2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_lp_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
21 #include <isl_options_private.h>
22 #include "isl_equalities.h"
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
30 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
38 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
40 enum isl_lp_result res
;
47 total
= isl_basic_map_total_dim(*bmap
);
48 for (i
= 0; i
< total
; ++i
) {
50 if (isl_int_is_zero(c
[1+i
]))
52 sign
= isl_int_sgn(c
[1+i
]);
53 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
54 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
56 if (j
== (*bmap
)->n_ineq
)
62 res
= isl_basic_map_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
,
64 if (res
== isl_lp_unbounded
)
66 if (res
== isl_lp_error
)
68 if (res
== isl_lp_empty
) {
69 *bmap
= isl_basic_map_set_to_empty(*bmap
);
72 return !isl_int_is_neg(*opt_n
);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
76 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Since some constraints may be mutually redundant, sort the constraints
87 * first such that constraints that involve existentially quantified
88 * variables are considered for removal before those that do not.
89 * The sorting is also needed for the use in map_simple_hull.
91 * Note that isl_tab_detect_implicit_equalities may also end up
92 * marking some constraints as redundant. Make sure the constraints
93 * are preserved and undo those marking such that isl_tab_detect_redundant
94 * can consider the constraints in the sorted order.
96 * Alternatively, we could have intersected the basic map with the
97 * corresponding equality and then checked if the dimension was that
100 __isl_give isl_basic_map
*isl_basic_map_remove_redundancies(
101 __isl_take isl_basic_map
*bmap
)
108 bmap
= isl_basic_map_gauss(bmap
, NULL
);
109 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
111 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
113 if (bmap
->n_ineq
<= 1)
116 bmap
= isl_basic_map_sort_constraints(bmap
);
117 tab
= isl_tab_from_basic_map(bmap
, 0);
121 if (isl_tab_detect_implicit_equalities(tab
) < 0)
123 if (isl_tab_restore_redundant(tab
) < 0)
126 if (isl_tab_detect_redundant(tab
) < 0)
128 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
132 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
133 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
137 isl_basic_map_free(bmap
);
141 __isl_give isl_basic_set
*isl_basic_set_remove_redundancies(
142 __isl_take isl_basic_set
*bset
)
144 return bset_from_bmap(
145 isl_basic_map_remove_redundancies(bset_to_bmap(bset
)));
148 /* Remove redundant constraints in each of the basic maps.
150 __isl_give isl_map
*isl_map_remove_redundancies(__isl_take isl_map
*map
)
152 return isl_map_inline_foreach_basic_map(map
,
153 &isl_basic_map_remove_redundancies
);
156 __isl_give isl_set
*isl_set_remove_redundancies(__isl_take isl_set
*set
)
158 return isl_map_remove_redundancies(set
);
161 /* Check if the set set is bound in the direction of the affine
162 * constraint c and if so, set the constant term such that the
163 * resulting constraint is a bounding constraint for the set.
165 static int uset_is_bound(struct isl_set
*set
, isl_int
*c
, unsigned len
)
173 isl_int_init(opt_denom
);
175 for (j
= 0; j
< set
->n
; ++j
) {
176 enum isl_lp_result res
;
178 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
181 res
= isl_basic_set_solve_lp(set
->p
[j
],
182 0, c
, set
->ctx
->one
, &opt
, &opt_denom
, NULL
);
183 if (res
== isl_lp_unbounded
)
185 if (res
== isl_lp_error
)
187 if (res
== isl_lp_empty
) {
188 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
193 if (first
|| isl_int_is_neg(opt
)) {
194 if (!isl_int_is_one(opt_denom
))
195 isl_seq_scale(c
, c
, opt_denom
, len
);
196 isl_int_sub(c
[0], c
[0], opt
);
201 isl_int_clear(opt_denom
);
205 isl_int_clear(opt_denom
);
209 __isl_give isl_basic_map
*isl_basic_map_set_rational(
210 __isl_take isl_basic_map
*bmap
)
215 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
218 bmap
= isl_basic_map_cow(bmap
);
222 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
224 return isl_basic_map_finalize(bmap
);
227 __isl_give isl_basic_set
*isl_basic_set_set_rational(
228 __isl_take isl_basic_set
*bset
)
230 return isl_basic_map_set_rational(bset
);
233 __isl_give isl_map
*isl_map_set_rational(__isl_take isl_map
*map
)
237 map
= isl_map_cow(map
);
240 for (i
= 0; i
< map
->n
; ++i
) {
241 map
->p
[i
] = isl_basic_map_set_rational(map
->p
[i
]);
251 __isl_give isl_set
*isl_set_set_rational(__isl_take isl_set
*set
)
253 return isl_map_set_rational(set
);
256 static struct isl_basic_set
*isl_basic_set_add_equality(
257 struct isl_basic_set
*bset
, isl_int
*c
)
265 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
268 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
269 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
270 dim
= isl_basic_set_n_dim(bset
);
271 bset
= isl_basic_set_cow(bset
);
272 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
273 i
= isl_basic_set_alloc_equality(bset
);
276 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
279 isl_basic_set_free(bset
);
283 static struct isl_set
*isl_set_add_basic_set_equality(struct isl_set
*set
, isl_int
*c
)
287 set
= isl_set_cow(set
);
290 for (i
= 0; i
< set
->n
; ++i
) {
291 set
->p
[i
] = isl_basic_set_add_equality(set
->p
[i
], c
);
301 /* Given a union of basic sets, construct the constraints for wrapping
302 * a facet around one of its ridges.
303 * In particular, if each of n the d-dimensional basic sets i in "set"
304 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
305 * and is defined by the constraints
309 * then the resulting set is of dimension n*(1+d) and has as constraints
318 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
320 struct isl_basic_set
*lp
;
324 unsigned dim
, lp_dim
;
329 dim
= 1 + isl_set_n_dim(set
);
332 for (i
= 0; i
< set
->n
; ++i
) {
333 n_eq
+= set
->p
[i
]->n_eq
;
334 n_ineq
+= set
->p
[i
]->n_ineq
;
336 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
337 lp
= isl_basic_set_set_rational(lp
);
340 lp_dim
= isl_basic_set_n_dim(lp
);
341 k
= isl_basic_set_alloc_equality(lp
);
342 isl_int_set_si(lp
->eq
[k
][0], -1);
343 for (i
= 0; i
< set
->n
; ++i
) {
344 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
345 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
346 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
348 for (i
= 0; i
< set
->n
; ++i
) {
349 k
= isl_basic_set_alloc_inequality(lp
);
350 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
351 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
353 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
354 k
= isl_basic_set_alloc_equality(lp
);
355 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
356 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
357 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
360 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
361 k
= isl_basic_set_alloc_inequality(lp
);
362 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
363 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
364 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
370 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
371 * of that facet, compute the other facet of the convex hull that contains
374 * We first transform the set such that the facet constraint becomes
378 * I.e., the facet lies in
382 * and on that facet, the constraint that defines the ridge is
386 * (This transformation is not strictly needed, all that is needed is
387 * that the ridge contains the origin.)
389 * Since the ridge contains the origin, the cone of the convex hull
390 * will be of the form
395 * with this second constraint defining the new facet.
396 * The constant a is obtained by settting x_1 in the cone of the
397 * convex hull to 1 and minimizing x_2.
398 * Now, each element in the cone of the convex hull is the sum
399 * of elements in the cones of the basic sets.
400 * If a_i is the dilation factor of basic set i, then the problem
401 * we need to solve is
414 * the constraints of each (transformed) basic set.
415 * If a = n/d, then the constraint defining the new facet (in the transformed
418 * -n x_1 + d x_2 >= 0
420 * In the original space, we need to take the same combination of the
421 * corresponding constraints "facet" and "ridge".
423 * If a = -infty = "-1/0", then we just return the original facet constraint.
424 * This means that the facet is unbounded, but has a bounded intersection
425 * with the union of sets.
427 isl_int
*isl_set_wrap_facet(__isl_keep isl_set
*set
,
428 isl_int
*facet
, isl_int
*ridge
)
432 struct isl_mat
*T
= NULL
;
433 struct isl_basic_set
*lp
= NULL
;
435 enum isl_lp_result res
;
442 set
= isl_set_copy(set
);
443 set
= isl_set_set_rational(set
);
445 dim
= 1 + isl_set_n_dim(set
);
446 T
= isl_mat_alloc(ctx
, 3, dim
);
449 isl_int_set_si(T
->row
[0][0], 1);
450 isl_seq_clr(T
->row
[0]+1, dim
- 1);
451 isl_seq_cpy(T
->row
[1], facet
, dim
);
452 isl_seq_cpy(T
->row
[2], ridge
, dim
);
453 T
= isl_mat_right_inverse(T
);
454 set
= isl_set_preimage(set
, T
);
458 lp
= wrap_constraints(set
);
459 obj
= isl_vec_alloc(ctx
, 1 + dim
*set
->n
);
462 isl_int_set_si(obj
->block
.data
[0], 0);
463 for (i
= 0; i
< set
->n
; ++i
) {
464 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
465 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
466 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
470 res
= isl_basic_set_solve_lp(lp
, 0,
471 obj
->block
.data
, ctx
->one
, &num
, &den
, NULL
);
472 if (res
== isl_lp_ok
) {
473 isl_int_neg(num
, num
);
474 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
475 isl_seq_normalize(ctx
, facet
, dim
);
480 isl_basic_set_free(lp
);
482 if (res
== isl_lp_error
)
484 isl_assert(ctx
, res
== isl_lp_ok
|| res
== isl_lp_unbounded
,
488 isl_basic_set_free(lp
);
494 /* Compute the constraint of a facet of "set".
496 * We first compute the intersection with a bounding constraint
497 * that is orthogonal to one of the coordinate axes.
498 * If the affine hull of this intersection has only one equality,
499 * we have found a facet.
500 * Otherwise, we wrap the current bounding constraint around
501 * one of the equalities of the face (one that is not equal to
502 * the current bounding constraint).
503 * This process continues until we have found a facet.
504 * The dimension of the intersection increases by at least
505 * one on each iteration, so termination is guaranteed.
507 static __isl_give isl_mat
*initial_facet_constraint(__isl_keep isl_set
*set
)
509 struct isl_set
*slice
= NULL
;
510 struct isl_basic_set
*face
= NULL
;
512 unsigned dim
= isl_set_n_dim(set
);
514 isl_mat
*bounds
= NULL
;
516 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
517 bounds
= isl_mat_alloc(set
->ctx
, 1, 1 + dim
);
521 isl_seq_clr(bounds
->row
[0], dim
);
522 isl_int_set_si(bounds
->row
[0][1 + dim
- 1], 1);
523 is_bound
= uset_is_bound(set
, bounds
->row
[0], 1 + dim
);
526 isl_assert(set
->ctx
, is_bound
, goto error
);
527 isl_seq_normalize(set
->ctx
, bounds
->row
[0], 1 + dim
);
531 slice
= isl_set_copy(set
);
532 slice
= isl_set_add_basic_set_equality(slice
, bounds
->row
[0]);
533 face
= isl_set_affine_hull(slice
);
536 if (face
->n_eq
== 1) {
537 isl_basic_set_free(face
);
540 for (i
= 0; i
< face
->n_eq
; ++i
)
541 if (!isl_seq_eq(bounds
->row
[0], face
->eq
[i
], 1 + dim
) &&
542 !isl_seq_is_neg(bounds
->row
[0],
543 face
->eq
[i
], 1 + dim
))
545 isl_assert(set
->ctx
, i
< face
->n_eq
, goto error
);
546 if (!isl_set_wrap_facet(set
, bounds
->row
[0], face
->eq
[i
]))
548 isl_seq_normalize(set
->ctx
, bounds
->row
[0], bounds
->n_col
);
549 isl_basic_set_free(face
);
554 isl_basic_set_free(face
);
555 isl_mat_free(bounds
);
559 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
560 * compute a hyperplane description of the facet, i.e., compute the facets
563 * We compute an affine transformation that transforms the constraint
572 * by computing the right inverse U of a matrix that starts with the rows
585 * Since z_1 is zero, we can drop this variable as well as the corresponding
586 * column of U to obtain
594 * with Q' equal to Q, but without the corresponding row.
595 * After computing the facets of the facet in the z' space,
596 * we convert them back to the x space through Q.
598 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
600 struct isl_mat
*m
, *U
, *Q
;
601 struct isl_basic_set
*facet
= NULL
;
606 set
= isl_set_copy(set
);
607 dim
= isl_set_n_dim(set
);
608 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
611 isl_int_set_si(m
->row
[0][0], 1);
612 isl_seq_clr(m
->row
[0]+1, dim
);
613 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
614 U
= isl_mat_right_inverse(m
);
615 Q
= isl_mat_right_inverse(isl_mat_copy(U
));
616 U
= isl_mat_drop_cols(U
, 1, 1);
617 Q
= isl_mat_drop_rows(Q
, 1, 1);
618 set
= isl_set_preimage(set
, U
);
619 facet
= uset_convex_hull_wrap_bounded(set
);
620 facet
= isl_basic_set_preimage(facet
, Q
);
621 if (facet
&& facet
->n_eq
!= 0)
622 isl_die(ctx
, isl_error_internal
, "unexpected equality",
623 return isl_basic_set_free(facet
));
626 isl_basic_set_free(facet
);
631 /* Given an initial facet constraint, compute the remaining facets.
632 * We do this by running through all facets found so far and computing
633 * the adjacent facets through wrapping, adding those facets that we
634 * hadn't already found before.
636 * For each facet we have found so far, we first compute its facets
637 * in the resulting convex hull. That is, we compute the ridges
638 * of the resulting convex hull contained in the facet.
639 * We also compute the corresponding facet in the current approximation
640 * of the convex hull. There is no need to wrap around the ridges
641 * in this facet since that would result in a facet that is already
642 * present in the current approximation.
644 * This function can still be significantly optimized by checking which of
645 * the facets of the basic sets are also facets of the convex hull and
646 * using all the facets so far to help in constructing the facets of the
649 * using the technique in section "3.1 Ridge Generation" of
650 * "Extended Convex Hull" by Fukuda et al.
652 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
657 struct isl_basic_set
*facet
= NULL
;
658 struct isl_basic_set
*hull_facet
= NULL
;
664 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
666 dim
= isl_set_n_dim(set
);
668 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
669 facet
= compute_facet(set
, hull
->ineq
[i
]);
670 facet
= isl_basic_set_add_equality(facet
, hull
->ineq
[i
]);
671 facet
= isl_basic_set_gauss(facet
, NULL
);
672 facet
= isl_basic_set_normalize_constraints(facet
);
673 hull_facet
= isl_basic_set_copy(hull
);
674 hull_facet
= isl_basic_set_add_equality(hull_facet
, hull
->ineq
[i
]);
675 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
676 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
677 if (!facet
|| !hull_facet
)
679 hull
= isl_basic_set_cow(hull
);
680 hull
= isl_basic_set_extend_space(hull
,
681 isl_space_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
684 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
685 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
686 if (isl_seq_eq(facet
->ineq
[j
],
687 hull_facet
->ineq
[f
], 1 + dim
))
689 if (f
< hull_facet
->n_ineq
)
691 k
= isl_basic_set_alloc_inequality(hull
);
694 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
695 if (!isl_set_wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
698 isl_basic_set_free(hull_facet
);
699 isl_basic_set_free(facet
);
701 hull
= isl_basic_set_simplify(hull
);
702 hull
= isl_basic_set_finalize(hull
);
705 isl_basic_set_free(hull_facet
);
706 isl_basic_set_free(facet
);
707 isl_basic_set_free(hull
);
711 /* Special case for computing the convex hull of a one dimensional set.
712 * We simply collect the lower and upper bounds of each basic set
713 * and the biggest of those.
715 static struct isl_basic_set
*convex_hull_1d(struct isl_set
*set
)
717 struct isl_mat
*c
= NULL
;
718 isl_int
*lower
= NULL
;
719 isl_int
*upper
= NULL
;
722 struct isl_basic_set
*hull
;
724 for (i
= 0; i
< set
->n
; ++i
) {
725 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
729 set
= isl_set_remove_empty_parts(set
);
732 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
733 c
= isl_mat_alloc(set
->ctx
, 2, 2);
737 if (set
->p
[0]->n_eq
> 0) {
738 isl_assert(set
->ctx
, set
->p
[0]->n_eq
== 1, goto error
);
741 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
742 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
743 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
745 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
746 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
749 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
750 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
752 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
755 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
762 for (i
= 0; i
< set
->n
; ++i
) {
763 struct isl_basic_set
*bset
= set
->p
[i
];
767 for (j
= 0; j
< bset
->n_eq
; ++j
) {
771 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
772 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
773 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
774 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
775 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
776 isl_seq_neg(lower
, bset
->eq
[j
], 2);
779 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
780 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
781 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
782 isl_seq_neg(upper
, bset
->eq
[j
], 2);
783 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
784 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
787 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
788 if (isl_int_is_pos(bset
->ineq
[j
][1]))
790 if (isl_int_is_neg(bset
->ineq
[j
][1]))
792 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
793 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
794 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
795 if (isl_int_lt(a
, b
))
796 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
798 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
799 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
800 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
801 if (isl_int_gt(a
, b
))
802 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
813 hull
= isl_basic_set_alloc(set
->ctx
, 0, 1, 0, 0, 2);
814 hull
= isl_basic_set_set_rational(hull
);
818 k
= isl_basic_set_alloc_inequality(hull
);
819 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
822 k
= isl_basic_set_alloc_inequality(hull
);
823 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
825 hull
= isl_basic_set_finalize(hull
);
835 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
837 struct isl_basic_set
*convex_hull
;
842 if (isl_set_is_empty(set
))
843 convex_hull
= isl_basic_set_empty(isl_space_copy(set
->dim
));
845 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
850 /* Compute the convex hull of a pair of basic sets without any parameters or
851 * integer divisions using Fourier-Motzkin elimination.
852 * The convex hull is the set of all points that can be written as
853 * the sum of points from both basic sets (in homogeneous coordinates).
854 * We set up the constraints in a space with dimensions for each of
855 * the three sets and then project out the dimensions corresponding
856 * to the two original basic sets, retaining only those corresponding
857 * to the convex hull.
859 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
860 struct isl_basic_set
*bset2
)
863 struct isl_basic_set
*bset
[2];
864 struct isl_basic_set
*hull
= NULL
;
867 if (!bset1
|| !bset2
)
870 dim
= isl_basic_set_n_dim(bset1
);
871 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
872 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
873 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
876 for (i
= 0; i
< 2; ++i
) {
877 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
878 k
= isl_basic_set_alloc_equality(hull
);
881 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
882 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
883 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
886 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
887 k
= isl_basic_set_alloc_inequality(hull
);
890 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
891 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
892 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
893 bset
[i
]->ineq
[j
], 1+dim
);
895 k
= isl_basic_set_alloc_inequality(hull
);
898 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
899 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
901 for (j
= 0; j
< 1+dim
; ++j
) {
902 k
= isl_basic_set_alloc_equality(hull
);
905 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
906 isl_int_set_si(hull
->eq
[k
][j
], -1);
907 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
908 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
910 hull
= isl_basic_set_set_rational(hull
);
911 hull
= isl_basic_set_remove_dims(hull
, isl_dim_set
, dim
, 2*(1+dim
));
912 hull
= isl_basic_set_remove_redundancies(hull
);
913 isl_basic_set_free(bset1
);
914 isl_basic_set_free(bset2
);
917 isl_basic_set_free(bset1
);
918 isl_basic_set_free(bset2
);
919 isl_basic_set_free(hull
);
923 /* Is the set bounded for each value of the parameters?
925 isl_bool
isl_basic_set_is_bounded(__isl_keep isl_basic_set
*bset
)
931 return isl_bool_error
;
932 if (isl_basic_set_plain_is_empty(bset
))
933 return isl_bool_true
;
935 tab
= isl_tab_from_recession_cone(bset
, 1);
936 bounded
= isl_tab_cone_is_bounded(tab
);
941 /* Is the image bounded for each value of the parameters and
942 * the domain variables?
944 isl_bool
isl_basic_map_image_is_bounded(__isl_keep isl_basic_map
*bmap
)
946 unsigned nparam
= isl_basic_map_dim(bmap
, isl_dim_param
);
947 unsigned n_in
= isl_basic_map_dim(bmap
, isl_dim_in
);
950 bmap
= isl_basic_map_copy(bmap
);
951 bmap
= isl_basic_map_cow(bmap
);
952 bmap
= isl_basic_map_move_dims(bmap
, isl_dim_param
, nparam
,
953 isl_dim_in
, 0, n_in
);
954 bounded
= isl_basic_set_is_bounded(bset_from_bmap(bmap
));
955 isl_basic_map_free(bmap
);
960 /* Is the set bounded for each value of the parameters?
962 isl_bool
isl_set_is_bounded(__isl_keep isl_set
*set
)
967 return isl_bool_error
;
969 for (i
= 0; i
< set
->n
; ++i
) {
970 isl_bool bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
971 if (!bounded
|| bounded
< 0)
974 return isl_bool_true
;
977 /* Compute the lineality space of the convex hull of bset1 and bset2.
979 * We first compute the intersection of the recession cone of bset1
980 * with the negative of the recession cone of bset2 and then compute
981 * the linear hull of the resulting cone.
983 static struct isl_basic_set
*induced_lineality_space(
984 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
987 struct isl_basic_set
*lin
= NULL
;
990 if (!bset1
|| !bset2
)
993 dim
= isl_basic_set_total_dim(bset1
);
994 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset1
), 0,
995 bset1
->n_eq
+ bset2
->n_eq
,
996 bset1
->n_ineq
+ bset2
->n_ineq
);
997 lin
= isl_basic_set_set_rational(lin
);
1000 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1001 k
= isl_basic_set_alloc_equality(lin
);
1004 isl_int_set_si(lin
->eq
[k
][0], 0);
1005 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
1007 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
1008 k
= isl_basic_set_alloc_inequality(lin
);
1011 isl_int_set_si(lin
->ineq
[k
][0], 0);
1012 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
1014 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
1015 k
= isl_basic_set_alloc_equality(lin
);
1018 isl_int_set_si(lin
->eq
[k
][0], 0);
1019 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
1021 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
1022 k
= isl_basic_set_alloc_inequality(lin
);
1025 isl_int_set_si(lin
->ineq
[k
][0], 0);
1026 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1029 isl_basic_set_free(bset1
);
1030 isl_basic_set_free(bset2
);
1031 return isl_basic_set_affine_hull(lin
);
1033 isl_basic_set_free(lin
);
1034 isl_basic_set_free(bset1
);
1035 isl_basic_set_free(bset2
);
1039 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1041 /* Given a set and a linear space "lin" of dimension n > 0,
1042 * project the linear space from the set, compute the convex hull
1043 * and then map the set back to the original space.
1049 * describe the linear space. We first compute the Hermite normal
1050 * form H = M U of M = H Q, to obtain
1054 * The last n rows of H will be zero, so the last n variables of x' = Q x
1055 * are the one we want to project out. We do this by transforming each
1056 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1057 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1058 * we transform the hull back to the original space as A' Q_1 x >= b',
1059 * with Q_1 all but the last n rows of Q.
1061 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1062 struct isl_basic_set
*lin
)
1064 unsigned total
= isl_basic_set_total_dim(lin
);
1066 struct isl_basic_set
*hull
;
1067 struct isl_mat
*M
, *U
, *Q
;
1071 lin_dim
= total
- lin
->n_eq
;
1072 M
= isl_mat_sub_alloc6(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1073 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
1077 isl_basic_set_free(lin
);
1079 Q
= isl_mat_drop_rows(Q
, Q
->n_row
- lin_dim
, lin_dim
);
1081 U
= isl_mat_lin_to_aff(U
);
1082 Q
= isl_mat_lin_to_aff(Q
);
1084 set
= isl_set_preimage(set
, U
);
1085 set
= isl_set_remove_dims(set
, isl_dim_set
, total
- lin_dim
, lin_dim
);
1086 hull
= uset_convex_hull(set
);
1087 hull
= isl_basic_set_preimage(hull
, Q
);
1091 isl_basic_set_free(lin
);
1096 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1097 * set up an LP for solving
1099 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1101 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1102 * The next \alpha{ij} correspond to the equalities and come in pairs.
1103 * The final \alpha{ij} correspond to the inequalities.
1105 static struct isl_basic_set
*valid_direction_lp(
1106 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1109 struct isl_basic_set
*lp
;
1114 if (!bset1
|| !bset2
)
1116 d
= 1 + isl_basic_set_total_dim(bset1
);
1118 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1119 dim
= isl_space_set_alloc(bset1
->ctx
, 0, n
);
1120 lp
= isl_basic_set_alloc_space(dim
, 0, d
, n
);
1123 for (i
= 0; i
< n
; ++i
) {
1124 k
= isl_basic_set_alloc_inequality(lp
);
1127 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1128 isl_int_set_si(lp
->ineq
[k
][0], -1);
1129 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1131 for (i
= 0; i
< d
; ++i
) {
1132 k
= isl_basic_set_alloc_equality(lp
);
1136 isl_int_set_si(lp
->eq
[k
][n
], 0); n
++;
1137 /* positivity constraint 1 >= 0 */
1138 isl_int_set_si(lp
->eq
[k
][n
], i
== 0); n
++;
1139 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1140 isl_int_set(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1141 isl_int_neg(lp
->eq
[k
][n
], bset1
->eq
[j
][i
]); n
++;
1143 for (j
= 0; j
< bset1
->n_ineq
; ++j
) {
1144 isl_int_set(lp
->eq
[k
][n
], bset1
->ineq
[j
][i
]); n
++;
1146 /* positivity constraint 1 >= 0 */
1147 isl_int_set_si(lp
->eq
[k
][n
], -(i
== 0)); n
++;
1148 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1149 isl_int_neg(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1150 isl_int_set(lp
->eq
[k
][n
], bset2
->eq
[j
][i
]); n
++;
1152 for (j
= 0; j
< bset2
->n_ineq
; ++j
) {
1153 isl_int_neg(lp
->eq
[k
][n
], bset2
->ineq
[j
][i
]); n
++;
1156 lp
= isl_basic_set_gauss(lp
, NULL
);
1157 isl_basic_set_free(bset1
);
1158 isl_basic_set_free(bset2
);
1161 isl_basic_set_free(bset1
);
1162 isl_basic_set_free(bset2
);
1166 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1167 * for all rays in the homogeneous space of the two cones that correspond
1168 * to the input polyhedra bset1 and bset2.
1170 * We compute s as a vector that satisfies
1172 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1174 * with h_{ij} the normals of the facets of polyhedron i
1175 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1176 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1177 * We first set up an LP with as variables the \alpha{ij}.
1178 * In this formulation, for each polyhedron i,
1179 * the first constraint is the positivity constraint, followed by pairs
1180 * of variables for the equalities, followed by variables for the inequalities.
1181 * We then simply pick a feasible solution and compute s using (*).
1183 * Note that we simply pick any valid direction and make no attempt
1184 * to pick a "good" or even the "best" valid direction.
1186 static struct isl_vec
*valid_direction(
1187 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1189 struct isl_basic_set
*lp
;
1190 struct isl_tab
*tab
;
1191 struct isl_vec
*sample
= NULL
;
1192 struct isl_vec
*dir
;
1197 if (!bset1
|| !bset2
)
1199 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1200 isl_basic_set_copy(bset2
));
1201 tab
= isl_tab_from_basic_set(lp
, 0);
1202 sample
= isl_tab_get_sample_value(tab
);
1204 isl_basic_set_free(lp
);
1207 d
= isl_basic_set_total_dim(bset1
);
1208 dir
= isl_vec_alloc(bset1
->ctx
, 1 + d
);
1211 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1213 /* positivity constraint 1 >= 0 */
1214 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
]); n
++;
1215 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1216 isl_int_sub(sample
->block
.data
[n
],
1217 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1218 isl_seq_combine(dir
->block
.data
,
1219 bset1
->ctx
->one
, dir
->block
.data
,
1220 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1224 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1225 isl_seq_combine(dir
->block
.data
,
1226 bset1
->ctx
->one
, dir
->block
.data
,
1227 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1228 isl_vec_free(sample
);
1229 isl_seq_normalize(bset1
->ctx
, dir
->el
, dir
->size
);
1230 isl_basic_set_free(bset1
);
1231 isl_basic_set_free(bset2
);
1234 isl_vec_free(sample
);
1235 isl_basic_set_free(bset1
);
1236 isl_basic_set_free(bset2
);
1240 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1241 * compute b_i' + A_i' x' >= 0, with
1243 * [ b_i A_i ] [ y' ] [ y' ]
1244 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1246 * In particular, add the "positivity constraint" and then perform
1249 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1256 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1257 k
= isl_basic_set_alloc_inequality(bset
);
1260 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1261 isl_int_set_si(bset
->ineq
[k
][0], 1);
1262 bset
= isl_basic_set_preimage(bset
, T
);
1266 isl_basic_set_free(bset
);
1270 /* Compute the convex hull of a pair of basic sets without any parameters or
1271 * integer divisions, where the convex hull is known to be pointed,
1272 * but the basic sets may be unbounded.
1274 * We turn this problem into the computation of a convex hull of a pair
1275 * _bounded_ polyhedra by "changing the direction of the homogeneous
1276 * dimension". This idea is due to Matthias Koeppe.
1278 * Consider the cones in homogeneous space that correspond to the
1279 * input polyhedra. The rays of these cones are also rays of the
1280 * polyhedra if the coordinate that corresponds to the homogeneous
1281 * dimension is zero. That is, if the inner product of the rays
1282 * with the homogeneous direction is zero.
1283 * The cones in the homogeneous space can also be considered to
1284 * correspond to other pairs of polyhedra by chosing a different
1285 * homogeneous direction. To ensure that both of these polyhedra
1286 * are bounded, we need to make sure that all rays of the cones
1287 * correspond to vertices and not to rays.
1288 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1289 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1290 * The vector s is computed in valid_direction.
1292 * Note that we need to consider _all_ rays of the cones and not just
1293 * the rays that correspond to rays in the polyhedra. If we were to
1294 * only consider those rays and turn them into vertices, then we
1295 * may inadvertently turn some vertices into rays.
1297 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1298 * We therefore transform the two polyhedra such that the selected
1299 * direction is mapped onto this standard direction and then proceed
1300 * with the normal computation.
1301 * Let S be a non-singular square matrix with s as its first row,
1302 * then we want to map the polyhedra to the space
1304 * [ y' ] [ y ] [ y ] [ y' ]
1305 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1307 * We take S to be the unimodular completion of s to limit the growth
1308 * of the coefficients in the following computations.
1310 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1311 * We first move to the homogeneous dimension
1313 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1314 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1316 * Then we change directoin
1318 * [ b_i A_i ] [ y' ] [ y' ]
1319 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1321 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1322 * resulting in b' + A' x' >= 0, which we then convert back
1325 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1327 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1329 static struct isl_basic_set
*convex_hull_pair_pointed(
1330 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1332 struct isl_ctx
*ctx
= NULL
;
1333 struct isl_vec
*dir
= NULL
;
1334 struct isl_mat
*T
= NULL
;
1335 struct isl_mat
*T2
= NULL
;
1336 struct isl_basic_set
*hull
;
1337 struct isl_set
*set
;
1339 if (!bset1
|| !bset2
)
1341 ctx
= isl_basic_set_get_ctx(bset1
);
1342 dir
= valid_direction(isl_basic_set_copy(bset1
),
1343 isl_basic_set_copy(bset2
));
1346 T
= isl_mat_alloc(ctx
, dir
->size
, dir
->size
);
1349 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1350 T
= isl_mat_unimodular_complete(T
, 1);
1351 T2
= isl_mat_right_inverse(isl_mat_copy(T
));
1353 bset1
= homogeneous_map(bset1
, isl_mat_copy(T2
));
1354 bset2
= homogeneous_map(bset2
, T2
);
1355 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1356 set
= isl_set_add_basic_set(set
, bset1
);
1357 set
= isl_set_add_basic_set(set
, bset2
);
1358 hull
= uset_convex_hull(set
);
1359 hull
= isl_basic_set_preimage(hull
, T
);
1366 isl_basic_set_free(bset1
);
1367 isl_basic_set_free(bset2
);
1371 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
);
1372 static struct isl_basic_set
*modulo_affine_hull(
1373 struct isl_set
*set
, struct isl_basic_set
*affine_hull
);
1375 /* Compute the convex hull of a pair of basic sets without any parameters or
1376 * integer divisions.
1378 * This function is called from uset_convex_hull_unbounded, which
1379 * means that the complete convex hull is unbounded. Some pairs
1380 * of basic sets may still be bounded, though.
1381 * They may even lie inside a lower dimensional space, in which
1382 * case they need to be handled inside their affine hull since
1383 * the main algorithm assumes that the result is full-dimensional.
1385 * If the convex hull of the two basic sets would have a non-trivial
1386 * lineality space, we first project out this lineality space.
1388 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1389 struct isl_basic_set
*bset2
)
1391 isl_basic_set
*lin
, *aff
;
1392 int bounded1
, bounded2
;
1394 if (bset1
->ctx
->opt
->convex
== ISL_CONVEX_HULL_FM
)
1395 return convex_hull_pair_elim(bset1
, bset2
);
1397 aff
= isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1
),
1398 isl_basic_set_copy(bset2
)));
1402 return modulo_affine_hull(isl_basic_set_union(bset1
, bset2
), aff
);
1403 isl_basic_set_free(aff
);
1405 bounded1
= isl_basic_set_is_bounded(bset1
);
1406 bounded2
= isl_basic_set_is_bounded(bset2
);
1408 if (bounded1
< 0 || bounded2
< 0)
1411 if (bounded1
&& bounded2
)
1412 return uset_convex_hull_wrap(isl_basic_set_union(bset1
, bset2
));
1414 if (bounded1
|| bounded2
)
1415 return convex_hull_pair_pointed(bset1
, bset2
);
1417 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1418 isl_basic_set_copy(bset2
));
1421 if (isl_basic_set_plain_is_universe(lin
)) {
1422 isl_basic_set_free(bset1
);
1423 isl_basic_set_free(bset2
);
1426 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1427 struct isl_set
*set
;
1428 set
= isl_set_alloc_space(isl_basic_set_get_space(bset1
), 2, 0);
1429 set
= isl_set_add_basic_set(set
, bset1
);
1430 set
= isl_set_add_basic_set(set
, bset2
);
1431 return modulo_lineality(set
, lin
);
1433 isl_basic_set_free(lin
);
1435 return convex_hull_pair_pointed(bset1
, bset2
);
1437 isl_basic_set_free(bset1
);
1438 isl_basic_set_free(bset2
);
1442 /* Compute the lineality space of a basic set.
1443 * We currently do not allow the basic set to have any divs.
1444 * We basically just drop the constants and turn every inequality
1447 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1450 struct isl_basic_set
*lin
= NULL
;
1455 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1456 dim
= isl_basic_set_total_dim(bset
);
1458 lin
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset
), 0, dim
, 0);
1461 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1462 k
= isl_basic_set_alloc_equality(lin
);
1465 isl_int_set_si(lin
->eq
[k
][0], 0);
1466 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1468 lin
= isl_basic_set_gauss(lin
, NULL
);
1471 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1472 k
= isl_basic_set_alloc_equality(lin
);
1475 isl_int_set_si(lin
->eq
[k
][0], 0);
1476 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1477 lin
= isl_basic_set_gauss(lin
, NULL
);
1481 isl_basic_set_free(bset
);
1484 isl_basic_set_free(lin
);
1485 isl_basic_set_free(bset
);
1489 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1490 * "underlying" set "set".
1492 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1495 struct isl_set
*lin
= NULL
;
1500 isl_space
*dim
= isl_set_get_space(set
);
1502 return isl_basic_set_empty(dim
);
1505 lin
= isl_set_alloc_space(isl_set_get_space(set
), set
->n
, 0);
1506 for (i
= 0; i
< set
->n
; ++i
)
1507 lin
= isl_set_add_basic_set(lin
,
1508 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1510 return isl_set_affine_hull(lin
);
1513 /* Compute the convex hull of a set without any parameters or
1514 * integer divisions.
1515 * In each step, we combined two basic sets until only one
1516 * basic set is left.
1517 * The input basic sets are assumed not to have a non-trivial
1518 * lineality space. If any of the intermediate results has
1519 * a non-trivial lineality space, it is projected out.
1521 static __isl_give isl_basic_set
*uset_convex_hull_unbounded(
1522 __isl_take isl_set
*set
)
1524 isl_basic_set_list
*list
;
1526 list
= isl_set_get_basic_set_list(set
);
1531 struct isl_basic_set
*t
;
1532 isl_basic_set
*bset1
, *bset2
;
1534 n
= isl_basic_set_list_n_basic_set(list
);
1536 isl_die(isl_basic_set_list_get_ctx(list
),
1538 "expecting at least two elements", goto error
);
1539 bset1
= isl_basic_set_list_get_basic_set(list
, n
- 1);
1540 bset2
= isl_basic_set_list_get_basic_set(list
, n
- 2);
1541 bset1
= convex_hull_pair(bset1
, bset2
);
1543 isl_basic_set_list_free(list
);
1546 bset1
= isl_basic_set_underlying_set(bset1
);
1547 list
= isl_basic_set_list_drop(list
, n
- 2, 2);
1548 list
= isl_basic_set_list_add(list
, bset1
);
1550 t
= isl_basic_set_list_get_basic_set(list
, n
- 2);
1551 t
= isl_basic_set_lineality_space(t
);
1554 if (isl_basic_set_plain_is_universe(t
)) {
1555 isl_basic_set_list_free(list
);
1558 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1559 set
= isl_basic_set_list_union(list
);
1560 return modulo_lineality(set
, t
);
1562 isl_basic_set_free(t
);
1567 isl_basic_set_list_free(list
);
1571 /* Compute an initial hull for wrapping containing a single initial
1573 * This function assumes that the given set is bounded.
1575 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1576 struct isl_set
*set
)
1578 struct isl_mat
*bounds
= NULL
;
1584 bounds
= initial_facet_constraint(set
);
1587 k
= isl_basic_set_alloc_inequality(hull
);
1590 dim
= isl_set_n_dim(set
);
1591 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1592 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1593 isl_mat_free(bounds
);
1597 isl_basic_set_free(hull
);
1598 isl_mat_free(bounds
);
1602 struct max_constraint
{
1608 static int max_constraint_equal(const void *entry
, const void *val
)
1610 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1611 isl_int
*b
= (isl_int
*)val
;
1613 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1616 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1617 isl_int
*con
, unsigned len
, int n
, int ineq
)
1619 struct isl_hash_table_entry
*entry
;
1620 struct max_constraint
*c
;
1623 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1624 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1630 isl_hash_table_remove(ctx
, table
, entry
);
1634 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1636 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1641 c
->c
= isl_mat_cow(c
->c
);
1642 isl_int_set(c
->c
->row
[0][0], con
[0]);
1646 /* Check whether the constraint hash table "table" constains the constraint
1649 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1650 isl_int
*con
, unsigned len
, int n
)
1652 struct isl_hash_table_entry
*entry
;
1653 struct max_constraint
*c
;
1656 c_hash
= isl_seq_get_hash(con
+ 1, len
);
1657 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1664 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1667 /* Check for inequality constraints of a basic set without equalities
1668 * such that the same or more stringent copies of the constraint appear
1669 * in all of the basic sets. Such constraints are necessarily facet
1670 * constraints of the convex hull.
1672 * If the resulting basic set is by chance identical to one of
1673 * the basic sets in "set", then we know that this basic set contains
1674 * all other basic sets and is therefore the convex hull of set.
1675 * In this case we set *is_hull to 1.
1677 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1678 struct isl_set
*set
, int *is_hull
)
1681 int min_constraints
;
1683 struct max_constraint
*constraints
= NULL
;
1684 struct isl_hash_table
*table
= NULL
;
1689 for (i
= 0; i
< set
->n
; ++i
)
1690 if (set
->p
[i
]->n_eq
== 0)
1694 min_constraints
= set
->p
[i
]->n_ineq
;
1696 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1697 if (set
->p
[i
]->n_eq
!= 0)
1699 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1701 min_constraints
= set
->p
[i
]->n_ineq
;
1704 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1708 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1709 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1712 total
= isl_space_dim(set
->dim
, isl_dim_all
);
1713 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1714 constraints
[i
].c
= isl_mat_sub_alloc6(hull
->ctx
,
1715 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1716 if (!constraints
[i
].c
)
1718 constraints
[i
].ineq
= 1;
1720 for (i
= 0; i
< min_constraints
; ++i
) {
1721 struct isl_hash_table_entry
*entry
;
1723 c_hash
= isl_seq_get_hash(constraints
[i
].c
->row
[0] + 1, total
);
1724 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1725 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1728 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1729 entry
->data
= &constraints
[i
];
1733 for (s
= 0; s
< set
->n
; ++s
) {
1737 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1738 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1739 for (j
= 0; j
< 2; ++j
) {
1740 isl_seq_neg(eq
, eq
, 1 + total
);
1741 update_constraint(hull
->ctx
, table
,
1745 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1746 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1747 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1748 set
->p
[s
]->n_eq
== 0);
1753 for (i
= 0; i
< min_constraints
; ++i
) {
1754 if (constraints
[i
].count
< n
)
1756 if (!constraints
[i
].ineq
)
1758 j
= isl_basic_set_alloc_inequality(hull
);
1761 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1764 for (s
= 0; s
< set
->n
; ++s
) {
1765 if (set
->p
[s
]->n_eq
)
1767 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1769 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1770 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1771 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1774 if (i
== set
->p
[s
]->n_ineq
)
1778 isl_hash_table_clear(table
);
1779 for (i
= 0; i
< min_constraints
; ++i
)
1780 isl_mat_free(constraints
[i
].c
);
1785 isl_hash_table_clear(table
);
1788 for (i
= 0; i
< min_constraints
; ++i
)
1789 isl_mat_free(constraints
[i
].c
);
1794 /* Create a template for the convex hull of "set" and fill it up
1795 * obvious facet constraints, if any. If the result happens to
1796 * be the convex hull of "set" then *is_hull is set to 1.
1798 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1800 struct isl_basic_set
*hull
;
1805 for (i
= 0; i
< set
->n
; ++i
) {
1806 n_ineq
+= set
->p
[i
]->n_eq
;
1807 n_ineq
+= set
->p
[i
]->n_ineq
;
1809 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
1810 hull
= isl_basic_set_set_rational(hull
);
1813 return common_constraints(hull
, set
, is_hull
);
1816 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1818 struct isl_basic_set
*hull
;
1821 hull
= proto_hull(set
, &is_hull
);
1822 if (hull
&& !is_hull
) {
1823 if (hull
->n_ineq
== 0)
1824 hull
= initial_hull(hull
, set
);
1825 hull
= extend(hull
, set
);
1832 /* Compute the convex hull of a set without any parameters or
1833 * integer divisions. Depending on whether the set is bounded,
1834 * we pass control to the wrapping based convex hull or
1835 * the Fourier-Motzkin elimination based convex hull.
1836 * We also handle a few special cases before checking the boundedness.
1838 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1841 struct isl_basic_set
*convex_hull
= NULL
;
1842 struct isl_basic_set
*lin
;
1844 if (isl_set_n_dim(set
) == 0)
1845 return convex_hull_0d(set
);
1847 set
= isl_set_coalesce(set
);
1848 set
= isl_set_set_rational(set
);
1853 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1857 if (isl_set_n_dim(set
) == 1)
1858 return convex_hull_1d(set
);
1860 bounded
= isl_set_is_bounded(set
);
1863 if (bounded
&& set
->ctx
->opt
->convex
== ISL_CONVEX_HULL_WRAP
)
1864 return uset_convex_hull_wrap(set
);
1866 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1869 if (isl_basic_set_plain_is_universe(lin
)) {
1873 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1874 return modulo_lineality(set
, lin
);
1875 isl_basic_set_free(lin
);
1877 return uset_convex_hull_unbounded(set
);
1880 isl_basic_set_free(convex_hull
);
1884 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1885 * without parameters or divs and where the convex hull of set is
1886 * known to be full-dimensional.
1888 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1890 struct isl_basic_set
*convex_hull
= NULL
;
1895 if (isl_set_n_dim(set
) == 0) {
1896 convex_hull
= isl_basic_set_universe(isl_space_copy(set
->dim
));
1898 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1902 set
= isl_set_set_rational(set
);
1903 set
= isl_set_coalesce(set
);
1907 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1909 convex_hull
= isl_basic_map_remove_redundancies(convex_hull
);
1912 if (isl_set_n_dim(set
) == 1)
1913 return convex_hull_1d(set
);
1915 return uset_convex_hull_wrap(set
);
1921 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1922 * We first remove the equalities (transforming the set), compute the
1923 * convex hull of the transformed set and then add the equalities back
1924 * (after performing the inverse transformation.
1926 static struct isl_basic_set
*modulo_affine_hull(
1927 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1931 struct isl_basic_set
*dummy
;
1932 struct isl_basic_set
*convex_hull
;
1934 dummy
= isl_basic_set_remove_equalities(
1935 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1938 isl_basic_set_free(dummy
);
1939 set
= isl_set_preimage(set
, T
);
1940 convex_hull
= uset_convex_hull(set
);
1941 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1942 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1945 isl_basic_set_free(affine_hull
);
1950 /* Return an empty basic map living in the same space as "map".
1952 static __isl_give isl_basic_map
*replace_map_by_empty_basic_map(
1953 __isl_take isl_map
*map
)
1957 space
= isl_map_get_space(map
);
1959 return isl_basic_map_empty(space
);
1962 /* Compute the convex hull of a map.
1964 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1965 * specifically, the wrapping of facets to obtain new facets.
1967 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1969 struct isl_basic_set
*bset
;
1970 struct isl_basic_map
*model
= NULL
;
1971 struct isl_basic_set
*affine_hull
= NULL
;
1972 struct isl_basic_map
*convex_hull
= NULL
;
1973 struct isl_set
*set
= NULL
;
1975 map
= isl_map_detect_equalities(map
);
1976 map
= isl_map_align_divs(map
);
1981 return replace_map_by_empty_basic_map(map
);
1983 model
= isl_basic_map_copy(map
->p
[0]);
1984 set
= isl_map_underlying_set(map
);
1988 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1991 if (affine_hull
->n_eq
!= 0)
1992 bset
= modulo_affine_hull(set
, affine_hull
);
1994 isl_basic_set_free(affine_hull
);
1995 bset
= uset_convex_hull(set
);
1998 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
2002 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2003 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2004 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
2008 isl_basic_map_free(model
);
2012 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
2014 return bset_from_bmap(isl_map_convex_hull(set_to_map(set
)));
2017 __isl_give isl_basic_map
*isl_map_polyhedral_hull(__isl_take isl_map
*map
)
2019 isl_basic_map
*hull
;
2021 hull
= isl_map_convex_hull(map
);
2022 return isl_basic_map_remove_divs(hull
);
2025 __isl_give isl_basic_set
*isl_set_polyhedral_hull(__isl_take isl_set
*set
)
2027 return bset_from_bmap(isl_map_polyhedral_hull(set_to_map(set
)));
2030 struct sh_data_entry
{
2031 struct isl_hash_table
*table
;
2032 struct isl_tab
*tab
;
2035 /* Holds the data needed during the simple hull computation.
2037 * n the number of basic sets in the original set
2038 * hull_table a hash table of already computed constraints
2039 * in the simple hull
2040 * p for each basic set,
2041 * table a hash table of the constraints
2042 * tab the tableau corresponding to the basic set
2045 struct isl_ctx
*ctx
;
2047 struct isl_hash_table
*hull_table
;
2048 struct sh_data_entry p
[1];
2051 static void sh_data_free(struct sh_data
*data
)
2057 isl_hash_table_free(data
->ctx
, data
->hull_table
);
2058 for (i
= 0; i
< data
->n
; ++i
) {
2059 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2060 isl_tab_free(data
->p
[i
].tab
);
2065 struct ineq_cmp_data
{
2070 static int has_ineq(const void *entry
, const void *val
)
2072 isl_int
*row
= (isl_int
*)entry
;
2073 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2075 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2076 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2079 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2080 isl_int
*ineq
, unsigned len
)
2083 struct ineq_cmp_data v
;
2084 struct isl_hash_table_entry
*entry
;
2088 c_hash
= isl_seq_get_hash(ineq
+ 1, len
);
2089 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2096 /* Fill hash table "table" with the constraints of "bset".
2097 * Equalities are added as two inequalities.
2098 * The value in the hash table is a pointer to the (in)equality of "bset".
2100 static int hash_basic_set(struct isl_hash_table
*table
,
2101 struct isl_basic_set
*bset
)
2104 unsigned dim
= isl_basic_set_total_dim(bset
);
2106 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2107 for (j
= 0; j
< 2; ++j
) {
2108 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2109 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2113 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2114 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2120 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2122 struct sh_data
*data
;
2125 data
= isl_calloc(set
->ctx
, struct sh_data
,
2126 sizeof(struct sh_data
) +
2127 (set
->n
- 1) * sizeof(struct sh_data_entry
));
2130 data
->ctx
= set
->ctx
;
2132 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2133 if (!data
->hull_table
)
2135 for (i
= 0; i
< set
->n
; ++i
) {
2136 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2137 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2138 if (!data
->p
[i
].table
)
2140 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2149 /* Check if inequality "ineq" is a bound for basic set "j" or if
2150 * it can be relaxed (by increasing the constant term) to become
2151 * a bound for that basic set. In the latter case, the constant
2153 * Relaxation of the constant term is only allowed if "shift" is set.
2155 * Return 1 if "ineq" is a bound
2156 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2157 * -1 if some error occurred
2159 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2160 isl_int
*ineq
, int shift
)
2162 enum isl_lp_result res
;
2165 if (!data
->p
[j
].tab
) {
2166 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
], 0);
2167 if (!data
->p
[j
].tab
)
2173 res
= isl_tab_min(data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2175 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
)) {
2177 isl_int_sub(ineq
[0], ineq
[0], opt
);
2179 res
= isl_lp_unbounded
;
2184 return (res
== isl_lp_ok
|| res
== isl_lp_empty
) ? 1 :
2185 res
== isl_lp_unbounded
? 0 : -1;
2188 /* Set the constant term of "ineq" to the maximum of those of the constraints
2189 * in the basic sets of "set" following "i" that are parallel to "ineq".
2190 * That is, if any of the basic sets of "set" following "i" have a more
2191 * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy.
2192 * "c_hash" is the hash value of the linear part of "ineq".
2193 * "v" has been set up for use by has_ineq.
2195 * Note that the two inequality constraints corresponding to an equality are
2196 * represented by the same inequality constraint in data->p[j].table
2197 * (but with different hash values). This means the constraint (or at
2198 * least its constant term) may need to be temporarily negated to get
2199 * the actually hashed constraint.
2201 static void set_max_constant_term(struct sh_data
*data
, __isl_keep isl_set
*set
,
2202 int i
, isl_int
*ineq
, uint32_t c_hash
, struct ineq_cmp_data
*v
)
2206 struct isl_hash_table_entry
*entry
;
2208 ctx
= isl_set_get_ctx(set
);
2209 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2213 entry
= isl_hash_table_find(ctx
, data
->p
[j
].table
,
2214 c_hash
, &has_ineq
, v
, 0);
2218 ineq_j
= entry
->data
;
2219 neg
= isl_seq_is_neg(ineq_j
+ 1, ineq
+ 1, v
->len
);
2221 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2222 if (isl_int_gt(ineq_j
[0], ineq
[0]))
2223 isl_int_set(ineq
[0], ineq_j
[0]);
2225 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2229 /* Check if inequality "ineq" from basic set "i" is or can be relaxed to
2230 * become a bound on the whole set. If so, add the (relaxed) inequality
2231 * to "hull". Relaxation is only allowed if "shift" is set.
2233 * We first check if "hull" already contains a translate of the inequality.
2234 * If so, we are done.
2235 * Then, we check if any of the previous basic sets contains a translate
2236 * of the inequality. If so, then we have already considered this
2237 * inequality and we are done.
2238 * Otherwise, for each basic set other than "i", we check if the inequality
2239 * is a bound on the basic set, but first replace the constant term
2240 * by the maximal value of any translate of the inequality in any
2241 * of the following basic sets.
2242 * For previous basic sets, we know that they do not contain a translate
2243 * of the inequality, so we directly call is_bound.
2244 * For following basic sets, we first check if a translate of the
2245 * inequality appears in its description. If so, the constant term
2246 * of the inequality has already been updated with respect to this
2247 * translate and the inequality is therefore known to be a bound
2248 * of this basic set.
2250 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2251 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
,
2255 struct ineq_cmp_data v
;
2256 struct isl_hash_table_entry
*entry
;
2262 v
.len
= isl_basic_set_total_dim(hull
);
2264 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2266 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2271 for (j
= 0; j
< i
; ++j
) {
2272 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2273 c_hash
, has_ineq
, &v
, 0);
2280 k
= isl_basic_set_alloc_inequality(hull
);
2283 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2285 set_max_constant_term(data
, set
, i
, hull
->ineq
[k
], c_hash
, &v
);
2286 for (j
= 0; j
< i
; ++j
) {
2288 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
], shift
);
2295 isl_basic_set_free_inequality(hull
, 1);
2299 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2301 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2302 c_hash
, has_ineq
, &v
, 0);
2305 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
], shift
);
2312 isl_basic_set_free_inequality(hull
, 1);
2316 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2320 entry
->data
= hull
->ineq
[k
];
2324 isl_basic_set_free(hull
);
2328 /* Check if any inequality from basic set "i" is or can be relaxed to
2329 * become a bound on the whole set. If so, add the (relaxed) inequality
2330 * to "hull". Relaxation is only allowed if "shift" is set.
2332 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2333 struct sh_data
*data
, struct isl_set
*set
, int i
, int shift
)
2336 unsigned dim
= isl_basic_set_total_dim(bset
);
2338 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2339 for (k
= 0; k
< 2; ++k
) {
2340 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2341 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
],
2345 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2346 bset
= add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
], shift
);
2350 /* Compute a superset of the convex hull of set that is described
2351 * by only (translates of) the constraints in the constituents of set.
2352 * Translation is only allowed if "shift" is set.
2354 static __isl_give isl_basic_set
*uset_simple_hull(__isl_take isl_set
*set
,
2357 struct sh_data
*data
= NULL
;
2358 struct isl_basic_set
*hull
= NULL
;
2366 for (i
= 0; i
< set
->n
; ++i
) {
2369 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2372 hull
= isl_basic_set_alloc_space(isl_space_copy(set
->dim
), 0, 0, n_ineq
);
2376 data
= sh_data_alloc(set
, n_ineq
);
2380 for (i
= 0; i
< set
->n
; ++i
)
2381 hull
= add_bounds(hull
, data
, set
, i
, shift
);
2389 isl_basic_set_free(hull
);
2394 /* Compute a superset of the convex hull of map that is described
2395 * by only (translates of) the constraints in the constituents of map.
2396 * Handle trivial cases where map is NULL or contains at most one disjunct.
2398 static __isl_give isl_basic_map
*map_simple_hull_trivial(
2399 __isl_take isl_map
*map
)
2401 isl_basic_map
*hull
;
2406 return replace_map_by_empty_basic_map(map
);
2408 hull
= isl_basic_map_copy(map
->p
[0]);
2413 /* Return a copy of the simple hull cached inside "map".
2414 * "shift" determines whether to return the cached unshifted or shifted
2417 static __isl_give isl_basic_map
*cached_simple_hull(__isl_take isl_map
*map
,
2420 isl_basic_map
*hull
;
2422 hull
= isl_basic_map_copy(map
->cached_simple_hull
[shift
]);
2428 /* Compute a superset of the convex hull of map that is described
2429 * by only (translates of) the constraints in the constituents of map.
2430 * Translation is only allowed if "shift" is set.
2432 * The constraints are sorted while removing redundant constraints
2433 * in order to indicate a preference of which constraints should
2434 * be preserved. In particular, pairs of constraints that are
2435 * sorted together are preferred to either both be preserved
2436 * or both be removed. The sorting is performed inside
2437 * isl_basic_map_remove_redundancies.
2439 * The result of the computation is stored in map->cached_simple_hull[shift]
2440 * such that it can be reused in subsequent calls. The cache is cleared
2441 * whenever the map is modified (in isl_map_cow).
2442 * Note that the results need to be stored in the input map for there
2443 * to be any chance that they may get reused. In particular, they
2444 * are stored in a copy of the input map that is saved before
2445 * the integer division alignment.
2447 static __isl_give isl_basic_map
*map_simple_hull(__isl_take isl_map
*map
,
2450 struct isl_set
*set
= NULL
;
2451 struct isl_basic_map
*model
= NULL
;
2452 struct isl_basic_map
*hull
;
2453 struct isl_basic_map
*affine_hull
;
2454 struct isl_basic_set
*bset
= NULL
;
2457 if (!map
|| map
->n
<= 1)
2458 return map_simple_hull_trivial(map
);
2460 if (map
->cached_simple_hull
[shift
])
2461 return cached_simple_hull(map
, shift
);
2463 map
= isl_map_detect_equalities(map
);
2464 if (!map
|| map
->n
<= 1)
2465 return map_simple_hull_trivial(map
);
2466 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2467 input
= isl_map_copy(map
);
2468 map
= isl_map_align_divs(map
);
2469 model
= map
? isl_basic_map_copy(map
->p
[0]) : NULL
;
2471 set
= isl_map_underlying_set(map
);
2473 bset
= uset_simple_hull(set
, shift
);
2475 hull
= isl_basic_map_overlying_set(bset
, model
);
2477 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2478 hull
= isl_basic_map_remove_redundancies(hull
);
2481 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2482 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2485 hull
= isl_basic_map_finalize(hull
);
2487 input
->cached_simple_hull
[shift
] = isl_basic_map_copy(hull
);
2488 isl_map_free(input
);
2493 /* Compute a superset of the convex hull of map that is described
2494 * by only translates of the constraints in the constituents of map.
2496 __isl_give isl_basic_map
*isl_map_simple_hull(__isl_take isl_map
*map
)
2498 return map_simple_hull(map
, 1);
2501 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2503 return bset_from_bmap(isl_map_simple_hull(set_to_map(set
)));
2506 /* Compute a superset of the convex hull of map that is described
2507 * by only the constraints in the constituents of map.
2509 __isl_give isl_basic_map
*isl_map_unshifted_simple_hull(
2510 __isl_take isl_map
*map
)
2512 return map_simple_hull(map
, 0);
2515 __isl_give isl_basic_set
*isl_set_unshifted_simple_hull(
2516 __isl_take isl_set
*set
)
2518 return isl_map_unshifted_simple_hull(set
);
2521 /* Drop all inequalities from "bmap1" that do not also appear in "bmap2".
2522 * A constraint that appears with different constant terms
2523 * in "bmap1" and "bmap2" is also kept, with the least restrictive
2524 * (i.e., greatest) constant term.
2525 * "bmap1" and "bmap2" are assumed to have the same (known)
2526 * integer divisions.
2527 * The constraints of both "bmap1" and "bmap2" are assumed
2528 * to have been sorted using isl_basic_map_sort_constraints.
2530 * Run through the inequality constraints of "bmap1" and "bmap2"
2532 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2534 * If a match is found, the constraint is kept. If needed, the constant
2535 * term of the constraint is adjusted.
2537 static __isl_give isl_basic_map
*select_shared_inequalities(
2538 __isl_take isl_basic_map
*bmap1
, __isl_keep isl_basic_map
*bmap2
)
2542 bmap1
= isl_basic_map_cow(bmap1
);
2543 if (!bmap1
|| !bmap2
)
2544 return isl_basic_map_free(bmap1
);
2546 i1
= bmap1
->n_ineq
- 1;
2547 i2
= bmap2
->n_ineq
- 1;
2548 while (bmap1
&& i1
>= 0 && i2
>= 0) {
2551 cmp
= isl_basic_map_constraint_cmp(bmap1
, bmap1
->ineq
[i1
],
2558 if (isl_basic_map_drop_inequality(bmap1
, i1
) < 0)
2559 bmap1
= isl_basic_map_free(bmap1
);
2563 if (isl_int_lt(bmap1
->ineq
[i1
][0], bmap2
->ineq
[i2
][0]))
2564 isl_int_set(bmap1
->ineq
[i1
][0], bmap2
->ineq
[i2
][0]);
2568 for (; i1
>= 0; --i1
)
2569 if (isl_basic_map_drop_inequality(bmap1
, i1
) < 0)
2570 bmap1
= isl_basic_map_free(bmap1
);
2575 /* Drop all equalities from "bmap1" that do not also appear in "bmap2".
2576 * "bmap1" and "bmap2" are assumed to have the same (known)
2577 * integer divisions.
2579 * Run through the equality constraints of "bmap1" and "bmap2".
2580 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2583 static __isl_give isl_basic_map
*select_shared_equalities(
2584 __isl_take isl_basic_map
*bmap1
, __isl_keep isl_basic_map
*bmap2
)
2589 bmap1
= isl_basic_map_cow(bmap1
);
2590 if (!bmap1
|| !bmap2
)
2591 return isl_basic_map_free(bmap1
);
2593 total
= isl_basic_map_total_dim(bmap1
);
2595 i1
= bmap1
->n_eq
- 1;
2596 i2
= bmap2
->n_eq
- 1;
2597 while (bmap1
&& i1
>= 0 && i2
>= 0) {
2600 last1
= isl_seq_last_non_zero(bmap1
->eq
[i1
] + 1, total
);
2601 last2
= isl_seq_last_non_zero(bmap2
->eq
[i2
] + 1, total
);
2602 if (last1
> last2
) {
2606 if (last1
< last2
) {
2607 if (isl_basic_map_drop_equality(bmap1
, i1
) < 0)
2608 bmap1
= isl_basic_map_free(bmap1
);
2612 if (!isl_seq_eq(bmap1
->eq
[i1
], bmap2
->eq
[i2
], 1 + total
)) {
2613 if (isl_basic_map_drop_equality(bmap1
, i1
) < 0)
2614 bmap1
= isl_basic_map_free(bmap1
);
2619 for (; i1
>= 0; --i1
)
2620 if (isl_basic_map_drop_equality(bmap1
, i1
) < 0)
2621 bmap1
= isl_basic_map_free(bmap1
);
2626 /* Compute a superset of "bmap1" and "bmap2" that is described
2627 * by only the constraints that appear in both "bmap1" and "bmap2".
2629 * First drop constraints that involve unknown integer divisions
2630 * since it is not trivial to check whether two such integer divisions
2631 * in different basic maps are the same.
2632 * Then align the remaining (known) divs and sort the constraints.
2633 * Finally drop all inequalities and equalities from "bmap1" that
2634 * do not also appear in "bmap2".
2636 __isl_give isl_basic_map
*isl_basic_map_plain_unshifted_simple_hull(
2637 __isl_take isl_basic_map
*bmap1
, __isl_take isl_basic_map
*bmap2
)
2639 bmap1
= isl_basic_map_drop_constraint_involving_unknown_divs(bmap1
);
2640 bmap2
= isl_basic_map_drop_constraint_involving_unknown_divs(bmap2
);
2641 bmap2
= isl_basic_map_align_divs(bmap2
, bmap1
);
2642 bmap1
= isl_basic_map_align_divs(bmap1
, bmap2
);
2643 bmap1
= isl_basic_map_gauss(bmap1
, NULL
);
2644 bmap2
= isl_basic_map_gauss(bmap2
, NULL
);
2645 bmap1
= isl_basic_map_sort_constraints(bmap1
);
2646 bmap2
= isl_basic_map_sort_constraints(bmap2
);
2648 bmap1
= select_shared_inequalities(bmap1
, bmap2
);
2649 bmap1
= select_shared_equalities(bmap1
, bmap2
);
2651 isl_basic_map_free(bmap2
);
2652 bmap1
= isl_basic_map_finalize(bmap1
);
2656 /* Compute a superset of the convex hull of "map" that is described
2657 * by only the constraints in the constituents of "map".
2658 * In particular, the result is composed of constraints that appear
2659 * in each of the basic maps of "map"
2661 * Constraints that involve unknown integer divisions are dropped
2662 * since it is not trivial to check whether two such integer divisions
2663 * in different basic maps are the same.
2665 * The hull is initialized from the first basic map and then
2666 * updated with respect to the other basic maps in turn.
2668 __isl_give isl_basic_map
*isl_map_plain_unshifted_simple_hull(
2669 __isl_take isl_map
*map
)
2672 isl_basic_map
*hull
;
2677 return map_simple_hull_trivial(map
);
2678 map
= isl_map_drop_constraint_involving_unknown_divs(map
);
2679 hull
= isl_basic_map_copy(map
->p
[0]);
2680 for (i
= 1; i
< map
->n
; ++i
) {
2681 isl_basic_map
*bmap_i
;
2683 bmap_i
= isl_basic_map_copy(map
->p
[i
]);
2684 hull
= isl_basic_map_plain_unshifted_simple_hull(hull
, bmap_i
);
2691 /* Compute a superset of the convex hull of "set" that is described
2692 * by only the constraints in the constituents of "set".
2693 * In particular, the result is composed of constraints that appear
2694 * in each of the basic sets of "set"
2696 __isl_give isl_basic_set
*isl_set_plain_unshifted_simple_hull(
2697 __isl_take isl_set
*set
)
2699 return isl_map_plain_unshifted_simple_hull(set
);
2702 /* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
2704 * For each basic set in "set", we first check if the basic set
2705 * contains a translate of "ineq". If this translate is more relaxed,
2706 * then we assume that "ineq" is not a bound on this basic set.
2707 * Otherwise, we know that it is a bound.
2708 * If the basic set does not contain a translate of "ineq", then
2709 * we call is_bound to perform the test.
2711 static __isl_give isl_basic_set
*add_bound_from_constraint(
2712 __isl_take isl_basic_set
*hull
, struct sh_data
*data
,
2713 __isl_keep isl_set
*set
, isl_int
*ineq
)
2718 struct ineq_cmp_data v
;
2721 return isl_basic_set_free(hull
);
2723 v
.len
= isl_basic_set_total_dim(hull
);
2725 c_hash
= isl_seq_get_hash(ineq
+ 1, v
.len
);
2727 ctx
= isl_basic_set_get_ctx(hull
);
2728 for (i
= 0; i
< set
->n
; ++i
) {
2730 struct isl_hash_table_entry
*entry
;
2732 entry
= isl_hash_table_find(ctx
, data
->p
[i
].table
,
2733 c_hash
, &has_ineq
, &v
, 0);
2735 isl_int
*ineq_i
= entry
->data
;
2736 int neg
, more_relaxed
;
2738 neg
= isl_seq_is_neg(ineq_i
+ 1, ineq
+ 1, v
.len
);
2740 isl_int_neg(ineq_i
[0], ineq_i
[0]);
2741 more_relaxed
= isl_int_gt(ineq_i
[0], ineq
[0]);
2743 isl_int_neg(ineq_i
[0], ineq_i
[0]);
2749 bound
= is_bound(data
, set
, i
, ineq
, 0);
2751 return isl_basic_set_free(hull
);
2758 k
= isl_basic_set_alloc_inequality(hull
);
2760 return isl_basic_set_free(hull
);
2761 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2766 /* Compute a superset of the convex hull of "set" that is described
2767 * by only some of the "n_ineq" constraints in the list "ineq", where "set"
2768 * has no parameters or integer divisions.
2770 * The inequalities in "ineq" are assumed to have been sorted such
2771 * that constraints with the same linear part appear together and
2772 * that among constraints with the same linear part, those with
2773 * smaller constant term appear first.
2775 * We reuse the same data structure that is used by uset_simple_hull,
2776 * but we do not need the hull table since we will not consider the
2777 * same constraint more than once. We therefore allocate it with zero size.
2779 * We run through the constraints and try to add them one by one,
2780 * skipping identical constraints. If we have added a constraint and
2781 * the next constraint is a more relaxed translate, then we skip this
2782 * next constraint as well.
2784 static __isl_give isl_basic_set
*uset_unshifted_simple_hull_from_constraints(
2785 __isl_take isl_set
*set
, int n_ineq
, isl_int
**ineq
)
2789 struct sh_data
*data
= NULL
;
2790 isl_basic_set
*hull
= NULL
;
2793 hull
= isl_basic_set_alloc_space(isl_set_get_space(set
), 0, 0, n_ineq
);
2797 data
= sh_data_alloc(set
, 0);
2801 dim
= isl_set_dim(set
, isl_dim_set
);
2802 for (i
= 0; i
< n_ineq
; ++i
) {
2803 int hull_n_ineq
= hull
->n_ineq
;
2806 parallel
= i
> 0 && isl_seq_eq(ineq
[i
- 1] + 1, ineq
[i
] + 1,
2809 (last_added
|| isl_int_eq(ineq
[i
- 1][0], ineq
[i
][0])))
2811 hull
= add_bound_from_constraint(hull
, data
, set
, ineq
[i
]);
2814 last_added
= hull
->n_ineq
> hull_n_ineq
;
2823 isl_basic_set_free(hull
);
2827 /* Collect pointers to all the inequalities in the elements of "list"
2828 * in "ineq". For equalities, store both a pointer to the equality and
2829 * a pointer to its opposite, which is first copied to "mat".
2830 * "ineq" and "mat" are assumed to have been preallocated to the right size
2831 * (the number of inequalities + 2 times the number of equalites and
2832 * the number of equalities, respectively).
2834 static __isl_give isl_mat
*collect_inequalities(__isl_take isl_mat
*mat
,
2835 __isl_keep isl_basic_set_list
*list
, isl_int
**ineq
)
2837 int i
, j
, n
, n_eq
, n_ineq
;
2844 n
= isl_basic_set_list_n_basic_set(list
);
2845 for (i
= 0; i
< n
; ++i
) {
2846 isl_basic_set
*bset
;
2847 bset
= isl_basic_set_list_get_basic_set(list
, i
);
2849 return isl_mat_free(mat
);
2850 for (j
= 0; j
< bset
->n_eq
; ++j
) {
2851 ineq
[n_ineq
++] = mat
->row
[n_eq
];
2852 ineq
[n_ineq
++] = bset
->eq
[j
];
2853 isl_seq_neg(mat
->row
[n_eq
++], bset
->eq
[j
], mat
->n_col
);
2855 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2856 ineq
[n_ineq
++] = bset
->ineq
[j
];
2857 isl_basic_set_free(bset
);
2863 /* Comparison routine for use as an isl_sort callback.
2865 * Constraints with the same linear part are sorted together and
2866 * among constraints with the same linear part, those with smaller
2867 * constant term are sorted first.
2869 static int cmp_ineq(const void *a
, const void *b
, void *arg
)
2871 unsigned dim
= *(unsigned *) arg
;
2872 isl_int
* const *ineq1
= a
;
2873 isl_int
* const *ineq2
= b
;
2876 cmp
= isl_seq_cmp((*ineq1
) + 1, (*ineq2
) + 1, dim
);
2879 return isl_int_cmp((*ineq1
)[0], (*ineq2
)[0]);
2882 /* Compute a superset of the convex hull of "set" that is described
2883 * by only constraints in the elements of "list", where "set" has
2884 * no parameters or integer divisions.
2886 * We collect all the constraints in those elements and then
2887 * sort the constraints such that constraints with the same linear part
2888 * are sorted together and that those with smaller constant term are
2891 static __isl_give isl_basic_set
*uset_unshifted_simple_hull_from_basic_set_list(
2892 __isl_take isl_set
*set
, __isl_take isl_basic_set_list
*list
)
2894 int i
, n
, n_eq
, n_ineq
;
2897 isl_mat
*mat
= NULL
;
2898 isl_int
**ineq
= NULL
;
2899 isl_basic_set
*hull
;
2903 ctx
= isl_set_get_ctx(set
);
2907 n
= isl_basic_set_list_n_basic_set(list
);
2908 for (i
= 0; i
< n
; ++i
) {
2909 isl_basic_set
*bset
;
2910 bset
= isl_basic_set_list_get_basic_set(list
, i
);
2914 n_ineq
+= 2 * bset
->n_eq
+ bset
->n_ineq
;
2915 isl_basic_set_free(bset
);
2918 ineq
= isl_alloc_array(ctx
, isl_int
*, n_ineq
);
2919 if (n_ineq
> 0 && !ineq
)
2922 dim
= isl_set_dim(set
, isl_dim_set
);
2923 mat
= isl_mat_alloc(ctx
, n_eq
, 1 + dim
);
2924 mat
= collect_inequalities(mat
, list
, ineq
);
2928 if (isl_sort(ineq
, n_ineq
, sizeof(ineq
[0]), &cmp_ineq
, &dim
) < 0)
2931 hull
= uset_unshifted_simple_hull_from_constraints(set
, n_ineq
, ineq
);
2935 isl_basic_set_list_free(list
);
2941 isl_basic_set_list_free(list
);
2945 /* Compute a superset of the convex hull of "map" that is described
2946 * by only constraints in the elements of "list".
2948 * If the list is empty, then we can only describe the universe set.
2949 * If the input map is empty, then all constraints are valid, so
2950 * we return the intersection of the elements in "list".
2952 * Otherwise, we align all divs and temporarily treat them
2953 * as regular variables, computing the unshifted simple hull in
2954 * uset_unshifted_simple_hull_from_basic_set_list.
2956 static __isl_give isl_basic_map
*map_unshifted_simple_hull_from_basic_map_list(
2957 __isl_take isl_map
*map
, __isl_take isl_basic_map_list
*list
)
2959 isl_basic_map
*model
;
2960 isl_basic_map
*hull
;
2962 isl_basic_set_list
*bset_list
;
2967 if (isl_basic_map_list_n_basic_map(list
) == 0) {
2970 space
= isl_map_get_space(map
);
2972 isl_basic_map_list_free(list
);
2973 return isl_basic_map_universe(space
);
2975 if (isl_map_plain_is_empty(map
)) {
2977 return isl_basic_map_list_intersect(list
);
2980 map
= isl_map_align_divs_to_basic_map_list(map
, list
);
2983 list
= isl_basic_map_list_align_divs_to_basic_map(list
, map
->p
[0]);
2985 model
= isl_basic_map_list_get_basic_map(list
, 0);
2987 set
= isl_map_underlying_set(map
);
2988 bset_list
= isl_basic_map_list_underlying_set(list
);
2990 hull
= uset_unshifted_simple_hull_from_basic_set_list(set
, bset_list
);
2991 hull
= isl_basic_map_overlying_set(hull
, model
);
2996 isl_basic_map_list_free(list
);
3000 /* Return a sequence of the basic maps that make up the maps in "list".
3002 static __isl_give isl_basic_map_list
*collect_basic_maps(
3003 __isl_take isl_map_list
*list
)
3007 isl_basic_map_list
*bmap_list
;
3011 n
= isl_map_list_n_map(list
);
3012 ctx
= isl_map_list_get_ctx(list
);
3013 bmap_list
= isl_basic_map_list_alloc(ctx
, 0);
3015 for (i
= 0; i
< n
; ++i
) {
3017 isl_basic_map_list
*list_i
;
3019 map
= isl_map_list_get_map(list
, i
);
3020 map
= isl_map_compute_divs(map
);
3021 list_i
= isl_map_get_basic_map_list(map
);
3023 bmap_list
= isl_basic_map_list_concat(bmap_list
, list_i
);
3026 isl_map_list_free(list
);
3030 /* Compute a superset of the convex hull of "map" that is described
3031 * by only constraints in the elements of "list".
3033 * If "map" is the universe, then the convex hull (and therefore
3034 * any superset of the convexhull) is the universe as well.
3036 * Otherwise, we collect all the basic maps in the map list and
3037 * continue with map_unshifted_simple_hull_from_basic_map_list.
3039 __isl_give isl_basic_map
*isl_map_unshifted_simple_hull_from_map_list(
3040 __isl_take isl_map
*map
, __isl_take isl_map_list
*list
)
3042 isl_basic_map_list
*bmap_list
;
3045 is_universe
= isl_map_plain_is_universe(map
);
3046 if (is_universe
< 0)
3047 map
= isl_map_free(map
);
3048 if (is_universe
< 0 || is_universe
) {
3049 isl_map_list_free(list
);
3050 return isl_map_unshifted_simple_hull(map
);
3053 bmap_list
= collect_basic_maps(list
);
3054 return map_unshifted_simple_hull_from_basic_map_list(map
, bmap_list
);
3057 /* Compute a superset of the convex hull of "set" that is described
3058 * by only constraints in the elements of "list".
3060 __isl_give isl_basic_set
*isl_set_unshifted_simple_hull_from_set_list(
3061 __isl_take isl_set
*set
, __isl_take isl_set_list
*list
)
3063 return isl_map_unshifted_simple_hull_from_map_list(set
, list
);
3066 /* Given a set "set", return parametric bounds on the dimension "dim".
3068 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
3070 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
3071 set
= isl_set_copy(set
);
3072 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
3073 set
= isl_set_eliminate_dims(set
, 0, dim
);
3074 return isl_set_convex_hull(set
);
3077 /* Computes a "simple hull" and then check if each dimension in the
3078 * resulting hull is bounded by a symbolic constant. If not, the
3079 * hull is intersected with the corresponding bounds on the whole set.
3081 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
3084 struct isl_basic_set
*hull
;
3085 unsigned nparam
, left
;
3086 int removed_divs
= 0;
3088 hull
= isl_set_simple_hull(isl_set_copy(set
));
3092 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
3093 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
3094 int lower
= 0, upper
= 0;
3095 struct isl_basic_set
*bounds
;
3097 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
3098 for (j
= 0; j
< hull
->n_eq
; ++j
) {
3099 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
3101 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
3108 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
3109 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
3111 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
3113 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
3116 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
3127 if (!removed_divs
) {
3128 set
= isl_set_remove_divs(set
);
3133 bounds
= set_bounds(set
, i
);
3134 hull
= isl_basic_set_intersect(hull
, bounds
);
3143 isl_basic_set_free(hull
);