2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
6 * Copyright 2016 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, K.U.Leuven, Departement
11 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
16 * B.P. 105 - 78153 Le Chesnay, France
19 #include <isl_ctx_private.h>
20 #include "isl_map_private.h"
22 #include <isl/options.h>
24 #include <isl_mat_private.h>
25 #include <isl_local_space_private.h>
26 #include <isl_vec_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_equalities.h>
30 #define STATUS_ERROR -1
31 #define STATUS_REDUNDANT 1
32 #define STATUS_VALID 2
33 #define STATUS_SEPARATE 3
35 #define STATUS_ADJ_EQ 5
36 #define STATUS_ADJ_INEQ 6
38 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
40 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
43 case isl_ineq_error
: return STATUS_ERROR
;
44 case isl_ineq_redundant
: return STATUS_VALID
;
45 case isl_ineq_separate
: return STATUS_SEPARATE
;
46 case isl_ineq_cut
: return STATUS_CUT
;
47 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
48 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
52 /* Compute the position of the equalities of basic map "bmap_i"
53 * with respect to the basic map represented by "tab_j".
54 * The resulting array has twice as many entries as the number
55 * of equalities corresponding to the two inequalties to which
56 * each equality corresponds.
58 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
59 struct isl_tab
*tab_j
)
62 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
68 dim
= isl_basic_map_total_dim(bmap_i
);
69 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
70 for (l
= 0; l
< 2; ++l
) {
71 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
72 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
73 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
76 if (eq
[2 * k
] == STATUS_SEPARATE
||
77 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
87 /* Compute the position of the inequalities of basic map "bmap_i"
88 * (also represented by "tab_i", if not NULL) with respect to the basic map
89 * represented by "tab_j".
91 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
92 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
95 unsigned n_eq
= bmap_i
->n_eq
;
96 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
101 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
102 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
103 ineq
[k
] = STATUS_REDUNDANT
;
106 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
107 if (ineq
[k
] == STATUS_ERROR
)
109 if (ineq
[k
] == STATUS_SEPARATE
)
119 static int any(int *con
, unsigned len
, int status
)
123 for (i
= 0; i
< len
; ++i
)
124 if (con
[i
] == status
)
129 static int count(int *con
, unsigned len
, int status
)
134 for (i
= 0; i
< len
; ++i
)
135 if (con
[i
] == status
)
140 static int all(int *con
, unsigned len
, int status
)
144 for (i
= 0; i
< len
; ++i
) {
145 if (con
[i
] == STATUS_REDUNDANT
)
147 if (con
[i
] != status
)
153 /* Internal information associated to a basic map in a map
154 * that is to be coalesced by isl_map_coalesce.
156 * "bmap" is the basic map itself (or NULL if "removed" is set)
157 * "tab" is the corresponding tableau (or NULL if "removed" is set)
158 * "hull_hash" identifies the affine space in which "bmap" lives.
159 * "removed" is set if this basic map has been removed from the map
160 * "simplify" is set if this basic map may have some unknown integer
161 * divisions that were not present in the input basic maps. The basic
162 * map should then be simplified such that we may be able to find
163 * a definition among the constraints.
165 * "eq" and "ineq" are only set if we are currently trying to coalesce
166 * this basic map with another basic map, in which case they represent
167 * the position of the inequalities of this basic map with respect to
168 * the other basic map. The number of elements in the "eq" array
169 * is twice the number of equalities in the "bmap", corresponding
170 * to the two inequalities that make up each equality.
172 struct isl_coalesce_info
{
182 /* Are all non-redundant constraints of the basic map represented by "info"
183 * either valid or cut constraints with respect to the other basic map?
185 static int all_valid_or_cut(struct isl_coalesce_info
*info
)
189 for (i
= 0; i
< 2 * info
->bmap
->n_eq
; ++i
) {
190 if (info
->eq
[i
] == STATUS_REDUNDANT
)
192 if (info
->eq
[i
] == STATUS_VALID
)
194 if (info
->eq
[i
] == STATUS_CUT
)
199 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
200 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
202 if (info
->ineq
[i
] == STATUS_VALID
)
204 if (info
->ineq
[i
] == STATUS_CUT
)
212 /* Compute the hash of the (apparent) affine hull of info->bmap (with
213 * the existentially quantified variables removed) and store it
216 static int coalesce_info_set_hull_hash(struct isl_coalesce_info
*info
)
221 hull
= isl_basic_map_copy(info
->bmap
);
222 hull
= isl_basic_map_plain_affine_hull(hull
);
223 n_div
= isl_basic_map_dim(hull
, isl_dim_div
);
224 hull
= isl_basic_map_drop_constraints_involving_dims(hull
,
225 isl_dim_div
, 0, n_div
);
226 info
->hull_hash
= isl_basic_map_get_hash(hull
);
227 isl_basic_map_free(hull
);
229 return hull
? 0 : -1;
232 /* Free all the allocated memory in an array
233 * of "n" isl_coalesce_info elements.
235 static void clear_coalesce_info(int n
, struct isl_coalesce_info
*info
)
242 for (i
= 0; i
< n
; ++i
) {
243 isl_basic_map_free(info
[i
].bmap
);
244 isl_tab_free(info
[i
].tab
);
250 /* Drop the basic map represented by "info".
251 * That is, clear the memory associated to the entry and
252 * mark it as having been removed.
254 static void drop(struct isl_coalesce_info
*info
)
256 info
->bmap
= isl_basic_map_free(info
->bmap
);
257 isl_tab_free(info
->tab
);
262 /* Exchange the information in "info1" with that in "info2".
264 static void exchange(struct isl_coalesce_info
*info1
,
265 struct isl_coalesce_info
*info2
)
267 struct isl_coalesce_info info
;
274 /* This type represents the kind of change that has been performed
275 * while trying to coalesce two basic maps.
277 * isl_change_none: nothing was changed
278 * isl_change_drop_first: the first basic map was removed
279 * isl_change_drop_second: the second basic map was removed
280 * isl_change_fuse: the two basic maps were replaced by a new basic map.
283 isl_change_error
= -1,
285 isl_change_drop_first
,
286 isl_change_drop_second
,
290 /* Update "change" based on an interchange of the first and the second
291 * basic map. That is, interchange isl_change_drop_first and
292 * isl_change_drop_second.
294 static enum isl_change
invert_change(enum isl_change change
)
297 case isl_change_error
:
298 return isl_change_error
;
299 case isl_change_none
:
300 return isl_change_none
;
301 case isl_change_drop_first
:
302 return isl_change_drop_second
;
303 case isl_change_drop_second
:
304 return isl_change_drop_first
;
305 case isl_change_fuse
:
306 return isl_change_fuse
;
309 return isl_change_error
;
312 /* Add the valid constraints of the basic map represented by "info"
313 * to "bmap". "len" is the size of the constraints.
314 * If only one of the pair of inequalities that make up an equality
315 * is valid, then add that inequality.
317 static __isl_give isl_basic_map
*add_valid_constraints(
318 __isl_take isl_basic_map
*bmap
, struct isl_coalesce_info
*info
,
326 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
327 if (info
->eq
[2 * k
] == STATUS_VALID
&&
328 info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
329 l
= isl_basic_map_alloc_equality(bmap
);
331 return isl_basic_map_free(bmap
);
332 isl_seq_cpy(bmap
->eq
[l
], info
->bmap
->eq
[k
], len
);
333 } else if (info
->eq
[2 * k
] == STATUS_VALID
) {
334 l
= isl_basic_map_alloc_inequality(bmap
);
336 return isl_basic_map_free(bmap
);
337 isl_seq_neg(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
338 } else if (info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
339 l
= isl_basic_map_alloc_inequality(bmap
);
341 return isl_basic_map_free(bmap
);
342 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
346 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
347 if (info
->ineq
[k
] != STATUS_VALID
)
349 l
= isl_basic_map_alloc_inequality(bmap
);
351 return isl_basic_map_free(bmap
);
352 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->ineq
[k
], len
);
358 /* Is "bmap" defined by a number of (non-redundant) constraints that
359 * is greater than the number of constraints of basic maps i and j combined?
360 * Equalities are counted as two inequalities.
362 static int number_of_constraints_increases(int i
, int j
,
363 struct isl_coalesce_info
*info
,
364 __isl_keep isl_basic_map
*bmap
, struct isl_tab
*tab
)
368 n_old
= 2 * info
[i
].bmap
->n_eq
+ info
[i
].bmap
->n_ineq
;
369 n_old
+= 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
371 n_new
= 2 * bmap
->n_eq
;
372 for (k
= 0; k
< bmap
->n_ineq
; ++k
)
373 if (!isl_tab_is_redundant(tab
, bmap
->n_eq
+ k
))
376 return n_new
> n_old
;
379 /* Replace the pair of basic maps i and j by the basic map bounded
380 * by the valid constraints in both basic maps and the constraints
381 * in extra (if not NULL).
382 * Place the fused basic map in the position that is the smallest of i and j.
384 * If "detect_equalities" is set, then look for equalities encoded
385 * as pairs of inequalities.
386 * If "check_number" is set, then the original basic maps are only
387 * replaced if the total number of constraints does not increase.
388 * While the number of integer divisions in the two basic maps
389 * is assumed to be the same, the actual definitions may be different.
390 * We only copy the definition from one of the basic map if it is
391 * the same as that of the other basic map. Otherwise, we mark
392 * the integer division as unknown and simplify the basic map
393 * in an attempt to recover the integer division definition.
395 static enum isl_change
fuse(int i
, int j
, struct isl_coalesce_info
*info
,
396 __isl_keep isl_mat
*extra
, int detect_equalities
, int check_number
)
399 struct isl_basic_map
*fused
= NULL
;
400 struct isl_tab
*fused_tab
= NULL
;
401 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
402 unsigned extra_rows
= extra
? extra
->n_row
: 0;
403 unsigned n_eq
, n_ineq
;
407 return fuse(j
, i
, info
, extra
, detect_equalities
, check_number
);
409 n_eq
= info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
;
410 n_ineq
= info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
;
411 fused
= isl_basic_map_alloc_space(isl_space_copy(info
[i
].bmap
->dim
),
412 info
[i
].bmap
->n_div
, n_eq
, n_eq
+ n_ineq
+ extra_rows
);
413 fused
= add_valid_constraints(fused
, &info
[i
], 1 + total
);
414 fused
= add_valid_constraints(fused
, &info
[j
], 1 + total
);
418 for (k
= 0; k
< info
[i
].bmap
->n_div
; ++k
) {
419 int l
= isl_basic_map_alloc_div(fused
);
422 if (isl_seq_eq(info
[i
].bmap
->div
[k
], info
[j
].bmap
->div
[k
],
424 isl_seq_cpy(fused
->div
[l
], info
[i
].bmap
->div
[k
],
427 isl_int_set_si(fused
->div
[l
][0], 0);
432 for (k
= 0; k
< extra_rows
; ++k
) {
433 l
= isl_basic_map_alloc_inequality(fused
);
436 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
439 if (detect_equalities
)
440 fused
= isl_basic_map_detect_inequality_pairs(fused
, NULL
);
441 fused
= isl_basic_map_gauss(fused
, NULL
);
442 if (simplify
|| info
[j
].simplify
) {
443 fused
= isl_basic_map_simplify(fused
);
444 info
[i
].simplify
= 0;
446 fused
= isl_basic_map_finalize(fused
);
447 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) &&
448 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
449 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
451 fused_tab
= isl_tab_from_basic_map(fused
, 0);
452 if (isl_tab_detect_redundant(fused_tab
) < 0)
456 number_of_constraints_increases(i
, j
, info
, fused
, fused_tab
)) {
457 isl_tab_free(fused_tab
);
458 isl_basic_map_free(fused
);
459 return isl_change_none
;
462 isl_basic_map_free(info
[i
].bmap
);
463 info
[i
].bmap
= fused
;
464 isl_tab_free(info
[i
].tab
);
465 info
[i
].tab
= fused_tab
;
468 return isl_change_fuse
;
470 isl_tab_free(fused_tab
);
471 isl_basic_map_free(fused
);
472 return isl_change_error
;
475 /* Given a pair of basic maps i and j such that all constraints are either
476 * "valid" or "cut", check if the facets corresponding to the "cut"
477 * constraints of i lie entirely within basic map j.
478 * If so, replace the pair by the basic map consisting of the valid
479 * constraints in both basic maps.
480 * Checking whether the facet lies entirely within basic map j
481 * is performed by checking whether the constraints of basic map j
482 * are valid for the facet. These tests are performed on a rational
483 * tableau to avoid the theoretical possibility that a constraint
484 * that was considered to be a cut constraint for the entire basic map i
485 * happens to be considered to be a valid constraint for the facet,
486 * even though it cuts off the same rational points.
488 * To see that we are not introducing any extra points, call the
489 * two basic maps A and B and the resulting map U and let x
490 * be an element of U \setminus ( A \cup B ).
491 * A line connecting x with an element of A \cup B meets a facet F
492 * of either A or B. Assume it is a facet of B and let c_1 be
493 * the corresponding facet constraint. We have c_1(x) < 0 and
494 * so c_1 is a cut constraint. This implies that there is some
495 * (possibly rational) point x' satisfying the constraints of A
496 * and the opposite of c_1 as otherwise c_1 would have been marked
497 * valid for A. The line connecting x and x' meets a facet of A
498 * in a (possibly rational) point that also violates c_1, but this
499 * is impossible since all cut constraints of B are valid for all
501 * In case F is a facet of A rather than B, then we can apply the
502 * above reasoning to find a facet of B separating x from A \cup B first.
504 static enum isl_change
check_facets(int i
, int j
,
505 struct isl_coalesce_info
*info
)
508 struct isl_tab_undo
*snap
, *snap2
;
509 unsigned n_eq
= info
[i
].bmap
->n_eq
;
511 snap
= isl_tab_snap(info
[i
].tab
);
512 if (isl_tab_mark_rational(info
[i
].tab
) < 0)
513 return isl_change_error
;
514 snap2
= isl_tab_snap(info
[i
].tab
);
516 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
517 if (info
[i
].ineq
[k
] != STATUS_CUT
)
519 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
520 return isl_change_error
;
521 for (l
= 0; l
< info
[j
].bmap
->n_ineq
; ++l
) {
523 if (info
[j
].ineq
[l
] != STATUS_CUT
)
525 stat
= status_in(info
[j
].bmap
->ineq
[l
], info
[i
].tab
);
527 return isl_change_error
;
528 if (stat
!= STATUS_VALID
)
531 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
532 return isl_change_error
;
533 if (l
< info
[j
].bmap
->n_ineq
)
537 if (k
< info
[i
].bmap
->n_ineq
) {
538 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
539 return isl_change_error
;
540 return isl_change_none
;
542 return fuse(i
, j
, info
, NULL
, 0, 0);
545 /* Check if info->bmap contains the basic map represented
546 * by the tableau "tab".
547 * For each equality, we check both the constraint itself
548 * (as an inequality) and its negation. Make sure the
549 * equality is returned to its original state before returning.
551 static int contains(struct isl_coalesce_info
*info
, struct isl_tab
*tab
)
555 isl_basic_map
*bmap
= info
->bmap
;
557 dim
= isl_basic_map_total_dim(bmap
);
558 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
560 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
561 stat
= status_in(bmap
->eq
[k
], tab
);
562 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
565 if (stat
!= STATUS_VALID
)
567 stat
= status_in(bmap
->eq
[k
], tab
);
570 if (stat
!= STATUS_VALID
)
574 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
576 if (info
->ineq
[k
] == STATUS_REDUNDANT
)
578 stat
= status_in(bmap
->ineq
[k
], tab
);
581 if (stat
!= STATUS_VALID
)
587 /* Basic map "i" has an inequality (say "k") that is adjacent
588 * to some inequality of basic map "j". All the other inequalities
590 * Check if basic map "j" forms an extension of basic map "i".
592 * Note that this function is only called if some of the equalities or
593 * inequalities of basic map "j" do cut basic map "i". The function is
594 * correct even if there are no such cut constraints, but in that case
595 * the additional checks performed by this function are overkill.
597 * In particular, we replace constraint k, say f >= 0, by constraint
598 * f <= -1, add the inequalities of "j" that are valid for "i"
599 * and check if the result is a subset of basic map "j".
600 * If so, then we know that this result is exactly equal to basic map "j"
601 * since all its constraints are valid for basic map "j".
602 * By combining the valid constraints of "i" (all equalities and all
603 * inequalities except "k") and the valid constraints of "j" we therefore
604 * obtain a basic map that is equal to their union.
605 * In this case, there is no need to perform a rollback of the tableau
606 * since it is going to be destroyed in fuse().
612 * |_______| _ |_________\
624 static enum isl_change
is_adj_ineq_extension(int i
, int j
,
625 struct isl_coalesce_info
*info
)
628 struct isl_tab_undo
*snap
;
629 unsigned n_eq
= info
[i
].bmap
->n_eq
;
630 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
634 if (isl_tab_extend_cons(info
[i
].tab
, 1 + info
[j
].bmap
->n_ineq
) < 0)
635 return isl_change_error
;
637 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
638 if (info
[i
].ineq
[k
] == STATUS_ADJ_INEQ
)
640 if (k
>= info
[i
].bmap
->n_ineq
)
641 isl_die(isl_basic_map_get_ctx(info
[i
].bmap
), isl_error_internal
,
642 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
643 return isl_change_error
);
645 snap
= isl_tab_snap(info
[i
].tab
);
647 if (isl_tab_unrestrict(info
[i
].tab
, n_eq
+ k
) < 0)
648 return isl_change_error
;
650 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
651 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
652 r
= isl_tab_add_ineq(info
[i
].tab
, info
[i
].bmap
->ineq
[k
]);
653 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
654 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
656 return isl_change_error
;
658 for (k
= 0; k
< info
[j
].bmap
->n_ineq
; ++k
) {
659 if (info
[j
].ineq
[k
] != STATUS_VALID
)
661 if (isl_tab_add_ineq(info
[i
].tab
, info
[j
].bmap
->ineq
[k
]) < 0)
662 return isl_change_error
;
665 super
= contains(&info
[j
], info
[i
].tab
);
667 return isl_change_error
;
669 return fuse(i
, j
, info
, NULL
, 0, 0);
671 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
672 return isl_change_error
;
674 return isl_change_none
;
678 /* Both basic maps have at least one inequality with and adjacent
679 * (but opposite) inequality in the other basic map.
680 * Check that there are no cut constraints and that there is only
681 * a single pair of adjacent inequalities.
682 * If so, we can replace the pair by a single basic map described
683 * by all but the pair of adjacent inequalities.
684 * Any additional points introduced lie strictly between the two
685 * adjacent hyperplanes and can therefore be integral.
694 * The test for a single pair of adjancent inequalities is important
695 * for avoiding the combination of two basic maps like the following
705 * If there are some cut constraints on one side, then we may
706 * still be able to fuse the two basic maps, but we need to perform
707 * some additional checks in is_adj_ineq_extension.
709 static enum isl_change
check_adj_ineq(int i
, int j
,
710 struct isl_coalesce_info
*info
)
712 int count_i
, count_j
;
715 count_i
= count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
716 count_j
= count(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
718 if (count_i
!= 1 && count_j
!= 1)
719 return isl_change_none
;
721 cut_i
= any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) ||
722 any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
723 cut_j
= any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
) ||
724 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_CUT
);
726 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
727 return fuse(i
, j
, info
, NULL
, 0, 0);
729 if (count_i
== 1 && !cut_i
)
730 return is_adj_ineq_extension(i
, j
, info
);
732 if (count_j
== 1 && !cut_j
)
733 return is_adj_ineq_extension(j
, i
, info
);
735 return isl_change_none
;
738 /* Given an affine transformation matrix "T", does row "row" represent
739 * anything other than a unit vector (possibly shifted by a constant)
740 * that is not involved in any of the other rows?
742 * That is, if a constraint involves the variable corresponding to
743 * the row, then could its preimage by "T" have any coefficients
744 * that are different from those in the original constraint?
746 static int not_unique_unit_row(__isl_keep isl_mat
*T
, int row
)
749 int len
= T
->n_col
- 1;
751 i
= isl_seq_first_non_zero(T
->row
[row
] + 1, len
);
754 if (!isl_int_is_one(T
->row
[row
][1 + i
]) &&
755 !isl_int_is_negone(T
->row
[row
][1 + i
]))
758 j
= isl_seq_first_non_zero(T
->row
[row
] + 1 + i
+ 1, len
- (i
+ 1));
762 for (j
= 1; j
< T
->n_row
; ++j
) {
765 if (!isl_int_is_zero(T
->row
[j
][1 + i
]))
772 /* Does inequality constraint "ineq" of "bmap" involve any of
773 * the variables marked in "affected"?
774 * "total" is the total number of variables, i.e., the number
775 * of entries in "affected".
777 static int is_affected(__isl_keep isl_basic_map
*bmap
, int ineq
, int *affected
,
782 for (i
= 0; i
< total
; ++i
) {
785 if (!isl_int_is_zero(bmap
->ineq
[ineq
][1 + i
]))
792 /* Given the compressed version of inequality constraint "ineq"
793 * of info->bmap in "v", check if the constraint can be tightened,
794 * where the compression is based on an equality constraint valid
796 * If so, add the tightened version of the inequality constraint
797 * to info->tab. "v" may be modified by this function.
799 * That is, if the compressed constraint is of the form
803 * with 0 < c < m, then it is equivalent to
807 * This means that c can also be subtracted from the original,
808 * uncompressed constraint without affecting the integer points
809 * in info->tab. Add this tightened constraint as an extra row
810 * to info->tab to make this information explicitly available.
812 static __isl_give isl_vec
*try_tightening(struct isl_coalesce_info
*info
,
813 int ineq
, __isl_take isl_vec
*v
)
821 ctx
= isl_vec_get_ctx(v
);
822 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
823 if (isl_int_is_zero(ctx
->normalize_gcd
) ||
824 isl_int_is_one(ctx
->normalize_gcd
)) {
832 isl_int_fdiv_r(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
833 if (isl_int_is_zero(v
->el
[0]))
836 if (isl_tab_extend_cons(info
->tab
, 1) < 0)
837 return isl_vec_free(v
);
839 isl_int_sub(info
->bmap
->ineq
[ineq
][0],
840 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
841 r
= isl_tab_add_ineq(info
->tab
, info
->bmap
->ineq
[ineq
]);
842 isl_int_add(info
->bmap
->ineq
[ineq
][0],
843 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
846 return isl_vec_free(v
);
851 /* Tighten the (non-redundant) constraints on the facet represented
853 * In particular, on input, info->tab represents the result
854 * of replacing constraint k of info->bmap, i.e., f_k >= 0,
855 * by the adjacent equality, i.e., f_k + 1 = 0.
857 * Compute a variable compression from the equality constraint f_k + 1 = 0
858 * and use it to tighten the other constraints of info->bmap,
859 * updating info->tab (and leaving info->bmap untouched).
860 * The compression handles essentially two cases, one where a variable
861 * is assigned a fixed value and can therefore be eliminated, and one
862 * where one variable is a shifted multiple of some other variable and
863 * can therefore be replaced by that multiple.
864 * Gaussian elimination would also work for the first case, but for
865 * the second case, the effectiveness would depend on the order
867 * After compression, some of the constraints may have coefficients
868 * with a common divisor. If this divisor does not divide the constant
869 * term, then the constraint can be tightened.
870 * The tightening is performed on the tableau info->tab by introducing
871 * extra (temporary) constraints.
873 * Only constraints that are possibly affected by the compression are
874 * considered. In particular, if the constraint only involves variables
875 * that are directly mapped to a distinct set of other variables, then
876 * no common divisor can be introduced and no tightening can occur.
878 * It is important to only consider the non-redundant constraints
879 * since the facet constraint has been relaxed prior to the call
880 * to this function, meaning that the constraints that were redundant
881 * prior to the relaxation may no longer be redundant.
882 * These constraints will be ignored in the fused result, so
883 * the fusion detection should not exploit them.
885 static isl_stat
tighten_on_relaxed_facet(struct isl_coalesce_info
*info
,
895 ctx
= isl_basic_map_get_ctx(info
->bmap
);
896 total
= isl_basic_map_total_dim(info
->bmap
);
897 isl_int_add_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
898 T
= isl_mat_sub_alloc6(ctx
, info
->bmap
->ineq
, k
, 1, 0, 1 + total
);
899 T
= isl_mat_variable_compression(T
, NULL
);
900 isl_int_sub_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
902 return isl_stat_error
;
908 affected
= isl_alloc_array(ctx
, int, total
);
912 for (i
= 0; i
< total
; ++i
)
913 affected
[i
] = not_unique_unit_row(T
, 1 + i
);
915 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
918 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
920 if (!is_affected(info
->bmap
, i
, affected
, total
))
922 v
= isl_vec_alloc(ctx
, 1 + total
);
925 isl_seq_cpy(v
->el
, info
->bmap
->ineq
[i
], 1 + total
);
926 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
927 v
= try_tightening(info
, i
, v
);
939 return isl_stat_error
;
942 /* Basic map "i" has an inequality "k" that is adjacent to some equality
943 * of basic map "j". All the other inequalities are valid for "j".
944 * Check if basic map "j" forms an extension of basic map "i".
946 * In particular, we relax constraint "k", compute the corresponding
947 * facet and check whether it is included in the other basic map.
948 * Before testing for inclusion, the constraints on the facet
949 * are tightened to increase the chance of an inclusion being detected.
950 * If the facet is included, we know that relaxing the constraint extends
951 * the basic map with exactly the other basic map (we already know that this
952 * other basic map is included in the extension, because there
953 * were no "cut" inequalities in "i") and we can replace the
954 * two basic maps by this extension.
955 * Each integer division that does not have exactly the same
956 * definition in "i" and "j" is marked unknown and the basic map
957 * is scheduled to be simplified in an attempt to recover
958 * the integer division definition.
959 * Place this extension in the position that is the smallest of i and j.
967 static enum isl_change
is_adj_eq_extension(int i
, int j
, int k
,
968 struct isl_coalesce_info
*info
)
970 int change
= isl_change_none
;
972 struct isl_tab_undo
*snap
, *snap2
;
973 unsigned n_eq
= info
[i
].bmap
->n_eq
;
975 if (isl_tab_is_equality(info
[i
].tab
, n_eq
+ k
))
976 return isl_change_none
;
978 snap
= isl_tab_snap(info
[i
].tab
);
979 if (isl_tab_relax(info
[i
].tab
, n_eq
+ k
) < 0)
980 return isl_change_error
;
981 snap2
= isl_tab_snap(info
[i
].tab
);
982 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
983 return isl_change_error
;
984 if (tighten_on_relaxed_facet(&info
[i
], k
) < 0)
985 return isl_change_error
;
986 super
= contains(&info
[j
], info
[i
].tab
);
988 return isl_change_error
;
993 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
994 return isl_change_error
;
995 info
[i
].bmap
= isl_basic_map_cow(info
[i
].bmap
);
997 return isl_change_error
;
998 total
= isl_basic_map_total_dim(info
[i
].bmap
);
999 for (l
= 0; l
< info
[i
].bmap
->n_div
; ++l
)
1000 if (!isl_seq_eq(info
[i
].bmap
->div
[l
],
1001 info
[j
].bmap
->div
[l
], 1 + 1 + total
)) {
1002 isl_int_set_si(info
[i
].bmap
->div
[l
][0], 0);
1003 info
[i
].simplify
= 1;
1005 isl_int_add_ui(info
[i
].bmap
->ineq
[k
][0],
1006 info
[i
].bmap
->ineq
[k
][0], 1);
1007 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_FINAL
);
1010 exchange(&info
[i
], &info
[j
]);
1011 change
= isl_change_fuse
;
1013 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
1014 return isl_change_error
;
1019 /* Data structure that keeps track of the wrapping constraints
1020 * and of information to bound the coefficients of those constraints.
1022 * bound is set if we want to apply a bound on the coefficients
1023 * mat contains the wrapping constraints
1024 * max is the bound on the coefficients (if bound is set)
1032 /* Update wraps->max to be greater than or equal to the coefficients
1033 * in the equalities and inequalities of info->bmap that can be removed
1034 * if we end up applying wrapping.
1036 static void wraps_update_max(struct isl_wraps
*wraps
,
1037 struct isl_coalesce_info
*info
)
1041 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
1043 isl_int_init(max_k
);
1045 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
1046 if (info
->eq
[2 * k
] == STATUS_VALID
&&
1047 info
->eq
[2 * k
+ 1] == STATUS_VALID
)
1049 isl_seq_abs_max(info
->bmap
->eq
[k
] + 1, total
, &max_k
);
1050 if (isl_int_abs_gt(max_k
, wraps
->max
))
1051 isl_int_set(wraps
->max
, max_k
);
1054 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
1055 if (info
->ineq
[k
] == STATUS_VALID
||
1056 info
->ineq
[k
] == STATUS_REDUNDANT
)
1058 isl_seq_abs_max(info
->bmap
->ineq
[k
] + 1, total
, &max_k
);
1059 if (isl_int_abs_gt(max_k
, wraps
->max
))
1060 isl_int_set(wraps
->max
, max_k
);
1063 isl_int_clear(max_k
);
1066 /* Initialize the isl_wraps data structure.
1067 * If we want to bound the coefficients of the wrapping constraints,
1068 * we set wraps->max to the largest coefficient
1069 * in the equalities and inequalities that can be removed if we end up
1070 * applying wrapping.
1072 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
1073 struct isl_coalesce_info
*info
, int i
, int j
)
1081 ctx
= isl_mat_get_ctx(mat
);
1082 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
1085 isl_int_init(wraps
->max
);
1086 isl_int_set_si(wraps
->max
, 0);
1087 wraps_update_max(wraps
, &info
[i
]);
1088 wraps_update_max(wraps
, &info
[j
]);
1091 /* Free the contents of the isl_wraps data structure.
1093 static void wraps_free(struct isl_wraps
*wraps
)
1095 isl_mat_free(wraps
->mat
);
1097 isl_int_clear(wraps
->max
);
1100 /* Is the wrapping constraint in row "row" allowed?
1102 * If wraps->bound is set, we check that none of the coefficients
1103 * is greater than wraps->max.
1105 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
1112 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
1113 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
1119 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
1120 * to include "set" and add the result in position "w" of "wraps".
1121 * "len" is the total number of coefficients in "bound" and "ineq".
1122 * Return 1 on success, 0 on failure and -1 on error.
1123 * Wrapping can fail if the result of wrapping is equal to "bound"
1124 * or if we want to bound the sizes of the coefficients and
1125 * the wrapped constraint does not satisfy this bound.
1127 static int add_wrap(struct isl_wraps
*wraps
, int w
, isl_int
*bound
,
1128 isl_int
*ineq
, unsigned len
, __isl_keep isl_set
*set
, int negate
)
1130 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, len
);
1132 isl_seq_neg(wraps
->mat
->row
[w
+ 1], ineq
, len
);
1133 ineq
= wraps
->mat
->row
[w
+ 1];
1135 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], ineq
))
1137 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, len
))
1139 if (!allow_wrap(wraps
, w
))
1144 /* For each constraint in info->bmap that is not redundant (as determined
1145 * by info->tab) and that is not a valid constraint for the other basic map,
1146 * wrap the constraint around "bound" such that it includes the whole
1147 * set "set" and append the resulting constraint to "wraps".
1148 * Note that the constraints that are valid for the other basic map
1149 * will be added to the combined basic map by default, so there is
1150 * no need to wrap them.
1151 * The caller wrap_in_facets even relies on this function not wrapping
1152 * any constraints that are already valid.
1153 * "wraps" is assumed to have been pre-allocated to the appropriate size.
1154 * wraps->n_row is the number of actual wrapped constraints that have
1156 * If any of the wrapping problems results in a constraint that is
1157 * identical to "bound", then this means that "set" is unbounded in such
1158 * way that no wrapping is possible. If this happens then wraps->n_row
1160 * Similarly, if we want to bound the coefficients of the wrapping
1161 * constraints and a newly added wrapping constraint does not
1162 * satisfy the bound, then wraps->n_row is also reset to zero.
1164 static int add_wraps(struct isl_wraps
*wraps
, struct isl_coalesce_info
*info
,
1165 isl_int
*bound
, __isl_keep isl_set
*set
)
1170 isl_basic_map
*bmap
= info
->bmap
;
1171 unsigned len
= 1 + isl_basic_map_total_dim(bmap
);
1173 w
= wraps
->mat
->n_row
;
1175 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
1176 if (info
->ineq
[l
] == STATUS_VALID
||
1177 info
->ineq
[l
] == STATUS_REDUNDANT
)
1179 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], len
))
1181 if (isl_seq_eq(bound
, bmap
->ineq
[l
], len
))
1183 if (isl_tab_is_redundant(info
->tab
, bmap
->n_eq
+ l
))
1186 added
= add_wrap(wraps
, w
, bound
, bmap
->ineq
[l
], len
, set
, 0);
1193 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
1194 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], len
))
1196 if (isl_seq_eq(bound
, bmap
->eq
[l
], len
))
1199 for (m
= 0; m
< 2; ++m
) {
1200 if (info
->eq
[2 * l
+ m
] == STATUS_VALID
)
1202 added
= add_wrap(wraps
, w
, bound
, bmap
->eq
[l
], len
,
1212 wraps
->mat
->n_row
= w
;
1215 wraps
->mat
->n_row
= 0;
1219 /* Check if the constraints in "wraps" from "first" until the last
1220 * are all valid for the basic set represented by "tab".
1221 * If not, wraps->n_row is set to zero.
1223 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
1224 struct isl_tab
*tab
)
1228 for (i
= first
; i
< wraps
->n_row
; ++i
) {
1229 enum isl_ineq_type type
;
1230 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
1231 if (type
== isl_ineq_error
)
1233 if (type
== isl_ineq_redundant
)
1242 /* Return a set that corresponds to the non-redundant constraints
1243 * (as recorded in tab) of bmap.
1245 * It's important to remove the redundant constraints as some
1246 * of the other constraints may have been modified after the
1247 * constraints were marked redundant.
1248 * In particular, a constraint may have been relaxed.
1249 * Redundant constraints are ignored when a constraint is relaxed
1250 * and should therefore continue to be ignored ever after.
1251 * Otherwise, the relaxation might be thwarted by some of
1252 * these constraints.
1254 * Update the underlying set to ensure that the dimension doesn't change.
1255 * Otherwise the integer divisions could get dropped if the tab
1256 * turns out to be empty.
1258 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
1259 struct isl_tab
*tab
)
1261 isl_basic_set
*bset
;
1263 bmap
= isl_basic_map_copy(bmap
);
1264 bset
= isl_basic_map_underlying_set(bmap
);
1265 bset
= isl_basic_set_cow(bset
);
1266 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1267 return isl_set_from_basic_set(bset
);
1270 /* Wrap the constraints of info->bmap that bound the facet defined
1271 * by inequality "k" around (the opposite of) this inequality to
1272 * include "set". "bound" may be used to store the negated inequality.
1273 * Since the wrapped constraints are not guaranteed to contain the whole
1274 * of info->bmap, we check them in check_wraps.
1275 * If any of the wrapped constraints turn out to be invalid, then
1276 * check_wraps will reset wrap->n_row to zero.
1278 static int add_wraps_around_facet(struct isl_wraps
*wraps
,
1279 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1280 __isl_keep isl_set
*set
)
1282 struct isl_tab_undo
*snap
;
1284 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
1286 snap
= isl_tab_snap(info
->tab
);
1288 if (isl_tab_select_facet(info
->tab
, info
->bmap
->n_eq
+ k
) < 0)
1290 if (isl_tab_detect_redundant(info
->tab
) < 0)
1293 isl_seq_neg(bound
, info
->bmap
->ineq
[k
], 1 + total
);
1295 n
= wraps
->mat
->n_row
;
1296 if (add_wraps(wraps
, info
, bound
, set
) < 0)
1299 if (isl_tab_rollback(info
->tab
, snap
) < 0)
1301 if (check_wraps(wraps
->mat
, n
, info
->tab
) < 0)
1307 /* Given a basic set i with a constraint k that is adjacent to
1308 * basic set j, check if we can wrap
1309 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1310 * (always) around their ridges to include the other set.
1311 * If so, replace the pair of basic sets by their union.
1313 * All constraints of i (except k) are assumed to be valid or
1314 * cut constraints for j.
1315 * Wrapping the cut constraints to include basic map j may result
1316 * in constraints that are no longer valid of basic map i
1317 * we have to check that the resulting wrapping constraints are valid for i.
1318 * If "wrap_facet" is not set, then all constraints of i (except k)
1319 * are assumed to be valid for j.
1328 static enum isl_change
can_wrap_in_facet(int i
, int j
, int k
,
1329 struct isl_coalesce_info
*info
, int wrap_facet
)
1331 enum isl_change change
= isl_change_none
;
1332 struct isl_wraps wraps
;
1335 struct isl_set
*set_i
= NULL
;
1336 struct isl_set
*set_j
= NULL
;
1337 struct isl_vec
*bound
= NULL
;
1338 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1340 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1341 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1342 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1343 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1344 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1346 wraps_init(&wraps
, mat
, info
, i
, j
);
1347 bound
= isl_vec_alloc(ctx
, 1 + total
);
1348 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1351 isl_seq_cpy(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
1352 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1354 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1355 wraps
.mat
->n_row
= 1;
1357 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1359 if (!wraps
.mat
->n_row
)
1363 if (add_wraps_around_facet(&wraps
, &info
[i
], k
,
1364 bound
->el
, set_j
) < 0)
1366 if (!wraps
.mat
->n_row
)
1370 change
= fuse(i
, j
, info
, wraps
.mat
, 0, 0);
1375 isl_set_free(set_i
);
1376 isl_set_free(set_j
);
1378 isl_vec_free(bound
);
1383 isl_vec_free(bound
);
1384 isl_set_free(set_i
);
1385 isl_set_free(set_j
);
1386 return isl_change_error
;
1389 /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
1390 * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
1391 * add wrapping constraints to wrap.mat for all constraints
1392 * of basic map j that bound the part of basic map j that sticks out
1393 * of the cut constraint.
1394 * "set_i" is the underlying set of basic map i.
1395 * If any wrapping fails, then wraps->mat.n_row is reset to zero.
1397 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1398 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1399 * (with respect to the integer points), so we add t(x) >= 0 instead.
1400 * Otherwise, we wrap the constraints of basic map j that are not
1401 * redundant in this intersection and that are not already valid
1402 * for basic map i over basic map i.
1403 * Note that it is sufficient to wrap the constraints to include
1404 * basic map i, because we will only wrap the constraints that do
1405 * not include basic map i already. The wrapped constraint will
1406 * therefore be more relaxed compared to the original constraint.
1407 * Since the original constraint is valid for basic map j, so is
1408 * the wrapped constraint.
1410 static isl_stat
wrap_in_facet(struct isl_wraps
*wraps
, int w
,
1411 struct isl_coalesce_info
*info_j
, __isl_keep isl_set
*set_i
,
1412 struct isl_tab_undo
*snap
)
1414 isl_int_add_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1415 if (isl_tab_add_eq(info_j
->tab
, wraps
->mat
->row
[w
]) < 0)
1416 return isl_stat_error
;
1417 if (isl_tab_detect_redundant(info_j
->tab
) < 0)
1418 return isl_stat_error
;
1420 if (info_j
->tab
->empty
)
1421 isl_int_sub_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1422 else if (add_wraps(wraps
, info_j
, wraps
->mat
->row
[w
], set_i
) < 0)
1423 return isl_stat_error
;
1425 if (isl_tab_rollback(info_j
->tab
, snap
) < 0)
1426 return isl_stat_error
;
1431 /* Given a pair of basic maps i and j such that j sticks out
1432 * of i at n cut constraints, each time by at most one,
1433 * try to compute wrapping constraints and replace the two
1434 * basic maps by a single basic map.
1435 * The other constraints of i are assumed to be valid for j.
1436 * "set_i" is the underlying set of basic map i.
1437 * "wraps" has been initialized to be of the right size.
1439 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1440 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1441 * of basic map j that bound the part of basic map j that sticks out
1442 * of the cut constraint.
1444 * If any wrapping fails, i.e., if we cannot wrap to touch
1445 * the union, then we give up.
1446 * Otherwise, the pair of basic maps is replaced by their union.
1448 static enum isl_change
try_wrap_in_facets(int i
, int j
,
1449 struct isl_coalesce_info
*info
, struct isl_wraps
*wraps
,
1450 __isl_keep isl_set
*set_i
)
1454 struct isl_tab_undo
*snap
;
1456 total
= isl_basic_map_total_dim(info
[i
].bmap
);
1458 snap
= isl_tab_snap(info
[j
].tab
);
1460 wraps
->mat
->n_row
= 0;
1462 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
1463 for (l
= 0; l
< 2; ++l
) {
1464 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
1466 w
= wraps
->mat
->n_row
++;
1468 isl_seq_neg(wraps
->mat
->row
[w
],
1469 info
[i
].bmap
->eq
[k
], 1 + total
);
1471 isl_seq_cpy(wraps
->mat
->row
[w
],
1472 info
[i
].bmap
->eq
[k
], 1 + total
);
1473 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1474 return isl_change_error
;
1476 if (!wraps
->mat
->n_row
)
1477 return isl_change_none
;
1481 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
1482 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1484 w
= wraps
->mat
->n_row
++;
1485 isl_seq_cpy(wraps
->mat
->row
[w
],
1486 info
[i
].bmap
->ineq
[k
], 1 + total
);
1487 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1488 return isl_change_error
;
1490 if (!wraps
->mat
->n_row
)
1491 return isl_change_none
;
1494 return fuse(i
, j
, info
, wraps
->mat
, 0, 1);
1497 /* Given a pair of basic maps i and j such that j sticks out
1498 * of i at n cut constraints, each time by at most one,
1499 * try to compute wrapping constraints and replace the two
1500 * basic maps by a single basic map.
1501 * The other constraints of i are assumed to be valid for j.
1503 * The core computation is performed by try_wrap_in_facets.
1504 * This function simply extracts an underlying set representation
1505 * of basic map i and initializes the data structure for keeping
1506 * track of wrapping constraints.
1508 static enum isl_change
wrap_in_facets(int i
, int j
, int n
,
1509 struct isl_coalesce_info
*info
)
1511 enum isl_change change
= isl_change_none
;
1512 struct isl_wraps wraps
;
1515 isl_set
*set_i
= NULL
;
1516 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1519 if (isl_tab_extend_cons(info
[j
].tab
, 1) < 0)
1520 return isl_change_error
;
1522 max_wrap
= 1 + 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
1525 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1526 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1527 mat
= isl_mat_alloc(ctx
, max_wrap
, 1 + total
);
1528 wraps_init(&wraps
, mat
, info
, i
, j
);
1529 if (!set_i
|| !wraps
.mat
)
1532 change
= try_wrap_in_facets(i
, j
, info
, &wraps
, set_i
);
1535 isl_set_free(set_i
);
1540 isl_set_free(set_i
);
1541 return isl_change_error
;
1544 /* Return the effect of inequality "ineq" on the tableau "tab",
1545 * after relaxing the constant term of "ineq" by one.
1547 static enum isl_ineq_type
type_of_relaxed(struct isl_tab
*tab
, isl_int
*ineq
)
1549 enum isl_ineq_type type
;
1551 isl_int_add_ui(ineq
[0], ineq
[0], 1);
1552 type
= isl_tab_ineq_type(tab
, ineq
);
1553 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
1558 /* Given two basic sets i and j,
1559 * check if relaxing all the cut constraints of i by one turns
1560 * them into valid constraint for j and check if we can wrap in
1561 * the bits that are sticking out.
1562 * If so, replace the pair by their union.
1564 * We first check if all relaxed cut inequalities of i are valid for j
1565 * and then try to wrap in the intersections of the relaxed cut inequalities
1568 * During this wrapping, we consider the points of j that lie at a distance
1569 * of exactly 1 from i. In particular, we ignore the points that lie in
1570 * between this lower-dimensional space and the basic map i.
1571 * We can therefore only apply this to integer maps.
1597 * Wrapping can fail if the result of wrapping one of the facets
1598 * around its edges does not produce any new facet constraint.
1599 * In particular, this happens when we try to wrap in unbounded sets.
1601 * _______________________________________________________________________
1605 * |_| |_________________________________________________________________
1608 * The following is not an acceptable result of coalescing the above two
1609 * sets as it includes extra integer points.
1610 * _______________________________________________________________________
1615 * \______________________________________________________________________
1617 static enum isl_change
can_wrap_in_set(int i
, int j
,
1618 struct isl_coalesce_info
*info
)
1624 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) ||
1625 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
1626 return isl_change_none
;
1628 n
= count(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
);
1629 n
+= count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
1631 return isl_change_none
;
1633 total
= isl_basic_map_total_dim(info
[i
].bmap
);
1634 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
1635 for (l
= 0; l
< 2; ++l
) {
1636 enum isl_ineq_type type
;
1638 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
1642 isl_seq_neg(info
[i
].bmap
->eq
[k
],
1643 info
[i
].bmap
->eq
[k
], 1 + total
);
1644 type
= type_of_relaxed(info
[j
].tab
,
1645 info
[i
].bmap
->eq
[k
]);
1647 isl_seq_neg(info
[i
].bmap
->eq
[k
],
1648 info
[i
].bmap
->eq
[k
], 1 + total
);
1649 if (type
== isl_ineq_error
)
1650 return isl_change_error
;
1651 if (type
!= isl_ineq_redundant
)
1652 return isl_change_none
;
1656 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
1657 enum isl_ineq_type type
;
1659 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1662 type
= type_of_relaxed(info
[j
].tab
, info
[i
].bmap
->ineq
[k
]);
1663 if (type
== isl_ineq_error
)
1664 return isl_change_error
;
1665 if (type
!= isl_ineq_redundant
)
1666 return isl_change_none
;
1669 return wrap_in_facets(i
, j
, n
, info
);
1672 /* Check if either i or j has only cut constraints that can
1673 * be used to wrap in (a facet of) the other basic set.
1674 * if so, replace the pair by their union.
1676 static enum isl_change
check_wrap(int i
, int j
, struct isl_coalesce_info
*info
)
1678 enum isl_change change
= isl_change_none
;
1680 change
= can_wrap_in_set(i
, j
, info
);
1681 if (change
!= isl_change_none
)
1684 change
= can_wrap_in_set(j
, i
, info
);
1688 /* At least one of the basic maps has an equality that is adjacent
1689 * to inequality. Make sure that only one of the basic maps has
1690 * such an equality and that the other basic map has exactly one
1691 * inequality adjacent to an equality.
1692 * If the other basic map does not have such an inequality, then
1693 * check if all its constraints are either valid or cut constraints
1694 * and, if so, try wrapping in the first map into the second.
1696 * We call the basic map that has the inequality "i" and the basic
1697 * map that has the equality "j".
1698 * If "i" has any "cut" (in)equality, then relaxing the inequality
1699 * by one would not result in a basic map that contains the other
1700 * basic map. However, it may still be possible to wrap in the other
1703 static enum isl_change
check_adj_eq(int i
, int j
,
1704 struct isl_coalesce_info
*info
)
1706 enum isl_change change
= isl_change_none
;
1710 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) &&
1711 any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1712 /* ADJ EQ TOO MANY */
1713 return isl_change_none
;
1715 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1716 return check_adj_eq(j
, i
, info
);
1718 /* j has an equality adjacent to an inequality in i */
1720 if (count(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) != 1) {
1721 if (all_valid_or_cut(&info
[i
]))
1722 return can_wrap_in_set(i
, j
, info
);
1723 return isl_change_none
;
1725 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
))
1726 return isl_change_none
;
1727 any_cut
= any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
1728 if (any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
1729 any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
1730 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
))
1731 /* ADJ EQ TOO MANY */
1732 return isl_change_none
;
1734 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
1735 if (info
[i
].ineq
[k
] == STATUS_ADJ_EQ
)
1739 change
= is_adj_eq_extension(i
, j
, k
, info
);
1740 if (change
!= isl_change_none
)
1744 change
= can_wrap_in_facet(i
, j
, k
, info
, any_cut
);
1749 /* The two basic maps lie on adjacent hyperplanes. In particular,
1750 * basic map "i" has an equality that lies parallel to basic map "j".
1751 * Check if we can wrap the facets around the parallel hyperplanes
1752 * to include the other set.
1754 * We perform basically the same operations as can_wrap_in_facet,
1755 * except that we don't need to select a facet of one of the sets.
1761 * If there is more than one equality of "i" adjacent to an equality of "j",
1762 * then the result will satisfy one or more equalities that are a linear
1763 * combination of these equalities. These will be encoded as pairs
1764 * of inequalities in the wrapping constraints and need to be made
1767 static enum isl_change
check_eq_adj_eq(int i
, int j
,
1768 struct isl_coalesce_info
*info
)
1771 enum isl_change change
= isl_change_none
;
1772 int detect_equalities
= 0;
1773 struct isl_wraps wraps
;
1776 struct isl_set
*set_i
= NULL
;
1777 struct isl_set
*set_j
= NULL
;
1778 struct isl_vec
*bound
= NULL
;
1779 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1781 if (count(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
) != 1)
1782 detect_equalities
= 1;
1784 for (k
= 0; k
< 2 * info
[i
].bmap
->n_eq
; ++k
)
1785 if (info
[i
].eq
[k
] == STATUS_ADJ_EQ
)
1788 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1789 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1790 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1791 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1792 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1794 wraps_init(&wraps
, mat
, info
, i
, j
);
1795 bound
= isl_vec_alloc(ctx
, 1 + total
);
1796 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1800 isl_seq_neg(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1802 isl_seq_cpy(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1803 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1805 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1806 wraps
.mat
->n_row
= 1;
1808 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1810 if (!wraps
.mat
->n_row
)
1813 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1814 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1816 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1819 if (add_wraps(&wraps
, &info
[i
], bound
->el
, set_j
) < 0)
1821 if (!wraps
.mat
->n_row
)
1824 change
= fuse(i
, j
, info
, wraps
.mat
, detect_equalities
, 0);
1827 error
: change
= isl_change_error
;
1832 isl_set_free(set_i
);
1833 isl_set_free(set_j
);
1834 isl_vec_free(bound
);
1839 /* Initialize the "eq" and "ineq" fields of "info".
1841 static void init_status(struct isl_coalesce_info
*info
)
1843 info
->eq
= info
->ineq
= NULL
;
1846 /* Set info->eq to the positions of the equalities of info->bmap
1847 * with respect to the basic map represented by "tab".
1848 * If info->eq has already been computed, then do not compute it again.
1850 static void set_eq_status_in(struct isl_coalesce_info
*info
,
1851 struct isl_tab
*tab
)
1855 info
->eq
= eq_status_in(info
->bmap
, tab
);
1858 /* Set info->ineq to the positions of the inequalities of info->bmap
1859 * with respect to the basic map represented by "tab".
1860 * If info->ineq has already been computed, then do not compute it again.
1862 static void set_ineq_status_in(struct isl_coalesce_info
*info
,
1863 struct isl_tab
*tab
)
1867 info
->ineq
= ineq_status_in(info
->bmap
, info
->tab
, tab
);
1870 /* Free the memory allocated by the "eq" and "ineq" fields of "info".
1871 * This function assumes that init_status has been called on "info" first,
1872 * after which the "eq" and "ineq" fields may or may not have been
1873 * assigned a newly allocated array.
1875 static void clear_status(struct isl_coalesce_info
*info
)
1881 /* Check if the union of the given pair of basic maps
1882 * can be represented by a single basic map.
1883 * If so, replace the pair by the single basic map and return
1884 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1885 * Otherwise, return isl_change_none.
1886 * The two basic maps are assumed to live in the same local space.
1887 * The "eq" and "ineq" fields of info[i] and info[j] are assumed
1888 * to have been initialized by the caller, either to NULL or
1889 * to valid information.
1891 * We first check the effect of each constraint of one basic map
1892 * on the other basic map.
1893 * The constraint may be
1894 * redundant the constraint is redundant in its own
1895 * basic map and should be ignore and removed
1897 * valid all (integer) points of the other basic map
1898 * satisfy the constraint
1899 * separate no (integer) point of the other basic map
1900 * satisfies the constraint
1901 * cut some but not all points of the other basic map
1902 * satisfy the constraint
1903 * adj_eq the given constraint is adjacent (on the outside)
1904 * to an equality of the other basic map
1905 * adj_ineq the given constraint is adjacent (on the outside)
1906 * to an inequality of the other basic map
1908 * We consider seven cases in which we can replace the pair by a single
1909 * basic map. We ignore all "redundant" constraints.
1911 * 1. all constraints of one basic map are valid
1912 * => the other basic map is a subset and can be removed
1914 * 2. all constraints of both basic maps are either "valid" or "cut"
1915 * and the facets corresponding to the "cut" constraints
1916 * of one of the basic maps lies entirely inside the other basic map
1917 * => the pair can be replaced by a basic map consisting
1918 * of the valid constraints in both basic maps
1920 * 3. there is a single pair of adjacent inequalities
1921 * (all other constraints are "valid")
1922 * => the pair can be replaced by a basic map consisting
1923 * of the valid constraints in both basic maps
1925 * 4. one basic map has a single adjacent inequality, while the other
1926 * constraints are "valid". The other basic map has some
1927 * "cut" constraints, but replacing the adjacent inequality by
1928 * its opposite and adding the valid constraints of the other
1929 * basic map results in a subset of the other basic map
1930 * => the pair can be replaced by a basic map consisting
1931 * of the valid constraints in both basic maps
1933 * 5. there is a single adjacent pair of an inequality and an equality,
1934 * the other constraints of the basic map containing the inequality are
1935 * "valid". Moreover, if the inequality the basic map is relaxed
1936 * and then turned into an equality, then resulting facet lies
1937 * entirely inside the other basic map
1938 * => the pair can be replaced by the basic map containing
1939 * the inequality, with the inequality relaxed.
1941 * 6. there is a single adjacent pair of an inequality and an equality,
1942 * the other constraints of the basic map containing the inequality are
1943 * "valid". Moreover, the facets corresponding to both
1944 * the inequality and the equality can be wrapped around their
1945 * ridges to include the other basic map
1946 * => the pair can be replaced by a basic map consisting
1947 * of the valid constraints in both basic maps together
1948 * with all wrapping constraints
1950 * 7. one of the basic maps extends beyond the other by at most one.
1951 * Moreover, the facets corresponding to the cut constraints and
1952 * the pieces of the other basic map at offset one from these cut
1953 * constraints can be wrapped around their ridges to include
1954 * the union of the two basic maps
1955 * => the pair can be replaced by a basic map consisting
1956 * of the valid constraints in both basic maps together
1957 * with all wrapping constraints
1959 * 8. the two basic maps live in adjacent hyperplanes. In principle
1960 * such sets can always be combined through wrapping, but we impose
1961 * that there is only one such pair, to avoid overeager coalescing.
1963 * Throughout the computation, we maintain a collection of tableaus
1964 * corresponding to the basic maps. When the basic maps are dropped
1965 * or combined, the tableaus are modified accordingly.
1967 static enum isl_change
coalesce_local_pair_reuse(int i
, int j
,
1968 struct isl_coalesce_info
*info
)
1970 enum isl_change change
= isl_change_none
;
1972 set_eq_status_in(&info
[i
], info
[j
].tab
);
1973 if (info
[i
].bmap
->n_eq
&& !info
[i
].eq
)
1975 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ERROR
))
1977 if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_SEPARATE
))
1980 set_eq_status_in(&info
[j
], info
[i
].tab
);
1981 if (info
[j
].bmap
->n_eq
&& !info
[j
].eq
)
1983 if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ERROR
))
1985 if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_SEPARATE
))
1988 set_ineq_status_in(&info
[i
], info
[j
].tab
);
1989 if (info
[i
].bmap
->n_ineq
&& !info
[i
].ineq
)
1991 if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ERROR
))
1993 if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_SEPARATE
))
1996 set_ineq_status_in(&info
[j
], info
[i
].tab
);
1997 if (info
[j
].bmap
->n_ineq
&& !info
[j
].ineq
)
1999 if (any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ERROR
))
2001 if (any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_SEPARATE
))
2004 if (all(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_VALID
) &&
2005 all(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_VALID
)) {
2007 change
= isl_change_drop_second
;
2008 } else if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
2009 all(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_VALID
)) {
2011 change
= isl_change_drop_first
;
2012 } else if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
2013 change
= check_eq_adj_eq(i
, j
, info
);
2014 } else if (any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
2015 change
= check_eq_adj_eq(j
, i
, info
);
2016 } else if (any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) ||
2017 any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
)) {
2018 change
= check_adj_eq(i
, j
, info
);
2019 } else if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
2020 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
)) {
2023 } else if (any(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
2024 any(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
)) {
2025 change
= check_adj_ineq(i
, j
, info
);
2027 if (!any(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) &&
2028 !any(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
))
2029 change
= check_facets(i
, j
, info
);
2030 if (change
== isl_change_none
)
2031 change
= check_wrap(i
, j
, info
);
2035 clear_status(&info
[i
]);
2036 clear_status(&info
[j
]);
2039 clear_status(&info
[i
]);
2040 clear_status(&info
[j
]);
2041 return isl_change_error
;
2044 /* Check if the union of the given pair of basic maps
2045 * can be represented by a single basic map.
2046 * If so, replace the pair by the single basic map and return
2047 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2048 * Otherwise, return isl_change_none.
2049 * The two basic maps are assumed to live in the same local space.
2051 static enum isl_change
coalesce_local_pair(int i
, int j
,
2052 struct isl_coalesce_info
*info
)
2054 init_status(&info
[i
]);
2055 init_status(&info
[j
]);
2056 return coalesce_local_pair_reuse(i
, j
, info
);
2059 /* Shift the integer division at position "div" of the basic map
2060 * represented by "info" by "shift".
2062 * That is, if the integer division has the form
2066 * then replace it by
2068 * floor((f(x) + shift * d)/d) - shift
2070 static int shift_div(struct isl_coalesce_info
*info
, int div
, isl_int shift
)
2074 info
->bmap
= isl_basic_map_shift_div(info
->bmap
, div
, 0, shift
);
2078 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
2079 total
-= isl_basic_map_dim(info
->bmap
, isl_dim_div
);
2080 if (isl_tab_shift_var(info
->tab
, total
+ div
, shift
) < 0)
2086 /* Check if some of the divs in the basic map represented by "info1"
2087 * are shifts of the corresponding divs in the basic map represented
2088 * by "info2". If so, align them with those of "info2".
2089 * Only do this if "info1" and "info2" have the same number
2090 * of integer divisions.
2092 * An integer division is considered to be a shift of another integer
2093 * division if one is equal to the other plus a constant.
2095 * In particular, for each pair of integer divisions, if both are known,
2096 * have identical coefficients (apart from the constant term) and
2097 * if the difference between the constant terms (taking into account
2098 * the denominator) is an integer, then move the difference outside.
2099 * That is, if one integer division is of the form
2101 * floor((f(x) + c_1)/d)
2103 * while the other is of the form
2105 * floor((f(x) + c_2)/d)
2107 * and n = (c_2 - c_1)/d is an integer, then replace the first
2108 * integer division by
2110 * floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n
2112 static int harmonize_divs(struct isl_coalesce_info
*info1
,
2113 struct isl_coalesce_info
*info2
)
2118 if (!info1
->bmap
|| !info2
->bmap
)
2121 if (info1
->bmap
->n_div
!= info2
->bmap
->n_div
)
2123 if (info1
->bmap
->n_div
== 0)
2126 total
= isl_basic_map_total_dim(info1
->bmap
);
2127 for (i
= 0; i
< info1
->bmap
->n_div
; ++i
) {
2131 if (isl_int_is_zero(info1
->bmap
->div
[i
][0]) ||
2132 isl_int_is_zero(info2
->bmap
->div
[i
][0]))
2134 if (isl_int_ne(info1
->bmap
->div
[i
][0], info2
->bmap
->div
[i
][0]))
2136 if (isl_int_eq(info1
->bmap
->div
[i
][1], info2
->bmap
->div
[i
][1]))
2138 if (!isl_seq_eq(info1
->bmap
->div
[i
] + 2,
2139 info2
->bmap
->div
[i
] + 2, total
))
2142 isl_int_sub(d
, info2
->bmap
->div
[i
][1], info1
->bmap
->div
[i
][1]);
2143 if (isl_int_is_divisible_by(d
, info1
->bmap
->div
[i
][0])) {
2144 isl_int_divexact(d
, d
, info1
->bmap
->div
[i
][0]);
2145 r
= shift_div(info1
, i
, d
);
2155 /* Do the two basic maps live in the same local space, i.e.,
2156 * do they have the same (known) divs?
2157 * If either basic map has any unknown divs, then we can only assume
2158 * that they do not live in the same local space.
2160 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
2161 __isl_keep isl_basic_map
*bmap2
)
2167 if (!bmap1
|| !bmap2
)
2169 if (bmap1
->n_div
!= bmap2
->n_div
)
2172 if (bmap1
->n_div
== 0)
2175 known
= isl_basic_map_divs_known(bmap1
);
2176 if (known
< 0 || !known
)
2178 known
= isl_basic_map_divs_known(bmap2
);
2179 if (known
< 0 || !known
)
2182 total
= isl_basic_map_total_dim(bmap1
);
2183 for (i
= 0; i
< bmap1
->n_div
; ++i
)
2184 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
2190 /* Expand info->tab in the same way info->bmap was expanded in
2191 * isl_basic_map_expand_divs using the expansion "exp" and
2192 * update info->ineq with respect to the redundant constraints
2193 * in the resulting tableau. "bmap" is the original version
2194 * of info->bmap, i.e., the one that corresponds to the current
2195 * state of info->tab. The number of constraints in "bmap"
2196 * is assumed to be the same as the number of constraints
2197 * in info->tab. This is required to be able to detect
2198 * the extra constraints in info->bmap.
2200 * In particular, introduce extra variables corresponding
2201 * to the extra integer divisions and add the div constraints
2202 * that were added to info->bmap after info->tab was created
2203 * from the original info->bmap.
2204 * info->ineq was computed without a tableau and therefore
2205 * does not take into account the redundant constraints
2206 * in the tableau. Mark them here.
2208 static isl_stat
expand_tab(struct isl_coalesce_info
*info
, int *exp
,
2209 __isl_keep isl_basic_map
*bmap
)
2211 unsigned total
, pos
, n_div
;
2213 int i
, n
, j
, n_ineq
;
2217 return isl_stat_error
;
2218 if (bmap
->n_eq
+ bmap
->n_ineq
!= info
->tab
->n_con
)
2219 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
2220 "original tableau does not correspond "
2221 "to original basic map", return isl_stat_error
);
2223 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
2224 n_div
= isl_basic_map_dim(info
->bmap
, isl_dim_div
);
2225 pos
= total
- n_div
;
2226 extra_var
= total
- info
->tab
->n_var
;
2227 n
= n_div
- extra_var
;
2229 if (isl_tab_extend_vars(info
->tab
, extra_var
) < 0)
2230 return isl_stat_error
;
2231 if (isl_tab_extend_cons(info
->tab
, 2 * extra_var
) < 0)
2232 return isl_stat_error
;
2235 for (j
= 0; j
< n_div
; ++j
) {
2236 if (i
< n
&& exp
[i
] == j
) {
2240 if (isl_tab_insert_var(info
->tab
, pos
+ j
) < 0)
2241 return isl_stat_error
;
2244 n_ineq
= info
->tab
->n_con
- info
->tab
->n_eq
;
2245 for (i
= n_ineq
; i
< info
->bmap
->n_ineq
; ++i
)
2246 if (isl_tab_add_ineq(info
->tab
, info
->bmap
->ineq
[i
]) < 0)
2247 return isl_stat_error
;
2249 n_eq
= info
->bmap
->n_eq
;
2250 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
2251 if (isl_tab_is_redundant(info
->tab
, n_eq
+ i
))
2252 info
->ineq
[i
] = STATUS_REDUNDANT
;
2258 /* Check if the union of the basic maps represented by info[i] and info[j]
2259 * can be represented by a single basic map,
2260 * after expanding the divs of info[i] to match those of info[j].
2261 * If so, replace the pair by the single basic map and return
2262 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2263 * Otherwise, return isl_change_none.
2265 * The caller has already checked for info[j] being a subset of info[i].
2266 * If some of the divs of info[j] are unknown, then the expanded info[i]
2267 * will not have the corresponding div constraints. The other patterns
2268 * therefore cannot apply. Skip the computation in this case.
2270 * The expansion is performed using the divs "div" and expansion "exp"
2271 * computed by the caller.
2272 * info[i].bmap has already been expanded and the result is passed in
2274 * The "eq" and "ineq" fields of info[i] reflect the status of
2275 * the constraints of the expanded "bmap" with respect to info[j].tab.
2276 * However, inequality constraints that are redundant in info[i].tab
2277 * have not yet been marked as such because no tableau was available.
2279 * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
2280 * updating info[i].ineq with respect to the redundant constraints.
2281 * Then try and coalesce the expanded info[i] with info[j],
2282 * reusing the information in info[i].eq and info[i].ineq.
2283 * If this does not result in any coalescing or if it results in info[j]
2284 * getting dropped (which should not happen in practice, since the case
2285 * of info[j] being a subset of info[i] has already been checked by
2286 * the caller), then revert info[i] to its original state.
2288 static enum isl_change
coalesce_expand_tab_divs(__isl_take isl_basic_map
*bmap
,
2289 int i
, int j
, struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
,
2293 isl_basic_map
*bmap_i
;
2294 struct isl_tab_undo
*snap
;
2295 enum isl_change change
= isl_change_none
;
2297 known
= isl_basic_map_divs_known(info
[j
].bmap
);
2298 if (known
< 0 || !known
) {
2299 clear_status(&info
[i
]);
2300 isl_basic_map_free(bmap
);
2301 return known
< 0 ? isl_change_error
: isl_change_none
;
2304 bmap_i
= info
[i
].bmap
;
2305 info
[i
].bmap
= isl_basic_map_copy(bmap
);
2306 snap
= isl_tab_snap(info
[i
].tab
);
2307 if (!info
[i
].bmap
|| expand_tab(&info
[i
], exp
, bmap_i
) < 0)
2308 change
= isl_change_error
;
2310 init_status(&info
[j
]);
2311 if (change
== isl_change_none
)
2312 change
= coalesce_local_pair_reuse(i
, j
, info
);
2314 clear_status(&info
[i
]);
2315 if (change
!= isl_change_none
&& change
!= isl_change_drop_second
) {
2316 isl_basic_map_free(bmap_i
);
2318 isl_basic_map_free(info
[i
].bmap
);
2319 info
[i
].bmap
= bmap_i
;
2321 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
2322 change
= isl_change_error
;
2325 isl_basic_map_free(bmap
);
2329 /* Check if the union of "bmap" and the basic map represented by info[j]
2330 * can be represented by a single basic map,
2331 * after expanding the divs of "bmap" to match those of info[j].
2332 * If so, replace the pair by the single basic map and return
2333 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2334 * Otherwise, return isl_change_none.
2336 * In particular, check if the expanded "bmap" contains the basic map
2337 * represented by the tableau info[j].tab.
2338 * The expansion is performed using the divs "div" and expansion "exp"
2339 * computed by the caller.
2340 * Then we check if all constraints of the expanded "bmap" are valid for
2343 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
2344 * In this case, the positions of the constraints of info[i].bmap
2345 * with respect to the basic map represented by info[j] are stored
2348 * If the expanded "bmap" does not contain the basic map
2349 * represented by the tableau info[j].tab and if "i" is not -1,
2350 * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
2351 * as well and check if that results in coalescing.
2353 static enum isl_change
coalesce_with_expanded_divs(
2354 __isl_keep isl_basic_map
*bmap
, int i
, int j
,
2355 struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
, int *exp
)
2357 enum isl_change change
= isl_change_none
;
2358 struct isl_coalesce_info info_local
, *info_i
;
2360 info_i
= i
>= 0 ? &info
[i
] : &info_local
;
2361 init_status(info_i
);
2362 bmap
= isl_basic_map_copy(bmap
);
2363 bmap
= isl_basic_map_expand_divs(bmap
, isl_mat_copy(div
), exp
);
2368 info_i
->eq
= eq_status_in(bmap
, info
[j
].tab
);
2369 if (bmap
->n_eq
&& !info_i
->eq
)
2371 if (any(info_i
->eq
, 2 * bmap
->n_eq
, STATUS_ERROR
))
2373 if (any(info_i
->eq
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
2376 info_i
->ineq
= ineq_status_in(bmap
, NULL
, info
[j
].tab
);
2377 if (bmap
->n_ineq
&& !info_i
->ineq
)
2379 if (any(info_i
->ineq
, bmap
->n_ineq
, STATUS_ERROR
))
2381 if (any(info_i
->ineq
, bmap
->n_ineq
, STATUS_SEPARATE
))
2384 if (all(info_i
->eq
, 2 * bmap
->n_eq
, STATUS_VALID
) &&
2385 all(info_i
->ineq
, bmap
->n_ineq
, STATUS_VALID
)) {
2387 change
= isl_change_drop_second
;
2390 if (change
== isl_change_none
&& i
!= -1)
2391 return coalesce_expand_tab_divs(bmap
, i
, j
, info
, div
, exp
);
2394 isl_basic_map_free(bmap
);
2395 clear_status(info_i
);
2398 isl_basic_map_free(bmap
);
2399 clear_status(info_i
);
2400 return isl_change_error
;
2403 /* Check if the union of "bmap_i" and the basic map represented by info[j]
2404 * can be represented by a single basic map,
2405 * after aligning the divs of "bmap_i" to match those of info[j].
2406 * If so, replace the pair by the single basic map and return
2407 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2408 * Otherwise, return isl_change_none.
2410 * In particular, check if "bmap_i" contains the basic map represented by
2411 * info[j] after aligning the divs of "bmap_i" to those of info[j].
2412 * Note that this can only succeed if the number of divs of "bmap_i"
2413 * is smaller than (or equal to) the number of divs of info[j].
2415 * We first check if the divs of "bmap_i" are all known and form a subset
2416 * of those of info[j].bmap. If so, we pass control over to
2417 * coalesce_with_expanded_divs.
2419 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
2421 static enum isl_change
coalesce_after_aligning_divs(
2422 __isl_keep isl_basic_map
*bmap_i
, int i
, int j
,
2423 struct isl_coalesce_info
*info
)
2426 isl_mat
*div_i
, *div_j
, *div
;
2430 enum isl_change change
;
2432 known
= isl_basic_map_divs_known(bmap_i
);
2433 if (known
< 0 || !known
)
2436 ctx
= isl_basic_map_get_ctx(bmap_i
);
2438 div_i
= isl_basic_map_get_divs(bmap_i
);
2439 div_j
= isl_basic_map_get_divs(info
[j
].bmap
);
2441 if (!div_i
|| !div_j
)
2444 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
2445 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
2446 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
2449 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
2453 if (div
->n_row
== div_j
->n_row
)
2454 change
= coalesce_with_expanded_divs(bmap_i
,
2455 i
, j
, info
, div
, exp1
);
2457 change
= isl_change_none
;
2461 isl_mat_free(div_i
);
2462 isl_mat_free(div_j
);
2469 isl_mat_free(div_i
);
2470 isl_mat_free(div_j
);
2473 return isl_change_error
;
2476 /* Check if basic map "j" is a subset of basic map "i" after
2477 * exploiting the extra equalities of "j" to simplify the divs of "i".
2478 * If so, remove basic map "j" and return isl_change_drop_second.
2480 * If "j" does not have any equalities or if they are the same
2481 * as those of "i", then we cannot exploit them to simplify the divs.
2482 * Similarly, if there are no divs in "i", then they cannot be simplified.
2483 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
2484 * then "j" cannot be a subset of "i".
2486 * Otherwise, we intersect "i" with the affine hull of "j" and then
2487 * check if "j" is a subset of the result after aligning the divs.
2488 * If so, then "j" is definitely a subset of "i" and can be removed.
2489 * Note that if after intersection with the affine hull of "j".
2490 * "i" still has more divs than "j", then there is no way we can
2491 * align the divs of "i" to those of "j".
2493 static enum isl_change
coalesce_subset_with_equalities(int i
, int j
,
2494 struct isl_coalesce_info
*info
)
2496 isl_basic_map
*hull_i
, *hull_j
, *bmap_i
;
2498 enum isl_change change
;
2500 if (info
[j
].bmap
->n_eq
== 0)
2501 return isl_change_none
;
2502 if (info
[i
].bmap
->n_div
== 0)
2503 return isl_change_none
;
2505 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
2506 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
2507 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
2508 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
2510 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
2511 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
2512 empty
= isl_basic_map_plain_is_empty(hull_j
);
2513 isl_basic_map_free(hull_i
);
2515 if (equal
< 0 || equal
|| empty
< 0 || empty
) {
2516 isl_basic_map_free(hull_j
);
2517 if (equal
< 0 || empty
< 0)
2518 return isl_change_error
;
2519 return isl_change_none
;
2522 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
2523 bmap_i
= isl_basic_map_intersect(bmap_i
, hull_j
);
2525 return isl_change_error
;
2527 if (bmap_i
->n_div
> info
[j
].bmap
->n_div
) {
2528 isl_basic_map_free(bmap_i
);
2529 return isl_change_none
;
2532 change
= coalesce_after_aligning_divs(bmap_i
, -1, j
, info
);
2534 isl_basic_map_free(bmap_i
);
2539 /* Check if the union of and the basic maps represented by info[i] and info[j]
2540 * can be represented by a single basic map, by aligning or equating
2541 * their integer divisions.
2542 * If so, replace the pair by the single basic map and return
2543 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2544 * Otherwise, return isl_change_none.
2546 * Note that we only perform any test if the number of divs is different
2547 * in the two basic maps. In case the number of divs is the same,
2548 * we have already established that the divs are different
2549 * in the two basic maps.
2550 * In particular, if the number of divs of basic map i is smaller than
2551 * the number of divs of basic map j, then we check if j is a subset of i
2554 static enum isl_change
coalesce_divs(int i
, int j
,
2555 struct isl_coalesce_info
*info
)
2557 enum isl_change change
= isl_change_none
;
2559 if (info
[i
].bmap
->n_div
< info
[j
].bmap
->n_div
)
2560 change
= coalesce_after_aligning_divs(info
[i
].bmap
, i
, j
, info
);
2561 if (change
!= isl_change_none
)
2564 if (info
[j
].bmap
->n_div
< info
[i
].bmap
->n_div
)
2565 change
= coalesce_after_aligning_divs(info
[j
].bmap
, j
, i
, info
);
2566 if (change
!= isl_change_none
)
2567 return invert_change(change
);
2569 change
= coalesce_subset_with_equalities(i
, j
, info
);
2570 if (change
!= isl_change_none
)
2573 change
= coalesce_subset_with_equalities(j
, i
, info
);
2574 if (change
!= isl_change_none
)
2575 return invert_change(change
);
2577 return isl_change_none
;
2580 /* Does "bmap" involve any divs that themselves refer to divs?
2582 static int has_nested_div(__isl_keep isl_basic_map
*bmap
)
2588 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2589 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2592 for (i
= 0; i
< n_div
; ++i
)
2593 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + total
,
2600 /* Return a list of affine expressions, one for each integer division
2601 * in "bmap_i". For each integer division that also appears in "bmap_j",
2602 * the affine expression is set to NaN. The number of NaNs in the list
2603 * is equal to the number of integer divisions in "bmap_j".
2604 * For the other integer divisions of "bmap_i", the corresponding
2605 * element in the list is a purely affine expression equal to the integer
2606 * division in "hull".
2607 * If no such list can be constructed, then the number of elements
2608 * in the returned list is smaller than the number of integer divisions
2611 static __isl_give isl_aff_list
*set_up_substitutions(
2612 __isl_keep isl_basic_map
*bmap_i
, __isl_keep isl_basic_map
*bmap_j
,
2613 __isl_take isl_basic_map
*hull
)
2615 unsigned n_div_i
, n_div_j
, total
;
2617 isl_local_space
*ls
;
2618 isl_basic_set
*wrap_hull
;
2626 ctx
= isl_basic_map_get_ctx(hull
);
2628 n_div_i
= isl_basic_map_dim(bmap_i
, isl_dim_div
);
2629 n_div_j
= isl_basic_map_dim(bmap_j
, isl_dim_div
);
2630 total
= isl_basic_map_total_dim(bmap_i
) - n_div_i
;
2632 ls
= isl_basic_map_get_local_space(bmap_i
);
2633 ls
= isl_local_space_wrap(ls
);
2634 wrap_hull
= isl_basic_map_wrap(hull
);
2636 aff_nan
= isl_aff_nan_on_domain(isl_local_space_copy(ls
));
2637 list
= isl_aff_list_alloc(ctx
, n_div_i
);
2640 for (i
= 0; i
< n_div_i
; ++i
) {
2644 isl_seq_eq(bmap_i
->div
[i
], bmap_j
->div
[j
], 2 + total
)) {
2646 list
= isl_aff_list_add(list
, isl_aff_copy(aff_nan
));
2649 if (n_div_i
- i
<= n_div_j
- j
)
2652 aff
= isl_local_space_get_div(ls
, i
);
2653 aff
= isl_aff_substitute_equalities(aff
,
2654 isl_basic_set_copy(wrap_hull
));
2655 aff
= isl_aff_floor(aff
);
2658 if (isl_aff_dim(aff
, isl_dim_div
) != 0) {
2663 list
= isl_aff_list_add(list
, aff
);
2666 isl_aff_free(aff_nan
);
2667 isl_local_space_free(ls
);
2668 isl_basic_set_free(wrap_hull
);
2672 isl_aff_free(aff_nan
);
2673 isl_local_space_free(ls
);
2674 isl_basic_set_free(wrap_hull
);
2675 isl_aff_list_free(list
);
2679 /* Add variables to info->bmap and info->tab corresponding to the elements
2680 * in "list" that are not set to NaN.
2681 * "extra_var" is the number of these elements.
2682 * "dim" is the offset in the variables of "tab" where we should
2683 * start considering the elements in "list".
2684 * When this function returns, the total number of variables in "tab"
2685 * is equal to "dim" plus the number of elements in "list".
2687 * The newly added existentially quantified variables are not given
2688 * an explicit representation because the corresponding div constraints
2689 * do not appear in info->bmap. These constraints are not added
2690 * to info->bmap because for internal consistency, they would need to
2691 * be added to info->tab as well, where they could combine with the equality
2692 * that is added later to result in constraints that do not hold
2693 * in the original input.
2695 static int add_sub_vars(struct isl_coalesce_info
*info
,
2696 __isl_keep isl_aff_list
*list
, int dim
, int extra_var
)
2701 space
= isl_basic_map_get_space(info
->bmap
);
2702 info
->bmap
= isl_basic_map_cow(info
->bmap
);
2703 info
->bmap
= isl_basic_map_extend_space(info
->bmap
, space
,
2707 n
= isl_aff_list_n_aff(list
);
2708 for (i
= 0; i
< n
; ++i
) {
2712 aff
= isl_aff_list_get_aff(list
, i
);
2713 is_nan
= isl_aff_is_nan(aff
);
2720 if (isl_tab_insert_var(info
->tab
, dim
+ i
) < 0)
2722 d
= isl_basic_map_alloc_div(info
->bmap
);
2725 info
->bmap
= isl_basic_map_mark_div_unknown(info
->bmap
, d
);
2728 for (j
= d
; j
> i
; --j
)
2729 isl_basic_map_swap_div(info
->bmap
, j
- 1, j
);
2735 /* For each element in "list" that is not set to NaN, fix the corresponding
2736 * variable in "tab" to the purely affine expression defined by the element.
2737 * "dim" is the offset in the variables of "tab" where we should
2738 * start considering the elements in "list".
2740 * This function assumes that a sufficient number of rows and
2741 * elements in the constraint array are available in the tableau.
2743 static int add_sub_equalities(struct isl_tab
*tab
,
2744 __isl_keep isl_aff_list
*list
, int dim
)
2751 n
= isl_aff_list_n_aff(list
);
2753 ctx
= isl_tab_get_ctx(tab
);
2754 sub
= isl_vec_alloc(ctx
, 1 + dim
+ n
);
2757 isl_seq_clr(sub
->el
+ 1 + dim
, n
);
2759 for (i
= 0; i
< n
; ++i
) {
2760 aff
= isl_aff_list_get_aff(list
, i
);
2763 if (isl_aff_is_nan(aff
)) {
2767 isl_seq_cpy(sub
->el
, aff
->v
->el
+ 1, 1 + dim
);
2768 isl_int_neg(sub
->el
[1 + dim
+ i
], aff
->v
->el
[0]);
2769 if (isl_tab_add_eq(tab
, sub
->el
) < 0)
2771 isl_int_set_si(sub
->el
[1 + dim
+ i
], 0);
2783 /* Add variables to info->tab and info->bmap corresponding to the elements
2784 * in "list" that are not set to NaN. The value of the added variable
2785 * in info->tab is fixed to the purely affine expression defined by the element.
2786 * "dim" is the offset in the variables of info->tab where we should
2787 * start considering the elements in "list".
2788 * When this function returns, the total number of variables in info->tab
2789 * is equal to "dim" plus the number of elements in "list".
2791 static int add_subs(struct isl_coalesce_info
*info
,
2792 __isl_keep isl_aff_list
*list
, int dim
)
2800 n
= isl_aff_list_n_aff(list
);
2801 extra_var
= n
- (info
->tab
->n_var
- dim
);
2803 if (isl_tab_extend_vars(info
->tab
, extra_var
) < 0)
2805 if (isl_tab_extend_cons(info
->tab
, 2 * extra_var
) < 0)
2807 if (add_sub_vars(info
, list
, dim
, extra_var
) < 0)
2810 return add_sub_equalities(info
->tab
, list
, dim
);
2813 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
2814 * divisions in "i" but not in "j" to basic map "j", with values
2815 * specified by "list". The total number of elements in "list"
2816 * is equal to the number of integer divisions in "i", while the number
2817 * of NaN elements in the list is equal to the number of integer divisions
2820 * If no coalescing can be performed, then we need to revert basic map "j"
2821 * to its original state. We do the same if basic map "i" gets dropped
2822 * during the coalescing, even though this should not happen in practice
2823 * since we have already checked for "j" being a subset of "i"
2824 * before we reach this stage.
2826 static enum isl_change
coalesce_with_subs(int i
, int j
,
2827 struct isl_coalesce_info
*info
, __isl_keep isl_aff_list
*list
)
2829 isl_basic_map
*bmap_j
;
2830 struct isl_tab_undo
*snap
;
2832 enum isl_change change
;
2834 bmap_j
= isl_basic_map_copy(info
[j
].bmap
);
2835 snap
= isl_tab_snap(info
[j
].tab
);
2837 dim
= isl_basic_map_dim(bmap_j
, isl_dim_all
);
2838 dim
-= isl_basic_map_dim(bmap_j
, isl_dim_div
);
2839 if (add_subs(&info
[j
], list
, dim
) < 0)
2842 change
= coalesce_local_pair(i
, j
, info
);
2843 if (change
!= isl_change_none
&& change
!= isl_change_drop_first
) {
2844 isl_basic_map_free(bmap_j
);
2846 isl_basic_map_free(info
[j
].bmap
);
2847 info
[j
].bmap
= bmap_j
;
2849 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
2850 return isl_change_error
;
2855 isl_basic_map_free(bmap_j
);
2856 return isl_change_error
;
2859 /* Check if we can coalesce basic map "j" into basic map "i" after copying
2860 * those extra integer divisions in "i" that can be simplified away
2861 * using the extra equalities in "j".
2862 * All divs are assumed to be known and not contain any nested divs.
2864 * We first check if there are any extra equalities in "j" that we
2865 * can exploit. Then we check if every integer division in "i"
2866 * either already appears in "j" or can be simplified using the
2867 * extra equalities to a purely affine expression.
2868 * If these tests succeed, then we try to coalesce the two basic maps
2869 * by introducing extra dimensions in "j" corresponding to
2870 * the extra integer divsisions "i" fixed to the corresponding
2871 * purely affine expression.
2873 static enum isl_change
check_coalesce_into_eq(int i
, int j
,
2874 struct isl_coalesce_info
*info
)
2876 unsigned n_div_i
, n_div_j
;
2877 isl_basic_map
*hull_i
, *hull_j
;
2880 enum isl_change change
;
2882 n_div_i
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_div
);
2883 n_div_j
= isl_basic_map_dim(info
[j
].bmap
, isl_dim_div
);
2884 if (n_div_i
<= n_div_j
)
2885 return isl_change_none
;
2886 if (info
[j
].bmap
->n_eq
== 0)
2887 return isl_change_none
;
2889 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
2890 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
2891 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
2892 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
2894 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
2895 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
2896 empty
= isl_basic_map_plain_is_empty(hull_j
);
2897 isl_basic_map_free(hull_i
);
2899 if (equal
< 0 || empty
< 0)
2901 if (equal
|| empty
) {
2902 isl_basic_map_free(hull_j
);
2903 return isl_change_none
;
2906 list
= set_up_substitutions(info
[i
].bmap
, info
[j
].bmap
, hull_j
);
2908 return isl_change_error
;
2909 if (isl_aff_list_n_aff(list
) < n_div_i
)
2910 change
= isl_change_none
;
2912 change
= coalesce_with_subs(i
, j
, info
, list
);
2914 isl_aff_list_free(list
);
2918 isl_basic_map_free(hull_j
);
2919 return isl_change_error
;
2922 /* Check if we can coalesce basic maps "i" and "j" after copying
2923 * those extra integer divisions in one of the basic maps that can
2924 * be simplified away using the extra equalities in the other basic map.
2925 * We require all divs to be known in both basic maps.
2926 * Furthermore, to simplify the comparison of div expressions,
2927 * we do not allow any nested integer divisions.
2929 static enum isl_change
check_coalesce_eq(int i
, int j
,
2930 struct isl_coalesce_info
*info
)
2933 enum isl_change change
;
2935 known
= isl_basic_map_divs_known(info
[i
].bmap
);
2936 if (known
< 0 || !known
)
2937 return known
< 0 ? isl_change_error
: isl_change_none
;
2938 known
= isl_basic_map_divs_known(info
[j
].bmap
);
2939 if (known
< 0 || !known
)
2940 return known
< 0 ? isl_change_error
: isl_change_none
;
2941 nested
= has_nested_div(info
[i
].bmap
);
2942 if (nested
< 0 || nested
)
2943 return nested
< 0 ? isl_change_error
: isl_change_none
;
2944 nested
= has_nested_div(info
[j
].bmap
);
2945 if (nested
< 0 || nested
)
2946 return nested
< 0 ? isl_change_error
: isl_change_none
;
2948 change
= check_coalesce_into_eq(i
, j
, info
);
2949 if (change
!= isl_change_none
)
2951 change
= check_coalesce_into_eq(j
, i
, info
);
2952 if (change
!= isl_change_none
)
2953 return invert_change(change
);
2955 return isl_change_none
;
2958 /* Check if the union of the given pair of basic maps
2959 * can be represented by a single basic map.
2960 * If so, replace the pair by the single basic map and return
2961 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2962 * Otherwise, return isl_change_none.
2964 * We first check if the two basic maps live in the same local space,
2965 * after aligning the divs that differ by only an integer constant.
2966 * If so, we do the complete check. Otherwise, we check if they have
2967 * the same number of integer divisions and can be coalesced, if one is
2968 * an obvious subset of the other or if the extra integer divisions
2969 * of one basic map can be simplified away using the extra equalities
2970 * of the other basic map.
2972 static enum isl_change
coalesce_pair(int i
, int j
,
2973 struct isl_coalesce_info
*info
)
2976 enum isl_change change
;
2978 if (harmonize_divs(&info
[i
], &info
[j
]) < 0)
2979 return isl_change_error
;
2980 same
= same_divs(info
[i
].bmap
, info
[j
].bmap
);
2982 return isl_change_error
;
2984 return coalesce_local_pair(i
, j
, info
);
2986 if (info
[i
].bmap
->n_div
== info
[j
].bmap
->n_div
) {
2987 change
= coalesce_local_pair(i
, j
, info
);
2988 if (change
!= isl_change_none
)
2992 change
= coalesce_divs(i
, j
, info
);
2993 if (change
!= isl_change_none
)
2996 return check_coalesce_eq(i
, j
, info
);
2999 /* Return the maximum of "a" and "b".
3001 static int isl_max(int a
, int b
)
3003 return a
> b
? a
: b
;
3006 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
3007 * with those in the range [start2, end2[, skipping basic maps
3008 * that have been removed (either before or within this function).
3010 * For each basic map i in the first range, we check if it can be coalesced
3011 * with respect to any previously considered basic map j in the second range.
3012 * If i gets dropped (because it was a subset of some j), then
3013 * we can move on to the next basic map.
3014 * If j gets dropped, we need to continue checking against the other
3015 * previously considered basic maps.
3016 * If the two basic maps got fused, then we recheck the fused basic map
3017 * against the previously considered basic maps, starting at i + 1
3018 * (even if start2 is greater than i + 1).
3020 static int coalesce_range(isl_ctx
*ctx
, struct isl_coalesce_info
*info
,
3021 int start1
, int end1
, int start2
, int end2
)
3025 for (i
= end1
- 1; i
>= start1
; --i
) {
3026 if (info
[i
].removed
)
3028 for (j
= isl_max(i
+ 1, start2
); j
< end2
; ++j
) {
3029 enum isl_change changed
;
3031 if (info
[j
].removed
)
3033 if (info
[i
].removed
)
3034 isl_die(ctx
, isl_error_internal
,
3035 "basic map unexpectedly removed",
3037 changed
= coalesce_pair(i
, j
, info
);
3039 case isl_change_error
:
3041 case isl_change_none
:
3042 case isl_change_drop_second
:
3044 case isl_change_drop_first
:
3047 case isl_change_fuse
:
3057 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
3059 * We consider groups of basic maps that live in the same apparent
3060 * affine hull and we first coalesce within such a group before we
3061 * coalesce the elements in the group with elements of previously
3062 * considered groups. If a fuse happens during the second phase,
3063 * then we also reconsider the elements within the group.
3065 static int coalesce(isl_ctx
*ctx
, int n
, struct isl_coalesce_info
*info
)
3069 for (end
= n
; end
> 0; end
= start
) {
3071 while (start
>= 1 &&
3072 info
[start
- 1].hull_hash
== info
[start
].hull_hash
)
3074 if (coalesce_range(ctx
, info
, start
, end
, start
, end
) < 0)
3076 if (coalesce_range(ctx
, info
, start
, end
, end
, n
) < 0)
3083 /* Update the basic maps in "map" based on the information in "info".
3084 * In particular, remove the basic maps that have been marked removed and
3085 * update the others based on the information in the corresponding tableau.
3086 * Since we detected implicit equalities without calling
3087 * isl_basic_map_gauss, we need to do it now.
3088 * Also call isl_basic_map_simplify if we may have lost the definition
3089 * of one or more integer divisions.
3091 static __isl_give isl_map
*update_basic_maps(__isl_take isl_map
*map
,
3092 int n
, struct isl_coalesce_info
*info
)
3099 for (i
= n
- 1; i
>= 0; --i
) {
3100 if (info
[i
].removed
) {
3101 isl_basic_map_free(map
->p
[i
]);
3102 if (i
!= map
->n
- 1)
3103 map
->p
[i
] = map
->p
[map
->n
- 1];
3108 info
[i
].bmap
= isl_basic_map_update_from_tab(info
[i
].bmap
,
3110 info
[i
].bmap
= isl_basic_map_gauss(info
[i
].bmap
, NULL
);
3111 if (info
[i
].simplify
)
3112 info
[i
].bmap
= isl_basic_map_simplify(info
[i
].bmap
);
3113 info
[i
].bmap
= isl_basic_map_finalize(info
[i
].bmap
);
3115 return isl_map_free(map
);
3116 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
3117 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
3118 isl_basic_map_free(map
->p
[i
]);
3119 map
->p
[i
] = info
[i
].bmap
;
3120 info
[i
].bmap
= NULL
;
3126 /* For each pair of basic maps in the map, check if the union of the two
3127 * can be represented by a single basic map.
3128 * If so, replace the pair by the single basic map and start over.
3130 * We factor out any (hidden) common factor from the constraint
3131 * coefficients to improve the detection of adjacent constraints.
3133 * Since we are constructing the tableaus of the basic maps anyway,
3134 * we exploit them to detect implicit equalities and redundant constraints.
3135 * This also helps the coalescing as it can ignore the redundant constraints.
3136 * In order to avoid confusion, we make all implicit equalities explicit
3137 * in the basic maps. We don't call isl_basic_map_gauss, though,
3138 * as that may affect the number of constraints.
3139 * This means that we have to call isl_basic_map_gauss at the end
3140 * of the computation (in update_basic_maps) to ensure that
3141 * the basic maps are not left in an unexpected state.
3142 * For each basic map, we also compute the hash of the apparent affine hull
3143 * for use in coalesce.
3145 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
3150 struct isl_coalesce_info
*info
= NULL
;
3152 map
= isl_map_remove_empty_parts(map
);
3159 ctx
= isl_map_get_ctx(map
);
3160 map
= isl_map_sort_divs(map
);
3161 map
= isl_map_cow(map
);
3168 info
= isl_calloc_array(map
->ctx
, struct isl_coalesce_info
, n
);
3172 for (i
= 0; i
< map
->n
; ++i
) {
3173 map
->p
[i
] = isl_basic_map_reduce_coefficients(map
->p
[i
]);
3176 info
[i
].bmap
= isl_basic_map_copy(map
->p
[i
]);
3177 info
[i
].tab
= isl_tab_from_basic_map(info
[i
].bmap
, 0);
3180 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
3181 if (isl_tab_detect_implicit_equalities(info
[i
].tab
) < 0)
3183 info
[i
].bmap
= isl_tab_make_equalities_explicit(info
[i
].tab
,
3187 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
3188 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
3190 if (coalesce_info_set_hull_hash(&info
[i
]) < 0)
3193 for (i
= map
->n
- 1; i
>= 0; --i
)
3194 if (info
[i
].tab
->empty
)
3197 if (coalesce(ctx
, n
, info
) < 0)
3200 map
= update_basic_maps(map
, n
, info
);
3202 clear_coalesce_info(n
, info
);
3206 clear_coalesce_info(n
, info
);
3211 /* For each pair of basic sets in the set, check if the union of the two
3212 * can be represented by a single basic set.
3213 * If so, replace the pair by the single basic set and start over.
3215 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
3217 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);