2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_sample.h"
11 #include "isl_sample_piplib.h"
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_point_private.h>
21 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
25 vec
= isl_vec_alloc(bset
->ctx
, 0);
26 isl_basic_set_free(bset
);
30 /* Construct a zero sample of the same dimension as bset.
31 * As a special case, if bset is zero-dimensional, this
32 * function creates a zero-dimensional sample point.
34 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
37 struct isl_vec
*sample
;
39 dim
= isl_basic_set_total_dim(bset
);
40 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
42 isl_int_set_si(sample
->el
[0], 1);
43 isl_seq_clr(sample
->el
+ 1, dim
);
45 isl_basic_set_free(bset
);
49 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
53 struct isl_vec
*sample
;
55 bset
= isl_basic_set_simplify(bset
);
58 if (isl_basic_set_fast_is_empty(bset
))
59 return empty_sample(bset
);
60 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
61 return zero_sample(bset
);
63 sample
= isl_vec_alloc(bset
->ctx
, 2);
64 isl_int_set_si(sample
->block
.data
[0], 1);
67 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
68 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
69 if (isl_int_is_one(bset
->eq
[0][1]))
70 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
72 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
74 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
76 isl_basic_set_free(bset
);
81 if (isl_int_is_one(bset
->ineq
[0][1]))
82 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
84 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
85 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
86 isl_seq_inner_product(sample
->block
.data
,
87 bset
->ineq
[i
], 2, &t
);
88 if (isl_int_is_neg(t
))
92 if (i
< bset
->n_ineq
) {
94 return empty_sample(bset
);
97 isl_basic_set_free(bset
);
100 isl_basic_set_free(bset
);
101 isl_vec_free(sample
);
105 static struct isl_mat
*independent_bounds(struct isl_basic_set
*bset
)
108 struct isl_mat
*dirs
= NULL
;
109 struct isl_mat
*bounds
= NULL
;
115 dim
= isl_basic_set_n_dim(bset
);
116 bounds
= isl_mat_alloc(bset
->ctx
, 1+dim
, 1+dim
);
120 isl_int_set_si(bounds
->row
[0][0], 1);
121 isl_seq_clr(bounds
->row
[0]+1, dim
);
124 if (bset
->n_ineq
== 0)
127 dirs
= isl_mat_alloc(bset
->ctx
, dim
, dim
);
129 isl_mat_free(bounds
);
132 isl_seq_cpy(dirs
->row
[0], bset
->ineq
[0]+1, dirs
->n_col
);
133 isl_seq_cpy(bounds
->row
[1], bset
->ineq
[0], bounds
->n_col
);
134 for (j
= 1, n
= 1; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
137 isl_seq_cpy(dirs
->row
[n
], bset
->ineq
[j
]+1, dirs
->n_col
);
139 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
142 for (i
= 0; i
< n
; ++i
) {
144 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
], dirs
->n_col
);
149 isl_seq_elim(dirs
->row
[n
], dirs
->row
[i
], pos
,
151 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
159 isl_int
*t
= dirs
->row
[n
];
160 for (k
= n
; k
> i
; --k
)
161 dirs
->row
[k
] = dirs
->row
[k
-1];
165 isl_seq_cpy(bounds
->row
[n
], bset
->ineq
[j
], bounds
->n_col
);
172 static void swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
174 isl_int
*t
= bset
->ineq
[a
];
175 bset
->ineq
[a
] = bset
->ineq
[b
];
179 /* Skew into positive orthant and project out lineality space.
181 * We perform a unimodular transformation that turns a selected
182 * maximal set of linearly independent bounds into constraints
183 * on the first dimensions that impose that these first dimensions
184 * are non-negative. In particular, the constraint matrix is lower
185 * triangular with positive entries on the diagonal and negative
187 * If "bset" has a lineality space then these constraints (and therefore
188 * all constraints in bset) only involve the first dimensions.
189 * The remaining dimensions then do not appear in any constraints and
190 * we can select any value for them, say zero. We therefore project
191 * out this final dimensions and plug in the value zero later. This
192 * is accomplished by simply dropping the final columns of
193 * the unimodular transformation.
195 static struct isl_basic_set
*isl_basic_set_skew_to_positive_orthant(
196 struct isl_basic_set
*bset
, struct isl_mat
**T
)
198 struct isl_mat
*U
= NULL
;
199 struct isl_mat
*bounds
= NULL
;
201 unsigned old_dim
, new_dim
;
207 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
208 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
209 isl_assert(bset
->ctx
, bset
->n_eq
== 0, goto error
);
211 old_dim
= isl_basic_set_n_dim(bset
);
212 /* Try to move (multiples of) unit rows up. */
213 for (i
= 0, j
= 0; i
< bset
->n_ineq
; ++i
) {
214 int pos
= isl_seq_first_non_zero(bset
->ineq
[i
]+1, old_dim
);
217 if (isl_seq_first_non_zero(bset
->ineq
[i
]+1+pos
+1,
221 swap_inequality(bset
, i
, j
);
224 bounds
= independent_bounds(bset
);
227 new_dim
= bounds
->n_row
- 1;
228 bounds
= isl_mat_left_hermite(bounds
, 1, &U
, NULL
);
231 U
= isl_mat_drop_cols(U
, 1 + new_dim
, old_dim
- new_dim
);
232 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
236 isl_mat_free(bounds
);
239 isl_mat_free(bounds
);
241 isl_basic_set_free(bset
);
245 /* Find a sample integer point, if any, in bset, which is known
246 * to have equalities. If bset contains no integer points, then
247 * return a zero-length vector.
248 * We simply remove the known equalities, compute a sample
249 * in the resulting bset, using the specified recurse function,
250 * and then transform the sample back to the original space.
252 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
253 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
256 struct isl_vec
*sample
;
261 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
262 sample
= recurse(bset
);
263 if (!sample
|| sample
->size
== 0)
266 sample
= isl_mat_vec_product(T
, sample
);
270 /* Return a matrix containing the equalities of the tableau
271 * in constraint form. The tableau is assumed to have
272 * an associated bset that has been kept up-to-date.
274 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
279 struct isl_basic_set
*bset
;
284 bset
= isl_tab_peek_bset(tab
);
285 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
287 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
288 if (tab
->empty
|| n_eq
== 0)
289 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
290 if (n_eq
== tab
->n_var
)
291 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
293 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
296 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
297 if (tab
->con
[i
].is_row
)
299 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
302 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
304 isl_seq_cpy(eq
->row
[j
],
305 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
308 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
315 /* Compute and return an initial basis for the bounded tableau "tab".
317 * If the tableau is either full-dimensional or zero-dimensional,
318 * the we simply return an identity matrix.
319 * Otherwise, we construct a basis whose first directions correspond
322 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
328 tab
->n_unbounded
= 0;
329 tab
->n_zero
= n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
330 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
331 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
333 eq
= tab_equalities(tab
);
334 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
339 Q
= isl_mat_lin_to_aff(Q
);
343 /* Given a tableau representing a set, find and return
344 * an integer point in the set, if there is any.
346 * We perform a depth first search
347 * for an integer point, by scanning all possible values in the range
348 * attained by a basis vector, where an initial basis may have been set
349 * by the calling function. Otherwise an initial basis that exploits
350 * the equalities in the tableau is created.
351 * tab->n_zero is currently ignored and is clobbered by this function.
353 * The tableau is allowed to have unbounded direction, but then
354 * the calling function needs to set an initial basis, with the
355 * unbounded directions last and with tab->n_unbounded set
356 * to the number of unbounded directions.
357 * Furthermore, the calling functions needs to add shifted copies
358 * of all constraints involving unbounded directions to ensure
359 * that any feasible rational value in these directions can be rounded
360 * up to yield a feasible integer value.
361 * In particular, let B define the given basis x' = B x
362 * and let T be the inverse of B, i.e., X = T x'.
363 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
364 * or a T x' + c >= 0 in terms of the given basis. Assume that
365 * the bounded directions have an integer value, then we can safely
366 * round up the values for the unbounded directions if we make sure
367 * that x' not only satisfies the original constraint, but also
368 * the constraint "a T x' + c + s >= 0" with s the sum of all
369 * negative values in the last n_unbounded entries of "a T".
370 * The calling function therefore needs to add the constraint
371 * a x + c + s >= 0. The current function then scans the first
372 * directions for an integer value and once those have been found,
373 * it can compute "T ceil(B x)" to yield an integer point in the set.
374 * Note that during the search, the first rows of B may be changed
375 * by a basis reduction, but the last n_unbounded rows of B remain
376 * unaltered and are also not mixed into the first rows.
378 * The search is implemented iteratively. "level" identifies the current
379 * basis vector. "init" is true if we want the first value at the current
380 * level and false if we want the next value.
382 * The initial basis is the identity matrix. If the range in some direction
383 * contains more than one integer value, we perform basis reduction based
384 * on the value of ctx->opt->gbr
385 * - ISL_GBR_NEVER: never perform basis reduction
386 * - ISL_GBR_ONCE: only perform basis reduction the first
387 * time such a range is encountered
388 * - ISL_GBR_ALWAYS: always perform basis reduction when
389 * such a range is encountered
391 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
392 * reduction computation to return early. That is, as soon as it
393 * finds a reasonable first direction.
395 struct isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
400 struct isl_vec
*sample
;
403 enum isl_lp_result res
;
407 struct isl_tab_undo
**snap
;
412 return isl_vec_alloc(tab
->mat
->ctx
, 0);
415 tab
->basis
= initial_basis(tab
);
418 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
420 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
427 if (tab
->n_unbounded
== tab
->n_var
) {
428 sample
= isl_tab_get_sample_value(tab
);
429 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
430 sample
= isl_vec_ceil(sample
);
431 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
436 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
439 min
= isl_vec_alloc(ctx
, dim
);
440 max
= isl_vec_alloc(ctx
, dim
);
441 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
443 if (!min
|| !max
|| !snap
)
453 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
454 ctx
->one
, &min
->el
[level
], NULL
, 0);
455 if (res
== isl_lp_empty
)
457 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
458 if (res
== isl_lp_error
)
460 if (!empty
&& isl_tab_sample_is_integer(tab
))
462 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
463 tab
->basis
->row
[1 + level
] + 1, dim
);
464 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
465 ctx
->one
, &max
->el
[level
], NULL
, 0);
466 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
467 tab
->basis
->row
[1 + level
] + 1, dim
);
468 isl_int_neg(max
->el
[level
], max
->el
[level
]);
469 if (res
== isl_lp_empty
)
471 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
472 if (res
== isl_lp_error
)
474 if (!empty
&& isl_tab_sample_is_integer(tab
))
476 if (!empty
&& !reduced
&&
477 ctx
->opt
->gbr
!= ISL_GBR_NEVER
&&
478 isl_int_lt(min
->el
[level
], max
->el
[level
])) {
479 unsigned gbr_only_first
;
480 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
481 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
483 gbr_only_first
= ctx
->opt
->gbr_only_first
;
484 ctx
->opt
->gbr_only_first
=
485 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
486 tab
= isl_tab_compute_reduced_basis(tab
);
487 ctx
->opt
->gbr_only_first
= gbr_only_first
;
488 if (!tab
|| !tab
->basis
)
494 snap
[level
] = isl_tab_snap(tab
);
496 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
498 if (empty
|| isl_int_gt(min
->el
[level
], max
->el
[level
])) {
502 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
506 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
507 tab
= isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]);
508 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
509 if (level
+ tab
->n_unbounded
< dim
- 1) {
518 sample
= isl_tab_get_sample_value(tab
);
521 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
522 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
524 sample
= isl_vec_ceil(sample
);
525 sample
= isl_mat_vec_inverse_product(
526 isl_mat_copy(tab
->basis
), sample
);
529 sample
= isl_vec_alloc(ctx
, 0);
544 /* Given a basic set that is known to be bounded, find and return
545 * an integer point in the basic set, if there is any.
547 * After handling some trivial cases, we construct a tableau
548 * and then use isl_tab_sample to find a sample, passing it
549 * the identity matrix as initial basis.
551 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
555 struct isl_vec
*sample
;
556 struct isl_tab
*tab
= NULL
;
561 if (isl_basic_set_fast_is_empty(bset
))
562 return empty_sample(bset
);
564 dim
= isl_basic_set_total_dim(bset
);
566 return zero_sample(bset
);
568 return interval_sample(bset
);
570 return sample_eq(bset
, sample_bounded
);
574 tab
= isl_tab_from_basic_set(bset
);
575 if (tab
&& tab
->empty
) {
577 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
578 sample
= isl_vec_alloc(bset
->ctx
, 0);
579 isl_basic_set_free(bset
);
583 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
585 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
586 tab
= isl_tab_detect_implicit_equalities(tab
);
590 sample
= isl_tab_sample(tab
);
594 if (sample
->size
> 0) {
595 isl_vec_free(bset
->sample
);
596 bset
->sample
= isl_vec_copy(sample
);
599 isl_basic_set_free(bset
);
603 isl_basic_set_free(bset
);
608 /* Given a basic set "bset" and a value "sample" for the first coordinates
609 * of bset, plug in these values and drop the corresponding coordinates.
611 * We do this by computing the preimage of the transformation
617 * where [1 s] is the sample value and I is the identity matrix of the
618 * appropriate dimension.
620 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
621 struct isl_vec
*sample
)
627 if (!bset
|| !sample
)
630 total
= isl_basic_set_total_dim(bset
);
631 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
635 for (i
= 0; i
< sample
->size
; ++i
) {
636 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
637 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
639 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
640 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
641 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
643 isl_vec_free(sample
);
645 bset
= isl_basic_set_preimage(bset
, T
);
648 isl_basic_set_free(bset
);
649 isl_vec_free(sample
);
653 /* Given a basic set "bset", return any (possibly non-integer) point
656 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
659 struct isl_vec
*sample
;
664 tab
= isl_tab_from_basic_set(bset
);
665 sample
= isl_tab_get_sample_value(tab
);
668 isl_basic_set_free(bset
);
673 /* Given a linear cone "cone" and a rational point "vec",
674 * construct a polyhedron with shifted copies of the constraints in "cone",
675 * i.e., a polyhedron with "cone" as its recession cone, such that each
676 * point x in this polyhedron is such that the unit box positioned at x
677 * lies entirely inside the affine cone 'vec + cone'.
678 * Any rational point in this polyhedron may therefore be rounded up
679 * to yield an integer point that lies inside said affine cone.
681 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
682 * point "vec" by v/d.
683 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
684 * by <a_i, x> - b/d >= 0.
685 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
686 * We prefer this polyhedron over the actual affine cone because it doesn't
687 * require a scaling of the constraints.
688 * If each of the vertices of the unit cube positioned at x lies inside
689 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
690 * We therefore impose that x' = x + \sum e_i, for any selection of unit
691 * vectors lies inside the polyhedron, i.e.,
693 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
695 * The most stringent of these constraints is the one that selects
696 * all negative a_i, so the polyhedron we are looking for has constraints
698 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
700 * Note that if cone were known to have only non-negative rays
701 * (which can be accomplished by a unimodular transformation),
702 * then we would only have to check the points x' = x + e_i
703 * and we only have to add the smallest negative a_i (if any)
704 * instead of the sum of all negative a_i.
706 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
712 struct isl_basic_set
*shift
= NULL
;
717 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
719 total
= isl_basic_set_total_dim(cone
);
721 shift
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone
),
724 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
725 k
= isl_basic_set_alloc_inequality(shift
);
728 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
729 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
731 isl_int_cdiv_q(shift
->ineq
[k
][0],
732 shift
->ineq
[k
][0], vec
->el
[0]);
733 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
734 for (j
= 0; j
< total
; ++j
) {
735 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
737 isl_int_add(shift
->ineq
[k
][0],
738 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
742 isl_basic_set_free(cone
);
745 return isl_basic_set_finalize(shift
);
747 isl_basic_set_free(shift
);
748 isl_basic_set_free(cone
);
753 /* Given a rational point vec in a (transformed) basic set,
754 * such that cone is the recession cone of the original basic set,
755 * "round up" the rational point to an integer point.
757 * We first check if the rational point just happens to be integer.
758 * If not, we transform the cone in the same way as the basic set,
759 * pick a point x in this cone shifted to the rational point such that
760 * the whole unit cube at x is also inside this affine cone.
761 * Then we simply round up the coordinates of x and return the
762 * resulting integer point.
764 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
765 struct isl_basic_set
*cone
, struct isl_mat
*U
)
769 if (!vec
|| !cone
|| !U
)
772 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
773 if (isl_int_is_one(vec
->el
[0])) {
775 isl_basic_set_free(cone
);
779 total
= isl_basic_set_total_dim(cone
);
780 cone
= isl_basic_set_preimage(cone
, U
);
781 cone
= isl_basic_set_remove_dims(cone
, 0, total
- (vec
->size
- 1));
783 cone
= shift_cone(cone
, vec
);
785 vec
= rational_sample(cone
);
786 vec
= isl_vec_ceil(vec
);
791 isl_basic_set_free(cone
);
795 /* Concatenate two integer vectors, i.e., two vectors with denominator
796 * (stored in element 0) equal to 1.
798 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
804 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
805 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
806 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
807 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
809 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
813 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
814 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
826 /* Drop all constraints in bset that involve any of the dimensions
827 * first to first+n-1.
829 static struct isl_basic_set
*drop_constraints_involving
830 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
837 bset
= isl_basic_set_cow(bset
);
839 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
840 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
842 isl_basic_set_drop_inequality(bset
, i
);
848 /* Give a basic set "bset" with recession cone "cone", compute and
849 * return an integer point in bset, if any.
851 * If the recession cone is full-dimensional, then we know that
852 * bset contains an infinite number of integer points and it is
853 * fairly easy to pick one of them.
854 * If the recession cone is not full-dimensional, then we first
855 * transform bset such that the bounded directions appear as
856 * the first dimensions of the transformed basic set.
857 * We do this by using a unimodular transformation that transforms
858 * the equalities in the recession cone to equalities on the first
861 * The transformed set is then projected onto its bounded dimensions.
862 * Note that to compute this projection, we can simply drop all constraints
863 * involving any of the unbounded dimensions since these constraints
864 * cannot be combined to produce a constraint on the bounded dimensions.
865 * To see this, assume that there is such a combination of constraints
866 * that produces a constraint on the bounded dimensions. This means
867 * that some combination of the unbounded dimensions has both an upper
868 * bound and a lower bound in terms of the bounded dimensions, but then
869 * this combination would be a bounded direction too and would have been
870 * transformed into a bounded dimensions.
872 * We then compute a sample value in the bounded dimensions.
873 * If no such value can be found, then the original set did not contain
874 * any integer points and we are done.
875 * Otherwise, we plug in the value we found in the bounded dimensions,
876 * project out these bounded dimensions and end up with a set with
877 * a full-dimensional recession cone.
878 * A sample point in this set is computed by "rounding up" any
879 * rational point in the set.
881 * The sample points in the bounded and unbounded dimensions are
882 * then combined into a single sample point and transformed back
883 * to the original space.
885 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
886 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
890 struct isl_mat
*M
, *U
;
891 struct isl_vec
*sample
;
892 struct isl_vec
*cone_sample
;
894 struct isl_basic_set
*bounded
;
900 total
= isl_basic_set_total_dim(cone
);
901 cone_dim
= total
- cone
->n_eq
;
903 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
904 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
909 U
= isl_mat_lin_to_aff(U
);
910 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
912 bounded
= isl_basic_set_copy(bset
);
913 bounded
= drop_constraints_involving(bounded
, total
- cone_dim
, cone_dim
);
914 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
915 sample
= sample_bounded(bounded
);
916 if (!sample
|| sample
->size
== 0) {
917 isl_basic_set_free(bset
);
918 isl_basic_set_free(cone
);
922 bset
= plug_in(bset
, isl_vec_copy(sample
));
923 cone_sample
= rational_sample(bset
);
924 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
925 sample
= vec_concat(sample
, cone_sample
);
926 sample
= isl_mat_vec_product(U
, sample
);
929 isl_basic_set_free(cone
);
930 isl_basic_set_free(bset
);
934 static void vec_sum_of_neg(struct isl_vec
*v
, isl_int
*s
)
938 isl_int_set_si(*s
, 0);
940 for (i
= 0; i
< v
->size
; ++i
)
941 if (isl_int_is_neg(v
->el
[i
]))
942 isl_int_add(*s
, *s
, v
->el
[i
]);
945 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
946 * to the recession cone and the inverse of a new basis U = inv(B),
947 * with the unbounded directions in B last,
948 * add constraints to "tab" that ensure any rational value
949 * in the unbounded directions can be rounded up to an integer value.
951 * The new basis is given by x' = B x, i.e., x = U x'.
952 * For any rational value of the last tab->n_unbounded coordinates
953 * in the update tableau, the value that is obtained by rounding
954 * up this value should be contained in the original tableau.
955 * For any constraint "a x + c >= 0", we therefore need to add
956 * a constraint "a x + c + s >= 0", with s the sum of all negative
957 * entries in the last elements of "a U".
959 * Since we are not interested in the first entries of any of the "a U",
960 * we first drop the columns of U that correpond to bounded directions.
962 static int tab_shift_cone(struct isl_tab
*tab
,
963 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
967 struct isl_basic_set
*bset
= NULL
;
969 if (tab
&& tab
->n_unbounded
== 0) {
974 if (!tab
|| !tab_cone
|| !U
)
976 bset
= isl_tab_peek_bset(tab_cone
);
977 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
978 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
980 struct isl_vec
*row
= NULL
;
981 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
983 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
986 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
987 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
990 vec_sum_of_neg(row
, &v
);
992 if (isl_int_is_zero(v
))
994 tab
= isl_tab_extend(tab
, 1);
995 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
996 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
997 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1011 /* Compute and return an initial basis for the possibly
1012 * unbounded tableau "tab". "tab_cone" is a tableau
1013 * for the corresponding recession cone.
1014 * Additionally, add constraints to "tab" that ensure
1015 * that any rational value for the unbounded directions
1016 * can be rounded up to an integer value.
1018 * If the tableau is bounded, i.e., if the recession cone
1019 * is zero-dimensional, then we just use inital_basis.
1020 * Otherwise, we construct a basis whose first directions
1021 * correspond to equalities, followed by bounded directions,
1022 * i.e., equalities in the recession cone.
1023 * The remaining directions are then unbounded.
1025 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1026 struct isl_tab
*tab_cone
)
1029 struct isl_mat
*cone_eq
;
1030 struct isl_mat
*U
, *Q
;
1032 if (!tab
|| !tab_cone
)
1035 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1036 tab
->basis
= initial_basis(tab
);
1037 return tab
->basis
? 0 : -1;
1040 eq
= tab_equalities(tab
);
1043 tab
->n_zero
= eq
->n_row
;
1044 cone_eq
= tab_equalities(tab_cone
);
1045 eq
= isl_mat_concat(eq
, cone_eq
);
1048 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1049 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1053 tab
->basis
= isl_mat_lin_to_aff(Q
);
1054 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1061 /* Compute and return a sample point in bset using generalized basis
1062 * reduction. We first check if the input set has a non-trivial
1063 * recession cone. If so, we perform some extra preprocessing in
1064 * sample_with_cone. Otherwise, we directly perform generalized basis
1067 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
1070 struct isl_basic_set
*cone
;
1072 dim
= isl_basic_set_total_dim(bset
);
1074 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1076 if (cone
->n_eq
< dim
)
1077 return isl_basic_set_sample_with_cone(bset
, cone
);
1079 isl_basic_set_free(cone
);
1080 return sample_bounded(bset
);
1083 static struct isl_vec
*pip_sample(struct isl_basic_set
*bset
)
1086 struct isl_ctx
*ctx
;
1087 struct isl_vec
*sample
;
1089 bset
= isl_basic_set_skew_to_positive_orthant(bset
, &T
);
1094 sample
= isl_pip_basic_set_sample(bset
);
1096 if (sample
&& sample
->size
!= 0)
1097 sample
= isl_mat_vec_product(T
, sample
);
1104 static struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
1106 struct isl_ctx
*ctx
;
1112 if (isl_basic_set_fast_is_empty(bset
))
1113 return empty_sample(bset
);
1115 dim
= isl_basic_set_n_dim(bset
);
1116 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
1117 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
1119 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1120 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1124 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1125 isl_basic_set_free(bset
);
1129 isl_vec_free(bset
->sample
);
1130 bset
->sample
= NULL
;
1133 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1134 : isl_basic_set_sample_vec
);
1136 return zero_sample(bset
);
1138 return interval_sample(bset
);
1140 switch (bset
->ctx
->opt
->ilp_solver
) {
1142 return pip_sample(bset
);
1144 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1146 isl_assert(bset
->ctx
, 0, );
1148 isl_basic_set_free(bset
);
1152 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1154 return basic_set_sample(bset
, 0);
1157 /* Compute an integer sample in "bset", where the caller guarantees
1158 * that "bset" is bounded.
1160 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
1162 return basic_set_sample(bset
, 1);
1165 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1169 struct isl_basic_set
*bset
= NULL
;
1170 struct isl_ctx
*ctx
;
1176 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1178 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1181 dim
= isl_basic_set_n_dim(bset
);
1182 for (i
= dim
- 1; i
>= 0; --i
) {
1183 k
= isl_basic_set_alloc_equality(bset
);
1186 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1187 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1188 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1194 isl_basic_set_free(bset
);
1199 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1201 struct isl_basic_set
*bset
;
1202 struct isl_vec
*sample_vec
;
1204 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1205 sample_vec
= isl_basic_set_sample_vec(bset
);
1208 if (sample_vec
->size
== 0) {
1209 struct isl_basic_map
*sample
;
1210 sample
= isl_basic_map_empty_like(bmap
);
1211 isl_vec_free(sample_vec
);
1212 isl_basic_map_free(bmap
);
1215 bset
= isl_basic_set_from_vec(sample_vec
);
1216 return isl_basic_map_overlying_set(bset
, bmap
);
1218 isl_basic_map_free(bmap
);
1222 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1225 isl_basic_map
*sample
= NULL
;
1230 for (i
= 0; i
< map
->n
; ++i
) {
1231 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1234 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1236 isl_basic_map_free(sample
);
1239 sample
= isl_basic_map_empty_like_map(map
);
1247 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1249 return (isl_basic_set
*) isl_map_sample((isl_map
*)set
);
1252 __isl_give isl_point
*isl_basic_set_sample_point(__isl_take isl_basic_set
*bset
)
1257 dim
= isl_basic_set_get_dim(bset
);
1258 bset
= isl_basic_set_underlying_set(bset
);
1259 vec
= isl_basic_set_sample_vec(bset
);
1261 return isl_point_alloc(dim
, vec
);
1264 __isl_give isl_point
*isl_set_sample_point(__isl_take isl_set
*set
)
1272 for (i
= 0; i
< set
->n
; ++i
) {
1273 pnt
= isl_basic_set_sample_point(isl_basic_set_copy(set
->p
[i
]));
1276 if (!isl_point_is_void(pnt
))
1278 isl_point_free(pnt
);
1281 pnt
= isl_point_void(isl_set_get_dim(set
));