2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
15 #include <isl/constraint.h>
16 #include <isl/schedule.h>
17 #include <isl_mat_private.h>
21 #include <isl_dim_map.h>
22 #include <isl_hmap_map_basic_set.h>
23 #include <isl_qsort.h>
24 #include <isl_schedule_private.h>
25 #include <isl_band_private.h>
26 #include <isl_list_private.h>
29 * The scheduling algorithm implemented in this file was inspired by
30 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
31 * Parallelization and Locality Optimization in the Polyhedral Model".
35 /* Internal information about a node that is used during the construction
37 * dim represents the space in which the domain lives
38 * sched is a matrix representation of the schedule being constructed
40 * sched_map is an isl_map representation of the same (partial) schedule
41 * sched_map may be NULL
42 * rank is the number of linearly independent rows in the linear part
44 * the columns of cmap represent a change of basis for the schedule
45 * coefficients; the first rank columns span the linear part of
47 * start is the first variable in the LP problem in the sequences that
48 * represents the schedule coefficients of this node
49 * nvar is the dimension of the domain
50 * nparam is the number of parameters or 0 if we are not constructing
51 * a parametric schedule
53 * scc is the index of SCC (or WCC) this node belongs to
55 * band contains the band index for each of the rows of the schedule.
56 * band_id is used to differentiate between separate bands at the same
57 * level within the same parent band, i.e., bands that are separated
58 * by the parent band or bands that are independent of each other.
59 * zero contains a boolean for each of the rows of the schedule,
60 * indicating whether the corresponding scheduling dimension results
61 * in zero dependence distances within its band and with respect
62 * to the proximity edges.
64 * index, min_index and on_stack are used during the SCC detection
65 * index represents the order in which nodes are visited.
66 * min_index is the index of the root of a (sub)component.
67 * on_stack indicates whether the node is currently on the stack.
69 struct isl_sched_node
{
91 static int node_has_dim(const void *entry
, const void *val
)
93 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
94 isl_space
*dim
= (isl_space
*)val
;
96 return isl_space_is_equal(node
->dim
, dim
);
99 /* An edge in the dependence graph. An edge may be used to
100 * ensure validity of the generated schedule, to minimize the dependence
103 * map is the dependence relation
104 * src is the source node
105 * dst is the sink node
106 * validity is set if the edge is used to ensure correctness
107 * proximity is set if the edge is used to minimize dependence distances
109 * For validity edges, start and end mark the sequence of inequality
110 * constraints in the LP problem that encode the validity constraint
111 * corresponding to this edge.
113 struct isl_sched_edge
{
116 struct isl_sched_node
*src
;
117 struct isl_sched_node
*dst
;
126 /* Internal information about the dependence graph used during
127 * the construction of the schedule.
129 * intra_hmap is a cache, mapping dependence relations to their dual,
130 * for dependences from a node to itself
131 * inter_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences between distinct nodes
134 * n is the number of nodes
135 * node is the list of nodes
136 * maxvar is the maximal number of variables over all nodes
137 * n_row is the current (maximal) number of linearly independent
138 * rows in the node schedules
139 * n_total_row is the current number of rows in the node schedules
140 * n_band is the current number of completed bands
141 * band_start is the starting row in the node schedules of the current band
142 * root is set if this graph is the original dependence graph,
143 * without any splitting
145 * sorted contains a list of node indices sorted according to the
146 * SCC to which a node belongs
148 * n_edge is the number of edges
149 * edge is the list of edges
150 * edge_table contains pointers into the edge array, hashed on the source
151 * and sink spaces; the table only contains edges that represent
152 * validity constraints (and that may or may not also represent proximity
155 * node_table contains pointers into the node array, hashed on the space
157 * region contains a list of variable sequences that should be non-trivial
159 * lp contains the (I)LP problem used to obtain new schedule rows
161 * src_scc and dst_scc are the source and sink SCCs of an edge with
162 * conflicting constraints
164 * scc, sp, index and stack are used during the detection of SCCs
165 * scc is the number of the next SCC
166 * stack contains the nodes on the path from the root to the current node
167 * sp is the stack pointer
168 * index is the index of the last node visited
170 struct isl_sched_graph
{
171 isl_hmap_map_basic_set
*intra_hmap
;
172 isl_hmap_map_basic_set
*inter_hmap
;
174 struct isl_sched_node
*node
;
187 struct isl_sched_edge
*edge
;
189 struct isl_hash_table
*edge_table
;
191 struct isl_hash_table
*node_table
;
192 struct isl_region
*region
;
206 /* Initialize node_table based on the list of nodes.
208 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
212 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
213 if (!graph
->node_table
)
216 for (i
= 0; i
< graph
->n
; ++i
) {
217 struct isl_hash_table_entry
*entry
;
220 hash
= isl_space_get_hash(graph
->node
[i
].dim
);
221 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
223 graph
->node
[i
].dim
, 1);
226 entry
->data
= &graph
->node
[i
];
232 /* Return a pointer to the node that lives within the given space,
233 * or NULL if there is no such node.
235 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
236 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
238 struct isl_hash_table_entry
*entry
;
241 hash
= isl_space_get_hash(dim
);
242 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
243 &node_has_dim
, dim
, 0);
245 return entry
? entry
->data
: NULL
;
248 static int edge_has_src_and_dst(const void *entry
, const void *val
)
250 const struct isl_sched_edge
*edge
= entry
;
251 const struct isl_sched_edge
*temp
= val
;
253 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
256 /* Initialize edge_table based on the list of edges.
257 * Only edges with validity set are added to the table.
259 static int graph_init_edge_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
263 graph
->edge_table
= isl_hash_table_alloc(ctx
, graph
->n_edge
);
264 if (!graph
->edge_table
)
267 for (i
= 0; i
< graph
->n_edge
; ++i
) {
268 struct isl_hash_table_entry
*entry
;
271 if (!graph
->edge
[i
].validity
)
274 hash
= isl_hash_init();
275 hash
= isl_hash_builtin(hash
, graph
->edge
[i
].src
);
276 hash
= isl_hash_builtin(hash
, graph
->edge
[i
].dst
);
277 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
278 &edge_has_src_and_dst
,
282 entry
->data
= &graph
->edge
[i
];
288 /* Check whether the dependence graph has a (validity) edge
289 * between the given two nodes.
291 static int graph_has_edge(struct isl_sched_graph
*graph
,
292 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
294 isl_ctx
*ctx
= isl_space_get_ctx(src
->dim
);
295 struct isl_hash_table_entry
*entry
;
297 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
298 struct isl_sched_edge
*edge
;
301 hash
= isl_hash_init();
302 hash
= isl_hash_builtin(hash
, temp
.src
);
303 hash
= isl_hash_builtin(hash
, temp
.dst
);
304 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
305 &edge_has_src_and_dst
, &temp
, 0);
310 empty
= isl_map_plain_is_empty(edge
->map
);
317 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
318 int n_node
, int n_edge
)
323 graph
->n_edge
= n_edge
;
324 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
325 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
326 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
327 graph
->stack
= isl_alloc_array(ctx
, int, graph
->n
);
328 graph
->edge
= isl_calloc_array(ctx
,
329 struct isl_sched_edge
, graph
->n_edge
);
331 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
332 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
334 if (!graph
->node
|| !graph
->region
|| !graph
->stack
|| !graph
->edge
||
338 for(i
= 0; i
< graph
->n
; ++i
)
339 graph
->sorted
[i
] = i
;
344 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
348 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
349 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
351 for (i
= 0; i
< graph
->n
; ++i
) {
352 isl_space_free(graph
->node
[i
].dim
);
353 isl_mat_free(graph
->node
[i
].sched
);
354 isl_map_free(graph
->node
[i
].sched_map
);
355 isl_mat_free(graph
->node
[i
].cmap
);
357 free(graph
->node
[i
].band
);
358 free(graph
->node
[i
].band_id
);
359 free(graph
->node
[i
].zero
);
364 for (i
= 0; i
< graph
->n_edge
; ++i
)
365 isl_map_free(graph
->edge
[i
].map
);
369 isl_hash_table_free(ctx
, graph
->edge_table
);
370 isl_hash_table_free(ctx
, graph
->node_table
);
371 isl_basic_set_free(graph
->lp
);
374 /* Add a new node to the graph representing the given set.
376 static int extract_node(__isl_take isl_set
*set
, void *user
)
382 struct isl_sched_graph
*graph
= user
;
383 int *band
, *band_id
, *zero
;
385 ctx
= isl_set_get_ctx(set
);
386 dim
= isl_set_get_space(set
);
388 nvar
= isl_space_dim(dim
, isl_dim_set
);
389 nparam
= isl_space_dim(dim
, isl_dim_param
);
390 if (!ctx
->opt
->schedule_parametric
)
392 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
393 graph
->node
[graph
->n
].dim
= dim
;
394 graph
->node
[graph
->n
].nvar
= nvar
;
395 graph
->node
[graph
->n
].nparam
= nparam
;
396 graph
->node
[graph
->n
].sched
= sched
;
397 graph
->node
[graph
->n
].sched_map
= NULL
;
398 band
= isl_alloc_array(ctx
, int, graph
->n_edge
+ nvar
);
399 graph
->node
[graph
->n
].band
= band
;
400 band_id
= isl_calloc_array(ctx
, int, graph
->n_edge
+ nvar
);
401 graph
->node
[graph
->n
].band_id
= band_id
;
402 zero
= isl_calloc_array(ctx
, int, graph
->n_edge
+ nvar
);
403 graph
->node
[graph
->n
].zero
= zero
;
406 if (!sched
|| !band
|| !band_id
|| !zero
)
412 /* Add a new edge to the graph based on the given map.
413 * Edges are first extracted from the validity dependences,
414 * from which the edge_table is constructed.
415 * Afterwards, the proximity dependences are added. If a proximity
416 * dependence relation happens to be identical to one of the
417 * validity dependence relations added before, then we don't create
418 * a new edge, but instead mark the original edge as also representing
419 * a proximity dependence.
421 static int extract_edge(__isl_take isl_map
*map
, void *user
)
423 isl_ctx
*ctx
= isl_map_get_ctx(map
);
424 struct isl_sched_graph
*graph
= user
;
425 struct isl_sched_node
*src
, *dst
;
428 dim
= isl_space_domain(isl_map_get_space(map
));
429 src
= graph_find_node(ctx
, graph
, dim
);
431 dim
= isl_space_range(isl_map_get_space(map
));
432 dst
= graph_find_node(ctx
, graph
, dim
);
440 graph
->edge
[graph
->n_edge
].src
= src
;
441 graph
->edge
[graph
->n_edge
].dst
= dst
;
442 graph
->edge
[graph
->n_edge
].map
= map
;
443 graph
->edge
[graph
->n_edge
].validity
= !graph
->edge_table
;
444 graph
->edge
[graph
->n_edge
].proximity
= !!graph
->edge_table
;
447 if (graph
->edge_table
) {
449 struct isl_hash_table_entry
*entry
;
450 struct isl_sched_edge
*edge
;
453 hash
= isl_hash_init();
454 hash
= isl_hash_builtin(hash
, src
);
455 hash
= isl_hash_builtin(hash
, dst
);
456 entry
= isl_hash_table_find(ctx
, graph
->edge_table
, hash
,
457 &edge_has_src_and_dst
,
458 &graph
->edge
[graph
->n_edge
- 1], 0);
462 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
476 /* Check whether there is a validity dependence from src to dst,
477 * forcing dst to follow src.
479 static int node_follows(struct isl_sched_graph
*graph
,
480 struct isl_sched_node
*dst
, struct isl_sched_node
*src
)
482 return graph_has_edge(graph
, src
, dst
);
485 /* Perform Tarjan's algorithm for computing the strongly connected components
486 * in the dependence graph (only validity edges).
487 * If directed is not set, we consider the graph to be undirected and
488 * we effectively compute the (weakly) connected components.
490 static int detect_sccs_tarjan(struct isl_sched_graph
*g
, int i
, int directed
)
494 g
->node
[i
].index
= g
->index
;
495 g
->node
[i
].min_index
= g
->index
;
496 g
->node
[i
].on_stack
= 1;
498 g
->stack
[g
->sp
++] = i
;
500 for (j
= g
->n
- 1; j
>= 0; --j
) {
505 if (g
->node
[j
].index
>= 0 &&
506 (!g
->node
[j
].on_stack
||
507 g
->node
[j
].index
> g
->node
[i
].min_index
))
510 f
= node_follows(g
, &g
->node
[i
], &g
->node
[j
]);
513 if (!f
&& !directed
) {
514 f
= node_follows(g
, &g
->node
[j
], &g
->node
[i
]);
520 if (g
->node
[j
].index
< 0) {
521 detect_sccs_tarjan(g
, j
, directed
);
522 if (g
->node
[j
].min_index
< g
->node
[i
].min_index
)
523 g
->node
[i
].min_index
= g
->node
[j
].min_index
;
524 } else if (g
->node
[j
].index
< g
->node
[i
].min_index
)
525 g
->node
[i
].min_index
= g
->node
[j
].index
;
528 if (g
->node
[i
].index
!= g
->node
[i
].min_index
)
532 j
= g
->stack
[--g
->sp
];
533 g
->node
[j
].on_stack
= 0;
534 g
->node
[j
].scc
= g
->scc
;
541 static int detect_ccs(struct isl_sched_graph
*graph
, int directed
)
548 for (i
= graph
->n
- 1; i
>= 0; --i
)
549 graph
->node
[i
].index
= -1;
551 for (i
= graph
->n
- 1; i
>= 0; --i
) {
552 if (graph
->node
[i
].index
>= 0)
554 if (detect_sccs_tarjan(graph
, i
, directed
) < 0)
561 /* Apply Tarjan's algorithm to detect the strongly connected components
562 * in the dependence graph.
564 static int detect_sccs(struct isl_sched_graph
*graph
)
566 return detect_ccs(graph
, 1);
569 /* Apply Tarjan's algorithm to detect the (weakly) connected components
570 * in the dependence graph.
572 static int detect_wccs(struct isl_sched_graph
*graph
)
574 return detect_ccs(graph
, 0);
577 static int cmp_scc(const void *a
, const void *b
, void *data
)
579 struct isl_sched_graph
*graph
= data
;
583 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
586 /* Sort the elements of graph->sorted according to the corresponding SCCs.
588 static void sort_sccs(struct isl_sched_graph
*graph
)
590 isl_quicksort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
593 /* Given a dependence relation R from a node to itself,
594 * construct the set of coefficients of valid constraints for elements
595 * in that dependence relation.
596 * In particular, the result contains tuples of coefficients
597 * c_0, c_n, c_x such that
599 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
603 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
605 * We choose here to compute the dual of delta R.
606 * Alternatively, we could have computed the dual of R, resulting
607 * in a set of tuples c_0, c_n, c_x, c_y, and then
608 * plugged in (c_0, c_n, c_x, -c_x).
610 static __isl_give isl_basic_set
*intra_coefficients(
611 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
613 isl_ctx
*ctx
= isl_map_get_ctx(map
);
617 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
618 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
620 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
621 coef
= isl_set_coefficients(delta
);
622 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
623 isl_basic_set_copy(coef
));
628 /* Given a dependence relation R, * construct the set of coefficients
629 * of valid constraints for elements in that dependence relation.
630 * In particular, the result contains tuples of coefficients
631 * c_0, c_n, c_x, c_y such that
633 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
636 static __isl_give isl_basic_set
*inter_coefficients(
637 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
639 isl_ctx
*ctx
= isl_map_get_ctx(map
);
643 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
644 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
646 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
647 coef
= isl_set_coefficients(set
);
648 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
649 isl_basic_set_copy(coef
));
654 /* Add constraints to graph->lp that force validity for the given
655 * dependence from a node i to itself.
656 * That is, add constraints that enforce
658 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
659 * = c_i_x (y - x) >= 0
661 * for each (x,y) in R.
662 * We obtain general constraints on coefficients (c_0, c_n, c_x)
663 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
664 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
665 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
667 * Actually, we do not construct constraints for the c_i_x themselves,
668 * but for the coefficients of c_i_x written as a linear combination
669 * of the columns in node->cmap.
671 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
672 struct isl_sched_edge
*edge
)
675 isl_map
*map
= isl_map_copy(edge
->map
);
676 isl_ctx
*ctx
= isl_map_get_ctx(map
);
678 isl_dim_map
*dim_map
;
680 struct isl_sched_node
*node
= edge
->src
;
682 coef
= intra_coefficients(graph
, map
);
684 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
686 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
687 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
689 total
= isl_basic_set_total_dim(graph
->lp
);
690 dim_map
= isl_dim_map_alloc(ctx
, total
);
691 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
692 isl_space_dim(dim
, isl_dim_set
), 1,
694 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
695 isl_space_dim(dim
, isl_dim_set
), 1,
697 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
698 coef
->n_eq
, coef
->n_ineq
);
699 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
706 /* Add constraints to graph->lp that force validity for the given
707 * dependence from node i to node j.
708 * That is, add constraints that enforce
710 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
712 * for each (x,y) in R.
713 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
714 * of valid constraints for R and then plug in
715 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
716 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
717 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
718 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
720 * Actually, we do not construct constraints for the c_*_x themselves,
721 * but for the coefficients of c_*_x written as a linear combination
722 * of the columns in node->cmap.
724 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
725 struct isl_sched_edge
*edge
)
728 isl_map
*map
= isl_map_copy(edge
->map
);
729 isl_ctx
*ctx
= isl_map_get_ctx(map
);
731 isl_dim_map
*dim_map
;
733 struct isl_sched_node
*src
= edge
->src
;
734 struct isl_sched_node
*dst
= edge
->dst
;
736 coef
= inter_coefficients(graph
, map
);
738 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
740 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
741 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
742 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
743 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
744 isl_mat_copy(dst
->cmap
));
746 total
= isl_basic_set_total_dim(graph
->lp
);
747 dim_map
= isl_dim_map_alloc(ctx
, total
);
749 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
750 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
751 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
752 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
753 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
755 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
756 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
759 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
760 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
761 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
762 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
763 isl_space_dim(dim
, isl_dim_set
), 1,
765 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
766 isl_space_dim(dim
, isl_dim_set
), 1,
769 edge
->start
= graph
->lp
->n_ineq
;
770 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
771 coef
->n_eq
, coef
->n_ineq
);
772 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
775 edge
->end
= graph
->lp
->n_ineq
;
780 /* Add constraints to graph->lp that bound the dependence distance for the given
781 * dependence from a node i to itself.
782 * If s = 1, we add the constraint
784 * c_i_x (y - x) <= m_0 + m_n n
788 * -c_i_x (y - x) + m_0 + m_n n >= 0
790 * for each (x,y) in R.
791 * If s = -1, we add the constraint
793 * -c_i_x (y - x) <= m_0 + m_n n
797 * c_i_x (y - x) + m_0 + m_n n >= 0
799 * for each (x,y) in R.
800 * We obtain general constraints on coefficients (c_0, c_n, c_x)
801 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
802 * with each coefficient (except m_0) represented as a pair of non-negative
805 * Actually, we do not construct constraints for the c_i_x themselves,
806 * but for the coefficients of c_i_x written as a linear combination
807 * of the columns in node->cmap.
809 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
810 struct isl_sched_edge
*edge
, int s
)
814 isl_map
*map
= isl_map_copy(edge
->map
);
815 isl_ctx
*ctx
= isl_map_get_ctx(map
);
817 isl_dim_map
*dim_map
;
819 struct isl_sched_node
*node
= edge
->src
;
821 coef
= intra_coefficients(graph
, map
);
823 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
825 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
826 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
828 nparam
= isl_space_dim(node
->dim
, isl_dim_param
);
829 total
= isl_basic_set_total_dim(graph
->lp
);
830 dim_map
= isl_dim_map_alloc(ctx
, total
);
831 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
832 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
833 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
834 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
835 isl_space_dim(dim
, isl_dim_set
), 1,
837 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
838 isl_space_dim(dim
, isl_dim_set
), 1,
840 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
841 coef
->n_eq
, coef
->n_ineq
);
842 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
849 /* Add constraints to graph->lp that bound the dependence distance for the given
850 * dependence from node i to node j.
851 * If s = 1, we add the constraint
853 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
858 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
861 * for each (x,y) in R.
862 * If s = -1, we add the constraint
864 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
869 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
872 * for each (x,y) in R.
873 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
874 * of valid constraints for R and then plug in
875 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
877 * with each coefficient (except m_0, c_j_0 and c_i_0)
878 * represented as a pair of non-negative coefficients.
880 * Actually, we do not construct constraints for the c_*_x themselves,
881 * but for the coefficients of c_*_x written as a linear combination
882 * of the columns in node->cmap.
884 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
885 struct isl_sched_edge
*edge
, int s
)
889 isl_map
*map
= isl_map_copy(edge
->map
);
890 isl_ctx
*ctx
= isl_map_get_ctx(map
);
892 isl_dim_map
*dim_map
;
894 struct isl_sched_node
*src
= edge
->src
;
895 struct isl_sched_node
*dst
= edge
->dst
;
897 coef
= inter_coefficients(graph
, map
);
899 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
901 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
902 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
903 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
904 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
905 isl_mat_copy(dst
->cmap
));
907 nparam
= isl_space_dim(src
->dim
, isl_dim_param
);
908 total
= isl_basic_set_total_dim(graph
->lp
);
909 dim_map
= isl_dim_map_alloc(ctx
, total
);
911 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
912 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
913 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
915 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
916 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
917 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
918 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
919 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
921 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
922 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
925 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
926 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
927 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
928 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
929 isl_space_dim(dim
, isl_dim_set
), 1,
931 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
932 isl_space_dim(dim
, isl_dim_set
), 1,
935 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
936 coef
->n_eq
, coef
->n_ineq
);
937 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
944 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
948 for (i
= 0; i
< graph
->n_edge
; ++i
) {
949 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
952 if (edge
->src
!= edge
->dst
)
954 if (add_intra_validity_constraints(graph
, edge
) < 0)
958 for (i
= 0; i
< graph
->n_edge
; ++i
) {
959 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
962 if (edge
->src
== edge
->dst
)
964 if (add_inter_validity_constraints(graph
, edge
) < 0)
971 /* Add constraints to graph->lp that bound the dependence distance
972 * for all dependence relations.
973 * If a given proximity dependence is identical to a validity
974 * dependence, then the dependence distance is already bounded
975 * from below (by zero), so we only need to bound the distance
977 * Otherwise, we need to bound the distance both from above and from below.
979 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
983 for (i
= 0; i
< graph
->n_edge
; ++i
) {
984 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
985 if (!edge
->proximity
)
987 if (edge
->src
== edge
->dst
&&
988 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
990 if (edge
->src
!= edge
->dst
&&
991 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
995 if (edge
->src
== edge
->dst
&&
996 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
998 if (edge
->src
!= edge
->dst
&&
999 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1006 /* Compute a basis for the rows in the linear part of the schedule
1007 * and extend this basis to a full basis. The remaining rows
1008 * can then be used to force linear independence from the rows
1011 * In particular, given the schedule rows S, we compute
1015 * with H the Hermite normal form of S. That is, all but the
1016 * first rank columns of Q are zero and so each row in S is
1017 * a linear combination of the first rank rows of Q.
1018 * The matrix Q is then transposed because we will write the
1019 * coefficients of the next schedule row as a column vector s
1020 * and express this s as a linear combination s = Q c of the
1023 static int node_update_cmap(struct isl_sched_node
*node
)
1026 int n_row
= isl_mat_rows(node
->sched
);
1028 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1029 1 + node
->nparam
, node
->nvar
);
1031 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1032 isl_mat_free(node
->cmap
);
1033 node
->cmap
= isl_mat_transpose(Q
);
1034 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1037 if (!node
->cmap
|| node
->rank
< 0)
1042 /* Count the number of equality and inequality constraints
1043 * that will be added for the given map.
1044 * If once is set, then we count
1045 * each edge exactly once. Otherwise, we count as follows
1046 * validity -> 1 (>= 0)
1047 * validity+proximity -> 2 (>= 0 and upper bound)
1048 * proximity -> 2 (lower and upper bound)
1050 static int count_map_constraints(struct isl_sched_graph
*graph
,
1051 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1052 int *n_eq
, int *n_ineq
, int once
)
1054 isl_basic_set
*coef
;
1055 int f
= once
? 1 : edge
->proximity
? 2 : 1;
1057 if (edge
->src
== edge
->dst
)
1058 coef
= intra_coefficients(graph
, map
);
1060 coef
= inter_coefficients(graph
, map
);
1063 *n_eq
+= f
* coef
->n_eq
;
1064 *n_ineq
+= f
* coef
->n_ineq
;
1065 isl_basic_set_free(coef
);
1070 /* Count the number of equality and inequality constraints
1071 * that will be added to the main lp problem.
1072 * If once is set, then we count
1073 * each edge exactly once. Otherwise, we count as follows
1074 * validity -> 1 (>= 0)
1075 * validity+proximity -> 2 (>= 0 and upper bound)
1076 * proximity -> 2 (lower and upper bound)
1078 static int count_constraints(struct isl_sched_graph
*graph
,
1079 int *n_eq
, int *n_ineq
, int once
)
1083 *n_eq
= *n_ineq
= 0;
1084 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1085 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1086 isl_map
*map
= isl_map_copy(edge
->map
);
1088 if (count_map_constraints(graph
, edge
, map
,
1089 n_eq
, n_ineq
, once
) < 0)
1096 /* Construct an ILP problem for finding schedule coefficients
1097 * that result in non-negative, but small dependence distances
1098 * over all dependences.
1099 * In particular, the dependence distances over proximity edges
1100 * are bounded by m_0 + m_n n and we compute schedule coefficients
1101 * with small values (preferably zero) of m_n and m_0.
1103 * All variables of the ILP are non-negative. The actual coefficients
1104 * may be negative, so each coefficient is represented as the difference
1105 * of two non-negative variables. The negative part always appears
1106 * immediately before the positive part.
1107 * Other than that, the variables have the following order
1109 * - sum of positive and negative parts of m_n coefficients
1111 * - sum of positive and negative parts of all c_n coefficients
1112 * (unconstrained when computing non-parametric schedules)
1113 * - sum of positive and negative parts of all c_x coefficients
1114 * - positive and negative parts of m_n coefficients
1117 * - positive and negative parts of c_i_n (if parametric)
1118 * - positive and negative parts of c_i_x
1120 * The c_i_x are not represented directly, but through the columns of
1121 * node->cmap. That is, the computed values are for variable t_i_x
1122 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1124 * The constraints are those from the edges plus two or three equalities
1125 * to express the sums.
1127 * If force_zero is set, then we add equalities to ensure that
1128 * the sum of the m_n coefficients and m_0 are both zero.
1130 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1142 parametric
= ctx
->opt
->schedule_parametric
;
1143 nparam
= isl_space_dim(graph
->node
[0].dim
, isl_dim_param
);
1145 total
= param_pos
+ 2 * nparam
;
1146 for (i
= 0; i
< graph
->n
; ++i
) {
1147 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1148 if (node_update_cmap(node
) < 0)
1150 node
->start
= total
;
1151 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1154 if (count_constraints(graph
, &n_eq
, &n_ineq
, 0) < 0)
1157 dim
= isl_space_set_alloc(ctx
, 0, total
);
1158 isl_basic_set_free(graph
->lp
);
1159 n_eq
+= 2 + parametric
+ force_zero
;
1160 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
1162 k
= isl_basic_set_alloc_equality(graph
->lp
);
1165 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1167 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1168 for (i
= 0; i
< 2 * nparam
; ++i
)
1169 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1172 k
= isl_basic_set_alloc_equality(graph
->lp
);
1175 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1176 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1180 k
= isl_basic_set_alloc_equality(graph
->lp
);
1183 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1184 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1185 for (i
= 0; i
< graph
->n
; ++i
) {
1186 int pos
= 1 + graph
->node
[i
].start
+ 1;
1188 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1189 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1193 k
= isl_basic_set_alloc_equality(graph
->lp
);
1196 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1197 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1198 for (i
= 0; i
< graph
->n
; ++i
) {
1199 struct isl_sched_node
*node
= &graph
->node
[i
];
1200 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1202 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1203 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1206 if (add_all_validity_constraints(graph
) < 0)
1208 if (add_all_proximity_constraints(graph
) < 0)
1214 /* Analyze the conflicting constraint found by
1215 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1216 * constraint of one of the edges between distinct nodes, living, moreover
1217 * in distinct SCCs, then record the source and sink SCC as this may
1218 * be a good place to cut between SCCs.
1220 static int check_conflict(int con
, void *user
)
1223 struct isl_sched_graph
*graph
= user
;
1225 if (graph
->src_scc
>= 0)
1228 con
-= graph
->lp
->n_eq
;
1230 if (con
>= graph
->lp
->n_ineq
)
1233 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1234 if (!graph
->edge
[i
].validity
)
1236 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1238 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1240 if (graph
->edge
[i
].start
> con
)
1242 if (graph
->edge
[i
].end
<= con
)
1244 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1245 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1251 /* Check whether the next schedule row of the given node needs to be
1252 * non-trivial. Lower-dimensional domains may have some trivial rows,
1253 * but as soon as the number of remaining required non-trivial rows
1254 * is as large as the number or remaining rows to be computed,
1255 * all remaining rows need to be non-trivial.
1257 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1259 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1262 /* Solve the ILP problem constructed in setup_lp.
1263 * For each node such that all the remaining rows of its schedule
1264 * need to be non-trivial, we construct a non-triviality region.
1265 * This region imposes that the next row is independent of previous rows.
1266 * In particular the coefficients c_i_x are represented by t_i_x
1267 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1268 * its first columns span the rows of the previously computed part
1269 * of the schedule. The non-triviality region enforces that at least
1270 * one of the remaining components of t_i_x is non-zero, i.e.,
1271 * that the new schedule row depends on at least one of the remaining
1274 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1280 for (i
= 0; i
< graph
->n
; ++i
) {
1281 struct isl_sched_node
*node
= &graph
->node
[i
];
1282 int skip
= node
->rank
;
1283 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1284 if (needs_row(graph
, node
))
1285 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1287 graph
->region
[i
].len
= 0;
1289 lp
= isl_basic_set_copy(graph
->lp
);
1290 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1291 graph
->region
, &check_conflict
, graph
);
1295 /* Update the schedules of all nodes based on the given solution
1296 * of the LP problem.
1297 * The new row is added to the current band.
1298 * All possibly negative coefficients are encoded as a difference
1299 * of two non-negative variables, so we need to perform the subtraction
1300 * here. Moreover, if use_cmap is set, then the solution does
1301 * not refer to the actual coefficients c_i_x, but instead to variables
1302 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1303 * In this case, we then also need to perform this multiplication
1304 * to obtain the values of c_i_x.
1306 * If check_zero is set, then the first two coordinates of sol are
1307 * assumed to correspond to the dependence distance. If these two
1308 * coordinates are zero, then the corresponding scheduling dimension
1309 * is marked as being zero distance.
1311 static int update_schedule(struct isl_sched_graph
*graph
,
1312 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1316 isl_vec
*csol
= NULL
;
1321 isl_die(sol
->ctx
, isl_error_internal
,
1322 "no solution found", goto error
);
1325 zero
= isl_int_is_zero(sol
->el
[1]) &&
1326 isl_int_is_zero(sol
->el
[2]);
1328 for (i
= 0; i
< graph
->n
; ++i
) {
1329 struct isl_sched_node
*node
= &graph
->node
[i
];
1330 int pos
= node
->start
;
1331 int row
= isl_mat_rows(node
->sched
);
1334 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1338 isl_map_free(node
->sched_map
);
1339 node
->sched_map
= NULL
;
1340 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1343 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1345 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1346 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1347 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1348 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1349 for (j
= 0; j
< node
->nparam
; ++j
)
1350 node
->sched
= isl_mat_set_element(node
->sched
,
1351 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1352 for (j
= 0; j
< node
->nvar
; ++j
)
1353 isl_int_set(csol
->el
[j
],
1354 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1356 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1360 for (j
= 0; j
< node
->nvar
; ++j
)
1361 node
->sched
= isl_mat_set_element(node
->sched
,
1362 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1363 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1364 node
->zero
[graph
->n_total_row
] = zero
;
1370 graph
->n_total_row
++;
1379 /* Convert node->sched into a map and return this map.
1380 * We simply add equality constraints that express each output variable
1381 * as the affine combination of parameters and input variables specified
1382 * by the schedule matrix.
1384 * The result is cached in node->sched_map, which needs to be released
1385 * whenever node->sched is updated.
1387 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1391 isl_local_space
*ls
;
1392 isl_basic_map
*bmap
;
1397 if (node
->sched_map
)
1398 return isl_map_copy(node
->sched_map
);
1400 nrow
= isl_mat_rows(node
->sched
);
1401 ncol
= isl_mat_cols(node
->sched
) - 1;
1402 dim
= isl_space_from_domain(isl_space_copy(node
->dim
));
1403 dim
= isl_space_add_dims(dim
, isl_dim_out
, nrow
);
1404 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
1405 ls
= isl_local_space_from_space(dim
);
1409 for (i
= 0; i
< nrow
; ++i
) {
1410 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1411 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1412 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1413 isl_constraint_set_constant(c
, v
);
1414 for (j
= 0; j
< node
->nparam
; ++j
) {
1415 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1416 isl_constraint_set_coefficient(c
, isl_dim_param
, j
, v
);
1418 for (j
= 0; j
< node
->nvar
; ++j
) {
1419 isl_mat_get_element(node
->sched
,
1420 i
, 1 + node
->nparam
+ j
, &v
);
1421 isl_constraint_set_coefficient(c
, isl_dim_in
, j
, v
);
1423 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1428 isl_local_space_free(ls
);
1430 node
->sched_map
= isl_map_from_basic_map(bmap
);
1431 return isl_map_copy(node
->sched_map
);
1434 /* Update the given dependence relation based on the current schedule.
1435 * That is, intersect the dependence relation with a map expressing
1436 * that source and sink are executed within the same iteration of
1437 * the current schedule.
1438 * This is not the most efficient way, but this shouldn't be a critical
1441 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1442 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1444 isl_map
*src_sched
, *dst_sched
, *id
;
1446 src_sched
= node_extract_schedule(src
);
1447 dst_sched
= node_extract_schedule(dst
);
1448 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1449 return isl_map_intersect(map
, id
);
1452 /* Update the dependence relations of all edges based on the current schedule.
1453 * If a dependence is carried completely by the current schedule, then
1454 * it is removed and edge_table is updated accordingly.
1456 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1459 int reset_table
= 0;
1461 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1462 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1463 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1467 if (isl_map_plain_is_empty(edge
->map
)) {
1469 isl_map_free(edge
->map
);
1470 if (i
!= graph
->n_edge
- 1)
1471 graph
->edge
[i
] = graph
->edge
[graph
->n_edge
- 1];
1477 isl_hash_table_free(ctx
, graph
->edge_table
);
1478 graph
->edge_table
= NULL
;
1479 return graph_init_edge_table(ctx
, graph
);
1485 static void next_band(struct isl_sched_graph
*graph
)
1487 graph
->band_start
= graph
->n_total_row
;
1491 /* Topologically sort statements mapped to same schedule iteration
1492 * and add a row to the schedule corresponding to this order.
1494 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1501 if (update_edges(ctx
, graph
) < 0)
1504 if (graph
->n_edge
== 0)
1507 if (detect_sccs(graph
) < 0)
1510 for (i
= 0; i
< graph
->n
; ++i
) {
1511 struct isl_sched_node
*node
= &graph
->node
[i
];
1512 int row
= isl_mat_rows(node
->sched
);
1513 int cols
= isl_mat_cols(node
->sched
);
1515 isl_map_free(node
->sched_map
);
1516 node
->sched_map
= NULL
;
1517 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1520 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1522 for (j
= 1; j
< cols
; ++j
)
1523 node
->sched
= isl_mat_set_element_si(node
->sched
,
1525 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1528 graph
->n_total_row
++;
1534 /* Construct an isl_schedule based on the computed schedule stored
1535 * in graph and with parameters specified by dim.
1537 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1538 __isl_take isl_space
*dim
)
1542 isl_schedule
*sched
= NULL
;
1547 ctx
= isl_space_get_ctx(dim
);
1548 sched
= isl_calloc(ctx
, struct isl_schedule
,
1549 sizeof(struct isl_schedule
) +
1550 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1555 sched
->n
= graph
->n
;
1556 sched
->n_band
= graph
->n_band
;
1557 sched
->n_total_row
= graph
->n_total_row
;
1559 for (i
= 0; i
< sched
->n
; ++i
) {
1561 int *band_end
, *band_id
, *zero
;
1563 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1564 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1565 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1566 sched
->node
[i
].sched
= node_extract_schedule(&graph
->node
[i
]);
1567 sched
->node
[i
].band_end
= band_end
;
1568 sched
->node
[i
].band_id
= band_id
;
1569 sched
->node
[i
].zero
= zero
;
1570 if (!band_end
|| !band_id
|| !zero
)
1573 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1574 zero
[r
] = graph
->node
[i
].zero
[r
];
1575 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1576 if (graph
->node
[i
].band
[r
] == b
)
1579 if (graph
->node
[i
].band
[r
] == -1)
1582 if (r
== graph
->n_total_row
)
1584 sched
->node
[i
].n_band
= b
;
1585 for (--b
; b
>= 0; --b
)
1586 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1593 isl_space_free(dim
);
1594 isl_schedule_free(sched
);
1598 /* Copy nodes that satisfy node_pred from the src dependence graph
1599 * to the dst dependence graph.
1601 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1602 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1607 for (i
= 0; i
< src
->n
; ++i
) {
1608 if (!node_pred(&src
->node
[i
], data
))
1610 dst
->node
[dst
->n
].dim
= isl_space_copy(src
->node
[i
].dim
);
1611 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1612 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1613 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1614 dst
->node
[dst
->n
].sched_map
=
1615 isl_map_copy(src
->node
[i
].sched_map
);
1616 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1617 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1618 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1625 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1626 * to the dst dependence graph.
1628 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1629 struct isl_sched_graph
*src
,
1630 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1635 for (i
= 0; i
< src
->n_edge
; ++i
) {
1636 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1639 if (!edge_pred(edge
, data
))
1642 if (isl_map_plain_is_empty(edge
->map
))
1645 map
= isl_map_copy(edge
->map
);
1647 dst
->edge
[dst
->n_edge
].src
=
1648 graph_find_node(ctx
, dst
, edge
->src
->dim
);
1649 dst
->edge
[dst
->n_edge
].dst
=
1650 graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1651 dst
->edge
[dst
->n_edge
].map
= map
;
1652 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1653 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1660 /* Given a "src" dependence graph that contains the nodes from "dst"
1661 * that satisfy node_pred, copy the schedule computed in "src"
1662 * for those nodes back to "dst".
1664 static int copy_schedule(struct isl_sched_graph
*dst
,
1665 struct isl_sched_graph
*src
,
1666 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1671 for (i
= 0; i
< dst
->n
; ++i
) {
1672 if (!node_pred(&dst
->node
[i
], data
))
1674 isl_mat_free(dst
->node
[i
].sched
);
1675 isl_map_free(dst
->node
[i
].sched_map
);
1676 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1677 dst
->node
[i
].sched_map
=
1678 isl_map_copy(src
->node
[src
->n
].sched_map
);
1682 dst
->n_total_row
= src
->n_total_row
;
1683 dst
->n_band
= src
->n_band
;
1688 /* Compute the maximal number of variables over all nodes.
1689 * This is the maximal number of linearly independent schedule
1690 * rows that we need to compute.
1691 * Just in case we end up in a part of the dependence graph
1692 * with only lower-dimensional domains, we make sure we will
1693 * compute the required amount of extra linearly independent rows.
1695 static int compute_maxvar(struct isl_sched_graph
*graph
)
1700 for (i
= 0; i
< graph
->n
; ++i
) {
1701 struct isl_sched_node
*node
= &graph
->node
[i
];
1704 if (node_update_cmap(node
) < 0)
1706 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1707 if (nvar
> graph
->maxvar
)
1708 graph
->maxvar
= nvar
;
1714 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1715 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1717 /* Compute a schedule for a subgraph of "graph". In particular, for
1718 * the graph composed of nodes that satisfy node_pred and edges that
1719 * that satisfy edge_pred. The caller should precompute the number
1720 * of nodes and edges that satisfy these predicates and pass them along
1721 * as "n" and "n_edge".
1722 * If the subgraph is known to consist of a single component, then wcc should
1723 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1724 * Otherwise, we call compute_schedule, which will check whether the subgraph
1727 static int compute_sub_schedule(isl_ctx
*ctx
,
1728 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1729 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1730 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1733 struct isl_sched_graph split
= { 0 };
1735 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1737 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1739 if (graph_init_table(ctx
, &split
) < 0)
1741 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1743 if (graph_init_edge_table(ctx
, &split
) < 0)
1745 split
.n_row
= graph
->n_row
;
1746 split
.n_total_row
= graph
->n_total_row
;
1747 split
.n_band
= graph
->n_band
;
1748 split
.band_start
= graph
->band_start
;
1750 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
1752 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
1755 copy_schedule(graph
, &split
, node_pred
, data
);
1757 graph_free(ctx
, &split
);
1760 graph_free(ctx
, &split
);
1764 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
1766 return node
->scc
== scc
;
1769 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
1771 return node
->scc
<= scc
;
1774 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
1776 return node
->scc
>= scc
;
1779 static int edge_src_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
1781 return edge
->src
->scc
== scc
;
1784 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
1786 return edge
->dst
->scc
<= scc
;
1789 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
1791 return edge
->src
->scc
>= scc
;
1794 /* Pad the schedules of all nodes with zero rows such that in the end
1795 * they all have graph->n_total_row rows.
1796 * The extra rows don't belong to any band, so they get assigned band number -1.
1798 static int pad_schedule(struct isl_sched_graph
*graph
)
1802 for (i
= 0; i
< graph
->n
; ++i
) {
1803 struct isl_sched_node
*node
= &graph
->node
[i
];
1804 int row
= isl_mat_rows(node
->sched
);
1805 if (graph
->n_total_row
> row
) {
1806 isl_map_free(node
->sched_map
);
1807 node
->sched_map
= NULL
;
1809 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
1810 graph
->n_total_row
- row
);
1813 for (j
= row
; j
< graph
->n_total_row
; ++j
)
1820 /* Split the current graph into two parts and compute a schedule for each
1821 * part individually. In particular, one part consists of all SCCs up
1822 * to and including graph->src_scc, while the other part contains the other
1825 * The split is enforced in the schedule by constant rows with two different
1826 * values (0 and 1). These constant rows replace the previously computed rows
1827 * in the current band.
1828 * It would be possible to reuse them as the first rows in the next
1829 * band, but recomputing them may result in better rows as we are looking
1830 * at a smaller part of the dependence graph.
1832 * The band_id of the second group is set to n, where n is the number
1833 * of nodes in the first group. This ensures that the band_ids over
1834 * the two groups remain disjoint, even if either or both of the two
1835 * groups contain independent components.
1837 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1839 int i
, j
, n
, e1
, e2
;
1840 int n_total_row
, orig_total_row
;
1841 int n_band
, orig_band
;
1844 drop
= graph
->n_total_row
- graph
->band_start
;
1845 graph
->n_total_row
-= drop
;
1846 graph
->n_row
-= drop
;
1849 for (i
= 0; i
< graph
->n
; ++i
) {
1850 struct isl_sched_node
*node
= &graph
->node
[i
];
1851 int row
= isl_mat_rows(node
->sched
) - drop
;
1852 int cols
= isl_mat_cols(node
->sched
);
1853 int before
= node
->scc
<= graph
->src_scc
;
1858 isl_map_free(node
->sched_map
);
1859 node
->sched_map
= NULL
;
1860 node
->sched
= isl_mat_drop_rows(node
->sched
,
1861 graph
->band_start
, drop
);
1862 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1865 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1867 for (j
= 1; j
< cols
; ++j
)
1868 node
->sched
= isl_mat_set_element_si(node
->sched
,
1870 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1874 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1875 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
1877 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
1881 graph
->n_total_row
++;
1884 for (i
= 0; i
< graph
->n
; ++i
) {
1885 struct isl_sched_node
*node
= &graph
->node
[i
];
1886 if (node
->scc
> graph
->src_scc
)
1887 node
->band_id
[graph
->n_band
] = n
;
1890 orig_total_row
= graph
->n_total_row
;
1891 orig_band
= graph
->n_band
;
1892 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
1893 &node_scc_at_most
, &edge_dst_scc_at_most
,
1894 graph
->src_scc
, 0) < 0)
1896 n_total_row
= graph
->n_total_row
;
1897 graph
->n_total_row
= orig_total_row
;
1898 n_band
= graph
->n_band
;
1899 graph
->n_band
= orig_band
;
1900 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
1901 &node_scc_at_least
, &edge_src_scc_at_least
,
1902 graph
->src_scc
+ 1, 0) < 0)
1904 if (n_total_row
> graph
->n_total_row
)
1905 graph
->n_total_row
= n_total_row
;
1906 if (n_band
> graph
->n_band
)
1907 graph
->n_band
= n_band
;
1909 return pad_schedule(graph
);
1912 /* Compute the next band of the schedule after updating the dependence
1913 * relations based on the the current schedule.
1915 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1917 if (update_edges(ctx
, graph
) < 0)
1921 return compute_schedule(ctx
, graph
);
1924 /* Add constraints to graph->lp that force the dependence "map" (which
1925 * is part of the dependence relation of "edge")
1926 * to be respected and attempt to carry it, where the edge is one from
1927 * a node j to itself. "pos" is the sequence number of the given map.
1928 * That is, add constraints that enforce
1930 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
1931 * = c_j_x (y - x) >= e_i
1933 * for each (x,y) in R.
1934 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1935 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
1936 * with each coefficient in c_j_x represented as a pair of non-negative
1939 static int add_intra_constraints(struct isl_sched_graph
*graph
,
1940 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
1943 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1945 isl_dim_map
*dim_map
;
1946 isl_basic_set
*coef
;
1947 struct isl_sched_node
*node
= edge
->src
;
1949 coef
= intra_coefficients(graph
, map
);
1951 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1953 total
= isl_basic_set_total_dim(graph
->lp
);
1954 dim_map
= isl_dim_map_alloc(ctx
, total
);
1955 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
1956 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1957 isl_space_dim(dim
, isl_dim_set
), 1,
1959 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1960 isl_space_dim(dim
, isl_dim_set
), 1,
1962 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1963 coef
->n_eq
, coef
->n_ineq
);
1964 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1966 isl_space_free(dim
);
1971 /* Add constraints to graph->lp that force the dependence "map" (which
1972 * is part of the dependence relation of "edge")
1973 * to be respected and attempt to carry it, where the edge is one from
1974 * node j to node k. "pos" is the sequence number of the given map.
1975 * That is, add constraints that enforce
1977 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
1979 * for each (x,y) in R.
1980 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1981 * of valid constraints for R and then plug in
1982 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
1983 * with each coefficient (except e_i, c_k_0 and c_j_0)
1984 * represented as a pair of non-negative coefficients.
1986 static int add_inter_constraints(struct isl_sched_graph
*graph
,
1987 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
1990 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1992 isl_dim_map
*dim_map
;
1993 isl_basic_set
*coef
;
1994 struct isl_sched_node
*src
= edge
->src
;
1995 struct isl_sched_node
*dst
= edge
->dst
;
1997 coef
= inter_coefficients(graph
, map
);
1999 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2001 total
= isl_basic_set_total_dim(graph
->lp
);
2002 dim_map
= isl_dim_map_alloc(ctx
, total
);
2004 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2006 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
2007 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
2008 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
2009 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
2010 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2012 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
2013 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2016 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
2017 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
2018 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
2019 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
2020 isl_space_dim(dim
, isl_dim_set
), 1,
2022 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
2023 isl_space_dim(dim
, isl_dim_set
), 1,
2026 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2027 coef
->n_eq
, coef
->n_ineq
);
2028 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2030 isl_space_free(dim
);
2035 /* Add constraints to graph->lp that force all dependence
2036 * to be respected and attempt to carry it.
2038 static int add_all_constraints(struct isl_sched_graph
*graph
)
2044 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2045 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2046 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2047 isl_basic_map
*bmap
;
2050 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2051 map
= isl_map_from_basic_map(bmap
);
2053 if (edge
->src
== edge
->dst
&&
2054 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
2056 if (edge
->src
!= edge
->dst
&&
2057 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
2066 /* Count the number of equality and inequality constraints
2067 * that will be added to the carry_lp problem.
2068 * If once is set, then we count
2069 * each edge exactly once. Otherwise, we count as follows
2070 * validity -> 1 (>= 0)
2071 * validity+proximity -> 2 (>= 0 and upper bound)
2072 * proximity -> 2 (lower and upper bound)
2074 static int count_all_constraints(struct isl_sched_graph
*graph
,
2075 int *n_eq
, int *n_ineq
, int once
)
2079 *n_eq
= *n_ineq
= 0;
2080 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2081 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2082 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2083 isl_basic_map
*bmap
;
2086 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2087 map
= isl_map_from_basic_map(bmap
);
2089 if (count_map_constraints(graph
, edge
, map
,
2090 n_eq
, n_ineq
, once
) < 0)
2098 /* Construct an LP problem for finding schedule coefficients
2099 * such that the schedule carries as many dependences as possible.
2100 * In particular, for each dependence i, we bound the dependence distance
2101 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2102 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2103 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2104 * Note that if the dependence relation is a union of basic maps,
2105 * then we have to consider each basic map individually as it may only
2106 * be possible to carry the dependences expressed by some of those
2107 * basic maps and not all off them.
2108 * Below, we consider each of those basic maps as a separate "edge".
2110 * All variables of the LP are non-negative. The actual coefficients
2111 * may be negative, so each coefficient is represented as the difference
2112 * of two non-negative variables. The negative part always appears
2113 * immediately before the positive part.
2114 * Other than that, the variables have the following order
2116 * - sum of (1 - e_i) over all edges
2117 * - sum of positive and negative parts of all c_n coefficients
2118 * (unconstrained when computing non-parametric schedules)
2119 * - sum of positive and negative parts of all c_x coefficients
2124 * - positive and negative parts of c_i_n (if parametric)
2125 * - positive and negative parts of c_i_x
2127 * The constraints are those from the edges plus three equalities
2128 * to express the sums and n_edge inequalities to express e_i <= 1.
2130 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2140 for (i
= 0; i
< graph
->n_edge
; ++i
)
2141 n_edge
+= graph
->edge
[i
].map
->n
;
2144 for (i
= 0; i
< graph
->n
; ++i
) {
2145 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2146 node
->start
= total
;
2147 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2150 if (count_all_constraints(graph
, &n_eq
, &n_ineq
, 1) < 0)
2153 dim
= isl_space_set_alloc(ctx
, 0, total
);
2154 isl_basic_set_free(graph
->lp
);
2157 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2158 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2160 k
= isl_basic_set_alloc_equality(graph
->lp
);
2163 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2164 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
2165 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2166 for (i
= 0; i
< n_edge
; ++i
)
2167 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2169 k
= isl_basic_set_alloc_equality(graph
->lp
);
2172 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2173 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2174 for (i
= 0; i
< graph
->n
; ++i
) {
2175 int pos
= 1 + graph
->node
[i
].start
+ 1;
2177 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2178 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2181 k
= isl_basic_set_alloc_equality(graph
->lp
);
2184 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2185 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2186 for (i
= 0; i
< graph
->n
; ++i
) {
2187 struct isl_sched_node
*node
= &graph
->node
[i
];
2188 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2190 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2191 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2194 for (i
= 0; i
< n_edge
; ++i
) {
2195 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2198 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2199 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2200 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2203 if (add_all_constraints(graph
) < 0)
2209 /* If the schedule_split_parallel option is set and if the linear
2210 * parts of the scheduling rows for all nodes in the graphs are the same,
2211 * then split off the constant term from the linear part.
2212 * The constant term is then placed in a separate band and
2213 * the linear part is simplified.
2215 static int split_parallel(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2220 struct isl_sched_node
*node0
;
2222 if (!ctx
->opt
->schedule_split_parallel
)
2227 node0
= &graph
->node
[0];
2228 row
= isl_mat_rows(node0
->sched
) - 1;
2229 cols
= isl_mat_cols(node0
->sched
);
2230 for (i
= 1; i
< graph
->n
; ++i
) {
2231 struct isl_sched_node
*node
= &graph
->node
[i
];
2233 if (!isl_seq_eq(node0
->sched
->row
[row
] + 1,
2234 node
->sched
->row
[row
] + 1, cols
- 1))
2237 isl_int_ne(node0
->sched
->row
[row
][0],
2238 node
->sched
->row
[row
][0]))
2246 for (i
= 0; i
< graph
->n
; ++i
) {
2247 struct isl_sched_node
*node
= &graph
->node
[i
];
2249 isl_map_free(node
->sched_map
);
2250 node
->sched_map
= NULL
;
2251 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2254 isl_int_set(node
->sched
->row
[row
+ 1][0],
2255 node
->sched
->row
[row
][0]);
2256 isl_int_set_si(node
->sched
->row
[row
][0], 0);
2257 node
->sched
= isl_mat_normalize_row(node
->sched
, row
);
2260 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2263 graph
->n_total_row
++;
2268 /* Construct a schedule row for each node such that as many dependences
2269 * as possible are carried and then continue with the next band.
2271 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2279 for (i
= 0; i
< graph
->n_edge
; ++i
)
2280 n_edge
+= graph
->edge
[i
].map
->n
;
2282 if (setup_carry_lp(ctx
, graph
) < 0)
2285 lp
= isl_basic_set_copy(graph
->lp
);
2286 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2290 if (sol
->size
== 0) {
2292 isl_die(ctx
, isl_error_internal
,
2293 "error in schedule construction", return -1);
2296 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
2298 isl_die(ctx
, isl_error_unknown
,
2299 "unable to carry dependences", return -1);
2302 if (update_schedule(graph
, sol
, 0, 0) < 0)
2305 if (split_parallel(ctx
, graph
) < 0)
2308 return compute_next_band(ctx
, graph
);
2311 /* Compute a schedule for a connected dependence graph.
2312 * We try to find a sequence of as many schedule rows as possible that result
2313 * in non-negative dependence distances (independent of the previous rows
2314 * in the sequence, i.e., such that the sequence is tilable).
2315 * If we can't find any more rows we either
2316 * - split between SCCs and start over (assuming we found an interesting
2317 * pair of SCCs between which to split)
2318 * - continue with the next band (assuming the current band has at least
2320 * - try to carry as many dependences as possible and continue with the next
2323 * If we manage to complete the schedule, we finish off by topologically
2324 * sorting the statements based on the remaining dependences.
2326 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2327 * outermost dimension in the current band to be zero distance. If this
2328 * turns out to be impossible, we fall back on the general scheme above
2329 * and try to carry as many dependences as possible.
2331 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2335 if (detect_sccs(graph
) < 0)
2339 if (compute_maxvar(graph
) < 0)
2342 if (ctx
->opt
->schedule_outer_zero_distance
)
2345 while (graph
->n_row
< graph
->maxvar
) {
2348 graph
->src_scc
= -1;
2349 graph
->dst_scc
= -1;
2351 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2353 sol
= solve_lp(graph
);
2356 if (sol
->size
== 0) {
2358 if (!ctx
->opt
->schedule_maximize_band_depth
&&
2359 graph
->n_total_row
> graph
->band_start
)
2360 return compute_next_band(ctx
, graph
);
2361 if (graph
->src_scc
>= 0)
2362 return compute_split_schedule(ctx
, graph
);
2363 if (graph
->n_total_row
> graph
->band_start
)
2364 return compute_next_band(ctx
, graph
);
2365 return carry_dependences(ctx
, graph
);
2367 if (update_schedule(graph
, sol
, 1, 1) < 0)
2372 if (graph
->n_total_row
> graph
->band_start
)
2374 return sort_statements(ctx
, graph
);
2377 /* Compute a schedule for each component (identified by node->scc)
2378 * of the dependence graph separately and then combine the results.
2380 * The band_id is adjusted such that each component has a separate id.
2381 * Note that the band_id may have already been set to a value different
2382 * from zero by compute_split_schedule.
2384 static int compute_component_schedule(isl_ctx
*ctx
,
2385 struct isl_sched_graph
*graph
)
2389 int n_total_row
, orig_total_row
;
2390 int n_band
, orig_band
;
2393 orig_total_row
= graph
->n_total_row
;
2395 orig_band
= graph
->n_band
;
2396 for (i
= 0; i
< graph
->n
; ++i
)
2397 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2398 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2400 for (i
= 0; i
< graph
->n
; ++i
)
2401 if (graph
->node
[i
].scc
== wcc
)
2404 for (i
= 0; i
< graph
->n_edge
; ++i
)
2405 if (graph
->edge
[i
].src
->scc
== wcc
)
2408 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2410 &edge_src_scc_exactly
, wcc
, 1) < 0)
2412 if (graph
->n_total_row
> n_total_row
)
2413 n_total_row
= graph
->n_total_row
;
2414 graph
->n_total_row
= orig_total_row
;
2415 if (graph
->n_band
> n_band
)
2416 n_band
= graph
->n_band
;
2417 graph
->n_band
= orig_band
;
2420 graph
->n_total_row
= n_total_row
;
2421 graph
->n_band
= n_band
;
2423 return pad_schedule(graph
);
2426 /* Compute a schedule for the given dependence graph.
2427 * We first check if the graph is connected (through validity dependences)
2428 * and if so compute a schedule for each component separately.
2430 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2432 if (detect_wccs(graph
) < 0)
2436 return compute_component_schedule(ctx
, graph
);
2438 return compute_schedule_wcc(ctx
, graph
);
2441 /* Compute a schedule for the given union of domains that respects
2442 * all the validity dependences and tries to minimize the dependence
2443 * distances over the proximity dependences.
2445 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2446 __isl_take isl_union_set
*domain
,
2447 __isl_take isl_union_map
*validity
,
2448 __isl_take isl_union_map
*proximity
)
2450 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2452 struct isl_sched_graph graph
= { 0 };
2453 isl_schedule
*sched
;
2455 domain
= isl_union_set_align_params(domain
,
2456 isl_union_map_get_space(validity
));
2457 domain
= isl_union_set_align_params(domain
,
2458 isl_union_map_get_space(proximity
));
2459 dim
= isl_union_set_get_space(domain
);
2460 validity
= isl_union_map_align_params(validity
, isl_space_copy(dim
));
2461 proximity
= isl_union_map_align_params(proximity
, dim
);
2466 graph
.n
= isl_union_set_n_set(domain
);
2469 if (graph_alloc(ctx
, &graph
, graph
.n
,
2470 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2474 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2476 if (graph_init_table(ctx
, &graph
) < 0)
2479 if (isl_union_map_foreach_map(validity
, &extract_edge
, &graph
) < 0)
2481 if (graph_init_edge_table(ctx
, &graph
) < 0)
2483 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &graph
) < 0)
2486 if (compute_schedule(ctx
, &graph
) < 0)
2490 sched
= extract_schedule(&graph
, isl_union_set_get_space(domain
));
2492 graph_free(ctx
, &graph
);
2493 isl_union_set_free(domain
);
2494 isl_union_map_free(validity
);
2495 isl_union_map_free(proximity
);
2499 graph_free(ctx
, &graph
);
2500 isl_union_set_free(domain
);
2501 isl_union_map_free(validity
);
2502 isl_union_map_free(proximity
);
2506 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2512 if (--sched
->ref
> 0)
2515 for (i
= 0; i
< sched
->n
; ++i
) {
2516 isl_map_free(sched
->node
[i
].sched
);
2517 free(sched
->node
[i
].band_end
);
2518 free(sched
->node
[i
].band_id
);
2519 free(sched
->node
[i
].zero
);
2521 isl_space_free(sched
->dim
);
2522 isl_band_list_free(sched
->band_forest
);
2527 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2529 return schedule
? isl_space_get_ctx(schedule
->dim
) : NULL
;
2532 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
2535 isl_union_map
*umap
;
2540 umap
= isl_union_map_empty(isl_space_copy(sched
->dim
));
2541 for (i
= 0; i
< sched
->n
; ++i
)
2542 umap
= isl_union_map_add_map(umap
,
2543 isl_map_copy(sched
->node
[i
].sched
));
2548 static __isl_give isl_band_list
*construct_band_list(
2549 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2550 int band_nr
, int *parent_active
, int n_active
);
2552 /* Construct an isl_band structure for the band in the given schedule
2553 * with sequence number band_nr for the n_active nodes marked by active.
2554 * If the nodes don't have a band with the given sequence number,
2555 * then a band without members is created.
2557 * Because of the way the schedule is constructed, we know that
2558 * the position of the band inside the schedule of a node is the same
2559 * for all active nodes.
2561 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
2562 __isl_keep isl_band
*parent
,
2563 int band_nr
, int *active
, int n_active
)
2566 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2568 unsigned start
, end
;
2570 band
= isl_calloc_type(ctx
, isl_band
);
2575 band
->schedule
= schedule
;
2576 band
->parent
= parent
;
2578 for (i
= 0; i
< schedule
->n
; ++i
)
2579 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
2582 if (i
< schedule
->n
) {
2583 band
->children
= construct_band_list(schedule
, band
,
2584 band_nr
+ 1, active
, n_active
);
2585 if (!band
->children
)
2589 for (i
= 0; i
< schedule
->n
; ++i
)
2593 if (i
>= schedule
->n
)
2594 isl_die(ctx
, isl_error_internal
,
2595 "band without active statements", goto error
);
2597 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
2598 end
= band_nr
< schedule
->node
[i
].n_band
?
2599 schedule
->node
[i
].band_end
[band_nr
] : start
;
2600 band
->n
= end
- start
;
2602 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
2606 for (j
= 0; j
< band
->n
; ++j
)
2607 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
2609 band
->map
= isl_union_map_empty(isl_space_copy(schedule
->dim
));
2610 for (i
= 0; i
< schedule
->n
; ++i
) {
2617 map
= isl_map_copy(schedule
->node
[i
].sched
);
2618 n_out
= isl_map_dim(map
, isl_dim_out
);
2619 map
= isl_map_project_out(map
, isl_dim_out
, end
, n_out
- end
);
2620 map
= isl_map_project_out(map
, isl_dim_out
, 0, start
);
2621 band
->map
= isl_union_map_union(band
->map
,
2622 isl_union_map_from_map(map
));
2629 isl_band_free(band
);
2633 /* Construct a list of bands that start at the same position (with
2634 * sequence number band_nr) in the schedules of the nodes that
2635 * were active in the parent band.
2637 * A separate isl_band structure is created for each band_id
2638 * and for each node that does not have a band with sequence
2639 * number band_nr. In the latter case, a band without members
2641 * This ensures that if a band has any children, then each node
2642 * that was active in the band is active in exactly one of the children.
2644 static __isl_give isl_band_list
*construct_band_list(
2645 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2646 int band_nr
, int *parent_active
, int n_active
)
2649 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2652 isl_band_list
*list
;
2655 for (i
= 0; i
< n_active
; ++i
) {
2656 for (j
= 0; j
< schedule
->n
; ++j
) {
2657 if (!parent_active
[j
])
2659 if (schedule
->node
[j
].n_band
<= band_nr
)
2661 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
2667 for (j
= 0; j
< schedule
->n
; ++j
)
2668 if (schedule
->node
[j
].n_band
<= band_nr
)
2673 list
= isl_band_list_alloc(ctx
, n_band
);
2674 band
= construct_band(schedule
, parent
, band_nr
,
2675 parent_active
, n_active
);
2676 return isl_band_list_add(list
, band
);
2679 active
= isl_alloc_array(ctx
, int, schedule
->n
);
2683 list
= isl_band_list_alloc(ctx
, n_band
);
2685 for (i
= 0; i
< n_active
; ++i
) {
2689 for (j
= 0; j
< schedule
->n
; ++j
) {
2690 active
[j
] = parent_active
[j
] &&
2691 schedule
->node
[j
].n_band
> band_nr
&&
2692 schedule
->node
[j
].band_id
[band_nr
] == i
;
2699 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
2701 list
= isl_band_list_add(list
, band
);
2703 for (i
= 0; i
< schedule
->n
; ++i
) {
2705 if (!parent_active
[i
])
2707 if (schedule
->node
[i
].n_band
> band_nr
)
2709 for (j
= 0; j
< schedule
->n
; ++j
)
2711 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
2712 list
= isl_band_list_add(list
, band
);
2720 /* Construct a band forest representation of the schedule and
2721 * return the list of roots.
2723 static __isl_give isl_band_list
*construct_forest(
2724 __isl_keep isl_schedule
*schedule
)
2727 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2728 isl_band_list
*forest
;
2731 active
= isl_alloc_array(ctx
, int, schedule
->n
);
2735 for (i
= 0; i
< schedule
->n
; ++i
)
2738 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
2745 /* Return the roots of a band forest representation of the schedule.
2747 __isl_give isl_band_list
*isl_schedule_get_band_forest(
2748 __isl_keep isl_schedule
*schedule
)
2752 if (!schedule
->band_forest
)
2753 schedule
->band_forest
= construct_forest(schedule
);
2754 return isl_band_list_dup(schedule
->band_forest
);
2757 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
2758 __isl_keep isl_band_list
*list
);
2760 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
2761 __isl_keep isl_band
*band
)
2763 isl_band_list
*children
;
2765 p
= isl_printer_start_line(p
);
2766 p
= isl_printer_print_union_map(p
, band
->map
);
2767 p
= isl_printer_end_line(p
);
2769 if (!isl_band_has_children(band
))
2772 children
= isl_band_get_children(band
);
2774 p
= isl_printer_indent(p
, 4);
2775 p
= print_band_list(p
, children
);
2776 p
= isl_printer_indent(p
, -4);
2778 isl_band_list_free(children
);
2783 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
2784 __isl_keep isl_band_list
*list
)
2788 n
= isl_band_list_n_band(list
);
2789 for (i
= 0; i
< n
; ++i
) {
2791 band
= isl_band_list_get_band(list
, i
);
2792 p
= print_band(p
, band
);
2793 isl_band_free(band
);
2799 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
2800 __isl_keep isl_schedule
*schedule
)
2802 isl_band_list
*forest
;
2804 forest
= isl_schedule_get_band_forest(schedule
);
2806 p
= print_band_list(p
, forest
);
2808 isl_band_list_free(forest
);
2813 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
2815 isl_printer
*printer
;
2820 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
2821 printer
= isl_printer_print_schedule(printer
, schedule
);
2823 isl_printer_free(printer
);