1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
15 vec
= isl_vec_alloc(bset
->ctx
, 0);
16 isl_basic_set_free(bset
);
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
27 struct isl_vec
*sample
;
29 dim
= isl_basic_set_total_dim(bset
);
30 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
32 isl_int_set_si(sample
->el
[0], 1);
33 isl_seq_clr(sample
->el
+ 1, dim
);
35 isl_basic_set_free(bset
);
39 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
43 struct isl_vec
*sample
;
45 bset
= isl_basic_set_simplify(bset
);
48 if (isl_basic_set_fast_is_empty(bset
))
49 return empty_sample(bset
);
50 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
51 return zero_sample(bset
);
53 sample
= isl_vec_alloc(bset
->ctx
, 2);
54 isl_int_set_si(sample
->block
.data
[0], 1);
57 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
58 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
59 if (isl_int_is_one(bset
->eq
[0][1]))
60 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
62 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
64 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
66 isl_basic_set_free(bset
);
71 if (isl_int_is_one(bset
->ineq
[0][1]))
72 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
74 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
75 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
76 isl_seq_inner_product(sample
->block
.data
,
77 bset
->ineq
[i
], 2, &t
);
78 if (isl_int_is_neg(t
))
82 if (i
< bset
->n_ineq
) {
84 return empty_sample(bset
);
87 isl_basic_set_free(bset
);
90 isl_basic_set_free(bset
);
95 static struct isl_mat
*independent_bounds(struct isl_basic_set
*bset
)
98 struct isl_mat
*dirs
= NULL
;
99 struct isl_mat
*bounds
= NULL
;
105 dim
= isl_basic_set_n_dim(bset
);
106 bounds
= isl_mat_alloc(bset
->ctx
, 1+dim
, 1+dim
);
110 isl_int_set_si(bounds
->row
[0][0], 1);
111 isl_seq_clr(bounds
->row
[0]+1, dim
);
114 if (bset
->n_ineq
== 0)
117 dirs
= isl_mat_alloc(bset
->ctx
, dim
, dim
);
119 isl_mat_free(bounds
);
122 isl_seq_cpy(dirs
->row
[0], bset
->ineq
[0]+1, dirs
->n_col
);
123 isl_seq_cpy(bounds
->row
[1], bset
->ineq
[0], bounds
->n_col
);
124 for (j
= 1, n
= 1; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
127 isl_seq_cpy(dirs
->row
[n
], bset
->ineq
[j
]+1, dirs
->n_col
);
129 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
132 for (i
= 0; i
< n
; ++i
) {
134 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
], dirs
->n_col
);
139 isl_seq_elim(dirs
->row
[n
], dirs
->row
[i
], pos
,
141 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
149 isl_int
*t
= dirs
->row
[n
];
150 for (k
= n
; k
> i
; --k
)
151 dirs
->row
[k
] = dirs
->row
[k
-1];
155 isl_seq_cpy(bounds
->row
[n
], bset
->ineq
[j
], bounds
->n_col
);
162 static void swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
164 isl_int
*t
= bset
->ineq
[a
];
165 bset
->ineq
[a
] = bset
->ineq
[b
];
169 /* Skew into positive orthant and project out lineality space.
171 * We perform a unimodular transformation that turns a selected
172 * maximal set of linearly independent bounds into constraints
173 * on the first dimensions that impose that these first dimensions
174 * are non-negative. In particular, the constraint matrix is lower
175 * triangular with positive entries on the diagonal and negative
177 * If "bset" has a lineality space then these constraints (and therefore
178 * all constraints in bset) only involve the first dimensions.
179 * The remaining dimensions then do not appear in any constraints and
180 * we can select any value for them, say zero. We therefore project
181 * out this final dimensions and plug in the value zero later. This
182 * is accomplished by simply dropping the final columns of
183 * the unimodular transformation.
185 static struct isl_basic_set
*isl_basic_set_skew_to_positive_orthant(
186 struct isl_basic_set
*bset
, struct isl_mat
**T
)
188 struct isl_mat
*U
= NULL
;
189 struct isl_mat
*bounds
= NULL
;
191 unsigned old_dim
, new_dim
;
197 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
198 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
199 isl_assert(bset
->ctx
, bset
->n_eq
== 0, goto error
);
201 old_dim
= isl_basic_set_n_dim(bset
);
202 /* Try to move (multiples of) unit rows up. */
203 for (i
= 0, j
= 0; i
< bset
->n_ineq
; ++i
) {
204 int pos
= isl_seq_first_non_zero(bset
->ineq
[i
]+1, old_dim
);
207 if (isl_seq_first_non_zero(bset
->ineq
[i
]+1+pos
+1,
211 swap_inequality(bset
, i
, j
);
214 bounds
= independent_bounds(bset
);
217 new_dim
= bounds
->n_row
- 1;
218 bounds
= isl_mat_left_hermite(bounds
, 1, &U
, NULL
);
221 U
= isl_mat_drop_cols(U
, 1 + new_dim
, old_dim
- new_dim
);
222 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
226 isl_mat_free(bounds
);
229 isl_mat_free(bounds
);
231 isl_basic_set_free(bset
);
235 /* Find a sample integer point, if any, in bset, which is known
236 * to have equalities. If bset contains no integer points, then
237 * return a zero-length vector.
238 * We simply remove the known equalities, compute a sample
239 * in the resulting bset, using the specified recurse function,
240 * and then transform the sample back to the original space.
242 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
243 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
246 struct isl_vec
*sample
;
251 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
252 sample
= recurse(bset
);
253 if (!sample
|| sample
->size
== 0)
256 sample
= isl_mat_vec_product(T
, sample
);
260 /* Given a basic set "bset" and an affine function "f"/"denom",
261 * check if bset is bounded and non-empty and if so, return the minimal
262 * and maximal value attained by the affine function in "min" and "max".
263 * The minimal value is rounded up to the nearest integer, while the
264 * maximal value is rounded down.
265 * The return value indicates whether the set was empty or unbounded.
267 * If we happen to find an integer point while looking for the minimal
268 * or maximal value, then we record that value in "bset" and return early.
270 static enum isl_lp_result
basic_set_range(struct isl_basic_set
*bset
,
271 isl_int
*f
, isl_int denom
, isl_int
*min
, isl_int
*max
)
275 enum isl_lp_result res
;
279 if (isl_basic_set_fast_is_empty(bset
))
282 tab
= isl_tab_from_basic_set(bset
);
283 res
= isl_tab_min(tab
, f
, denom
, min
, NULL
, 0);
284 if (res
!= isl_lp_ok
)
287 if (isl_tab_sample_is_integer(tab
)) {
288 isl_vec_free(bset
->sample
);
289 bset
->sample
= isl_tab_get_sample_value(tab
);
292 isl_int_set(*max
, *min
);
296 dim
= isl_basic_set_total_dim(bset
);
297 isl_seq_neg(f
, f
, 1 + dim
);
298 res
= isl_tab_min(tab
, f
, denom
, max
, NULL
, 0);
299 isl_seq_neg(f
, f
, 1 + dim
);
300 isl_int_neg(*max
, *max
);
302 if (isl_tab_sample_is_integer(tab
)) {
303 isl_vec_free(bset
->sample
);
304 bset
->sample
= isl_tab_get_sample_value(tab
);
317 /* Perform a basis reduction on "bset" and return the inverse of
318 * the new basis, i.e., an affine mapping from the new coordinates to the old,
321 static struct isl_basic_set
*basic_set_reduced(struct isl_basic_set
*bset
,
324 unsigned gbr_only_first
;
330 gbr_only_first
= bset
->ctx
->gbr_only_first
;
331 bset
->ctx
->gbr_only_first
= 1;
332 *T
= isl_basic_set_reduced_basis(bset
);
333 bset
->ctx
->gbr_only_first
= gbr_only_first
;
335 *T
= isl_mat_lin_to_aff(*T
);
336 *T
= isl_mat_right_inverse(*T
);
338 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(*T
));
349 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
);
351 /* Given a basic set "bset" whose first coordinate ranges between
352 * "min" and "max", step through all values from min to max, until
353 * the slice of bset with the first coordinate fixed to one of these
354 * values contains an integer point. If such a point is found, return it.
355 * If none of the slices contains any integer point, then bset itself
356 * doesn't contain any integer point and an empty sample is returned.
358 static struct isl_vec
*sample_scan(struct isl_basic_set
*bset
,
359 isl_int min
, isl_int max
)
362 struct isl_basic_set
*slice
= NULL
;
363 struct isl_vec
*sample
= NULL
;
366 total
= isl_basic_set_total_dim(bset
);
369 for (isl_int_set(tmp
, min
); isl_int_le(tmp
, max
);
370 isl_int_add_ui(tmp
, tmp
, 1)) {
373 slice
= isl_basic_set_copy(bset
);
374 slice
= isl_basic_set_cow(slice
);
375 slice
= isl_basic_set_extend_constraints(slice
, 1, 0);
376 k
= isl_basic_set_alloc_equality(slice
);
379 isl_int_set(slice
->eq
[k
][0], tmp
);
380 isl_int_set_si(slice
->eq
[k
][1], -1);
381 isl_seq_clr(slice
->eq
[k
] + 2, total
- 1);
382 slice
= isl_basic_set_simplify(slice
);
383 sample
= sample_bounded(slice
);
387 if (sample
->size
> 0)
389 isl_vec_free(sample
);
393 sample
= empty_sample(bset
);
395 isl_basic_set_free(bset
);
399 isl_basic_set_free(bset
);
400 isl_basic_set_free(slice
);
405 /* Given a basic set that is known to be bounded, find and return
406 * an integer point in the basic set, if there is any.
408 * After handling some trivial cases, we check the range of the
409 * first coordinate. If this coordinate can only attain one integer
410 * value, we are happy. Otherwise, we perform basis reduction and
411 * determine the new range.
413 * Then we step through all possible values in the range in sample_scan.
415 * If any basis reduction was performed, the sample value found, if any,
416 * is transformed back to the original space.
418 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
421 struct isl_vec
*sample
;
422 struct isl_vec
*obj
= NULL
;
423 struct isl_mat
*T
= NULL
;
425 enum isl_lp_result res
;
430 if (isl_basic_set_fast_is_empty(bset
))
431 return empty_sample(bset
);
433 dim
= isl_basic_set_total_dim(bset
);
435 return zero_sample(bset
);
437 return interval_sample(bset
);
439 return sample_eq(bset
, sample_bounded
);
443 obj
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
446 isl_seq_clr(obj
->el
, 1+ dim
);
447 isl_int_set_si(obj
->el
[1], 1);
449 res
= basic_set_range(bset
, obj
->el
, bset
->ctx
->one
, &min
, &max
);
450 if (res
== isl_lp_error
)
452 isl_assert(bset
->ctx
, res
!= isl_lp_unbounded
, goto error
);
454 sample
= isl_vec_copy(bset
->sample
);
455 isl_basic_set_free(bset
);
458 if (res
== isl_lp_empty
|| isl_int_lt(max
, min
)) {
459 sample
= empty_sample(bset
);
463 if (isl_int_ne(min
, max
)) {
464 bset
= basic_set_reduced(bset
, &T
);
468 res
= basic_set_range(bset
, obj
->el
, bset
->ctx
->one
, &min
, &max
);
469 if (res
== isl_lp_error
)
471 isl_assert(bset
->ctx
, res
!= isl_lp_unbounded
, goto error
);
473 sample
= isl_vec_copy(bset
->sample
);
474 isl_basic_set_free(bset
);
477 if (res
== isl_lp_empty
|| isl_int_lt(max
, min
)) {
478 sample
= empty_sample(bset
);
483 sample
= sample_scan(bset
, min
, max
);
486 if (!sample
|| sample
->size
== 0)
489 sample
= isl_mat_vec_product(T
, sample
);
497 isl_basic_set_free(bset
);
504 /* Given a basic set "bset" and a value "sample" for the first coordinates
505 * of bset, plug in these values and drop the corresponding coordinates.
507 * We do this by computing the preimage of the transformation
513 * where [1 s] is the sample value and I is the identity matrix of the
514 * appropriate dimension.
516 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
517 struct isl_vec
*sample
)
523 if (!bset
|| !sample
)
526 total
= isl_basic_set_total_dim(bset
);
527 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
531 for (i
= 0; i
< sample
->size
; ++i
) {
532 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
533 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
535 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
536 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
537 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
539 isl_vec_free(sample
);
541 bset
= isl_basic_set_preimage(bset
, T
);
544 isl_basic_set_free(bset
);
545 isl_vec_free(sample
);
549 /* Given a basic set "bset", return any (possibly non-integer) point
552 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
555 struct isl_vec
*sample
;
560 tab
= isl_tab_from_basic_set(bset
);
561 sample
= isl_tab_get_sample_value(tab
);
564 isl_basic_set_free(bset
);
569 /* Given a rational vector, with the denominator in the first element
570 * of the vector, round up all coordinates.
572 struct isl_vec
*isl_vec_ceil(struct isl_vec
*vec
)
576 vec
= isl_vec_cow(vec
);
580 isl_seq_cdiv_q(vec
->el
+ 1, vec
->el
+ 1, vec
->el
[0], vec
->size
- 1);
582 isl_int_set_si(vec
->el
[0], 1);
587 /* Given a linear cone "cone" and a rational point "vec",
588 * construct a polyhedron with shifted copies of the constraints in "cone",
589 * i.e., a polyhedron with "cone" as its recession cone, such that each
590 * point x in this polyhedron is such that the unit box positioned at x
591 * lies entirely inside the affine cone 'vec + cone'.
592 * Any rational point in this polyhedron may therefore be rounded up
593 * to yield an integer point that lies inside said affine cone.
595 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
596 * point "vec" by v/d.
597 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
598 * by <a_i, x> - b/d >= 0.
599 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
600 * We prefer this polyhedron over the actual affine cone because it doesn't
601 * require a scaling of the constraints.
602 * If each of the vertices of the unit cube positioned at x lies inside
603 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
604 * We therefore impose that x' = x + \sum e_i, for any selection of unit
605 * vectors lies inside the polyhedron, i.e.,
607 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
609 * The most stringent of these constraints is the one that selects
610 * all negative a_i, so the polyhedron we are looking for has constraints
612 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
614 * Note that if cone were known to have only non-negative rays
615 * (which can be accomplished by a unimodular transformation),
616 * then we would only have to check the points x' = x + e_i
617 * and we only have to add the smallest negative a_i (if any)
618 * instead of the sum of all negative a_i.
620 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
626 struct isl_basic_set
*shift
= NULL
;
631 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
633 total
= isl_basic_set_total_dim(cone
);
635 shift
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone
),
638 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
639 k
= isl_basic_set_alloc_inequality(shift
);
642 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
643 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
645 isl_int_cdiv_q(shift
->ineq
[k
][0],
646 shift
->ineq
[k
][0], vec
->el
[0]);
647 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
648 for (j
= 0; j
< total
; ++j
) {
649 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
651 isl_int_add(shift
->ineq
[k
][0],
652 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
656 isl_basic_set_free(cone
);
659 return isl_basic_set_finalize(shift
);
661 isl_basic_set_free(shift
);
662 isl_basic_set_free(cone
);
667 /* Given a rational point vec in a (transformed) basic set,
668 * such that cone is the recession cone of the original basic set,
669 * "round up" the rational point to an integer point.
671 * We first check if the rational point just happens to be integer.
672 * If not, we transform the cone in the same way as the basic set,
673 * pick a point x in this cone shifted to the rational point such that
674 * the whole unit cube at x is also inside this affine cone.
675 * Then we simply round up the coordinates of x and return the
676 * resulting integer point.
678 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
679 struct isl_basic_set
*cone
, struct isl_mat
*U
)
683 if (!vec
|| !cone
|| !U
)
686 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
687 if (isl_int_is_one(vec
->el
[0])) {
689 isl_basic_set_free(cone
);
693 total
= isl_basic_set_total_dim(cone
);
694 cone
= isl_basic_set_preimage(cone
, U
);
695 cone
= isl_basic_set_remove_dims(cone
, 0, total
- (vec
->size
- 1));
697 cone
= shift_cone(cone
, vec
);
699 vec
= rational_sample(cone
);
700 vec
= isl_vec_ceil(vec
);
705 isl_basic_set_free(cone
);
709 /* Concatenate two integer vectors, i.e., two vectors with denominator
710 * (stored in element 0) equal to 1.
712 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
718 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
719 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
720 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
721 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
723 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
727 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
728 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
740 /* Drop all constraints in bset that involve any of the dimensions
741 * first to first+n-1.
743 static struct isl_basic_set
*drop_constraints_involving
744 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
751 bset
= isl_basic_set_cow(bset
);
753 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
754 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
756 isl_basic_set_drop_inequality(bset
, i
);
762 /* Give a basic set "bset" with recession cone "cone", compute and
763 * return an integer point in bset, if any.
765 * If the recession cone is full-dimensional, then we know that
766 * bset contains an infinite number of integer points and it is
767 * fairly easy to pick one of them.
768 * If the recession cone is not full-dimensional, then we first
769 * transform bset such that the bounded directions appear as
770 * the first dimensions of the transformed basic set.
771 * We do this by using a unimodular transformation that transforms
772 * the equalities in the recession cone to equalities on the first
775 * The transformed set is then projected onto its bounded dimensions.
776 * Note that to compute this projection, we can simply drop all constraints
777 * involving any of the unbounded dimensions since these constraints
778 * cannot be combined to produce a constraint on the bounded dimensions.
779 * To see this, assume that there is such a combination of constraints
780 * that produces a constraint on the bounded dimensions. This means
781 * that some combination of the unbounded dimensions has both an upper
782 * bound and a lower bound in terms of the bounded dimensions, but then
783 * this combination would be a bounded direction too and would have been
784 * transformed into a bounded dimensions.
786 * We then compute a sample value in the bounded dimensions.
787 * If no such value can be found, then the original set did not contain
788 * any integer points and we are done.
789 * Otherwise, we plug in the value we found in the bounded dimensions,
790 * project out these bounded dimensions and end up with a set with
791 * a full-dimensional recession cone.
792 * A sample point in this set is computed by "rounding up" any
793 * rational point in the set.
795 * The sample points in the bounded and unbounded dimensions are
796 * then combined into a single sample point and transformed back
797 * to the original space.
799 static struct isl_vec
*sample_with_cone(struct isl_basic_set
*bset
,
800 struct isl_basic_set
*cone
)
804 struct isl_mat
*M
, *U
;
805 struct isl_vec
*sample
;
806 struct isl_vec
*cone_sample
;
808 struct isl_basic_set
*bounded
;
814 total
= isl_basic_set_total_dim(cone
);
815 cone_dim
= total
- cone
->n_eq
;
817 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
818 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
823 U
= isl_mat_lin_to_aff(U
);
824 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
826 bounded
= isl_basic_set_copy(bset
);
827 bounded
= drop_constraints_involving(bounded
, total
- cone_dim
, cone_dim
);
828 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
829 sample
= sample_bounded(bounded
);
830 if (!sample
|| sample
->size
== 0) {
831 isl_basic_set_free(bset
);
832 isl_basic_set_free(cone
);
836 bset
= plug_in(bset
, isl_vec_copy(sample
));
837 cone_sample
= rational_sample(bset
);
838 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
839 sample
= vec_concat(sample
, cone_sample
);
840 sample
= isl_mat_vec_product(U
, sample
);
843 isl_basic_set_free(cone
);
844 isl_basic_set_free(bset
);
848 /* Compute and return a sample point in bset using generalized basis
849 * reduction. We first check if the input set has a non-trivial
850 * recession cone. If so, we perform some extra preprocessing in
851 * sample_with_cone. Otherwise, we directly perform generalized basis
854 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
857 struct isl_basic_set
*cone
;
859 dim
= isl_basic_set_total_dim(bset
);
861 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
863 if (cone
->n_eq
< dim
)
864 return sample_with_cone(bset
, cone
);
866 isl_basic_set_free(cone
);
867 return sample_bounded(bset
);
870 static struct isl_vec
*pip_sample(struct isl_basic_set
*bset
)
874 struct isl_vec
*sample
;
876 bset
= isl_basic_set_skew_to_positive_orthant(bset
, &T
);
881 sample
= isl_pip_basic_set_sample(bset
);
883 if (sample
&& sample
->size
!= 0)
884 sample
= isl_mat_vec_product(T
, sample
);
891 struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
899 if (isl_basic_set_fast_is_empty(bset
))
900 return empty_sample(bset
);
902 dim
= isl_basic_set_n_dim(bset
);
903 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
904 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
906 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
907 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
911 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
912 isl_basic_set_free(bset
);
916 isl_vec_free(bset
->sample
);
920 return sample_eq(bset
, isl_basic_set_sample
);
922 return zero_sample(bset
);
924 return interval_sample(bset
);
926 switch (bset
->ctx
->ilp_solver
) {
928 return pip_sample(bset
);
930 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
932 isl_assert(bset
->ctx
, 0, );
934 isl_basic_set_free(bset
);
938 struct isl_vec
*isl_basic_set_sample(struct isl_basic_set
*bset
)
940 return basic_set_sample(bset
, 0);
943 /* Compute an integer sample in "bset", where the caller guarantees
944 * that "bset" is bounded.
946 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
948 return basic_set_sample(bset
, 1);