);
594 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
595 isl_assert(set
->ctx
, bounds
->n_row
== dim
, goto error
);
597 while (bounds
->n_row
> 1) {
598 slice
= isl_set_copy(set
);
599 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
600 face
= isl_set_affine_hull(slice
);
603 if (face
->n_eq
== 1) {
604 isl_basic_set_free(face
);
607 m
= isl_mat_alloc(set
->ctx
, 1 + face
->n_eq
, 1 + dim
);
610 isl_int_set_si(m
->row
[0][0], 1);
611 isl_seq_clr(m
->row
[0]+1, dim
);
612 for (i
= 0; i
< face
->n_eq
; ++i
)
613 isl_seq_cpy(m
->row
[1 + i
], face
->eq
[i
], 1 + dim
);
614 U
= isl_mat_right_inverse(m
);
615 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
616 U
= isl_mat_drop_cols(U
, 1 + face
->n_eq
, dim
- face
->n_eq
);
617 Q
= isl_mat_drop_rows(Q
, 1 + face
->n_eq
, dim
- face
->n_eq
);
618 U
= isl_mat_drop_cols(U
, 0, 1);
619 Q
= isl_mat_drop_rows(Q
, 0, 1);
620 bounds
= isl_mat_product(bounds
, U
);
621 bounds
= drop_redundant_rows(bounds
);
622 bounds
= isl_mat_product(bounds
, Q
);
623 isl_assert(set
->ctx
, bounds
->n_row
> 1, goto error
);
624 if (!isl_set_wrap_facet(set
, bounds
->row
[0],
625 bounds
->row
[bounds
->n_row
-1]))
627 isl_basic_set_free(face
);
632 isl_basic_set_free(face
);
633 isl_mat_free(bounds
);
637 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
638 * compute a hyperplane description of the facet, i.e., compute the facets
641 * We compute an affine transformation that transforms the constraint
650 * by computing the right inverse U of a matrix that starts with the rows
663 * Since z_1 is zero, we can drop this variable as well as the corresponding
664 * column of U to obtain
672 * with Q' equal to Q, but without the corresponding row.
673 * After computing the facets of the facet in the z' space,
674 * we convert them back to the x space through Q.
676 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
678 struct isl_mat
*m
, *U
, *Q
;
679 struct isl_basic_set
*facet
= NULL
;
684 set
= isl_set_copy(set
);
685 dim
= isl_set_n_dim(set
);
686 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
689 isl_int_set_si(m
->row
[0][0], 1);
690 isl_seq_clr(m
->row
[0]+1, dim
);
691 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
692 U
= isl_mat_right_inverse(m
);
693 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
694 U
= isl_mat_drop_cols(U
, 1, 1);
695 Q
= isl_mat_drop_rows(Q
, 1, 1);
696 set
= isl_set_preimage(set
, U
);
697 facet
= uset_convex_hull_wrap_bounded(set
);
698 facet
= isl_basic_set_preimage(facet
, Q
);
699 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
702 isl_basic_set_free(facet
);
707 /* Given an initial facet constraint, compute the remaining facets.
708 * We do this by running through all facets found so far and computing
709 * the adjacent facets through wrapping, adding those facets that we
710 * hadn't already found before.
712 * For each facet we have found so far, we first compute its facets
713 * in the resulting convex hull. That is, we compute the ridges
714 * of the resulting convex hull contained in the facet.
715 * We also compute the corresponding facet in the current approximation
716 * of the convex hull. There is no need to wrap around the ridges
717 * in this facet since that would result in a facet that is already
718 * present in the current approximation.
720 * This function can still be significantly optimized by checking which of
721 * the facets of the basic sets are also facets of the convex hull and
722 * using all the facets so far to help in constructing the facets of the
725 * using the technique in section "3.1 Ridge Generation" of
726 * "Extended Convex Hull" by Fukuda et al.
728 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
733 struct isl_basic_set
*facet
= NULL
;
734 struct isl_basic_set
*hull_facet
= NULL
;
740 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
742 dim
= isl_set_n_dim(set
);
744 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
745 facet
= compute_facet(set
, hull
->ineq
[i
]);
746 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
747 facet
= isl_basic_set_gauss(facet
, NULL
);
748 facet
= isl_basic_set_normalize_constraints(facet
);
749 hull_facet
= isl_basic_set_copy(hull
);
750 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
751 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
752 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
755 hull
= isl_basic_set_cow(hull
);
756 hull
= isl_basic_set_extend_dim(hull
,
757 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
758 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
759 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
760 if (isl_seq_eq(facet
->ineq
[j
],
761 hull_facet
->ineq
[f
], 1 + dim
))
763 if (f
< hull_facet
->n_ineq
)
765 k
= isl_basic_set_alloc_inequality(hull
);
768 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
769 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
772 isl_basic_set_free(hull_facet
);
773 isl_basic_set_free(facet
);
775 hull
= isl_basic_set_simplify(hull
);
776 hull
= isl_basic_set_finalize(hull
);
779 isl_basic_set_free(hull_facet
);
780 isl_basic_set_free(facet
);
781 isl_basic_set_free(hull
);
785 /* Special case for computing the convex hull of a one dimensional set.
786 * We simply collect the lower and upper bounds of each basic set
787 * and the biggest of those.
789 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
791 struct isl_mat
*c
= NULL
;
792 isl_int
*lower
= NULL
;
793 isl_int
*upper
= NULL
;
796 struct isl_basic_set
*hull
;
798 for (i
= 0; i
< set
->n
; ++i
) {
799 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
803 set
= isl_set_remove_empty_parts(set
);
806 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
807 c
= isl_mat_alloc(set
->ctx
, 2, 2);
811 if (set
->p
[0]->n_eq
> 0) {
812 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
815 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
816 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
817 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
819 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
820 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
823 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
824 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
826 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
829 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
836 for (i
= 0; i
< set
->n
; ++i
) {
837 struct isl_basic_set
*bset
= set
->p
[i
];
841 for (j
= 0; j
< bset
->n_eq
; ++j
) {
845 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
846 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
847 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
848 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
849 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
850 isl_seq_neg(lower
, bset
->eq
[j
], 2);
853 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
854 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
855 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
856 isl_seq_neg(upper
, bset
->eq
[j
], 2);
857 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
858 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
861 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
862 if (isl_int_is_pos(bset
->ineq
[j
][1]))
864 if (isl_int_is_neg(bset
->ineq
[j
][1]))
866 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
867 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
868 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
869 if (isl_int_lt(a
, b
))
870 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
872 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
873 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
874 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
875 if (isl_int_gt(a
, b
))
876 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
887 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
888 hull
= isl_basic_set_set_rational(hull
);
892 k
= isl_basic_set_alloc_inequality(hull
);
893 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
896 k
= isl_basic_set_alloc_inequality(hull
);
897 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
899 hull
= isl_basic_set_finalize(hull
);
909 /* Project out final n dimensions using Fourier-Motzkin */
910 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
911 struct isl_set
*set
, unsigned n
)
913 return isl_set_remove_dims(set
, isl_set_n_dim(set
) - n
, n
);
916 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
918 struct isl_basic_set
*convex_hull
;
923 if (isl_set_is_empty(set
))
924 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
926 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
931 /* Compute the convex hull of a pair of basic sets without any parameters or
932 * integer divisions using Fourier-Motzkin elimination.
933 * The convex hull is the set of all points that can be written as
934 * the sum of points from both basic sets (in homogeneous coordinates).
935 * We set up the constraints in a space with dimensions for each of
936 * the three sets and then project out the dimensions corresponding
937 * to the two original basic sets, retaining only those corresponding
938 * to the convex hull.
940 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
941 struct isl_basic_set
*bset2
)
944 struct isl_basic_set
*bset
[2];
945 struct isl_basic_set
*hull
= NULL
;
948 if (!bset1
|| !bset2
)
951 dim
= isl_basic_set_n_dim(bset1
);
952 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
953 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
954 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
957 for (i
= 0; i
< 2; ++i
) {
958 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
959 k
= isl_basic_set_alloc_equality(hull
);
962 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
963 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
964 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
967 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
968 k
= isl_basic_set_alloc_inequality(hull
);
971 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
972 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
973 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
974 bset
[i
]->ineq
[j
], 1+dim
);
976 k
= isl_basic_set_alloc_inequality(hull
);
979 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
980 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
982 for (j
= 0; j
< 1+dim
; ++j
) {
983 k
= isl_basic_set_alloc_equality(hull
);
986 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
987 isl_int_set_si(hull
->eq
[k
][j
], -1);
988 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
989 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
991 hull
= isl_basic_set_set_rational(hull
);
992 hull
= isl_basic_set_remove_dims(hull
, dim
, 2*(1+dim
));
993 hull
= isl_basic_set_convex_hull(hull
);
994 isl_basic_set_free(bset1
);
995 isl_basic_set_free(bset2
);
998 isl_basic_set_free(bset1
);
999 isl_basic_set_free(bset2
);
1000 isl_basic_set_free(hull
);
1004 static int isl_basic_set_is_bounded(struct isl_basic_set
*bset
)
1006 struct isl_tab
*tab
;
1009 tab
= isl_tab_from_recession_cone(bset
);
1010 bounded
= isl_tab_cone_is_bounded(tab
);
1015 static int isl_set_is_bounded(struct isl_set
*set
)
1019 for (i
= 0; i
< set
->n
; ++i
) {
1020 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
1021 if (!bounded
|| bounded
< 0)
1027 /* Compute the lineality space of the convex hull of bset1 and bset2.
1029 * We first compute the intersection of the recession cone of bset1
1030 * with the negative of the recession cone of bset2 and then compute
1031 * the linear hull of the resulting cone.
1033 static struct isl_basic_set
*induced_lineality_space(
1034 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1037 struct isl_basic_set
*lin
= NULL
;
1040 if (!bset1
|| !bset2
)
1043 dim
= isl_basic_set_total_dim(bset1
);
1044 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
1045 bset1
->n_eq
+ bset2
->n_eq
,
1046 bset1
->n_ineq
+ bset2
->n_ineq
);
1047 lin
= isl_basic_set_set_rational(lin
);
1050 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1051 k
= isl_basic_set_alloc_equality(lin
);
1054 isl_int_set_si(lin
->eq
[k
][0], 0);
1055 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
1057 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
1058 k
= isl_basic_set_alloc_inequality(lin
);
1061 isl_int_set_si(lin
->ineq
[k
][0], 0);
1062 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
1064 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
1065 k
= isl_basic_set_alloc_equality(lin
);
1068 isl_int_set_si(lin
->eq
[k
][0], 0);
1069 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
1071 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
1072 k
= isl_basic_set_alloc_inequality(lin
);
1075 isl_int_set_si(lin
->ineq
[k
][0], 0);
1076 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1079 isl_basic_set_free(bset1
);
1080 isl_basic_set_free(bset2
);
1081 return isl_basic_set_affine_hull(lin
);
1083 isl_basic_set_free(lin
);
1084 isl_basic_set_free(bset1
);
1085 isl_basic_set_free(bset2
);
1089 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1091 /* Given a set and a linear space "lin" of dimension n > 0,
1092 * project the linear space from the set, compute the convex hull
1093 * and then map the set back to the original space.
1099 * describe the linear space. We first compute the Hermite normal
1100 * form H = M U of M = H Q, to obtain
1104 * The last n rows of H will be zero, so the last n variables of x' = Q x
1105 * are the one we want to project out. We do this by transforming each
1106 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1107 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1108 * we transform the hull back to the original space as A' Q_1 x >= b',
1109 * with Q_1 all but the last n rows of Q.
1111 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1112 struct isl_basic_set
*lin
)
1114 unsigned total
= isl_basic_set_total_dim(lin
);
1116 struct isl_basic_set
*hull
;
1117 struct isl_mat
*M
, *U
, *Q
;
1121 lin_dim
= total
- lin
->n_eq
;
1122 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1123 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1127 isl_basic_set_free(lin
);
1129 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1131 U
= isl_mat_lin_to_aff(U
);
1132 Q
= isl_mat_lin_to_aff(Q
);
1134 set
= isl_set_preimage(set
, U
);
1135 set
= isl_set_remove_dims(set
, total
- lin_dim
, lin_dim
);
1136 hull
= uset_convex_hull(set
);
1137 hull
= isl_basic_set_preimage(hull
, Q
);
1141 isl_basic_set_free(lin
);
1146 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1147 * set up an LP for solving
1149 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1151 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1152 * The next \alpha{ij} correspond to the equalities and come in pairs.
1153 * The final \alpha{ij} correspond to the inequalities.
1155 static struct isl_basic_set
*valid_direction_lp(
1156 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1158 struct isl_dim
*dim
;
1159 struct isl_basic_set
*lp
;
1164 if (!bset1
|| !bset2
)
1166 d
= 1 + isl_basic_set_total_dim(bset1
);
1168 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1169 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1170 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1173 for (i
= 0; i
< n
; ++i
) {
1174 k
= isl_basic_set_alloc_inequality(lp
);
1177 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1178 isl_int_set_si(lp
->ineq
[k
][0], -1);
1179 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1181 for (i
= 0; i
< d
; ++i
) {
1182 k
= isl_basic_set_alloc_equality(lp
);
1186 isl_int_set_si(lp
->eq
[k
][n
++], 0);
1187 /* positivity constraint 1 >= 0 */
1188 isl_int_set_si(lp
->eq
[k
][n
++], i
== 0);
1189 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1190 isl_int_set(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1191 isl_int_neg(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1193 for (j
= 0; j
< bset1
->n_ineq
; ++j
)
1194 isl_int_set(lp
->eq
[k
][n
++], bset1
->ineq
[j
][i
]);
1195 /* positivity constraint 1 >= 0 */
1196 isl_int_set_si(lp
->eq
[k
][n
++], -(i
== 0));
1197 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1198 isl_int_neg(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1199 isl_int_set(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1201 for (j
= 0; j
< bset2
->n_ineq
; ++j
)
1202 isl_int_neg(lp
->eq
[k
][n
++], bset2
->ineq
[j
][i
]);
1204 lp
= isl_basic_set_gauss(lp
, NULL
);
1205 isl_basic_set_free(bset1
);
1206 isl_basic_set_free(bset2
);
1209 isl_basic_set_free(bset1
);
1210 isl_basic_set_free(bset2
);
1214 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1215 * for all rays in the homogeneous space of the two cones that correspond
1216 * to the input polyhedra bset1 and bset2.
1218 * We compute s as a vector that satisfies
1220 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1222 * with h_{ij} the normals of the facets of polyhedron i
1223 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1224 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1225 * We first set up an LP with as variables the \alpha{ij}.
1226 * In this formulateion, for each polyhedron i,
1227 * the first constraint is the positivity constraint, followed by pairs
1228 * of variables for the equalities, followed by variables for the inequalities.
1229 * We then simply pick a feasible solution and compute s using (*).
1231 * Note that we simply pick any valid direction and make no attempt
1232 * to pick a "good" or even the "best" valid direction.
1234 static struct isl_vec
*valid_direction(
1235 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1237 struct isl_basic_set
*lp
;
1238 struct isl_tab
*tab
;
1239 struct isl_vec
*sample
= NULL
;
1240 struct isl_vec
*dir
;
1245 if (!bset1
|| !bset2
)
1247 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1248 isl_basic_set_copy(bset2
));
1249 tab
= isl_tab_from_basic_set(lp
);
1250 sample
= isl_tab_get_sample_value(tab
);
1252 isl_basic_set_free(lp
);
1255 d
= isl_basic_set_total_dim(bset1
);
1256 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1259 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1261 /* positivity constraint 1 >= 0 */
1262 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
++]);
1263 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1264 isl_int_sub(sample
->block
.data
[n
],
1265 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1266 isl_seq_combine(dir
->block
.data
,
1267 bset1
->ctx
->one
, dir
->block
.data
,
1268 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1272 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1273 isl_seq_combine(dir
->block
.data
,
1274 bset1
->ctx
->one
, dir
->block
.data
,
1275 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1276 isl_vec_free(sample
);
1277 isl_seq_normalize(bset1
->ctx
, dir
->block
.data
+ 1, dir
->size
- 1);
1278 isl_basic_set_free(bset1
);
1279 isl_basic_set_free(bset2
);
1282 isl_vec_free(sample
);
1283 isl_basic_set_free(bset1
);
1284 isl_basic_set_free(bset2
);
1288 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1289 * compute b_i' + A_i' x' >= 0, with
1291 * [ b_i A_i ] [ y' ] [ y' ]
1292 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1294 * In particular, add the "positivity constraint" and then perform
1297 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1304 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1305 k
= isl_basic_set_alloc_inequality(bset
);
1308 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1309 isl_int_set_si(bset
->ineq
[k
][0], 1);
1310 bset
= isl_basic_set_preimage(bset
, T
);
1314 isl_basic_set_free(bset
);
1318 /* Compute the convex hull of a pair of basic sets without any parameters or
1319 * integer divisions, where the convex hull is known to be pointed,
1320 * but the basic sets may be unbounded.
1322 * We turn this problem into the computation of a convex hull of a pair
1323 * _bounded_ polyhedra by "changing the direction of the homogeneous
1324 * dimension". This idea is due to Matthias Koeppe.
1326 * Consider the cones in homogeneous space that correspond to the
1327 * input polyhedra. The rays of these cones are also rays of the
1328 * polyhedra if the coordinate that corresponds to the homogeneous
1329 * dimension is zero. That is, if the inner product of the rays
1330 * with the homogeneous direction is zero.
1331 * The cones in the homogeneous space can also be considered to
1332 * correspond to other pairs of polyhedra by chosing a different
1333 * homogeneous direction. To ensure that both of these polyhedra
1334 * are bounded, we need to make sure that all rays of the cones
1335 * correspond to vertices and not to rays.
1336 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1337 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1338 * The vector s is computed in valid_direction.
1340 * Note that we need to consider _all_ rays of the cones and not just
1341 * the rays that correspond to rays in the polyhedra. If we were to
1342 * only consider those rays and turn them into vertices, then we
1343 * may inadvertently turn some vertices into rays.
1345 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1346 * We therefore transform the two polyhedra such that the selected
1347 * direction is mapped onto this standard direction and then proceed
1348 * with the normal computation.
1349 * Let S be a non-singular square matrix with s as its first row,
1350 * then we want to map the polyhedra to the space
1352 * [ y' ] [ y ] [ y ] [ y' ]
1353 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1355 * We take S to be the unimodular completion of s to limit the growth
1356 * of the coefficients in the following computations.
1358 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1359 * We first move to the homogeneous dimension
1361 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1362 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1364 * Then we change directoin
1366 * [ b_i A_i ] [ y' ] [ y' ]
1367 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1369 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1370 * resulting in b' + A' x' >= 0, which we then convert back
1373 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1375 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1377 static struct isl_basic_set
*convex_hull_pair_pointed(
1378 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1380 struct isl_ctx
*ctx
= NULL
;
1381 struct isl_vec
*dir
= NULL
;
1382 struct isl_mat
*T
= NULL
;
1383 struct isl_mat
*T2
= NULL
;
1384 struct isl_basic_set
*hull
;
1385 struct isl_set
*set
;
1387 if (!bset1
|| !bset2
)
1390 dir
= valid_direction(isl_basic_set_copy(bset1
),
1391 isl_basic_set_copy(bset2
));
1394 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1397 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1398 T
= isl_mat_unimodular_complete(T
, 1);
1399 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1401 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1402 bset2
= homogeneous_map(bset2
, T2
);
1403 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1404 set
= isl_set_add_basic_set(set
, bset1
);
1405 set
= isl_set_add_basic_set(set
, bset2
);
1406 hull
= uset_convex_hull(set
);
1407 hull
= isl_basic_set_preimage(hull
, T
);
1414 isl_basic_set_free(bset1
);
1415 isl_basic_set_free(bset2
);
1419 /* Compute the convex hull of a pair of basic sets without any parameters or
1420 * integer divisions.
1422 * If the convex hull of the two basic sets would have a non-trivial
1423 * lineality space, we first project out this lineality space.
1425 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1426 struct isl_basic_set
*bset2
)
1428 struct isl_basic_set
*lin
;
1430 if (isl_basic_set_is_bounded(bset1
) || isl_basic_set_is_bounded(bset2
))
1431 return convex_hull_pair_pointed(bset1
, bset2
);
1433 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1434 isl_basic_set_copy(bset2
));
1437 if (isl_basic_set_is_universe(lin
)) {
1438 isl_basic_set_free(bset1
);
1439 isl_basic_set_free(bset2
);
1442 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1443 struct isl_set
*set
;
1444 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1445 set
= isl_set_add_basic_set(set
, bset1
);
1446 set
= isl_set_add_basic_set(set
, bset2
);
1447 return modulo_lineality(set
, lin
);
1449 isl_basic_set_free(lin
);
1451 return convex_hull_pair_pointed(bset1
, bset2
);
1453 isl_basic_set_free(bset1
);
1454 isl_basic_set_free(bset2
);
1458 /* Compute the lineality space of a basic set.
1459 * We currently do not allow the basic set to have any divs.
1460 * We basically just drop the constants and turn every inequality
1463 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1466 struct isl_basic_set
*lin
= NULL
;
1471 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1472 dim
= isl_basic_set_total_dim(bset
);
1474 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1477 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1478 k
= isl_basic_set_alloc_equality(lin
);
1481 isl_int_set_si(lin
->eq
[k
][0], 0);
1482 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1484 lin
= isl_basic_set_gauss(lin
, NULL
);
1487 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1488 k
= isl_basic_set_alloc_equality(lin
);
1491 isl_int_set_si(lin
->eq
[k
][0], 0);
1492 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1493 lin
= isl_basic_set_gauss(lin
, NULL
);
1497 isl_basic_set_free(bset
);
1500 isl_basic_set_free(lin
);
1501 isl_basic_set_free(bset
);
1505 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1506 * "underlying" set "set".
1508 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1511 struct isl_set
*lin
= NULL
;
1516 struct isl_dim
*dim
= isl_set_get_dim(set
);
1518 return isl_basic_set_empty(dim
);
1521 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1522 for (i
= 0; i
< set
->n
; ++i
)
1523 lin
= isl_set_add_basic_set(lin
,
1524 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1526 return isl_set_affine_hull(lin
);
1529 /* Compute the convex hull of a set without any parameters or
1530 * integer divisions.
1531 * In each step, we combined two basic sets until only one
1532 * basic set is left.
1533 * The input basic sets are assumed not to have a non-trivial
1534 * lineality space. If any of the intermediate results has
1535 * a non-trivial lineality space, it is projected out.
1537 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1539 struct isl_basic_set
*convex_hull
= NULL
;
1541 convex_hull
= isl_set_copy_basic_set(set
);
1542 set
= isl_set_drop_basic_set(set
, convex_hull
);
1545 while (set
->n
> 0) {
1546 struct isl_basic_set
*t
;
1547 t
= isl_set_copy_basic_set(set
);
1550 set
= isl_set_drop_basic_set(set
, t
);
1553 convex_hull
= convex_hull_pair(convex_hull
, t
);
1556 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1559 if (isl_basic_set_is_universe(t
)) {
1560 isl_basic_set_free(convex_hull
);
1564 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1565 set
= isl_set_add_basic_set(set
, convex_hull
);
1566 return modulo_lineality(set
, t
);
1568 isl_basic_set_free(t
);
1574 isl_basic_set_free(convex_hull
);
1578 /* Compute an initial hull for wrapping containing a single initial
1579 * facet by first computing bounds on the set and then using these
1580 * bounds to construct an initial facet.
1581 * This function is a remnant of an older implementation where the
1582 * bounds were also used to check whether the set was bounded.
1583 * Since this function will now only be called when we know the
1584 * set to be bounded, the initial facet should probably be constructed
1585 * by simply using the coordinate directions instead.
1587 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1588 struct isl_set
*set
)
1590 struct isl_mat
*bounds
= NULL
;
1596 bounds
= independent_bounds(set
);
1599 isl_assert(set
->ctx
, bounds
->n_row
== isl_set_n_dim(set
), goto error
);
1600 bounds
= initial_facet_constraint(set
, bounds
);
1603 k
= isl_basic_set_alloc_inequality(hull
);
1606 dim
= isl_set_n_dim(set
);
1607 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1608 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1609 isl_mat_free(bounds
);
1613 isl_basic_set_free(hull
);
1614 isl_mat_free(bounds
);
1618 struct max_constraint
{
1624 static int max_constraint_equal(const void *entry
, const void *val
)
1626 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1627 isl_int
*b
= (isl_int
*)val
;
1629 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1632 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1633 isl_int
*con
, unsigned len
, int n
, int ineq
)
1635 struct isl_hash_table_entry
*entry
;
1636 struct max_constraint
*c
;
1639 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1640 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1646 isl_hash_table_remove(ctx
, table
, entry
);
1650 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1652 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1657 c
->c
= isl_mat_cow(c
->c
);
1658 isl_int_set(c
->c
->row
[0][0], con
[0]);
1662 /* Check whether the constraint hash table "table" constains the constraint
1665 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1666 isl_int
*con
, unsigned len
, int n
)
1668 struct isl_hash_table_entry
*entry
;
1669 struct max_constraint
*c
;
1672 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1673 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1680 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1683 /* Check for inequality constraints of a basic set without equalities
1684 * such that the same or more stringent copies of the constraint appear
1685 * in all of the basic sets. Such constraints are necessarily facet
1686 * constraints of the convex hull.
1688 * If the resulting basic set is by chance identical to one of
1689 * the basic sets in "set", then we know that this basic set contains
1690 * all other basic sets and is therefore the convex hull of set.
1691 * In this case we set *is_hull to 1.
1693 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1694 struct isl_set
*set
, int *is_hull
)
1697 int min_constraints
;
1699 struct max_constraint
*constraints
= NULL
;
1700 struct isl_hash_table
*table
= NULL
;
1705 for (i
= 0; i
< set
->n
; ++i
)
1706 if (set
->p
[i
]->n_eq
== 0)
1710 min_constraints
= set
->p
[i
]->n_ineq
;
1712 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1713 if (set
->p
[i
]->n_eq
!= 0)
1715 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1717 min_constraints
= set
->p
[i
]->n_ineq
;
1720 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1724 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1725 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1728 total
= isl_dim_total(set
->dim
);
1729 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1730 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1731 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1732 if (!constraints
[i
].c
)
1734 constraints
[i
].ineq
= 1;
1736 for (i
= 0; i
< min_constraints
; ++i
) {
1737 struct isl_hash_table_entry
*entry
;
1739 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1740 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1741 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1744 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1745 entry
->data
= &constraints
[i
];
1749 for (s
= 0; s
< set
->n
; ++s
) {
1753 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1754 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1755 for (j
= 0; j
< 2; ++j
) {
1756 isl_seq_neg(eq
, eq
, 1 + total
);
1757 update_constraint(hull
->ctx
, table
,
1761 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1762 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1763 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1764 set
->p
[s
]->n_eq
== 0);
1769 for (i
= 0; i
< min_constraints
; ++i
) {
1770 if (constraints
[i
].count
< n
)
1772 if (!constraints
[i
].ineq
)
1774 j
= isl_basic_set_alloc_inequality(hull
);
1777 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1780 for (s
= 0; s
< set
->n
; ++s
) {
1781 if (set
->p
[s
]->n_eq
)
1783 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1785 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1786 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1787 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1790 if (i
== set
->p
[s
]->n_ineq
)
1794 isl_hash_table_clear(table
);
1795 for (i
= 0; i
< min_constraints
; ++i
)
1796 isl_mat_free(constraints
[i
].c
);
1801 isl_hash_table_clear(table
);
1804 for (i
= 0; i
< min_constraints
; ++i
)
1805 isl_mat_free(constraints
[i
].c
);
1810 /* Create a template for the convex hull of "set" and fill it up
1811 * obvious facet constraints, if any. If the result happens to
1812 * be the convex hull of "set" then *is_hull is set to 1.
1814 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1816 struct isl_basic_set
*hull
;
1821 for (i
= 0; i
< set
->n
; ++i
) {
1822 n_ineq
+= set
->p
[i
]->n_eq
;
1823 n_ineq
+= set
->p
[i
]->n_ineq
;
1825 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1826 hull
= isl_basic_set_set_rational(hull
);
1829 return common_constraints(hull
, set
, is_hull
);
1832 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1834 struct isl_basic_set
*hull
;
1837 hull
= proto_hull(set
, &is_hull
);
1838 if (hull
&& !is_hull
) {
1839 if (hull
->n_ineq
== 0)
1840 hull
= initial_hull(hull
, set
);
1841 hull
= extend(hull
, set
);
1848 /* Compute the convex hull of a set without any parameters or
1849 * integer divisions. Depending on whether the set is bounded,
1850 * we pass control to the wrapping based convex hull or
1851 * the Fourier-Motzkin elimination based convex hull.
1852 * We also handle a few special cases before checking the boundedness.
1854 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1856 struct isl_basic_set
*convex_hull
= NULL
;
1857 struct isl_basic_set
*lin
;
1859 if (isl_set_n_dim(set
) == 0)
1860 return convex_hull_0d(set
);
1862 set
= isl_set_coalesce(set
);
1863 set
= isl_set_set_rational(set
);
1870 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1874 if (isl_set_n_dim(set
) == 1)
1875 return convex_hull_1d(set
);
1877 if (isl_set_is_bounded(set
))
1878 return uset_convex_hull_wrap(set
);
1880 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1883 if (isl_basic_set_is_universe(lin
)) {
1887 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1888 return modulo_lineality(set
, lin
);
1889 isl_basic_set_free(lin
);
1891 return uset_convex_hull_unbounded(set
);
1894 isl_basic_set_free(convex_hull
);
1898 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1899 * without parameters or divs and where the convex hull of set is
1900 * known to be full-dimensional.
1902 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1904 struct isl_basic_set
*convex_hull
= NULL
;
1906 if (isl_set_n_dim(set
) == 0) {
1907 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1909 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1913 set
= isl_set_set_rational(set
);
1917 set
= isl_set_coalesce(set
);
1921 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1925 if (isl_set_n_dim(set
) == 1)
1926 return convex_hull_1d(set
);
1928 return uset_convex_hull_wrap(set
);
1934 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1935 * We first remove the equalities (transforming the set), compute the
1936 * convex hull of the transformed set and then add the equalities back
1937 * (after performing the inverse transformation.
1939 static struct isl_basic_set
*modulo_affine_hull(struct isl_ctx
*ctx
,
1940 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1944 struct isl_basic_set
*dummy
;
1945 struct isl_basic_set
*convex_hull
;
1947 dummy
= isl_basic_set_remove_equalities(
1948 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1951 isl_basic_set_free(dummy
);
1952 set
= isl_set_preimage(set
, T
);
1953 convex_hull
= uset_convex_hull(set
);
1954 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1955 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1958 isl_basic_set_free(affine_hull
);
1963 /* Compute the convex hull of a map.
1965 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1966 * specifically, the wrapping of facets to obtain new facets.
1968 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1970 struct isl_basic_set
*bset
;
1971 struct isl_basic_map
*model
= NULL
;
1972 struct isl_basic_set
*affine_hull
= NULL
;
1973 struct isl_basic_map
*convex_hull
= NULL
;
1974 struct isl_set
*set
= NULL
;
1975 struct isl_ctx
*ctx
;
1982 convex_hull
= isl_basic_map_empty_like_map(map
);
1987 map
= isl_map_detect_equalities(map
);
1988 map
= isl_map_align_divs(map
);
1989 model
= isl_basic_map_copy(map
->p
[0]);
1990 set
= isl_map_underlying_set(map
);
1994 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1997 if (affine_hull
->n_eq
!= 0)
1998 bset
= modulo_affine_hull(ctx
, set
, affine_hull
);
2000 isl_basic_set_free(affine_hull
);
2001 bset
= uset_convex_hull(set
);
2004 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
2006 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2007 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2008 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
2012 isl_basic_map_free(model
);
2016 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
2018 return (struct isl_basic_set
*)
2019 isl_map_convex_hull((struct isl_map
*)set
);
2022 struct sh_data_entry
{
2023 struct isl_hash_table
*table
;
2024 struct isl_tab
*tab
;
2027 /* Holds the data needed during the simple hull computation.
2029 * n the number of basic sets in the original set
2030 * hull_table a hash table of already computed constraints
2031 * in the simple hull
2032 * p for each basic set,
2033 * table a hash table of the constraints
2034 * tab the tableau corresponding to the basic set
2037 struct isl_ctx
*ctx
;
2039 struct isl_hash_table
*hull_table
;
2040 struct sh_data_entry p
[1];
2043 static void sh_data_free(struct sh_data
*data
)
2049 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2050 for (i
= 0; i
< data
->n
; ++i
) {
2051 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2052 isl_tab_free(data
->p
[i
].tab
);
2057 struct ineq_cmp_data
{
2062 static int has_ineq(const void *entry
, const void *val
)
2064 isl_int
*row
= (isl_int
*)entry
;
2065 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2067 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2068 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2071 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2072 isl_int
*ineq
, unsigned len
)
2075 struct ineq_cmp_data v
;
2076 struct isl_hash_table_entry
*entry
;
2080 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2081 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2088 /* Fill hash table "table" with the constraints of "bset".
2089 * Equalities are added as two inequalities.
2090 * The value in the hash table is a pointer to the (in)equality of "bset".
2092 static int hash_basic_set(struct isl_hash_table
*table
,
2093 struct isl_basic_set
*bset
)
2096 unsigned dim
= isl_basic_set_total_dim(bset
);
2098 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2099 for (j
= 0; j
< 2; ++j
) {
2100 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2101 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2105 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2106 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2112 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2114 struct sh_data
*data
;
2117 data
= isl_calloc(set
->ctx
, struct sh_data
,
2118 sizeof(struct sh_data
) +
2119 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2122 data
->ctx
= set
->ctx
;
2124 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2125 if (!data
->hull_table
)
2127 for (i
= 0; i
< set
->n
; ++i
) {
2128 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2129 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2130 if (!data
->p
[i
].table
)
2132 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2141 /* Check if inequality "ineq" is a bound for basic set "j" or if
2142 * it can be relaxed (by increasing the constant term) to become
2143 * a bound for that basic set. In the latter case, the constant
2145 * Return 1 if "ineq" is a bound
2146 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2147 * -1 if some error occurred
2149 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2152 enum isl_lp_result res
;
2155 if (!data
->p
[j
].tab
) {
2156 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2157 if (!data
->p
[j
].tab
)
2163 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2165 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2166 isl_int_sub(ineq
[0], ineq
[0], opt
);
2170 return res
== isl_lp_ok
? 1 :
2171 res
== isl_lp_unbounded
? 0 : -1;
2174 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2175 * become a bound on the whole set. If so, add the (relaxed) inequality
2178 * We first check if "hull" already contains a translate of the inequality.
2179 * If so, we are done.
2180 * Then, we check if any of the previous basic sets contains a translate
2181 * of the inequality. If so, then we have already considered this
2182 * inequality and we are done.
2183 * Otherwise, for each basic set other than "i", we check if the inequality
2184 * is a bound on the basic set.
2185 * For previous basic sets, we know that they do not contain a translate
2186 * of the inequality, so we directly call is_bound.
2187 * For following basic sets, we first check if a translate of the
2188 * inequality appears in its description and if so directly update
2189 * the inequality accordingly.
2191 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2192 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2195 struct ineq_cmp_data v
;
2196 struct isl_hash_table_entry
*entry
;
2202 v
.len
= isl_basic_set_total_dim(hull
);
2204 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2206 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2211 for (j
= 0; j
< i
; ++j
) {
2212 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2213 c_hash
, has_ineq
, &v
, 0);
2220 k
= isl_basic_set_alloc_inequality(hull
);
2221 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2225 for (j
= 0; j
< i
; ++j
) {
2227 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2234 isl_basic_set_free_inequality(hull
, 1);
2238 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2241 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2242 c_hash
, has_ineq
, &v
, 0);
2244 ineq_j
= entry
->data
;
2245 neg
= isl_seq_is_neg(ineq_j
+ 1,
2246 hull
->ineq
[k
] + 1, v
.len
);
2248 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2249 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2250 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2252 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2255 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2262 isl_basic_set_free_inequality(hull
, 1);
2266 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2270 entry
->data
= hull
->ineq
[k
];
2274 isl_basic_set_free(hull
);
2278 /* Check if any inequality from basic set "i" can be relaxed to
2279 * become a bound on the whole set. If so, add the (relaxed) inequality
2282 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2283 struct sh_data
*data
, struct isl_set
*set
, int i
)
2286 unsigned dim
= isl_basic_set_total_dim(bset
);
2288 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2289 for (k
= 0; k
< 2; ++k
) {
2290 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2291 add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2294 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2295 add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2299 /* Compute a superset of the convex hull of set that is described
2300 * by only translates of the constraints in the constituents of set.
2302 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2304 struct sh_data
*data
= NULL
;
2305 struct isl_basic_set
*hull
= NULL
;
2313 for (i
= 0; i
< set
->n
; ++i
) {
2316 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2319 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2323 data
= sh_data_alloc(set
, n_ineq
);
2327 for (i
= 0; i
< set
->n
; ++i
)
2328 hull
= add_bounds(hull
, data
, set
, i
);
2336 isl_basic_set_free(hull
);
2341 /* Compute a superset of the convex hull of map that is described
2342 * by only translates of the constraints in the constituents of map.
2344 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2346 struct isl_set
*set
= NULL
;
2347 struct isl_basic_map
*model
= NULL
;
2348 struct isl_basic_map
*hull
;
2349 struct isl_basic_map
*affine_hull
;
2350 struct isl_basic_set
*bset
= NULL
;
2355 hull
= isl_basic_map_empty_like_map(map
);
2360 hull
= isl_basic_map_copy(map
->p
[0]);
2365 map
= isl_map_detect_equalities(map
);
2366 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2367 map
= isl_map_align_divs(map
);
2368 model
= isl_basic_map_copy(map
->p
[0]);
2370 set
= isl_map_underlying_set(map
);
2372 bset
= uset_simple_hull(set
);
2374 hull
= isl_basic_map_overlying_set(bset
, model
);
2376 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2377 hull
= isl_basic_map_convex_hull(hull
);
2378 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2379 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2384 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2386 return (struct isl_basic_set
*)
2387 isl_map_simple_hull((struct isl_map
*)set
);
2390 /* Given a set "set", return parametric bounds on the dimension "dim".
2392 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2394 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2395 set
= isl_set_copy(set
);
2396 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2397 set
= isl_set_eliminate_dims(set
, 0, dim
);
2398 return isl_set_convex_hull(set
);
2401 /* Computes a "simple hull" and then check if each dimension in the
2402 * resulting hull is bounded by a symbolic constant. If not, the
2403 * hull is intersected with the corresponding bounds on the whole set.
2405 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2408 struct isl_basic_set
*hull
;
2409 unsigned nparam
, left
;
2410 int removed_divs
= 0;
2412 hull
= isl_set_simple_hull(isl_set_copy(set
));
2416 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2417 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2418 int lower
= 0, upper
= 0;
2419 struct isl_basic_set
*bounds
;
2421 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2422 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2423 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2425 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2432 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2433 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2435 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2437 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2440 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2451 if (!removed_divs
) {
2452 set
= isl_set_remove_divs(set
);
2457 bounds
= set_bounds(set
, i
);
2458 hull
= isl_basic_set_intersect(hull
, bounds
);