isl_convex_hull.c: is_bound: any inequality is a bound on an empty set
[isl.git] / isl_convex_hull.c
blobd4bf7807b71b094252cdf8fd71590b43e26c458e
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 tab = isl_tab_detect_implicit_equalities(tab);
107 if (isl_tab_detect_redundant(tab) < 0)
108 goto error;
109 bmap = isl_basic_map_update_from_tab(bmap, tab);
110 isl_tab_free(tab);
111 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
113 return bmap;
114 error:
115 isl_tab_free(tab);
116 isl_basic_map_free(bmap);
117 return NULL;
120 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
122 return (struct isl_basic_set *)
123 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
132 int first;
133 int j;
134 isl_int opt;
135 isl_int opt_denom;
137 isl_int_init(opt);
138 isl_int_init(opt_denom);
139 first = 1;
140 for (j = 0; j < set->n; ++j) {
141 enum isl_lp_result res;
143 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
144 continue;
146 res = isl_basic_set_solve_lp(set->p[j],
147 0, c, set->ctx->one, &opt, &opt_denom, NULL);
148 if (res == isl_lp_unbounded)
149 break;
150 if (res == isl_lp_error)
151 goto error;
152 if (res == isl_lp_empty) {
153 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
154 if (!set->p[j])
155 goto error;
156 continue;
158 if (first || isl_int_is_neg(opt)) {
159 if (!isl_int_is_one(opt_denom))
160 isl_seq_scale(c, c, opt_denom, len);
161 isl_int_sub(c[0], c[0], opt);
163 first = 0;
165 isl_int_clear(opt);
166 isl_int_clear(opt_denom);
167 return j >= set->n;
168 error:
169 isl_int_clear(opt);
170 isl_int_clear(opt_denom);
171 return -1;
174 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
176 if (!bset)
177 return NULL;
179 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
180 return bset;
182 bset = isl_basic_set_cow(bset);
183 if (!bset)
184 return NULL;
186 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
188 return isl_basic_set_finalize(bset);
191 static struct isl_set *isl_set_set_rational(struct isl_set *set)
193 int i;
195 set = isl_set_cow(set);
196 if (!set)
197 return NULL;
198 for (i = 0; i < set->n; ++i) {
199 set->p[i] = isl_basic_set_set_rational(set->p[i]);
200 if (!set->p[i])
201 goto error;
203 return set;
204 error:
205 isl_set_free(set);
206 return NULL;
209 static struct isl_basic_set *isl_basic_set_add_equality(
210 struct isl_basic_set *bset, isl_int *c)
212 int i;
213 unsigned dim;
215 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
216 return bset;
218 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
219 isl_assert(bset->ctx, bset->n_div == 0, goto error);
220 dim = isl_basic_set_n_dim(bset);
221 bset = isl_basic_set_cow(bset);
222 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
223 i = isl_basic_set_alloc_equality(bset);
224 if (i < 0)
225 goto error;
226 isl_seq_cpy(bset->eq[i], c, 1 + dim);
227 return bset;
228 error:
229 isl_basic_set_free(bset);
230 return NULL;
233 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
235 int i;
237 set = isl_set_cow(set);
238 if (!set)
239 return NULL;
240 for (i = 0; i < set->n; ++i) {
241 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
242 if (!set->p[i])
243 goto error;
245 return set;
246 error:
247 isl_set_free(set);
248 return NULL;
251 /* Given a union of basic sets, construct the constraints for wrapping
252 * a facet around one of its ridges.
253 * In particular, if each of n the d-dimensional basic sets i in "set"
254 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
255 * and is defined by the constraints
256 * [ 1 ]
257 * A_i [ x ] >= 0
259 * then the resulting set is of dimension n*(1+d) and has as constraints
261 * [ a_i ]
262 * A_i [ x_i ] >= 0
264 * a_i >= 0
266 * \sum_i x_{i,1} = 1
268 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
270 struct isl_basic_set *lp;
271 unsigned n_eq;
272 unsigned n_ineq;
273 int i, j, k;
274 unsigned dim, lp_dim;
276 if (!set)
277 return NULL;
279 dim = 1 + isl_set_n_dim(set);
280 n_eq = 1;
281 n_ineq = set->n;
282 for (i = 0; i < set->n; ++i) {
283 n_eq += set->p[i]->n_eq;
284 n_ineq += set->p[i]->n_ineq;
286 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
287 if (!lp)
288 return NULL;
289 lp_dim = isl_basic_set_n_dim(lp);
290 k = isl_basic_set_alloc_equality(lp);
291 isl_int_set_si(lp->eq[k][0], -1);
292 for (i = 0; i < set->n; ++i) {
293 isl_int_set_si(lp->eq[k][1+dim*i], 0);
294 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
295 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
297 for (i = 0; i < set->n; ++i) {
298 k = isl_basic_set_alloc_inequality(lp);
299 isl_seq_clr(lp->ineq[k], 1+lp_dim);
300 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
302 for (j = 0; j < set->p[i]->n_eq; ++j) {
303 k = isl_basic_set_alloc_equality(lp);
304 isl_seq_clr(lp->eq[k], 1+dim*i);
305 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
306 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
309 for (j = 0; j < set->p[i]->n_ineq; ++j) {
310 k = isl_basic_set_alloc_inequality(lp);
311 isl_seq_clr(lp->ineq[k], 1+dim*i);
312 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
313 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
316 return lp;
319 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
320 * of that facet, compute the other facet of the convex hull that contains
321 * the ridge.
323 * We first transform the set such that the facet constraint becomes
325 * x_1 >= 0
327 * I.e., the facet lies in
329 * x_1 = 0
331 * and on that facet, the constraint that defines the ridge is
333 * x_2 >= 0
335 * (This transformation is not strictly needed, all that is needed is
336 * that the ridge contains the origin.)
338 * Since the ridge contains the origin, the cone of the convex hull
339 * will be of the form
341 * x_1 >= 0
342 * x_2 >= a x_1
344 * with this second constraint defining the new facet.
345 * The constant a is obtained by settting x_1 in the cone of the
346 * convex hull to 1 and minimizing x_2.
347 * Now, each element in the cone of the convex hull is the sum
348 * of elements in the cones of the basic sets.
349 * If a_i is the dilation factor of basic set i, then the problem
350 * we need to solve is
352 * min \sum_i x_{i,2}
353 * st
354 * \sum_i x_{i,1} = 1
355 * a_i >= 0
356 * [ a_i ]
357 * A [ x_i ] >= 0
359 * with
360 * [ 1 ]
361 * A_i [ x_i ] >= 0
363 * the constraints of each (transformed) basic set.
364 * If a = n/d, then the constraint defining the new facet (in the transformed
365 * space) is
367 * -n x_1 + d x_2 >= 0
369 * In the original space, we need to take the same combination of the
370 * corresponding constraints "facet" and "ridge".
372 * If a = -infty = "-1/0", then we just return the original facet constraint.
373 * This means that the facet is unbounded, but has a bounded intersection
374 * with the union of sets.
376 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
377 isl_int *facet, isl_int *ridge)
379 int i;
380 struct isl_mat *T = NULL;
381 struct isl_basic_set *lp = NULL;
382 struct isl_vec *obj;
383 enum isl_lp_result res;
384 isl_int num, den;
385 unsigned dim;
387 set = isl_set_copy(set);
388 set = isl_set_set_rational(set);
390 dim = 1 + isl_set_n_dim(set);
391 T = isl_mat_alloc(set->ctx, 3, dim);
392 if (!T)
393 goto error;
394 isl_int_set_si(T->row[0][0], 1);
395 isl_seq_clr(T->row[0]+1, dim - 1);
396 isl_seq_cpy(T->row[1], facet, dim);
397 isl_seq_cpy(T->row[2], ridge, dim);
398 T = isl_mat_right_inverse(T);
399 set = isl_set_preimage(set, T);
400 T = NULL;
401 if (!set)
402 goto error;
403 lp = wrap_constraints(set);
404 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
405 if (!obj)
406 goto error;
407 isl_int_set_si(obj->block.data[0], 0);
408 for (i = 0; i < set->n; ++i) {
409 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
410 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
411 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
413 isl_int_init(num);
414 isl_int_init(den);
415 res = isl_basic_set_solve_lp(lp, 0,
416 obj->block.data, set->ctx->one, &num, &den, NULL);
417 if (res == isl_lp_ok) {
418 isl_int_neg(num, num);
419 isl_seq_combine(facet, num, facet, den, ridge, dim);
421 isl_int_clear(num);
422 isl_int_clear(den);
423 isl_vec_free(obj);
424 isl_basic_set_free(lp);
425 isl_set_free(set);
426 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
427 return NULL);
428 return facet;
429 error:
430 isl_basic_set_free(lp);
431 isl_mat_free(T);
432 isl_set_free(set);
433 return NULL;
436 /* Compute the constraint of a facet of "set".
438 * We first compute the intersection with a bounding constraint
439 * that is orthogonal to one of the coordinate axes.
440 * If the affine hull of this intersection has only one equality,
441 * we have found a facet.
442 * Otherwise, we wrap the current bounding constraint around
443 * one of the equalities of the face (one that is not equal to
444 * the current bounding constraint).
445 * This process continues until we have found a facet.
446 * The dimension of the intersection increases by at least
447 * one on each iteration, so termination is guaranteed.
449 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
451 struct isl_set *slice = NULL;
452 struct isl_basic_set *face = NULL;
453 struct isl_mat *m, *U, *Q;
454 int i;
455 unsigned dim = isl_set_n_dim(set);
456 int is_bound;
457 isl_mat *bounds;
459 isl_assert(set->ctx, set->n > 0, goto error);
460 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
461 if (!bounds)
462 return NULL;
464 isl_seq_clr(bounds->row[0], dim);
465 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
466 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
467 isl_assert(set->ctx, is_bound == 1, goto error);
468 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
469 bounds->n_row = 1;
471 for (;;) {
472 slice = isl_set_copy(set);
473 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
474 face = isl_set_affine_hull(slice);
475 if (!face)
476 goto error;
477 if (face->n_eq == 1) {
478 isl_basic_set_free(face);
479 break;
481 for (i = 0; i < face->n_eq; ++i)
482 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
483 !isl_seq_is_neg(bounds->row[0],
484 face->eq[i], 1 + dim))
485 break;
486 isl_assert(set->ctx, i < face->n_eq, goto error);
487 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
488 goto error;
489 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
490 isl_basic_set_free(face);
493 return bounds;
494 error:
495 isl_basic_set_free(face);
496 isl_mat_free(bounds);
497 return NULL;
500 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
501 * compute a hyperplane description of the facet, i.e., compute the facets
502 * of the facet.
504 * We compute an affine transformation that transforms the constraint
506 * [ 1 ]
507 * c [ x ] = 0
509 * to the constraint
511 * z_1 = 0
513 * by computing the right inverse U of a matrix that starts with the rows
515 * [ 1 0 ]
516 * [ c ]
518 * Then
519 * [ 1 ] [ 1 ]
520 * [ x ] = U [ z ]
521 * and
522 * [ 1 ] [ 1 ]
523 * [ z ] = Q [ x ]
525 * with Q = U^{-1}
526 * Since z_1 is zero, we can drop this variable as well as the corresponding
527 * column of U to obtain
529 * [ 1 ] [ 1 ]
530 * [ x ] = U' [ z' ]
531 * and
532 * [ 1 ] [ 1 ]
533 * [ z' ] = Q' [ x ]
535 * with Q' equal to Q, but without the corresponding row.
536 * After computing the facets of the facet in the z' space,
537 * we convert them back to the x space through Q.
539 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
541 struct isl_mat *m, *U, *Q;
542 struct isl_basic_set *facet = NULL;
543 struct isl_ctx *ctx;
544 unsigned dim;
546 ctx = set->ctx;
547 set = isl_set_copy(set);
548 dim = isl_set_n_dim(set);
549 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
550 if (!m)
551 goto error;
552 isl_int_set_si(m->row[0][0], 1);
553 isl_seq_clr(m->row[0]+1, dim);
554 isl_seq_cpy(m->row[1], c, 1+dim);
555 U = isl_mat_right_inverse(m);
556 Q = isl_mat_right_inverse(isl_mat_copy(U));
557 U = isl_mat_drop_cols(U, 1, 1);
558 Q = isl_mat_drop_rows(Q, 1, 1);
559 set = isl_set_preimage(set, U);
560 facet = uset_convex_hull_wrap_bounded(set);
561 facet = isl_basic_set_preimage(facet, Q);
562 isl_assert(ctx, facet->n_eq == 0, goto error);
563 return facet;
564 error:
565 isl_basic_set_free(facet);
566 isl_set_free(set);
567 return NULL;
570 /* Given an initial facet constraint, compute the remaining facets.
571 * We do this by running through all facets found so far and computing
572 * the adjacent facets through wrapping, adding those facets that we
573 * hadn't already found before.
575 * For each facet we have found so far, we first compute its facets
576 * in the resulting convex hull. That is, we compute the ridges
577 * of the resulting convex hull contained in the facet.
578 * We also compute the corresponding facet in the current approximation
579 * of the convex hull. There is no need to wrap around the ridges
580 * in this facet since that would result in a facet that is already
581 * present in the current approximation.
583 * This function can still be significantly optimized by checking which of
584 * the facets of the basic sets are also facets of the convex hull and
585 * using all the facets so far to help in constructing the facets of the
586 * facets
587 * and/or
588 * using the technique in section "3.1 Ridge Generation" of
589 * "Extended Convex Hull" by Fukuda et al.
591 static struct isl_basic_set *extend(struct isl_basic_set *hull,
592 struct isl_set *set)
594 int i, j, f;
595 int k;
596 struct isl_basic_set *facet = NULL;
597 struct isl_basic_set *hull_facet = NULL;
598 unsigned dim;
600 if (!hull)
601 return NULL;
603 isl_assert(set->ctx, set->n > 0, goto error);
605 dim = isl_set_n_dim(set);
607 for (i = 0; i < hull->n_ineq; ++i) {
608 facet = compute_facet(set, hull->ineq[i]);
609 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
610 facet = isl_basic_set_gauss(facet, NULL);
611 facet = isl_basic_set_normalize_constraints(facet);
612 hull_facet = isl_basic_set_copy(hull);
613 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
614 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
615 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
616 if (!facet)
617 goto error;
618 hull = isl_basic_set_cow(hull);
619 hull = isl_basic_set_extend_dim(hull,
620 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
621 for (j = 0; j < facet->n_ineq; ++j) {
622 for (f = 0; f < hull_facet->n_ineq; ++f)
623 if (isl_seq_eq(facet->ineq[j],
624 hull_facet->ineq[f], 1 + dim))
625 break;
626 if (f < hull_facet->n_ineq)
627 continue;
628 k = isl_basic_set_alloc_inequality(hull);
629 if (k < 0)
630 goto error;
631 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
632 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
633 goto error;
635 isl_basic_set_free(hull_facet);
636 isl_basic_set_free(facet);
638 hull = isl_basic_set_simplify(hull);
639 hull = isl_basic_set_finalize(hull);
640 return hull;
641 error:
642 isl_basic_set_free(hull_facet);
643 isl_basic_set_free(facet);
644 isl_basic_set_free(hull);
645 return NULL;
648 /* Special case for computing the convex hull of a one dimensional set.
649 * We simply collect the lower and upper bounds of each basic set
650 * and the biggest of those.
652 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
654 struct isl_mat *c = NULL;
655 isl_int *lower = NULL;
656 isl_int *upper = NULL;
657 int i, j, k;
658 isl_int a, b;
659 struct isl_basic_set *hull;
661 for (i = 0; i < set->n; ++i) {
662 set->p[i] = isl_basic_set_simplify(set->p[i]);
663 if (!set->p[i])
664 goto error;
666 set = isl_set_remove_empty_parts(set);
667 if (!set)
668 goto error;
669 isl_assert(set->ctx, set->n > 0, goto error);
670 c = isl_mat_alloc(set->ctx, 2, 2);
671 if (!c)
672 goto error;
674 if (set->p[0]->n_eq > 0) {
675 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
676 lower = c->row[0];
677 upper = c->row[1];
678 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
679 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
680 isl_seq_neg(upper, set->p[0]->eq[0], 2);
681 } else {
682 isl_seq_neg(lower, set->p[0]->eq[0], 2);
683 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
685 } else {
686 for (j = 0; j < set->p[0]->n_ineq; ++j) {
687 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
688 lower = c->row[0];
689 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
690 } else {
691 upper = c->row[1];
692 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
697 isl_int_init(a);
698 isl_int_init(b);
699 for (i = 0; i < set->n; ++i) {
700 struct isl_basic_set *bset = set->p[i];
701 int has_lower = 0;
702 int has_upper = 0;
704 for (j = 0; j < bset->n_eq; ++j) {
705 has_lower = 1;
706 has_upper = 1;
707 if (lower) {
708 isl_int_mul(a, lower[0], bset->eq[j][1]);
709 isl_int_mul(b, lower[1], bset->eq[j][0]);
710 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
711 isl_seq_cpy(lower, bset->eq[j], 2);
712 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
713 isl_seq_neg(lower, bset->eq[j], 2);
715 if (upper) {
716 isl_int_mul(a, upper[0], bset->eq[j][1]);
717 isl_int_mul(b, upper[1], bset->eq[j][0]);
718 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
719 isl_seq_neg(upper, bset->eq[j], 2);
720 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
721 isl_seq_cpy(upper, bset->eq[j], 2);
724 for (j = 0; j < bset->n_ineq; ++j) {
725 if (isl_int_is_pos(bset->ineq[j][1]))
726 has_lower = 1;
727 if (isl_int_is_neg(bset->ineq[j][1]))
728 has_upper = 1;
729 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
730 isl_int_mul(a, lower[0], bset->ineq[j][1]);
731 isl_int_mul(b, lower[1], bset->ineq[j][0]);
732 if (isl_int_lt(a, b))
733 isl_seq_cpy(lower, bset->ineq[j], 2);
735 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
736 isl_int_mul(a, upper[0], bset->ineq[j][1]);
737 isl_int_mul(b, upper[1], bset->ineq[j][0]);
738 if (isl_int_gt(a, b))
739 isl_seq_cpy(upper, bset->ineq[j], 2);
742 if (!has_lower)
743 lower = NULL;
744 if (!has_upper)
745 upper = NULL;
747 isl_int_clear(a);
748 isl_int_clear(b);
750 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
751 hull = isl_basic_set_set_rational(hull);
752 if (!hull)
753 goto error;
754 if (lower) {
755 k = isl_basic_set_alloc_inequality(hull);
756 isl_seq_cpy(hull->ineq[k], lower, 2);
758 if (upper) {
759 k = isl_basic_set_alloc_inequality(hull);
760 isl_seq_cpy(hull->ineq[k], upper, 2);
762 hull = isl_basic_set_finalize(hull);
763 isl_set_free(set);
764 isl_mat_free(c);
765 return hull;
766 error:
767 isl_set_free(set);
768 isl_mat_free(c);
769 return NULL;
772 /* Project out final n dimensions using Fourier-Motzkin */
773 static struct isl_set *set_project_out(struct isl_ctx *ctx,
774 struct isl_set *set, unsigned n)
776 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
779 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
781 struct isl_basic_set *convex_hull;
783 if (!set)
784 return NULL;
786 if (isl_set_is_empty(set))
787 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
788 else
789 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
790 isl_set_free(set);
791 return convex_hull;
794 /* Compute the convex hull of a pair of basic sets without any parameters or
795 * integer divisions using Fourier-Motzkin elimination.
796 * The convex hull is the set of all points that can be written as
797 * the sum of points from both basic sets (in homogeneous coordinates).
798 * We set up the constraints in a space with dimensions for each of
799 * the three sets and then project out the dimensions corresponding
800 * to the two original basic sets, retaining only those corresponding
801 * to the convex hull.
803 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
804 struct isl_basic_set *bset2)
806 int i, j, k;
807 struct isl_basic_set *bset[2];
808 struct isl_basic_set *hull = NULL;
809 unsigned dim;
811 if (!bset1 || !bset2)
812 goto error;
814 dim = isl_basic_set_n_dim(bset1);
815 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
816 1 + dim + bset1->n_eq + bset2->n_eq,
817 2 + bset1->n_ineq + bset2->n_ineq);
818 bset[0] = bset1;
819 bset[1] = bset2;
820 for (i = 0; i < 2; ++i) {
821 for (j = 0; j < bset[i]->n_eq; ++j) {
822 k = isl_basic_set_alloc_equality(hull);
823 if (k < 0)
824 goto error;
825 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
826 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
827 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
828 1+dim);
830 for (j = 0; j < bset[i]->n_ineq; ++j) {
831 k = isl_basic_set_alloc_inequality(hull);
832 if (k < 0)
833 goto error;
834 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
835 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
836 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
837 bset[i]->ineq[j], 1+dim);
839 k = isl_basic_set_alloc_inequality(hull);
840 if (k < 0)
841 goto error;
842 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
843 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
845 for (j = 0; j < 1+dim; ++j) {
846 k = isl_basic_set_alloc_equality(hull);
847 if (k < 0)
848 goto error;
849 isl_seq_clr(hull->eq[k], 1+2+3*dim);
850 isl_int_set_si(hull->eq[k][j], -1);
851 isl_int_set_si(hull->eq[k][1+dim+j], 1);
852 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
854 hull = isl_basic_set_set_rational(hull);
855 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
856 hull = isl_basic_set_convex_hull(hull);
857 isl_basic_set_free(bset1);
858 isl_basic_set_free(bset2);
859 return hull;
860 error:
861 isl_basic_set_free(bset1);
862 isl_basic_set_free(bset2);
863 isl_basic_set_free(hull);
864 return NULL;
867 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
869 struct isl_tab *tab;
870 int bounded;
872 tab = isl_tab_from_recession_cone(bset);
873 bounded = isl_tab_cone_is_bounded(tab);
874 isl_tab_free(tab);
875 return bounded;
878 static int isl_set_is_bounded(struct isl_set *set)
880 int i;
882 for (i = 0; i < set->n; ++i) {
883 int bounded = isl_basic_set_is_bounded(set->p[i]);
884 if (!bounded || bounded < 0)
885 return bounded;
887 return 1;
890 /* Compute the lineality space of the convex hull of bset1 and bset2.
892 * We first compute the intersection of the recession cone of bset1
893 * with the negative of the recession cone of bset2 and then compute
894 * the linear hull of the resulting cone.
896 static struct isl_basic_set *induced_lineality_space(
897 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
899 int i, k;
900 struct isl_basic_set *lin = NULL;
901 unsigned dim;
903 if (!bset1 || !bset2)
904 goto error;
906 dim = isl_basic_set_total_dim(bset1);
907 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
908 bset1->n_eq + bset2->n_eq,
909 bset1->n_ineq + bset2->n_ineq);
910 lin = isl_basic_set_set_rational(lin);
911 if (!lin)
912 goto error;
913 for (i = 0; i < bset1->n_eq; ++i) {
914 k = isl_basic_set_alloc_equality(lin);
915 if (k < 0)
916 goto error;
917 isl_int_set_si(lin->eq[k][0], 0);
918 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
920 for (i = 0; i < bset1->n_ineq; ++i) {
921 k = isl_basic_set_alloc_inequality(lin);
922 if (k < 0)
923 goto error;
924 isl_int_set_si(lin->ineq[k][0], 0);
925 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
927 for (i = 0; i < bset2->n_eq; ++i) {
928 k = isl_basic_set_alloc_equality(lin);
929 if (k < 0)
930 goto error;
931 isl_int_set_si(lin->eq[k][0], 0);
932 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
934 for (i = 0; i < bset2->n_ineq; ++i) {
935 k = isl_basic_set_alloc_inequality(lin);
936 if (k < 0)
937 goto error;
938 isl_int_set_si(lin->ineq[k][0], 0);
939 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
942 isl_basic_set_free(bset1);
943 isl_basic_set_free(bset2);
944 return isl_basic_set_affine_hull(lin);
945 error:
946 isl_basic_set_free(lin);
947 isl_basic_set_free(bset1);
948 isl_basic_set_free(bset2);
949 return NULL;
952 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
954 /* Given a set and a linear space "lin" of dimension n > 0,
955 * project the linear space from the set, compute the convex hull
956 * and then map the set back to the original space.
958 * Let
960 * M x = 0
962 * describe the linear space. We first compute the Hermite normal
963 * form H = M U of M = H Q, to obtain
965 * H Q x = 0
967 * The last n rows of H will be zero, so the last n variables of x' = Q x
968 * are the one we want to project out. We do this by transforming each
969 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
970 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
971 * we transform the hull back to the original space as A' Q_1 x >= b',
972 * with Q_1 all but the last n rows of Q.
974 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
975 struct isl_basic_set *lin)
977 unsigned total = isl_basic_set_total_dim(lin);
978 unsigned lin_dim;
979 struct isl_basic_set *hull;
980 struct isl_mat *M, *U, *Q;
982 if (!set || !lin)
983 goto error;
984 lin_dim = total - lin->n_eq;
985 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
986 M = isl_mat_left_hermite(M, 0, &U, &Q);
987 if (!M)
988 goto error;
989 isl_mat_free(M);
990 isl_basic_set_free(lin);
992 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
994 U = isl_mat_lin_to_aff(U);
995 Q = isl_mat_lin_to_aff(Q);
997 set = isl_set_preimage(set, U);
998 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
999 hull = uset_convex_hull(set);
1000 hull = isl_basic_set_preimage(hull, Q);
1002 return hull;
1003 error:
1004 isl_basic_set_free(lin);
1005 isl_set_free(set);
1006 return NULL;
1009 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1010 * set up an LP for solving
1012 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1014 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1015 * The next \alpha{ij} correspond to the equalities and come in pairs.
1016 * The final \alpha{ij} correspond to the inequalities.
1018 static struct isl_basic_set *valid_direction_lp(
1019 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1021 struct isl_dim *dim;
1022 struct isl_basic_set *lp;
1023 unsigned d;
1024 int n;
1025 int i, j, k;
1027 if (!bset1 || !bset2)
1028 goto error;
1029 d = 1 + isl_basic_set_total_dim(bset1);
1030 n = 2 +
1031 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1032 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1033 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1034 if (!lp)
1035 goto error;
1036 for (i = 0; i < n; ++i) {
1037 k = isl_basic_set_alloc_inequality(lp);
1038 if (k < 0)
1039 goto error;
1040 isl_seq_clr(lp->ineq[k] + 1, n);
1041 isl_int_set_si(lp->ineq[k][0], -1);
1042 isl_int_set_si(lp->ineq[k][1 + i], 1);
1044 for (i = 0; i < d; ++i) {
1045 k = isl_basic_set_alloc_equality(lp);
1046 if (k < 0)
1047 goto error;
1048 n = 0;
1049 isl_int_set_si(lp->eq[k][n++], 0);
1050 /* positivity constraint 1 >= 0 */
1051 isl_int_set_si(lp->eq[k][n++], i == 0);
1052 for (j = 0; j < bset1->n_eq; ++j) {
1053 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1054 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1056 for (j = 0; j < bset1->n_ineq; ++j)
1057 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1058 /* positivity constraint 1 >= 0 */
1059 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1060 for (j = 0; j < bset2->n_eq; ++j) {
1061 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1062 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1064 for (j = 0; j < bset2->n_ineq; ++j)
1065 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1067 lp = isl_basic_set_gauss(lp, NULL);
1068 isl_basic_set_free(bset1);
1069 isl_basic_set_free(bset2);
1070 return lp;
1071 error:
1072 isl_basic_set_free(bset1);
1073 isl_basic_set_free(bset2);
1074 return NULL;
1077 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1078 * for all rays in the homogeneous space of the two cones that correspond
1079 * to the input polyhedra bset1 and bset2.
1081 * We compute s as a vector that satisfies
1083 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1085 * with h_{ij} the normals of the facets of polyhedron i
1086 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1087 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1088 * We first set up an LP with as variables the \alpha{ij}.
1089 * In this formulation, for each polyhedron i,
1090 * the first constraint is the positivity constraint, followed by pairs
1091 * of variables for the equalities, followed by variables for the inequalities.
1092 * We then simply pick a feasible solution and compute s using (*).
1094 * Note that we simply pick any valid direction and make no attempt
1095 * to pick a "good" or even the "best" valid direction.
1097 static struct isl_vec *valid_direction(
1098 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1100 struct isl_basic_set *lp;
1101 struct isl_tab *tab;
1102 struct isl_vec *sample = NULL;
1103 struct isl_vec *dir;
1104 unsigned d;
1105 int i;
1106 int n;
1108 if (!bset1 || !bset2)
1109 goto error;
1110 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1111 isl_basic_set_copy(bset2));
1112 tab = isl_tab_from_basic_set(lp);
1113 sample = isl_tab_get_sample_value(tab);
1114 isl_tab_free(tab);
1115 isl_basic_set_free(lp);
1116 if (!sample)
1117 goto error;
1118 d = isl_basic_set_total_dim(bset1);
1119 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1120 if (!dir)
1121 goto error;
1122 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1123 n = 1;
1124 /* positivity constraint 1 >= 0 */
1125 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1126 for (i = 0; i < bset1->n_eq; ++i) {
1127 isl_int_sub(sample->block.data[n],
1128 sample->block.data[n], sample->block.data[n+1]);
1129 isl_seq_combine(dir->block.data,
1130 bset1->ctx->one, dir->block.data,
1131 sample->block.data[n], bset1->eq[i], 1 + d);
1133 n += 2;
1135 for (i = 0; i < bset1->n_ineq; ++i)
1136 isl_seq_combine(dir->block.data,
1137 bset1->ctx->one, dir->block.data,
1138 sample->block.data[n++], bset1->ineq[i], 1 + d);
1139 isl_vec_free(sample);
1140 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1141 isl_basic_set_free(bset1);
1142 isl_basic_set_free(bset2);
1143 return dir;
1144 error:
1145 isl_vec_free(sample);
1146 isl_basic_set_free(bset1);
1147 isl_basic_set_free(bset2);
1148 return NULL;
1151 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1152 * compute b_i' + A_i' x' >= 0, with
1154 * [ b_i A_i ] [ y' ] [ y' ]
1155 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1157 * In particular, add the "positivity constraint" and then perform
1158 * the mapping.
1160 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1161 struct isl_mat *T)
1163 int k;
1165 if (!bset)
1166 goto error;
1167 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1168 k = isl_basic_set_alloc_inequality(bset);
1169 if (k < 0)
1170 goto error;
1171 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1172 isl_int_set_si(bset->ineq[k][0], 1);
1173 bset = isl_basic_set_preimage(bset, T);
1174 return bset;
1175 error:
1176 isl_mat_free(T);
1177 isl_basic_set_free(bset);
1178 return NULL;
1181 /* Compute the convex hull of a pair of basic sets without any parameters or
1182 * integer divisions, where the convex hull is known to be pointed,
1183 * but the basic sets may be unbounded.
1185 * We turn this problem into the computation of a convex hull of a pair
1186 * _bounded_ polyhedra by "changing the direction of the homogeneous
1187 * dimension". This idea is due to Matthias Koeppe.
1189 * Consider the cones in homogeneous space that correspond to the
1190 * input polyhedra. The rays of these cones are also rays of the
1191 * polyhedra if the coordinate that corresponds to the homogeneous
1192 * dimension is zero. That is, if the inner product of the rays
1193 * with the homogeneous direction is zero.
1194 * The cones in the homogeneous space can also be considered to
1195 * correspond to other pairs of polyhedra by chosing a different
1196 * homogeneous direction. To ensure that both of these polyhedra
1197 * are bounded, we need to make sure that all rays of the cones
1198 * correspond to vertices and not to rays.
1199 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1200 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1201 * The vector s is computed in valid_direction.
1203 * Note that we need to consider _all_ rays of the cones and not just
1204 * the rays that correspond to rays in the polyhedra. If we were to
1205 * only consider those rays and turn them into vertices, then we
1206 * may inadvertently turn some vertices into rays.
1208 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1209 * We therefore transform the two polyhedra such that the selected
1210 * direction is mapped onto this standard direction and then proceed
1211 * with the normal computation.
1212 * Let S be a non-singular square matrix with s as its first row,
1213 * then we want to map the polyhedra to the space
1215 * [ y' ] [ y ] [ y ] [ y' ]
1216 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1218 * We take S to be the unimodular completion of s to limit the growth
1219 * of the coefficients in the following computations.
1221 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1222 * We first move to the homogeneous dimension
1224 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1225 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1227 * Then we change directoin
1229 * [ b_i A_i ] [ y' ] [ y' ]
1230 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1232 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1233 * resulting in b' + A' x' >= 0, which we then convert back
1235 * [ y ] [ y ]
1236 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1238 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1240 static struct isl_basic_set *convex_hull_pair_pointed(
1241 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1243 struct isl_ctx *ctx = NULL;
1244 struct isl_vec *dir = NULL;
1245 struct isl_mat *T = NULL;
1246 struct isl_mat *T2 = NULL;
1247 struct isl_basic_set *hull;
1248 struct isl_set *set;
1250 if (!bset1 || !bset2)
1251 goto error;
1252 ctx = bset1->ctx;
1253 dir = valid_direction(isl_basic_set_copy(bset1),
1254 isl_basic_set_copy(bset2));
1255 if (!dir)
1256 goto error;
1257 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1258 if (!T)
1259 goto error;
1260 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1261 T = isl_mat_unimodular_complete(T, 1);
1262 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1264 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1265 bset2 = homogeneous_map(bset2, T2);
1266 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1267 set = isl_set_add_basic_set(set, bset1);
1268 set = isl_set_add_basic_set(set, bset2);
1269 hull = uset_convex_hull(set);
1270 hull = isl_basic_set_preimage(hull, T);
1272 isl_vec_free(dir);
1274 return hull;
1275 error:
1276 isl_vec_free(dir);
1277 isl_basic_set_free(bset1);
1278 isl_basic_set_free(bset2);
1279 return NULL;
1282 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1283 static struct isl_basic_set *modulo_affine_hull(
1284 struct isl_set *set, struct isl_basic_set *affine_hull);
1286 /* Compute the convex hull of a pair of basic sets without any parameters or
1287 * integer divisions.
1289 * This function is called from uset_convex_hull_unbounded, which
1290 * means that the complete convex hull is unbounded. Some pairs
1291 * of basic sets may still be bounded, though.
1292 * They may even lie inside a lower dimensional space, in which
1293 * case they need to be handled inside their affine hull since
1294 * the main algorithm assumes that the result is full-dimensional.
1296 * If the convex hull of the two basic sets would have a non-trivial
1297 * lineality space, we first project out this lineality space.
1299 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1300 struct isl_basic_set *bset2)
1302 isl_basic_set *lin, *aff;
1303 int bounded1, bounded2;
1305 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1306 isl_basic_set_copy(bset2)));
1307 if (!aff)
1308 goto error;
1309 if (aff->n_eq != 0)
1310 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1311 isl_basic_set_free(aff);
1313 bounded1 = isl_basic_set_is_bounded(bset1);
1314 bounded2 = isl_basic_set_is_bounded(bset2);
1316 if (bounded1 < 0 || bounded2 < 0)
1317 goto error;
1319 if (bounded1 && bounded2)
1320 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1322 if (bounded1 || bounded2)
1323 return convex_hull_pair_pointed(bset1, bset2);
1325 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1326 isl_basic_set_copy(bset2));
1327 if (!lin)
1328 goto error;
1329 if (isl_basic_set_is_universe(lin)) {
1330 isl_basic_set_free(bset1);
1331 isl_basic_set_free(bset2);
1332 return lin;
1334 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1335 struct isl_set *set;
1336 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1337 set = isl_set_add_basic_set(set, bset1);
1338 set = isl_set_add_basic_set(set, bset2);
1339 return modulo_lineality(set, lin);
1341 isl_basic_set_free(lin);
1343 return convex_hull_pair_pointed(bset1, bset2);
1344 error:
1345 isl_basic_set_free(bset1);
1346 isl_basic_set_free(bset2);
1347 return NULL;
1350 /* Compute the lineality space of a basic set.
1351 * We currently do not allow the basic set to have any divs.
1352 * We basically just drop the constants and turn every inequality
1353 * into an equality.
1355 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1357 int i, k;
1358 struct isl_basic_set *lin = NULL;
1359 unsigned dim;
1361 if (!bset)
1362 goto error;
1363 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1364 dim = isl_basic_set_total_dim(bset);
1366 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1367 if (!lin)
1368 goto error;
1369 for (i = 0; i < bset->n_eq; ++i) {
1370 k = isl_basic_set_alloc_equality(lin);
1371 if (k < 0)
1372 goto error;
1373 isl_int_set_si(lin->eq[k][0], 0);
1374 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1376 lin = isl_basic_set_gauss(lin, NULL);
1377 if (!lin)
1378 goto error;
1379 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1380 k = isl_basic_set_alloc_equality(lin);
1381 if (k < 0)
1382 goto error;
1383 isl_int_set_si(lin->eq[k][0], 0);
1384 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1385 lin = isl_basic_set_gauss(lin, NULL);
1386 if (!lin)
1387 goto error;
1389 isl_basic_set_free(bset);
1390 return lin;
1391 error:
1392 isl_basic_set_free(lin);
1393 isl_basic_set_free(bset);
1394 return NULL;
1397 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1398 * "underlying" set "set".
1400 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1402 int i;
1403 struct isl_set *lin = NULL;
1405 if (!set)
1406 return NULL;
1407 if (set->n == 0) {
1408 struct isl_dim *dim = isl_set_get_dim(set);
1409 isl_set_free(set);
1410 return isl_basic_set_empty(dim);
1413 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1414 for (i = 0; i < set->n; ++i)
1415 lin = isl_set_add_basic_set(lin,
1416 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1417 isl_set_free(set);
1418 return isl_set_affine_hull(lin);
1421 /* Compute the convex hull of a set without any parameters or
1422 * integer divisions.
1423 * In each step, we combined two basic sets until only one
1424 * basic set is left.
1425 * The input basic sets are assumed not to have a non-trivial
1426 * lineality space. If any of the intermediate results has
1427 * a non-trivial lineality space, it is projected out.
1429 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1431 struct isl_basic_set *convex_hull = NULL;
1433 convex_hull = isl_set_copy_basic_set(set);
1434 set = isl_set_drop_basic_set(set, convex_hull);
1435 if (!set)
1436 goto error;
1437 while (set->n > 0) {
1438 struct isl_basic_set *t;
1439 t = isl_set_copy_basic_set(set);
1440 if (!t)
1441 goto error;
1442 set = isl_set_drop_basic_set(set, t);
1443 if (!set)
1444 goto error;
1445 convex_hull = convex_hull_pair(convex_hull, t);
1446 if (set->n == 0)
1447 break;
1448 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1449 if (!t)
1450 goto error;
1451 if (isl_basic_set_is_universe(t)) {
1452 isl_basic_set_free(convex_hull);
1453 convex_hull = t;
1454 break;
1456 if (t->n_eq < isl_basic_set_total_dim(t)) {
1457 set = isl_set_add_basic_set(set, convex_hull);
1458 return modulo_lineality(set, t);
1460 isl_basic_set_free(t);
1462 isl_set_free(set);
1463 return convex_hull;
1464 error:
1465 isl_set_free(set);
1466 isl_basic_set_free(convex_hull);
1467 return NULL;
1470 /* Compute an initial hull for wrapping containing a single initial
1471 * facet.
1472 * This function assumes that the given set is bounded.
1474 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1475 struct isl_set *set)
1477 struct isl_mat *bounds = NULL;
1478 unsigned dim;
1479 int k;
1481 if (!hull)
1482 goto error;
1483 bounds = initial_facet_constraint(set);
1484 if (!bounds)
1485 goto error;
1486 k = isl_basic_set_alloc_inequality(hull);
1487 if (k < 0)
1488 goto error;
1489 dim = isl_set_n_dim(set);
1490 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1491 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1492 isl_mat_free(bounds);
1494 return hull;
1495 error:
1496 isl_basic_set_free(hull);
1497 isl_mat_free(bounds);
1498 return NULL;
1501 struct max_constraint {
1502 struct isl_mat *c;
1503 int count;
1504 int ineq;
1507 static int max_constraint_equal(const void *entry, const void *val)
1509 struct max_constraint *a = (struct max_constraint *)entry;
1510 isl_int *b = (isl_int *)val;
1512 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1515 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1516 isl_int *con, unsigned len, int n, int ineq)
1518 struct isl_hash_table_entry *entry;
1519 struct max_constraint *c;
1520 uint32_t c_hash;
1522 c_hash = isl_seq_get_hash(con + 1, len);
1523 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1524 con + 1, 0);
1525 if (!entry)
1526 return;
1527 c = entry->data;
1528 if (c->count < n) {
1529 isl_hash_table_remove(ctx, table, entry);
1530 return;
1532 c->count++;
1533 if (isl_int_gt(c->c->row[0][0], con[0]))
1534 return;
1535 if (isl_int_eq(c->c->row[0][0], con[0])) {
1536 if (ineq)
1537 c->ineq = ineq;
1538 return;
1540 c->c = isl_mat_cow(c->c);
1541 isl_int_set(c->c->row[0][0], con[0]);
1542 c->ineq = ineq;
1545 /* Check whether the constraint hash table "table" constains the constraint
1546 * "con".
1548 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1549 isl_int *con, unsigned len, int n)
1551 struct isl_hash_table_entry *entry;
1552 struct max_constraint *c;
1553 uint32_t c_hash;
1555 c_hash = isl_seq_get_hash(con + 1, len);
1556 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1557 con + 1, 0);
1558 if (!entry)
1559 return 0;
1560 c = entry->data;
1561 if (c->count < n)
1562 return 0;
1563 return isl_int_eq(c->c->row[0][0], con[0]);
1566 /* Check for inequality constraints of a basic set without equalities
1567 * such that the same or more stringent copies of the constraint appear
1568 * in all of the basic sets. Such constraints are necessarily facet
1569 * constraints of the convex hull.
1571 * If the resulting basic set is by chance identical to one of
1572 * the basic sets in "set", then we know that this basic set contains
1573 * all other basic sets and is therefore the convex hull of set.
1574 * In this case we set *is_hull to 1.
1576 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1577 struct isl_set *set, int *is_hull)
1579 int i, j, s, n;
1580 int min_constraints;
1581 int best;
1582 struct max_constraint *constraints = NULL;
1583 struct isl_hash_table *table = NULL;
1584 unsigned total;
1586 *is_hull = 0;
1588 for (i = 0; i < set->n; ++i)
1589 if (set->p[i]->n_eq == 0)
1590 break;
1591 if (i >= set->n)
1592 return hull;
1593 min_constraints = set->p[i]->n_ineq;
1594 best = i;
1595 for (i = best + 1; i < set->n; ++i) {
1596 if (set->p[i]->n_eq != 0)
1597 continue;
1598 if (set->p[i]->n_ineq >= min_constraints)
1599 continue;
1600 min_constraints = set->p[i]->n_ineq;
1601 best = i;
1603 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1604 min_constraints);
1605 if (!constraints)
1606 return hull;
1607 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1608 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1609 goto error;
1611 total = isl_dim_total(set->dim);
1612 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1613 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1614 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1615 if (!constraints[i].c)
1616 goto error;
1617 constraints[i].ineq = 1;
1619 for (i = 0; i < min_constraints; ++i) {
1620 struct isl_hash_table_entry *entry;
1621 uint32_t c_hash;
1622 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1623 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1624 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1625 if (!entry)
1626 goto error;
1627 isl_assert(hull->ctx, !entry->data, goto error);
1628 entry->data = &constraints[i];
1631 n = 0;
1632 for (s = 0; s < set->n; ++s) {
1633 if (s == best)
1634 continue;
1636 for (i = 0; i < set->p[s]->n_eq; ++i) {
1637 isl_int *eq = set->p[s]->eq[i];
1638 for (j = 0; j < 2; ++j) {
1639 isl_seq_neg(eq, eq, 1 + total);
1640 update_constraint(hull->ctx, table,
1641 eq, total, n, 0);
1644 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1645 isl_int *ineq = set->p[s]->ineq[i];
1646 update_constraint(hull->ctx, table, ineq, total, n,
1647 set->p[s]->n_eq == 0);
1649 ++n;
1652 for (i = 0; i < min_constraints; ++i) {
1653 if (constraints[i].count < n)
1654 continue;
1655 if (!constraints[i].ineq)
1656 continue;
1657 j = isl_basic_set_alloc_inequality(hull);
1658 if (j < 0)
1659 goto error;
1660 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1663 for (s = 0; s < set->n; ++s) {
1664 if (set->p[s]->n_eq)
1665 continue;
1666 if (set->p[s]->n_ineq != hull->n_ineq)
1667 continue;
1668 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1669 isl_int *ineq = set->p[s]->ineq[i];
1670 if (!has_constraint(hull->ctx, table, ineq, total, n))
1671 break;
1673 if (i == set->p[s]->n_ineq)
1674 *is_hull = 1;
1677 isl_hash_table_clear(table);
1678 for (i = 0; i < min_constraints; ++i)
1679 isl_mat_free(constraints[i].c);
1680 free(constraints);
1681 free(table);
1682 return hull;
1683 error:
1684 isl_hash_table_clear(table);
1685 free(table);
1686 if (constraints)
1687 for (i = 0; i < min_constraints; ++i)
1688 isl_mat_free(constraints[i].c);
1689 free(constraints);
1690 return hull;
1693 /* Create a template for the convex hull of "set" and fill it up
1694 * obvious facet constraints, if any. If the result happens to
1695 * be the convex hull of "set" then *is_hull is set to 1.
1697 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1699 struct isl_basic_set *hull;
1700 unsigned n_ineq;
1701 int i;
1703 n_ineq = 1;
1704 for (i = 0; i < set->n; ++i) {
1705 n_ineq += set->p[i]->n_eq;
1706 n_ineq += set->p[i]->n_ineq;
1708 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1709 hull = isl_basic_set_set_rational(hull);
1710 if (!hull)
1711 return NULL;
1712 return common_constraints(hull, set, is_hull);
1715 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1717 struct isl_basic_set *hull;
1718 int is_hull;
1720 hull = proto_hull(set, &is_hull);
1721 if (hull && !is_hull) {
1722 if (hull->n_ineq == 0)
1723 hull = initial_hull(hull, set);
1724 hull = extend(hull, set);
1726 isl_set_free(set);
1728 return hull;
1731 /* Compute the convex hull of a set without any parameters or
1732 * integer divisions. Depending on whether the set is bounded,
1733 * we pass control to the wrapping based convex hull or
1734 * the Fourier-Motzkin elimination based convex hull.
1735 * We also handle a few special cases before checking the boundedness.
1737 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1739 struct isl_basic_set *convex_hull = NULL;
1740 struct isl_basic_set *lin;
1742 if (isl_set_n_dim(set) == 0)
1743 return convex_hull_0d(set);
1745 set = isl_set_coalesce(set);
1746 set = isl_set_set_rational(set);
1748 if (!set)
1749 goto error;
1750 if (!set)
1751 return NULL;
1752 if (set->n == 1) {
1753 convex_hull = isl_basic_set_copy(set->p[0]);
1754 isl_set_free(set);
1755 return convex_hull;
1757 if (isl_set_n_dim(set) == 1)
1758 return convex_hull_1d(set);
1760 if (isl_set_is_bounded(set))
1761 return uset_convex_hull_wrap(set);
1763 lin = uset_combined_lineality_space(isl_set_copy(set));
1764 if (!lin)
1765 goto error;
1766 if (isl_basic_set_is_universe(lin)) {
1767 isl_set_free(set);
1768 return lin;
1770 if (lin->n_eq < isl_basic_set_total_dim(lin))
1771 return modulo_lineality(set, lin);
1772 isl_basic_set_free(lin);
1774 return uset_convex_hull_unbounded(set);
1775 error:
1776 isl_set_free(set);
1777 isl_basic_set_free(convex_hull);
1778 return NULL;
1781 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1782 * without parameters or divs and where the convex hull of set is
1783 * known to be full-dimensional.
1785 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1787 struct isl_basic_set *convex_hull = NULL;
1789 if (isl_set_n_dim(set) == 0) {
1790 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1791 isl_set_free(set);
1792 convex_hull = isl_basic_set_set_rational(convex_hull);
1793 return convex_hull;
1796 set = isl_set_set_rational(set);
1798 if (!set)
1799 goto error;
1800 set = isl_set_coalesce(set);
1801 if (!set)
1802 goto error;
1803 if (set->n == 1) {
1804 convex_hull = isl_basic_set_copy(set->p[0]);
1805 isl_set_free(set);
1806 return convex_hull;
1808 if (isl_set_n_dim(set) == 1)
1809 return convex_hull_1d(set);
1811 return uset_convex_hull_wrap(set);
1812 error:
1813 isl_set_free(set);
1814 return NULL;
1817 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1818 * We first remove the equalities (transforming the set), compute the
1819 * convex hull of the transformed set and then add the equalities back
1820 * (after performing the inverse transformation.
1822 static struct isl_basic_set *modulo_affine_hull(
1823 struct isl_set *set, struct isl_basic_set *affine_hull)
1825 struct isl_mat *T;
1826 struct isl_mat *T2;
1827 struct isl_basic_set *dummy;
1828 struct isl_basic_set *convex_hull;
1830 dummy = isl_basic_set_remove_equalities(
1831 isl_basic_set_copy(affine_hull), &T, &T2);
1832 if (!dummy)
1833 goto error;
1834 isl_basic_set_free(dummy);
1835 set = isl_set_preimage(set, T);
1836 convex_hull = uset_convex_hull(set);
1837 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1838 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1839 return convex_hull;
1840 error:
1841 isl_basic_set_free(affine_hull);
1842 isl_set_free(set);
1843 return NULL;
1846 /* Compute the convex hull of a map.
1848 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1849 * specifically, the wrapping of facets to obtain new facets.
1851 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1853 struct isl_basic_set *bset;
1854 struct isl_basic_map *model = NULL;
1855 struct isl_basic_set *affine_hull = NULL;
1856 struct isl_basic_map *convex_hull = NULL;
1857 struct isl_set *set = NULL;
1858 struct isl_ctx *ctx;
1860 if (!map)
1861 goto error;
1863 ctx = map->ctx;
1864 if (map->n == 0) {
1865 convex_hull = isl_basic_map_empty_like_map(map);
1866 isl_map_free(map);
1867 return convex_hull;
1870 map = isl_map_detect_equalities(map);
1871 map = isl_map_align_divs(map);
1872 model = isl_basic_map_copy(map->p[0]);
1873 set = isl_map_underlying_set(map);
1874 if (!set)
1875 goto error;
1877 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1878 if (!affine_hull)
1879 goto error;
1880 if (affine_hull->n_eq != 0)
1881 bset = modulo_affine_hull(set, affine_hull);
1882 else {
1883 isl_basic_set_free(affine_hull);
1884 bset = uset_convex_hull(set);
1887 convex_hull = isl_basic_map_overlying_set(bset, model);
1889 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1890 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1891 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1892 return convex_hull;
1893 error:
1894 isl_set_free(set);
1895 isl_basic_map_free(model);
1896 return NULL;
1899 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1901 return (struct isl_basic_set *)
1902 isl_map_convex_hull((struct isl_map *)set);
1905 struct sh_data_entry {
1906 struct isl_hash_table *table;
1907 struct isl_tab *tab;
1910 /* Holds the data needed during the simple hull computation.
1911 * In particular,
1912 * n the number of basic sets in the original set
1913 * hull_table a hash table of already computed constraints
1914 * in the simple hull
1915 * p for each basic set,
1916 * table a hash table of the constraints
1917 * tab the tableau corresponding to the basic set
1919 struct sh_data {
1920 struct isl_ctx *ctx;
1921 unsigned n;
1922 struct isl_hash_table *hull_table;
1923 struct sh_data_entry p[1];
1926 static void sh_data_free(struct sh_data *data)
1928 int i;
1930 if (!data)
1931 return;
1932 isl_hash_table_free(data->ctx, data->hull_table);
1933 for (i = 0; i < data->n; ++i) {
1934 isl_hash_table_free(data->ctx, data->p[i].table);
1935 isl_tab_free(data->p[i].tab);
1937 free(data);
1940 struct ineq_cmp_data {
1941 unsigned len;
1942 isl_int *p;
1945 static int has_ineq(const void *entry, const void *val)
1947 isl_int *row = (isl_int *)entry;
1948 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1950 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1951 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1954 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1955 isl_int *ineq, unsigned len)
1957 uint32_t c_hash;
1958 struct ineq_cmp_data v;
1959 struct isl_hash_table_entry *entry;
1961 v.len = len;
1962 v.p = ineq;
1963 c_hash = isl_seq_get_hash(ineq + 1, len);
1964 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1965 if (!entry)
1966 return - 1;
1967 entry->data = ineq;
1968 return 0;
1971 /* Fill hash table "table" with the constraints of "bset".
1972 * Equalities are added as two inequalities.
1973 * The value in the hash table is a pointer to the (in)equality of "bset".
1975 static int hash_basic_set(struct isl_hash_table *table,
1976 struct isl_basic_set *bset)
1978 int i, j;
1979 unsigned dim = isl_basic_set_total_dim(bset);
1981 for (i = 0; i < bset->n_eq; ++i) {
1982 for (j = 0; j < 2; ++j) {
1983 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1984 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1985 return -1;
1988 for (i = 0; i < bset->n_ineq; ++i) {
1989 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1990 return -1;
1992 return 0;
1995 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
1997 struct sh_data *data;
1998 int i;
2000 data = isl_calloc(set->ctx, struct sh_data,
2001 sizeof(struct sh_data) +
2002 (set->n - 1) * sizeof(struct sh_data_entry));
2003 if (!data)
2004 return NULL;
2005 data->ctx = set->ctx;
2006 data->n = set->n;
2007 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2008 if (!data->hull_table)
2009 goto error;
2010 for (i = 0; i < set->n; ++i) {
2011 data->p[i].table = isl_hash_table_alloc(set->ctx,
2012 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2013 if (!data->p[i].table)
2014 goto error;
2015 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2016 goto error;
2018 return data;
2019 error:
2020 sh_data_free(data);
2021 return NULL;
2024 /* Check if inequality "ineq" is a bound for basic set "j" or if
2025 * it can be relaxed (by increasing the constant term) to become
2026 * a bound for that basic set. In the latter case, the constant
2027 * term is updated.
2028 * Return 1 if "ineq" is a bound
2029 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2030 * -1 if some error occurred
2032 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2033 isl_int *ineq)
2035 enum isl_lp_result res;
2036 isl_int opt;
2038 if (!data->p[j].tab) {
2039 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2040 if (!data->p[j].tab)
2041 return -1;
2044 isl_int_init(opt);
2046 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2047 &opt, NULL, 0);
2048 if (res == isl_lp_ok && isl_int_is_neg(opt))
2049 isl_int_sub(ineq[0], ineq[0], opt);
2051 isl_int_clear(opt);
2053 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2054 res == isl_lp_unbounded ? 0 : -1;
2057 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2058 * become a bound on the whole set. If so, add the (relaxed) inequality
2059 * to "hull".
2061 * We first check if "hull" already contains a translate of the inequality.
2062 * If so, we are done.
2063 * Then, we check if any of the previous basic sets contains a translate
2064 * of the inequality. If so, then we have already considered this
2065 * inequality and we are done.
2066 * Otherwise, for each basic set other than "i", we check if the inequality
2067 * is a bound on the basic set.
2068 * For previous basic sets, we know that they do not contain a translate
2069 * of the inequality, so we directly call is_bound.
2070 * For following basic sets, we first check if a translate of the
2071 * inequality appears in its description and if so directly update
2072 * the inequality accordingly.
2074 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2075 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2077 uint32_t c_hash;
2078 struct ineq_cmp_data v;
2079 struct isl_hash_table_entry *entry;
2080 int j, k;
2082 if (!hull)
2083 return NULL;
2085 v.len = isl_basic_set_total_dim(hull);
2086 v.p = ineq;
2087 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2089 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2090 has_ineq, &v, 0);
2091 if (entry)
2092 return hull;
2094 for (j = 0; j < i; ++j) {
2095 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2096 c_hash, has_ineq, &v, 0);
2097 if (entry)
2098 break;
2100 if (j < i)
2101 return hull;
2103 k = isl_basic_set_alloc_inequality(hull);
2104 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2105 if (k < 0)
2106 goto error;
2108 for (j = 0; j < i; ++j) {
2109 int bound;
2110 bound = is_bound(data, set, j, hull->ineq[k]);
2111 if (bound < 0)
2112 goto error;
2113 if (!bound)
2114 break;
2116 if (j < i) {
2117 isl_basic_set_free_inequality(hull, 1);
2118 return hull;
2121 for (j = i + 1; j < set->n; ++j) {
2122 int bound, neg;
2123 isl_int *ineq_j;
2124 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2125 c_hash, has_ineq, &v, 0);
2126 if (entry) {
2127 ineq_j = entry->data;
2128 neg = isl_seq_is_neg(ineq_j + 1,
2129 hull->ineq[k] + 1, v.len);
2130 if (neg)
2131 isl_int_neg(ineq_j[0], ineq_j[0]);
2132 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2133 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2134 if (neg)
2135 isl_int_neg(ineq_j[0], ineq_j[0]);
2136 continue;
2138 bound = is_bound(data, set, j, hull->ineq[k]);
2139 if (bound < 0)
2140 goto error;
2141 if (!bound)
2142 break;
2144 if (j < set->n) {
2145 isl_basic_set_free_inequality(hull, 1);
2146 return hull;
2149 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2150 has_ineq, &v, 1);
2151 if (!entry)
2152 goto error;
2153 entry->data = hull->ineq[k];
2155 return hull;
2156 error:
2157 isl_basic_set_free(hull);
2158 return NULL;
2161 /* Check if any inequality from basic set "i" can be relaxed to
2162 * become a bound on the whole set. If so, add the (relaxed) inequality
2163 * to "hull".
2165 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2166 struct sh_data *data, struct isl_set *set, int i)
2168 int j, k;
2169 unsigned dim = isl_basic_set_total_dim(bset);
2171 for (j = 0; j < set->p[i]->n_eq; ++j) {
2172 for (k = 0; k < 2; ++k) {
2173 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2174 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2177 for (j = 0; j < set->p[i]->n_ineq; ++j)
2178 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2179 return bset;
2182 /* Compute a superset of the convex hull of set that is described
2183 * by only translates of the constraints in the constituents of set.
2185 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2187 struct sh_data *data = NULL;
2188 struct isl_basic_set *hull = NULL;
2189 unsigned n_ineq;
2190 int i;
2192 if (!set)
2193 return NULL;
2195 n_ineq = 0;
2196 for (i = 0; i < set->n; ++i) {
2197 if (!set->p[i])
2198 goto error;
2199 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2202 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2203 if (!hull)
2204 goto error;
2206 data = sh_data_alloc(set, n_ineq);
2207 if (!data)
2208 goto error;
2210 for (i = 0; i < set->n; ++i)
2211 hull = add_bounds(hull, data, set, i);
2213 sh_data_free(data);
2214 isl_set_free(set);
2216 return hull;
2217 error:
2218 sh_data_free(data);
2219 isl_basic_set_free(hull);
2220 isl_set_free(set);
2221 return NULL;
2224 /* Compute a superset of the convex hull of map that is described
2225 * by only translates of the constraints in the constituents of map.
2227 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2229 struct isl_set *set = NULL;
2230 struct isl_basic_map *model = NULL;
2231 struct isl_basic_map *hull;
2232 struct isl_basic_map *affine_hull;
2233 struct isl_basic_set *bset = NULL;
2235 if (!map)
2236 return NULL;
2237 if (map->n == 0) {
2238 hull = isl_basic_map_empty_like_map(map);
2239 isl_map_free(map);
2240 return hull;
2242 if (map->n == 1) {
2243 hull = isl_basic_map_copy(map->p[0]);
2244 isl_map_free(map);
2245 return hull;
2248 map = isl_map_detect_equalities(map);
2249 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2250 map = isl_map_align_divs(map);
2251 model = isl_basic_map_copy(map->p[0]);
2253 set = isl_map_underlying_set(map);
2255 bset = uset_simple_hull(set);
2257 hull = isl_basic_map_overlying_set(bset, model);
2259 hull = isl_basic_map_intersect(hull, affine_hull);
2260 hull = isl_basic_map_convex_hull(hull);
2261 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2262 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2264 return hull;
2267 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2269 return (struct isl_basic_set *)
2270 isl_map_simple_hull((struct isl_map *)set);
2273 /* Given a set "set", return parametric bounds on the dimension "dim".
2275 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2277 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2278 set = isl_set_copy(set);
2279 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2280 set = isl_set_eliminate_dims(set, 0, dim);
2281 return isl_set_convex_hull(set);
2284 /* Computes a "simple hull" and then check if each dimension in the
2285 * resulting hull is bounded by a symbolic constant. If not, the
2286 * hull is intersected with the corresponding bounds on the whole set.
2288 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2290 int i, j;
2291 struct isl_basic_set *hull;
2292 unsigned nparam, left;
2293 int removed_divs = 0;
2295 hull = isl_set_simple_hull(isl_set_copy(set));
2296 if (!hull)
2297 goto error;
2299 nparam = isl_basic_set_dim(hull, isl_dim_param);
2300 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2301 int lower = 0, upper = 0;
2302 struct isl_basic_set *bounds;
2304 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2305 for (j = 0; j < hull->n_eq; ++j) {
2306 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2307 continue;
2308 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2309 left) == -1)
2310 break;
2312 if (j < hull->n_eq)
2313 continue;
2315 for (j = 0; j < hull->n_ineq; ++j) {
2316 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2317 continue;
2318 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2319 left) != -1 ||
2320 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2321 i) != -1)
2322 continue;
2323 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2324 lower = 1;
2325 else
2326 upper = 1;
2327 if (lower && upper)
2328 break;
2331 if (lower && upper)
2332 continue;
2334 if (!removed_divs) {
2335 set = isl_set_remove_divs(set);
2336 if (!set)
2337 goto error;
2338 removed_divs = 1;
2340 bounds = set_bounds(set, i);
2341 hull = isl_basic_set_intersect(hull, bounds);
2342 if (!hull)
2343 goto error;
2346 isl_set_free(set);
2347 return hull;
2348 error:
2349 isl_set_free(set);
2350 return NULL;