isl_tab: add isl_basic_set field for optionally keeping track of inequalities
[isl.git] / isl_sample.c
blob51eea130f5274c8333df5b972b951986340b761b
1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
3 #include "isl_vec.h"
4 #include "isl_mat.h"
5 #include "isl_seq.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
13 struct isl_vec *vec;
15 vec = isl_vec_alloc(bset->ctx, 0);
16 isl_basic_set_free(bset);
17 return vec;
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
26 unsigned dim;
27 struct isl_vec *sample;
29 dim = isl_basic_set_total_dim(bset);
30 sample = isl_vec_alloc(bset->ctx, 1 + dim);
31 if (sample) {
32 isl_int_set_si(sample->el[0], 1);
33 isl_seq_clr(sample->el + 1, dim);
35 isl_basic_set_free(bset);
36 return sample;
39 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
41 int i;
42 isl_int t;
43 struct isl_vec *sample;
45 bset = isl_basic_set_simplify(bset);
46 if (!bset)
47 return NULL;
48 if (isl_basic_set_fast_is_empty(bset))
49 return empty_sample(bset);
50 if (bset->n_eq == 0 && bset->n_ineq == 0)
51 return zero_sample(bset);
53 sample = isl_vec_alloc(bset->ctx, 2);
54 isl_int_set_si(sample->block.data[0], 1);
56 if (bset->n_eq > 0) {
57 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
58 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
59 if (isl_int_is_one(bset->eq[0][1]))
60 isl_int_neg(sample->el[1], bset->eq[0][0]);
61 else {
62 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
63 goto error);
64 isl_int_set(sample->el[1], bset->eq[0][0]);
66 isl_basic_set_free(bset);
67 return sample;
70 isl_int_init(t);
71 if (isl_int_is_one(bset->ineq[0][1]))
72 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
73 else
74 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
75 for (i = 1; i < bset->n_ineq; ++i) {
76 isl_seq_inner_product(sample->block.data,
77 bset->ineq[i], 2, &t);
78 if (isl_int_is_neg(t))
79 break;
81 isl_int_clear(t);
82 if (i < bset->n_ineq) {
83 isl_vec_free(sample);
84 return empty_sample(bset);
87 isl_basic_set_free(bset);
88 return sample;
89 error:
90 isl_basic_set_free(bset);
91 isl_vec_free(sample);
92 return NULL;
95 static struct isl_mat *independent_bounds(struct isl_basic_set *bset)
97 int i, j, n;
98 struct isl_mat *dirs = NULL;
99 struct isl_mat *bounds = NULL;
100 unsigned dim;
102 if (!bset)
103 return NULL;
105 dim = isl_basic_set_n_dim(bset);
106 bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim);
107 if (!bounds)
108 return NULL;
110 isl_int_set_si(bounds->row[0][0], 1);
111 isl_seq_clr(bounds->row[0]+1, dim);
112 bounds->n_row = 1;
114 if (bset->n_ineq == 0)
115 return bounds;
117 dirs = isl_mat_alloc(bset->ctx, dim, dim);
118 if (!dirs) {
119 isl_mat_free(bounds);
120 return NULL;
122 isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
123 isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
124 for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
125 int pos;
127 isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
129 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
130 if (pos < 0)
131 continue;
132 for (i = 0; i < n; ++i) {
133 int pos_i;
134 pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
135 if (pos_i < pos)
136 continue;
137 if (pos_i > pos)
138 break;
139 isl_seq_elim(dirs->row[n], dirs->row[i], pos,
140 dirs->n_col, NULL);
141 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
142 if (pos < 0)
143 break;
145 if (pos < 0)
146 continue;
147 if (i < n) {
148 int k;
149 isl_int *t = dirs->row[n];
150 for (k = n; k > i; --k)
151 dirs->row[k] = dirs->row[k-1];
152 dirs->row[i] = t;
154 ++n;
155 isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
157 isl_mat_free(dirs);
158 bounds->n_row = 1+n;
159 return bounds;
162 static void swap_inequality(struct isl_basic_set *bset, int a, int b)
164 isl_int *t = bset->ineq[a];
165 bset->ineq[a] = bset->ineq[b];
166 bset->ineq[b] = t;
169 /* Skew into positive orthant and project out lineality space.
171 * We perform a unimodular transformation that turns a selected
172 * maximal set of linearly independent bounds into constraints
173 * on the first dimensions that impose that these first dimensions
174 * are non-negative. In particular, the constraint matrix is lower
175 * triangular with positive entries on the diagonal and negative
176 * entries below.
177 * If "bset" has a lineality space then these constraints (and therefore
178 * all constraints in bset) only involve the first dimensions.
179 * The remaining dimensions then do not appear in any constraints and
180 * we can select any value for them, say zero. We therefore project
181 * out this final dimensions and plug in the value zero later. This
182 * is accomplished by simply dropping the final columns of
183 * the unimodular transformation.
185 static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
186 struct isl_basic_set *bset, struct isl_mat **T)
188 struct isl_mat *U = NULL;
189 struct isl_mat *bounds = NULL;
190 int i, j;
191 unsigned old_dim, new_dim;
193 *T = NULL;
194 if (!bset)
195 return NULL;
197 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
198 isl_assert(bset->ctx, bset->n_div == 0, goto error);
199 isl_assert(bset->ctx, bset->n_eq == 0, goto error);
201 old_dim = isl_basic_set_n_dim(bset);
202 /* Try to move (multiples of) unit rows up. */
203 for (i = 0, j = 0; i < bset->n_ineq; ++i) {
204 int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
205 if (pos < 0)
206 continue;
207 if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
208 old_dim-pos-1) >= 0)
209 continue;
210 if (i != j)
211 swap_inequality(bset, i, j);
212 ++j;
214 bounds = independent_bounds(bset);
215 if (!bounds)
216 goto error;
217 new_dim = bounds->n_row - 1;
218 bounds = isl_mat_left_hermite(bounds, 1, &U, NULL);
219 if (!bounds)
220 goto error;
221 U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim);
222 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
223 if (!bset)
224 goto error;
225 *T = U;
226 isl_mat_free(bounds);
227 return bset;
228 error:
229 isl_mat_free(bounds);
230 isl_mat_free(U);
231 isl_basic_set_free(bset);
232 return NULL;
235 /* Find a sample integer point, if any, in bset, which is known
236 * to have equalities. If bset contains no integer points, then
237 * return a zero-length vector.
238 * We simply remove the known equalities, compute a sample
239 * in the resulting bset, using the specified recurse function,
240 * and then transform the sample back to the original space.
242 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
243 struct isl_vec *(*recurse)(struct isl_basic_set *))
245 struct isl_mat *T;
246 struct isl_vec *sample;
248 if (!bset)
249 return NULL;
251 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
252 sample = recurse(bset);
253 if (!sample || sample->size == 0)
254 isl_mat_free(T);
255 else
256 sample = isl_mat_vec_product(T, sample);
257 return sample;
260 /* Given a basic set "bset" and an affine function "f"/"denom",
261 * check if bset is bounded and non-empty and if so, return the minimal
262 * and maximal value attained by the affine function in "min" and "max".
263 * The minimal value is rounded up to the nearest integer, while the
264 * maximal value is rounded down.
265 * The return value indicates whether the set was empty or unbounded.
267 * If we happen to find an integer point while looking for the minimal
268 * or maximal value, then we record that value in "bset" and return early.
270 static enum isl_lp_result basic_set_range(struct isl_basic_set *bset,
271 isl_int *f, isl_int denom, isl_int *min, isl_int *max)
273 unsigned dim;
274 struct isl_tab *tab;
275 enum isl_lp_result res;
277 if (!bset)
278 return isl_lp_error;
279 if (isl_basic_set_fast_is_empty(bset))
280 return isl_lp_empty;
282 tab = isl_tab_from_basic_set(bset);
283 res = isl_tab_min(tab, f, denom, min, NULL, 0);
284 if (res != isl_lp_ok)
285 goto done;
287 if (isl_tab_sample_is_integer(tab)) {
288 isl_vec_free(bset->sample);
289 bset->sample = isl_tab_get_sample_value(tab);
290 if (!bset->sample)
291 goto error;
292 isl_int_set(*max, *min);
293 goto done;
296 dim = isl_basic_set_total_dim(bset);
297 isl_seq_neg(f, f, 1 + dim);
298 res = isl_tab_min(tab, f, denom, max, NULL, 0);
299 isl_seq_neg(f, f, 1 + dim);
300 isl_int_neg(*max, *max);
302 if (isl_tab_sample_is_integer(tab)) {
303 isl_vec_free(bset->sample);
304 bset->sample = isl_tab_get_sample_value(tab);
305 if (!bset->sample)
306 goto error;
309 done:
310 isl_tab_free(tab);
311 return res;
312 error:
313 isl_tab_free(tab);
314 return isl_lp_error;
317 /* Perform a basis reduction on "bset" and return the inverse of
318 * the new basis, i.e., an affine mapping from the new coordinates to the old,
319 * in *T.
321 static struct isl_basic_set *basic_set_reduced(struct isl_basic_set *bset,
322 struct isl_mat **T)
324 unsigned gbr_only_first;
326 *T = NULL;
327 if (!bset)
328 return NULL;
330 gbr_only_first = bset->ctx->gbr_only_first;
331 bset->ctx->gbr_only_first = 1;
332 *T = isl_basic_set_reduced_basis(bset);
333 bset->ctx->gbr_only_first = gbr_only_first;
335 *T = isl_mat_lin_to_aff(*T);
336 *T = isl_mat_right_inverse(*T);
338 bset = isl_basic_set_preimage(bset, isl_mat_copy(*T));
339 if (!bset)
340 goto error;
342 return bset;
343 error:
344 isl_mat_free(*T);
345 *T = NULL;
346 return NULL;
349 static struct isl_vec *sample_bounded(struct isl_basic_set *bset);
351 /* Given a basic set "bset" whose first coordinate ranges between
352 * "min" and "max", step through all values from min to max, until
353 * the slice of bset with the first coordinate fixed to one of these
354 * values contains an integer point. If such a point is found, return it.
355 * If none of the slices contains any integer point, then bset itself
356 * doesn't contain any integer point and an empty sample is returned.
358 static struct isl_vec *sample_scan(struct isl_basic_set *bset,
359 isl_int min, isl_int max)
361 unsigned total;
362 struct isl_basic_set *slice = NULL;
363 struct isl_vec *sample = NULL;
364 isl_int tmp;
366 total = isl_basic_set_total_dim(bset);
368 isl_int_init(tmp);
369 for (isl_int_set(tmp, min); isl_int_le(tmp, max);
370 isl_int_add_ui(tmp, tmp, 1)) {
371 int k;
373 slice = isl_basic_set_copy(bset);
374 slice = isl_basic_set_cow(slice);
375 slice = isl_basic_set_extend_constraints(slice, 1, 0);
376 k = isl_basic_set_alloc_equality(slice);
377 if (k < 0)
378 goto error;
379 isl_int_set(slice->eq[k][0], tmp);
380 isl_int_set_si(slice->eq[k][1], -1);
381 isl_seq_clr(slice->eq[k] + 2, total - 1);
382 slice = isl_basic_set_simplify(slice);
383 sample = sample_bounded(slice);
384 slice = NULL;
385 if (!sample)
386 goto error;
387 if (sample->size > 0)
388 break;
389 isl_vec_free(sample);
390 sample = NULL;
392 if (!sample)
393 sample = empty_sample(bset);
394 else
395 isl_basic_set_free(bset);
396 isl_int_clear(tmp);
397 return sample;
398 error:
399 isl_basic_set_free(bset);
400 isl_basic_set_free(slice);
401 isl_int_clear(tmp);
402 return NULL;
405 /* Given a basic set that is known to be bounded, find and return
406 * an integer point in the basic set, if there is any.
408 * After handling some trivial cases, we check the range of the
409 * first coordinate. If this coordinate can only attain one integer
410 * value, we are happy. Otherwise, we perform basis reduction and
411 * determine the new range.
413 * Then we step through all possible values in the range in sample_scan.
415 * If any basis reduction was performed, the sample value found, if any,
416 * is transformed back to the original space.
418 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
420 unsigned dim;
421 struct isl_vec *sample;
422 struct isl_vec *obj = NULL;
423 struct isl_mat *T = NULL;
424 isl_int min, max;
425 enum isl_lp_result res;
427 if (!bset)
428 return NULL;
430 if (isl_basic_set_fast_is_empty(bset))
431 return empty_sample(bset);
433 dim = isl_basic_set_total_dim(bset);
434 if (dim == 0)
435 return zero_sample(bset);
436 if (dim == 1)
437 return interval_sample(bset);
438 if (bset->n_eq > 0)
439 return sample_eq(bset, sample_bounded);
441 isl_int_init(min);
442 isl_int_init(max);
443 obj = isl_vec_alloc(bset->ctx, 1 + dim);
444 if (!obj)
445 goto error;
446 isl_seq_clr(obj->el, 1+ dim);
447 isl_int_set_si(obj->el[1], 1);
449 res = basic_set_range(bset, obj->el, bset->ctx->one, &min, &max);
450 if (res == isl_lp_error)
451 goto error;
452 isl_assert(bset->ctx, res != isl_lp_unbounded, goto error);
453 if (bset->sample) {
454 sample = isl_vec_copy(bset->sample);
455 isl_basic_set_free(bset);
456 goto out;
458 if (res == isl_lp_empty || isl_int_lt(max, min)) {
459 sample = empty_sample(bset);
460 goto out;
463 if (isl_int_ne(min, max)) {
464 bset = basic_set_reduced(bset, &T);
465 if (!bset)
466 goto error;
468 res = basic_set_range(bset, obj->el, bset->ctx->one, &min, &max);
469 if (res == isl_lp_error)
470 goto error;
471 isl_assert(bset->ctx, res != isl_lp_unbounded, goto error);
472 if (bset->sample) {
473 sample = isl_vec_copy(bset->sample);
474 isl_basic_set_free(bset);
475 goto out;
477 if (res == isl_lp_empty || isl_int_lt(max, min)) {
478 sample = empty_sample(bset);
479 goto out;
483 sample = sample_scan(bset, min, max);
484 out:
485 if (T) {
486 if (!sample || sample->size == 0)
487 isl_mat_free(T);
488 else
489 sample = isl_mat_vec_product(T, sample);
491 isl_vec_free(obj);
492 isl_int_clear(min);
493 isl_int_clear(max);
494 return sample;
495 error:
496 isl_mat_free(T);
497 isl_basic_set_free(bset);
498 isl_vec_free(obj);
499 isl_int_clear(min);
500 isl_int_clear(max);
501 return NULL;
504 /* Given a basic set "bset" and a value "sample" for the first coordinates
505 * of bset, plug in these values and drop the corresponding coordinates.
507 * We do this by computing the preimage of the transformation
509 * [ 1 0 ]
510 * x = [ s 0 ] x'
511 * [ 0 I ]
513 * where [1 s] is the sample value and I is the identity matrix of the
514 * appropriate dimension.
516 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
517 struct isl_vec *sample)
519 int i;
520 unsigned total;
521 struct isl_mat *T;
523 if (!bset || !sample)
524 goto error;
526 total = isl_basic_set_total_dim(bset);
527 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
528 if (!T)
529 goto error;
531 for (i = 0; i < sample->size; ++i) {
532 isl_int_set(T->row[i][0], sample->el[i]);
533 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
535 for (i = 0; i < T->n_col - 1; ++i) {
536 isl_seq_clr(T->row[sample->size + i], T->n_col);
537 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
539 isl_vec_free(sample);
541 bset = isl_basic_set_preimage(bset, T);
542 return bset;
543 error:
544 isl_basic_set_free(bset);
545 isl_vec_free(sample);
546 return NULL;
549 /* Given a basic set "bset", return any (possibly non-integer) point
550 * in the basic set.
552 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
554 struct isl_tab *tab;
555 struct isl_vec *sample;
557 if (!bset)
558 return NULL;
560 tab = isl_tab_from_basic_set(bset);
561 sample = isl_tab_get_sample_value(tab);
562 isl_tab_free(tab);
564 isl_basic_set_free(bset);
566 return sample;
569 /* Given a rational vector, with the denominator in the first element
570 * of the vector, round up all coordinates.
572 struct isl_vec *isl_vec_ceil(struct isl_vec *vec)
574 int i;
576 vec = isl_vec_cow(vec);
577 if (!vec)
578 return NULL;
580 isl_seq_cdiv_q(vec->el + 1, vec->el + 1, vec->el[0], vec->size - 1);
582 isl_int_set_si(vec->el[0], 1);
584 return vec;
587 /* Given a linear cone "cone" and a rational point "vec",
588 * construct a polyhedron with shifted copies of the constraints in "cone",
589 * i.e., a polyhedron with "cone" as its recession cone, such that each
590 * point x in this polyhedron is such that the unit box positioned at x
591 * lies entirely inside the affine cone 'vec + cone'.
592 * Any rational point in this polyhedron may therefore be rounded up
593 * to yield an integer point that lies inside said affine cone.
595 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
596 * point "vec" by v/d.
597 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
598 * by <a_i, x> - b/d >= 0.
599 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
600 * We prefer this polyhedron over the actual affine cone because it doesn't
601 * require a scaling of the constraints.
602 * If each of the vertices of the unit cube positioned at x lies inside
603 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
604 * We therefore impose that x' = x + \sum e_i, for any selection of unit
605 * vectors lies inside the polyhedron, i.e.,
607 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
609 * The most stringent of these constraints is the one that selects
610 * all negative a_i, so the polyhedron we are looking for has constraints
612 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
614 * Note that if cone were known to have only non-negative rays
615 * (which can be accomplished by a unimodular transformation),
616 * then we would only have to check the points x' = x + e_i
617 * and we only have to add the smallest negative a_i (if any)
618 * instead of the sum of all negative a_i.
620 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
621 struct isl_vec *vec)
623 int i, j, k;
624 unsigned total;
626 struct isl_basic_set *shift = NULL;
628 if (!cone || !vec)
629 goto error;
631 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
633 total = isl_basic_set_total_dim(cone);
635 shift = isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone),
636 0, 0, cone->n_ineq);
638 for (i = 0; i < cone->n_ineq; ++i) {
639 k = isl_basic_set_alloc_inequality(shift);
640 if (k < 0)
641 goto error;
642 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
643 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
644 &shift->ineq[k][0]);
645 isl_int_cdiv_q(shift->ineq[k][0],
646 shift->ineq[k][0], vec->el[0]);
647 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
648 for (j = 0; j < total; ++j) {
649 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
650 continue;
651 isl_int_add(shift->ineq[k][0],
652 shift->ineq[k][0], shift->ineq[k][1 + j]);
656 isl_basic_set_free(cone);
657 isl_vec_free(vec);
659 return isl_basic_set_finalize(shift);
660 error:
661 isl_basic_set_free(shift);
662 isl_basic_set_free(cone);
663 isl_vec_free(vec);
664 return NULL;
667 /* Given a rational point vec in a (transformed) basic set,
668 * such that cone is the recession cone of the original basic set,
669 * "round up" the rational point to an integer point.
671 * We first check if the rational point just happens to be integer.
672 * If not, we transform the cone in the same way as the basic set,
673 * pick a point x in this cone shifted to the rational point such that
674 * the whole unit cube at x is also inside this affine cone.
675 * Then we simply round up the coordinates of x and return the
676 * resulting integer point.
678 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
679 struct isl_basic_set *cone, struct isl_mat *U)
681 unsigned total;
683 if (!vec || !cone || !U)
684 goto error;
686 isl_assert(vec->ctx, vec->size != 0, goto error);
687 if (isl_int_is_one(vec->el[0])) {
688 isl_mat_free(U);
689 isl_basic_set_free(cone);
690 return vec;
693 total = isl_basic_set_total_dim(cone);
694 cone = isl_basic_set_preimage(cone, U);
695 cone = isl_basic_set_remove_dims(cone, 0, total - (vec->size - 1));
697 cone = shift_cone(cone, vec);
699 vec = rational_sample(cone);
700 vec = isl_vec_ceil(vec);
701 return vec;
702 error:
703 isl_mat_free(U);
704 isl_vec_free(vec);
705 isl_basic_set_free(cone);
706 return NULL;
709 /* Concatenate two integer vectors, i.e., two vectors with denominator
710 * (stored in element 0) equal to 1.
712 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
714 struct isl_vec *vec;
716 if (!vec1 || !vec2)
717 goto error;
718 isl_assert(vec1->ctx, vec1->size > 0, goto error);
719 isl_assert(vec2->ctx, vec2->size > 0, goto error);
720 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
721 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
723 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
724 if (!vec)
725 goto error;
727 isl_seq_cpy(vec->el, vec1->el, vec1->size);
728 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
730 isl_vec_free(vec1);
731 isl_vec_free(vec2);
733 return vec;
734 error:
735 isl_vec_free(vec1);
736 isl_vec_free(vec2);
737 return NULL;
740 /* Drop all constraints in bset that involve any of the dimensions
741 * first to first+n-1.
743 static struct isl_basic_set *drop_constraints_involving
744 (struct isl_basic_set *bset, unsigned first, unsigned n)
746 int i;
748 if (!bset)
749 return NULL;
751 bset = isl_basic_set_cow(bset);
753 for (i = bset->n_ineq - 1; i >= 0; --i) {
754 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
755 continue;
756 isl_basic_set_drop_inequality(bset, i);
759 return bset;
762 /* Give a basic set "bset" with recession cone "cone", compute and
763 * return an integer point in bset, if any.
765 * If the recession cone is full-dimensional, then we know that
766 * bset contains an infinite number of integer points and it is
767 * fairly easy to pick one of them.
768 * If the recession cone is not full-dimensional, then we first
769 * transform bset such that the bounded directions appear as
770 * the first dimensions of the transformed basic set.
771 * We do this by using a unimodular transformation that transforms
772 * the equalities in the recession cone to equalities on the first
773 * dimensions.
775 * The transformed set is then projected onto its bounded dimensions.
776 * Note that to compute this projection, we can simply drop all constraints
777 * involving any of the unbounded dimensions since these constraints
778 * cannot be combined to produce a constraint on the bounded dimensions.
779 * To see this, assume that there is such a combination of constraints
780 * that produces a constraint on the bounded dimensions. This means
781 * that some combination of the unbounded dimensions has both an upper
782 * bound and a lower bound in terms of the bounded dimensions, but then
783 * this combination would be a bounded direction too and would have been
784 * transformed into a bounded dimensions.
786 * We then compute a sample value in the bounded dimensions.
787 * If no such value can be found, then the original set did not contain
788 * any integer points and we are done.
789 * Otherwise, we plug in the value we found in the bounded dimensions,
790 * project out these bounded dimensions and end up with a set with
791 * a full-dimensional recession cone.
792 * A sample point in this set is computed by "rounding up" any
793 * rational point in the set.
795 * The sample points in the bounded and unbounded dimensions are
796 * then combined into a single sample point and transformed back
797 * to the original space.
799 static struct isl_vec *sample_with_cone(struct isl_basic_set *bset,
800 struct isl_basic_set *cone)
802 unsigned total;
803 unsigned cone_dim;
804 struct isl_mat *M, *U;
805 struct isl_vec *sample;
806 struct isl_vec *cone_sample;
807 struct isl_ctx *ctx;
808 struct isl_basic_set *bounded;
810 if (!bset || !cone)
811 goto error;
813 ctx = bset->ctx;
814 total = isl_basic_set_total_dim(cone);
815 cone_dim = total - cone->n_eq;
817 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
818 M = isl_mat_left_hermite(M, 0, &U, NULL);
819 if (!M)
820 goto error;
821 isl_mat_free(M);
823 U = isl_mat_lin_to_aff(U);
824 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
826 bounded = isl_basic_set_copy(bset);
827 bounded = drop_constraints_involving(bounded, total - cone_dim, cone_dim);
828 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
829 sample = sample_bounded(bounded);
830 if (!sample || sample->size == 0) {
831 isl_basic_set_free(bset);
832 isl_basic_set_free(cone);
833 isl_mat_free(U);
834 return sample;
836 bset = plug_in(bset, isl_vec_copy(sample));
837 cone_sample = rational_sample(bset);
838 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
839 sample = vec_concat(sample, cone_sample);
840 sample = isl_mat_vec_product(U, sample);
841 return sample;
842 error:
843 isl_basic_set_free(cone);
844 isl_basic_set_free(bset);
845 return NULL;
848 /* Compute and return a sample point in bset using generalized basis
849 * reduction. We first check if the input set has a non-trivial
850 * recession cone. If so, we perform some extra preprocessing in
851 * sample_with_cone. Otherwise, we directly perform generalized basis
852 * reduction.
854 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
856 unsigned dim;
857 struct isl_basic_set *cone;
859 dim = isl_basic_set_total_dim(bset);
861 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
863 if (cone->n_eq < dim)
864 return sample_with_cone(bset, cone);
866 isl_basic_set_free(cone);
867 return sample_bounded(bset);
870 static struct isl_vec *pip_sample(struct isl_basic_set *bset)
872 struct isl_mat *T;
873 struct isl_ctx *ctx;
874 struct isl_vec *sample;
876 bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
877 if (!bset)
878 return NULL;
880 ctx = bset->ctx;
881 sample = isl_pip_basic_set_sample(bset);
883 if (sample && sample->size != 0)
884 sample = isl_mat_vec_product(T, sample);
885 else
886 isl_mat_free(T);
888 return sample;
891 struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
893 struct isl_ctx *ctx;
894 unsigned dim;
895 if (!bset)
896 return NULL;
898 ctx = bset->ctx;
899 if (isl_basic_set_fast_is_empty(bset))
900 return empty_sample(bset);
902 dim = isl_basic_set_n_dim(bset);
903 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
904 isl_assert(ctx, bset->n_div == 0, goto error);
906 if (bset->sample && bset->sample->size == 1 + dim) {
907 int contains = isl_basic_set_contains(bset, bset->sample);
908 if (contains < 0)
909 goto error;
910 if (contains) {
911 struct isl_vec *sample = isl_vec_copy(bset->sample);
912 isl_basic_set_free(bset);
913 return sample;
916 isl_vec_free(bset->sample);
917 bset->sample = NULL;
919 if (bset->n_eq > 0)
920 return sample_eq(bset, isl_basic_set_sample);
921 if (dim == 0)
922 return zero_sample(bset);
923 if (dim == 1)
924 return interval_sample(bset);
926 switch (bset->ctx->ilp_solver) {
927 case ISL_ILP_PIP:
928 return pip_sample(bset);
929 case ISL_ILP_GBR:
930 return bounded ? sample_bounded(bset) : gbr_sample(bset);
932 isl_assert(bset->ctx, 0, );
933 error:
934 isl_basic_set_free(bset);
935 return NULL;
938 struct isl_vec *isl_basic_set_sample(struct isl_basic_set *bset)
940 return basic_set_sample(bset, 0);
943 /* Compute an integer sample in "bset", where the caller guarantees
944 * that "bset" is bounded.
946 struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
948 return basic_set_sample(bset, 1);