2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
22 #include <isl_config.h>
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
33 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
34 unsigned n_row
, unsigned n_var
, unsigned M
)
40 tab
= isl_calloc_type(ctx
, struct isl_tab
);
43 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
46 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
47 if (n_var
&& !tab
->var
)
49 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
50 if (n_row
&& !tab
->con
)
52 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
53 if (n_var
&& !tab
->col_var
)
55 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
56 if (n_row
&& !tab
->row_var
)
58 for (i
= 0; i
< n_var
; ++i
) {
59 tab
->var
[i
].index
= i
;
60 tab
->var
[i
].is_row
= 0;
61 tab
->var
[i
].is_nonneg
= 0;
62 tab
->var
[i
].is_zero
= 0;
63 tab
->var
[i
].is_redundant
= 0;
64 tab
->var
[i
].frozen
= 0;
65 tab
->var
[i
].negated
= 0;
79 tab
->strict_redundant
= 0;
86 tab
->bottom
.type
= isl_tab_undo_bottom
;
87 tab
->bottom
.next
= NULL
;
88 tab
->top
= &tab
->bottom
;
100 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
102 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
105 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
114 if (tab
->max_con
< tab
->n_con
+ n_new
) {
115 struct isl_tab_var
*con
;
117 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
118 struct isl_tab_var
, tab
->max_con
+ n_new
);
122 tab
->max_con
+= n_new
;
124 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
127 tab
->mat
= isl_mat_extend(tab
->mat
,
128 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
131 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
132 int, tab
->mat
->n_row
);
135 tab
->row_var
= row_var
;
137 enum isl_tab_row_sign
*s
;
138 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
139 enum isl_tab_row_sign
, tab
->mat
->n_row
);
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
151 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
153 struct isl_tab_var
*var
;
154 unsigned off
= 2 + tab
->M
;
156 if (tab
->max_var
< tab
->n_var
+ n_new
) {
157 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
158 struct isl_tab_var
, tab
->n_var
+ n_new
);
162 tab
->max_var
= tab
->n_var
+ n_new
;
165 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
168 tab
->mat
= isl_mat_extend(tab
->mat
,
169 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
172 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
173 int, tab
->n_col
+ n_new
);
182 static void free_undo_record(struct isl_tab_undo
*undo
)
184 switch (undo
->type
) {
185 case isl_tab_undo_saved_basis
:
186 free(undo
->u
.col_var
);
193 static void free_undo(struct isl_tab
*tab
)
195 struct isl_tab_undo
*undo
, *next
;
197 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
199 free_undo_record(undo
);
204 void isl_tab_free(struct isl_tab
*tab
)
209 isl_mat_free(tab
->mat
);
210 isl_vec_free(tab
->dual
);
211 isl_basic_map_free(tab
->bmap
);
217 isl_mat_free(tab
->samples
);
218 free(tab
->sample_index
);
219 isl_mat_free(tab
->basis
);
223 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
233 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
236 dup
->mat
= isl_mat_dup(tab
->mat
);
239 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
240 if (tab
->max_var
&& !dup
->var
)
242 for (i
= 0; i
< tab
->n_var
; ++i
)
243 dup
->var
[i
] = tab
->var
[i
];
244 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
245 if (tab
->max_con
&& !dup
->con
)
247 for (i
= 0; i
< tab
->n_con
; ++i
)
248 dup
->con
[i
] = tab
->con
[i
];
249 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
250 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
252 for (i
= 0; i
< tab
->n_col
; ++i
)
253 dup
->col_var
[i
] = tab
->col_var
[i
];
254 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
255 if (tab
->mat
->n_row
&& !dup
->row_var
)
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_var
[i
] = tab
->row_var
[i
];
260 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
262 if (tab
->mat
->n_row
&& !dup
->row_sign
)
264 for (i
= 0; i
< tab
->n_row
; ++i
)
265 dup
->row_sign
[i
] = tab
->row_sign
[i
];
268 dup
->samples
= isl_mat_dup(tab
->samples
);
271 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
272 tab
->samples
->n_row
);
273 if (tab
->samples
->n_row
&& !dup
->sample_index
)
275 dup
->n_sample
= tab
->n_sample
;
276 dup
->n_outside
= tab
->n_outside
;
278 dup
->n_row
= tab
->n_row
;
279 dup
->n_con
= tab
->n_con
;
280 dup
->n_eq
= tab
->n_eq
;
281 dup
->max_con
= tab
->max_con
;
282 dup
->n_col
= tab
->n_col
;
283 dup
->n_var
= tab
->n_var
;
284 dup
->max_var
= tab
->max_var
;
285 dup
->n_param
= tab
->n_param
;
286 dup
->n_div
= tab
->n_div
;
287 dup
->n_dead
= tab
->n_dead
;
288 dup
->n_redundant
= tab
->n_redundant
;
289 dup
->rational
= tab
->rational
;
290 dup
->empty
= tab
->empty
;
291 dup
->strict_redundant
= 0;
295 dup
->cone
= tab
->cone
;
296 dup
->bottom
.type
= isl_tab_undo_bottom
;
297 dup
->bottom
.next
= NULL
;
298 dup
->top
= &dup
->bottom
;
300 dup
->n_zero
= tab
->n_zero
;
301 dup
->n_unbounded
= tab
->n_unbounded
;
302 dup
->basis
= isl_mat_dup(tab
->basis
);
310 /* Construct the coefficient matrix of the product tableau
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
323 static __isl_give isl_mat
*tab_mat_product(__isl_keep isl_mat
*mat1
,
324 __isl_keep isl_mat
*mat2
, unsigned row1
, unsigned row2
,
325 unsigned col1
, unsigned col2
,
326 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
329 struct isl_mat
*prod
;
332 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
338 for (i
= 0; i
< r1
; ++i
) {
339 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
340 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
341 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
342 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
343 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
347 for (i
= 0; i
< r2
; ++i
) {
348 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
349 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
350 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
351 mat2
->row
[i
] + off
, d2
);
352 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
353 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
354 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
358 for (i
= 0; i
< row1
- r1
; ++i
) {
359 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
360 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
361 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
362 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
363 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
367 for (i
= 0; i
< row2
- r2
; ++i
) {
368 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
369 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
370 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
371 mat2
->row
[r2
+ i
] + off
, d2
);
372 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
373 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
374 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
383 static void update_index1(struct isl_tab_var
*var
,
384 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
386 if (var
->index
== -1)
388 if (var
->is_row
&& var
->index
>= r1
)
390 if (!var
->is_row
&& var
->index
>= d1
)
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
397 static void update_index2(struct isl_tab_var
*var
,
398 unsigned row1
, unsigned col1
,
399 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
401 if (var
->index
== -1)
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
434 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
437 struct isl_tab
*prod
;
439 unsigned r1
, r2
, d1
, d2
;
444 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
446 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
447 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
448 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
449 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
450 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
451 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
452 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
455 r1
= tab1
->n_redundant
;
456 r2
= tab2
->n_redundant
;
459 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
462 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
463 tab1
->n_row
, tab2
->n_row
,
464 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
467 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
468 tab1
->max_var
+ tab2
->max_var
);
469 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
471 for (i
= 0; i
< tab1
->n_var
; ++i
) {
472 prod
->var
[i
] = tab1
->var
[i
];
473 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
475 for (i
= 0; i
< tab2
->n_var
; ++i
) {
476 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
477 update_index2(&prod
->var
[tab1
->n_var
+ i
],
478 tab1
->n_row
, tab1
->n_col
,
481 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
482 tab1
->max_con
+ tab2
->max_con
);
483 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
485 for (i
= 0; i
< tab1
->n_con
; ++i
) {
486 prod
->con
[i
] = tab1
->con
[i
];
487 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
489 for (i
= 0; i
< tab2
->n_con
; ++i
) {
490 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
491 update_index2(&prod
->con
[tab1
->n_con
+ i
],
492 tab1
->n_row
, tab1
->n_col
,
495 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
496 tab1
->n_col
+ tab2
->n_col
);
497 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
499 for (i
= 0; i
< tab1
->n_col
; ++i
) {
500 int pos
= i
< d1
? i
: i
+ d2
;
501 prod
->col_var
[pos
] = tab1
->col_var
[i
];
503 for (i
= 0; i
< tab2
->n_col
; ++i
) {
504 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
505 int t
= tab2
->col_var
[i
];
510 prod
->col_var
[pos
] = t
;
512 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
513 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
514 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
516 for (i
= 0; i
< tab1
->n_row
; ++i
) {
517 int pos
= i
< r1
? i
: i
+ r2
;
518 prod
->row_var
[pos
] = tab1
->row_var
[i
];
520 for (i
= 0; i
< tab2
->n_row
; ++i
) {
521 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
522 int t
= tab2
->row_var
[i
];
527 prod
->row_var
[pos
] = t
;
529 prod
->samples
= NULL
;
530 prod
->sample_index
= NULL
;
531 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
532 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
534 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
535 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
536 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
537 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
540 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
541 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
542 prod
->rational
= tab1
->rational
;
543 prod
->empty
= tab1
->empty
|| tab2
->empty
;
544 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
548 prod
->cone
= tab1
->cone
;
549 prod
->bottom
.type
= isl_tab_undo_bottom
;
550 prod
->bottom
.next
= NULL
;
551 prod
->top
= &prod
->bottom
;
554 prod
->n_unbounded
= 0;
563 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
568 return &tab
->con
[~i
];
571 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
573 return var_from_index(tab
, tab
->row_var
[i
]);
576 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
578 return var_from_index(tab
, tab
->col_var
[i
]);
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
585 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
586 struct isl_tab_var
*var
)
589 unsigned off
= 2 + tab
->M
;
593 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
594 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
596 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
606 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
607 struct isl_tab_var
*var
)
610 unsigned off
= 2 + tab
->M
;
614 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
615 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
617 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
623 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int
*t
)
625 unsigned off
= 2 + tab
->M
;
629 isl_int_mul(*t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
630 isl_int_submul(*t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
635 isl_int_mul(*t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
636 isl_int_submul(*t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
637 return isl_int_sgn(*t
);
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
646 * Each row in the tableau is of the form
648 * x_r = a_r0 + \sum_i a_ri x_i
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
660 static int pivot_row(struct isl_tab
*tab
,
661 struct isl_tab_var
*var
, int sgn
, int c
)
665 unsigned off
= 2 + tab
->M
;
669 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
670 if (var
&& j
== var
->index
)
672 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
674 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
680 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, &t
);
681 if (tsgn
< 0 || (tsgn
== 0 &&
682 tab
->row_var
[j
] < tab
->row_var
[r
]))
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
694 * As the given row in the tableau is of the form
696 * x_r = a_r0 + \sum_i a_ri x_i
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
705 static void find_pivot(struct isl_tab
*tab
,
706 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
707 int sgn
, int *row
, int *col
)
714 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
715 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
718 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
719 if (isl_int_is_zero(tr
[j
]))
721 if (isl_int_sgn(tr
[j
]) != sgn
&&
722 var_from_col(tab
, j
)->is_nonneg
)
724 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
730 sgn
*= isl_int_sgn(tr
[c
]);
731 r
= pivot_row(tab
, skip_var
, sgn
, c
);
732 *row
= r
< 0 ? var
->index
: r
;
736 /* Return 1 if row "row" represents an obviously redundant inequality.
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
742 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
745 unsigned off
= 2 + tab
->M
;
747 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
750 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
752 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
754 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
757 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
758 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
760 if (tab
->col_var
[i
] >= 0)
762 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
764 if (!var_from_col(tab
, i
)->is_nonneg
)
770 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
773 enum isl_tab_row_sign s
;
775 t
= tab
->row_var
[row1
];
776 tab
->row_var
[row1
] = tab
->row_var
[row2
];
777 tab
->row_var
[row2
] = t
;
778 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
779 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
780 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
784 s
= tab
->row_sign
[row1
];
785 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
786 tab
->row_sign
[row2
] = s
;
789 static isl_stat
push_union(struct isl_tab
*tab
,
790 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
792 /* Push record "u" onto the undo stack of "tab", provided "tab"
793 * keeps track of undo information.
795 * If the record cannot be pushed, then mark the undo stack as invalid
796 * such that a later rollback attempt will not try to undo earlier
797 * records without having been able to undo the current record.
799 static isl_stat
push_union(struct isl_tab
*tab
,
800 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
802 struct isl_tab_undo
*undo
;
805 return isl_stat_error
;
809 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
814 undo
->next
= tab
->top
;
821 return isl_stat_error
;
824 isl_stat
isl_tab_push_var(struct isl_tab
*tab
,
825 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
827 union isl_tab_undo_val u
;
829 u
.var_index
= tab
->row_var
[var
->index
];
831 u
.var_index
= tab
->col_var
[var
->index
];
832 return push_union(tab
, type
, u
);
835 isl_stat
isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
837 union isl_tab_undo_val u
= { 0 };
838 return push_union(tab
, type
, u
);
841 /* Push a record on the undo stack describing the current basic
842 * variables, so that the this state can be restored during rollback.
844 isl_stat
isl_tab_push_basis(struct isl_tab
*tab
)
847 union isl_tab_undo_val u
;
849 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
850 if (tab
->n_col
&& !u
.col_var
)
851 return isl_stat_error
;
852 for (i
= 0; i
< tab
->n_col
; ++i
)
853 u
.col_var
[i
] = tab
->col_var
[i
];
854 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
857 isl_stat
isl_tab_push_callback(struct isl_tab
*tab
,
858 struct isl_tab_callback
*callback
)
860 union isl_tab_undo_val u
;
861 u
.callback
= callback
;
862 return push_union(tab
, isl_tab_undo_callback
, u
);
865 /* Push a record onto the undo stack indicating that inequality "ineq"
866 * has been turned into an equality constraint (in the first position).
868 static isl_stat
isl_tab_push_ineq_to_eq(struct isl_tab
*tab
, int ineq
)
870 union isl_tab_undo_val u
= { .n
= ineq
};
872 return push_union(tab
, isl_tab_undo_ineq_to_eq
, u
);
875 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
882 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
885 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
886 if (!tab
->sample_index
)
894 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
899 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
900 int *t
= isl_realloc_array(tab
->mat
->ctx
,
901 tab
->sample_index
, int, tab
->n_sample
+ 1);
904 tab
->sample_index
= t
;
907 tab
->samples
= isl_mat_extend(tab
->samples
,
908 tab
->n_sample
+ 1, tab
->samples
->n_col
);
912 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
913 isl_vec_free(sample
);
914 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
919 isl_vec_free(sample
);
923 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
925 if (s
!= tab
->n_outside
) {
926 int t
= tab
->sample_index
[tab
->n_outside
];
927 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
928 tab
->sample_index
[s
] = t
;
929 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
932 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
940 /* Record the current number of samples so that we can remove newer
941 * samples during a rollback.
943 isl_stat
isl_tab_save_samples(struct isl_tab
*tab
)
945 union isl_tab_undo_val u
;
948 return isl_stat_error
;
951 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
954 /* Mark row with index "row" as being redundant.
955 * If we may need to undo the operation or if the row represents
956 * a variable of the original problem, the row is kept,
957 * but no longer considered when looking for a pivot row.
958 * Otherwise, the row is simply removed.
960 * The row may be interchanged with some other row. If it
961 * is interchanged with a later row, return 1. Otherwise return 0.
962 * If the rows are checked in order in the calling function,
963 * then a return value of 1 means that the row with the given
964 * row number may now contain a different row that hasn't been checked yet.
966 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
968 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
969 var
->is_redundant
= 1;
970 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
971 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
972 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
974 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
977 if (row
!= tab
->n_redundant
)
978 swap_rows(tab
, row
, tab
->n_redundant
);
980 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
982 if (row
!= tab
->n_row
- 1)
983 swap_rows(tab
, row
, tab
->n_row
- 1);
984 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
990 /* Mark "tab" as a rational tableau.
991 * If it wasn't marked as a rational tableau already and if we may
992 * need to undo changes, then arrange for the marking to be undone
995 int isl_tab_mark_rational(struct isl_tab
*tab
)
999 if (!tab
->rational
&& tab
->need_undo
)
1000 if (isl_tab_push(tab
, isl_tab_undo_rational
) < 0)
1006 isl_stat
isl_tab_mark_empty(struct isl_tab
*tab
)
1009 return isl_stat_error
;
1010 if (!tab
->empty
&& tab
->need_undo
)
1011 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
1012 return isl_stat_error
;
1017 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
1019 struct isl_tab_var
*var
;
1024 var
= &tab
->con
[con
];
1032 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
1037 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1038 * the original sign of the pivot element.
1039 * We only keep track of row signs during PILP solving and in this case
1040 * we only pivot a row with negative sign (meaning the value is always
1041 * non-positive) using a positive pivot element.
1043 * For each row j, the new value of the parametric constant is equal to
1045 * a_j0 - a_jc a_r0/a_rc
1047 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1048 * a_r0 is the parametric constant of the pivot row and a_jc is the
1049 * pivot column entry of the row j.
1050 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1051 * remains the same if a_jc has the same sign as the row j or if
1052 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1054 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1057 struct isl_mat
*mat
= tab
->mat
;
1058 unsigned off
= 2 + tab
->M
;
1063 if (tab
->row_sign
[row
] == 0)
1065 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1066 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1067 tab
->row_sign
[row
] = isl_tab_row_pos
;
1068 for (i
= 0; i
< tab
->n_row
; ++i
) {
1072 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1075 if (!tab
->row_sign
[i
])
1077 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1079 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1081 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1085 /* Given a row number "row" and a column number "col", pivot the tableau
1086 * such that the associated variables are interchanged.
1087 * The given row in the tableau expresses
1089 * x_r = a_r0 + \sum_i a_ri x_i
1093 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1095 * Substituting this equality into the other rows
1097 * x_j = a_j0 + \sum_i a_ji x_i
1099 * with a_jc \ne 0, we obtain
1101 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1108 * where i is any other column and j is any other row,
1109 * is therefore transformed into
1111 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1112 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1114 * The transformation is performed along the following steps
1116 * d_r/n_rc n_ri/n_rc
1119 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1122 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1123 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1125 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1126 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1128 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1129 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1131 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1132 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1135 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1141 struct isl_mat
*mat
= tab
->mat
;
1142 struct isl_tab_var
*var
;
1143 unsigned off
= 2 + tab
->M
;
1145 ctx
= isl_tab_get_ctx(tab
);
1146 if (isl_ctx_next_operation(ctx
) < 0)
1149 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1150 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1152 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1153 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1155 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1156 if (j
== off
- 1 + col
)
1158 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1160 if (!isl_int_is_one(mat
->row
[row
][0]))
1161 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1162 for (i
= 0; i
< tab
->n_row
; ++i
) {
1165 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1167 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1168 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1169 if (j
== off
- 1 + col
)
1171 isl_int_mul(mat
->row
[i
][1 + j
],
1172 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1173 isl_int_addmul(mat
->row
[i
][1 + j
],
1174 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1176 isl_int_mul(mat
->row
[i
][off
+ col
],
1177 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1178 if (!isl_int_is_one(mat
->row
[i
][0]))
1179 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1181 t
= tab
->row_var
[row
];
1182 tab
->row_var
[row
] = tab
->col_var
[col
];
1183 tab
->col_var
[col
] = t
;
1184 var
= isl_tab_var_from_row(tab
, row
);
1187 var
= var_from_col(tab
, col
);
1190 update_row_sign(tab
, row
, col
, sgn
);
1193 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1194 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1196 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1197 isl_tab_row_is_redundant(tab
, i
)) {
1198 int redo
= isl_tab_mark_redundant(tab
, i
);
1208 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1209 * or down (sgn < 0) to a row. The variable is assumed not to be
1210 * unbounded in the specified direction.
1211 * If sgn = 0, then the variable is unbounded in both directions,
1212 * and we pivot with any row we can find.
1214 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1215 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1218 unsigned off
= 2 + tab
->M
;
1224 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1225 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1227 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1229 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1230 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1233 return isl_tab_pivot(tab
, r
, var
->index
);
1236 /* Check whether all variables that are marked as non-negative
1237 * also have a non-negative sample value. This function is not
1238 * called from the current code but is useful during debugging.
1240 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1241 static void check_table(struct isl_tab
*tab
)
1247 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1248 struct isl_tab_var
*var
;
1249 var
= isl_tab_var_from_row(tab
, i
);
1250 if (!var
->is_nonneg
)
1253 isl_assert(tab
->mat
->ctx
,
1254 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1255 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1258 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1263 /* Return the sign of the maximal value of "var".
1264 * If the sign is not negative, then on return from this function,
1265 * the sample value will also be non-negative.
1267 * If "var" is manifestly unbounded wrt positive values, we are done.
1268 * Otherwise, we pivot the variable up to a row if needed.
1269 * Then we continue pivoting up until either
1270 * - no more up pivots can be performed
1271 * - the sample value is positive
1272 * - the variable is pivoted into a manifestly unbounded column
1274 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1278 if (max_is_manifestly_unbounded(tab
, var
))
1280 if (to_row(tab
, var
, 1) < 0)
1282 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1283 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1285 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1286 if (isl_tab_pivot(tab
, row
, col
) < 0)
1288 if (!var
->is_row
) /* manifestly unbounded */
1294 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1296 struct isl_tab_var
*var
;
1301 var
= &tab
->con
[con
];
1302 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1303 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1305 return sign_of_max(tab
, var
);
1308 static int row_is_neg(struct isl_tab
*tab
, int row
)
1311 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1312 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1314 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1316 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1319 static int row_sgn(struct isl_tab
*tab
, int row
)
1322 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1323 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1324 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1326 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1329 /* Perform pivots until the row variable "var" has a non-negative
1330 * sample value or until no more upward pivots can be performed.
1331 * Return the sign of the sample value after the pivots have been
1334 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1338 while (row_is_neg(tab
, var
->index
)) {
1339 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1342 if (isl_tab_pivot(tab
, row
, col
) < 0)
1344 if (!var
->is_row
) /* manifestly unbounded */
1347 return row_sgn(tab
, var
->index
);
1350 /* Perform pivots until we are sure that the row variable "var"
1351 * can attain non-negative values. After return from this
1352 * function, "var" is still a row variable, but its sample
1353 * value may not be non-negative, even if the function returns 1.
1355 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1359 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1360 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1363 if (row
== var
->index
) /* manifestly unbounded */
1365 if (isl_tab_pivot(tab
, row
, col
) < 0)
1368 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1371 /* Return a negative value if "var" can attain negative values.
1372 * Return a non-negative value otherwise.
1374 * If "var" is manifestly unbounded wrt negative values, we are done.
1375 * Otherwise, if var is in a column, we can pivot it down to a row.
1376 * Then we continue pivoting down until either
1377 * - the pivot would result in a manifestly unbounded column
1378 * => we don't perform the pivot, but simply return -1
1379 * - no more down pivots can be performed
1380 * - the sample value is negative
1381 * If the sample value becomes negative and the variable is supposed
1382 * to be nonnegative, then we undo the last pivot.
1383 * However, if the last pivot has made the pivoting variable
1384 * obviously redundant, then it may have moved to another row.
1385 * In that case we look for upward pivots until we reach a non-negative
1388 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1391 struct isl_tab_var
*pivot_var
= NULL
;
1393 if (min_is_manifestly_unbounded(tab
, var
))
1397 row
= pivot_row(tab
, NULL
, -1, col
);
1398 pivot_var
= var_from_col(tab
, col
);
1399 if (isl_tab_pivot(tab
, row
, col
) < 0)
1401 if (var
->is_redundant
)
1403 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1404 if (var
->is_nonneg
) {
1405 if (!pivot_var
->is_redundant
&&
1406 pivot_var
->index
== row
) {
1407 if (isl_tab_pivot(tab
, row
, col
) < 0)
1410 if (restore_row(tab
, var
) < -1)
1416 if (var
->is_redundant
)
1418 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1419 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1420 if (row
== var
->index
)
1423 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1424 pivot_var
= var_from_col(tab
, col
);
1425 if (isl_tab_pivot(tab
, row
, col
) < 0)
1427 if (var
->is_redundant
)
1430 if (pivot_var
&& var
->is_nonneg
) {
1431 /* pivot back to non-negative value */
1432 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1433 if (isl_tab_pivot(tab
, row
, col
) < 0)
1436 if (restore_row(tab
, var
) < -1)
1442 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1445 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1447 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1450 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1451 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1452 tab
->mat
->row
[row
][0]);
1455 /* Return 1 if "var" can attain values <= -1.
1456 * Return 0 otherwise.
1458 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1459 * then the sample value of "var" is assumed to be non-negative when the
1460 * the function is called. If 1 is returned then the constraint
1461 * is not redundant and the sample value is made non-negative again before
1462 * the function returns.
1464 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1467 struct isl_tab_var
*pivot_var
;
1469 if (min_is_manifestly_unbounded(tab
, var
))
1473 row
= pivot_row(tab
, NULL
, -1, col
);
1474 pivot_var
= var_from_col(tab
, col
);
1475 if (isl_tab_pivot(tab
, row
, col
) < 0)
1477 if (var
->is_redundant
)
1479 if (row_at_most_neg_one(tab
, var
->index
)) {
1480 if (var
->is_nonneg
) {
1481 if (!pivot_var
->is_redundant
&&
1482 pivot_var
->index
== row
) {
1483 if (isl_tab_pivot(tab
, row
, col
) < 0)
1486 if (restore_row(tab
, var
) < -1)
1492 if (var
->is_redundant
)
1495 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1496 if (row
== var
->index
) {
1497 if (var
->is_nonneg
&& restore_row(tab
, var
) < -1)
1503 pivot_var
= var_from_col(tab
, col
);
1504 if (isl_tab_pivot(tab
, row
, col
) < 0)
1506 if (var
->is_redundant
)
1508 } while (!row_at_most_neg_one(tab
, var
->index
));
1509 if (var
->is_nonneg
) {
1510 /* pivot back to non-negative value */
1511 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1512 if (isl_tab_pivot(tab
, row
, col
) < 0)
1514 if (restore_row(tab
, var
) < -1)
1520 /* Return 1 if "var" can attain values >= 1.
1521 * Return 0 otherwise.
1523 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1528 if (max_is_manifestly_unbounded(tab
, var
))
1530 if (to_row(tab
, var
, 1) < 0)
1532 r
= tab
->mat
->row
[var
->index
];
1533 while (isl_int_lt(r
[1], r
[0])) {
1534 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1536 return isl_int_ge(r
[1], r
[0]);
1537 if (row
== var
->index
) /* manifestly unbounded */
1539 if (isl_tab_pivot(tab
, row
, col
) < 0)
1545 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1548 unsigned off
= 2 + tab
->M
;
1549 t
= tab
->col_var
[col1
];
1550 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1551 tab
->col_var
[col2
] = t
;
1552 var_from_col(tab
, col1
)->index
= col1
;
1553 var_from_col(tab
, col2
)->index
= col2
;
1554 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1557 /* Mark column with index "col" as representing a zero variable.
1558 * If we may need to undo the operation the column is kept,
1559 * but no longer considered.
1560 * Otherwise, the column is simply removed.
1562 * The column may be interchanged with some other column. If it
1563 * is interchanged with a later column, return 1. Otherwise return 0.
1564 * If the columns are checked in order in the calling function,
1565 * then a return value of 1 means that the column with the given
1566 * column number may now contain a different column that
1567 * hasn't been checked yet.
1569 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1571 var_from_col(tab
, col
)->is_zero
= 1;
1572 if (tab
->need_undo
) {
1573 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1574 var_from_col(tab
, col
)) < 0)
1576 if (col
!= tab
->n_dead
)
1577 swap_cols(tab
, col
, tab
->n_dead
);
1581 if (col
!= tab
->n_col
- 1)
1582 swap_cols(tab
, col
, tab
->n_col
- 1);
1583 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1589 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1591 unsigned off
= 2 + tab
->M
;
1593 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1594 tab
->mat
->row
[row
][0]))
1596 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1597 tab
->n_col
- tab
->n_dead
) != -1)
1600 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1601 tab
->mat
->row
[row
][0]);
1604 /* For integer tableaus, check if any of the coordinates are stuck
1605 * at a non-integral value.
1607 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1616 for (i
= 0; i
< tab
->n_var
; ++i
) {
1617 if (!tab
->var
[i
].is_row
)
1619 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1626 /* Row variable "var" is non-negative and cannot attain any values
1627 * larger than zero. This means that the coefficients of the unrestricted
1628 * column variables are zero and that the coefficients of the non-negative
1629 * column variables are zero or negative.
1630 * Each of the non-negative variables with a negative coefficient can
1631 * then also be written as the negative sum of non-negative variables
1632 * and must therefore also be zero.
1634 * If "temp_var" is set, then "var" is a temporary variable that
1635 * will be removed after this function returns and for which
1636 * no information is recorded on the undo stack.
1637 * Do not add any undo records involving this variable in this case
1638 * since the variable will have been removed before any future undo
1639 * operations. Also avoid marking the variable as redundant,
1640 * since that either adds an undo record or needlessly removes the row
1641 * (the caller will take care of removing the row).
1643 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1644 int temp_var
) WARN_UNUSED
;
1645 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1649 struct isl_mat
*mat
= tab
->mat
;
1650 unsigned off
= 2 + tab
->M
;
1652 if (!var
->is_nonneg
)
1653 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1654 "expecting non-negative variable",
1655 return isl_stat_error
);
1657 if (!temp_var
&& tab
->need_undo
)
1658 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1659 return isl_stat_error
;
1660 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1662 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1664 if (isl_int_is_pos(mat
->row
[var
->index
][off
+ j
]))
1665 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1666 "row cannot have positive coefficients",
1667 return isl_stat_error
);
1668 recheck
= isl_tab_kill_col(tab
, j
);
1670 return isl_stat_error
;
1674 if (!temp_var
&& isl_tab_mark_redundant(tab
, var
->index
) < 0)
1675 return isl_stat_error
;
1676 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1677 return isl_stat_error
;
1681 /* Add a constraint to the tableau and allocate a row for it.
1682 * Return the index into the constraint array "con".
1684 * This function assumes that at least one more row and at least
1685 * one more element in the constraint array are available in the tableau.
1687 int isl_tab_allocate_con(struct isl_tab
*tab
)
1691 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1692 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1695 tab
->con
[r
].index
= tab
->n_row
;
1696 tab
->con
[r
].is_row
= 1;
1697 tab
->con
[r
].is_nonneg
= 0;
1698 tab
->con
[r
].is_zero
= 0;
1699 tab
->con
[r
].is_redundant
= 0;
1700 tab
->con
[r
].frozen
= 0;
1701 tab
->con
[r
].negated
= 0;
1702 tab
->row_var
[tab
->n_row
] = ~r
;
1706 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1712 /* Move the entries in tab->var up one position, starting at "first",
1713 * creating room for an extra entry at position "first".
1714 * Since some of the entries of tab->row_var and tab->col_var contain
1715 * indices into this array, they have to be updated accordingly.
1717 static int var_insert_entry(struct isl_tab
*tab
, int first
)
1721 if (tab
->n_var
>= tab
->max_var
)
1722 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1723 "not enough room for new variable", return -1);
1724 if (first
> tab
->n_var
)
1725 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1726 "invalid initial position", return -1);
1728 for (i
= tab
->n_var
- 1; i
>= first
; --i
) {
1729 tab
->var
[i
+ 1] = tab
->var
[i
];
1730 if (tab
->var
[i
+ 1].is_row
)
1731 tab
->row_var
[tab
->var
[i
+ 1].index
]++;
1733 tab
->col_var
[tab
->var
[i
+ 1].index
]++;
1741 /* Drop the entry at position "first" in tab->var, moving all
1742 * subsequent entries down.
1743 * Since some of the entries of tab->row_var and tab->col_var contain
1744 * indices into this array, they have to be updated accordingly.
1746 static int var_drop_entry(struct isl_tab
*tab
, int first
)
1750 if (first
>= tab
->n_var
)
1751 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1752 "invalid initial position", return -1);
1756 for (i
= first
; i
< tab
->n_var
; ++i
) {
1757 tab
->var
[i
] = tab
->var
[i
+ 1];
1758 if (tab
->var
[i
+ 1].is_row
)
1759 tab
->row_var
[tab
->var
[i
].index
]--;
1761 tab
->col_var
[tab
->var
[i
].index
]--;
1767 /* Add a variable to the tableau at position "r" and allocate a column for it.
1768 * Return the index into the variable array "var", i.e., "r",
1771 int isl_tab_insert_var(struct isl_tab
*tab
, int r
)
1774 unsigned off
= 2 + tab
->M
;
1776 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1778 if (var_insert_entry(tab
, r
) < 0)
1781 tab
->var
[r
].index
= tab
->n_col
;
1782 tab
->var
[r
].is_row
= 0;
1783 tab
->var
[r
].is_nonneg
= 0;
1784 tab
->var
[r
].is_zero
= 0;
1785 tab
->var
[r
].is_redundant
= 0;
1786 tab
->var
[r
].frozen
= 0;
1787 tab
->var
[r
].negated
= 0;
1788 tab
->col_var
[tab
->n_col
] = r
;
1790 for (i
= 0; i
< tab
->n_row
; ++i
)
1791 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1794 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1800 /* Add a row to the tableau. The row is given as an affine combination
1801 * of the original variables and needs to be expressed in terms of the
1804 * This function assumes that at least one more row and at least
1805 * one more element in the constraint array are available in the tableau.
1807 * We add each term in turn.
1808 * If r = n/d_r is the current sum and we need to add k x, then
1809 * if x is a column variable, we increase the numerator of
1810 * this column by k d_r
1811 * if x = f/d_x is a row variable, then the new representation of r is
1813 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1814 * --- + --- = ------------------- = -------------------
1815 * d_r d_r d_r d_x/g m
1817 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1819 * If tab->M is set, then, internally, each variable x is represented
1820 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1822 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1828 unsigned off
= 2 + tab
->M
;
1830 r
= isl_tab_allocate_con(tab
);
1836 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1837 isl_int_set_si(row
[0], 1);
1838 isl_int_set(row
[1], line
[0]);
1839 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1840 for (i
= 0; i
< tab
->n_var
; ++i
) {
1841 if (tab
->var
[i
].is_zero
)
1843 if (tab
->var
[i
].is_row
) {
1845 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1846 isl_int_swap(a
, row
[0]);
1847 isl_int_divexact(a
, row
[0], a
);
1849 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1850 isl_int_mul(b
, b
, line
[1 + i
]);
1851 isl_seq_combine(row
+ 1, a
, row
+ 1,
1852 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1853 1 + tab
->M
+ tab
->n_col
);
1855 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1856 line
[1 + i
], row
[0]);
1857 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1858 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1860 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1865 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1870 static isl_stat
drop_row(struct isl_tab
*tab
, int row
)
1872 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1,
1873 return isl_stat_error
);
1874 if (row
!= tab
->n_row
- 1)
1875 swap_rows(tab
, row
, tab
->n_row
- 1);
1881 /* Drop the variable in column "col" along with the column.
1882 * The column is removed first because it may need to be moved
1883 * into the last position and this process requires
1884 * the contents of the col_var array in a state
1885 * before the removal of the variable.
1887 static isl_stat
drop_col(struct isl_tab
*tab
, int col
)
1891 var
= tab
->col_var
[col
];
1892 if (col
!= tab
->n_col
- 1)
1893 swap_cols(tab
, col
, tab
->n_col
- 1);
1895 if (var_drop_entry(tab
, var
) < 0)
1896 return isl_stat_error
;
1900 /* Add inequality "ineq" and check if it conflicts with the
1901 * previously added constraints or if it is obviously redundant.
1903 * This function assumes that at least one more row and at least
1904 * one more element in the constraint array are available in the tableau.
1906 isl_stat
isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1913 return isl_stat_error
;
1915 struct isl_basic_map
*bmap
= tab
->bmap
;
1917 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
,
1918 return isl_stat_error
);
1919 isl_assert(tab
->mat
->ctx
,
1920 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
,
1921 return isl_stat_error
);
1922 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1923 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1924 return isl_stat_error
;
1926 return isl_stat_error
;
1930 isl_int_set_si(cst
, 0);
1931 isl_int_swap(ineq
[0], cst
);
1933 r
= isl_tab_add_row(tab
, ineq
);
1935 isl_int_swap(ineq
[0], cst
);
1939 return isl_stat_error
;
1940 tab
->con
[r
].is_nonneg
= 1;
1941 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1942 return isl_stat_error
;
1943 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1944 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1945 return isl_stat_error
;
1949 sgn
= restore_row(tab
, &tab
->con
[r
]);
1951 return isl_stat_error
;
1953 return isl_tab_mark_empty(tab
);
1954 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1955 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1956 return isl_stat_error
;
1960 /* Pivot a non-negative variable down until it reaches the value zero
1961 * and then pivot the variable into a column position.
1963 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1964 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1968 unsigned off
= 2 + tab
->M
;
1973 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1974 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1975 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1976 if (isl_tab_pivot(tab
, row
, col
) < 0)
1982 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1983 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1986 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1987 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1993 /* We assume Gaussian elimination has been performed on the equalities.
1994 * The equalities can therefore never conflict.
1995 * Adding the equalities is currently only really useful for a later call
1996 * to isl_tab_ineq_type.
1998 * This function assumes that at least one more row and at least
1999 * one more element in the constraint array are available in the tableau.
2001 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
2008 r
= isl_tab_add_row(tab
, eq
);
2012 r
= tab
->con
[r
].index
;
2013 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
2014 tab
->n_col
- tab
->n_dead
);
2015 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
2017 if (isl_tab_pivot(tab
, r
, i
) < 0)
2019 if (isl_tab_kill_col(tab
, i
) < 0)
2029 /* Does the sample value of row "row" of "tab" involve the big parameter,
2032 static int row_is_big(struct isl_tab
*tab
, int row
)
2034 return tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]);
2037 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
2039 unsigned off
= 2 + tab
->M
;
2041 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
2043 if (row_is_big(tab
, row
))
2045 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2046 tab
->n_col
- tab
->n_dead
) == -1;
2049 /* Add an equality that is known to be valid for the given tableau.
2051 * This function assumes that at least one more row and at least
2052 * one more element in the constraint array are available in the tableau.
2054 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
2056 struct isl_tab_var
*var
;
2061 r
= isl_tab_add_row(tab
, eq
);
2067 if (row_is_manifestly_zero(tab
, r
)) {
2069 if (isl_tab_mark_redundant(tab
, r
) < 0)
2074 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
2075 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
2080 if (to_col(tab
, var
) < 0)
2083 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2089 /* Add a zero row to "tab" and return the corresponding index
2090 * in the constraint array.
2092 * This function assumes that at least one more row and at least
2093 * one more element in the constraint array are available in the tableau.
2095 static int add_zero_row(struct isl_tab
*tab
)
2100 r
= isl_tab_allocate_con(tab
);
2104 row
= tab
->mat
->row
[tab
->con
[r
].index
];
2105 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
2106 isl_int_set_si(row
[0], 1);
2111 /* Add equality "eq" and check if it conflicts with the
2112 * previously added constraints or if it is obviously redundant.
2114 * This function assumes that at least one more row and at least
2115 * one more element in the constraint array are available in the tableau.
2116 * If tab->bmap is set, then two rows are needed instead of one.
2118 isl_stat
isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
2120 struct isl_tab_undo
*snap
= NULL
;
2121 struct isl_tab_var
*var
;
2128 return isl_stat_error
;
2129 isl_assert(tab
->mat
->ctx
, !tab
->M
, return isl_stat_error
);
2132 snap
= isl_tab_snap(tab
);
2136 isl_int_set_si(cst
, 0);
2137 isl_int_swap(eq
[0], cst
);
2139 r
= isl_tab_add_row(tab
, eq
);
2141 isl_int_swap(eq
[0], cst
);
2145 return isl_stat_error
;
2149 if (row_is_manifestly_zero(tab
, row
)) {
2151 return isl_tab_rollback(tab
, snap
);
2152 return drop_row(tab
, row
);
2156 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2157 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2158 return isl_stat_error
;
2159 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2160 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2161 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2162 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2163 return isl_stat_error
;
2165 return isl_stat_error
;
2166 if (add_zero_row(tab
) < 0)
2167 return isl_stat_error
;
2170 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2173 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2180 sgn
= sign_of_max(tab
, var
);
2182 return isl_stat_error
;
2184 if (isl_tab_mark_empty(tab
) < 0)
2185 return isl_stat_error
;
2191 if (to_col(tab
, var
) < 0)
2192 return isl_stat_error
;
2194 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2195 return isl_stat_error
;
2200 /* Construct and return an inequality that expresses an upper bound
2202 * In particular, if the div is given by
2206 * then the inequality expresses
2210 static __isl_give isl_vec
*ineq_for_div(__isl_keep isl_basic_map
*bmap
,
2215 struct isl_vec
*ineq
;
2217 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2221 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2223 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2227 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2228 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2232 /* For a div d = floor(f/m), add the constraints
2235 * -(f-(m-1)) + m d >= 0
2237 * Note that the second constraint is the negation of
2241 * If add_ineq is not NULL, then this function is used
2242 * instead of isl_tab_add_ineq to effectively add the inequalities.
2244 * This function assumes that at least two more rows and at least
2245 * two more elements in the constraint array are available in the tableau.
2247 static isl_stat
add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2248 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2252 struct isl_vec
*ineq
;
2254 total
= isl_basic_map_dim(tab
->bmap
, isl_dim_all
);
2256 return isl_stat_error
;
2257 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2259 ineq
= ineq_for_div(tab
->bmap
, div
);
2264 if (add_ineq(user
, ineq
->el
) < 0)
2267 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2271 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2272 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2273 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2274 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2277 if (add_ineq(user
, ineq
->el
) < 0)
2280 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2289 return isl_stat_error
;
2292 /* Check whether the div described by "div" is obviously non-negative.
2293 * If we are using a big parameter, then we will encode the div
2294 * as div' = M + div, which is always non-negative.
2295 * Otherwise, we check whether div is a non-negative affine combination
2296 * of non-negative variables.
2298 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2305 if (isl_int_is_neg(div
->el
[1]))
2308 for (i
= 0; i
< tab
->n_var
; ++i
) {
2309 if (isl_int_is_neg(div
->el
[2 + i
]))
2311 if (isl_int_is_zero(div
->el
[2 + i
]))
2313 if (!tab
->var
[i
].is_nonneg
)
2320 /* Insert an extra div, prescribed by "div", to the tableau and
2321 * the associated bmap (which is assumed to be non-NULL).
2322 * The extra integer division is inserted at (tableau) position "pos".
2323 * Return "pos" or -1 if an error occurred.
2325 * If add_ineq is not NULL, then this function is used instead
2326 * of isl_tab_add_ineq to add the div constraints.
2327 * This complication is needed because the code in isl_tab_pip
2328 * wants to perform some extra processing when an inequality
2329 * is added to the tableau.
2331 int isl_tab_insert_div(struct isl_tab
*tab
, int pos
, __isl_keep isl_vec
*div
,
2332 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2342 if (div
->size
!= 1 + 1 + tab
->n_var
)
2343 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2344 "unexpected size", return -1);
2346 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
2349 o_div
= tab
->n_var
- n_div
;
2350 if (pos
< o_div
|| pos
> tab
->n_var
)
2351 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2352 "invalid position", return -1);
2354 nonneg
= div_is_nonneg(tab
, div
);
2356 if (isl_tab_extend_cons(tab
, 3) < 0)
2358 if (isl_tab_extend_vars(tab
, 1) < 0)
2360 r
= isl_tab_insert_var(tab
, pos
);
2365 tab
->var
[r
].is_nonneg
= 1;
2367 tab
->bmap
= isl_basic_map_insert_div(tab
->bmap
, pos
- o_div
, div
);
2370 if (isl_tab_push_var(tab
, isl_tab_undo_bmap_div
, &tab
->var
[r
]) < 0)
2373 if (add_div_constraints(tab
, pos
- o_div
, add_ineq
, user
) < 0)
2379 /* Add an extra div, prescribed by "div", to the tableau and
2380 * the associated bmap (which is assumed to be non-NULL).
2382 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2386 return isl_tab_insert_div(tab
, tab
->n_var
, div
, NULL
, NULL
);
2389 /* If "track" is set, then we want to keep track of all constraints in tab
2390 * in its bmap field. This field is initialized from a copy of "bmap",
2391 * so we need to make sure that all constraints in "bmap" also appear
2392 * in the constructed tab.
2394 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2395 __isl_keep isl_basic_map
*bmap
, int track
)
2398 struct isl_tab
*tab
;
2401 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2404 tab
= isl_tab_alloc(bmap
->ctx
, total
+ bmap
->n_ineq
+ 1, total
, 0);
2407 tab
->preserve
= track
;
2408 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2409 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2410 if (isl_tab_mark_empty(tab
) < 0)
2414 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2415 tab
= add_eq(tab
, bmap
->eq
[i
]);
2419 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2420 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2426 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2434 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2435 __isl_keep isl_basic_set
*bset
, int track
)
2437 return isl_tab_from_basic_map(bset
, track
);
2440 /* Construct a tableau corresponding to the recession cone of "bset".
2442 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2447 struct isl_tab
*tab
;
2448 isl_size offset
= 0;
2451 total
= isl_basic_set_dim(bset
, isl_dim_all
);
2453 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2454 if (total
< 0 || offset
< 0)
2456 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2460 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2464 isl_int_set_si(cst
, 0);
2465 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2466 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2468 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2471 tab
= add_eq(tab
, bset
->eq
[i
]);
2472 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2476 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2478 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2479 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2480 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2483 tab
->con
[r
].is_nonneg
= 1;
2484 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2496 /* Assuming "tab" is the tableau of a cone, check if the cone is
2497 * bounded, i.e., if it is empty or only contains the origin.
2499 isl_bool
isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2504 return isl_bool_error
;
2506 return isl_bool_true
;
2507 if (tab
->n_dead
== tab
->n_col
)
2508 return isl_bool_true
;
2511 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2512 struct isl_tab_var
*var
;
2514 var
= isl_tab_var_from_row(tab
, i
);
2515 if (!var
->is_nonneg
)
2517 sgn
= sign_of_max(tab
, var
);
2519 return isl_bool_error
;
2521 return isl_bool_false
;
2522 if (close_row(tab
, var
, 0) < 0)
2523 return isl_bool_error
;
2526 if (tab
->n_dead
== tab
->n_col
)
2527 return isl_bool_true
;
2528 if (i
== tab
->n_row
)
2529 return isl_bool_false
;
2533 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2540 for (i
= 0; i
< tab
->n_var
; ++i
) {
2542 if (!tab
->var
[i
].is_row
)
2544 row
= tab
->var
[i
].index
;
2545 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2546 tab
->mat
->row
[row
][0]))
2552 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2555 struct isl_vec
*vec
;
2557 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2561 isl_int_set_si(vec
->block
.data
[0], 1);
2562 for (i
= 0; i
< tab
->n_var
; ++i
) {
2563 if (!tab
->var
[i
].is_row
)
2564 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2566 int row
= tab
->var
[i
].index
;
2567 isl_int_divexact(vec
->block
.data
[1 + i
],
2568 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2575 __isl_give isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2578 struct isl_vec
*vec
;
2584 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2590 isl_int_set_si(vec
->block
.data
[0], 1);
2591 for (i
= 0; i
< tab
->n_var
; ++i
) {
2593 if (!tab
->var
[i
].is_row
) {
2594 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2597 row
= tab
->var
[i
].index
;
2598 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2599 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2600 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2601 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2602 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2604 vec
= isl_vec_normalize(vec
);
2610 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2611 * or down (if sgn < 0) to the nearest integer in *v.
2613 static void get_rounded_sample_value(struct isl_tab
*tab
,
2614 struct isl_tab_var
*var
, int sgn
, isl_int
*v
)
2617 isl_int_set_si(*v
, 0);
2619 isl_int_cdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2620 tab
->mat
->row
[var
->index
][0]);
2622 isl_int_fdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2623 tab
->mat
->row
[var
->index
][0]);
2626 /* Update "bmap" based on the results of the tableau "tab".
2627 * In particular, implicit equalities are made explicit, redundant constraints
2628 * are removed and if the sample value happens to be integer, it is stored
2629 * in "bmap" (unless "bmap" already had an integer sample).
2631 * The tableau is assumed to have been created from "bmap" using
2632 * isl_tab_from_basic_map.
2634 __isl_give isl_basic_map
*isl_basic_map_update_from_tab(
2635 __isl_take isl_basic_map
*bmap
, struct isl_tab
*tab
)
2647 bmap
= isl_basic_map_set_to_empty(bmap
);
2649 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2650 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2651 isl_basic_map_inequality_to_equality(bmap
, i
);
2652 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2653 isl_basic_map_drop_inequality(bmap
, i
);
2655 if (bmap
->n_eq
!= n_eq
)
2656 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2657 if (!tab
->rational
&&
2658 bmap
&& !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2659 bmap
->sample
= extract_integer_sample(tab
);
2663 __isl_give isl_basic_set
*isl_basic_set_update_from_tab(
2664 __isl_take isl_basic_set
*bset
, struct isl_tab
*tab
)
2666 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset
),
2670 /* Drop the last constraint added to "tab" in position "r".
2671 * The constraint is expected to have remained in a row.
2673 static isl_stat
drop_last_con_in_row(struct isl_tab
*tab
, int r
)
2675 if (!tab
->con
[r
].is_row
)
2676 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2677 "row unexpectedly moved to column",
2678 return isl_stat_error
);
2679 if (r
+ 1 != tab
->n_con
)
2680 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2681 "additional constraints added", return isl_stat_error
);
2682 if (drop_row(tab
, tab
->con
[r
].index
) < 0)
2683 return isl_stat_error
;
2688 /* Given a non-negative variable "var", temporarily add a new non-negative
2689 * variable that is the opposite of "var", ensuring that "var" can only attain
2690 * the value zero. The new variable is removed again before this function
2691 * returns. However, the effect of forcing "var" to be zero remains.
2692 * If var = n/d is a row variable, then the new variable = -n/d.
2693 * If var is a column variables, then the new variable = -var.
2694 * If the new variable cannot attain non-negative values, then
2695 * the resulting tableau is empty.
2696 * Otherwise, we know the value will be zero and we close the row.
2698 static isl_stat
cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2703 unsigned off
= 2 + tab
->M
;
2707 if (var
->is_redundant
|| !var
->is_nonneg
)
2708 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2709 "expecting non-redundant non-negative variable",
2710 return isl_stat_error
);
2712 if (isl_tab_extend_cons(tab
, 1) < 0)
2713 return isl_stat_error
;
2716 tab
->con
[r
].index
= tab
->n_row
;
2717 tab
->con
[r
].is_row
= 1;
2718 tab
->con
[r
].is_nonneg
= 0;
2719 tab
->con
[r
].is_zero
= 0;
2720 tab
->con
[r
].is_redundant
= 0;
2721 tab
->con
[r
].frozen
= 0;
2722 tab
->con
[r
].negated
= 0;
2723 tab
->row_var
[tab
->n_row
] = ~r
;
2724 row
= tab
->mat
->row
[tab
->n_row
];
2727 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2728 isl_seq_neg(row
+ 1,
2729 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2731 isl_int_set_si(row
[0], 1);
2732 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2733 isl_int_set_si(row
[off
+ var
->index
], -1);
2739 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2741 return isl_stat_error
;
2743 if (drop_last_con_in_row(tab
, r
) < 0)
2744 return isl_stat_error
;
2745 if (isl_tab_mark_empty(tab
) < 0)
2746 return isl_stat_error
;
2749 tab
->con
[r
].is_nonneg
= 1;
2751 if (close_row(tab
, &tab
->con
[r
], 1) < 0)
2752 return isl_stat_error
;
2753 if (drop_last_con_in_row(tab
, r
) < 0)
2754 return isl_stat_error
;
2759 /* Check that "con" is a valid constraint position for "tab".
2761 static isl_stat
isl_tab_check_con(struct isl_tab
*tab
, int con
)
2764 return isl_stat_error
;
2765 if (con
< 0 || con
>= tab
->n_con
)
2766 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2767 "position out of bounds", return isl_stat_error
);
2771 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2772 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2773 * by r' = r + 1 >= 0.
2774 * If r is a row variable, we simply increase the constant term by one
2775 * (taking into account the denominator).
2776 * If r is a column variable, then we need to modify each row that
2777 * refers to r = r' - 1 by substituting this equality, effectively
2778 * subtracting the coefficient of the column from the constant.
2779 * We should only do this if the minimum is manifestly unbounded,
2780 * however. Otherwise, we may end up with negative sample values
2781 * for non-negative variables.
2782 * So, if r is a column variable with a minimum that is not
2783 * manifestly unbounded, then we need to move it to a row.
2784 * However, the sample value of this row may be negative,
2785 * even after the relaxation, so we need to restore it.
2786 * We therefore prefer to pivot a column up to a row, if possible.
2788 int isl_tab_relax(struct isl_tab
*tab
, int con
)
2790 struct isl_tab_var
*var
;
2795 var
= &tab
->con
[con
];
2797 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2798 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2799 "cannot relax redundant constraint", return -1);
2800 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2801 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2802 "cannot relax dead constraint", return -1);
2804 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2805 if (to_row(tab
, var
, 1) < 0)
2807 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2808 if (to_row(tab
, var
, -1) < 0)
2812 isl_int_add(tab
->mat
->row
[var
->index
][1],
2813 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2814 if (restore_row(tab
, var
) < 0)
2818 unsigned off
= 2 + tab
->M
;
2820 for (i
= 0; i
< tab
->n_row
; ++i
) {
2821 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2823 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2824 tab
->mat
->row
[i
][off
+ var
->index
]);
2829 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2835 /* Replace the variable v at position "pos" in the tableau "tab"
2836 * by v' = v + shift.
2838 * If the variable is in a column, then we first check if we can
2839 * simply plug in v = v' - shift. The effect on a row with
2840 * coefficient f/d for variable v is that the constant term c/d
2841 * is replaced by (c - f * shift)/d. If shift is positive and
2842 * f is negative for each row that needs to remain non-negative,
2843 * then this is clearly safe. In other words, if the minimum of v
2844 * is manifestly unbounded, then we can keep v in a column position.
2845 * Otherwise, we can pivot it down to a row.
2846 * Similarly, if shift is negative, we need to check if the maximum
2847 * of is manifestly unbounded.
2849 * If the variable is in a row (from the start or after pivoting),
2850 * then the constant term c/d is replaced by (c + d * shift)/d.
2852 int isl_tab_shift_var(struct isl_tab
*tab
, int pos
, isl_int shift
)
2854 struct isl_tab_var
*var
;
2858 if (isl_int_is_zero(shift
))
2861 var
= &tab
->var
[pos
];
2863 if (isl_int_is_neg(shift
)) {
2864 if (!max_is_manifestly_unbounded(tab
, var
))
2865 if (to_row(tab
, var
, 1) < 0)
2868 if (!min_is_manifestly_unbounded(tab
, var
))
2869 if (to_row(tab
, var
, -1) < 0)
2875 isl_int_addmul(tab
->mat
->row
[var
->index
][1],
2876 shift
, tab
->mat
->row
[var
->index
][0]);
2879 unsigned off
= 2 + tab
->M
;
2881 for (i
= 0; i
< tab
->n_row
; ++i
) {
2882 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2884 isl_int_submul(tab
->mat
->row
[i
][1],
2885 shift
, tab
->mat
->row
[i
][off
+ var
->index
]);
2893 /* Remove the sign constraint from constraint "con".
2895 * If the constraint variable was originally marked non-negative,
2896 * then we make sure we mark it non-negative again during rollback.
2898 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2900 struct isl_tab_var
*var
;
2905 var
= &tab
->con
[con
];
2906 if (!var
->is_nonneg
)
2910 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2916 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2921 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2924 static int may_be_equality(struct isl_tab
*tab
, int row
)
2926 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2927 : isl_int_lt(tab
->mat
->row
[row
][1],
2928 tab
->mat
->row
[row
][0]);
2931 /* Return an isl_tab_var that has been marked or NULL if no such
2932 * variable can be found.
2933 * The marked field has only been set for variables that
2934 * appear in non-redundant rows or non-dead columns.
2936 * Pick the last constraint variable that is marked and
2937 * that appears in either a non-redundant row or a non-dead columns.
2938 * Since the returned variable is tested for being a redundant constraint or
2939 * an implicit equality, there is no need to return any tab variable that
2940 * corresponds to a variable.
2942 static struct isl_tab_var
*select_marked(struct isl_tab
*tab
)
2945 struct isl_tab_var
*var
;
2947 for (i
= tab
->n_con
- 1; i
>= 0; --i
) {
2951 if (var
->is_row
&& var
->index
< tab
->n_redundant
)
2953 if (!var
->is_row
&& var
->index
< tab
->n_dead
)
2962 /* Check for (near) equalities among the constraints.
2963 * A constraint is an equality if it is non-negative and if
2964 * its maximal value is either
2965 * - zero (in case of rational tableaus), or
2966 * - strictly less than 1 (in case of integer tableaus)
2968 * We first mark all non-redundant and non-dead variables that
2969 * are not frozen and not obviously not an equality.
2970 * Then we iterate over all marked variables if they can attain
2971 * any values larger than zero or at least one.
2972 * If the maximal value is zero, we mark any column variables
2973 * that appear in the row as being zero and mark the row as being redundant.
2974 * Otherwise, if the maximal value is strictly less than one (and the
2975 * tableau is integer), then we restrict the value to being zero
2976 * by adding an opposite non-negative variable.
2977 * The order in which the variables are considered is not important.
2979 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2988 if (tab
->n_dead
== tab
->n_col
)
2992 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2993 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2994 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2995 may_be_equality(tab
, i
);
2999 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3000 struct isl_tab_var
*var
= var_from_col(tab
, i
);
3001 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
3006 struct isl_tab_var
*var
;
3008 var
= select_marked(tab
);
3013 sgn
= sign_of_max(tab
, var
);
3017 if (close_row(tab
, var
, 0) < 0)
3019 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
3020 if (cut_to_hyperplane(tab
, var
) < 0)
3022 return isl_tab_detect_implicit_equalities(tab
);
3024 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3025 var
= isl_tab_var_from_row(tab
, i
);
3028 if (may_be_equality(tab
, i
))
3038 /* Update the element of row_var or col_var that corresponds to
3039 * constraint tab->con[i] to a move from position "old" to position "i".
3041 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
3046 index
= tab
->con
[i
].index
;
3049 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
3050 if (p
[index
] != ~old
)
3051 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3052 "broken internal state", return -1);
3058 /* Interchange constraints "con1" and "con2" in "tab".
3059 * In particular, interchange the contents of these entries in tab->con.
3060 * Since tab->col_var and tab->row_var point back into this array,
3061 * they need to be updated accordingly.
3063 isl_stat
isl_tab_swap_constraints(struct isl_tab
*tab
, int con1
, int con2
)
3065 struct isl_tab_var var
;
3067 if (isl_tab_check_con(tab
, con1
) < 0 ||
3068 isl_tab_check_con(tab
, con2
) < 0)
3069 return isl_stat_error
;
3071 var
= tab
->con
[con1
];
3072 tab
->con
[con1
] = tab
->con
[con2
];
3073 if (update_con_after_move(tab
, con1
, con2
) < 0)
3074 return isl_stat_error
;
3075 tab
->con
[con2
] = var
;
3076 if (update_con_after_move(tab
, con2
, con1
) < 0)
3077 return isl_stat_error
;
3082 /* Rotate the "n" constraints starting at "first" to the right,
3083 * putting the last constraint in the position of the first constraint.
3085 static isl_stat
rotate_constraints_right(struct isl_tab
*tab
, int first
, int n
)
3088 struct isl_tab_var var
;
3093 last
= first
+ n
- 1;
3094 var
= tab
->con
[last
];
3095 for (i
= last
; i
> first
; --i
) {
3096 tab
->con
[i
] = tab
->con
[i
- 1];
3097 if (update_con_after_move(tab
, i
, i
- 1) < 0)
3098 return isl_stat_error
;
3100 tab
->con
[first
] = var
;
3101 if (update_con_after_move(tab
, first
, last
) < 0)
3102 return isl_stat_error
;
3107 /* Rotate the "n" constraints starting at "first" to the left,
3108 * putting the first constraint in the position of the last constraint.
3110 static isl_stat
rotate_constraints_left(struct isl_tab
*tab
, int first
, int n
)
3113 struct isl_tab_var var
;
3118 last
= first
+ n
- 1;
3119 var
= tab
->con
[first
];
3120 for (i
= first
; i
< last
; ++i
) {
3121 tab
->con
[i
] = tab
->con
[i
+ 1];
3122 if (update_con_after_move(tab
, i
, i
+ 1) < 0)
3123 return isl_stat_error
;
3125 tab
->con
[last
] = var
;
3126 if (update_con_after_move(tab
, last
, first
) < 0)
3127 return isl_stat_error
;
3132 /* Drop the "n" entries starting at position "first" in tab->con, moving all
3133 * subsequent entries down.
3134 * Since some of the entries of tab->row_var and tab->col_var contain
3135 * indices into this array, they have to be updated accordingly.
3137 static isl_stat
con_drop_entries(struct isl_tab
*tab
,
3138 unsigned first
, unsigned n
)
3142 if (first
+ n
> tab
->n_con
|| first
+ n
< first
)
3143 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3144 "invalid range", return isl_stat_error
);
3148 for (i
= first
; i
< tab
->n_con
; ++i
) {
3149 tab
->con
[i
] = tab
->con
[i
+ n
];
3150 if (update_con_after_move(tab
, i
, i
+ n
) < 0)
3151 return isl_stat_error
;
3157 /* isl_basic_map_gauss5 callback that gets called when
3158 * two (equality) constraints "a" and "b" get interchanged
3159 * in the basic map. Perform the same interchange in "tab".
3161 static isl_stat
swap_eq(unsigned a
, unsigned b
, void *user
)
3163 struct isl_tab
*tab
= user
;
3165 return isl_tab_swap_constraints(tab
, a
, b
);
3168 /* isl_basic_map_gauss5 callback that gets called when
3169 * the final "n" equality constraints get removed.
3170 * As a special case, if "n" is equal to the total number
3171 * of equality constraints, then this means the basic map
3172 * turned out to be empty.
3173 * Drop the same number of equality constraints from "tab" or
3174 * mark it empty in the special case.
3176 static isl_stat
drop_eq(unsigned n
, void *user
)
3178 struct isl_tab
*tab
= user
;
3181 return isl_tab_mark_empty(tab
);
3184 return con_drop_entries(tab
, tab
->n_eq
, n
);
3187 /* If "bmap" has more than a single reference, then call
3188 * isl_basic_map_gauss on it, updating "tab" accordingly.
3190 static __isl_give isl_basic_map
*gauss_if_shared(__isl_take isl_basic_map
*bmap
,
3191 struct isl_tab
*tab
)
3195 single
= isl_basic_map_has_single_reference(bmap
);
3197 return isl_basic_map_free(bmap
);
3200 return isl_basic_map_gauss5(bmap
, NULL
, &swap_eq
, &drop_eq
, tab
);
3203 /* Make the equalities that are implicit in "bmap" but that have been
3204 * detected in the corresponding "tab" explicit in "bmap" and update
3205 * "tab" to reflect the new order of the constraints.
3207 * In particular, if inequality i is an implicit equality then
3208 * isl_basic_map_inequality_to_equality will move the inequality
3209 * in front of the other equality and it will move the last inequality
3210 * in the position of inequality i.
3211 * In the tableau, the inequalities of "bmap" are stored after the equalities
3212 * and so the original order
3214 * E E E E E A A A I B B B B L
3218 * I E E E E E A A A L B B B B
3220 * where I is the implicit equality, the E are equalities,
3221 * the A inequalities before I, the B inequalities after I and
3222 * L the last inequality.
3223 * We therefore need to rotate to the right two sets of constraints,
3224 * those up to and including I and those after I.
3226 * If "tab" contains any constraints that are not in "bmap" then they
3227 * appear after those in "bmap" and they should be left untouched.
3229 * If the operation may need to be undone, then keep track
3230 * of the inequality constraints that have been turned
3231 * into equality constraints.
3233 * Note that this function only calls isl_basic_map_gauss
3234 * (in case some equality constraints got detected)
3235 * if "bmap" has more than one reference and if the operation
3236 * does not need to be undone.
3237 * If it only has a single reference, then it is left in a temporary state,
3238 * because the caller may require this state.
3239 * Calling isl_basic_map_gauss is then the responsibility of the caller.
3240 * This is also the case if the operation may need to be undone.
3242 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
3243 __isl_take isl_basic_map
*bmap
)
3249 return isl_basic_map_free(bmap
);
3254 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
3255 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
3257 isl_basic_map_inequality_to_equality(bmap
, i
);
3258 if (rotate_constraints_right(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
3259 return isl_basic_map_free(bmap
);
3260 if (rotate_constraints_right(tab
, tab
->n_eq
+ i
+ 1,
3261 bmap
->n_ineq
- i
) < 0)
3262 return isl_basic_map_free(bmap
);
3265 isl_tab_push_ineq_to_eq(tab
, i
);
3268 if (!tab
->need_undo
&& n_eq
!= tab
->n_eq
)
3269 bmap
= gauss_if_shared(bmap
, tab
);
3274 /* Undo the effect of turning an inequality constraint
3275 * into an equality constraint in isl_tab_make_equalities_explicit.
3276 * "ineq" is the original position of the inequality constraint that
3277 * now appears as the first equality constraint.
3279 * That is, the order
3281 * I E E E E E A A A L B B B B
3283 * needs to be changed back into
3285 * E E E E E A A A I B B B B L
3287 * where I is the inequality turned equality, the E are the original equalities,
3288 * the A inequalities originally before I,
3289 * the B inequalities originally after I and
3290 * L the originally last inequality.
3292 * Two groups of constraints therefore need to be rotated left,
3293 * those up to and including the original position of I and
3294 * those after this position.
3296 static isl_stat
first_eq_to_ineq(struct isl_tab
*tab
, int ineq
)
3298 unsigned n_ineq
, n_eq
;
3301 return isl_stat_error
;
3303 n_ineq
= tab
->n_con
- tab
->n_eq
;
3306 if (rotate_constraints_left(tab
, 0, n_eq
+ ineq
+ 1) < 0)
3307 return isl_stat_error
;
3308 if (rotate_constraints_left(tab
, n_eq
+ ineq
+ 1, n_ineq
- ineq
) < 0)
3309 return isl_stat_error
;
3313 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3317 if (tab
->rational
) {
3318 int sgn
= sign_of_min(tab
, var
);
3323 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
3330 /* Check for (near) redundant constraints.
3331 * A constraint is redundant if it is non-negative and if
3332 * its minimal value (temporarily ignoring the non-negativity) is either
3333 * - zero (in case of rational tableaus), or
3334 * - strictly larger than -1 (in case of integer tableaus)
3336 * We first mark all non-redundant and non-dead variables that
3337 * are not frozen and not obviously negatively unbounded.
3338 * Then we iterate over all marked variables if they can attain
3339 * any values smaller than zero or at most negative one.
3340 * If not, we mark the row as being redundant (assuming it hasn't
3341 * been detected as being obviously redundant in the mean time).
3343 int isl_tab_detect_redundant(struct isl_tab
*tab
)
3352 if (tab
->n_redundant
== tab
->n_row
)
3356 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3357 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
3358 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
3362 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3363 struct isl_tab_var
*var
= var_from_col(tab
, i
);
3364 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
3365 !min_is_manifestly_unbounded(tab
, var
);
3370 struct isl_tab_var
*var
;
3372 var
= select_marked(tab
);
3377 red
= con_is_redundant(tab
, var
);
3380 if (red
&& !var
->is_redundant
)
3381 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
3383 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3384 var
= var_from_col(tab
, i
);
3387 if (!min_is_manifestly_unbounded(tab
, var
))
3397 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
3404 if (tab
->con
[con
].is_zero
)
3406 if (tab
->con
[con
].is_redundant
)
3408 if (!tab
->con
[con
].is_row
)
3409 return tab
->con
[con
].index
< tab
->n_dead
;
3411 row
= tab
->con
[con
].index
;
3414 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
3415 !row_is_big(tab
, row
) &&
3416 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3417 tab
->n_col
- tab
->n_dead
) == -1;
3420 /* Return the minimal value of the affine expression "f" with denominator
3421 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3422 * the expression cannot attain arbitrarily small values.
3423 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3424 * The return value reflects the nature of the result (empty, unbounded,
3425 * minimal value returned in *opt).
3427 * This function assumes that at least one more row and at least
3428 * one more element in the constraint array are available in the tableau.
3430 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
3431 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
3435 enum isl_lp_result res
= isl_lp_ok
;
3436 struct isl_tab_var
*var
;
3437 struct isl_tab_undo
*snap
;
3440 return isl_lp_error
;
3443 return isl_lp_empty
;
3445 snap
= isl_tab_snap(tab
);
3446 r
= isl_tab_add_row(tab
, f
);
3448 return isl_lp_error
;
3452 find_pivot(tab
, var
, var
, -1, &row
, &col
);
3453 if (row
== var
->index
) {
3454 res
= isl_lp_unbounded
;
3459 if (isl_tab_pivot(tab
, row
, col
) < 0)
3460 return isl_lp_error
;
3462 isl_int_mul(tab
->mat
->row
[var
->index
][0],
3463 tab
->mat
->row
[var
->index
][0], denom
);
3464 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
3467 isl_vec_free(tab
->dual
);
3468 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
3470 return isl_lp_error
;
3471 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
3472 for (i
= 0; i
< tab
->n_con
; ++i
) {
3474 if (tab
->con
[i
].is_row
) {
3475 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
3478 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
3479 if (tab
->con
[i
].negated
)
3480 isl_int_neg(tab
->dual
->el
[1 + i
],
3481 tab
->mat
->row
[var
->index
][pos
]);
3483 isl_int_set(tab
->dual
->el
[1 + i
],
3484 tab
->mat
->row
[var
->index
][pos
]);
3487 if (opt
&& res
== isl_lp_ok
) {
3489 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3490 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3492 get_rounded_sample_value(tab
, var
, 1, opt
);
3494 if (isl_tab_rollback(tab
, snap
) < 0)
3495 return isl_lp_error
;
3499 /* Is the constraint at position "con" marked as being redundant?
3500 * If it is marked as representing an equality, then it is not
3501 * considered to be redundant.
3502 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3503 * redundant and moves the corresponding row into the first
3504 * tab->n_redundant positions (or removes the row, assigning it index -1),
3505 * so the final test is actually redundant itself.
3507 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3509 if (isl_tab_check_con(tab
, con
) < 0)
3511 if (tab
->con
[con
].is_zero
)
3513 if (tab
->con
[con
].is_redundant
)
3515 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3518 /* Is variable "var" of "tab" fixed to a constant value by its row
3520 * If so and if "value" is not NULL, then store this constant value
3523 * That is, is it a row variable that only has non-zero coefficients
3526 static isl_bool
is_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3529 unsigned off
= 2 + tab
->M
;
3530 isl_mat
*mat
= tab
->mat
;
3536 return isl_bool_false
;
3538 if (row_is_big(tab
, row
))
3539 return isl_bool_false
;
3540 n
= tab
->n_col
- tab
->n_dead
;
3541 pos
= isl_seq_first_non_zero(mat
->row
[row
] + off
+ tab
->n_dead
, n
);
3543 return isl_bool_false
;
3545 isl_int_divexact(*value
, mat
->row
[row
][1], mat
->row
[row
][0]);
3546 return isl_bool_true
;
3549 /* Has the variable "var' of "tab" reached a value that is greater than
3550 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3551 * "tmp" has been initialized by the caller and can be used
3552 * to perform local computations.
3554 * If the sample value involves the big parameter, then any value
3556 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3557 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3559 static int reached(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sgn
,
3560 isl_int target
, isl_int
*tmp
)
3562 if (row_is_big(tab
, var
->index
))
3564 isl_int_mul(*tmp
, tab
->mat
->row
[var
->index
][0], target
);
3566 return isl_int_ge(tab
->mat
->row
[var
->index
][1], *tmp
);
3568 return isl_int_le(tab
->mat
->row
[var
->index
][1], *tmp
);
3571 /* Can variable "var" of "tab" attain the value "target" by
3572 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3573 * If not, then pivot up [down] to the greatest [smallest]
3575 * "tmp" has been initialized by the caller and can be used
3576 * to perform local computations.
3578 * If the variable is manifestly unbounded in the desired direction,
3579 * then it can attain any value.
3580 * Otherwise, it can be moved to a row.
3581 * Continue pivoting until the target is reached.
3582 * If no more pivoting can be performed, the maximal [minimal]
3583 * rational value has been reached and the target cannot be reached.
3584 * If the variable would be pivoted into a manifestly unbounded column,
3585 * then the target can be reached.
3587 static isl_bool
var_reaches(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3588 int sgn
, isl_int target
, isl_int
*tmp
)
3592 if (sgn
< 0 && min_is_manifestly_unbounded(tab
, var
))
3593 return isl_bool_true
;
3594 if (sgn
> 0 && max_is_manifestly_unbounded(tab
, var
))
3595 return isl_bool_true
;
3596 if (to_row(tab
, var
, sgn
) < 0)
3597 return isl_bool_error
;
3598 while (!reached(tab
, var
, sgn
, target
, tmp
)) {
3599 find_pivot(tab
, var
, var
, sgn
, &row
, &col
);
3601 return isl_bool_false
;
3602 if (row
== var
->index
)
3603 return isl_bool_true
;
3604 if (isl_tab_pivot(tab
, row
, col
) < 0)
3605 return isl_bool_error
;
3608 return isl_bool_true
;
3611 /* Check if variable "var" of "tab" can only attain a single (integer)
3612 * value, and, if so, add an equality constraint to fix the variable
3613 * to this single value and store the result in "target".
3614 * "target" and "tmp" have been initialized by the caller.
3616 * Given the current sample value, round it down and check
3617 * whether it is possible to attain a strictly smaller integer value.
3618 * If so, the variable is not restricted to a single integer value.
3619 * Otherwise, the search stops at the smallest rational value.
3620 * Round up this value and check whether it is possible to attain
3621 * a strictly greater integer value.
3622 * If so, the variable is not restricted to a single integer value.
3623 * Otherwise, the search stops at the greatest rational value.
3624 * If rounding down this value yields a value that is different
3625 * from rounding up the smallest rational value, then the variable
3626 * cannot attain any integer value. Mark the tableau empty.
3627 * Otherwise, add an equality constraint that fixes the variable
3628 * to the single integer value found.
3630 static isl_bool
detect_constant_with_tmp(struct isl_tab
*tab
,
3631 struct isl_tab_var
*var
, isl_int
*target
, isl_int
*tmp
)
3638 get_rounded_sample_value(tab
, var
, -1, target
);
3639 isl_int_sub_ui(*target
, *target
, 1);
3640 reached
= var_reaches(tab
, var
, -1, *target
, tmp
);
3641 if (reached
< 0 || reached
)
3642 return isl_bool_not(reached
);
3643 get_rounded_sample_value(tab
, var
, 1, target
);
3644 isl_int_add_ui(*target
, *target
, 1);
3645 reached
= var_reaches(tab
, var
, 1, *target
, tmp
);
3646 if (reached
< 0 || reached
)
3647 return isl_bool_not(reached
);
3648 get_rounded_sample_value(tab
, var
, -1, tmp
);
3649 isl_int_sub_ui(*target
, *target
, 1);
3650 if (isl_int_ne(*target
, *tmp
)) {
3651 if (isl_tab_mark_empty(tab
) < 0)
3652 return isl_bool_error
;
3653 return isl_bool_false
;
3656 if (isl_tab_extend_cons(tab
, 1) < 0)
3657 return isl_bool_error
;
3658 eq
= isl_vec_alloc(isl_tab_get_ctx(tab
), 1 + tab
->n_var
);
3660 return isl_bool_error
;
3661 pos
= var
- tab
->var
;
3662 isl_seq_clr(eq
->el
+ 1, tab
->n_var
);
3663 isl_int_set_si(eq
->el
[1 + pos
], -1);
3664 isl_int_set(eq
->el
[0], *target
);
3665 r
= isl_tab_add_eq(tab
, eq
->el
);
3668 return r
< 0 ? isl_bool_error
: isl_bool_true
;
3671 /* Check if variable "var" of "tab" can only attain a single (integer)
3672 * value, and, if so, add an equality constraint to fix the variable
3673 * to this single value and store the result in "value" (if "value"
3676 * If the current sample value involves the big parameter,
3677 * then the variable cannot have a fixed integer value.
3678 * If the variable is already fixed to a single value by its row, then
3679 * there is no need to add another equality constraint.
3681 * Otherwise, allocate some temporary variables and continue
3682 * with detect_constant_with_tmp.
3684 static isl_bool
get_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3687 isl_int target
, tmp
;
3690 if (var
->is_row
&& row_is_big(tab
, var
->index
))
3691 return isl_bool_false
;
3692 is_cst
= is_constant(tab
, var
, value
);
3693 if (is_cst
< 0 || is_cst
)
3697 isl_int_init(target
);
3700 is_cst
= detect_constant_with_tmp(tab
, var
,
3701 value
? value
: &target
, &tmp
);
3705 isl_int_clear(target
);
3710 /* Check if variable "var" of "tab" can only attain a single (integer)
3711 * value, and, if so, add an equality constraint to fix the variable
3712 * to this single value and store the result in "value" (if "value"
3715 * For rational tableaus, nothing needs to be done.
3717 isl_bool
isl_tab_is_constant(struct isl_tab
*tab
, int var
, isl_int
*value
)
3720 return isl_bool_error
;
3721 if (var
< 0 || var
>= tab
->n_var
)
3722 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3723 "position out of bounds", return isl_bool_error
);
3725 return isl_bool_false
;
3727 return get_constant(tab
, &tab
->var
[var
], value
);
3730 /* Check if any of the variables of "tab" can only attain a single (integer)
3731 * value, and, if so, add equality constraints to fix those variables
3732 * to these single values.
3734 * For rational tableaus, nothing needs to be done.
3736 isl_stat
isl_tab_detect_constants(struct isl_tab
*tab
)
3741 return isl_stat_error
;
3745 for (i
= 0; i
< tab
->n_var
; ++i
) {
3746 if (get_constant(tab
, &tab
->var
[i
], NULL
) < 0)
3747 return isl_stat_error
;
3753 /* Take a snapshot of the tableau that can be restored by a call to
3756 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3764 /* Does "tab" need to keep track of undo information?
3765 * That is, was a snapshot taken that may need to be restored?
3767 isl_bool
isl_tab_need_undo(struct isl_tab
*tab
)
3770 return isl_bool_error
;
3772 return isl_bool_ok(tab
->need_undo
);
3775 /* Remove all tracking of undo information from "tab", invalidating
3776 * any snapshots that may have been taken of the tableau.
3777 * Since all snapshots have been invalidated, there is also
3778 * no need to start keeping track of undo information again.
3780 void isl_tab_clear_undo(struct isl_tab
*tab
)
3789 /* Undo the operation performed by isl_tab_relax.
3791 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3793 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3795 unsigned off
= 2 + tab
->M
;
3797 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3798 if (to_row(tab
, var
, 1) < 0)
3799 return isl_stat_error
;
3802 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3803 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3804 if (var
->is_nonneg
) {
3805 int sgn
= restore_row(tab
, var
);
3806 isl_assert(tab
->mat
->ctx
, sgn
>= 0,
3807 return isl_stat_error
);
3812 for (i
= 0; i
< tab
->n_row
; ++i
) {
3813 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3815 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3816 tab
->mat
->row
[i
][off
+ var
->index
]);
3824 /* Undo the operation performed by isl_tab_unrestrict.
3826 * In particular, mark the variable as being non-negative and make
3827 * sure the sample value respects this constraint.
3829 static isl_stat
ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3833 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3834 return isl_stat_error
;
3839 /* Unmark the last redundant row in "tab" as being redundant.
3840 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3841 * In particular, remove the redundant mark and make
3842 * sure the sample value respects the constraint again.
3843 * A variable that is marked non-negative by isl_tab_mark_redundant
3844 * is covered by a separate undo record.
3846 static isl_stat
restore_last_redundant(struct isl_tab
*tab
)
3848 struct isl_tab_var
*var
;
3850 if (tab
->n_redundant
< 1)
3851 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3852 "no redundant rows", return isl_stat_error
);
3854 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3855 var
->is_redundant
= 0;
3857 restore_row(tab
, var
);
3862 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3864 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3866 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3867 switch (undo
->type
) {
3868 case isl_tab_undo_nonneg
:
3871 case isl_tab_undo_redundant
:
3872 if (!var
->is_row
|| var
->index
!= tab
->n_redundant
- 1)
3873 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3874 "not undoing last redundant row",
3875 return isl_stat_error
);
3876 return restore_last_redundant(tab
);
3877 case isl_tab_undo_freeze
:
3880 case isl_tab_undo_zero
:
3885 case isl_tab_undo_allocate
:
3886 if (undo
->u
.var_index
>= 0) {
3887 isl_assert(tab
->mat
->ctx
, !var
->is_row
,
3888 return isl_stat_error
);
3889 return drop_col(tab
, var
->index
);
3892 if (!max_is_manifestly_unbounded(tab
, var
)) {
3893 if (to_row(tab
, var
, 1) < 0)
3894 return isl_stat_error
;
3895 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3896 if (to_row(tab
, var
, -1) < 0)
3897 return isl_stat_error
;
3899 if (to_row(tab
, var
, 0) < 0)
3900 return isl_stat_error
;
3902 return drop_row(tab
, var
->index
);
3903 case isl_tab_undo_relax
:
3904 return unrelax(tab
, var
);
3905 case isl_tab_undo_unrestrict
:
3906 return ununrestrict(tab
, var
);
3908 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3909 "perform_undo_var called on invalid undo record",
3910 return isl_stat_error
);
3916 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3917 * and that have been preserved in the tableau.
3918 * Note that isl_tab_mark_redundant may also have marked some variables
3919 * as being non-negative before marking them redundant. These need
3920 * to be removed as well as otherwise some constraints could end up
3921 * getting marked redundant with respect to the variable.
3923 isl_stat
isl_tab_restore_redundant(struct isl_tab
*tab
)
3926 return isl_stat_error
;
3929 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3930 "manually restoring redundant constraints "
3931 "interferes with undo history",
3932 return isl_stat_error
);
3934 while (tab
->n_redundant
> 0) {
3935 if (tab
->row_var
[tab
->n_redundant
- 1] >= 0) {
3936 struct isl_tab_var
*var
;
3938 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3941 restore_last_redundant(tab
);
3946 /* Undo the addition of an integer division to the basic map representation
3947 * of "tab" in position "pos".
3949 static isl_stat
drop_bmap_div(struct isl_tab
*tab
, int pos
)
3954 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
3956 return isl_stat_error
;
3957 off
= tab
->n_var
- n_div
;
3958 tab
->bmap
= isl_basic_map_drop_div(tab
->bmap
, pos
- off
);
3960 return isl_stat_error
;
3962 tab
->samples
= isl_mat_drop_cols(tab
->samples
, 1 + pos
, 1);
3964 return isl_stat_error
;
3970 /* Restore the tableau to the state where the basic variables
3971 * are those in "col_var".
3972 * We first construct a list of variables that are currently in
3973 * the basis, but shouldn't. Then we iterate over all variables
3974 * that should be in the basis and for each one that is currently
3975 * not in the basis, we exchange it with one of the elements of the
3976 * list constructed before.
3977 * We can always find an appropriate variable to pivot with because
3978 * the current basis is mapped to the old basis by a non-singular
3979 * matrix and so we can never end up with a zero row.
3981 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3985 int *extra
= NULL
; /* current columns that contain bad stuff */
3986 unsigned off
= 2 + tab
->M
;
3988 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3989 if (tab
->n_col
&& !extra
)
3991 for (i
= 0; i
< tab
->n_col
; ++i
) {
3992 for (j
= 0; j
< tab
->n_col
; ++j
)
3993 if (tab
->col_var
[i
] == col_var
[j
])
3997 extra
[n_extra
++] = i
;
3999 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
4000 struct isl_tab_var
*var
;
4003 for (j
= 0; j
< tab
->n_col
; ++j
)
4004 if (col_var
[i
] == tab
->col_var
[j
])
4008 var
= var_from_index(tab
, col_var
[i
]);
4010 for (j
= 0; j
< n_extra
; ++j
)
4011 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
4013 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
4014 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
4016 extra
[j
] = extra
[--n_extra
];
4026 /* Remove all samples with index n or greater, i.e., those samples
4027 * that were added since we saved this number of samples in
4028 * isl_tab_save_samples.
4030 static void drop_samples_since(struct isl_tab
*tab
, int n
)
4034 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
4035 if (tab
->sample_index
[i
] < n
)
4038 if (i
!= tab
->n_sample
- 1) {
4039 int t
= tab
->sample_index
[tab
->n_sample
-1];
4040 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
4041 tab
->sample_index
[i
] = t
;
4042 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
4048 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
4050 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
4052 switch (undo
->type
) {
4053 case isl_tab_undo_rational
:
4056 case isl_tab_undo_empty
:
4059 case isl_tab_undo_nonneg
:
4060 case isl_tab_undo_redundant
:
4061 case isl_tab_undo_freeze
:
4062 case isl_tab_undo_zero
:
4063 case isl_tab_undo_allocate
:
4064 case isl_tab_undo_relax
:
4065 case isl_tab_undo_unrestrict
:
4066 return perform_undo_var(tab
, undo
);
4067 case isl_tab_undo_bmap_eq
:
4068 tab
->bmap
= isl_basic_map_free_equality(tab
->bmap
, 1);
4069 return tab
->bmap
? isl_stat_ok
: isl_stat_error
;
4070 case isl_tab_undo_bmap_ineq
:
4071 tab
->bmap
= isl_basic_map_free_inequality(tab
->bmap
, 1);
4072 return tab
->bmap
? isl_stat_ok
: isl_stat_error
;
4073 case isl_tab_undo_bmap_div
:
4074 return drop_bmap_div(tab
, undo
->u
.var_index
);
4075 case isl_tab_undo_saved_basis
:
4076 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
4077 return isl_stat_error
;
4079 case isl_tab_undo_drop_sample
:
4082 case isl_tab_undo_saved_samples
:
4083 drop_samples_since(tab
, undo
->u
.n
);
4085 case isl_tab_undo_callback
:
4086 return undo
->u
.callback
->run(undo
->u
.callback
);
4087 case isl_tab_undo_ineq_to_eq
:
4088 return first_eq_to_ineq(tab
, undo
->u
.n
);
4090 isl_assert(tab
->mat
->ctx
, 0, return isl_stat_error
);
4095 /* Return the tableau to the state it was in when the snapshot "snap"
4098 isl_stat
isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
4100 struct isl_tab_undo
*undo
, *next
;
4103 return isl_stat_error
;
4106 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
4110 if (perform_undo(tab
, undo
) < 0) {
4114 return isl_stat_error
;
4116 free_undo_record(undo
);
4121 return isl_stat_error
;
4125 /* The given row "row" represents an inequality violated by all
4126 * points in the tableau. Check for some special cases of such
4127 * separating constraints.
4128 * In particular, if the row has been reduced to the constant -1,
4129 * then we know the inequality is adjacent (but opposite) to
4130 * an equality in the tableau.
4131 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
4132 * of the tableau and c a positive constant, then the inequality
4133 * is adjacent (but opposite) to the inequality r'.
4135 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
4138 unsigned off
= 2 + tab
->M
;
4141 return isl_ineq_separate
;
4143 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
4144 return isl_ineq_separate
;
4146 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
4147 tab
->n_col
- tab
->n_dead
);
4149 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
4150 return isl_ineq_adj_eq
;
4152 return isl_ineq_separate
;
4155 if (!isl_int_eq(tab
->mat
->row
[row
][1],
4156 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
4157 return isl_ineq_separate
;
4159 pos
= isl_seq_first_non_zero(
4160 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
4161 tab
->n_col
- tab
->n_dead
- pos
- 1);
4163 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
4166 /* Check the effect of inequality "ineq" on the tableau "tab".
4168 * isl_ineq_redundant: satisfied by all points in the tableau
4169 * isl_ineq_separate: satisfied by no point in the tableau
4170 * isl_ineq_cut: satisfied by some by not all points
4171 * isl_ineq_adj_eq: adjacent to an equality
4172 * isl_ineq_adj_ineq: adjacent to an inequality.
4174 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
4176 enum isl_ineq_type type
= isl_ineq_error
;
4177 struct isl_tab_undo
*snap
= NULL
;
4182 return isl_ineq_error
;
4184 if (isl_tab_extend_cons(tab
, 1) < 0)
4185 return isl_ineq_error
;
4187 snap
= isl_tab_snap(tab
);
4189 con
= isl_tab_add_row(tab
, ineq
);
4193 row
= tab
->con
[con
].index
;
4194 if (isl_tab_row_is_redundant(tab
, row
))
4195 type
= isl_ineq_redundant
;
4196 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
4198 isl_int_abs_ge(tab
->mat
->row
[row
][1],
4199 tab
->mat
->row
[row
][0]))) {
4200 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
4204 type
= isl_ineq_cut
;
4206 type
= separation_type(tab
, row
);
4208 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
4212 type
= isl_ineq_cut
;
4214 type
= isl_ineq_redundant
;
4217 if (isl_tab_rollback(tab
, snap
))
4218 return isl_ineq_error
;
4221 return isl_ineq_error
;
4224 isl_stat
isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
4226 bmap
= isl_basic_map_cow(bmap
);
4231 bmap
= isl_basic_map_set_to_empty(bmap
);
4238 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
4239 isl_assert(tab
->mat
->ctx
,
4240 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
4246 isl_basic_map_free(bmap
);
4247 return isl_stat_error
;
4250 isl_stat
isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
4252 return isl_tab_track_bmap(tab
, bset_to_bmap(bset
));
4255 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
4260 return bset_from_bmap(tab
->bmap
);
4263 /* Print information about a tab variable representing a variable or
4265 * In particular, print its position (row or column) in the tableau and
4266 * an indication of whether it is zero, redundant and/or frozen.
4267 * Note that only constraints can be frozen.
4269 static void print_tab_var(FILE *out
, struct isl_tab_var
*var
)
4271 fprintf(out
, "%c%d%s%s", var
->is_row
? 'r' : 'c',
4273 var
->is_zero
? " [=0]" :
4274 var
->is_redundant
? " [R]" : "",
4275 var
->frozen
? " [F]" : "");
4278 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
4279 FILE *out
, int indent
)
4285 fprintf(out
, "%*snull tab\n", indent
, "");
4288 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
4289 tab
->n_redundant
, tab
->n_dead
);
4291 fprintf(out
, ", rational");
4293 fprintf(out
, ", empty");
4295 fprintf(out
, "%*s[", indent
, "");
4296 for (i
= 0; i
< tab
->n_var
; ++i
) {
4298 fprintf(out
, (i
== tab
->n_param
||
4299 i
== tab
->n_var
- tab
->n_div
) ? "; "
4301 print_tab_var(out
, &tab
->var
[i
]);
4303 fprintf(out
, "]\n");
4304 fprintf(out
, "%*s[", indent
, "");
4305 for (i
= 0; i
< tab
->n_con
; ++i
) {
4308 print_tab_var(out
, &tab
->con
[i
]);
4310 fprintf(out
, "]\n");
4311 fprintf(out
, "%*s[", indent
, "");
4312 for (i
= 0; i
< tab
->n_row
; ++i
) {
4313 const char *sign
= "";
4316 if (tab
->row_sign
) {
4317 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
4319 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
4321 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
4326 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
4327 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
4329 fprintf(out
, "]\n");
4330 fprintf(out
, "%*s[", indent
, "");
4331 for (i
= 0; i
< tab
->n_col
; ++i
) {
4334 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
4335 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
4337 fprintf(out
, "]\n");
4338 r
= tab
->mat
->n_row
;
4339 tab
->mat
->n_row
= tab
->n_row
;
4340 c
= tab
->mat
->n_col
;
4341 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
4342 isl_mat_print_internal(tab
->mat
, out
, indent
);
4343 tab
->mat
->n_row
= r
;
4344 tab
->mat
->n_col
= c
;
4346 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
4349 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
4351 isl_tab_print_internal(tab
, stderr
, 0);