isl_printer_print_pw_aff: skip constraints implied by div expression
[isl.git] / isl_schedule.c
blob9a2d75787bc44e527ebffb33087be1f3bfe702d1
1 /*
2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
14 #include <isl/hash.h>
15 #include <isl/constraint.h>
16 #include <isl/schedule.h>
17 #include <isl_mat_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_tab.h>
21 #include <isl_dim_map.h>
22 #include <isl_hmap_map_basic_set.h>
23 #include <isl_qsort.h>
24 #include <isl_schedule_private.h>
25 #include <isl_band_private.h>
26 #include <isl_list_private.h>
27 #include <isl_options_private.h>
30 * The scheduling algorithm implemented in this file was inspired by
31 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
32 * Parallelization and Locality Optimization in the Polyhedral Model".
36 /* Internal information about a node that is used during the construction
37 * of a schedule.
38 * dim represents the space in which the domain lives
39 * sched is a matrix representation of the schedule being constructed
40 * for this node
41 * sched_map is an isl_map representation of the same (partial) schedule
42 * sched_map may be NULL
43 * rank is the number of linearly independent rows in the linear part
44 * of sched
45 * the columns of cmap represent a change of basis for the schedule
46 * coefficients; the first rank columns span the linear part of
47 * the schedule rows
48 * start is the first variable in the LP problem in the sequences that
49 * represents the schedule coefficients of this node
50 * nvar is the dimension of the domain
51 * nparam is the number of parameters or 0 if we are not constructing
52 * a parametric schedule
54 * scc is the index of SCC (or WCC) this node belongs to
56 * band contains the band index for each of the rows of the schedule.
57 * band_id is used to differentiate between separate bands at the same
58 * level within the same parent band, i.e., bands that are separated
59 * by the parent band or bands that are independent of each other.
60 * zero contains a boolean for each of the rows of the schedule,
61 * indicating whether the corresponding scheduling dimension results
62 * in zero dependence distances within its band and with respect
63 * to the proximity edges.
65 * index, min_index and on_stack are used during the SCC detection
66 * index represents the order in which nodes are visited.
67 * min_index is the index of the root of a (sub)component.
68 * on_stack indicates whether the node is currently on the stack.
70 struct isl_sched_node {
71 isl_space *dim;
72 isl_mat *sched;
73 isl_map *sched_map;
74 int rank;
75 isl_mat *cmap;
76 int start;
77 int nvar;
78 int nparam;
80 int scc;
82 int *band;
83 int *band_id;
84 int *zero;
86 /* scc detection */
87 int index;
88 int min_index;
89 int on_stack;
92 static int node_has_dim(const void *entry, const void *val)
94 struct isl_sched_node *node = (struct isl_sched_node *)entry;
95 isl_space *dim = (isl_space *)val;
97 return isl_space_is_equal(node->dim, dim);
100 /* An edge in the dependence graph. An edge may be used to
101 * ensure validity of the generated schedule, to minimize the dependence
102 * distance or both
104 * map is the dependence relation
105 * src is the source node
106 * dst is the sink node
107 * validity is set if the edge is used to ensure correctness
108 * proximity is set if the edge is used to minimize dependence distances
110 * For validity edges, start and end mark the sequence of inequality
111 * constraints in the LP problem that encode the validity constraint
112 * corresponding to this edge.
114 struct isl_sched_edge {
115 isl_map *map;
117 struct isl_sched_node *src;
118 struct isl_sched_node *dst;
120 int validity;
121 int proximity;
123 int start;
124 int end;
127 /* Internal information about the dependence graph used during
128 * the construction of the schedule.
130 * intra_hmap is a cache, mapping dependence relations to their dual,
131 * for dependences from a node to itself
132 * inter_hmap is a cache, mapping dependence relations to their dual,
133 * for dependences between distinct nodes
135 * n is the number of nodes
136 * node is the list of nodes
137 * maxvar is the maximal number of variables over all nodes
138 * n_row is the current (maximal) number of linearly independent
139 * rows in the node schedules
140 * n_total_row is the current number of rows in the node schedules
141 * n_band is the current number of completed bands
142 * band_start is the starting row in the node schedules of the current band
143 * root is set if this graph is the original dependence graph,
144 * without any splitting
146 * sorted contains a list of node indices sorted according to the
147 * SCC to which a node belongs
149 * n_edge is the number of edges
150 * edge is the list of edges
151 * edge_table contains pointers into the edge array, hashed on the source
152 * and sink spaces; the table only contains edges that represent
153 * validity constraints (and that may or may not also represent proximity
154 * constraints)
156 * node_table contains pointers into the node array, hashed on the space
158 * region contains a list of variable sequences that should be non-trivial
160 * lp contains the (I)LP problem used to obtain new schedule rows
162 * src_scc and dst_scc are the source and sink SCCs of an edge with
163 * conflicting constraints
165 * scc, sp, index and stack are used during the detection of SCCs
166 * scc is the number of the next SCC
167 * stack contains the nodes on the path from the root to the current node
168 * sp is the stack pointer
169 * index is the index of the last node visited
171 struct isl_sched_graph {
172 isl_hmap_map_basic_set *intra_hmap;
173 isl_hmap_map_basic_set *inter_hmap;
175 struct isl_sched_node *node;
176 int n;
177 int maxvar;
178 int n_row;
180 int *sorted;
182 int n_band;
183 int n_total_row;
184 int band_start;
186 int root;
188 struct isl_sched_edge *edge;
189 int n_edge;
190 struct isl_hash_table *edge_table;
192 struct isl_hash_table *node_table;
193 struct isl_region *region;
195 isl_basic_set *lp;
197 int src_scc;
198 int dst_scc;
200 /* scc detection */
201 int scc;
202 int sp;
203 int index;
204 int *stack;
207 /* Initialize node_table based on the list of nodes.
209 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
211 int i;
213 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
214 if (!graph->node_table)
215 return -1;
217 for (i = 0; i < graph->n; ++i) {
218 struct isl_hash_table_entry *entry;
219 uint32_t hash;
221 hash = isl_space_get_hash(graph->node[i].dim);
222 entry = isl_hash_table_find(ctx, graph->node_table, hash,
223 &node_has_dim,
224 graph->node[i].dim, 1);
225 if (!entry)
226 return -1;
227 entry->data = &graph->node[i];
230 return 0;
233 /* Return a pointer to the node that lives within the given space,
234 * or NULL if there is no such node.
236 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
237 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
239 struct isl_hash_table_entry *entry;
240 uint32_t hash;
242 hash = isl_space_get_hash(dim);
243 entry = isl_hash_table_find(ctx, graph->node_table, hash,
244 &node_has_dim, dim, 0);
246 return entry ? entry->data : NULL;
249 static int edge_has_src_and_dst(const void *entry, const void *val)
251 const struct isl_sched_edge *edge = entry;
252 const struct isl_sched_edge *temp = val;
254 return edge->src == temp->src && edge->dst == temp->dst;
257 /* Initialize edge_table based on the list of edges.
258 * Only edges with validity set are added to the table.
260 static int graph_init_edge_table(isl_ctx *ctx, struct isl_sched_graph *graph)
262 int i;
264 graph->edge_table = isl_hash_table_alloc(ctx, graph->n_edge);
265 if (!graph->edge_table)
266 return -1;
268 for (i = 0; i < graph->n_edge; ++i) {
269 struct isl_hash_table_entry *entry;
270 uint32_t hash;
272 if (!graph->edge[i].validity)
273 continue;
275 hash = isl_hash_init();
276 hash = isl_hash_builtin(hash, graph->edge[i].src);
277 hash = isl_hash_builtin(hash, graph->edge[i].dst);
278 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
279 &edge_has_src_and_dst,
280 &graph->edge[i], 1);
281 if (!entry)
282 return -1;
283 entry->data = &graph->edge[i];
286 return 0;
289 /* Check whether the dependence graph has a (validity) edge
290 * between the given two nodes.
292 static int graph_has_edge(struct isl_sched_graph *graph,
293 struct isl_sched_node *src, struct isl_sched_node *dst)
295 isl_ctx *ctx = isl_space_get_ctx(src->dim);
296 struct isl_hash_table_entry *entry;
297 uint32_t hash;
298 struct isl_sched_edge temp = { .src = src, .dst = dst };
299 struct isl_sched_edge *edge;
300 int empty;
302 hash = isl_hash_init();
303 hash = isl_hash_builtin(hash, temp.src);
304 hash = isl_hash_builtin(hash, temp.dst);
305 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
306 &edge_has_src_and_dst, &temp, 0);
307 if (!entry)
308 return 0;
310 edge = entry->data;
311 empty = isl_map_plain_is_empty(edge->map);
312 if (empty < 0)
313 return -1;
315 return !empty;
318 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
319 int n_node, int n_edge)
321 int i;
323 graph->n = n_node;
324 graph->n_edge = n_edge;
325 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
326 graph->sorted = isl_calloc_array(ctx, int, graph->n);
327 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
328 graph->stack = isl_alloc_array(ctx, int, graph->n);
329 graph->edge = isl_calloc_array(ctx,
330 struct isl_sched_edge, graph->n_edge);
332 graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
333 graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
335 if (!graph->node || !graph->region || !graph->stack || !graph->edge ||
336 !graph->sorted)
337 return -1;
339 for(i = 0; i < graph->n; ++i)
340 graph->sorted[i] = i;
342 return 0;
345 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
347 int i;
349 isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
350 isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
352 for (i = 0; i < graph->n; ++i) {
353 isl_space_free(graph->node[i].dim);
354 isl_mat_free(graph->node[i].sched);
355 isl_map_free(graph->node[i].sched_map);
356 isl_mat_free(graph->node[i].cmap);
357 if (graph->root) {
358 free(graph->node[i].band);
359 free(graph->node[i].band_id);
360 free(graph->node[i].zero);
363 free(graph->node);
364 free(graph->sorted);
365 for (i = 0; i < graph->n_edge; ++i)
366 isl_map_free(graph->edge[i].map);
367 free(graph->edge);
368 free(graph->region);
369 free(graph->stack);
370 isl_hash_table_free(ctx, graph->edge_table);
371 isl_hash_table_free(ctx, graph->node_table);
372 isl_basic_set_free(graph->lp);
375 /* Add a new node to the graph representing the given set.
377 static int extract_node(__isl_take isl_set *set, void *user)
379 int nvar, nparam;
380 isl_ctx *ctx;
381 isl_space *dim;
382 isl_mat *sched;
383 struct isl_sched_graph *graph = user;
384 int *band, *band_id, *zero;
386 ctx = isl_set_get_ctx(set);
387 dim = isl_set_get_space(set);
388 isl_set_free(set);
389 nvar = isl_space_dim(dim, isl_dim_set);
390 nparam = isl_space_dim(dim, isl_dim_param);
391 if (!ctx->opt->schedule_parametric)
392 nparam = 0;
393 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
394 graph->node[graph->n].dim = dim;
395 graph->node[graph->n].nvar = nvar;
396 graph->node[graph->n].nparam = nparam;
397 graph->node[graph->n].sched = sched;
398 graph->node[graph->n].sched_map = NULL;
399 band = isl_alloc_array(ctx, int, graph->n_edge + nvar);
400 graph->node[graph->n].band = band;
401 band_id = isl_calloc_array(ctx, int, graph->n_edge + nvar);
402 graph->node[graph->n].band_id = band_id;
403 zero = isl_calloc_array(ctx, int, graph->n_edge + nvar);
404 graph->node[graph->n].zero = zero;
405 graph->n++;
407 if (!sched || !band || !band_id || !zero)
408 return -1;
410 return 0;
413 /* Add a new edge to the graph based on the given map.
414 * Edges are first extracted from the validity dependences,
415 * from which the edge_table is constructed.
416 * Afterwards, the proximity dependences are added. If a proximity
417 * dependence relation happens to be identical to one of the
418 * validity dependence relations added before, then we don't create
419 * a new edge, but instead mark the original edge as also representing
420 * a proximity dependence.
422 static int extract_edge(__isl_take isl_map *map, void *user)
424 isl_ctx *ctx = isl_map_get_ctx(map);
425 struct isl_sched_graph *graph = user;
426 struct isl_sched_node *src, *dst;
427 isl_space *dim;
429 dim = isl_space_domain(isl_map_get_space(map));
430 src = graph_find_node(ctx, graph, dim);
431 isl_space_free(dim);
432 dim = isl_space_range(isl_map_get_space(map));
433 dst = graph_find_node(ctx, graph, dim);
434 isl_space_free(dim);
436 if (!src || !dst) {
437 isl_map_free(map);
438 return 0;
441 graph->edge[graph->n_edge].src = src;
442 graph->edge[graph->n_edge].dst = dst;
443 graph->edge[graph->n_edge].map = map;
444 graph->edge[graph->n_edge].validity = !graph->edge_table;
445 graph->edge[graph->n_edge].proximity = !!graph->edge_table;
446 graph->n_edge++;
448 if (graph->edge_table) {
449 uint32_t hash;
450 struct isl_hash_table_entry *entry;
451 struct isl_sched_edge *edge;
452 int is_equal;
454 hash = isl_hash_init();
455 hash = isl_hash_builtin(hash, src);
456 hash = isl_hash_builtin(hash, dst);
457 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
458 &edge_has_src_and_dst,
459 &graph->edge[graph->n_edge - 1], 0);
460 if (!entry)
461 return 0;
462 edge = entry->data;
463 is_equal = isl_map_plain_is_equal(map, edge->map);
464 if (is_equal < 0)
465 return -1;
466 if (!is_equal)
467 return 0;
469 graph->n_edge--;
470 edge->proximity = 1;
471 isl_map_free(map);
474 return 0;
477 /* Check whether there is a validity dependence from src to dst,
478 * forcing dst to follow src.
480 static int node_follows(struct isl_sched_graph *graph,
481 struct isl_sched_node *dst, struct isl_sched_node *src)
483 return graph_has_edge(graph, src, dst);
486 /* Perform Tarjan's algorithm for computing the strongly connected components
487 * in the dependence graph (only validity edges).
488 * If directed is not set, we consider the graph to be undirected and
489 * we effectively compute the (weakly) connected components.
491 static int detect_sccs_tarjan(struct isl_sched_graph *g, int i, int directed)
493 int j;
495 g->node[i].index = g->index;
496 g->node[i].min_index = g->index;
497 g->node[i].on_stack = 1;
498 g->index++;
499 g->stack[g->sp++] = i;
501 for (j = g->n - 1; j >= 0; --j) {
502 int f;
504 if (j == i)
505 continue;
506 if (g->node[j].index >= 0 &&
507 (!g->node[j].on_stack ||
508 g->node[j].index > g->node[i].min_index))
509 continue;
511 f = node_follows(g, &g->node[i], &g->node[j]);
512 if (f < 0)
513 return -1;
514 if (!f && !directed) {
515 f = node_follows(g, &g->node[j], &g->node[i]);
516 if (f < 0)
517 return -1;
519 if (!f)
520 continue;
521 if (g->node[j].index < 0) {
522 detect_sccs_tarjan(g, j, directed);
523 if (g->node[j].min_index < g->node[i].min_index)
524 g->node[i].min_index = g->node[j].min_index;
525 } else if (g->node[j].index < g->node[i].min_index)
526 g->node[i].min_index = g->node[j].index;
529 if (g->node[i].index != g->node[i].min_index)
530 return 0;
532 do {
533 j = g->stack[--g->sp];
534 g->node[j].on_stack = 0;
535 g->node[j].scc = g->scc;
536 } while (j != i);
537 g->scc++;
539 return 0;
542 static int detect_ccs(struct isl_sched_graph *graph, int directed)
544 int i;
546 graph->index = 0;
547 graph->sp = 0;
548 graph->scc = 0;
549 for (i = graph->n - 1; i >= 0; --i)
550 graph->node[i].index = -1;
552 for (i = graph->n - 1; i >= 0; --i) {
553 if (graph->node[i].index >= 0)
554 continue;
555 if (detect_sccs_tarjan(graph, i, directed) < 0)
556 return -1;
559 return 0;
562 /* Apply Tarjan's algorithm to detect the strongly connected components
563 * in the dependence graph.
565 static int detect_sccs(struct isl_sched_graph *graph)
567 return detect_ccs(graph, 1);
570 /* Apply Tarjan's algorithm to detect the (weakly) connected components
571 * in the dependence graph.
573 static int detect_wccs(struct isl_sched_graph *graph)
575 return detect_ccs(graph, 0);
578 static int cmp_scc(const void *a, const void *b, void *data)
580 struct isl_sched_graph *graph = data;
581 const int *i1 = a;
582 const int *i2 = b;
584 return graph->node[*i1].scc - graph->node[*i2].scc;
587 /* Sort the elements of graph->sorted according to the corresponding SCCs.
589 static void sort_sccs(struct isl_sched_graph *graph)
591 isl_quicksort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
594 /* Given a dependence relation R from a node to itself,
595 * construct the set of coefficients of valid constraints for elements
596 * in that dependence relation.
597 * In particular, the result contains tuples of coefficients
598 * c_0, c_n, c_x such that
600 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
602 * or, equivalently,
604 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
606 * We choose here to compute the dual of delta R.
607 * Alternatively, we could have computed the dual of R, resulting
608 * in a set of tuples c_0, c_n, c_x, c_y, and then
609 * plugged in (c_0, c_n, c_x, -c_x).
611 static __isl_give isl_basic_set *intra_coefficients(
612 struct isl_sched_graph *graph, __isl_take isl_map *map)
614 isl_ctx *ctx = isl_map_get_ctx(map);
615 isl_set *delta;
616 isl_basic_set *coef;
618 if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
619 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
621 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
622 coef = isl_set_coefficients(delta);
623 isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
624 isl_basic_set_copy(coef));
626 return coef;
629 /* Given a dependence relation R, * construct the set of coefficients
630 * of valid constraints for elements in that dependence relation.
631 * In particular, the result contains tuples of coefficients
632 * c_0, c_n, c_x, c_y such that
634 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
637 static __isl_give isl_basic_set *inter_coefficients(
638 struct isl_sched_graph *graph, __isl_take isl_map *map)
640 isl_ctx *ctx = isl_map_get_ctx(map);
641 isl_set *set;
642 isl_basic_set *coef;
644 if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
645 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
647 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
648 coef = isl_set_coefficients(set);
649 isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
650 isl_basic_set_copy(coef));
652 return coef;
655 /* Add constraints to graph->lp that force validity for the given
656 * dependence from a node i to itself.
657 * That is, add constraints that enforce
659 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
660 * = c_i_x (y - x) >= 0
662 * for each (x,y) in R.
663 * We obtain general constraints on coefficients (c_0, c_n, c_x)
664 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
665 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
666 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
668 * Actually, we do not construct constraints for the c_i_x themselves,
669 * but for the coefficients of c_i_x written as a linear combination
670 * of the columns in node->cmap.
672 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
673 struct isl_sched_edge *edge)
675 unsigned total;
676 isl_map *map = isl_map_copy(edge->map);
677 isl_ctx *ctx = isl_map_get_ctx(map);
678 isl_space *dim;
679 isl_dim_map *dim_map;
680 isl_basic_set *coef;
681 struct isl_sched_node *node = edge->src;
683 coef = intra_coefficients(graph, map);
685 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
687 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
688 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
690 total = isl_basic_set_total_dim(graph->lp);
691 dim_map = isl_dim_map_alloc(ctx, total);
692 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
693 isl_space_dim(dim, isl_dim_set), 1,
694 node->nvar, -1);
695 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
696 isl_space_dim(dim, isl_dim_set), 1,
697 node->nvar, 1);
698 graph->lp = isl_basic_set_extend_constraints(graph->lp,
699 coef->n_eq, coef->n_ineq);
700 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
701 coef, dim_map);
702 isl_space_free(dim);
704 return 0;
707 /* Add constraints to graph->lp that force validity for the given
708 * dependence from node i to node j.
709 * That is, add constraints that enforce
711 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
713 * for each (x,y) in R.
714 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
715 * of valid constraints for R and then plug in
716 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
717 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
718 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
719 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
721 * Actually, we do not construct constraints for the c_*_x themselves,
722 * but for the coefficients of c_*_x written as a linear combination
723 * of the columns in node->cmap.
725 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
726 struct isl_sched_edge *edge)
728 unsigned total;
729 isl_map *map = isl_map_copy(edge->map);
730 isl_ctx *ctx = isl_map_get_ctx(map);
731 isl_space *dim;
732 isl_dim_map *dim_map;
733 isl_basic_set *coef;
734 struct isl_sched_node *src = edge->src;
735 struct isl_sched_node *dst = edge->dst;
737 coef = inter_coefficients(graph, map);
739 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
741 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
742 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
743 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
744 isl_space_dim(dim, isl_dim_set) + src->nvar,
745 isl_mat_copy(dst->cmap));
747 total = isl_basic_set_total_dim(graph->lp);
748 dim_map = isl_dim_map_alloc(ctx, total);
750 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
751 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
752 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
753 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
754 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
755 dst->nvar, -1);
756 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
757 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
758 dst->nvar, 1);
760 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
761 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
762 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
763 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
764 isl_space_dim(dim, isl_dim_set), 1,
765 src->nvar, 1);
766 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
767 isl_space_dim(dim, isl_dim_set), 1,
768 src->nvar, -1);
770 edge->start = graph->lp->n_ineq;
771 graph->lp = isl_basic_set_extend_constraints(graph->lp,
772 coef->n_eq, coef->n_ineq);
773 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
774 coef, dim_map);
775 isl_space_free(dim);
776 edge->end = graph->lp->n_ineq;
778 return 0;
781 /* Add constraints to graph->lp that bound the dependence distance for the given
782 * dependence from a node i to itself.
783 * If s = 1, we add the constraint
785 * c_i_x (y - x) <= m_0 + m_n n
787 * or
789 * -c_i_x (y - x) + m_0 + m_n n >= 0
791 * for each (x,y) in R.
792 * If s = -1, we add the constraint
794 * -c_i_x (y - x) <= m_0 + m_n n
796 * or
798 * c_i_x (y - x) + m_0 + m_n n >= 0
800 * for each (x,y) in R.
801 * We obtain general constraints on coefficients (c_0, c_n, c_x)
802 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
803 * with each coefficient (except m_0) represented as a pair of non-negative
804 * coefficients.
806 * Actually, we do not construct constraints for the c_i_x themselves,
807 * but for the coefficients of c_i_x written as a linear combination
808 * of the columns in node->cmap.
810 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
811 struct isl_sched_edge *edge, int s)
813 unsigned total;
814 unsigned nparam;
815 isl_map *map = isl_map_copy(edge->map);
816 isl_ctx *ctx = isl_map_get_ctx(map);
817 isl_space *dim;
818 isl_dim_map *dim_map;
819 isl_basic_set *coef;
820 struct isl_sched_node *node = edge->src;
822 coef = intra_coefficients(graph, map);
824 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
826 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
827 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
829 nparam = isl_space_dim(node->dim, isl_dim_param);
830 total = isl_basic_set_total_dim(graph->lp);
831 dim_map = isl_dim_map_alloc(ctx, total);
832 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
833 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
834 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
835 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
836 isl_space_dim(dim, isl_dim_set), 1,
837 node->nvar, s);
838 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
839 isl_space_dim(dim, isl_dim_set), 1,
840 node->nvar, -s);
841 graph->lp = isl_basic_set_extend_constraints(graph->lp,
842 coef->n_eq, coef->n_ineq);
843 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
844 coef, dim_map);
845 isl_space_free(dim);
847 return 0;
850 /* Add constraints to graph->lp that bound the dependence distance for the given
851 * dependence from node i to node j.
852 * If s = 1, we add the constraint
854 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
855 * <= m_0 + m_n n
857 * or
859 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
860 * m_0 + m_n n >= 0
862 * for each (x,y) in R.
863 * If s = -1, we add the constraint
865 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
866 * <= m_0 + m_n n
868 * or
870 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
871 * m_0 + m_n n >= 0
873 * for each (x,y) in R.
874 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
875 * of valid constraints for R and then plug in
876 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
877 * -s*c_j_x+s*c_i_x)
878 * with each coefficient (except m_0, c_j_0 and c_i_0)
879 * represented as a pair of non-negative coefficients.
881 * Actually, we do not construct constraints for the c_*_x themselves,
882 * but for the coefficients of c_*_x written as a linear combination
883 * of the columns in node->cmap.
885 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
886 struct isl_sched_edge *edge, int s)
888 unsigned total;
889 unsigned nparam;
890 isl_map *map = isl_map_copy(edge->map);
891 isl_ctx *ctx = isl_map_get_ctx(map);
892 isl_space *dim;
893 isl_dim_map *dim_map;
894 isl_basic_set *coef;
895 struct isl_sched_node *src = edge->src;
896 struct isl_sched_node *dst = edge->dst;
898 coef = inter_coefficients(graph, map);
900 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
902 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
903 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
904 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
905 isl_space_dim(dim, isl_dim_set) + src->nvar,
906 isl_mat_copy(dst->cmap));
908 nparam = isl_space_dim(src->dim, isl_dim_param);
909 total = isl_basic_set_total_dim(graph->lp);
910 dim_map = isl_dim_map_alloc(ctx, total);
912 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
913 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
914 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
916 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
917 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
918 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
919 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
920 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
921 dst->nvar, s);
922 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
923 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
924 dst->nvar, -s);
926 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
927 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
928 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
929 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
930 isl_space_dim(dim, isl_dim_set), 1,
931 src->nvar, -s);
932 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
933 isl_space_dim(dim, isl_dim_set), 1,
934 src->nvar, s);
936 graph->lp = isl_basic_set_extend_constraints(graph->lp,
937 coef->n_eq, coef->n_ineq);
938 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
939 coef, dim_map);
940 isl_space_free(dim);
942 return 0;
945 static int add_all_validity_constraints(struct isl_sched_graph *graph)
947 int i;
949 for (i = 0; i < graph->n_edge; ++i) {
950 struct isl_sched_edge *edge= &graph->edge[i];
951 if (!edge->validity)
952 continue;
953 if (edge->src != edge->dst)
954 continue;
955 if (add_intra_validity_constraints(graph, edge) < 0)
956 return -1;
959 for (i = 0; i < graph->n_edge; ++i) {
960 struct isl_sched_edge *edge = &graph->edge[i];
961 if (!edge->validity)
962 continue;
963 if (edge->src == edge->dst)
964 continue;
965 if (add_inter_validity_constraints(graph, edge) < 0)
966 return -1;
969 return 0;
972 /* Add constraints to graph->lp that bound the dependence distance
973 * for all dependence relations.
974 * If a given proximity dependence is identical to a validity
975 * dependence, then the dependence distance is already bounded
976 * from below (by zero), so we only need to bound the distance
977 * from above.
978 * Otherwise, we need to bound the distance both from above and from below.
980 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
982 int i;
984 for (i = 0; i < graph->n_edge; ++i) {
985 struct isl_sched_edge *edge= &graph->edge[i];
986 if (!edge->proximity)
987 continue;
988 if (edge->src == edge->dst &&
989 add_intra_proximity_constraints(graph, edge, 1) < 0)
990 return -1;
991 if (edge->src != edge->dst &&
992 add_inter_proximity_constraints(graph, edge, 1) < 0)
993 return -1;
994 if (edge->validity)
995 continue;
996 if (edge->src == edge->dst &&
997 add_intra_proximity_constraints(graph, edge, -1) < 0)
998 return -1;
999 if (edge->src != edge->dst &&
1000 add_inter_proximity_constraints(graph, edge, -1) < 0)
1001 return -1;
1004 return 0;
1007 /* Compute a basis for the rows in the linear part of the schedule
1008 * and extend this basis to a full basis. The remaining rows
1009 * can then be used to force linear independence from the rows
1010 * in the schedule.
1012 * In particular, given the schedule rows S, we compute
1014 * S = H Q
1016 * with H the Hermite normal form of S. That is, all but the
1017 * first rank columns of Q are zero and so each row in S is
1018 * a linear combination of the first rank rows of Q.
1019 * The matrix Q is then transposed because we will write the
1020 * coefficients of the next schedule row as a column vector s
1021 * and express this s as a linear combination s = Q c of the
1022 * computed basis.
1024 static int node_update_cmap(struct isl_sched_node *node)
1026 isl_mat *H, *Q;
1027 int n_row = isl_mat_rows(node->sched);
1029 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1030 1 + node->nparam, node->nvar);
1032 H = isl_mat_left_hermite(H, 0, NULL, &Q);
1033 isl_mat_free(node->cmap);
1034 node->cmap = isl_mat_transpose(Q);
1035 node->rank = isl_mat_initial_non_zero_cols(H);
1036 isl_mat_free(H);
1038 if (!node->cmap || node->rank < 0)
1039 return -1;
1040 return 0;
1043 /* Count the number of equality and inequality constraints
1044 * that will be added for the given map.
1045 * If once is set, then we count
1046 * each edge exactly once. Otherwise, we count as follows
1047 * validity -> 1 (>= 0)
1048 * validity+proximity -> 2 (>= 0 and upper bound)
1049 * proximity -> 2 (lower and upper bound)
1051 static int count_map_constraints(struct isl_sched_graph *graph,
1052 struct isl_sched_edge *edge, __isl_take isl_map *map,
1053 int *n_eq, int *n_ineq, int once)
1055 isl_basic_set *coef;
1056 int f = once ? 1 : edge->proximity ? 2 : 1;
1058 if (edge->src == edge->dst)
1059 coef = intra_coefficients(graph, map);
1060 else
1061 coef = inter_coefficients(graph, map);
1062 if (!coef)
1063 return -1;
1064 *n_eq += f * coef->n_eq;
1065 *n_ineq += f * coef->n_ineq;
1066 isl_basic_set_free(coef);
1068 return 0;
1071 /* Count the number of equality and inequality constraints
1072 * that will be added to the main lp problem.
1073 * If once is set, then we count
1074 * each edge exactly once. Otherwise, we count as follows
1075 * validity -> 1 (>= 0)
1076 * validity+proximity -> 2 (>= 0 and upper bound)
1077 * proximity -> 2 (lower and upper bound)
1079 static int count_constraints(struct isl_sched_graph *graph,
1080 int *n_eq, int *n_ineq, int once)
1082 int i;
1084 *n_eq = *n_ineq = 0;
1085 for (i = 0; i < graph->n_edge; ++i) {
1086 struct isl_sched_edge *edge= &graph->edge[i];
1087 isl_map *map = isl_map_copy(edge->map);
1089 if (count_map_constraints(graph, edge, map,
1090 n_eq, n_ineq, once) < 0)
1091 return -1;
1094 return 0;
1097 /* Construct an ILP problem for finding schedule coefficients
1098 * that result in non-negative, but small dependence distances
1099 * over all dependences.
1100 * In particular, the dependence distances over proximity edges
1101 * are bounded by m_0 + m_n n and we compute schedule coefficients
1102 * with small values (preferably zero) of m_n and m_0.
1104 * All variables of the ILP are non-negative. The actual coefficients
1105 * may be negative, so each coefficient is represented as the difference
1106 * of two non-negative variables. The negative part always appears
1107 * immediately before the positive part.
1108 * Other than that, the variables have the following order
1110 * - sum of positive and negative parts of m_n coefficients
1111 * - m_0
1112 * - sum of positive and negative parts of all c_n coefficients
1113 * (unconstrained when computing non-parametric schedules)
1114 * - sum of positive and negative parts of all c_x coefficients
1115 * - positive and negative parts of m_n coefficients
1116 * - for each node
1117 * - c_i_0
1118 * - positive and negative parts of c_i_n (if parametric)
1119 * - positive and negative parts of c_i_x
1121 * The c_i_x are not represented directly, but through the columns of
1122 * node->cmap. That is, the computed values are for variable t_i_x
1123 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1125 * The constraints are those from the edges plus two or three equalities
1126 * to express the sums.
1128 * If force_zero is set, then we add equalities to ensure that
1129 * the sum of the m_n coefficients and m_0 are both zero.
1131 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1132 int force_zero)
1134 int i, j;
1135 int k;
1136 unsigned nparam;
1137 unsigned total;
1138 isl_space *dim;
1139 int parametric;
1140 int param_pos;
1141 int n_eq, n_ineq;
1142 int max_constant_term;
1144 max_constant_term = ctx->opt->schedule_max_constant_term;
1146 parametric = ctx->opt->schedule_parametric;
1147 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1148 param_pos = 4;
1149 total = param_pos + 2 * nparam;
1150 for (i = 0; i < graph->n; ++i) {
1151 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1152 if (node_update_cmap(node) < 0)
1153 return -1;
1154 node->start = total;
1155 total += 1 + 2 * (node->nparam + node->nvar);
1158 if (count_constraints(graph, &n_eq, &n_ineq, 0) < 0)
1159 return -1;
1161 dim = isl_space_set_alloc(ctx, 0, total);
1162 isl_basic_set_free(graph->lp);
1163 n_eq += 2 + parametric + force_zero;
1164 if (max_constant_term != -1)
1165 n_ineq += graph->n;
1167 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1169 k = isl_basic_set_alloc_equality(graph->lp);
1170 if (k < 0)
1171 return -1;
1172 isl_seq_clr(graph->lp->eq[k], 1 + total);
1173 if (!force_zero)
1174 isl_int_set_si(graph->lp->eq[k][1], -1);
1175 for (i = 0; i < 2 * nparam; ++i)
1176 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1178 if (force_zero) {
1179 k = isl_basic_set_alloc_equality(graph->lp);
1180 if (k < 0)
1181 return -1;
1182 isl_seq_clr(graph->lp->eq[k], 1 + total);
1183 isl_int_set_si(graph->lp->eq[k][2], -1);
1186 if (parametric) {
1187 k = isl_basic_set_alloc_equality(graph->lp);
1188 if (k < 0)
1189 return -1;
1190 isl_seq_clr(graph->lp->eq[k], 1 + total);
1191 isl_int_set_si(graph->lp->eq[k][3], -1);
1192 for (i = 0; i < graph->n; ++i) {
1193 int pos = 1 + graph->node[i].start + 1;
1195 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1196 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1200 k = isl_basic_set_alloc_equality(graph->lp);
1201 if (k < 0)
1202 return -1;
1203 isl_seq_clr(graph->lp->eq[k], 1 + total);
1204 isl_int_set_si(graph->lp->eq[k][4], -1);
1205 for (i = 0; i < graph->n; ++i) {
1206 struct isl_sched_node *node = &graph->node[i];
1207 int pos = 1 + node->start + 1 + 2 * node->nparam;
1209 for (j = 0; j < 2 * node->nvar; ++j)
1210 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1213 if (max_constant_term != -1)
1214 for (i = 0; i < graph->n; ++i) {
1215 struct isl_sched_node *node = &graph->node[i];
1216 k = isl_basic_set_alloc_inequality(graph->lp);
1217 if (k < 0)
1218 return -1;
1219 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1220 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1221 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1224 if (add_all_validity_constraints(graph) < 0)
1225 return -1;
1226 if (add_all_proximity_constraints(graph) < 0)
1227 return -1;
1229 return 0;
1232 /* Analyze the conflicting constraint found by
1233 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1234 * constraint of one of the edges between distinct nodes, living, moreover
1235 * in distinct SCCs, then record the source and sink SCC as this may
1236 * be a good place to cut between SCCs.
1238 static int check_conflict(int con, void *user)
1240 int i;
1241 struct isl_sched_graph *graph = user;
1243 if (graph->src_scc >= 0)
1244 return 0;
1246 con -= graph->lp->n_eq;
1248 if (con >= graph->lp->n_ineq)
1249 return 0;
1251 for (i = 0; i < graph->n_edge; ++i) {
1252 if (!graph->edge[i].validity)
1253 continue;
1254 if (graph->edge[i].src == graph->edge[i].dst)
1255 continue;
1256 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1257 continue;
1258 if (graph->edge[i].start > con)
1259 continue;
1260 if (graph->edge[i].end <= con)
1261 continue;
1262 graph->src_scc = graph->edge[i].src->scc;
1263 graph->dst_scc = graph->edge[i].dst->scc;
1266 return 0;
1269 /* Check whether the next schedule row of the given node needs to be
1270 * non-trivial. Lower-dimensional domains may have some trivial rows,
1271 * but as soon as the number of remaining required non-trivial rows
1272 * is as large as the number or remaining rows to be computed,
1273 * all remaining rows need to be non-trivial.
1275 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1277 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1280 /* Solve the ILP problem constructed in setup_lp.
1281 * For each node such that all the remaining rows of its schedule
1282 * need to be non-trivial, we construct a non-triviality region.
1283 * This region imposes that the next row is independent of previous rows.
1284 * In particular the coefficients c_i_x are represented by t_i_x
1285 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1286 * its first columns span the rows of the previously computed part
1287 * of the schedule. The non-triviality region enforces that at least
1288 * one of the remaining components of t_i_x is non-zero, i.e.,
1289 * that the new schedule row depends on at least one of the remaining
1290 * columns of Q.
1292 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1294 int i;
1295 isl_vec *sol;
1296 isl_basic_set *lp;
1298 for (i = 0; i < graph->n; ++i) {
1299 struct isl_sched_node *node = &graph->node[i];
1300 int skip = node->rank;
1301 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1302 if (needs_row(graph, node))
1303 graph->region[i].len = 2 * (node->nvar - skip);
1304 else
1305 graph->region[i].len = 0;
1307 lp = isl_basic_set_copy(graph->lp);
1308 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1309 graph->region, &check_conflict, graph);
1310 return sol;
1313 /* Update the schedules of all nodes based on the given solution
1314 * of the LP problem.
1315 * The new row is added to the current band.
1316 * All possibly negative coefficients are encoded as a difference
1317 * of two non-negative variables, so we need to perform the subtraction
1318 * here. Moreover, if use_cmap is set, then the solution does
1319 * not refer to the actual coefficients c_i_x, but instead to variables
1320 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1321 * In this case, we then also need to perform this multiplication
1322 * to obtain the values of c_i_x.
1324 * If check_zero is set, then the first two coordinates of sol are
1325 * assumed to correspond to the dependence distance. If these two
1326 * coordinates are zero, then the corresponding scheduling dimension
1327 * is marked as being zero distance.
1329 static int update_schedule(struct isl_sched_graph *graph,
1330 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1332 int i, j;
1333 int zero = 0;
1334 isl_vec *csol = NULL;
1336 if (!sol)
1337 goto error;
1338 if (sol->size == 0)
1339 isl_die(sol->ctx, isl_error_internal,
1340 "no solution found", goto error);
1342 if (check_zero)
1343 zero = isl_int_is_zero(sol->el[1]) &&
1344 isl_int_is_zero(sol->el[2]);
1346 for (i = 0; i < graph->n; ++i) {
1347 struct isl_sched_node *node = &graph->node[i];
1348 int pos = node->start;
1349 int row = isl_mat_rows(node->sched);
1351 isl_vec_free(csol);
1352 csol = isl_vec_alloc(sol->ctx, node->nvar);
1353 if (!csol)
1354 goto error;
1356 isl_map_free(node->sched_map);
1357 node->sched_map = NULL;
1358 node->sched = isl_mat_add_rows(node->sched, 1);
1359 if (!node->sched)
1360 goto error;
1361 node->sched = isl_mat_set_element(node->sched, row, 0,
1362 sol->el[1 + pos]);
1363 for (j = 0; j < node->nparam + node->nvar; ++j)
1364 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1365 sol->el[1 + pos + 1 + 2 * j + 1],
1366 sol->el[1 + pos + 1 + 2 * j]);
1367 for (j = 0; j < node->nparam; ++j)
1368 node->sched = isl_mat_set_element(node->sched,
1369 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1370 for (j = 0; j < node->nvar; ++j)
1371 isl_int_set(csol->el[j],
1372 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1373 if (use_cmap)
1374 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1375 csol);
1376 if (!csol)
1377 goto error;
1378 for (j = 0; j < node->nvar; ++j)
1379 node->sched = isl_mat_set_element(node->sched,
1380 row, 1 + node->nparam + j, csol->el[j]);
1381 node->band[graph->n_total_row] = graph->n_band;
1382 node->zero[graph->n_total_row] = zero;
1384 isl_vec_free(sol);
1385 isl_vec_free(csol);
1387 graph->n_row++;
1388 graph->n_total_row++;
1390 return 0;
1391 error:
1392 isl_vec_free(sol);
1393 isl_vec_free(csol);
1394 return -1;
1397 /* Convert node->sched into a map and return this map.
1398 * We simply add equality constraints that express each output variable
1399 * as the affine combination of parameters and input variables specified
1400 * by the schedule matrix.
1402 * The result is cached in node->sched_map, which needs to be released
1403 * whenever node->sched is updated.
1405 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1407 int i, j;
1408 isl_space *dim;
1409 isl_local_space *ls;
1410 isl_basic_map *bmap;
1411 isl_constraint *c;
1412 int nrow, ncol;
1413 isl_int v;
1415 if (node->sched_map)
1416 return isl_map_copy(node->sched_map);
1418 nrow = isl_mat_rows(node->sched);
1419 ncol = isl_mat_cols(node->sched) - 1;
1420 dim = isl_space_from_domain(isl_space_copy(node->dim));
1421 dim = isl_space_add_dims(dim, isl_dim_out, nrow);
1422 bmap = isl_basic_map_universe(isl_space_copy(dim));
1423 ls = isl_local_space_from_space(dim);
1425 isl_int_init(v);
1427 for (i = 0; i < nrow; ++i) {
1428 c = isl_equality_alloc(isl_local_space_copy(ls));
1429 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1430 isl_mat_get_element(node->sched, i, 0, &v);
1431 isl_constraint_set_constant(c, v);
1432 for (j = 0; j < node->nparam; ++j) {
1433 isl_mat_get_element(node->sched, i, 1 + j, &v);
1434 isl_constraint_set_coefficient(c, isl_dim_param, j, v);
1436 for (j = 0; j < node->nvar; ++j) {
1437 isl_mat_get_element(node->sched,
1438 i, 1 + node->nparam + j, &v);
1439 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
1441 bmap = isl_basic_map_add_constraint(bmap, c);
1444 isl_int_clear(v);
1446 isl_local_space_free(ls);
1448 node->sched_map = isl_map_from_basic_map(bmap);
1449 return isl_map_copy(node->sched_map);
1452 /* Update the given dependence relation based on the current schedule.
1453 * That is, intersect the dependence relation with a map expressing
1454 * that source and sink are executed within the same iteration of
1455 * the current schedule.
1456 * This is not the most efficient way, but this shouldn't be a critical
1457 * operation.
1459 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1460 struct isl_sched_node *src, struct isl_sched_node *dst)
1462 isl_map *src_sched, *dst_sched, *id;
1464 src_sched = node_extract_schedule(src);
1465 dst_sched = node_extract_schedule(dst);
1466 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1467 return isl_map_intersect(map, id);
1470 /* Update the dependence relations of all edges based on the current schedule.
1471 * If a dependence is carried completely by the current schedule, then
1472 * it is removed and edge_table is updated accordingly.
1474 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1476 int i;
1477 int reset_table = 0;
1479 for (i = graph->n_edge - 1; i >= 0; --i) {
1480 struct isl_sched_edge *edge = &graph->edge[i];
1481 edge->map = specialize(edge->map, edge->src, edge->dst);
1482 if (!edge->map)
1483 return -1;
1485 if (isl_map_plain_is_empty(edge->map)) {
1486 reset_table = 1;
1487 isl_map_free(edge->map);
1488 if (i != graph->n_edge - 1)
1489 graph->edge[i] = graph->edge[graph->n_edge - 1];
1490 graph->n_edge--;
1494 if (reset_table) {
1495 isl_hash_table_free(ctx, graph->edge_table);
1496 graph->edge_table = NULL;
1497 return graph_init_edge_table(ctx, graph);
1500 return 0;
1503 static void next_band(struct isl_sched_graph *graph)
1505 graph->band_start = graph->n_total_row;
1506 graph->n_band++;
1509 /* Topologically sort statements mapped to same schedule iteration
1510 * and add a row to the schedule corresponding to this order.
1512 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1514 int i, j;
1516 if (graph->n <= 1)
1517 return 0;
1519 if (update_edges(ctx, graph) < 0)
1520 return -1;
1522 if (graph->n_edge == 0)
1523 return 0;
1525 if (detect_sccs(graph) < 0)
1526 return -1;
1528 for (i = 0; i < graph->n; ++i) {
1529 struct isl_sched_node *node = &graph->node[i];
1530 int row = isl_mat_rows(node->sched);
1531 int cols = isl_mat_cols(node->sched);
1533 isl_map_free(node->sched_map);
1534 node->sched_map = NULL;
1535 node->sched = isl_mat_add_rows(node->sched, 1);
1536 if (!node->sched)
1537 return -1;
1538 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1539 node->scc);
1540 for (j = 1; j < cols; ++j)
1541 node->sched = isl_mat_set_element_si(node->sched,
1542 row, j, 0);
1543 node->band[graph->n_total_row] = graph->n_band;
1546 graph->n_total_row++;
1547 next_band(graph);
1549 return 0;
1552 /* Construct an isl_schedule based on the computed schedule stored
1553 * in graph and with parameters specified by dim.
1555 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1556 __isl_take isl_space *dim)
1558 int i;
1559 isl_ctx *ctx;
1560 isl_schedule *sched = NULL;
1562 if (!dim)
1563 return NULL;
1565 ctx = isl_space_get_ctx(dim);
1566 sched = isl_calloc(ctx, struct isl_schedule,
1567 sizeof(struct isl_schedule) +
1568 (graph->n - 1) * sizeof(struct isl_schedule_node));
1569 if (!sched)
1570 goto error;
1572 sched->ref = 1;
1573 sched->n = graph->n;
1574 sched->n_band = graph->n_band;
1575 sched->n_total_row = graph->n_total_row;
1577 for (i = 0; i < sched->n; ++i) {
1578 int r, b;
1579 int *band_end, *band_id, *zero;
1581 band_end = isl_alloc_array(ctx, int, graph->n_band);
1582 band_id = isl_alloc_array(ctx, int, graph->n_band);
1583 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1584 sched->node[i].sched = node_extract_schedule(&graph->node[i]);
1585 sched->node[i].band_end = band_end;
1586 sched->node[i].band_id = band_id;
1587 sched->node[i].zero = zero;
1588 if (!band_end || !band_id || !zero)
1589 goto error;
1591 for (r = 0; r < graph->n_total_row; ++r)
1592 zero[r] = graph->node[i].zero[r];
1593 for (r = b = 0; r < graph->n_total_row; ++r) {
1594 if (graph->node[i].band[r] == b)
1595 continue;
1596 band_end[b++] = r;
1597 if (graph->node[i].band[r] == -1)
1598 break;
1600 if (r == graph->n_total_row)
1601 band_end[b++] = r;
1602 sched->node[i].n_band = b;
1603 for (--b; b >= 0; --b)
1604 band_id[b] = graph->node[i].band_id[b];
1607 sched->dim = dim;
1609 return sched;
1610 error:
1611 isl_space_free(dim);
1612 isl_schedule_free(sched);
1613 return NULL;
1616 /* Copy nodes that satisfy node_pred from the src dependence graph
1617 * to the dst dependence graph.
1619 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1620 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1622 int i;
1624 dst->n = 0;
1625 for (i = 0; i < src->n; ++i) {
1626 if (!node_pred(&src->node[i], data))
1627 continue;
1628 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1629 dst->node[dst->n].nvar = src->node[i].nvar;
1630 dst->node[dst->n].nparam = src->node[i].nparam;
1631 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1632 dst->node[dst->n].sched_map =
1633 isl_map_copy(src->node[i].sched_map);
1634 dst->node[dst->n].band = src->node[i].band;
1635 dst->node[dst->n].band_id = src->node[i].band_id;
1636 dst->node[dst->n].zero = src->node[i].zero;
1637 dst->n++;
1640 return 0;
1643 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1644 * to the dst dependence graph.
1646 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1647 struct isl_sched_graph *src,
1648 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1650 int i;
1652 dst->n_edge = 0;
1653 for (i = 0; i < src->n_edge; ++i) {
1654 struct isl_sched_edge *edge = &src->edge[i];
1655 isl_map *map;
1657 if (!edge_pred(edge, data))
1658 continue;
1660 if (isl_map_plain_is_empty(edge->map))
1661 continue;
1663 map = isl_map_copy(edge->map);
1665 dst->edge[dst->n_edge].src =
1666 graph_find_node(ctx, dst, edge->src->dim);
1667 dst->edge[dst->n_edge].dst =
1668 graph_find_node(ctx, dst, edge->dst->dim);
1669 dst->edge[dst->n_edge].map = map;
1670 dst->edge[dst->n_edge].validity = edge->validity;
1671 dst->edge[dst->n_edge].proximity = edge->proximity;
1672 dst->n_edge++;
1675 return 0;
1678 /* Given a "src" dependence graph that contains the nodes from "dst"
1679 * that satisfy node_pred, copy the schedule computed in "src"
1680 * for those nodes back to "dst".
1682 static int copy_schedule(struct isl_sched_graph *dst,
1683 struct isl_sched_graph *src,
1684 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1686 int i;
1688 src->n = 0;
1689 for (i = 0; i < dst->n; ++i) {
1690 if (!node_pred(&dst->node[i], data))
1691 continue;
1692 isl_mat_free(dst->node[i].sched);
1693 isl_map_free(dst->node[i].sched_map);
1694 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1695 dst->node[i].sched_map =
1696 isl_map_copy(src->node[src->n].sched_map);
1697 src->n++;
1700 dst->n_total_row = src->n_total_row;
1701 dst->n_band = src->n_band;
1703 return 0;
1706 /* Compute the maximal number of variables over all nodes.
1707 * This is the maximal number of linearly independent schedule
1708 * rows that we need to compute.
1709 * Just in case we end up in a part of the dependence graph
1710 * with only lower-dimensional domains, we make sure we will
1711 * compute the required amount of extra linearly independent rows.
1713 static int compute_maxvar(struct isl_sched_graph *graph)
1715 int i;
1717 graph->maxvar = 0;
1718 for (i = 0; i < graph->n; ++i) {
1719 struct isl_sched_node *node = &graph->node[i];
1720 int nvar;
1722 if (node_update_cmap(node) < 0)
1723 return -1;
1724 nvar = node->nvar + graph->n_row - node->rank;
1725 if (nvar > graph->maxvar)
1726 graph->maxvar = nvar;
1729 return 0;
1732 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1733 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1735 /* Compute a schedule for a subgraph of "graph". In particular, for
1736 * the graph composed of nodes that satisfy node_pred and edges that
1737 * that satisfy edge_pred. The caller should precompute the number
1738 * of nodes and edges that satisfy these predicates and pass them along
1739 * as "n" and "n_edge".
1740 * If the subgraph is known to consist of a single component, then wcc should
1741 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1742 * Otherwise, we call compute_schedule, which will check whether the subgraph
1743 * is connected.
1745 static int compute_sub_schedule(isl_ctx *ctx,
1746 struct isl_sched_graph *graph, int n, int n_edge,
1747 int (*node_pred)(struct isl_sched_node *node, int data),
1748 int (*edge_pred)(struct isl_sched_edge *edge, int data),
1749 int data, int wcc)
1751 struct isl_sched_graph split = { 0 };
1753 if (graph_alloc(ctx, &split, n, n_edge) < 0)
1754 goto error;
1755 if (copy_nodes(&split, graph, node_pred, data) < 0)
1756 goto error;
1757 if (graph_init_table(ctx, &split) < 0)
1758 goto error;
1759 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1760 goto error;
1761 if (graph_init_edge_table(ctx, &split) < 0)
1762 goto error;
1763 split.n_row = graph->n_row;
1764 split.n_total_row = graph->n_total_row;
1765 split.n_band = graph->n_band;
1766 split.band_start = graph->band_start;
1768 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
1769 goto error;
1770 if (!wcc && compute_schedule(ctx, &split) < 0)
1771 goto error;
1773 copy_schedule(graph, &split, node_pred, data);
1775 graph_free(ctx, &split);
1776 return 0;
1777 error:
1778 graph_free(ctx, &split);
1779 return -1;
1782 static int node_scc_exactly(struct isl_sched_node *node, int scc)
1784 return node->scc == scc;
1787 static int node_scc_at_most(struct isl_sched_node *node, int scc)
1789 return node->scc <= scc;
1792 static int node_scc_at_least(struct isl_sched_node *node, int scc)
1794 return node->scc >= scc;
1797 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
1799 return edge->src->scc == scc && edge->dst->scc == scc;
1802 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
1804 return edge->dst->scc <= scc;
1807 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
1809 return edge->src->scc >= scc;
1812 /* Pad the schedules of all nodes with zero rows such that in the end
1813 * they all have graph->n_total_row rows.
1814 * The extra rows don't belong to any band, so they get assigned band number -1.
1816 static int pad_schedule(struct isl_sched_graph *graph)
1818 int i, j;
1820 for (i = 0; i < graph->n; ++i) {
1821 struct isl_sched_node *node = &graph->node[i];
1822 int row = isl_mat_rows(node->sched);
1823 if (graph->n_total_row > row) {
1824 isl_map_free(node->sched_map);
1825 node->sched_map = NULL;
1827 node->sched = isl_mat_add_zero_rows(node->sched,
1828 graph->n_total_row - row);
1829 if (!node->sched)
1830 return -1;
1831 for (j = row; j < graph->n_total_row; ++j)
1832 node->band[j] = -1;
1835 return 0;
1838 /* Split the current graph into two parts and compute a schedule for each
1839 * part individually. In particular, one part consists of all SCCs up
1840 * to and including graph->src_scc, while the other part contains the other
1841 * SCCS.
1843 * The split is enforced in the schedule by constant rows with two different
1844 * values (0 and 1). These constant rows replace the previously computed rows
1845 * in the current band.
1846 * It would be possible to reuse them as the first rows in the next
1847 * band, but recomputing them may result in better rows as we are looking
1848 * at a smaller part of the dependence graph.
1849 * compute_split_schedule is only called when no zero-distance schedule row
1850 * could be found on the entire graph, so we wark the splitting row as
1851 * non zero-distance.
1853 * The band_id of the second group is set to n, where n is the number
1854 * of nodes in the first group. This ensures that the band_ids over
1855 * the two groups remain disjoint, even if either or both of the two
1856 * groups contain independent components.
1858 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
1860 int i, j, n, e1, e2;
1861 int n_total_row, orig_total_row;
1862 int n_band, orig_band;
1863 int drop;
1865 drop = graph->n_total_row - graph->band_start;
1866 graph->n_total_row -= drop;
1867 graph->n_row -= drop;
1869 n = 0;
1870 for (i = 0; i < graph->n; ++i) {
1871 struct isl_sched_node *node = &graph->node[i];
1872 int row = isl_mat_rows(node->sched) - drop;
1873 int cols = isl_mat_cols(node->sched);
1874 int before = node->scc <= graph->src_scc;
1876 if (before)
1877 n++;
1879 isl_map_free(node->sched_map);
1880 node->sched_map = NULL;
1881 node->sched = isl_mat_drop_rows(node->sched,
1882 graph->band_start, drop);
1883 node->sched = isl_mat_add_rows(node->sched, 1);
1884 if (!node->sched)
1885 return -1;
1886 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1887 !before);
1888 for (j = 1; j < cols; ++j)
1889 node->sched = isl_mat_set_element_si(node->sched,
1890 row, j, 0);
1891 node->band[graph->n_total_row] = graph->n_band;
1892 node->zero[graph->n_total_row] = 0;
1895 e1 = e2 = 0;
1896 for (i = 0; i < graph->n_edge; ++i) {
1897 if (graph->edge[i].dst->scc <= graph->src_scc)
1898 e1++;
1899 if (graph->edge[i].src->scc > graph->src_scc)
1900 e2++;
1903 graph->n_total_row++;
1904 next_band(graph);
1906 for (i = 0; i < graph->n; ++i) {
1907 struct isl_sched_node *node = &graph->node[i];
1908 if (node->scc > graph->src_scc)
1909 node->band_id[graph->n_band] = n;
1912 orig_total_row = graph->n_total_row;
1913 orig_band = graph->n_band;
1914 if (compute_sub_schedule(ctx, graph, n, e1,
1915 &node_scc_at_most, &edge_dst_scc_at_most,
1916 graph->src_scc, 0) < 0)
1917 return -1;
1918 n_total_row = graph->n_total_row;
1919 graph->n_total_row = orig_total_row;
1920 n_band = graph->n_band;
1921 graph->n_band = orig_band;
1922 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
1923 &node_scc_at_least, &edge_src_scc_at_least,
1924 graph->src_scc + 1, 0) < 0)
1925 return -1;
1926 if (n_total_row > graph->n_total_row)
1927 graph->n_total_row = n_total_row;
1928 if (n_band > graph->n_band)
1929 graph->n_band = n_band;
1931 return pad_schedule(graph);
1934 /* Compute the next band of the schedule after updating the dependence
1935 * relations based on the the current schedule.
1937 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
1939 if (update_edges(ctx, graph) < 0)
1940 return -1;
1941 next_band(graph);
1943 return compute_schedule(ctx, graph);
1946 /* Add constraints to graph->lp that force the dependence "map" (which
1947 * is part of the dependence relation of "edge")
1948 * to be respected and attempt to carry it, where the edge is one from
1949 * a node j to itself. "pos" is the sequence number of the given map.
1950 * That is, add constraints that enforce
1952 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
1953 * = c_j_x (y - x) >= e_i
1955 * for each (x,y) in R.
1956 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1957 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
1958 * with each coefficient in c_j_x represented as a pair of non-negative
1959 * coefficients.
1961 static int add_intra_constraints(struct isl_sched_graph *graph,
1962 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
1964 unsigned total;
1965 isl_ctx *ctx = isl_map_get_ctx(map);
1966 isl_space *dim;
1967 isl_dim_map *dim_map;
1968 isl_basic_set *coef;
1969 struct isl_sched_node *node = edge->src;
1971 coef = intra_coefficients(graph, map);
1973 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1975 total = isl_basic_set_total_dim(graph->lp);
1976 dim_map = isl_dim_map_alloc(ctx, total);
1977 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
1978 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1979 isl_space_dim(dim, isl_dim_set), 1,
1980 node->nvar, -1);
1981 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1982 isl_space_dim(dim, isl_dim_set), 1,
1983 node->nvar, 1);
1984 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1985 coef->n_eq, coef->n_ineq);
1986 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1987 coef, dim_map);
1988 isl_space_free(dim);
1990 return 0;
1993 /* Add constraints to graph->lp that force the dependence "map" (which
1994 * is part of the dependence relation of "edge")
1995 * to be respected and attempt to carry it, where the edge is one from
1996 * node j to node k. "pos" is the sequence number of the given map.
1997 * That is, add constraints that enforce
1999 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2001 * for each (x,y) in R.
2002 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2003 * of valid constraints for R and then plug in
2004 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2005 * with each coefficient (except e_i, c_k_0 and c_j_0)
2006 * represented as a pair of non-negative coefficients.
2008 static int add_inter_constraints(struct isl_sched_graph *graph,
2009 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2011 unsigned total;
2012 isl_ctx *ctx = isl_map_get_ctx(map);
2013 isl_space *dim;
2014 isl_dim_map *dim_map;
2015 isl_basic_set *coef;
2016 struct isl_sched_node *src = edge->src;
2017 struct isl_sched_node *dst = edge->dst;
2019 coef = inter_coefficients(graph, map);
2021 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2023 total = isl_basic_set_total_dim(graph->lp);
2024 dim_map = isl_dim_map_alloc(ctx, total);
2026 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2028 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2029 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2030 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2031 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2032 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2033 dst->nvar, -1);
2034 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2035 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2036 dst->nvar, 1);
2038 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2039 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2040 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2041 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2042 isl_space_dim(dim, isl_dim_set), 1,
2043 src->nvar, 1);
2044 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2045 isl_space_dim(dim, isl_dim_set), 1,
2046 src->nvar, -1);
2048 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2049 coef->n_eq, coef->n_ineq);
2050 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2051 coef, dim_map);
2052 isl_space_free(dim);
2054 return 0;
2057 /* Add constraints to graph->lp that force all dependence
2058 * to be respected and attempt to carry it.
2060 static int add_all_constraints(struct isl_sched_graph *graph)
2062 int i, j;
2063 int pos;
2065 pos = 0;
2066 for (i = 0; i < graph->n_edge; ++i) {
2067 struct isl_sched_edge *edge= &graph->edge[i];
2068 for (j = 0; j < edge->map->n; ++j) {
2069 isl_basic_map *bmap;
2070 isl_map *map;
2072 bmap = isl_basic_map_copy(edge->map->p[j]);
2073 map = isl_map_from_basic_map(bmap);
2075 if (edge->src == edge->dst &&
2076 add_intra_constraints(graph, edge, map, pos) < 0)
2077 return -1;
2078 if (edge->src != edge->dst &&
2079 add_inter_constraints(graph, edge, map, pos) < 0)
2080 return -1;
2081 ++pos;
2085 return 0;
2088 /* Count the number of equality and inequality constraints
2089 * that will be added to the carry_lp problem.
2090 * If once is set, then we count
2091 * each edge exactly once. Otherwise, we count as follows
2092 * validity -> 1 (>= 0)
2093 * validity+proximity -> 2 (>= 0 and upper bound)
2094 * proximity -> 2 (lower and upper bound)
2096 static int count_all_constraints(struct isl_sched_graph *graph,
2097 int *n_eq, int *n_ineq, int once)
2099 int i, j;
2101 *n_eq = *n_ineq = 0;
2102 for (i = 0; i < graph->n_edge; ++i) {
2103 struct isl_sched_edge *edge= &graph->edge[i];
2104 for (j = 0; j < edge->map->n; ++j) {
2105 isl_basic_map *bmap;
2106 isl_map *map;
2108 bmap = isl_basic_map_copy(edge->map->p[j]);
2109 map = isl_map_from_basic_map(bmap);
2111 if (count_map_constraints(graph, edge, map,
2112 n_eq, n_ineq, once) < 0)
2113 return -1;
2117 return 0;
2120 /* Construct an LP problem for finding schedule coefficients
2121 * such that the schedule carries as many dependences as possible.
2122 * In particular, for each dependence i, we bound the dependence distance
2123 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2124 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2125 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2126 * Note that if the dependence relation is a union of basic maps,
2127 * then we have to consider each basic map individually as it may only
2128 * be possible to carry the dependences expressed by some of those
2129 * basic maps and not all off them.
2130 * Below, we consider each of those basic maps as a separate "edge".
2132 * All variables of the LP are non-negative. The actual coefficients
2133 * may be negative, so each coefficient is represented as the difference
2134 * of two non-negative variables. The negative part always appears
2135 * immediately before the positive part.
2136 * Other than that, the variables have the following order
2138 * - sum of (1 - e_i) over all edges
2139 * - sum of positive and negative parts of all c_n coefficients
2140 * (unconstrained when computing non-parametric schedules)
2141 * - sum of positive and negative parts of all c_x coefficients
2142 * - for each edge
2143 * - e_i
2144 * - for each node
2145 * - c_i_0
2146 * - positive and negative parts of c_i_n (if parametric)
2147 * - positive and negative parts of c_i_x
2149 * The constraints are those from the edges plus three equalities
2150 * to express the sums and n_edge inequalities to express e_i <= 1.
2152 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2154 int i, j;
2155 int k;
2156 isl_space *dim;
2157 unsigned total;
2158 int n_eq, n_ineq;
2159 int n_edge;
2161 n_edge = 0;
2162 for (i = 0; i < graph->n_edge; ++i)
2163 n_edge += graph->edge[i].map->n;
2165 total = 3 + n_edge;
2166 for (i = 0; i < graph->n; ++i) {
2167 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2168 node->start = total;
2169 total += 1 + 2 * (node->nparam + node->nvar);
2172 if (count_all_constraints(graph, &n_eq, &n_ineq, 1) < 0)
2173 return -1;
2175 dim = isl_space_set_alloc(ctx, 0, total);
2176 isl_basic_set_free(graph->lp);
2177 n_eq += 3;
2178 n_ineq += n_edge;
2179 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2180 graph->lp = isl_basic_set_set_rational(graph->lp);
2182 k = isl_basic_set_alloc_equality(graph->lp);
2183 if (k < 0)
2184 return -1;
2185 isl_seq_clr(graph->lp->eq[k], 1 + total);
2186 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2187 isl_int_set_si(graph->lp->eq[k][1], 1);
2188 for (i = 0; i < n_edge; ++i)
2189 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2191 k = isl_basic_set_alloc_equality(graph->lp);
2192 if (k < 0)
2193 return -1;
2194 isl_seq_clr(graph->lp->eq[k], 1 + total);
2195 isl_int_set_si(graph->lp->eq[k][2], -1);
2196 for (i = 0; i < graph->n; ++i) {
2197 int pos = 1 + graph->node[i].start + 1;
2199 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2200 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2203 k = isl_basic_set_alloc_equality(graph->lp);
2204 if (k < 0)
2205 return -1;
2206 isl_seq_clr(graph->lp->eq[k], 1 + total);
2207 isl_int_set_si(graph->lp->eq[k][3], -1);
2208 for (i = 0; i < graph->n; ++i) {
2209 struct isl_sched_node *node = &graph->node[i];
2210 int pos = 1 + node->start + 1 + 2 * node->nparam;
2212 for (j = 0; j < 2 * node->nvar; ++j)
2213 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2216 for (i = 0; i < n_edge; ++i) {
2217 k = isl_basic_set_alloc_inequality(graph->lp);
2218 if (k < 0)
2219 return -1;
2220 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2221 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2222 isl_int_set_si(graph->lp->ineq[k][0], 1);
2225 if (add_all_constraints(graph) < 0)
2226 return -1;
2228 return 0;
2231 /* If the schedule_split_scaled option is set and if the linear
2232 * parts of the scheduling rows for all nodes in the graphs have
2233 * non-trivial common divisor, then split off the constant term
2234 * from the linear part.
2235 * The constant term is then placed in a separate band and
2236 * the linear part is reduced.
2238 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2240 int i;
2241 int row;
2242 isl_int gcd, gcd_i;
2244 if (!ctx->opt->schedule_split_scaled)
2245 return 0;
2246 if (graph->n <= 1)
2247 return 0;
2249 isl_int_init(gcd);
2250 isl_int_init(gcd_i);
2252 isl_int_set_si(gcd, 0);
2254 row = isl_mat_rows(graph->node[0].sched) - 1;
2256 for (i = 0; i < graph->n; ++i) {
2257 struct isl_sched_node *node = &graph->node[i];
2258 int cols = isl_mat_cols(node->sched);
2260 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2261 isl_int_gcd(gcd, gcd, gcd_i);
2264 isl_int_clear(gcd_i);
2266 if (isl_int_cmp_si(gcd, 1) <= 0) {
2267 isl_int_clear(gcd);
2268 return 0;
2271 next_band(graph);
2273 for (i = 0; i < graph->n; ++i) {
2274 struct isl_sched_node *node = &graph->node[i];
2276 isl_map_free(node->sched_map);
2277 node->sched_map = NULL;
2278 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2279 if (!node->sched)
2280 goto error;
2281 isl_int_fdiv_r(node->sched->row[row + 1][0],
2282 node->sched->row[row][0], gcd);
2283 isl_int_fdiv_q(node->sched->row[row][0],
2284 node->sched->row[row][0], gcd);
2285 isl_int_mul(node->sched->row[row][0],
2286 node->sched->row[row][0], gcd);
2287 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2288 if (!node->sched)
2289 goto error;
2290 node->band[graph->n_total_row] = graph->n_band;
2293 graph->n_total_row++;
2295 isl_int_clear(gcd);
2296 return 0;
2297 error:
2298 isl_int_clear(gcd);
2299 return -1;
2302 /* Construct a schedule row for each node such that as many dependences
2303 * as possible are carried and then continue with the next band.
2305 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2307 int i;
2308 int n_edge;
2309 isl_vec *sol;
2310 isl_basic_set *lp;
2312 n_edge = 0;
2313 for (i = 0; i < graph->n_edge; ++i)
2314 n_edge += graph->edge[i].map->n;
2316 if (setup_carry_lp(ctx, graph) < 0)
2317 return -1;
2319 lp = isl_basic_set_copy(graph->lp);
2320 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2321 if (!sol)
2322 return -1;
2324 if (sol->size == 0) {
2325 isl_vec_free(sol);
2326 isl_die(ctx, isl_error_internal,
2327 "error in schedule construction", return -1);
2330 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2331 isl_vec_free(sol);
2332 isl_die(ctx, isl_error_unknown,
2333 "unable to carry dependences", return -1);
2336 if (update_schedule(graph, sol, 0, 0) < 0)
2337 return -1;
2339 if (split_scaled(ctx, graph) < 0)
2340 return -1;
2342 return compute_next_band(ctx, graph);
2345 /* Are there any validity edges in the graph?
2347 static int has_validity_edges(struct isl_sched_graph *graph)
2349 int i;
2351 for (i = 0; i < graph->n_edge; ++i)
2352 if (graph->edge[i].validity)
2353 return 1;
2355 return 0;
2358 /* Should we apply a Feautrier step?
2359 * That is, did the user request the Feautrier algorithm and are
2360 * there any validity dependences (left)?
2362 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2364 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2365 return 0;
2367 return has_validity_edges(graph);
2370 /* Compute a schedule for a connected dependence graph using Feautrier's
2371 * multi-dimensional scheduling algorithm.
2372 * The original algorithm is described in [1].
2373 * The main idea is to minimize the number of scheduling dimensions, by
2374 * trying to satisfy as many dependences as possible per scheduling dimension.
2376 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2377 * Problem, Part II: Multi-Dimensional Time.
2378 * In Intl. Journal of Parallel Programming, 1992.
2380 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2381 struct isl_sched_graph *graph)
2383 return carry_dependences(ctx, graph);
2386 /* Compute a schedule for a connected dependence graph.
2387 * We try to find a sequence of as many schedule rows as possible that result
2388 * in non-negative dependence distances (independent of the previous rows
2389 * in the sequence, i.e., such that the sequence is tilable).
2390 * If we can't find any more rows we either
2391 * - split between SCCs and start over (assuming we found an interesting
2392 * pair of SCCs between which to split)
2393 * - continue with the next band (assuming the current band has at least
2394 * one row)
2395 * - try to carry as many dependences as possible and continue with the next
2396 * band
2398 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2399 * as many validity dependences as possible. When all validity dependences
2400 * are satisfied we extend the schedule to a full-dimensional schedule.
2402 * If we manage to complete the schedule, we finish off by topologically
2403 * sorting the statements based on the remaining dependences.
2405 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2406 * outermost dimension in the current band to be zero distance. If this
2407 * turns out to be impossible, we fall back on the general scheme above
2408 * and try to carry as many dependences as possible.
2410 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2412 int force_zero = 0;
2414 if (detect_sccs(graph) < 0)
2415 return -1;
2416 sort_sccs(graph);
2418 if (compute_maxvar(graph) < 0)
2419 return -1;
2421 if (need_feautrier_step(ctx, graph))
2422 return compute_schedule_wcc_feautrier(ctx, graph);
2424 if (ctx->opt->schedule_outer_zero_distance)
2425 force_zero = 1;
2427 while (graph->n_row < graph->maxvar) {
2428 isl_vec *sol;
2430 graph->src_scc = -1;
2431 graph->dst_scc = -1;
2433 if (setup_lp(ctx, graph, force_zero) < 0)
2434 return -1;
2435 sol = solve_lp(graph);
2436 if (!sol)
2437 return -1;
2438 if (sol->size == 0) {
2439 isl_vec_free(sol);
2440 if (!ctx->opt->schedule_maximize_band_depth &&
2441 graph->n_total_row > graph->band_start)
2442 return compute_next_band(ctx, graph);
2443 if (graph->src_scc >= 0)
2444 return compute_split_schedule(ctx, graph);
2445 if (graph->n_total_row > graph->band_start)
2446 return compute_next_band(ctx, graph);
2447 return carry_dependences(ctx, graph);
2449 if (update_schedule(graph, sol, 1, 1) < 0)
2450 return -1;
2451 force_zero = 0;
2454 if (graph->n_total_row > graph->band_start)
2455 next_band(graph);
2456 return sort_statements(ctx, graph);
2459 /* Add a row to the schedules that separates the SCCs and move
2460 * to the next band.
2462 static int split_on_scc(struct isl_sched_graph *graph)
2464 int i;
2466 for (i = 0; i < graph->n; ++i) {
2467 struct isl_sched_node *node = &graph->node[i];
2468 int row = isl_mat_rows(node->sched);
2470 isl_map_free(node->sched_map);
2471 node->sched_map = NULL;
2472 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2473 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2474 node->scc);
2475 if (!node->sched)
2476 return -1;
2477 node->band[graph->n_total_row] = graph->n_band;
2480 graph->n_total_row++;
2481 next_band(graph);
2483 return 0;
2486 /* Compute a schedule for each component (identified by node->scc)
2487 * of the dependence graph separately and then combine the results.
2488 * Depending on the setting of schedule_fuse, a component may be
2489 * either weakly or strongly connected.
2491 * The band_id is adjusted such that each component has a separate id.
2492 * Note that the band_id may have already been set to a value different
2493 * from zero by compute_split_schedule.
2495 static int compute_component_schedule(isl_ctx *ctx,
2496 struct isl_sched_graph *graph)
2498 int wcc, i;
2499 int n, n_edge;
2500 int n_total_row, orig_total_row;
2501 int n_band, orig_band;
2503 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN)
2504 split_on_scc(graph);
2506 n_total_row = 0;
2507 orig_total_row = graph->n_total_row;
2508 n_band = 0;
2509 orig_band = graph->n_band;
2510 for (i = 0; i < graph->n; ++i)
2511 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2512 for (wcc = 0; wcc < graph->scc; ++wcc) {
2513 n = 0;
2514 for (i = 0; i < graph->n; ++i)
2515 if (graph->node[i].scc == wcc)
2516 n++;
2517 n_edge = 0;
2518 for (i = 0; i < graph->n_edge; ++i)
2519 if (graph->edge[i].src->scc == wcc &&
2520 graph->edge[i].dst->scc == wcc)
2521 n_edge++;
2523 if (compute_sub_schedule(ctx, graph, n, n_edge,
2524 &node_scc_exactly,
2525 &edge_scc_exactly, wcc, 1) < 0)
2526 return -1;
2527 if (graph->n_total_row > n_total_row)
2528 n_total_row = graph->n_total_row;
2529 graph->n_total_row = orig_total_row;
2530 if (graph->n_band > n_band)
2531 n_band = graph->n_band;
2532 graph->n_band = orig_band;
2535 graph->n_total_row = n_total_row;
2536 graph->n_band = n_band;
2538 return pad_schedule(graph);
2541 /* Compute a schedule for the given dependence graph.
2542 * We first check if the graph is connected (through validity dependences)
2543 * and, if not, compute a schedule for each component separately.
2544 * If schedule_fuse is set to minimal fusion, then we check for strongly
2545 * connected components instead and compute a separate schedule for
2546 * each such strongly connected component.
2548 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2550 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
2551 if (detect_sccs(graph) < 0)
2552 return -1;
2553 } else {
2554 if (detect_wccs(graph) < 0)
2555 return -1;
2558 if (graph->scc > 1)
2559 return compute_component_schedule(ctx, graph);
2561 return compute_schedule_wcc(ctx, graph);
2564 /* Compute a schedule for the given union of domains that respects
2565 * all the validity dependences.
2566 * If the default isl scheduling algorithm is used, it tries to minimize
2567 * the dependence distances over the proximity dependences.
2568 * If Feautrier's scheduling algorithm is used, the proximity dependence
2569 * distances are only minimized during the extension to a full-dimensional
2570 * schedule.
2572 __isl_give isl_schedule *isl_union_set_compute_schedule(
2573 __isl_take isl_union_set *domain,
2574 __isl_take isl_union_map *validity,
2575 __isl_take isl_union_map *proximity)
2577 isl_ctx *ctx = isl_union_set_get_ctx(domain);
2578 isl_space *dim;
2579 struct isl_sched_graph graph = { 0 };
2580 isl_schedule *sched;
2582 domain = isl_union_set_align_params(domain,
2583 isl_union_map_get_space(validity));
2584 domain = isl_union_set_align_params(domain,
2585 isl_union_map_get_space(proximity));
2586 dim = isl_union_set_get_space(domain);
2587 validity = isl_union_map_align_params(validity, isl_space_copy(dim));
2588 proximity = isl_union_map_align_params(proximity, dim);
2590 if (!domain)
2591 goto error;
2593 graph.n = isl_union_set_n_set(domain);
2594 if (graph.n == 0)
2595 goto empty;
2596 if (graph_alloc(ctx, &graph, graph.n,
2597 isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2598 goto error;
2599 graph.root = 1;
2600 graph.n = 0;
2601 if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2602 goto error;
2603 if (graph_init_table(ctx, &graph) < 0)
2604 goto error;
2605 graph.n_edge = 0;
2606 if (isl_union_map_foreach_map(validity, &extract_edge, &graph) < 0)
2607 goto error;
2608 if (graph_init_edge_table(ctx, &graph) < 0)
2609 goto error;
2610 if (isl_union_map_foreach_map(proximity, &extract_edge, &graph) < 0)
2611 goto error;
2613 if (compute_schedule(ctx, &graph) < 0)
2614 goto error;
2616 empty:
2617 sched = extract_schedule(&graph, isl_union_set_get_space(domain));
2619 graph_free(ctx, &graph);
2620 isl_union_set_free(domain);
2621 isl_union_map_free(validity);
2622 isl_union_map_free(proximity);
2624 return sched;
2625 error:
2626 graph_free(ctx, &graph);
2627 isl_union_set_free(domain);
2628 isl_union_map_free(validity);
2629 isl_union_map_free(proximity);
2630 return NULL;
2633 void *isl_schedule_free(__isl_take isl_schedule *sched)
2635 int i;
2636 if (!sched)
2637 return NULL;
2639 if (--sched->ref > 0)
2640 return NULL;
2642 for (i = 0; i < sched->n; ++i) {
2643 isl_map_free(sched->node[i].sched);
2644 free(sched->node[i].band_end);
2645 free(sched->node[i].band_id);
2646 free(sched->node[i].zero);
2648 isl_space_free(sched->dim);
2649 isl_band_list_free(sched->band_forest);
2650 free(sched);
2651 return NULL;
2654 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2656 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
2659 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
2661 int i;
2662 isl_union_map *umap;
2664 if (!sched)
2665 return NULL;
2667 umap = isl_union_map_empty(isl_space_copy(sched->dim));
2668 for (i = 0; i < sched->n; ++i)
2669 umap = isl_union_map_add_map(umap,
2670 isl_map_copy(sched->node[i].sched));
2672 return umap;
2675 static __isl_give isl_band_list *construct_band_list(
2676 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2677 int band_nr, int *parent_active, int n_active);
2679 /* Construct an isl_band structure for the band in the given schedule
2680 * with sequence number band_nr for the n_active nodes marked by active.
2681 * If the nodes don't have a band with the given sequence number,
2682 * then a band without members is created.
2684 * Because of the way the schedule is constructed, we know that
2685 * the position of the band inside the schedule of a node is the same
2686 * for all active nodes.
2688 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
2689 __isl_keep isl_band *parent,
2690 int band_nr, int *active, int n_active)
2692 int i, j;
2693 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2694 isl_band *band;
2695 unsigned start, end;
2697 band = isl_calloc_type(ctx, isl_band);
2698 if (!band)
2699 return NULL;
2701 band->ref = 1;
2702 band->schedule = schedule;
2703 band->parent = parent;
2705 for (i = 0; i < schedule->n; ++i)
2706 if (active[i] && schedule->node[i].n_band > band_nr + 1)
2707 break;
2709 if (i < schedule->n) {
2710 band->children = construct_band_list(schedule, band,
2711 band_nr + 1, active, n_active);
2712 if (!band->children)
2713 goto error;
2716 for (i = 0; i < schedule->n; ++i)
2717 if (active[i])
2718 break;
2720 if (i >= schedule->n)
2721 isl_die(ctx, isl_error_internal,
2722 "band without active statements", goto error);
2724 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
2725 end = band_nr < schedule->node[i].n_band ?
2726 schedule->node[i].band_end[band_nr] : start;
2727 band->n = end - start;
2729 band->zero = isl_alloc_array(ctx, int, band->n);
2730 if (!band->zero)
2731 goto error;
2733 for (j = 0; j < band->n; ++j)
2734 band->zero[j] = schedule->node[i].zero[start + j];
2736 band->map = isl_union_map_empty(isl_space_copy(schedule->dim));
2737 for (i = 0; i < schedule->n; ++i) {
2738 isl_map *map;
2739 unsigned n_out;
2741 if (!active[i])
2742 continue;
2744 map = isl_map_copy(schedule->node[i].sched);
2745 n_out = isl_map_dim(map, isl_dim_out);
2746 map = isl_map_project_out(map, isl_dim_out, end, n_out - end);
2747 map = isl_map_project_out(map, isl_dim_out, 0, start);
2748 band->map = isl_union_map_union(band->map,
2749 isl_union_map_from_map(map));
2751 if (!band->map)
2752 goto error;
2754 return band;
2755 error:
2756 isl_band_free(band);
2757 return NULL;
2760 /* Construct a list of bands that start at the same position (with
2761 * sequence number band_nr) in the schedules of the nodes that
2762 * were active in the parent band.
2764 * A separate isl_band structure is created for each band_id
2765 * and for each node that does not have a band with sequence
2766 * number band_nr. In the latter case, a band without members
2767 * is created.
2768 * This ensures that if a band has any children, then each node
2769 * that was active in the band is active in exactly one of the children.
2771 static __isl_give isl_band_list *construct_band_list(
2772 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2773 int band_nr, int *parent_active, int n_active)
2775 int i, j;
2776 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2777 int *active;
2778 int n_band;
2779 isl_band_list *list;
2781 n_band = 0;
2782 for (i = 0; i < n_active; ++i) {
2783 for (j = 0; j < schedule->n; ++j) {
2784 if (!parent_active[j])
2785 continue;
2786 if (schedule->node[j].n_band <= band_nr)
2787 continue;
2788 if (schedule->node[j].band_id[band_nr] == i) {
2789 n_band++;
2790 break;
2794 for (j = 0; j < schedule->n; ++j)
2795 if (schedule->node[j].n_band <= band_nr)
2796 n_band++;
2798 if (n_band == 1) {
2799 isl_band *band;
2800 list = isl_band_list_alloc(ctx, n_band);
2801 band = construct_band(schedule, parent, band_nr,
2802 parent_active, n_active);
2803 return isl_band_list_add(list, band);
2806 active = isl_alloc_array(ctx, int, schedule->n);
2807 if (!active)
2808 return NULL;
2810 list = isl_band_list_alloc(ctx, n_band);
2812 for (i = 0; i < n_active; ++i) {
2813 int n = 0;
2814 isl_band *band;
2816 for (j = 0; j < schedule->n; ++j) {
2817 active[j] = parent_active[j] &&
2818 schedule->node[j].n_band > band_nr &&
2819 schedule->node[j].band_id[band_nr] == i;
2820 if (active[j])
2821 n++;
2823 if (n == 0)
2824 continue;
2826 band = construct_band(schedule, parent, band_nr, active, n);
2828 list = isl_band_list_add(list, band);
2830 for (i = 0; i < schedule->n; ++i) {
2831 isl_band *band;
2832 if (!parent_active[i])
2833 continue;
2834 if (schedule->node[i].n_band > band_nr)
2835 continue;
2836 for (j = 0; j < schedule->n; ++j)
2837 active[j] = j == i;
2838 band = construct_band(schedule, parent, band_nr, active, 1);
2839 list = isl_band_list_add(list, band);
2842 free(active);
2844 return list;
2847 /* Construct a band forest representation of the schedule and
2848 * return the list of roots.
2850 static __isl_give isl_band_list *construct_forest(
2851 __isl_keep isl_schedule *schedule)
2853 int i;
2854 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2855 isl_band_list *forest;
2856 int *active;
2858 active = isl_alloc_array(ctx, int, schedule->n);
2859 if (!active)
2860 return NULL;
2862 for (i = 0; i < schedule->n; ++i)
2863 active[i] = 1;
2865 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
2867 free(active);
2869 return forest;
2872 /* Return the roots of a band forest representation of the schedule.
2874 __isl_give isl_band_list *isl_schedule_get_band_forest(
2875 __isl_keep isl_schedule *schedule)
2877 if (!schedule)
2878 return NULL;
2879 if (!schedule->band_forest)
2880 schedule->band_forest = construct_forest(schedule);
2881 return isl_band_list_dup(schedule->band_forest);
2884 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2885 __isl_keep isl_band_list *list);
2887 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
2888 __isl_keep isl_band *band)
2890 isl_band_list *children;
2892 p = isl_printer_start_line(p);
2893 p = isl_printer_print_union_map(p, band->map);
2894 p = isl_printer_end_line(p);
2896 if (!isl_band_has_children(band))
2897 return p;
2899 children = isl_band_get_children(band);
2901 p = isl_printer_indent(p, 4);
2902 p = print_band_list(p, children);
2903 p = isl_printer_indent(p, -4);
2905 isl_band_list_free(children);
2907 return p;
2910 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2911 __isl_keep isl_band_list *list)
2913 int i, n;
2915 n = isl_band_list_n_band(list);
2916 for (i = 0; i < n; ++i) {
2917 isl_band *band;
2918 band = isl_band_list_get_band(list, i);
2919 p = print_band(p, band);
2920 isl_band_free(band);
2923 return p;
2926 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
2927 __isl_keep isl_schedule *schedule)
2929 isl_band_list *forest;
2931 forest = isl_schedule_get_band_forest(schedule);
2933 p = print_band_list(p, forest);
2935 isl_band_list_free(forest);
2937 return p;
2940 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
2942 isl_printer *printer;
2944 if (!schedule)
2945 return;
2947 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
2948 printer = isl_printer_print_schedule(printer, schedule);
2950 isl_printer_free(printer);