2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
30 #include <isl_union_set_private.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
47 * For a detailed description of the variant implemented in isl,
48 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
52 /* Internal information about a node that is used during the construction
54 * space represents the original space in which the domain lives;
55 * that is, the space is not affected by compression
56 * sched is a matrix representation of the schedule being constructed
57 * for this node; if compressed is set, then this schedule is
58 * defined over the compressed domain space
59 * sched_map is an isl_map representation of the same (partial) schedule
60 * sched_map may be NULL; if compressed is set, then this map
61 * is defined over the uncompressed domain space
62 * rank is the number of linearly independent rows in the linear part
64 * the rows of "vmap" represent a change of basis for the node
65 * variables; the first rank rows span the linear part of
66 * the schedule rows; the remaining rows are linearly independent
67 * the rows of "indep" represent linear combinations of the schedule
68 * coefficients that are non-zero when the schedule coefficients are
69 * linearly independent of previously computed schedule rows.
70 * start is the first variable in the LP problem in the sequences that
71 * represents the schedule coefficients of this node
72 * nvar is the dimension of the (compressed) domain
73 * nparam is the number of parameters or 0 if we are not constructing
74 * a parametric schedule
76 * If compressed is set, then hull represents the constraints
77 * that were used to derive the compression, while compress and
78 * decompress map the original space to the compressed space and
81 * scc is the index of SCC (or WCC) this node belongs to
83 * "cluster" is only used inside extract_clusters and identifies
84 * the cluster of SCCs that the node belongs to.
86 * coincident contains a boolean for each of the rows of the schedule,
87 * indicating whether the corresponding scheduling dimension satisfies
88 * the coincidence constraints in the sense that the corresponding
89 * dependence distances are zero.
91 * If the schedule_treat_coalescing option is set, then
92 * "sizes" contains the sizes of the (compressed) instance set
93 * in each direction. If there is no fixed size in a given direction,
94 * then the corresponding size value is set to infinity.
95 * If the schedule_treat_coalescing option or the schedule_max_coefficient
96 * option is set, then "max" contains the maximal values for
97 * schedule coefficients of the (compressed) variables. If no bound
98 * needs to be imposed on a particular variable, then the corresponding
100 * If not NULL, then "bounds" contains a non-parametric set
101 * in the compressed space that is bounded by the size in each direction.
103 struct isl_sched_node
{
107 isl_multi_aff
*compress
;
108 isl_multi_aff
*decompress
;
123 isl_multi_val
*sizes
;
124 isl_basic_set
*bounds
;
128 static int node_has_tuples(const void *entry
, const void *val
)
130 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
131 isl_space
*space
= (isl_space
*) val
;
133 return isl_space_has_equal_tuples(node
->space
, space
);
136 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
138 return node
->scc
== scc
;
141 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
143 return node
->scc
<= scc
;
146 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
148 return node
->scc
>= scc
;
151 /* An edge in the dependence graph. An edge may be used to
152 * ensure validity of the generated schedule, to minimize the dependence
155 * map is the dependence relation, with i -> j in the map if j depends on i
156 * tagged_condition and tagged_validity contain the union of all tagged
157 * condition or conditional validity dependence relations that
158 * specialize the dependence relation "map"; that is,
159 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
160 * or "tagged_validity", then i -> j is an element of "map".
161 * If these fields are NULL, then they represent the empty relation.
162 * src is the source node
163 * dst is the sink node
165 * types is a bit vector containing the types of this edge.
166 * validity is set if the edge is used to ensure correctness
167 * coincidence is used to enforce zero dependence distances
168 * proximity is set if the edge is used to minimize dependence distances
169 * condition is set if the edge represents a condition
170 * for a conditional validity schedule constraint
171 * local can only be set for condition edges and indicates that
172 * the dependence distance over the edge should be zero
173 * conditional_validity is set if the edge is used to conditionally
176 * For validity edges, start and end mark the sequence of inequality
177 * constraints in the LP problem that encode the validity constraint
178 * corresponding to this edge.
180 * During clustering, an edge may be marked "no_merge" if it should
181 * not be used to merge clusters.
182 * The weight is also only used during clustering and it is
183 * an indication of how many schedule dimensions on either side
184 * of the schedule constraints can be aligned.
185 * If the weight is negative, then this means that this edge was postponed
186 * by has_bounded_distances or any_no_merge. The original weight can
187 * be retrieved by adding 1 + graph->max_weight, with "graph"
188 * the graph containing this edge.
190 struct isl_sched_edge
{
192 isl_union_map
*tagged_condition
;
193 isl_union_map
*tagged_validity
;
195 struct isl_sched_node
*src
;
196 struct isl_sched_node
*dst
;
207 /* Is "edge" marked as being of type "type"?
209 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
211 return ISL_FL_ISSET(edge
->types
, 1 << type
);
214 /* Mark "edge" as being of type "type".
216 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
218 ISL_FL_SET(edge
->types
, 1 << type
);
221 /* No longer mark "edge" as being of type "type"?
223 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
225 ISL_FL_CLR(edge
->types
, 1 << type
);
228 /* Is "edge" marked as a validity edge?
230 static int is_validity(struct isl_sched_edge
*edge
)
232 return is_type(edge
, isl_edge_validity
);
235 /* Mark "edge" as a validity edge.
237 static void set_validity(struct isl_sched_edge
*edge
)
239 set_type(edge
, isl_edge_validity
);
242 /* Is "edge" marked as a proximity edge?
244 static int is_proximity(struct isl_sched_edge
*edge
)
246 return is_type(edge
, isl_edge_proximity
);
249 /* Is "edge" marked as a local edge?
251 static int is_local(struct isl_sched_edge
*edge
)
253 return is_type(edge
, isl_edge_local
);
256 /* Mark "edge" as a local edge.
258 static void set_local(struct isl_sched_edge
*edge
)
260 set_type(edge
, isl_edge_local
);
263 /* No longer mark "edge" as a local edge.
265 static void clear_local(struct isl_sched_edge
*edge
)
267 clear_type(edge
, isl_edge_local
);
270 /* Is "edge" marked as a coincidence edge?
272 static int is_coincidence(struct isl_sched_edge
*edge
)
274 return is_type(edge
, isl_edge_coincidence
);
277 /* Is "edge" marked as a condition edge?
279 static int is_condition(struct isl_sched_edge
*edge
)
281 return is_type(edge
, isl_edge_condition
);
284 /* Is "edge" marked as a conditional validity edge?
286 static int is_conditional_validity(struct isl_sched_edge
*edge
)
288 return is_type(edge
, isl_edge_conditional_validity
);
291 /* Is "edge" of a type that can appear multiple times between
292 * the same pair of nodes?
294 * Condition edges and conditional validity edges may have tagged
295 * dependence relations, in which case an edge is added for each
298 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
300 return is_condition(edge
) || is_conditional_validity(edge
);
303 /* Internal information about the dependence graph used during
304 * the construction of the schedule.
306 * intra_hmap is a cache, mapping dependence relations to their dual,
307 * for dependences from a node to itself, possibly without
308 * coefficients for the parameters
309 * intra_hmap_param is a cache, mapping dependence relations to their dual,
310 * for dependences from a node to itself, including coefficients
312 * inter_hmap is a cache, mapping dependence relations to their dual,
313 * for dependences between distinct nodes
314 * if compression is involved then the key for these maps
315 * is the original, uncompressed dependence relation, while
316 * the value is the dual of the compressed dependence relation.
318 * n is the number of nodes
319 * node is the list of nodes
320 * maxvar is the maximal number of variables over all nodes
321 * max_row is the allocated number of rows in the schedule
322 * n_row is the current (maximal) number of linearly independent
323 * rows in the node schedules
324 * n_total_row is the current number of rows in the node schedules
325 * band_start is the starting row in the node schedules of the current band
326 * root is set to the the original dependence graph from which this graph
327 * is derived through splitting. If this graph is not the result of
328 * splitting, then the root field points to the graph itself.
330 * sorted contains a list of node indices sorted according to the
331 * SCC to which a node belongs
333 * n_edge is the number of edges
334 * edge is the list of edges
335 * max_edge contains the maximal number of edges of each type;
336 * in particular, it contains the number of edges in the inital graph.
337 * edge_table contains pointers into the edge array, hashed on the source
338 * and sink spaces; there is one such table for each type;
339 * a given edge may be referenced from more than one table
340 * if the corresponding relation appears in more than one of the
341 * sets of dependences; however, for each type there is only
342 * a single edge between a given pair of source and sink space
343 * in the entire graph
345 * node_table contains pointers into the node array, hashed on the space tuples
347 * region contains a list of variable sequences that should be non-trivial
349 * lp contains the (I)LP problem used to obtain new schedule rows
351 * src_scc and dst_scc are the source and sink SCCs of an edge with
352 * conflicting constraints
354 * scc represents the number of components
355 * weak is set if the components are weakly connected
357 * max_weight is used during clustering and represents the maximal
358 * weight of the relevant proximity edges.
360 struct isl_sched_graph
{
361 isl_map_to_basic_set
*intra_hmap
;
362 isl_map_to_basic_set
*intra_hmap_param
;
363 isl_map_to_basic_set
*inter_hmap
;
365 struct isl_sched_node
*node
;
376 struct isl_sched_graph
*root
;
378 struct isl_sched_edge
*edge
;
380 int max_edge
[isl_edge_last
+ 1];
381 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
383 struct isl_hash_table
*node_table
;
384 struct isl_trivial_region
*region
;
397 /* Initialize node_table based on the list of nodes.
399 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
403 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
404 if (!graph
->node_table
)
407 for (i
= 0; i
< graph
->n
; ++i
) {
408 struct isl_hash_table_entry
*entry
;
411 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
412 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
414 graph
->node
[i
].space
, 1);
417 entry
->data
= &graph
->node
[i
];
423 /* Return a pointer to the node that lives within the given space,
424 * an invalid node if there is no such node, or NULL in case of error.
426 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
427 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
429 struct isl_hash_table_entry
*entry
;
435 hash
= isl_space_get_tuple_hash(space
);
436 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
437 &node_has_tuples
, space
, 0);
439 return entry
? entry
->data
: graph
->node
+ graph
->n
;
442 /* Is "node" a node in "graph"?
444 static int is_node(struct isl_sched_graph
*graph
,
445 struct isl_sched_node
*node
)
447 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
450 static int edge_has_src_and_dst(const void *entry
, const void *val
)
452 const struct isl_sched_edge
*edge
= entry
;
453 const struct isl_sched_edge
*temp
= val
;
455 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
458 /* Add the given edge to graph->edge_table[type].
460 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
461 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
462 struct isl_sched_edge
*edge
)
464 struct isl_hash_table_entry
*entry
;
467 hash
= isl_hash_init();
468 hash
= isl_hash_builtin(hash
, edge
->src
);
469 hash
= isl_hash_builtin(hash
, edge
->dst
);
470 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
471 &edge_has_src_and_dst
, edge
, 1);
473 return isl_stat_error
;
479 /* Add "edge" to all relevant edge tables.
480 * That is, for every type of the edge, add it to the corresponding table.
482 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
483 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
485 enum isl_edge_type t
;
487 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
488 if (!is_type(edge
, t
))
490 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
491 return isl_stat_error
;
497 /* Allocate the edge_tables based on the maximal number of edges of
500 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
504 for (i
= 0; i
<= isl_edge_last
; ++i
) {
505 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
507 if (!graph
->edge_table
[i
])
514 /* If graph->edge_table[type] contains an edge from the given source
515 * to the given destination, then return the hash table entry of this edge.
516 * Otherwise, return NULL.
518 static struct isl_hash_table_entry
*graph_find_edge_entry(
519 struct isl_sched_graph
*graph
,
520 enum isl_edge_type type
,
521 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
523 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
525 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
527 hash
= isl_hash_init();
528 hash
= isl_hash_builtin(hash
, temp
.src
);
529 hash
= isl_hash_builtin(hash
, temp
.dst
);
530 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
531 &edge_has_src_and_dst
, &temp
, 0);
535 /* If graph->edge_table[type] contains an edge from the given source
536 * to the given destination, then return this edge.
537 * Otherwise, return NULL.
539 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
540 enum isl_edge_type type
,
541 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
543 struct isl_hash_table_entry
*entry
;
545 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
552 /* Check whether the dependence graph has an edge of the given type
553 * between the given two nodes.
555 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
556 enum isl_edge_type type
,
557 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
559 struct isl_sched_edge
*edge
;
562 edge
= graph_find_edge(graph
, type
, src
, dst
);
566 empty
= isl_map_plain_is_empty(edge
->map
);
568 return isl_bool_error
;
573 /* Look for any edge with the same src, dst and map fields as "model".
575 * Return the matching edge if one can be found.
576 * Return "model" if no matching edge is found.
577 * Return NULL on error.
579 static struct isl_sched_edge
*graph_find_matching_edge(
580 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
582 enum isl_edge_type i
;
583 struct isl_sched_edge
*edge
;
585 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
588 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
591 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
601 /* Remove the given edge from all the edge_tables that refer to it.
603 static void graph_remove_edge(struct isl_sched_graph
*graph
,
604 struct isl_sched_edge
*edge
)
606 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
607 enum isl_edge_type i
;
609 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
610 struct isl_hash_table_entry
*entry
;
612 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
615 if (entry
->data
!= edge
)
617 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
621 /* Check whether the dependence graph has any edge
622 * between the given two nodes.
624 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
625 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
627 enum isl_edge_type i
;
630 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
631 r
= graph_has_edge(graph
, i
, src
, dst
);
639 /* Check whether the dependence graph has a validity edge
640 * between the given two nodes.
642 * Conditional validity edges are essentially validity edges that
643 * can be ignored if the corresponding condition edges are iteration private.
644 * Here, we are only checking for the presence of validity
645 * edges, so we need to consider the conditional validity edges too.
646 * In particular, this function is used during the detection
647 * of strongly connected components and we cannot ignore
648 * conditional validity edges during this detection.
650 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
651 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
655 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
659 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
662 /* Perform all the required memory allocations for a schedule graph "graph"
663 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
666 static isl_stat
graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
667 int n_node
, int n_edge
)
672 graph
->n_edge
= n_edge
;
673 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
674 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
675 graph
->region
= isl_alloc_array(ctx
,
676 struct isl_trivial_region
, graph
->n
);
677 graph
->edge
= isl_calloc_array(ctx
,
678 struct isl_sched_edge
, graph
->n_edge
);
680 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
681 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
682 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
684 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
686 return isl_stat_error
;
688 for(i
= 0; i
< graph
->n
; ++i
)
689 graph
->sorted
[i
] = i
;
694 /* Free the memory associated to node "node" in "graph".
695 * The "coincident" field is shared by nodes in a graph and its subgraph.
696 * It therefore only needs to be freed for the original dependence graph,
697 * i.e., one that is not the result of splitting.
699 static void clear_node(struct isl_sched_graph
*graph
,
700 struct isl_sched_node
*node
)
702 isl_space_free(node
->space
);
703 isl_set_free(node
->hull
);
704 isl_multi_aff_free(node
->compress
);
705 isl_multi_aff_free(node
->decompress
);
706 isl_mat_free(node
->sched
);
707 isl_map_free(node
->sched_map
);
708 isl_mat_free(node
->indep
);
709 isl_mat_free(node
->vmap
);
710 if (graph
->root
== graph
)
711 free(node
->coincident
);
712 isl_multi_val_free(node
->sizes
);
713 isl_basic_set_free(node
->bounds
);
714 isl_vec_free(node
->max
);
717 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
721 isl_map_to_basic_set_free(graph
->intra_hmap
);
722 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
723 isl_map_to_basic_set_free(graph
->inter_hmap
);
726 for (i
= 0; i
< graph
->n
; ++i
)
727 clear_node(graph
, &graph
->node
[i
]);
731 for (i
= 0; i
< graph
->n_edge
; ++i
) {
732 isl_map_free(graph
->edge
[i
].map
);
733 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
734 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
738 for (i
= 0; i
<= isl_edge_last
; ++i
)
739 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
740 isl_hash_table_free(ctx
, graph
->node_table
);
741 isl_basic_set_free(graph
->lp
);
744 /* For each "set" on which this function is called, increment
745 * graph->n by one and update graph->maxvar.
747 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
749 struct isl_sched_graph
*graph
= user
;
750 int nvar
= isl_set_dim(set
, isl_dim_set
);
753 if (nvar
> graph
->maxvar
)
754 graph
->maxvar
= nvar
;
761 /* Compute the number of rows that should be allocated for the schedule.
762 * In particular, we need one row for each variable or one row
763 * for each basic map in the dependences.
764 * Note that it is practically impossible to exhaust both
765 * the number of dependences and the number of variables.
767 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
768 __isl_keep isl_schedule_constraints
*sc
)
772 isl_union_set
*domain
;
776 domain
= isl_schedule_constraints_get_domain(sc
);
777 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
778 isl_union_set_free(domain
);
780 return isl_stat_error
;
781 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
783 return isl_stat_error
;
784 graph
->max_row
= n_edge
+ graph
->maxvar
;
789 /* Does "bset" have any defining equalities for its set variables?
791 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
796 return isl_bool_error
;
798 n
= isl_basic_set_dim(bset
, isl_dim_set
);
799 for (i
= 0; i
< n
; ++i
) {
802 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
808 return isl_bool_false
;
811 /* Set the entries of node->max to the value of the schedule_max_coefficient
814 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
818 max
= isl_options_get_schedule_max_coefficient(ctx
);
822 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
823 node
->max
= isl_vec_set_si(node
->max
, max
);
825 return isl_stat_error
;
830 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
831 * option (if set) and half of the minimum of the sizes in the other
832 * dimensions. Round up when computing the half such that
833 * if the minimum of the sizes is one, half of the size is taken to be one
835 * If the global minimum is unbounded (i.e., if both
836 * the schedule_max_coefficient is not set and the sizes in the other
837 * dimensions are unbounded), then store a negative value.
838 * If the schedule coefficient is close to the size of the instance set
839 * in another dimension, then the schedule may represent a loop
840 * coalescing transformation (especially if the coefficient
841 * in that other dimension is one). Forcing the coefficient to be
842 * smaller than or equal to half the minimal size should avoid this
845 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
846 struct isl_sched_node
*node
)
852 max
= isl_options_get_schedule_max_coefficient(ctx
);
853 v
= isl_vec_alloc(ctx
, node
->nvar
);
855 return isl_stat_error
;
857 for (i
= 0; i
< node
->nvar
; ++i
) {
858 isl_int_set_si(v
->el
[i
], max
);
859 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
862 for (i
= 0; i
< node
->nvar
; ++i
) {
865 size
= isl_multi_val_get_val(node
->sizes
, i
);
868 if (!isl_val_is_int(size
)) {
872 for (j
= 0; j
< node
->nvar
; ++j
) {
875 if (isl_int_is_neg(v
->el
[j
]) ||
876 isl_int_gt(v
->el
[j
], size
->n
))
877 isl_int_set(v
->el
[j
], size
->n
);
882 for (i
= 0; i
< node
->nvar
; ++i
)
883 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
889 return isl_stat_error
;
892 /* Compute and return the size of "set" in dimension "dim".
893 * The size is taken to be the difference in values for that variable
894 * for fixed values of the other variables.
895 * This assumes that "set" is convex.
896 * In particular, the variable is first isolated from the other variables
897 * in the range of a map
899 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
901 * and then duplicated
903 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
905 * The shared variables are then projected out and the maximal value
906 * of i_dim' - i_dim is computed.
908 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
915 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
916 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
917 map
= isl_map_range_product(map
, isl_map_copy(map
));
918 map
= isl_set_unwrap(isl_map_range(map
));
919 set
= isl_map_deltas(map
);
920 ls
= isl_local_space_from_space(isl_set_get_space(set
));
921 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
922 v
= isl_set_max_val(set
, obj
);
929 /* Compute the size of the instance set "set" of "node", after compression,
930 * as well as bounds on the corresponding coefficients, if needed.
932 * The sizes are needed when the schedule_treat_coalescing option is set.
933 * The bounds are needed when the schedule_treat_coalescing option or
934 * the schedule_max_coefficient option is set.
936 * If the schedule_treat_coalescing option is not set, then at most
937 * the bounds need to be set and this is done in set_max_coefficient.
938 * Otherwise, compress the domain if needed, compute the size
939 * in each direction and store the results in node->size.
940 * If the domain is not convex, then the sizes are computed
941 * on a convex superset in order to avoid picking up sizes
942 * that are valid for the individual disjuncts, but not for
943 * the domain as a whole.
944 * Finally, set the bounds on the coefficients based on the sizes
945 * and the schedule_max_coefficient option in compute_max_coefficient.
947 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
948 __isl_take isl_set
*set
)
953 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
955 return set_max_coefficient(ctx
, node
);
958 if (node
->compressed
)
959 set
= isl_set_preimage_multi_aff(set
,
960 isl_multi_aff_copy(node
->decompress
));
961 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
962 mv
= isl_multi_val_zero(isl_set_get_space(set
));
963 n
= isl_set_dim(set
, isl_dim_set
);
964 for (j
= 0; j
< n
; ++j
) {
967 v
= compute_size(isl_set_copy(set
), j
);
968 mv
= isl_multi_val_set_val(mv
, j
, v
);
973 return isl_stat_error
;
974 return compute_max_coefficient(ctx
, node
);
977 /* Add a new node to the graph representing the given instance set.
978 * "nvar" is the (possibly compressed) number of variables and
979 * may be smaller than then number of set variables in "set"
980 * if "compressed" is set.
981 * If "compressed" is set, then "hull" represents the constraints
982 * that were used to derive the compression, while "compress" and
983 * "decompress" map the original space to the compressed space and
985 * If "compressed" is not set, then "hull", "compress" and "decompress"
988 * Compute the size of the instance set and bounds on the coefficients,
991 static isl_stat
add_node(struct isl_sched_graph
*graph
,
992 __isl_take isl_set
*set
, int nvar
, int compressed
,
993 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
994 __isl_take isl_multi_aff
*decompress
)
1001 struct isl_sched_node
*node
;
1004 return isl_stat_error
;
1006 ctx
= isl_set_get_ctx(set
);
1007 nparam
= isl_set_dim(set
, isl_dim_param
);
1008 if (!ctx
->opt
->schedule_parametric
)
1010 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
1011 node
= &graph
->node
[graph
->n
];
1013 space
= isl_set_get_space(set
);
1014 node
->space
= space
;
1016 node
->nparam
= nparam
;
1017 node
->sched
= sched
;
1018 node
->sched_map
= NULL
;
1019 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1020 node
->coincident
= coincident
;
1021 node
->compressed
= compressed
;
1023 node
->compress
= compress
;
1024 node
->decompress
= decompress
;
1025 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1026 return isl_stat_error
;
1028 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1029 return isl_stat_error
;
1030 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1031 return isl_stat_error
;
1036 /* Construct an identifier for node "node", which will represent "set".
1037 * The name of the identifier is either "compressed" or
1038 * "compressed_<name>", with <name> the name of the space of "set".
1039 * The user pointer of the identifier points to "node".
1041 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
1042 struct isl_sched_node
*node
)
1051 has_name
= isl_set_has_tuple_name(set
);
1055 ctx
= isl_set_get_ctx(set
);
1057 return isl_id_alloc(ctx
, "compressed", node
);
1059 p
= isl_printer_to_str(ctx
);
1060 name
= isl_set_get_tuple_name(set
);
1061 p
= isl_printer_print_str(p
, "compressed_");
1062 p
= isl_printer_print_str(p
, name
);
1063 id_name
= isl_printer_get_str(p
);
1064 isl_printer_free(p
);
1066 id
= isl_id_alloc(ctx
, id_name
, node
);
1072 /* Add a new node to the graph representing the given set.
1074 * If any of the set variables is defined by an equality, then
1075 * we perform variable compression such that we can perform
1076 * the scheduling on the compressed domain.
1077 * In this case, an identifier is used that references the new node
1078 * such that each compressed space is unique and
1079 * such that the node can be recovered from the compressed space.
1081 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1084 isl_bool has_equality
;
1086 isl_basic_set
*hull
;
1089 isl_multi_aff
*compress
, *decompress
;
1090 struct isl_sched_graph
*graph
= user
;
1092 hull
= isl_set_affine_hull(isl_set_copy(set
));
1093 hull
= isl_basic_set_remove_divs(hull
);
1094 nvar
= isl_set_dim(set
, isl_dim_set
);
1095 has_equality
= has_any_defining_equality(hull
);
1097 if (has_equality
< 0)
1099 if (!has_equality
) {
1100 isl_basic_set_free(hull
);
1101 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1104 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1105 morph
= isl_basic_set_variable_compression_with_id(hull
,
1108 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1109 compress
= isl_morph_get_var_multi_aff(morph
);
1110 morph
= isl_morph_inverse(morph
);
1111 decompress
= isl_morph_get_var_multi_aff(morph
);
1112 isl_morph_free(morph
);
1114 hull_set
= isl_set_from_basic_set(hull
);
1115 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1117 isl_basic_set_free(hull
);
1119 return isl_stat_error
;
1122 struct isl_extract_edge_data
{
1123 enum isl_edge_type type
;
1124 struct isl_sched_graph
*graph
;
1127 /* Merge edge2 into edge1, freeing the contents of edge2.
1128 * Return 0 on success and -1 on failure.
1130 * edge1 and edge2 are assumed to have the same value for the map field.
1132 static int merge_edge(struct isl_sched_edge
*edge1
,
1133 struct isl_sched_edge
*edge2
)
1135 edge1
->types
|= edge2
->types
;
1136 isl_map_free(edge2
->map
);
1138 if (is_condition(edge2
)) {
1139 if (!edge1
->tagged_condition
)
1140 edge1
->tagged_condition
= edge2
->tagged_condition
;
1142 edge1
->tagged_condition
=
1143 isl_union_map_union(edge1
->tagged_condition
,
1144 edge2
->tagged_condition
);
1147 if (is_conditional_validity(edge2
)) {
1148 if (!edge1
->tagged_validity
)
1149 edge1
->tagged_validity
= edge2
->tagged_validity
;
1151 edge1
->tagged_validity
=
1152 isl_union_map_union(edge1
->tagged_validity
,
1153 edge2
->tagged_validity
);
1156 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1158 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1164 /* Insert dummy tags in domain and range of "map".
1166 * In particular, if "map" is of the form
1172 * [A -> dummy_tag] -> [B -> dummy_tag]
1174 * where the dummy_tags are identical and equal to any dummy tags
1175 * introduced by any other call to this function.
1177 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1183 isl_set
*domain
, *range
;
1185 ctx
= isl_map_get_ctx(map
);
1187 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1188 space
= isl_space_params(isl_map_get_space(map
));
1189 space
= isl_space_set_from_params(space
);
1190 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1191 space
= isl_space_map_from_set(space
);
1193 domain
= isl_map_wrap(map
);
1194 range
= isl_map_wrap(isl_map_universe(space
));
1195 map
= isl_map_from_domain_and_range(domain
, range
);
1196 map
= isl_map_zip(map
);
1201 /* Given that at least one of "src" or "dst" is compressed, return
1202 * a map between the spaces of these nodes restricted to the affine
1203 * hull that was used in the compression.
1205 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1206 struct isl_sched_node
*dst
)
1210 if (src
->compressed
)
1211 dom
= isl_set_copy(src
->hull
);
1213 dom
= isl_set_universe(isl_space_copy(src
->space
));
1214 if (dst
->compressed
)
1215 ran
= isl_set_copy(dst
->hull
);
1217 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1219 return isl_map_from_domain_and_range(dom
, ran
);
1222 /* Intersect the domains of the nested relations in domain and range
1223 * of "tagged" with "map".
1225 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1226 __isl_keep isl_map
*map
)
1230 tagged
= isl_map_zip(tagged
);
1231 set
= isl_map_wrap(isl_map_copy(map
));
1232 tagged
= isl_map_intersect_domain(tagged
, set
);
1233 tagged
= isl_map_zip(tagged
);
1237 /* Return a pointer to the node that lives in the domain space of "map",
1238 * an invalid node if there is no such node, or NULL in case of error.
1240 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1241 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1243 struct isl_sched_node
*node
;
1246 space
= isl_space_domain(isl_map_get_space(map
));
1247 node
= graph_find_node(ctx
, graph
, space
);
1248 isl_space_free(space
);
1253 /* Return a pointer to the node that lives in the range space of "map",
1254 * an invalid node if there is no such node, or NULL in case of error.
1256 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1257 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1259 struct isl_sched_node
*node
;
1262 space
= isl_space_range(isl_map_get_space(map
));
1263 node
= graph_find_node(ctx
, graph
, space
);
1264 isl_space_free(space
);
1269 /* Refrain from adding a new edge based on "map".
1270 * Instead, just free the map.
1271 * "tagged" is either a copy of "map" with additional tags or NULL.
1273 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1276 isl_map_free(tagged
);
1281 /* Add a new edge to the graph based on the given map
1282 * and add it to data->graph->edge_table[data->type].
1283 * If a dependence relation of a given type happens to be identical
1284 * to one of the dependence relations of a type that was added before,
1285 * then we don't create a new edge, but instead mark the original edge
1286 * as also representing a dependence of the current type.
1288 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1289 * may be specified as "tagged" dependence relations. That is, "map"
1290 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1291 * the dependence on iterations and a and b are tags.
1292 * edge->map is set to the relation containing the elements i -> j,
1293 * while edge->tagged_condition and edge->tagged_validity contain
1294 * the union of all the "map" relations
1295 * for which extract_edge is called that result in the same edge->map.
1297 * If the source or the destination node is compressed, then
1298 * intersect both "map" and "tagged" with the constraints that
1299 * were used to construct the compression.
1300 * This ensures that there are no schedule constraints defined
1301 * outside of these domains, while the scheduler no longer has
1302 * any control over those outside parts.
1304 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1307 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1308 struct isl_extract_edge_data
*data
= user
;
1309 struct isl_sched_graph
*graph
= data
->graph
;
1310 struct isl_sched_node
*src
, *dst
;
1311 struct isl_sched_edge
*edge
;
1312 isl_map
*tagged
= NULL
;
1314 if (data
->type
== isl_edge_condition
||
1315 data
->type
== isl_edge_conditional_validity
) {
1316 if (isl_map_can_zip(map
)) {
1317 tagged
= isl_map_copy(map
);
1318 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1320 tagged
= insert_dummy_tags(isl_map_copy(map
));
1324 src
= find_domain_node(ctx
, graph
, map
);
1325 dst
= find_range_node(ctx
, graph
, map
);
1329 if (!is_node(graph
, src
) || !is_node(graph
, dst
))
1330 return skip_edge(map
, tagged
);
1332 if (src
->compressed
|| dst
->compressed
) {
1334 hull
= extract_hull(src
, dst
);
1336 tagged
= map_intersect_domains(tagged
, hull
);
1337 map
= isl_map_intersect(map
, hull
);
1340 empty
= isl_map_plain_is_empty(map
);
1344 return skip_edge(map
, tagged
);
1346 graph
->edge
[graph
->n_edge
].src
= src
;
1347 graph
->edge
[graph
->n_edge
].dst
= dst
;
1348 graph
->edge
[graph
->n_edge
].map
= map
;
1349 graph
->edge
[graph
->n_edge
].types
= 0;
1350 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1351 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1352 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1353 if (data
->type
== isl_edge_condition
)
1354 graph
->edge
[graph
->n_edge
].tagged_condition
=
1355 isl_union_map_from_map(tagged
);
1356 if (data
->type
== isl_edge_conditional_validity
)
1357 graph
->edge
[graph
->n_edge
].tagged_validity
=
1358 isl_union_map_from_map(tagged
);
1360 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1363 return isl_stat_error
;
1365 if (edge
== &graph
->edge
[graph
->n_edge
])
1366 return graph_edge_table_add(ctx
, graph
, data
->type
,
1367 &graph
->edge
[graph
->n_edge
++]);
1369 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1370 return isl_stat_error
;
1372 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1375 isl_map_free(tagged
);
1376 return isl_stat_error
;
1379 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1381 * The context is included in the domain before the nodes of
1382 * the graphs are extracted in order to be able to exploit
1383 * any possible additional equalities.
1384 * Note that this intersection is only performed locally here.
1386 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1387 __isl_keep isl_schedule_constraints
*sc
)
1390 isl_union_set
*domain
;
1392 struct isl_extract_edge_data data
;
1393 enum isl_edge_type i
;
1397 return isl_stat_error
;
1399 ctx
= isl_schedule_constraints_get_ctx(sc
);
1401 domain
= isl_schedule_constraints_get_domain(sc
);
1402 graph
->n
= isl_union_set_n_set(domain
);
1403 isl_union_set_free(domain
);
1405 if (graph_alloc(ctx
, graph
, graph
->n
,
1406 isl_schedule_constraints_n_map(sc
)) < 0)
1407 return isl_stat_error
;
1409 if (compute_max_row(graph
, sc
) < 0)
1410 return isl_stat_error
;
1411 graph
->root
= graph
;
1413 domain
= isl_schedule_constraints_get_domain(sc
);
1414 domain
= isl_union_set_intersect_params(domain
,
1415 isl_schedule_constraints_get_context(sc
));
1416 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1417 isl_union_set_free(domain
);
1419 return isl_stat_error
;
1420 if (graph_init_table(ctx
, graph
) < 0)
1421 return isl_stat_error
;
1422 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1423 c
= isl_schedule_constraints_get(sc
, i
);
1424 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1425 isl_union_map_free(c
);
1427 return isl_stat_error
;
1429 if (graph_init_edge_tables(ctx
, graph
) < 0)
1430 return isl_stat_error
;
1433 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1437 c
= isl_schedule_constraints_get(sc
, i
);
1438 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1439 isl_union_map_free(c
);
1441 return isl_stat_error
;
1447 /* Check whether there is any dependence from node[j] to node[i]
1448 * or from node[i] to node[j].
1450 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1453 struct isl_sched_graph
*graph
= user
;
1455 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1458 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1461 /* Check whether there is a (conditional) validity dependence from node[j]
1462 * to node[i], forcing node[i] to follow node[j].
1464 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1466 struct isl_sched_graph
*graph
= user
;
1468 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1471 /* Use Tarjan's algorithm for computing the strongly connected components
1472 * in the dependence graph only considering those edges defined by "follows".
1474 static isl_stat
detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1475 isl_bool (*follows
)(int i
, int j
, void *user
))
1478 struct isl_tarjan_graph
*g
= NULL
;
1480 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1482 return isl_stat_error
;
1488 while (g
->order
[i
] != -1) {
1489 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1497 isl_tarjan_graph_free(g
);
1502 /* Apply Tarjan's algorithm to detect the strongly connected components
1503 * in the dependence graph.
1504 * Only consider the (conditional) validity dependences and clear "weak".
1506 static isl_stat
detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1509 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1512 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1513 * in the dependence graph.
1514 * Consider all dependences and set "weak".
1516 static isl_stat
detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1519 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1522 static int cmp_scc(const void *a
, const void *b
, void *data
)
1524 struct isl_sched_graph
*graph
= data
;
1528 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1531 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1533 static int sort_sccs(struct isl_sched_graph
*graph
)
1535 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1538 /* Return a non-parametric set in the compressed space of "node" that is
1539 * bounded by the size in each direction
1541 * { [x] : -S_i <= x_i <= S_i }
1543 * If S_i is infinity in direction i, then there are no constraints
1544 * in that direction.
1546 * Cache the result in node->bounds.
1548 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1551 isl_basic_set
*bounds
;
1556 return isl_basic_set_copy(node
->bounds
);
1558 if (node
->compressed
)
1559 space
= isl_multi_aff_get_domain_space(node
->decompress
);
1561 space
= isl_space_copy(node
->space
);
1562 nparam
= isl_space_dim(space
, isl_dim_param
);
1563 space
= isl_space_drop_dims(space
, isl_dim_param
, 0, nparam
);
1564 bounds
= isl_basic_set_universe(space
);
1566 for (i
= 0; i
< node
->nvar
; ++i
) {
1569 size
= isl_multi_val_get_val(node
->sizes
, i
);
1571 return isl_basic_set_free(bounds
);
1572 if (!isl_val_is_int(size
)) {
1576 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1577 isl_val_copy(size
));
1578 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1582 node
->bounds
= isl_basic_set_copy(bounds
);
1586 /* Drop some constraints from "delta" that could be exploited
1587 * to construct loop coalescing schedules.
1588 * In particular, drop those constraint that bound the difference
1589 * to the size of the domain.
1590 * First project out the parameters to improve the effectiveness.
1592 static __isl_give isl_set
*drop_coalescing_constraints(
1593 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1596 isl_basic_set
*bounds
;
1598 bounds
= get_size_bounds(node
);
1600 nparam
= isl_set_dim(delta
, isl_dim_param
);
1601 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1602 delta
= isl_set_remove_divs(delta
);
1603 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1607 /* Given a dependence relation R from "node" to itself,
1608 * construct the set of coefficients of valid constraints for elements
1609 * in that dependence relation.
1610 * In particular, the result contains tuples of coefficients
1611 * c_0, c_n, c_x such that
1613 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1617 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1619 * We choose here to compute the dual of delta R.
1620 * Alternatively, we could have computed the dual of R, resulting
1621 * in a set of tuples c_0, c_n, c_x, c_y, and then
1622 * plugged in (c_0, c_n, c_x, -c_x).
1624 * If "need_param" is set, then the resulting coefficients effectively
1625 * include coefficients for the parameters c_n. Otherwise, they may
1626 * have been projected out already.
1627 * Since the constraints may be different for these two cases,
1628 * they are stored in separate caches.
1629 * In particular, if no parameter coefficients are required and
1630 * the schedule_treat_coalescing option is set, then the parameters
1631 * are projected out and some constraints that could be exploited
1632 * to construct coalescing schedules are removed before the dual
1635 * If "node" has been compressed, then the dependence relation
1636 * is also compressed before the set of coefficients is computed.
1638 static __isl_give isl_basic_set
*intra_coefficients(
1639 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1640 __isl_take isl_map
*map
, int need_param
)
1645 isl_basic_set
*coef
;
1646 isl_maybe_isl_basic_set m
;
1647 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1653 ctx
= isl_map_get_ctx(map
);
1654 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1656 hmap
= &graph
->intra_hmap_param
;
1657 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1658 if (m
.valid
< 0 || m
.valid
) {
1663 key
= isl_map_copy(map
);
1664 if (node
->compressed
) {
1665 map
= isl_map_preimage_domain_multi_aff(map
,
1666 isl_multi_aff_copy(node
->decompress
));
1667 map
= isl_map_preimage_range_multi_aff(map
,
1668 isl_multi_aff_copy(node
->decompress
));
1670 delta
= isl_map_deltas(map
);
1672 delta
= drop_coalescing_constraints(delta
, node
);
1673 delta
= isl_set_remove_divs(delta
);
1674 coef
= isl_set_coefficients(delta
);
1675 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1680 /* Given a dependence relation R, construct the set of coefficients
1681 * of valid constraints for elements in that dependence relation.
1682 * In particular, the result contains tuples of coefficients
1683 * c_0, c_n, c_x, c_y such that
1685 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1687 * If the source or destination nodes of "edge" have been compressed,
1688 * then the dependence relation is also compressed before
1689 * the set of coefficients is computed.
1691 static __isl_give isl_basic_set
*inter_coefficients(
1692 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1693 __isl_take isl_map
*map
)
1697 isl_basic_set
*coef
;
1698 isl_maybe_isl_basic_set m
;
1700 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1701 if (m
.valid
< 0 || m
.valid
) {
1706 key
= isl_map_copy(map
);
1707 if (edge
->src
->compressed
)
1708 map
= isl_map_preimage_domain_multi_aff(map
,
1709 isl_multi_aff_copy(edge
->src
->decompress
));
1710 if (edge
->dst
->compressed
)
1711 map
= isl_map_preimage_range_multi_aff(map
,
1712 isl_multi_aff_copy(edge
->dst
->decompress
));
1713 set
= isl_map_wrap(isl_map_remove_divs(map
));
1714 coef
= isl_set_coefficients(set
);
1715 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1716 isl_basic_set_copy(coef
));
1721 /* Return the position of the coefficients of the variables in
1722 * the coefficients constraints "coef".
1724 * The space of "coef" is of the form
1726 * { coefficients[[cst, params] -> S] }
1728 * Return the position of S.
1730 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1735 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1736 offset
= isl_space_dim(space
, isl_dim_in
);
1737 isl_space_free(space
);
1742 /* Return the offset of the coefficient of the constant term of "node"
1745 * Within each node, the coefficients have the following order:
1746 * - positive and negative parts of c_i_x
1747 * - c_i_n (if parametric)
1750 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1752 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1755 /* Return the offset of the coefficients of the parameters of "node"
1758 * Within each node, the coefficients have the following order:
1759 * - positive and negative parts of c_i_x
1760 * - c_i_n (if parametric)
1763 static int node_par_coef_offset(struct isl_sched_node
*node
)
1765 return node
->start
+ 2 * node
->nvar
;
1768 /* Return the offset of the coefficients of the variables of "node"
1771 * Within each node, the coefficients have the following order:
1772 * - positive and negative parts of c_i_x
1773 * - c_i_n (if parametric)
1776 static int node_var_coef_offset(struct isl_sched_node
*node
)
1781 /* Return the position of the pair of variables encoding
1782 * coefficient "i" of "node".
1784 * The order of these variable pairs is the opposite of
1785 * that of the coefficients, with 2 variables per coefficient.
1787 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1789 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1792 /* Construct an isl_dim_map for mapping constraints on coefficients
1793 * for "node" to the corresponding positions in graph->lp.
1794 * "offset" is the offset of the coefficients for the variables
1795 * in the input constraints.
1796 * "s" is the sign of the mapping.
1798 * The input constraints are given in terms of the coefficients
1799 * (c_0, c_x) or (c_0, c_n, c_x).
1800 * The mapping produced by this function essentially plugs in
1801 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1802 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1803 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1804 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1805 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1806 * Furthermore, the order of these pairs is the opposite of that
1807 * of the corresponding coefficients.
1809 * The caller can extend the mapping to also map the other coefficients
1810 * (and therefore not plug in 0).
1812 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1813 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1818 isl_dim_map
*dim_map
;
1820 if (!node
|| !graph
->lp
)
1823 total
= isl_basic_set_total_dim(graph
->lp
);
1824 pos
= node_var_coef_pos(node
, 0);
1825 dim_map
= isl_dim_map_alloc(ctx
, total
);
1826 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1827 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1832 /* Construct an isl_dim_map for mapping constraints on coefficients
1833 * for "src" (node i) and "dst" (node j) to the corresponding positions
1835 * "offset" is the offset of the coefficients for the variables of "src"
1836 * in the input constraints.
1837 * "s" is the sign of the mapping.
1839 * The input constraints are given in terms of the coefficients
1840 * (c_0, c_n, c_x, c_y).
1841 * The mapping produced by this function essentially plugs in
1842 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1843 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1844 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1845 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1846 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1847 * Furthermore, the order of these pairs is the opposite of that
1848 * of the corresponding coefficients.
1850 * The caller can further extend the mapping.
1852 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1853 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1854 struct isl_sched_node
*dst
, int offset
, int s
)
1858 isl_dim_map
*dim_map
;
1860 if (!src
|| !dst
|| !graph
->lp
)
1863 total
= isl_basic_set_total_dim(graph
->lp
);
1864 dim_map
= isl_dim_map_alloc(ctx
, total
);
1866 pos
= node_cst_coef_offset(dst
);
1867 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1868 pos
= node_par_coef_offset(dst
);
1869 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1870 pos
= node_var_coef_pos(dst
, 0);
1871 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1873 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1876 pos
= node_cst_coef_offset(src
);
1877 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1878 pos
= node_par_coef_offset(src
);
1879 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1880 pos
= node_var_coef_pos(src
, 0);
1881 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1882 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1887 /* Add the constraints from "src" to "dst" using "dim_map",
1888 * after making sure there is enough room in "dst" for the extra constraints.
1890 static __isl_give isl_basic_set
*add_constraints_dim_map(
1891 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1892 __isl_take isl_dim_map
*dim_map
)
1896 n_eq
= isl_basic_set_n_equality(src
);
1897 n_ineq
= isl_basic_set_n_inequality(src
);
1898 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1899 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1903 /* Add constraints to graph->lp that force validity for the given
1904 * dependence from a node i to itself.
1905 * That is, add constraints that enforce
1907 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1908 * = c_i_x (y - x) >= 0
1910 * for each (x,y) in R.
1911 * We obtain general constraints on coefficients (c_0, c_x)
1912 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1913 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1914 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1915 * Note that the result of intra_coefficients may also contain
1916 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1918 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1919 struct isl_sched_edge
*edge
)
1922 isl_map
*map
= isl_map_copy(edge
->map
);
1923 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1924 isl_dim_map
*dim_map
;
1925 isl_basic_set
*coef
;
1926 struct isl_sched_node
*node
= edge
->src
;
1928 coef
= intra_coefficients(graph
, node
, map
, 0);
1930 offset
= coef_var_offset(coef
);
1933 return isl_stat_error
;
1935 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1936 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1941 /* Add constraints to graph->lp that force validity for the given
1942 * dependence from node i to node j.
1943 * That is, add constraints that enforce
1945 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1947 * for each (x,y) in R.
1948 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1949 * of valid constraints for R and then plug in
1950 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1951 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1952 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1954 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1955 struct isl_sched_edge
*edge
)
1960 isl_dim_map
*dim_map
;
1961 isl_basic_set
*coef
;
1962 struct isl_sched_node
*src
= edge
->src
;
1963 struct isl_sched_node
*dst
= edge
->dst
;
1966 return isl_stat_error
;
1968 map
= isl_map_copy(edge
->map
);
1969 ctx
= isl_map_get_ctx(map
);
1970 coef
= inter_coefficients(graph
, edge
, map
);
1972 offset
= coef_var_offset(coef
);
1975 return isl_stat_error
;
1977 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1979 edge
->start
= graph
->lp
->n_ineq
;
1980 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1982 return isl_stat_error
;
1983 edge
->end
= graph
->lp
->n_ineq
;
1988 /* Add constraints to graph->lp that bound the dependence distance for the given
1989 * dependence from a node i to itself.
1990 * If s = 1, we add the constraint
1992 * c_i_x (y - x) <= m_0 + m_n n
1996 * -c_i_x (y - x) + m_0 + m_n n >= 0
1998 * for each (x,y) in R.
1999 * If s = -1, we add the constraint
2001 * -c_i_x (y - x) <= m_0 + m_n n
2005 * c_i_x (y - x) + m_0 + m_n n >= 0
2007 * for each (x,y) in R.
2008 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2009 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2010 * with each coefficient (except m_0) represented as a pair of non-negative
2014 * If "local" is set, then we add constraints
2016 * c_i_x (y - x) <= 0
2020 * -c_i_x (y - x) <= 0
2022 * instead, forcing the dependence distance to be (less than or) equal to 0.
2023 * That is, we plug in (0, 0, -s * c_i_x),
2024 * intra_coefficients is not required to have c_n in its result when
2025 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2026 * Note that dependences marked local are treated as validity constraints
2027 * by add_all_validity_constraints and therefore also have
2028 * their distances bounded by 0 from below.
2030 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2031 struct isl_sched_edge
*edge
, int s
, int local
)
2035 isl_map
*map
= isl_map_copy(edge
->map
);
2036 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2037 isl_dim_map
*dim_map
;
2038 isl_basic_set
*coef
;
2039 struct isl_sched_node
*node
= edge
->src
;
2041 coef
= intra_coefficients(graph
, node
, map
, !local
);
2043 offset
= coef_var_offset(coef
);
2046 return isl_stat_error
;
2048 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2049 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2052 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2053 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2054 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2056 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2061 /* Add constraints to graph->lp that bound the dependence distance for the given
2062 * dependence from node i to node j.
2063 * If s = 1, we add the constraint
2065 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2070 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2073 * for each (x,y) in R.
2074 * If s = -1, we add the constraint
2076 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2081 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2084 * for each (x,y) in R.
2085 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2086 * of valid constraints for R and then plug in
2087 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2088 * s*c_i_x, -s*c_j_x)
2089 * with each coefficient (except m_0, c_*_0 and c_*_n)
2090 * represented as a pair of non-negative coefficients.
2093 * If "local" is set (and s = 1), then we add constraints
2095 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2099 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2101 * instead, forcing the dependence distance to be (less than or) equal to 0.
2102 * That is, we plug in
2103 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2104 * Note that dependences marked local are treated as validity constraints
2105 * by add_all_validity_constraints and therefore also have
2106 * their distances bounded by 0 from below.
2108 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2109 struct isl_sched_edge
*edge
, int s
, int local
)
2113 isl_map
*map
= isl_map_copy(edge
->map
);
2114 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2115 isl_dim_map
*dim_map
;
2116 isl_basic_set
*coef
;
2117 struct isl_sched_node
*src
= edge
->src
;
2118 struct isl_sched_node
*dst
= edge
->dst
;
2120 coef
= inter_coefficients(graph
, edge
, map
);
2122 offset
= coef_var_offset(coef
);
2125 return isl_stat_error
;
2127 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2128 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2131 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2132 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2133 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2136 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2141 /* Should the distance over "edge" be forced to zero?
2142 * That is, is it marked as a local edge?
2143 * If "use_coincidence" is set, then coincidence edges are treated
2146 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2148 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2151 /* Add all validity constraints to graph->lp.
2153 * An edge that is forced to be local needs to have its dependence
2154 * distances equal to zero. We take care of bounding them by 0 from below
2155 * here. add_all_proximity_constraints takes care of bounding them by 0
2158 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2159 * Otherwise, we ignore them.
2161 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2162 int use_coincidence
)
2166 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2167 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2170 zero
= force_zero(edge
, use_coincidence
);
2171 if (!is_validity(edge
) && !zero
)
2173 if (edge
->src
!= edge
->dst
)
2175 if (add_intra_validity_constraints(graph
, edge
) < 0)
2179 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2180 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2183 zero
= force_zero(edge
, use_coincidence
);
2184 if (!is_validity(edge
) && !zero
)
2186 if (edge
->src
== edge
->dst
)
2188 if (add_inter_validity_constraints(graph
, edge
) < 0)
2195 /* Add constraints to graph->lp that bound the dependence distance
2196 * for all dependence relations.
2197 * If a given proximity dependence is identical to a validity
2198 * dependence, then the dependence distance is already bounded
2199 * from below (by zero), so we only need to bound the distance
2200 * from above. (This includes the case of "local" dependences
2201 * which are treated as validity dependence by add_all_validity_constraints.)
2202 * Otherwise, we need to bound the distance both from above and from below.
2204 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2205 * Otherwise, we ignore them.
2207 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2208 int use_coincidence
)
2212 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2213 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2216 zero
= force_zero(edge
, use_coincidence
);
2217 if (!is_proximity(edge
) && !zero
)
2219 if (edge
->src
== edge
->dst
&&
2220 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2222 if (edge
->src
!= edge
->dst
&&
2223 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2225 if (is_validity(edge
) || zero
)
2227 if (edge
->src
== edge
->dst
&&
2228 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2230 if (edge
->src
!= edge
->dst
&&
2231 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2238 /* Normalize the rows of "indep" such that all rows are lexicographically
2239 * positive and such that each row contains as many final zeros as possible,
2240 * given the choice for the previous rows.
2241 * Do this by performing elementary row operations.
2243 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2245 indep
= isl_mat_reverse_gauss(indep
);
2246 indep
= isl_mat_lexnonneg_rows(indep
);
2250 /* Compute a basis for the rows in the linear part of the schedule
2251 * and extend this basis to a full basis. The remaining rows
2252 * can then be used to force linear independence from the rows
2255 * In particular, given the schedule rows S, we compute
2260 * with H the Hermite normal form of S. That is, all but the
2261 * first rank columns of H are zero and so each row in S is
2262 * a linear combination of the first rank rows of Q.
2263 * The matrix Q can be used as a variable transformation
2264 * that isolates the directions of S in the first rank rows.
2265 * Transposing S U = H yields
2269 * with all but the first rank rows of H^T zero.
2270 * The last rows of U^T are therefore linear combinations
2271 * of schedule coefficients that are all zero on schedule
2272 * coefficients that are linearly dependent on the rows of S.
2273 * At least one of these combinations is non-zero on
2274 * linearly independent schedule coefficients.
2275 * The rows are normalized to involve as few of the last
2276 * coefficients as possible and to have a positive initial value.
2278 static int node_update_vmap(struct isl_sched_node
*node
)
2281 int n_row
= isl_mat_rows(node
->sched
);
2283 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2284 1 + node
->nparam
, node
->nvar
);
2286 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2287 isl_mat_free(node
->indep
);
2288 isl_mat_free(node
->vmap
);
2290 node
->indep
= isl_mat_transpose(U
);
2291 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2292 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2293 node
->indep
= normalize_independent(node
->indep
);
2296 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2301 /* Is "edge" marked as a validity or a conditional validity edge?
2303 static int is_any_validity(struct isl_sched_edge
*edge
)
2305 return is_validity(edge
) || is_conditional_validity(edge
);
2308 /* How many times should we count the constraints in "edge"?
2310 * We count as follows
2311 * validity -> 1 (>= 0)
2312 * validity+proximity -> 2 (>= 0 and upper bound)
2313 * proximity -> 2 (lower and upper bound)
2314 * local(+any) -> 2 (>= 0 and <= 0)
2316 * If an edge is only marked conditional_validity then it counts
2317 * as zero since it is only checked afterwards.
2319 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2320 * Otherwise, we ignore them.
2322 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2324 if (is_proximity(edge
) || force_zero(edge
, use_coincidence
))
2326 if (is_validity(edge
))
2331 /* How many times should the constraints in "edge" be counted
2332 * as a parametric intra-node constraint?
2334 * Only proximity edges that are not forced zero need
2335 * coefficient constraints that include coefficients for parameters.
2336 * If the edge is also a validity edge, then only
2337 * an upper bound is introduced. Otherwise, both lower and upper bounds
2340 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2341 int use_coincidence
)
2343 if (edge
->src
!= edge
->dst
)
2345 if (!is_proximity(edge
))
2347 if (force_zero(edge
, use_coincidence
))
2349 if (is_validity(edge
))
2355 /* Add "f" times the number of equality and inequality constraints of "bset"
2356 * to "n_eq" and "n_ineq" and free "bset".
2358 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2359 int f
, int *n_eq
, int *n_ineq
)
2362 return isl_stat_error
;
2364 *n_eq
+= isl_basic_set_n_equality(bset
);
2365 *n_ineq
+= isl_basic_set_n_inequality(bset
);
2366 isl_basic_set_free(bset
);
2371 /* Count the number of equality and inequality constraints
2372 * that will be added for the given map.
2374 * The edges that require parameter coefficients are counted separately.
2376 * "use_coincidence" is set if we should take into account coincidence edges.
2378 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2379 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2380 int *n_eq
, int *n_ineq
, int use_coincidence
)
2383 isl_basic_set
*coef
;
2384 int f
= edge_multiplicity(edge
, use_coincidence
);
2385 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2392 if (edge
->src
!= edge
->dst
) {
2393 coef
= inter_coefficients(graph
, edge
, map
);
2394 return update_count(coef
, f
, n_eq
, n_ineq
);
2398 copy
= isl_map_copy(map
);
2399 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2400 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2405 copy
= isl_map_copy(map
);
2406 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2407 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2415 return isl_stat_error
;
2418 /* Count the number of equality and inequality constraints
2419 * that will be added to the main lp problem.
2420 * We count as follows
2421 * validity -> 1 (>= 0)
2422 * validity+proximity -> 2 (>= 0 and upper bound)
2423 * proximity -> 2 (lower and upper bound)
2424 * local(+any) -> 2 (>= 0 and <= 0)
2426 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2427 * Otherwise, we ignore them.
2429 static int count_constraints(struct isl_sched_graph
*graph
,
2430 int *n_eq
, int *n_ineq
, int use_coincidence
)
2434 *n_eq
= *n_ineq
= 0;
2435 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2436 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2437 isl_map
*map
= isl_map_copy(edge
->map
);
2439 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2440 use_coincidence
) < 0)
2447 /* Count the number of constraints that will be added by
2448 * add_bound_constant_constraints to bound the values of the constant terms
2449 * and increment *n_eq and *n_ineq accordingly.
2451 * In practice, add_bound_constant_constraints only adds inequalities.
2453 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2454 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2456 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2459 *n_ineq
+= graph
->n
;
2464 /* Add constraints to bound the values of the constant terms in the schedule,
2465 * if requested by the user.
2467 * The maximal value of the constant terms is defined by the option
2468 * "schedule_max_constant_term".
2470 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2471 struct isl_sched_graph
*graph
)
2477 max
= isl_options_get_schedule_max_constant_term(ctx
);
2481 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2483 for (i
= 0; i
< graph
->n
; ++i
) {
2484 struct isl_sched_node
*node
= &graph
->node
[i
];
2487 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2489 return isl_stat_error
;
2490 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2491 pos
= node_cst_coef_offset(node
);
2492 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2493 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2499 /* Count the number of constraints that will be added by
2500 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2503 * In practice, add_bound_coefficient_constraints only adds inequalities.
2505 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2506 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2510 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2511 !isl_options_get_schedule_treat_coalescing(ctx
))
2514 for (i
= 0; i
< graph
->n
; ++i
)
2515 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2520 /* Add constraints to graph->lp that bound the values of
2521 * the parameter schedule coefficients of "node" to "max" and
2522 * the variable schedule coefficients to the corresponding entry
2524 * In either case, a negative value means that no bound needs to be imposed.
2526 * For parameter coefficients, this amounts to adding a constraint
2534 * The variables coefficients are, however, not represented directly.
2535 * Instead, the variable coefficients c_x are written as differences
2536 * c_x = c_x^+ - c_x^-.
2539 * -max_i <= c_x_i <= max_i
2543 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2547 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2548 * c_x_i^+ - c_x_i^- + max_i >= 0
2550 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2551 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2557 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2559 for (j
= 0; j
< node
->nparam
; ++j
) {
2565 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2567 return isl_stat_error
;
2568 dim
= 1 + node_par_coef_offset(node
) + j
;
2569 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2570 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2571 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2574 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2575 ineq
= isl_vec_clr(ineq
);
2577 return isl_stat_error
;
2578 for (i
= 0; i
< node
->nvar
; ++i
) {
2579 int pos
= 1 + node_var_coef_pos(node
, i
);
2581 if (isl_int_is_neg(node
->max
->el
[i
]))
2584 isl_int_set_si(ineq
->el
[pos
], 1);
2585 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2586 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2588 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2591 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2593 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2594 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2597 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2599 isl_seq_clr(ineq
->el
+ pos
, 2);
2606 return isl_stat_error
;
2609 /* Add constraints that bound the values of the variable and parameter
2610 * coefficients of the schedule.
2612 * The maximal value of the coefficients is defined by the option
2613 * 'schedule_max_coefficient' and the entries in node->max.
2614 * These latter entries are only set if either the schedule_max_coefficient
2615 * option or the schedule_treat_coalescing option is set.
2617 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2618 struct isl_sched_graph
*graph
)
2623 max
= isl_options_get_schedule_max_coefficient(ctx
);
2625 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2628 for (i
= 0; i
< graph
->n
; ++i
) {
2629 struct isl_sched_node
*node
= &graph
->node
[i
];
2631 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2632 return isl_stat_error
;
2638 /* Add a constraint to graph->lp that equates the value at position
2639 * "sum_pos" to the sum of the "n" values starting at "first".
2641 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2642 int sum_pos
, int first
, int n
)
2647 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2649 k
= isl_basic_set_alloc_equality(graph
->lp
);
2651 return isl_stat_error
;
2652 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2653 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2654 for (i
= 0; i
< n
; ++i
)
2655 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2660 /* Add a constraint to graph->lp that equates the value at position
2661 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2663 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2669 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2671 k
= isl_basic_set_alloc_equality(graph
->lp
);
2673 return isl_stat_error
;
2674 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2675 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2676 for (i
= 0; i
< graph
->n
; ++i
) {
2677 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2679 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2680 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2686 /* Add a constraint to graph->lp that equates the value at position
2687 * "sum_pos" to the sum of the variable coefficients of all nodes.
2689 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2695 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2697 k
= isl_basic_set_alloc_equality(graph
->lp
);
2699 return isl_stat_error
;
2700 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2701 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2702 for (i
= 0; i
< graph
->n
; ++i
) {
2703 struct isl_sched_node
*node
= &graph
->node
[i
];
2704 int pos
= 1 + node_var_coef_offset(node
);
2706 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2707 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2713 /* Construct an ILP problem for finding schedule coefficients
2714 * that result in non-negative, but small dependence distances
2715 * over all dependences.
2716 * In particular, the dependence distances over proximity edges
2717 * are bounded by m_0 + m_n n and we compute schedule coefficients
2718 * with small values (preferably zero) of m_n and m_0.
2720 * All variables of the ILP are non-negative. The actual coefficients
2721 * may be negative, so each coefficient is represented as the difference
2722 * of two non-negative variables. The negative part always appears
2723 * immediately before the positive part.
2724 * Other than that, the variables have the following order
2726 * - sum of positive and negative parts of m_n coefficients
2728 * - sum of all c_n coefficients
2729 * (unconstrained when computing non-parametric schedules)
2730 * - sum of positive and negative parts of all c_x coefficients
2731 * - positive and negative parts of m_n coefficients
2733 * - positive and negative parts of c_i_x, in opposite order
2734 * - c_i_n (if parametric)
2737 * The constraints are those from the edges plus two or three equalities
2738 * to express the sums.
2740 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2741 * Otherwise, we ignore them.
2743 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2744 int use_coincidence
)
2754 parametric
= ctx
->opt
->schedule_parametric
;
2755 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2757 total
= param_pos
+ 2 * nparam
;
2758 for (i
= 0; i
< graph
->n
; ++i
) {
2759 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2760 if (node_update_vmap(node
) < 0)
2761 return isl_stat_error
;
2762 node
->start
= total
;
2763 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2766 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2767 return isl_stat_error
;
2768 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2769 return isl_stat_error
;
2770 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2771 return isl_stat_error
;
2773 space
= isl_space_set_alloc(ctx
, 0, total
);
2774 isl_basic_set_free(graph
->lp
);
2775 n_eq
+= 2 + parametric
;
2777 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2779 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2780 return isl_stat_error
;
2781 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2782 return isl_stat_error
;
2783 if (add_var_sum_constraint(graph
, 3) < 0)
2784 return isl_stat_error
;
2785 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2786 return isl_stat_error
;
2787 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2788 return isl_stat_error
;
2789 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2790 return isl_stat_error
;
2791 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2792 return isl_stat_error
;
2797 /* Analyze the conflicting constraint found by
2798 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2799 * constraint of one of the edges between distinct nodes, living, moreover
2800 * in distinct SCCs, then record the source and sink SCC as this may
2801 * be a good place to cut between SCCs.
2803 static int check_conflict(int con
, void *user
)
2806 struct isl_sched_graph
*graph
= user
;
2808 if (graph
->src_scc
>= 0)
2811 con
-= graph
->lp
->n_eq
;
2813 if (con
>= graph
->lp
->n_ineq
)
2816 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2817 if (!is_validity(&graph
->edge
[i
]))
2819 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2821 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2823 if (graph
->edge
[i
].start
> con
)
2825 if (graph
->edge
[i
].end
<= con
)
2827 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2828 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2834 /* Check whether the next schedule row of the given node needs to be
2835 * non-trivial. Lower-dimensional domains may have some trivial rows,
2836 * but as soon as the number of remaining required non-trivial rows
2837 * is as large as the number or remaining rows to be computed,
2838 * all remaining rows need to be non-trivial.
2840 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2842 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2845 /* Construct a non-triviality region with triviality directions
2846 * corresponding to the rows of "indep".
2847 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2848 * while the triviality directions are expressed in terms of
2849 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2850 * before c^+_i. Furthermore,
2851 * the pairs of non-negative variables representing the coefficients
2852 * are stored in the opposite order.
2854 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2863 ctx
= isl_mat_get_ctx(indep
);
2864 n
= isl_mat_rows(indep
);
2865 n_var
= isl_mat_cols(indep
);
2866 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2869 for (i
= 0; i
< n
; ++i
) {
2870 for (j
= 0; j
< n_var
; ++j
) {
2871 int nj
= n_var
- 1 - j
;
2872 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2873 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2880 /* Solve the ILP problem constructed in setup_lp.
2881 * For each node such that all the remaining rows of its schedule
2882 * need to be non-trivial, we construct a non-triviality region.
2883 * This region imposes that the next row is independent of previous rows.
2884 * In particular, the non-triviality region enforces that at least
2885 * one of the linear combinations in the rows of node->indep is non-zero.
2887 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2893 for (i
= 0; i
< graph
->n
; ++i
) {
2894 struct isl_sched_node
*node
= &graph
->node
[i
];
2897 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2898 if (needs_row(graph
, node
))
2899 trivial
= construct_trivial(node
->indep
);
2901 trivial
= isl_mat_zero(ctx
, 0, 0);
2902 graph
->region
[i
].trivial
= trivial
;
2904 lp
= isl_basic_set_copy(graph
->lp
);
2905 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2906 graph
->region
, &check_conflict
, graph
);
2907 for (i
= 0; i
< graph
->n
; ++i
)
2908 isl_mat_free(graph
->region
[i
].trivial
);
2912 /* Extract the coefficients for the variables of "node" from "sol".
2914 * Each schedule coefficient c_i_x is represented as the difference
2915 * between two non-negative variables c_i_x^+ - c_i_x^-.
2916 * The c_i_x^- appear before their c_i_x^+ counterpart.
2917 * Furthermore, the order of these pairs is the opposite of that
2918 * of the corresponding coefficients.
2920 * Return c_i_x = c_i_x^+ - c_i_x^-
2922 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2923 __isl_keep isl_vec
*sol
)
2931 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2935 pos
= 1 + node_var_coef_offset(node
);
2936 for (i
= 0; i
< node
->nvar
; ++i
)
2937 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2938 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2943 /* Update the schedules of all nodes based on the given solution
2944 * of the LP problem.
2945 * The new row is added to the current band.
2946 * All possibly negative coefficients are encoded as a difference
2947 * of two non-negative variables, so we need to perform the subtraction
2950 * If coincident is set, then the caller guarantees that the new
2951 * row satisfies the coincidence constraints.
2953 static int update_schedule(struct isl_sched_graph
*graph
,
2954 __isl_take isl_vec
*sol
, int coincident
)
2957 isl_vec
*csol
= NULL
;
2962 isl_die(sol
->ctx
, isl_error_internal
,
2963 "no solution found", goto error
);
2964 if (graph
->n_total_row
>= graph
->max_row
)
2965 isl_die(sol
->ctx
, isl_error_internal
,
2966 "too many schedule rows", goto error
);
2968 for (i
= 0; i
< graph
->n
; ++i
) {
2969 struct isl_sched_node
*node
= &graph
->node
[i
];
2971 int row
= isl_mat_rows(node
->sched
);
2974 csol
= extract_var_coef(node
, sol
);
2978 isl_map_free(node
->sched_map
);
2979 node
->sched_map
= NULL
;
2980 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2983 pos
= node_cst_coef_offset(node
);
2984 node
->sched
= isl_mat_set_element(node
->sched
,
2985 row
, 0, sol
->el
[1 + pos
]);
2986 pos
= node_par_coef_offset(node
);
2987 for (j
= 0; j
< node
->nparam
; ++j
)
2988 node
->sched
= isl_mat_set_element(node
->sched
,
2989 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
2990 for (j
= 0; j
< node
->nvar
; ++j
)
2991 node
->sched
= isl_mat_set_element(node
->sched
,
2992 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2993 node
->coincident
[graph
->n_total_row
] = coincident
;
2999 graph
->n_total_row
++;
3008 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3009 * and return this isl_aff.
3011 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
3012 struct isl_sched_node
*node
, int row
)
3020 aff
= isl_aff_zero_on_domain(ls
);
3021 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3023 aff
= isl_aff_set_constant(aff
, v
);
3024 for (j
= 0; j
< node
->nparam
; ++j
) {
3025 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3027 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3029 for (j
= 0; j
< node
->nvar
; ++j
) {
3030 if (isl_mat_get_element(node
->sched
, row
,
3031 1 + node
->nparam
+ j
, &v
) < 0)
3033 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3045 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3046 * and return this multi_aff.
3048 * The result is defined over the uncompressed node domain.
3050 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
3051 struct isl_sched_node
*node
, int first
, int n
)
3055 isl_local_space
*ls
;
3062 nrow
= isl_mat_rows(node
->sched
);
3063 if (node
->compressed
)
3064 space
= isl_multi_aff_get_domain_space(node
->decompress
);
3066 space
= isl_space_copy(node
->space
);
3067 ls
= isl_local_space_from_space(isl_space_copy(space
));
3068 space
= isl_space_from_domain(space
);
3069 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3070 ma
= isl_multi_aff_zero(space
);
3072 for (i
= first
; i
< first
+ n
; ++i
) {
3073 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3074 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3077 isl_local_space_free(ls
);
3079 if (node
->compressed
)
3080 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3081 isl_multi_aff_copy(node
->compress
));
3086 /* Convert node->sched into a multi_aff and return this multi_aff.
3088 * The result is defined over the uncompressed node domain.
3090 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3091 struct isl_sched_node
*node
)
3095 nrow
= isl_mat_rows(node
->sched
);
3096 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3099 /* Convert node->sched into a map and return this map.
3101 * The result is cached in node->sched_map, which needs to be released
3102 * whenever node->sched is updated.
3103 * It is defined over the uncompressed node domain.
3105 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3107 if (!node
->sched_map
) {
3110 ma
= node_extract_schedule_multi_aff(node
);
3111 node
->sched_map
= isl_map_from_multi_aff(ma
);
3114 return isl_map_copy(node
->sched_map
);
3117 /* Construct a map that can be used to update a dependence relation
3118 * based on the current schedule.
3119 * That is, construct a map expressing that source and sink
3120 * are executed within the same iteration of the current schedule.
3121 * This map can then be intersected with the dependence relation.
3122 * This is not the most efficient way, but this shouldn't be a critical
3125 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3126 struct isl_sched_node
*dst
)
3128 isl_map
*src_sched
, *dst_sched
;
3130 src_sched
= node_extract_schedule(src
);
3131 dst_sched
= node_extract_schedule(dst
);
3132 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3135 /* Intersect the domains of the nested relations in domain and range
3136 * of "umap" with "map".
3138 static __isl_give isl_union_map
*intersect_domains(
3139 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3141 isl_union_set
*uset
;
3143 umap
= isl_union_map_zip(umap
);
3144 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3145 umap
= isl_union_map_intersect_domain(umap
, uset
);
3146 umap
= isl_union_map_zip(umap
);
3150 /* Update the dependence relation of the given edge based
3151 * on the current schedule.
3152 * If the dependence is carried completely by the current schedule, then
3153 * it is removed from the edge_tables. It is kept in the list of edges
3154 * as otherwise all edge_tables would have to be recomputed.
3156 * If the edge is of a type that can appear multiple times
3157 * between the same pair of nodes, then it is added to
3158 * the edge table (again). This prevents the situation
3159 * where none of these edges is referenced from the edge table
3160 * because the one that was referenced turned out to be empty and
3161 * was therefore removed from the table.
3163 static isl_stat
update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3164 struct isl_sched_edge
*edge
)
3169 id
= specializer(edge
->src
, edge
->dst
);
3170 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3174 if (edge
->tagged_condition
) {
3175 edge
->tagged_condition
=
3176 intersect_domains(edge
->tagged_condition
, id
);
3177 if (!edge
->tagged_condition
)
3180 if (edge
->tagged_validity
) {
3181 edge
->tagged_validity
=
3182 intersect_domains(edge
->tagged_validity
, id
);
3183 if (!edge
->tagged_validity
)
3187 empty
= isl_map_plain_is_empty(edge
->map
);
3191 graph_remove_edge(graph
, edge
);
3192 } else if (is_multi_edge_type(edge
)) {
3193 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3201 return isl_stat_error
;
3204 /* Does the domain of "umap" intersect "uset"?
3206 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3207 __isl_keep isl_union_set
*uset
)
3211 umap
= isl_union_map_copy(umap
);
3212 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3213 empty
= isl_union_map_is_empty(umap
);
3214 isl_union_map_free(umap
);
3216 return empty
< 0 ? -1 : !empty
;
3219 /* Does the range of "umap" intersect "uset"?
3221 static int range_intersects(__isl_keep isl_union_map
*umap
,
3222 __isl_keep isl_union_set
*uset
)
3226 umap
= isl_union_map_copy(umap
);
3227 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3228 empty
= isl_union_map_is_empty(umap
);
3229 isl_union_map_free(umap
);
3231 return empty
< 0 ? -1 : !empty
;
3234 /* Are the condition dependences of "edge" local with respect to
3235 * the current schedule?
3237 * That is, are domain and range of the condition dependences mapped
3238 * to the same point?
3240 * In other words, is the condition false?
3242 static int is_condition_false(struct isl_sched_edge
*edge
)
3244 isl_union_map
*umap
;
3245 isl_map
*map
, *sched
, *test
;
3248 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3249 if (empty
< 0 || empty
)
3252 umap
= isl_union_map_copy(edge
->tagged_condition
);
3253 umap
= isl_union_map_zip(umap
);
3254 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3255 map
= isl_map_from_union_map(umap
);
3257 sched
= node_extract_schedule(edge
->src
);
3258 map
= isl_map_apply_domain(map
, sched
);
3259 sched
= node_extract_schedule(edge
->dst
);
3260 map
= isl_map_apply_range(map
, sched
);
3262 test
= isl_map_identity(isl_map_get_space(map
));
3263 local
= isl_map_is_subset(map
, test
);
3270 /* For each conditional validity constraint that is adjacent
3271 * to a condition with domain in condition_source or range in condition_sink,
3272 * turn it into an unconditional validity constraint.
3274 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3275 __isl_take isl_union_set
*condition_source
,
3276 __isl_take isl_union_set
*condition_sink
)
3280 condition_source
= isl_union_set_coalesce(condition_source
);
3281 condition_sink
= isl_union_set_coalesce(condition_sink
);
3283 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3285 isl_union_map
*validity
;
3287 if (!is_conditional_validity(&graph
->edge
[i
]))
3289 if (is_validity(&graph
->edge
[i
]))
3292 validity
= graph
->edge
[i
].tagged_validity
;
3293 adjacent
= domain_intersects(validity
, condition_sink
);
3294 if (adjacent
>= 0 && !adjacent
)
3295 adjacent
= range_intersects(validity
, condition_source
);
3301 set_validity(&graph
->edge
[i
]);
3304 isl_union_set_free(condition_source
);
3305 isl_union_set_free(condition_sink
);
3308 isl_union_set_free(condition_source
);
3309 isl_union_set_free(condition_sink
);
3313 /* Update the dependence relations of all edges based on the current schedule
3314 * and enforce conditional validity constraints that are adjacent
3315 * to satisfied condition constraints.
3317 * First check if any of the condition constraints are satisfied
3318 * (i.e., not local to the outer schedule) and keep track of
3319 * their domain and range.
3320 * Then update all dependence relations (which removes the non-local
3322 * Finally, if any condition constraints turned out to be satisfied,
3323 * then turn all adjacent conditional validity constraints into
3324 * unconditional validity constraints.
3326 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3330 isl_union_set
*source
, *sink
;
3332 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3333 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3334 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3336 isl_union_set
*uset
;
3337 isl_union_map
*umap
;
3339 if (!is_condition(&graph
->edge
[i
]))
3341 if (is_local(&graph
->edge
[i
]))
3343 local
= is_condition_false(&graph
->edge
[i
]);
3351 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3352 uset
= isl_union_map_domain(umap
);
3353 source
= isl_union_set_union(source
, uset
);
3355 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3356 uset
= isl_union_map_range(umap
);
3357 sink
= isl_union_set_union(sink
, uset
);
3360 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3361 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3366 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3368 isl_union_set_free(source
);
3369 isl_union_set_free(sink
);
3372 isl_union_set_free(source
);
3373 isl_union_set_free(sink
);
3377 static void next_band(struct isl_sched_graph
*graph
)
3379 graph
->band_start
= graph
->n_total_row
;
3382 /* Return the union of the universe domains of the nodes in "graph"
3383 * that satisfy "pred".
3385 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3386 struct isl_sched_graph
*graph
,
3387 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3393 for (i
= 0; i
< graph
->n
; ++i
)
3394 if (pred(&graph
->node
[i
], data
))
3398 isl_die(ctx
, isl_error_internal
,
3399 "empty component", return NULL
);
3401 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3402 dom
= isl_union_set_from_set(set
);
3404 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3405 if (!pred(&graph
->node
[i
], data
))
3407 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3408 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3414 /* Return a list of unions of universe domains, where each element
3415 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3417 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3418 struct isl_sched_graph
*graph
)
3421 isl_union_set_list
*filters
;
3423 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3424 for (i
= 0; i
< graph
->scc
; ++i
) {
3427 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3428 filters
= isl_union_set_list_add(filters
, dom
);
3434 /* Return a list of two unions of universe domains, one for the SCCs up
3435 * to and including graph->src_scc and another for the other SCCs.
3437 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3438 struct isl_sched_graph
*graph
)
3441 isl_union_set_list
*filters
;
3443 filters
= isl_union_set_list_alloc(ctx
, 2);
3444 dom
= isl_sched_graph_domain(ctx
, graph
,
3445 &node_scc_at_most
, graph
->src_scc
);
3446 filters
= isl_union_set_list_add(filters
, dom
);
3447 dom
= isl_sched_graph_domain(ctx
, graph
,
3448 &node_scc_at_least
, graph
->src_scc
+ 1);
3449 filters
= isl_union_set_list_add(filters
, dom
);
3454 /* Copy nodes that satisfy node_pred from the src dependence graph
3455 * to the dst dependence graph.
3457 static isl_stat
copy_nodes(struct isl_sched_graph
*dst
,
3458 struct isl_sched_graph
*src
,
3459 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3464 for (i
= 0; i
< src
->n
; ++i
) {
3467 if (!node_pred(&src
->node
[i
], data
))
3471 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3472 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3473 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3474 dst
->node
[j
].compress
=
3475 isl_multi_aff_copy(src
->node
[i
].compress
);
3476 dst
->node
[j
].decompress
=
3477 isl_multi_aff_copy(src
->node
[i
].decompress
);
3478 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3479 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3480 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3481 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3482 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3483 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3484 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3485 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3488 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3489 return isl_stat_error
;
3490 if (dst
->node
[j
].compressed
&&
3491 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3492 !dst
->node
[j
].decompress
))
3493 return isl_stat_error
;
3499 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3500 * to the dst dependence graph.
3501 * If the source or destination node of the edge is not in the destination
3502 * graph, then it must be a backward proximity edge and it should simply
3505 static isl_stat
copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3506 struct isl_sched_graph
*src
,
3507 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3512 for (i
= 0; i
< src
->n_edge
; ++i
) {
3513 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3515 isl_union_map
*tagged_condition
;
3516 isl_union_map
*tagged_validity
;
3517 struct isl_sched_node
*dst_src
, *dst_dst
;
3519 if (!edge_pred(edge
, data
))
3522 if (isl_map_plain_is_empty(edge
->map
))
3525 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3526 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3527 if (!dst_src
|| !dst_dst
)
3528 return isl_stat_error
;
3529 if (!is_node(dst
, dst_src
) || !is_node(dst
, dst_dst
)) {
3530 if (is_validity(edge
) || is_conditional_validity(edge
))
3531 isl_die(ctx
, isl_error_internal
,
3532 "backward (conditional) validity edge",
3533 return isl_stat_error
);
3537 map
= isl_map_copy(edge
->map
);
3538 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3539 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3541 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3542 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3543 dst
->edge
[dst
->n_edge
].map
= map
;
3544 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3545 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3546 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3549 if (edge
->tagged_condition
&& !tagged_condition
)
3550 return isl_stat_error
;
3551 if (edge
->tagged_validity
&& !tagged_validity
)
3552 return isl_stat_error
;
3554 if (graph_edge_tables_add(ctx
, dst
,
3555 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3556 return isl_stat_error
;
3562 /* Compute the maximal number of variables over all nodes.
3563 * This is the maximal number of linearly independent schedule
3564 * rows that we need to compute.
3565 * Just in case we end up in a part of the dependence graph
3566 * with only lower-dimensional domains, we make sure we will
3567 * compute the required amount of extra linearly independent rows.
3569 static int compute_maxvar(struct isl_sched_graph
*graph
)
3574 for (i
= 0; i
< graph
->n
; ++i
) {
3575 struct isl_sched_node
*node
= &graph
->node
[i
];
3578 if (node_update_vmap(node
) < 0)
3580 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3581 if (nvar
> graph
->maxvar
)
3582 graph
->maxvar
= nvar
;
3588 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3589 * "node_pred" and the edges satisfying "edge_pred" and store
3590 * the result in "sub".
3592 static isl_stat
extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3593 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3594 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3595 int data
, struct isl_sched_graph
*sub
)
3597 int i
, n
= 0, n_edge
= 0;
3600 for (i
= 0; i
< graph
->n
; ++i
)
3601 if (node_pred(&graph
->node
[i
], data
))
3603 for (i
= 0; i
< graph
->n_edge
; ++i
)
3604 if (edge_pred(&graph
->edge
[i
], data
))
3606 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3607 return isl_stat_error
;
3608 sub
->root
= graph
->root
;
3609 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3610 return isl_stat_error
;
3611 if (graph_init_table(ctx
, sub
) < 0)
3612 return isl_stat_error
;
3613 for (t
= 0; t
<= isl_edge_last
; ++t
)
3614 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3615 if (graph_init_edge_tables(ctx
, sub
) < 0)
3616 return isl_stat_error
;
3617 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3618 return isl_stat_error
;
3619 sub
->n_row
= graph
->n_row
;
3620 sub
->max_row
= graph
->max_row
;
3621 sub
->n_total_row
= graph
->n_total_row
;
3622 sub
->band_start
= graph
->band_start
;
3627 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3628 struct isl_sched_graph
*graph
);
3629 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3630 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3632 /* Compute a schedule for a subgraph of "graph". In particular, for
3633 * the graph composed of nodes that satisfy node_pred and edges that
3634 * that satisfy edge_pred.
3635 * If the subgraph is known to consist of a single component, then wcc should
3636 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3637 * Otherwise, we call compute_schedule, which will check whether the subgraph
3640 * The schedule is inserted at "node" and the updated schedule node
3643 static __isl_give isl_schedule_node
*compute_sub_schedule(
3644 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3645 struct isl_sched_graph
*graph
,
3646 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3647 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3650 struct isl_sched_graph split
= { 0 };
3652 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3657 node
= compute_schedule_wcc(node
, &split
);
3659 node
= compute_schedule(node
, &split
);
3661 graph_free(ctx
, &split
);
3664 graph_free(ctx
, &split
);
3665 return isl_schedule_node_free(node
);
3668 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3670 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3673 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3675 return edge
->dst
->scc
<= scc
;
3678 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3680 return edge
->src
->scc
>= scc
;
3683 /* Reset the current band by dropping all its schedule rows.
3685 static isl_stat
reset_band(struct isl_sched_graph
*graph
)
3690 drop
= graph
->n_total_row
- graph
->band_start
;
3691 graph
->n_total_row
-= drop
;
3692 graph
->n_row
-= drop
;
3694 for (i
= 0; i
< graph
->n
; ++i
) {
3695 struct isl_sched_node
*node
= &graph
->node
[i
];
3697 isl_map_free(node
->sched_map
);
3698 node
->sched_map
= NULL
;
3700 node
->sched
= isl_mat_drop_rows(node
->sched
,
3701 graph
->band_start
, drop
);
3704 return isl_stat_error
;
3710 /* Split the current graph into two parts and compute a schedule for each
3711 * part individually. In particular, one part consists of all SCCs up
3712 * to and including graph->src_scc, while the other part contains the other
3713 * SCCs. The split is enforced by a sequence node inserted at position "node"
3714 * in the schedule tree. Return the updated schedule node.
3715 * If either of these two parts consists of a sequence, then it is spliced
3716 * into the sequence containing the two parts.
3718 * The current band is reset. It would be possible to reuse
3719 * the previously computed rows as the first rows in the next
3720 * band, but recomputing them may result in better rows as we are looking
3721 * at a smaller part of the dependence graph.
3723 static __isl_give isl_schedule_node
*compute_split_schedule(
3724 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3728 isl_union_set_list
*filters
;
3733 if (reset_band(graph
) < 0)
3734 return isl_schedule_node_free(node
);
3738 ctx
= isl_schedule_node_get_ctx(node
);
3739 filters
= extract_split(ctx
, graph
);
3740 node
= isl_schedule_node_insert_sequence(node
, filters
);
3741 node
= isl_schedule_node_child(node
, 1);
3742 node
= isl_schedule_node_child(node
, 0);
3744 node
= compute_sub_schedule(node
, ctx
, graph
,
3745 &node_scc_at_least
, &edge_src_scc_at_least
,
3746 graph
->src_scc
+ 1, 0);
3747 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3748 node
= isl_schedule_node_parent(node
);
3749 node
= isl_schedule_node_parent(node
);
3751 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3752 node
= isl_schedule_node_child(node
, 0);
3753 node
= isl_schedule_node_child(node
, 0);
3754 node
= compute_sub_schedule(node
, ctx
, graph
,
3755 &node_scc_at_most
, &edge_dst_scc_at_most
,
3757 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3758 node
= isl_schedule_node_parent(node
);
3759 node
= isl_schedule_node_parent(node
);
3761 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3766 /* Insert a band node at position "node" in the schedule tree corresponding
3767 * to the current band in "graph". Mark the band node permutable
3768 * if "permutable" is set.
3769 * The partial schedules and the coincidence property are extracted
3770 * from the graph nodes.
3771 * Return the updated schedule node.
3773 static __isl_give isl_schedule_node
*insert_current_band(
3774 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3780 isl_multi_pw_aff
*mpa
;
3781 isl_multi_union_pw_aff
*mupa
;
3787 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3788 "graph should have at least one node",
3789 return isl_schedule_node_free(node
));
3791 start
= graph
->band_start
;
3792 end
= graph
->n_total_row
;
3795 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3796 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3797 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3799 for (i
= 1; i
< graph
->n
; ++i
) {
3800 isl_multi_union_pw_aff
*mupa_i
;
3802 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3804 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3805 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3806 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3808 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3810 for (i
= 0; i
< n
; ++i
)
3811 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3812 graph
->node
[0].coincident
[start
+ i
]);
3813 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3818 /* Update the dependence relations based on the current schedule,
3819 * add the current band to "node" and then continue with the computation
3821 * Return the updated schedule node.
3823 static __isl_give isl_schedule_node
*compute_next_band(
3824 __isl_take isl_schedule_node
*node
,
3825 struct isl_sched_graph
*graph
, int permutable
)
3832 ctx
= isl_schedule_node_get_ctx(node
);
3833 if (update_edges(ctx
, graph
) < 0)
3834 return isl_schedule_node_free(node
);
3835 node
= insert_current_band(node
, graph
, permutable
);
3838 node
= isl_schedule_node_child(node
, 0);
3839 node
= compute_schedule(node
, graph
);
3840 node
= isl_schedule_node_parent(node
);
3845 /* Add the constraints "coef" derived from an edge from "node" to itself
3846 * to graph->lp in order to respect the dependences and to try and carry them.
3847 * "pos" is the sequence number of the edge that needs to be carried.
3848 * "coef" represents general constraints on coefficients (c_0, c_x)
3849 * of valid constraints for (y - x) with x and y instances of the node.
3851 * The constraints added to graph->lp need to enforce
3853 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3854 * = c_j_x (y - x) >= e_i
3856 * for each (x,y) in the dependence relation of the edge.
3857 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3858 * taking into account that each coefficient in c_j_x is represented
3859 * as a pair of non-negative coefficients.
3861 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3862 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3866 isl_dim_map
*dim_map
;
3869 return isl_stat_error
;
3871 ctx
= isl_basic_set_get_ctx(coef
);
3872 offset
= coef_var_offset(coef
);
3873 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3874 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3875 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3880 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3881 * to graph->lp in order to respect the dependences and to try and carry them.
3882 * "pos" is the sequence number of the edge that needs to be carried or
3883 * -1 if no attempt should be made to carry the dependences.
3884 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3885 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3887 * The constraints added to graph->lp need to enforce
3889 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3891 * for each (x,y) in the dependence relation of the edge or
3893 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3897 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3899 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3900 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3901 * taking into account that each coefficient in c_j_x and c_k_x is represented
3902 * as a pair of non-negative coefficients.
3904 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3905 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3906 __isl_take isl_basic_set
*coef
, int pos
)
3910 isl_dim_map
*dim_map
;
3913 return isl_stat_error
;
3915 ctx
= isl_basic_set_get_ctx(coef
);
3916 offset
= coef_var_offset(coef
);
3917 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3919 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3920 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3925 /* Data structure for keeping track of the data needed
3926 * to exploit non-trivial lineality spaces.
3928 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3929 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3930 * "equivalent" connects instances to other instances on the same line(s).
3931 * "mask" contains the domain spaces of "equivalent".
3932 * Any instance set not in "mask" does not have a non-trivial lineality space.
3934 struct isl_exploit_lineality_data
{
3935 isl_bool any_non_trivial
;
3936 isl_union_map
*equivalent
;
3937 isl_union_set
*mask
;
3940 /* Data structure collecting information used during the construction
3941 * of an LP for carrying dependences.
3943 * "intra" is a sequence of coefficient constraints for intra-node edges.
3944 * "inter" is a sequence of coefficient constraints for inter-node edges.
3945 * "lineality" contains data used to exploit non-trivial lineality spaces.
3948 isl_basic_set_list
*intra
;
3949 isl_basic_set_list
*inter
;
3950 struct isl_exploit_lineality_data lineality
;
3953 /* Free all the data stored in "carry".
3955 static void isl_carry_clear(struct isl_carry
*carry
)
3957 isl_basic_set_list_free(carry
->intra
);
3958 isl_basic_set_list_free(carry
->inter
);
3959 isl_union_map_free(carry
->lineality
.equivalent
);
3960 isl_union_set_free(carry
->lineality
.mask
);
3963 /* Return a pointer to the node in "graph" that lives in "space".
3964 * If the requested node has been compressed, then "space"
3965 * corresponds to the compressed space.
3966 * The graph is assumed to have such a node.
3967 * Return NULL in case of error.
3969 * First try and see if "space" is the space of an uncompressed node.
3970 * If so, return that node.
3971 * Otherwise, "space" was constructed by construct_compressed_id and
3972 * contains a user pointer pointing to the node in the tuple id.
3973 * However, this node belongs to the original dependence graph.
3974 * If "graph" is a subgraph of this original dependence graph,
3975 * then the node with the same space still needs to be looked up
3976 * in the current graph.
3978 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
3979 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
3982 struct isl_sched_node
*node
;
3987 node
= graph_find_node(ctx
, graph
, space
);
3990 if (is_node(graph
, node
))
3993 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
3994 node
= isl_id_get_user(id
);
4000 if (!is_node(graph
->root
, node
))
4001 isl_die(ctx
, isl_error_internal
,
4002 "space points to invalid node", return NULL
);
4003 if (graph
!= graph
->root
)
4004 node
= graph_find_node(ctx
, graph
, node
->space
);
4005 if (!is_node(graph
, node
))
4006 isl_die(ctx
, isl_error_internal
,
4007 "unable to find node", return NULL
);
4012 /* Internal data structure for add_all_constraints.
4014 * "graph" is the schedule constraint graph for which an LP problem
4015 * is being constructed.
4016 * "carry_inter" indicates whether inter-node edges should be carried.
4017 * "pos" is the position of the next edge that needs to be carried.
4019 struct isl_add_all_constraints_data
{
4021 struct isl_sched_graph
*graph
;
4026 /* Add the constraints "coef" derived from an edge from a node to itself
4027 * to data->graph->lp in order to respect the dependences and
4028 * to try and carry them.
4030 * The space of "coef" is of the form
4032 * coefficients[[c_cst] -> S[c_x]]
4034 * with S[c_x] the (compressed) space of the node.
4035 * Extract the node from the space and call add_intra_constraints.
4037 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4039 struct isl_add_all_constraints_data
*data
= user
;
4041 struct isl_sched_node
*node
;
4043 space
= isl_basic_set_get_space(coef
);
4044 space
= isl_space_range(isl_space_unwrap(space
));
4045 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4046 isl_space_free(space
);
4047 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4050 /* Add the constraints "coef" derived from an edge from a node j
4051 * to a node k to data->graph->lp in order to respect the dependences and
4052 * to try and carry them (provided data->carry_inter is set).
4054 * The space of "coef" is of the form
4056 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4058 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4059 * Extract the nodes from the space and call add_inter_constraints.
4061 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4063 struct isl_add_all_constraints_data
*data
= user
;
4064 isl_space
*space
, *dom
;
4065 struct isl_sched_node
*src
, *dst
;
4068 space
= isl_basic_set_get_space(coef
);
4069 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4070 dom
= isl_space_domain(isl_space_copy(space
));
4071 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4072 isl_space_free(dom
);
4073 space
= isl_space_range(space
);
4074 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4075 isl_space_free(space
);
4077 pos
= data
->carry_inter
? data
->pos
++ : -1;
4078 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4081 /* Add constraints to graph->lp that force all (conditional) validity
4082 * dependences to be respected and attempt to carry them.
4083 * "intra" is the sequence of coefficient constraints for intra-node edges.
4084 * "inter" is the sequence of coefficient constraints for inter-node edges.
4085 * "carry_inter" indicates whether inter-node edges should be carried or
4088 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4089 __isl_keep isl_basic_set_list
*intra
,
4090 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4092 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4095 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4096 return isl_stat_error
;
4097 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4098 return isl_stat_error
;
4102 /* Internal data structure for count_all_constraints
4103 * for keeping track of the number of equality and inequality constraints.
4105 struct isl_sched_count
{
4110 /* Add the number of equality and inequality constraints of "bset"
4111 * to data->n_eq and data->n_ineq.
4113 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4115 struct isl_sched_count
*data
= user
;
4117 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4120 /* Count the number of equality and inequality constraints
4121 * that will be added to the carry_lp problem.
4122 * We count each edge exactly once.
4123 * "intra" is the sequence of coefficient constraints for intra-node edges.
4124 * "inter" is the sequence of coefficient constraints for inter-node edges.
4126 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4127 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4129 struct isl_sched_count data
;
4131 data
.n_eq
= data
.n_ineq
= 0;
4132 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4133 return isl_stat_error
;
4134 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4135 return isl_stat_error
;
4138 *n_ineq
= data
.n_ineq
;
4143 /* Construct an LP problem for finding schedule coefficients
4144 * such that the schedule carries as many validity dependences as possible.
4145 * In particular, for each dependence i, we bound the dependence distance
4146 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4147 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4148 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4149 * "intra" is the sequence of coefficient constraints for intra-node edges.
4150 * "inter" is the sequence of coefficient constraints for inter-node edges.
4151 * "n_edge" is the total number of edges.
4152 * "carry_inter" indicates whether inter-node edges should be carried or
4153 * only respected. That is, if "carry_inter" is not set, then
4154 * no e_i variables are introduced for the inter-node edges.
4156 * All variables of the LP are non-negative. The actual coefficients
4157 * may be negative, so each coefficient is represented as the difference
4158 * of two non-negative variables. The negative part always appears
4159 * immediately before the positive part.
4160 * Other than that, the variables have the following order
4162 * - sum of (1 - e_i) over all edges
4163 * - sum of all c_n coefficients
4164 * (unconstrained when computing non-parametric schedules)
4165 * - sum of positive and negative parts of all c_x coefficients
4169 * - positive and negative parts of c_i_x, in opposite order
4170 * - c_i_n (if parametric)
4173 * The constraints are those from the (validity) edges plus three equalities
4174 * to express the sums and n_edge inequalities to express e_i <= 1.
4176 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4177 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4178 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4187 for (i
= 0; i
< graph
->n
; ++i
) {
4188 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4189 node
->start
= total
;
4190 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4193 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4194 return isl_stat_error
;
4196 dim
= isl_space_set_alloc(ctx
, 0, total
);
4197 isl_basic_set_free(graph
->lp
);
4200 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
4201 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4203 k
= isl_basic_set_alloc_equality(graph
->lp
);
4205 return isl_stat_error
;
4206 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4207 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4208 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4209 for (i
= 0; i
< n_edge
; ++i
)
4210 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4212 if (add_param_sum_constraint(graph
, 1) < 0)
4213 return isl_stat_error
;
4214 if (add_var_sum_constraint(graph
, 2) < 0)
4215 return isl_stat_error
;
4217 for (i
= 0; i
< n_edge
; ++i
) {
4218 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4220 return isl_stat_error
;
4221 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4222 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4223 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4226 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4227 return isl_stat_error
;
4232 static __isl_give isl_schedule_node
*compute_component_schedule(
4233 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4236 /* If the schedule_split_scaled option is set and if the linear
4237 * parts of the scheduling rows for all nodes in the graphs have
4238 * a non-trivial common divisor, then remove this
4239 * common divisor from the linear part.
4240 * Otherwise, insert a band node directly and continue with
4241 * the construction of the schedule.
4243 * If a non-trivial common divisor is found, then
4244 * the linear part is reduced and the remainder is ignored.
4245 * The pieces of the graph that are assigned different remainders
4246 * form (groups of) strongly connected components within
4247 * the scaled down band. If needed, they can therefore
4248 * be ordered along this remainder in a sequence node.
4249 * However, this ordering is not enforced here in order to allow
4250 * the scheduler to combine some of the strongly connected components.
4252 static __isl_give isl_schedule_node
*split_scaled(
4253 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4263 ctx
= isl_schedule_node_get_ctx(node
);
4264 if (!ctx
->opt
->schedule_split_scaled
)
4265 return compute_next_band(node
, graph
, 0);
4267 return compute_next_band(node
, graph
, 0);
4270 isl_int_init(gcd_i
);
4272 isl_int_set_si(gcd
, 0);
4274 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
4276 for (i
= 0; i
< graph
->n
; ++i
) {
4277 struct isl_sched_node
*node
= &graph
->node
[i
];
4278 int cols
= isl_mat_cols(node
->sched
);
4280 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4281 isl_int_gcd(gcd
, gcd
, gcd_i
);
4284 isl_int_clear(gcd_i
);
4286 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4288 return compute_next_band(node
, graph
, 0);
4291 for (i
= 0; i
< graph
->n
; ++i
) {
4292 struct isl_sched_node
*node
= &graph
->node
[i
];
4294 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4295 node
->sched
->row
[row
][0], gcd
);
4296 isl_int_mul(node
->sched
->row
[row
][0],
4297 node
->sched
->row
[row
][0], gcd
);
4298 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4305 return compute_next_band(node
, graph
, 0);
4308 return isl_schedule_node_free(node
);
4311 /* Is the schedule row "sol" trivial on node "node"?
4312 * That is, is the solution zero on the dimensions linearly independent of
4313 * the previously found solutions?
4314 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4316 * Each coefficient is represented as the difference between
4317 * two non-negative values in "sol".
4318 * We construct the schedule row s and check if it is linearly
4319 * independent of previously computed schedule rows
4320 * by computing T s, with T the linear combinations that are zero
4321 * on linearly dependent schedule rows.
4322 * If the result consists of all zeros, then the solution is trivial.
4324 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4331 if (node
->nvar
== node
->rank
)
4334 node_sol
= extract_var_coef(node
, sol
);
4335 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4339 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4340 node
->nvar
- node
->rank
) == -1;
4342 isl_vec_free(node_sol
);
4347 /* Is the schedule row "sol" trivial on any node where it should
4349 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4351 static int is_any_trivial(struct isl_sched_graph
*graph
,
4352 __isl_keep isl_vec
*sol
)
4356 for (i
= 0; i
< graph
->n
; ++i
) {
4357 struct isl_sched_node
*node
= &graph
->node
[i
];
4360 if (!needs_row(graph
, node
))
4362 trivial
= is_trivial(node
, sol
);
4363 if (trivial
< 0 || trivial
)
4370 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4371 * If so, return the position of the coalesced dimension.
4372 * Otherwise, return node->nvar or -1 on error.
4374 * In particular, look for pairs of coefficients c_i and c_j such that
4375 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4376 * If any such pair is found, then return i.
4377 * If size_i is infinity, then no check on c_i needs to be performed.
4379 static int find_node_coalescing(struct isl_sched_node
*node
,
4380 __isl_keep isl_vec
*sol
)
4386 if (node
->nvar
<= 1)
4389 csol
= extract_var_coef(node
, sol
);
4393 for (i
= 0; i
< node
->nvar
; ++i
) {
4396 if (isl_int_is_zero(csol
->el
[i
]))
4398 v
= isl_multi_val_get_val(node
->sizes
, i
);
4401 if (!isl_val_is_int(v
)) {
4405 v
= isl_val_div_ui(v
, 2);
4406 v
= isl_val_ceil(v
);
4409 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4412 for (j
= 0; j
< node
->nvar
; ++j
) {
4415 if (isl_int_abs_gt(csol
->el
[j
], max
))
4431 /* Force the schedule coefficient at position "pos" of "node" to be zero
4433 * The coefficient is encoded as the difference between two non-negative
4434 * variables. Force these two variables to have the same value.
4436 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4437 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4443 ctx
= isl_space_get_ctx(node
->space
);
4444 dim
= isl_tab_lexmin_dim(tl
);
4446 return isl_tab_lexmin_free(tl
);
4447 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4448 eq
= isl_vec_clr(eq
);
4450 return isl_tab_lexmin_free(tl
);
4452 pos
= 1 + node_var_coef_pos(node
, pos
);
4453 isl_int_set_si(eq
->el
[pos
], 1);
4454 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4455 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4461 /* Return the lexicographically smallest rational point in the basic set
4462 * from which "tl" was constructed, double checking that this input set
4465 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4469 sol
= isl_tab_lexmin_get_solution(tl
);
4473 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4474 "error in schedule construction",
4475 return isl_vec_free(sol
));
4479 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4480 * carry any of the "n_edge" groups of dependences?
4481 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4482 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4483 * by the edge are carried by the solution.
4484 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4485 * one of those is carried.
4487 * Note that despite the fact that the problem is solved using a rational
4488 * solver, the solution is guaranteed to be integral.
4489 * Specifically, the dependence distance lower bounds e_i (and therefore
4490 * also their sum) are integers. See Lemma 5 of [1].
4492 * Any potential denominator of the sum is cleared by this function.
4493 * The denominator is not relevant for any of the other elements
4496 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4497 * Problem, Part II: Multi-Dimensional Time.
4498 * In Intl. Journal of Parallel Programming, 1992.
4500 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4502 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4503 isl_int_set_si(sol
->el
[0], 1);
4504 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4507 /* Return the lexicographically smallest rational point in "lp",
4508 * assuming that all variables are non-negative and performing some
4509 * additional sanity checks.
4510 * If "want_integral" is set, then compute the lexicographically smallest
4511 * integer point instead.
4512 * In particular, "lp" should not be empty by construction.
4513 * Double check that this is the case.
4514 * If dependences are not carried for any of the "n_edge" edges,
4515 * then return an empty vector.
4517 * If the schedule_treat_coalescing option is set and
4518 * if the computed schedule performs loop coalescing on a given node,
4519 * i.e., if it is of the form
4521 * c_i i + c_j j + ...
4523 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4524 * to cut out this solution. Repeat this process until no more loop
4525 * coalescing occurs or until no more dependences can be carried.
4526 * In the latter case, revert to the previously computed solution.
4528 * If the caller requests an integral solution and if coalescing should
4529 * be treated, then perform the coalescing treatment first as
4530 * an integral solution computed before coalescing treatment
4531 * would carry the same number of edges and would therefore probably
4532 * also be coalescing.
4534 * To allow the coalescing treatment to be performed first,
4535 * the initial solution is allowed to be rational and it is only
4536 * cut out (if needed) in the next iteration, if no coalescing measures
4539 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4540 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4545 isl_vec
*sol
= NULL
, *prev
;
4546 int treat_coalescing
;
4551 ctx
= isl_basic_set_get_ctx(lp
);
4552 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4553 tl
= isl_tab_lexmin_from_basic_set(lp
);
4561 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4563 sol
= non_empty_solution(tl
);
4567 integral
= isl_int_is_one(sol
->el
[0]);
4568 if (!carries_dependences(sol
, n_edge
)) {
4570 prev
= isl_vec_alloc(ctx
, 0);
4575 prev
= isl_vec_free(prev
);
4576 cut
= want_integral
&& !integral
;
4579 if (!treat_coalescing
)
4581 for (i
= 0; i
< graph
->n
; ++i
) {
4582 struct isl_sched_node
*node
= &graph
->node
[i
];
4584 pos
= find_node_coalescing(node
, sol
);
4587 if (pos
< node
->nvar
)
4592 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4595 } while (try_again
);
4597 isl_tab_lexmin_free(tl
);
4601 isl_tab_lexmin_free(tl
);
4607 /* If "edge" is an edge from a node to itself, then add the corresponding
4608 * dependence relation to "umap".
4609 * If "node" has been compressed, then the dependence relation
4610 * is also compressed first.
4612 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4613 struct isl_sched_edge
*edge
)
4616 struct isl_sched_node
*node
= edge
->src
;
4618 if (edge
->src
!= edge
->dst
)
4621 map
= isl_map_copy(edge
->map
);
4622 if (node
->compressed
) {
4623 map
= isl_map_preimage_domain_multi_aff(map
,
4624 isl_multi_aff_copy(node
->decompress
));
4625 map
= isl_map_preimage_range_multi_aff(map
,
4626 isl_multi_aff_copy(node
->decompress
));
4628 umap
= isl_union_map_add_map(umap
, map
);
4632 /* If "edge" is an edge from a node to another node, then add the corresponding
4633 * dependence relation to "umap".
4634 * If the source or destination nodes of "edge" have been compressed,
4635 * then the dependence relation is also compressed first.
4637 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4638 struct isl_sched_edge
*edge
)
4642 if (edge
->src
== edge
->dst
)
4645 map
= isl_map_copy(edge
->map
);
4646 if (edge
->src
->compressed
)
4647 map
= isl_map_preimage_domain_multi_aff(map
,
4648 isl_multi_aff_copy(edge
->src
->decompress
));
4649 if (edge
->dst
->compressed
)
4650 map
= isl_map_preimage_range_multi_aff(map
,
4651 isl_multi_aff_copy(edge
->dst
->decompress
));
4652 umap
= isl_union_map_add_map(umap
, map
);
4656 /* Internal data structure used by union_drop_coalescing_constraints
4657 * to collect bounds on all relevant statements.
4659 * "graph" is the schedule constraint graph for which an LP problem
4660 * is being constructed.
4661 * "bounds" collects the bounds.
4663 struct isl_collect_bounds_data
{
4665 struct isl_sched_graph
*graph
;
4666 isl_union_set
*bounds
;
4669 /* Add the size bounds for the node with instance deltas in "set"
4672 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4674 struct isl_collect_bounds_data
*data
= user
;
4675 struct isl_sched_node
*node
;
4679 space
= isl_set_get_space(set
);
4682 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4683 isl_space_free(space
);
4685 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4686 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4691 /* Drop some constraints from "delta" that could be exploited
4692 * to construct loop coalescing schedules.
4693 * In particular, drop those constraint that bound the difference
4694 * to the size of the domain.
4695 * Do this for each set/node in "delta" separately.
4696 * The parameters are assumed to have been projected out by the caller.
4698 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4699 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4701 struct isl_collect_bounds_data data
= { ctx
, graph
};
4703 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4704 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4705 data
.bounds
= isl_union_set_free(data
.bounds
);
4706 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4711 /* Given a non-trivial lineality space "lineality", add the corresponding
4712 * universe set to data->mask and add a map from elements to
4713 * other elements along the lines in "lineality" to data->equivalent.
4714 * If this is the first time this function gets called
4715 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4716 * initialize data->mask and data->equivalent.
4718 * In particular, if the lineality space is defined by equality constraints
4722 * then construct an affine mapping
4726 * and compute the equivalence relation of having the same image under f:
4728 * { x -> x' : E x = E x' }
4730 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4731 struct isl_exploit_lineality_data
*data
)
4737 isl_multi_pw_aff
*mpa
;
4742 return isl_stat_error
;
4743 if (isl_basic_set_dim(lineality
, isl_dim_div
) != 0)
4744 isl_die(isl_basic_set_get_ctx(lineality
), isl_error_internal
,
4745 "local variables not allowed", goto error
);
4747 space
= isl_basic_set_get_space(lineality
);
4748 if (!data
->any_non_trivial
) {
4749 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4750 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4752 data
->any_non_trivial
= isl_bool_true
;
4754 univ
= isl_set_universe(isl_space_copy(space
));
4755 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4757 eq
= isl_basic_set_extract_equalities(lineality
);
4758 n
= isl_mat_rows(eq
);
4759 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4760 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4761 space
= isl_space_from_domain(space
);
4762 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4763 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4764 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4765 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4766 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4768 isl_basic_set_free(lineality
);
4771 isl_basic_set_free(lineality
);
4772 return isl_stat_error
;
4775 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4776 * the origin or, in other words, satisfies a number of equality constraints
4777 * that is smaller than the dimension of the set).
4778 * If so, extend data->mask and data->equivalent accordingly.
4780 * The input should not have any local variables already, but
4781 * isl_set_remove_divs is called to make sure it does not.
4783 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4785 struct isl_exploit_lineality_data
*data
= user
;
4786 isl_basic_set
*hull
;
4789 set
= isl_set_remove_divs(set
);
4790 hull
= isl_set_unshifted_simple_hull(set
);
4791 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4792 n_eq
= isl_basic_set_n_equality(hull
);
4794 return isl_stat_error
;
4796 return add_non_trivial_lineality(hull
, data
);
4797 isl_basic_set_free(hull
);
4801 /* Check if the difference set on intra-node schedule constraints "intra"
4802 * has any non-trivial lineality space.
4803 * If so, then extend the difference set to a difference set
4804 * on equivalent elements. That is, if "intra" is
4806 * { y - x : (x,y) \in V }
4808 * and elements are equivalent if they have the same image under f,
4811 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4813 * or, since f is linear,
4815 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4817 * The results of the search for non-trivial lineality spaces is stored
4820 static __isl_give isl_union_set
*exploit_intra_lineality(
4821 __isl_take isl_union_set
*intra
,
4822 struct isl_exploit_lineality_data
*data
)
4824 isl_union_set
*lineality
;
4825 isl_union_set
*uset
;
4827 data
->any_non_trivial
= isl_bool_false
;
4828 lineality
= isl_union_set_copy(intra
);
4829 lineality
= isl_union_set_combined_lineality_space(lineality
);
4830 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4831 data
->any_non_trivial
= isl_bool_error
;
4832 isl_union_set_free(lineality
);
4834 if (data
->any_non_trivial
< 0)
4835 return isl_union_set_free(intra
);
4836 if (!data
->any_non_trivial
)
4839 uset
= isl_union_set_copy(intra
);
4840 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4841 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4842 intra
= isl_union_set_union(intra
, uset
);
4844 intra
= isl_union_set_remove_divs(intra
);
4849 /* If the difference set on intra-node schedule constraints was found to have
4850 * any non-trivial lineality space by exploit_intra_lineality,
4851 * as recorded in "data", then extend the inter-node
4852 * schedule constraints "inter" to schedule constraints on equivalent elements.
4853 * That is, if "inter" is V and
4854 * elements are equivalent if they have the same image under f, then return
4856 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4858 static __isl_give isl_union_map
*exploit_inter_lineality(
4859 __isl_take isl_union_map
*inter
,
4860 struct isl_exploit_lineality_data
*data
)
4862 isl_union_map
*umap
;
4864 if (data
->any_non_trivial
< 0)
4865 return isl_union_map_free(inter
);
4866 if (!data
->any_non_trivial
)
4869 umap
= isl_union_map_copy(inter
);
4870 inter
= isl_union_map_subtract_range(inter
,
4871 isl_union_set_copy(data
->mask
));
4872 umap
= isl_union_map_apply_range(umap
,
4873 isl_union_map_copy(data
->equivalent
));
4874 inter
= isl_union_map_union(inter
, umap
);
4875 umap
= isl_union_map_copy(inter
);
4876 inter
= isl_union_map_subtract_domain(inter
,
4877 isl_union_set_copy(data
->mask
));
4878 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4880 inter
= isl_union_map_union(inter
, umap
);
4882 inter
= isl_union_map_remove_divs(inter
);
4887 /* For each (conditional) validity edge in "graph",
4888 * add the corresponding dependence relation using "add"
4889 * to a collection of dependence relations and return the result.
4890 * If "coincidence" is set, then coincidence edges are considered as well.
4892 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4893 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4894 struct isl_sched_edge
*edge
), int coincidence
)
4898 isl_union_map
*umap
;
4900 space
= isl_space_copy(graph
->node
[0].space
);
4901 umap
= isl_union_map_empty(space
);
4903 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4904 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4906 if (!is_any_validity(edge
) &&
4907 (!coincidence
|| !is_coincidence(edge
)))
4910 umap
= add(umap
, edge
);
4916 /* Project out all parameters from "uset" and return the result.
4918 static __isl_give isl_union_set
*union_set_drop_parameters(
4919 __isl_take isl_union_set
*uset
)
4923 nparam
= isl_union_set_dim(uset
, isl_dim_param
);
4924 return isl_union_set_project_out(uset
, isl_dim_param
, 0, nparam
);
4927 /* For each dependence relation on a (conditional) validity edge
4928 * from a node to itself,
4929 * construct the set of coefficients of valid constraints for elements
4930 * in that dependence relation and collect the results.
4931 * If "coincidence" is set, then coincidence edges are considered as well.
4933 * In particular, for each dependence relation R, constraints
4934 * on coefficients (c_0, c_x) are constructed such that
4936 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4938 * If the schedule_treat_coalescing option is set, then some constraints
4939 * that could be exploited to construct coalescing schedules
4940 * are removed before the dual is computed, but after the parameters
4941 * have been projected out.
4942 * The entire computation is essentially the same as that performed
4943 * by intra_coefficients, except that it operates on multiple
4944 * edges together and that the parameters are always projected out.
4946 * Additionally, exploit any non-trivial lineality space
4947 * in the difference set after removing coalescing constraints and
4948 * store the results of the non-trivial lineality space detection in "data".
4949 * The procedure is currently run unconditionally, but it is unlikely
4950 * to find any non-trivial lineality spaces if no coalescing constraints
4951 * have been removed.
4953 * Note that if a dependence relation is a union of basic maps,
4954 * then each basic map needs to be treated individually as it may only
4955 * be possible to carry the dependences expressed by some of those
4956 * basic maps and not all of them.
4957 * The collected validity constraints are therefore not coalesced and
4958 * it is assumed that they are not coalesced automatically.
4959 * Duplicate basic maps can be removed, however.
4960 * In particular, if the same basic map appears as a disjunct
4961 * in multiple edges, then it only needs to be carried once.
4963 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4964 struct isl_sched_graph
*graph
, int coincidence
,
4965 struct isl_exploit_lineality_data
*data
)
4967 isl_union_map
*intra
;
4968 isl_union_set
*delta
;
4969 isl_basic_set_list
*list
;
4971 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4972 delta
= isl_union_map_deltas(intra
);
4973 delta
= union_set_drop_parameters(delta
);
4974 delta
= isl_union_set_remove_divs(delta
);
4975 if (isl_options_get_schedule_treat_coalescing(ctx
))
4976 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
4977 delta
= exploit_intra_lineality(delta
, data
);
4978 list
= isl_union_set_get_basic_set_list(delta
);
4979 isl_union_set_free(delta
);
4981 return isl_basic_set_list_coefficients(list
);
4984 /* For each dependence relation on a (conditional) validity edge
4985 * from a node to some other node,
4986 * construct the set of coefficients of valid constraints for elements
4987 * in that dependence relation and collect the results.
4988 * If "coincidence" is set, then coincidence edges are considered as well.
4990 * In particular, for each dependence relation R, constraints
4991 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4993 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4995 * This computation is essentially the same as that performed
4996 * by inter_coefficients, except that it operates on multiple
4999 * Additionally, exploit any non-trivial lineality space
5000 * that may have been discovered by collect_intra_validity
5001 * (as stored in "data").
5003 * Note that if a dependence relation is a union of basic maps,
5004 * then each basic map needs to be treated individually as it may only
5005 * be possible to carry the dependences expressed by some of those
5006 * basic maps and not all of them.
5007 * The collected validity constraints are therefore not coalesced and
5008 * it is assumed that they are not coalesced automatically.
5009 * Duplicate basic maps can be removed, however.
5010 * In particular, if the same basic map appears as a disjunct
5011 * in multiple edges, then it only needs to be carried once.
5013 static __isl_give isl_basic_set_list
*collect_inter_validity(
5014 struct isl_sched_graph
*graph
, int coincidence
,
5015 struct isl_exploit_lineality_data
*data
)
5017 isl_union_map
*inter
;
5018 isl_union_set
*wrap
;
5019 isl_basic_set_list
*list
;
5021 inter
= collect_validity(graph
, &add_inter
, coincidence
);
5022 inter
= exploit_inter_lineality(inter
, data
);
5023 inter
= isl_union_map_remove_divs(inter
);
5024 wrap
= isl_union_map_wrap(inter
);
5025 list
= isl_union_set_get_basic_set_list(wrap
);
5026 isl_union_set_free(wrap
);
5027 return isl_basic_set_list_coefficients(list
);
5030 /* Construct an LP problem for finding schedule coefficients
5031 * such that the schedule carries as many of the "n_edge" groups of
5032 * dependences as possible based on the corresponding coefficient
5033 * constraints and return the lexicographically smallest non-trivial solution.
5034 * "intra" is the sequence of coefficient constraints for intra-node edges.
5035 * "inter" is the sequence of coefficient constraints for inter-node edges.
5036 * If "want_integral" is set, then compute an integral solution
5037 * for the coefficients rather than using the numerators
5038 * of a rational solution.
5039 * "carry_inter" indicates whether inter-node edges should be carried or
5042 * If none of the "n_edge" groups can be carried
5043 * then return an empty vector.
5045 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5046 struct isl_sched_graph
*graph
, int n_edge
,
5047 __isl_keep isl_basic_set_list
*intra
,
5048 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5053 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5056 lp
= isl_basic_set_copy(graph
->lp
);
5057 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5060 /* Construct an LP problem for finding schedule coefficients
5061 * such that the schedule carries as many of the validity dependences
5063 * return the lexicographically smallest non-trivial solution.
5064 * If "fallback" is set, then the carrying is performed as a fallback
5065 * for the Pluto-like scheduler.
5066 * If "coincidence" is set, then try and carry coincidence edges as well.
5068 * The variable "n_edge" stores the number of groups that should be carried.
5069 * If none of the "n_edge" groups can be carried
5070 * then return an empty vector.
5071 * If, moreover, "n_edge" is zero, then the LP problem does not even
5072 * need to be constructed.
5074 * If a fallback solution is being computed, then compute an integral solution
5075 * for the coefficients rather than using the numerators
5076 * of a rational solution.
5078 * If a fallback solution is being computed, if there are any intra-node
5079 * dependences, and if requested by the user, then first try
5080 * to only carry those intra-node dependences.
5081 * If this fails to carry any dependences, then try again
5082 * with the inter-node dependences included.
5084 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5085 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5087 int n_intra
, n_inter
;
5089 struct isl_carry carry
= { 0 };
5092 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5094 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5096 if (!carry
.intra
|| !carry
.inter
)
5098 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5099 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5101 if (fallback
&& n_intra
> 0 &&
5102 isl_options_get_schedule_carry_self_first(ctx
)) {
5103 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5104 carry
.intra
, carry
.inter
, fallback
, 0);
5105 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5106 isl_carry_clear(&carry
);
5112 n_edge
= n_intra
+ n_inter
;
5114 isl_carry_clear(&carry
);
5115 return isl_vec_alloc(ctx
, 0);
5118 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5119 carry
.intra
, carry
.inter
, fallback
, 1);
5120 isl_carry_clear(&carry
);
5123 isl_carry_clear(&carry
);
5127 /* Construct a schedule row for each node such that as many validity dependences
5128 * as possible are carried and then continue with the next band.
5129 * If "fallback" is set, then the carrying is performed as a fallback
5130 * for the Pluto-like scheduler.
5131 * If "coincidence" is set, then try and carry coincidence edges as well.
5133 * If there are no validity dependences, then no dependence can be carried and
5134 * the procedure is guaranteed to fail. If there is more than one component,
5135 * then try computing a schedule on each component separately
5136 * to prevent or at least postpone this failure.
5138 * If a schedule row is computed, then check that dependences are carried
5139 * for at least one of the edges.
5141 * If the computed schedule row turns out to be trivial on one or
5142 * more nodes where it should not be trivial, then we throw it away
5143 * and try again on each component separately.
5145 * If there is only one component, then we accept the schedule row anyway,
5146 * but we do not consider it as a complete row and therefore do not
5147 * increment graph->n_row. Note that the ranks of the nodes that
5148 * do get a non-trivial schedule part will get updated regardless and
5149 * graph->maxvar is computed based on these ranks. The test for
5150 * whether more schedule rows are required in compute_schedule_wcc
5151 * is therefore not affected.
5153 * Insert a band corresponding to the schedule row at position "node"
5154 * of the schedule tree and continue with the construction of the schedule.
5155 * This insertion and the continued construction is performed by split_scaled
5156 * after optionally checking for non-trivial common divisors.
5158 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5159 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5168 ctx
= isl_schedule_node_get_ctx(node
);
5169 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5171 return isl_schedule_node_free(node
);
5172 if (sol
->size
== 0) {
5175 return compute_component_schedule(node
, graph
, 1);
5176 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5177 return isl_schedule_node_free(node
));
5180 trivial
= is_any_trivial(graph
, sol
);
5182 sol
= isl_vec_free(sol
);
5183 } else if (trivial
&& graph
->scc
> 1) {
5185 return compute_component_schedule(node
, graph
, 1);
5188 if (update_schedule(graph
, sol
, 0) < 0)
5189 return isl_schedule_node_free(node
);
5193 return split_scaled(node
, graph
);
5196 /* Construct a schedule row for each node such that as many validity dependences
5197 * as possible are carried and then continue with the next band.
5198 * Do so as a fallback for the Pluto-like scheduler.
5199 * If "coincidence" is set, then try and carry coincidence edges as well.
5201 static __isl_give isl_schedule_node
*carry_fallback(
5202 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5205 return carry(node
, graph
, 1, coincidence
);
5208 /* Construct a schedule row for each node such that as many validity dependences
5209 * as possible are carried and then continue with the next band.
5210 * Do so for the case where the Feautrier scheduler was selected
5213 static __isl_give isl_schedule_node
*carry_feautrier(
5214 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5216 return carry(node
, graph
, 0, 0);
5219 /* Construct a schedule row for each node such that as many validity dependences
5220 * as possible are carried and then continue with the next band.
5221 * Do so as a fallback for the Pluto-like scheduler.
5223 static __isl_give isl_schedule_node
*carry_dependences(
5224 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5226 return carry_fallback(node
, graph
, 0);
5229 /* Construct a schedule row for each node such that as many validity or
5230 * coincidence dependences as possible are carried and
5231 * then continue with the next band.
5232 * Do so as a fallback for the Pluto-like scheduler.
5234 static __isl_give isl_schedule_node
*carry_coincidence(
5235 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5237 return carry_fallback(node
, graph
, 1);
5240 /* Topologically sort statements mapped to the same schedule iteration
5241 * and add insert a sequence node in front of "node"
5242 * corresponding to this order.
5243 * If "initialized" is set, then it may be assumed that compute_maxvar
5244 * has been called on the current band. Otherwise, call
5245 * compute_maxvar if and before carry_dependences gets called.
5247 * If it turns out to be impossible to sort the statements apart,
5248 * because different dependences impose different orderings
5249 * on the statements, then we extend the schedule such that
5250 * it carries at least one more dependence.
5252 static __isl_give isl_schedule_node
*sort_statements(
5253 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5257 isl_union_set_list
*filters
;
5262 ctx
= isl_schedule_node_get_ctx(node
);
5264 isl_die(ctx
, isl_error_internal
,
5265 "graph should have at least one node",
5266 return isl_schedule_node_free(node
));
5271 if (update_edges(ctx
, graph
) < 0)
5272 return isl_schedule_node_free(node
);
5274 if (graph
->n_edge
== 0)
5277 if (detect_sccs(ctx
, graph
) < 0)
5278 return isl_schedule_node_free(node
);
5281 if (graph
->scc
< graph
->n
) {
5282 if (!initialized
&& compute_maxvar(graph
) < 0)
5283 return isl_schedule_node_free(node
);
5284 return carry_dependences(node
, graph
);
5287 filters
= extract_sccs(ctx
, graph
);
5288 node
= isl_schedule_node_insert_sequence(node
, filters
);
5293 /* Are there any (non-empty) (conditional) validity edges in the graph?
5295 static int has_validity_edges(struct isl_sched_graph
*graph
)
5299 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5302 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5307 if (is_any_validity(&graph
->edge
[i
]))
5314 /* Should we apply a Feautrier step?
5315 * That is, did the user request the Feautrier algorithm and are
5316 * there any validity dependences (left)?
5318 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5320 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5323 return has_validity_edges(graph
);
5326 /* Compute a schedule for a connected dependence graph using Feautrier's
5327 * multi-dimensional scheduling algorithm and return the updated schedule node.
5329 * The original algorithm is described in [1].
5330 * The main idea is to minimize the number of scheduling dimensions, by
5331 * trying to satisfy as many dependences as possible per scheduling dimension.
5333 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5334 * Problem, Part II: Multi-Dimensional Time.
5335 * In Intl. Journal of Parallel Programming, 1992.
5337 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5338 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5340 return carry_feautrier(node
, graph
);
5343 /* Turn off the "local" bit on all (condition) edges.
5345 static void clear_local_edges(struct isl_sched_graph
*graph
)
5349 for (i
= 0; i
< graph
->n_edge
; ++i
)
5350 if (is_condition(&graph
->edge
[i
]))
5351 clear_local(&graph
->edge
[i
]);
5354 /* Does "graph" have both condition and conditional validity edges?
5356 static int need_condition_check(struct isl_sched_graph
*graph
)
5359 int any_condition
= 0;
5360 int any_conditional_validity
= 0;
5362 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5363 if (is_condition(&graph
->edge
[i
]))
5365 if (is_conditional_validity(&graph
->edge
[i
]))
5366 any_conditional_validity
= 1;
5369 return any_condition
&& any_conditional_validity
;
5372 /* Does "graph" contain any coincidence edge?
5374 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5378 for (i
= 0; i
< graph
->n_edge
; ++i
)
5379 if (is_coincidence(&graph
->edge
[i
]))
5385 /* Extract the final schedule row as a map with the iteration domain
5386 * of "node" as domain.
5388 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5393 row
= isl_mat_rows(node
->sched
) - 1;
5394 ma
= node_extract_partial_schedule_multi_aff(node
, row
, 1);
5395 return isl_map_from_multi_aff(ma
);
5398 /* Is the conditional validity dependence in the edge with index "edge_index"
5399 * violated by the latest (i.e., final) row of the schedule?
5400 * That is, is i scheduled after j
5401 * for any conditional validity dependence i -> j?
5403 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5405 isl_map
*src_sched
, *dst_sched
, *map
;
5406 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5409 src_sched
= final_row(edge
->src
);
5410 dst_sched
= final_row(edge
->dst
);
5411 map
= isl_map_copy(edge
->map
);
5412 map
= isl_map_apply_domain(map
, src_sched
);
5413 map
= isl_map_apply_range(map
, dst_sched
);
5414 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5415 empty
= isl_map_is_empty(map
);
5424 /* Does "graph" have any satisfied condition edges that
5425 * are adjacent to the conditional validity constraint with
5426 * domain "conditional_source" and range "conditional_sink"?
5428 * A satisfied condition is one that is not local.
5429 * If a condition was forced to be local already (i.e., marked as local)
5430 * then there is no need to check if it is in fact local.
5432 * Additionally, mark all adjacent condition edges found as local.
5434 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5435 __isl_keep isl_union_set
*conditional_source
,
5436 __isl_keep isl_union_set
*conditional_sink
)
5441 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5442 int adjacent
, local
;
5443 isl_union_map
*condition
;
5445 if (!is_condition(&graph
->edge
[i
]))
5447 if (is_local(&graph
->edge
[i
]))
5450 condition
= graph
->edge
[i
].tagged_condition
;
5451 adjacent
= domain_intersects(condition
, conditional_sink
);
5452 if (adjacent
>= 0 && !adjacent
)
5453 adjacent
= range_intersects(condition
,
5454 conditional_source
);
5460 set_local(&graph
->edge
[i
]);
5462 local
= is_condition_false(&graph
->edge
[i
]);
5472 /* Are there any violated conditional validity dependences with
5473 * adjacent condition dependences that are not local with respect
5474 * to the current schedule?
5475 * That is, is the conditional validity constraint violated?
5477 * Additionally, mark all those adjacent condition dependences as local.
5478 * We also mark those adjacent condition dependences that were not marked
5479 * as local before, but just happened to be local already. This ensures
5480 * that they remain local if the schedule is recomputed.
5482 * We first collect domain and range of all violated conditional validity
5483 * dependences and then check if there are any adjacent non-local
5484 * condition dependences.
5486 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5487 struct isl_sched_graph
*graph
)
5491 isl_union_set
*source
, *sink
;
5493 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5494 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5495 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5496 isl_union_set
*uset
;
5497 isl_union_map
*umap
;
5500 if (!is_conditional_validity(&graph
->edge
[i
]))
5503 violated
= is_violated(graph
, i
);
5511 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5512 uset
= isl_union_map_domain(umap
);
5513 source
= isl_union_set_union(source
, uset
);
5514 source
= isl_union_set_coalesce(source
);
5516 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5517 uset
= isl_union_map_range(umap
);
5518 sink
= isl_union_set_union(sink
, uset
);
5519 sink
= isl_union_set_coalesce(sink
);
5523 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5525 isl_union_set_free(source
);
5526 isl_union_set_free(sink
);
5529 isl_union_set_free(source
);
5530 isl_union_set_free(sink
);
5534 /* Examine the current band (the rows between graph->band_start and
5535 * graph->n_total_row), deciding whether to drop it or add it to "node"
5536 * and then continue with the computation of the next band, if any.
5537 * If "initialized" is set, then it may be assumed that compute_maxvar
5538 * has been called on the current band. Otherwise, call
5539 * compute_maxvar if and before carry_dependences gets called.
5541 * The caller keeps looking for a new row as long as
5542 * graph->n_row < graph->maxvar. If the latest attempt to find
5543 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5545 * - split between SCCs and start over (assuming we found an interesting
5546 * pair of SCCs between which to split)
5547 * - continue with the next band (assuming the current band has at least
5549 * - if there is more than one SCC left, then split along all SCCs
5550 * - if outer coincidence needs to be enforced, then try to carry as many
5551 * validity or coincidence dependences as possible and
5552 * continue with the next band
5553 * - try to carry as many validity dependences as possible and
5554 * continue with the next band
5555 * In each case, we first insert a band node in the schedule tree
5556 * if any rows have been computed.
5558 * If the caller managed to complete the schedule and the current band
5559 * is empty, then finish off by topologically
5560 * sorting the statements based on the remaining dependences.
5561 * If, on the other hand, the current band has at least one row,
5562 * then continue with the next band. Note that this next band
5563 * will necessarily be empty, but the graph may still be split up
5564 * into weakly connected components before arriving back here.
5566 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
5567 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5575 empty
= graph
->n_total_row
== graph
->band_start
;
5576 if (graph
->n_row
< graph
->maxvar
) {
5579 ctx
= isl_schedule_node_get_ctx(node
);
5580 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5581 return compute_next_band(node
, graph
, 1);
5582 if (graph
->src_scc
>= 0)
5583 return compute_split_schedule(node
, graph
);
5585 return compute_next_band(node
, graph
, 1);
5587 return compute_component_schedule(node
, graph
, 1);
5588 if (!initialized
&& compute_maxvar(graph
) < 0)
5589 return isl_schedule_node_free(node
);
5590 if (isl_options_get_schedule_outer_coincidence(ctx
))
5591 return carry_coincidence(node
, graph
);
5592 return carry_dependences(node
, graph
);
5596 return compute_next_band(node
, graph
, 1);
5597 return sort_statements(node
, graph
, initialized
);
5600 /* Construct a band of schedule rows for a connected dependence graph.
5601 * The caller is responsible for determining the strongly connected
5602 * components and calling compute_maxvar first.
5604 * We try to find a sequence of as many schedule rows as possible that result
5605 * in non-negative dependence distances (independent of the previous rows
5606 * in the sequence, i.e., such that the sequence is tilable), with as
5607 * many of the initial rows as possible satisfying the coincidence constraints.
5608 * The computation stops if we can't find any more rows or if we have found
5609 * all the rows we wanted to find.
5611 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5612 * outermost dimension to satisfy the coincidence constraints. If this
5613 * turns out to be impossible, we fall back on the general scheme above
5614 * and try to carry as many dependences as possible.
5616 * If "graph" contains both condition and conditional validity dependences,
5617 * then we need to check that that the conditional schedule constraint
5618 * is satisfied, i.e., there are no violated conditional validity dependences
5619 * that are adjacent to any non-local condition dependences.
5620 * If there are, then we mark all those adjacent condition dependences
5621 * as local and recompute the current band. Those dependences that
5622 * are marked local will then be forced to be local.
5623 * The initial computation is performed with no dependences marked as local.
5624 * If we are lucky, then there will be no violated conditional validity
5625 * dependences adjacent to any non-local condition dependences.
5626 * Otherwise, we mark some additional condition dependences as local and
5627 * recompute. We continue this process until there are no violations left or
5628 * until we are no longer able to compute a schedule.
5629 * Since there are only a finite number of dependences,
5630 * there will only be a finite number of iterations.
5632 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
5633 struct isl_sched_graph
*graph
)
5635 int has_coincidence
;
5636 int use_coincidence
;
5637 int force_coincidence
= 0;
5638 int check_conditional
;
5640 if (sort_sccs(graph
) < 0)
5641 return isl_stat_error
;
5643 clear_local_edges(graph
);
5644 check_conditional
= need_condition_check(graph
);
5645 has_coincidence
= has_any_coincidence(graph
);
5647 if (ctx
->opt
->schedule_outer_coincidence
)
5648 force_coincidence
= 1;
5650 use_coincidence
= has_coincidence
;
5651 while (graph
->n_row
< graph
->maxvar
) {
5656 graph
->src_scc
= -1;
5657 graph
->dst_scc
= -1;
5659 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5660 return isl_stat_error
;
5661 sol
= solve_lp(ctx
, graph
);
5663 return isl_stat_error
;
5664 if (sol
->size
== 0) {
5665 int empty
= graph
->n_total_row
== graph
->band_start
;
5668 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5669 use_coincidence
= 0;
5674 coincident
= !has_coincidence
|| use_coincidence
;
5675 if (update_schedule(graph
, sol
, coincident
) < 0)
5676 return isl_stat_error
;
5678 if (!check_conditional
)
5680 violated
= has_violated_conditional_constraint(ctx
, graph
);
5682 return isl_stat_error
;
5685 if (reset_band(graph
) < 0)
5686 return isl_stat_error
;
5687 use_coincidence
= has_coincidence
;
5693 /* Compute a schedule for a connected dependence graph by considering
5694 * the graph as a whole and return the updated schedule node.
5696 * The actual schedule rows of the current band are computed by
5697 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5698 * care of integrating the band into "node" and continuing
5701 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5702 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5709 ctx
= isl_schedule_node_get_ctx(node
);
5710 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
5711 return isl_schedule_node_free(node
);
5713 return compute_schedule_finish_band(node
, graph
, 1);
5716 /* Clustering information used by compute_schedule_wcc_clustering.
5718 * "n" is the number of SCCs in the original dependence graph
5719 * "scc" is an array of "n" elements, each representing an SCC
5720 * of the original dependence graph. All entries in the same cluster
5721 * have the same number of schedule rows.
5722 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5723 * where each cluster is represented by the index of the first SCC
5724 * in the cluster. Initially, each SCC belongs to a cluster containing
5727 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5728 * track of which SCCs need to be merged.
5730 * "cluster" contains the merged clusters of SCCs after the clustering
5733 * "scc_node" is a temporary data structure used inside copy_partial.
5734 * For each SCC, it keeps track of the number of nodes in the SCC
5735 * that have already been copied.
5737 struct isl_clustering
{
5739 struct isl_sched_graph
*scc
;
5740 struct isl_sched_graph
*cluster
;
5746 /* Initialize the clustering data structure "c" from "graph".
5748 * In particular, allocate memory, extract the SCCs from "graph"
5749 * into c->scc, initialize scc_cluster and construct
5750 * a band of schedule rows for each SCC.
5751 * Within each SCC, there is only one SCC by definition.
5752 * Each SCC initially belongs to a cluster containing only that SCC.
5754 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
5755 struct isl_sched_graph
*graph
)
5760 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5761 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5762 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
5763 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
5764 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
5765 if (!c
->scc
|| !c
->cluster
||
5766 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
5767 return isl_stat_error
;
5769 for (i
= 0; i
< c
->n
; ++i
) {
5770 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
5771 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
5772 return isl_stat_error
;
5774 if (compute_maxvar(&c
->scc
[i
]) < 0)
5775 return isl_stat_error
;
5776 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
5777 return isl_stat_error
;
5778 c
->scc_cluster
[i
] = i
;
5784 /* Free all memory allocated for "c".
5786 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
5791 for (i
= 0; i
< c
->n
; ++i
)
5792 graph_free(ctx
, &c
->scc
[i
]);
5795 for (i
= 0; i
< c
->n
; ++i
)
5796 graph_free(ctx
, &c
->cluster
[i
]);
5798 free(c
->scc_cluster
);
5800 free(c
->scc_in_merge
);
5803 /* Should we refrain from merging the cluster in "graph" with
5804 * any other cluster?
5805 * In particular, is its current schedule band empty and incomplete.
5807 static int bad_cluster(struct isl_sched_graph
*graph
)
5809 return graph
->n_row
< graph
->maxvar
&&
5810 graph
->n_total_row
== graph
->band_start
;
5813 /* Is "edge" a proximity edge with a non-empty dependence relation?
5815 static isl_bool
is_non_empty_proximity(struct isl_sched_edge
*edge
)
5817 if (!is_proximity(edge
))
5818 return isl_bool_false
;
5819 return isl_bool_not(isl_map_plain_is_empty(edge
->map
));
5822 /* Return the index of an edge in "graph" that can be used to merge
5823 * two clusters in "c".
5824 * Return graph->n_edge if no such edge can be found.
5825 * Return -1 on error.
5827 * In particular, return a proximity edge between two clusters
5828 * that is not marked "no_merge" and such that neither of the
5829 * two clusters has an incomplete, empty band.
5831 * If there are multiple such edges, then try and find the most
5832 * appropriate edge to use for merging. In particular, pick the edge
5833 * with the greatest weight. If there are multiple of those,
5834 * then pick one with the shortest distance between
5835 * the two cluster representatives.
5837 static int find_proximity(struct isl_sched_graph
*graph
,
5838 struct isl_clustering
*c
)
5840 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
5842 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5843 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5847 prox
= is_non_empty_proximity(edge
);
5854 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5855 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5857 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
5858 c
->scc_cluster
[edge
->src
->scc
];
5861 weight
= edge
->weight
;
5862 if (best
< graph
->n_edge
) {
5863 if (best_weight
> weight
)
5865 if (best_weight
== weight
&& best_dist
<= dist
)
5870 best_weight
= weight
;
5876 /* Internal data structure used in mark_merge_sccs.
5878 * "graph" is the dependence graph in which a strongly connected
5879 * component is constructed.
5880 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5881 * "src" and "dst" are the indices of the nodes that are being merged.
5883 struct isl_mark_merge_sccs_data
{
5884 struct isl_sched_graph
*graph
;
5890 /* Check whether the cluster containing node "i" depends on the cluster
5891 * containing node "j". If "i" and "j" belong to the same cluster,
5892 * then they are taken to depend on each other to ensure that
5893 * the resulting strongly connected component consists of complete
5894 * clusters. Furthermore, if "i" and "j" are the two nodes that
5895 * are being merged, then they are taken to depend on each other as well.
5896 * Otherwise, check if there is a (conditional) validity dependence
5897 * from node[j] to node[i], forcing node[i] to follow node[j].
5899 static isl_bool
cluster_follows(int i
, int j
, void *user
)
5901 struct isl_mark_merge_sccs_data
*data
= user
;
5902 struct isl_sched_graph
*graph
= data
->graph
;
5903 int *scc_cluster
= data
->scc_cluster
;
5905 if (data
->src
== i
&& data
->dst
== j
)
5906 return isl_bool_true
;
5907 if (data
->src
== j
&& data
->dst
== i
)
5908 return isl_bool_true
;
5909 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
5910 return isl_bool_true
;
5912 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5915 /* Mark all SCCs that belong to either of the two clusters in "c"
5916 * connected by the edge in "graph" with index "edge", or to any
5917 * of the intermediate clusters.
5918 * The marking is recorded in c->scc_in_merge.
5920 * The given edge has been selected for merging two clusters,
5921 * meaning that there is at least a proximity edge between the two nodes.
5922 * However, there may also be (indirect) validity dependences
5923 * between the two nodes. When merging the two clusters, all clusters
5924 * containing one or more of the intermediate nodes along the
5925 * indirect validity dependences need to be merged in as well.
5927 * First collect all such nodes by computing the strongly connected
5928 * component (SCC) containing the two nodes connected by the edge, where
5929 * the two nodes are considered to depend on each other to make
5930 * sure they end up in the same SCC. Similarly, each node is considered
5931 * to depend on every other node in the same cluster to ensure
5932 * that the SCC consists of complete clusters.
5934 * Then the original SCCs that contain any of these nodes are marked
5935 * in c->scc_in_merge.
5937 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5938 int edge
, struct isl_clustering
*c
)
5940 struct isl_mark_merge_sccs_data data
;
5941 struct isl_tarjan_graph
*g
;
5944 for (i
= 0; i
< c
->n
; ++i
)
5945 c
->scc_in_merge
[i
] = 0;
5948 data
.scc_cluster
= c
->scc_cluster
;
5949 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
5950 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
5952 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
5953 &cluster_follows
, &data
);
5959 isl_die(ctx
, isl_error_internal
,
5960 "expecting at least two nodes in component",
5962 if (g
->order
[--i
] != -1)
5963 isl_die(ctx
, isl_error_internal
,
5964 "expecting end of component marker", goto error
);
5966 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
5967 int scc
= graph
->node
[g
->order
[i
]].scc
;
5968 c
->scc_in_merge
[scc
] = 1;
5971 isl_tarjan_graph_free(g
);
5974 isl_tarjan_graph_free(g
);
5975 return isl_stat_error
;
5978 /* Construct the identifier "cluster_i".
5980 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
5984 snprintf(name
, sizeof(name
), "cluster_%d", i
);
5985 return isl_id_alloc(ctx
, name
, NULL
);
5988 /* Construct the space of the cluster with index "i" containing
5989 * the strongly connected component "scc".
5991 * In particular, construct a space called cluster_i with dimension equal
5992 * to the number of schedule rows in the current band of "scc".
5994 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
6000 nvar
= scc
->n_total_row
- scc
->band_start
;
6001 space
= isl_space_copy(scc
->node
[0].space
);
6002 space
= isl_space_params(space
);
6003 space
= isl_space_set_from_params(space
);
6004 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
6005 id
= cluster_id(isl_space_get_ctx(space
), i
);
6006 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
6011 /* Collect the domain of the graph for merging clusters.
6013 * In particular, for each cluster with first SCC "i", construct
6014 * a set in the space called cluster_i with dimension equal
6015 * to the number of schedule rows in the current band of the cluster.
6017 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
6018 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6022 isl_union_set
*domain
;
6024 space
= isl_space_params_alloc(ctx
, 0);
6025 domain
= isl_union_set_empty(space
);
6027 for (i
= 0; i
< graph
->scc
; ++i
) {
6030 if (!c
->scc_in_merge
[i
])
6032 if (c
->scc_cluster
[i
] != i
)
6034 space
= cluster_space(&c
->scc
[i
], i
);
6035 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
6041 /* Construct a map from the original instances to the corresponding
6042 * cluster instance in the current bands of the clusters in "c".
6044 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
6045 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6049 isl_union_map
*cluster_map
;
6051 space
= isl_space_params_alloc(ctx
, 0);
6052 cluster_map
= isl_union_map_empty(space
);
6053 for (i
= 0; i
< graph
->scc
; ++i
) {
6057 if (!c
->scc_in_merge
[i
])
6060 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
6061 start
= c
->scc
[i
].band_start
;
6062 n
= c
->scc
[i
].n_total_row
- start
;
6063 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
6066 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
6068 ma
= node_extract_partial_schedule_multi_aff(node
,
6070 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
6072 map
= isl_map_from_multi_aff(ma
);
6073 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
6081 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6082 * that are not isl_edge_condition or isl_edge_conditional_validity.
6084 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
6085 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6086 __isl_take isl_schedule_constraints
*sc
)
6088 enum isl_edge_type t
;
6093 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
6094 if (t
== isl_edge_condition
||
6095 t
== isl_edge_conditional_validity
)
6097 if (!is_type(edge
, t
))
6099 sc
= isl_schedule_constraints_add(sc
, t
,
6100 isl_union_map_copy(umap
));
6106 /* Add schedule constraints of types isl_edge_condition and
6107 * isl_edge_conditional_validity to "sc" by applying "umap" to
6108 * the domains of the wrapped relations in domain and range
6109 * of the corresponding tagged constraints of "edge".
6111 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
6112 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6113 __isl_take isl_schedule_constraints
*sc
)
6115 enum isl_edge_type t
;
6116 isl_union_map
*tagged
;
6118 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
6119 if (!is_type(edge
, t
))
6121 if (t
== isl_edge_condition
)
6122 tagged
= isl_union_map_copy(edge
->tagged_condition
);
6124 tagged
= isl_union_map_copy(edge
->tagged_validity
);
6125 tagged
= isl_union_map_zip(tagged
);
6126 tagged
= isl_union_map_apply_domain(tagged
,
6127 isl_union_map_copy(umap
));
6128 tagged
= isl_union_map_zip(tagged
);
6129 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
6137 /* Given a mapping "cluster_map" from the original instances to
6138 * the cluster instances, add schedule constraints on the clusters
6139 * to "sc" corresponding to the original constraints represented by "edge".
6141 * For non-tagged dependence constraints, the cluster constraints
6142 * are obtained by applying "cluster_map" to the edge->map.
6144 * For tagged dependence constraints, "cluster_map" needs to be applied
6145 * to the domains of the wrapped relations in domain and range
6146 * of the tagged dependence constraints. Pick out the mappings
6147 * from these domains from "cluster_map" and construct their product.
6148 * This mapping can then be applied to the pair of domains.
6150 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
6151 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
6152 __isl_take isl_schedule_constraints
*sc
)
6154 isl_union_map
*umap
;
6156 isl_union_set
*uset
;
6157 isl_union_map
*umap1
, *umap2
;
6162 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
6163 umap
= isl_union_map_apply_domain(umap
,
6164 isl_union_map_copy(cluster_map
));
6165 umap
= isl_union_map_apply_range(umap
,
6166 isl_union_map_copy(cluster_map
));
6167 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
6168 isl_union_map_free(umap
);
6170 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
6173 space
= isl_space_domain(isl_map_get_space(edge
->map
));
6174 uset
= isl_union_set_from_set(isl_set_universe(space
));
6175 umap1
= isl_union_map_copy(cluster_map
);
6176 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
6177 space
= isl_space_range(isl_map_get_space(edge
->map
));
6178 uset
= isl_union_set_from_set(isl_set_universe(space
));
6179 umap2
= isl_union_map_copy(cluster_map
);
6180 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
6181 umap
= isl_union_map_product(umap1
, umap2
);
6183 sc
= add_conditional_constraints(edge
, umap
, sc
);
6185 isl_union_map_free(umap
);
6189 /* Given a mapping "cluster_map" from the original instances to
6190 * the cluster instances, add schedule constraints on the clusters
6191 * to "sc" corresponding to all edges in "graph" between nodes that
6192 * belong to SCCs that are marked for merging in "scc_in_merge".
6194 static __isl_give isl_schedule_constraints
*collect_constraints(
6195 struct isl_sched_graph
*graph
, int *scc_in_merge
,
6196 __isl_keep isl_union_map
*cluster_map
,
6197 __isl_take isl_schedule_constraints
*sc
)
6201 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6202 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6204 if (!scc_in_merge
[edge
->src
->scc
])
6206 if (!scc_in_merge
[edge
->dst
->scc
])
6208 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
6214 /* Construct a dependence graph for scheduling clusters with respect
6215 * to each other and store the result in "merge_graph".
6216 * In particular, the nodes of the graph correspond to the schedule
6217 * dimensions of the current bands of those clusters that have been
6218 * marked for merging in "c".
6220 * First construct an isl_schedule_constraints object for this domain
6221 * by transforming the edges in "graph" to the domain.
6222 * Then initialize a dependence graph for scheduling from these
6225 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6226 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6228 isl_union_set
*domain
;
6229 isl_union_map
*cluster_map
;
6230 isl_schedule_constraints
*sc
;
6233 domain
= collect_domain(ctx
, graph
, c
);
6234 sc
= isl_schedule_constraints_on_domain(domain
);
6236 return isl_stat_error
;
6237 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
6238 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
6239 isl_union_map_free(cluster_map
);
6241 r
= graph_init(merge_graph
, sc
);
6243 isl_schedule_constraints_free(sc
);
6248 /* Compute the maximal number of remaining schedule rows that still need
6249 * to be computed for the nodes that belong to clusters with the maximal
6250 * dimension for the current band (i.e., the band that is to be merged).
6251 * Only clusters that are about to be merged are considered.
6252 * "maxvar" is the maximal dimension for the current band.
6253 * "c" contains information about the clusters.
6255 * Return the maximal number of remaining schedule rows or -1 on error.
6257 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
6263 for (i
= 0; i
< c
->n
; ++i
) {
6265 struct isl_sched_graph
*scc
;
6267 if (!c
->scc_in_merge
[i
])
6270 nvar
= scc
->n_total_row
- scc
->band_start
;
6273 for (j
= 0; j
< scc
->n
; ++j
) {
6274 struct isl_sched_node
*node
= &scc
->node
[j
];
6277 if (node_update_vmap(node
) < 0)
6279 slack
= node
->nvar
- node
->rank
;
6280 if (slack
> max_slack
)
6288 /* If there are any clusters where the dimension of the current band
6289 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6290 * if there are any nodes in such a cluster where the number
6291 * of remaining schedule rows that still need to be computed
6292 * is greater than "max_slack", then return the smallest current band
6293 * dimension of all these clusters. Otherwise return the original value
6294 * of "maxvar". Return -1 in case of any error.
6295 * Only clusters that are about to be merged are considered.
6296 * "c" contains information about the clusters.
6298 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
6299 struct isl_clustering
*c
)
6303 for (i
= 0; i
< c
->n
; ++i
) {
6305 struct isl_sched_graph
*scc
;
6307 if (!c
->scc_in_merge
[i
])
6310 nvar
= scc
->n_total_row
- scc
->band_start
;
6313 for (j
= 0; j
< scc
->n
; ++j
) {
6314 struct isl_sched_node
*node
= &scc
->node
[j
];
6317 if (node_update_vmap(node
) < 0)
6319 slack
= node
->nvar
- node
->rank
;
6320 if (slack
> max_slack
) {
6330 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6331 * that still need to be computed. In particular, if there is a node
6332 * in a cluster where the dimension of the current band is smaller
6333 * than merge_graph->maxvar, but the number of remaining schedule rows
6334 * is greater than that of any node in a cluster with the maximal
6335 * dimension for the current band (i.e., merge_graph->maxvar),
6336 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6337 * of those clusters. Without this adjustment, the total number of
6338 * schedule dimensions would be increased, resulting in a skewed view
6339 * of the number of coincident dimensions.
6340 * "c" contains information about the clusters.
6342 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6343 * then there is no point in attempting any merge since it will be rejected
6344 * anyway. Set merge_graph->maxvar to zero in such cases.
6346 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
6347 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
6349 int max_slack
, maxvar
;
6351 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
6353 return isl_stat_error
;
6354 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
6356 return isl_stat_error
;
6358 if (maxvar
< merge_graph
->maxvar
) {
6359 if (isl_options_get_schedule_maximize_band_depth(ctx
))
6360 merge_graph
->maxvar
= 0;
6362 merge_graph
->maxvar
= maxvar
;
6368 /* Return the number of coincident dimensions in the current band of "graph",
6369 * where the nodes of "graph" are assumed to be scheduled by a single band.
6371 static int get_n_coincident(struct isl_sched_graph
*graph
)
6375 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
6376 if (!graph
->node
[0].coincident
[i
])
6379 return i
- graph
->band_start
;
6382 /* Should the clusters be merged based on the cluster schedule
6383 * in the current (and only) band of "merge_graph", given that
6384 * coincidence should be maximized?
6386 * If the number of coincident schedule dimensions in the merged band
6387 * would be less than the maximal number of coincident schedule dimensions
6388 * in any of the merged clusters, then the clusters should not be merged.
6390 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
6391 struct isl_sched_graph
*merge_graph
)
6398 for (i
= 0; i
< c
->n
; ++i
) {
6399 if (!c
->scc_in_merge
[i
])
6401 n_coincident
= get_n_coincident(&c
->scc
[i
]);
6402 if (n_coincident
> max_coincident
)
6403 max_coincident
= n_coincident
;
6406 n_coincident
= get_n_coincident(merge_graph
);
6408 return n_coincident
>= max_coincident
;
6411 /* Return the transformation on "node" expressed by the current (and only)
6412 * band of "merge_graph" applied to the clusters in "c".
6414 * First find the representation of "node" in its SCC in "c" and
6415 * extract the transformation expressed by the current band.
6416 * Then extract the transformation applied by "merge_graph"
6417 * to the cluster to which this SCC belongs.
6418 * Combine the two to obtain the complete transformation on the node.
6420 * Note that the range of the first transformation is an anonymous space,
6421 * while the domain of the second is named "cluster_X". The range
6422 * of the former therefore needs to be adjusted before the two
6425 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
6426 struct isl_sched_node
*node
, struct isl_clustering
*c
,
6427 struct isl_sched_graph
*merge_graph
)
6429 struct isl_sched_node
*scc_node
, *cluster_node
;
6433 isl_multi_aff
*ma
, *ma2
;
6435 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
6436 if (scc_node
&& !is_node(&c
->scc
[node
->scc
], scc_node
))
6437 isl_die(ctx
, isl_error_internal
, "unable to find node",
6439 start
= c
->scc
[node
->scc
].band_start
;
6440 n
= c
->scc
[node
->scc
].n_total_row
- start
;
6441 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
6442 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
6443 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
6444 if (cluster_node
&& !is_node(merge_graph
, cluster_node
))
6445 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
6446 space
= isl_space_free(space
));
6447 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
6448 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
6449 isl_space_free(space
);
6450 n
= merge_graph
->n_total_row
;
6451 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
6452 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
6454 return isl_map_from_multi_aff(ma
);
6457 /* Give a set of distances "set", are they bounded by a small constant
6458 * in direction "pos"?
6459 * In practice, check if they are bounded by 2 by checking that there
6460 * are no elements with a value greater than or equal to 3 or
6461 * smaller than or equal to -3.
6463 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
6469 return isl_bool_error
;
6471 test
= isl_set_copy(set
);
6472 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
6473 bounded
= isl_set_is_empty(test
);
6476 if (bounded
< 0 || !bounded
)
6479 test
= isl_set_copy(set
);
6480 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
6481 bounded
= isl_set_is_empty(test
);
6487 /* Does the set "set" have a fixed (but possible parametric) value
6488 * at dimension "pos"?
6490 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
6496 return isl_bool_error
;
6497 set
= isl_set_copy(set
);
6498 n
= isl_set_dim(set
, isl_dim_set
);
6499 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
6500 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
6501 single
= isl_set_is_singleton(set
);
6507 /* Does "map" have a fixed (but possible parametric) value
6508 * at dimension "pos" of either its domain or its range?
6510 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
6515 set
= isl_map_domain(isl_map_copy(map
));
6516 single
= has_single_value(set
, pos
);
6519 if (single
< 0 || single
)
6522 set
= isl_map_range(isl_map_copy(map
));
6523 single
= has_single_value(set
, pos
);
6529 /* Does the edge "edge" from "graph" have bounded dependence distances
6530 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6532 * Extract the complete transformations of the source and destination
6533 * nodes of the edge, apply them to the edge constraints and
6534 * compute the differences. Finally, check if these differences are bounded
6535 * in each direction.
6537 * If the dimension of the band is greater than the number of
6538 * dimensions that can be expected to be optimized by the edge
6539 * (based on its weight), then also allow the differences to be unbounded
6540 * in the remaining dimensions, but only if either the source or
6541 * the destination has a fixed value in that direction.
6542 * This allows a statement that produces values that are used by
6543 * several instances of another statement to be merged with that
6545 * However, merging such clusters will introduce an inherently
6546 * large proximity distance inside the merged cluster, meaning
6547 * that proximity distances will no longer be optimized in
6548 * subsequent merges. These merges are therefore only allowed
6549 * after all other possible merges have been tried.
6550 * The first time such a merge is encountered, the weight of the edge
6551 * is replaced by a negative weight. The second time (i.e., after
6552 * all merges over edges with a non-negative weight have been tried),
6553 * the merge is allowed.
6555 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
6556 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6557 struct isl_sched_graph
*merge_graph
)
6564 map
= isl_map_copy(edge
->map
);
6565 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
6566 map
= isl_map_apply_domain(map
, t
);
6567 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
6568 map
= isl_map_apply_range(map
, t
);
6569 dist
= isl_map_deltas(isl_map_copy(map
));
6571 bounded
= isl_bool_true
;
6572 n
= isl_set_dim(dist
, isl_dim_set
);
6573 n_slack
= n
- edge
->weight
;
6574 if (edge
->weight
< 0)
6575 n_slack
-= graph
->max_weight
+ 1;
6576 for (i
= 0; i
< n
; ++i
) {
6577 isl_bool bounded_i
, singular_i
;
6579 bounded_i
= distance_is_bounded(dist
, i
);
6584 if (edge
->weight
>= 0)
6585 bounded
= isl_bool_false
;
6589 singular_i
= has_singular_src_or_dst(map
, i
);
6594 bounded
= isl_bool_false
;
6597 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
6598 edge
->weight
-= graph
->max_weight
+ 1;
6606 return isl_bool_error
;
6609 /* Should the clusters be merged based on the cluster schedule
6610 * in the current (and only) band of "merge_graph"?
6611 * "graph" is the original dependence graph, while "c" records
6612 * which SCCs are involved in the latest merge.
6614 * In particular, is there at least one proximity constraint
6615 * that is optimized by the merge?
6617 * A proximity constraint is considered to be optimized
6618 * if the dependence distances are small.
6620 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
6621 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6622 struct isl_sched_graph
*merge_graph
)
6626 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6627 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6630 if (!is_proximity(edge
))
6632 if (!c
->scc_in_merge
[edge
->src
->scc
])
6634 if (!c
->scc_in_merge
[edge
->dst
->scc
])
6636 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6637 c
->scc_cluster
[edge
->src
->scc
])
6639 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
6641 if (bounded
< 0 || bounded
)
6645 return isl_bool_false
;
6648 /* Should the clusters be merged based on the cluster schedule
6649 * in the current (and only) band of "merge_graph"?
6650 * "graph" is the original dependence graph, while "c" records
6651 * which SCCs are involved in the latest merge.
6653 * If the current band is empty, then the clusters should not be merged.
6655 * If the band depth should be maximized and the merge schedule
6656 * is incomplete (meaning that the dimension of some of the schedule
6657 * bands in the original schedule will be reduced), then the clusters
6658 * should not be merged.
6660 * If the schedule_maximize_coincidence option is set, then check that
6661 * the number of coincident schedule dimensions is not reduced.
6663 * Finally, only allow the merge if at least one proximity
6664 * constraint is optimized.
6666 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6667 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6669 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
6670 return isl_bool_false
;
6672 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
6673 merge_graph
->n_total_row
< merge_graph
->maxvar
)
6674 return isl_bool_false
;
6676 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
6679 ok
= ok_to_merge_coincident(c
, merge_graph
);
6684 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
6687 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6688 * of the schedule in "node" and return the result.
6690 * That is, essentially compute
6692 * T * N(first:first+n-1)
6694 * taking into account the constant term and the parameter coefficients
6697 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
6698 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
6703 int n_row
, n_col
, n_param
, n_var
;
6705 n_param
= node
->nparam
;
6707 n_row
= isl_mat_rows(t_node
->sched
);
6708 n_col
= isl_mat_cols(node
->sched
);
6709 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
6712 for (i
= 0; i
< n_row
; ++i
) {
6713 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
6714 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
6715 for (j
= 0; j
< n
; ++j
)
6716 isl_seq_addmul(t
->row
[i
],
6717 t_node
->sched
->row
[i
][1 + n_param
+ j
],
6718 node
->sched
->row
[first
+ j
],
6719 1 + n_param
+ n_var
);
6724 /* Apply the cluster schedule in "t_node" to the current band
6725 * schedule of the nodes in "graph".
6727 * In particular, replace the rows starting at band_start
6728 * by the result of applying the cluster schedule in "t_node"
6729 * to the original rows.
6731 * The coincidence of the schedule is determined by the coincidence
6732 * of the cluster schedule.
6734 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6735 struct isl_sched_node
*t_node
)
6741 start
= graph
->band_start
;
6742 n
= graph
->n_total_row
- start
;
6744 n_new
= isl_mat_rows(t_node
->sched
);
6745 for (i
= 0; i
< graph
->n
; ++i
) {
6746 struct isl_sched_node
*node
= &graph
->node
[i
];
6749 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
6750 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
6751 node
->sched
= isl_mat_concat(node
->sched
, t
);
6752 node
->sched_map
= isl_map_free(node
->sched_map
);
6754 return isl_stat_error
;
6755 for (j
= 0; j
< n_new
; ++j
)
6756 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
6758 graph
->n_total_row
-= n
;
6760 graph
->n_total_row
+= n_new
;
6761 graph
->n_row
+= n_new
;
6766 /* Merge the clusters marked for merging in "c" into a single
6767 * cluster using the cluster schedule in the current band of "merge_graph".
6768 * The representative SCC for the new cluster is the SCC with
6769 * the smallest index.
6771 * The current band schedule of each SCC in the new cluster is obtained
6772 * by applying the schedule of the corresponding original cluster
6773 * to the original band schedule.
6774 * All SCCs in the new cluster have the same number of schedule rows.
6776 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
6777 struct isl_sched_graph
*merge_graph
)
6783 for (i
= 0; i
< c
->n
; ++i
) {
6784 struct isl_sched_node
*node
;
6786 if (!c
->scc_in_merge
[i
])
6790 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
6791 node
= graph_find_node(ctx
, merge_graph
, space
);
6792 isl_space_free(space
);
6794 return isl_stat_error
;
6795 if (!is_node(merge_graph
, node
))
6796 isl_die(ctx
, isl_error_internal
,
6797 "unable to find cluster",
6798 return isl_stat_error
);
6799 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
6800 return isl_stat_error
;
6801 c
->scc_cluster
[i
] = cluster
;
6807 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6808 * by scheduling the current cluster bands with respect to each other.
6810 * Construct a dependence graph with a space for each cluster and
6811 * with the coordinates of each space corresponding to the schedule
6812 * dimensions of the current band of that cluster.
6813 * Construct a cluster schedule in this cluster dependence graph and
6814 * apply it to the current cluster bands if it is applicable
6815 * according to ok_to_merge.
6817 * If the number of remaining schedule dimensions in a cluster
6818 * with a non-maximal current schedule dimension is greater than
6819 * the number of remaining schedule dimensions in clusters
6820 * with a maximal current schedule dimension, then restrict
6821 * the number of rows to be computed in the cluster schedule
6822 * to the minimal such non-maximal current schedule dimension.
6823 * Do this by adjusting merge_graph.maxvar.
6825 * Return isl_bool_true if the clusters have effectively been merged
6826 * into a single cluster.
6828 * Note that since the standard scheduling algorithm minimizes the maximal
6829 * distance over proximity constraints, the proximity constraints between
6830 * the merged clusters may not be optimized any further than what is
6831 * sufficient to bring the distances within the limits of the internal
6832 * proximity constraints inside the individual clusters.
6833 * It may therefore make sense to perform an additional translation step
6834 * to bring the clusters closer to each other, while maintaining
6835 * the linear part of the merging schedule found using the standard
6836 * scheduling algorithm.
6838 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6839 struct isl_clustering
*c
)
6841 struct isl_sched_graph merge_graph
= { 0 };
6844 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
6847 if (compute_maxvar(&merge_graph
) < 0)
6849 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
6851 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
6853 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
6854 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
6857 graph_free(ctx
, &merge_graph
);
6860 graph_free(ctx
, &merge_graph
);
6861 return isl_bool_error
;
6864 /* Is there any edge marked "no_merge" between two SCCs that are
6865 * about to be merged (i.e., that are set in "scc_in_merge")?
6866 * "merge_edge" is the proximity edge along which the clusters of SCCs
6867 * are going to be merged.
6869 * If there is any edge between two SCCs with a negative weight,
6870 * while the weight of "merge_edge" is non-negative, then this
6871 * means that the edge was postponed. "merge_edge" should then
6872 * also be postponed since merging along the edge with negative weight should
6873 * be postponed until all edges with non-negative weight have been tried.
6874 * Replace the weight of "merge_edge" by a negative weight as well and
6875 * tell the caller not to attempt a merge.
6877 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
6878 struct isl_sched_edge
*merge_edge
)
6882 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6883 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6885 if (!scc_in_merge
[edge
->src
->scc
])
6887 if (!scc_in_merge
[edge
->dst
->scc
])
6891 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
6892 merge_edge
->weight
-= graph
->max_weight
+ 1;
6900 /* Merge the two clusters in "c" connected by the edge in "graph"
6901 * with index "edge" into a single cluster.
6902 * If it turns out to be impossible to merge these two clusters,
6903 * then mark the edge as "no_merge" such that it will not be
6906 * First mark all SCCs that need to be merged. This includes the SCCs
6907 * in the two clusters, but it may also include the SCCs
6908 * of intermediate clusters.
6909 * If there is already a no_merge edge between any pair of such SCCs,
6910 * then simply mark the current edge as no_merge as well.
6911 * Likewise, if any of those edges was postponed by has_bounded_distances,
6912 * then postpone the current edge as well.
6913 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6914 * if the clusters did not end up getting merged, unless the non-merge
6915 * is due to the fact that the edge was postponed. This postponement
6916 * can be recognized by a change in weight (from non-negative to negative).
6918 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
6919 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
6922 int edge_weight
= graph
->edge
[edge
].weight
;
6924 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
6925 return isl_stat_error
;
6927 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
6928 merged
= isl_bool_false
;
6930 merged
= try_merge(ctx
, graph
, c
);
6932 return isl_stat_error
;
6933 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
6934 graph
->edge
[edge
].no_merge
= 1;
6939 /* Does "node" belong to the cluster identified by "cluster"?
6941 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
6943 return node
->cluster
== cluster
;
6946 /* Does "edge" connect two nodes belonging to the cluster
6947 * identified by "cluster"?
6949 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
6951 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
6954 /* Swap the schedule of "node1" and "node2".
6955 * Both nodes have been derived from the same node in a common parent graph.
6956 * Since the "coincident" field is shared with that node
6957 * in the parent graph, there is no need to also swap this field.
6959 static void swap_sched(struct isl_sched_node
*node1
,
6960 struct isl_sched_node
*node2
)
6965 sched
= node1
->sched
;
6966 node1
->sched
= node2
->sched
;
6967 node2
->sched
= sched
;
6969 sched_map
= node1
->sched_map
;
6970 node1
->sched_map
= node2
->sched_map
;
6971 node2
->sched_map
= sched_map
;
6974 /* Copy the current band schedule from the SCCs that form the cluster
6975 * with index "pos" to the actual cluster at position "pos".
6976 * By construction, the index of the first SCC that belongs to the cluster
6979 * The order of the nodes inside both the SCCs and the cluster
6980 * is assumed to be same as the order in the original "graph".
6982 * Since the SCC graphs will no longer be used after this function,
6983 * the schedules are actually swapped rather than copied.
6985 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
6986 struct isl_clustering
*c
, int pos
)
6990 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
6991 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
6992 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
6994 for (i
= 0; i
< graph
->n
; ++i
) {
6998 if (graph
->node
[i
].cluster
!= pos
)
7000 s
= graph
->node
[i
].scc
;
7001 k
= c
->scc_node
[s
]++;
7002 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
7003 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
7004 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
7011 /* Is there a (conditional) validity dependence from node[j] to node[i],
7012 * forcing node[i] to follow node[j] or do the nodes belong to the same
7015 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
7017 struct isl_sched_graph
*graph
= user
;
7019 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
7020 return isl_bool_true
;
7021 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
7024 /* Extract the merged clusters of SCCs in "graph", sort them, and
7025 * store them in c->clusters. Update c->scc_cluster accordingly.
7027 * First keep track of the cluster containing the SCC to which a node
7028 * belongs in the node itself.
7029 * Then extract the clusters into c->clusters, copying the current
7030 * band schedule from the SCCs that belong to the cluster.
7031 * Do this only once per cluster.
7033 * Finally, topologically sort the clusters and update c->scc_cluster
7034 * to match the new scc numbering. While the SCCs were originally
7035 * sorted already, some SCCs that depend on some other SCCs may
7036 * have been merged with SCCs that appear before these other SCCs.
7037 * A reordering may therefore be required.
7039 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
7040 struct isl_clustering
*c
)
7044 for (i
= 0; i
< graph
->n
; ++i
)
7045 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
7047 for (i
= 0; i
< graph
->scc
; ++i
) {
7048 if (c
->scc_cluster
[i
] != i
)
7050 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
7051 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
7052 return isl_stat_error
;
7053 c
->cluster
[i
].src_scc
= -1;
7054 c
->cluster
[i
].dst_scc
= -1;
7055 if (copy_partial(graph
, c
, i
) < 0)
7056 return isl_stat_error
;
7059 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
7060 return isl_stat_error
;
7061 for (i
= 0; i
< graph
->n
; ++i
)
7062 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
7067 /* Compute weights on the proximity edges of "graph" that can
7068 * be used by find_proximity to find the most appropriate
7069 * proximity edge to use to merge two clusters in "c".
7070 * The weights are also used by has_bounded_distances to determine
7071 * whether the merge should be allowed.
7072 * Store the maximum of the computed weights in graph->max_weight.
7074 * The computed weight is a measure for the number of remaining schedule
7075 * dimensions that can still be completely aligned.
7076 * In particular, compute the number of equalities between
7077 * input dimensions and output dimensions in the proximity constraints.
7078 * The directions that are already handled by outer schedule bands
7079 * are projected out prior to determining this number.
7081 * Edges that will never be considered by find_proximity are ignored.
7083 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
7084 struct isl_clustering
*c
)
7088 graph
->max_weight
= 0;
7090 for (i
= 0; i
< graph
->n_edge
; ++i
) {
7091 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
7092 struct isl_sched_node
*src
= edge
->src
;
7093 struct isl_sched_node
*dst
= edge
->dst
;
7094 isl_basic_map
*hull
;
7098 prox
= is_non_empty_proximity(edge
);
7100 return isl_stat_error
;
7103 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
7104 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
7106 if (c
->scc_cluster
[edge
->dst
->scc
] ==
7107 c
->scc_cluster
[edge
->src
->scc
])
7110 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
7111 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
7112 isl_mat_copy(src
->vmap
));
7113 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
7114 isl_mat_copy(dst
->vmap
));
7115 hull
= isl_basic_map_project_out(hull
,
7116 isl_dim_in
, 0, src
->rank
);
7117 hull
= isl_basic_map_project_out(hull
,
7118 isl_dim_out
, 0, dst
->rank
);
7119 hull
= isl_basic_map_remove_divs(hull
);
7120 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
7121 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
7122 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7123 isl_dim_in
, 0, n_in
);
7124 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7125 isl_dim_out
, 0, n_out
);
7127 return isl_stat_error
;
7128 edge
->weight
= isl_basic_map_n_equality(hull
);
7129 isl_basic_map_free(hull
);
7131 if (edge
->weight
> graph
->max_weight
)
7132 graph
->max_weight
= edge
->weight
;
7138 /* Call compute_schedule_finish_band on each of the clusters in "c"
7139 * in their topological order. This order is determined by the scc
7140 * fields of the nodes in "graph".
7141 * Combine the results in a sequence expressing the topological order.
7143 * If there is only one cluster left, then there is no need to introduce
7144 * a sequence node. Also, in this case, the cluster necessarily contains
7145 * the SCC at position 0 in the original graph and is therefore also
7146 * stored in the first cluster of "c".
7148 static __isl_give isl_schedule_node
*finish_bands_clustering(
7149 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7150 struct isl_clustering
*c
)
7154 isl_union_set_list
*filters
;
7156 if (graph
->scc
== 1)
7157 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
7159 ctx
= isl_schedule_node_get_ctx(node
);
7161 filters
= extract_sccs(ctx
, graph
);
7162 node
= isl_schedule_node_insert_sequence(node
, filters
);
7164 for (i
= 0; i
< graph
->scc
; ++i
) {
7165 int j
= c
->scc_cluster
[i
];
7166 node
= isl_schedule_node_child(node
, i
);
7167 node
= isl_schedule_node_child(node
, 0);
7168 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
7169 node
= isl_schedule_node_parent(node
);
7170 node
= isl_schedule_node_parent(node
);
7176 /* Compute a schedule for a connected dependence graph by first considering
7177 * each strongly connected component (SCC) in the graph separately and then
7178 * incrementally combining them into clusters.
7179 * Return the updated schedule node.
7181 * Initially, each cluster consists of a single SCC, each with its
7182 * own band schedule. The algorithm then tries to merge pairs
7183 * of clusters along a proximity edge until no more suitable
7184 * proximity edges can be found. During this merging, the schedule
7185 * is maintained in the individual SCCs.
7186 * After the merging is completed, the full resulting clusters
7187 * are extracted and in finish_bands_clustering,
7188 * compute_schedule_finish_band is called on each of them to integrate
7189 * the band into "node" and to continue the computation.
7191 * compute_weights initializes the weights that are used by find_proximity.
7193 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
7194 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7197 struct isl_clustering c
;
7200 ctx
= isl_schedule_node_get_ctx(node
);
7202 if (clustering_init(ctx
, &c
, graph
) < 0)
7205 if (compute_weights(graph
, &c
) < 0)
7209 i
= find_proximity(graph
, &c
);
7212 if (i
>= graph
->n_edge
)
7214 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
7218 if (extract_clusters(ctx
, graph
, &c
) < 0)
7221 node
= finish_bands_clustering(node
, graph
, &c
);
7223 clustering_free(ctx
, &c
);
7226 clustering_free(ctx
, &c
);
7227 return isl_schedule_node_free(node
);
7230 /* Compute a schedule for a connected dependence graph and return
7231 * the updated schedule node.
7233 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7234 * as many validity dependences as possible. When all validity dependences
7235 * are satisfied we extend the schedule to a full-dimensional schedule.
7237 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7238 * depending on whether the user has selected the option to try and
7239 * compute a schedule for the entire (weakly connected) component first.
7240 * If there is only a single strongly connected component (SCC), then
7241 * there is no point in trying to combine SCCs
7242 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7243 * is called instead.
7245 static __isl_give isl_schedule_node
*compute_schedule_wcc(
7246 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7253 ctx
= isl_schedule_node_get_ctx(node
);
7254 if (detect_sccs(ctx
, graph
) < 0)
7255 return isl_schedule_node_free(node
);
7257 if (compute_maxvar(graph
) < 0)
7258 return isl_schedule_node_free(node
);
7260 if (need_feautrier_step(ctx
, graph
))
7261 return compute_schedule_wcc_feautrier(node
, graph
);
7263 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
7264 return compute_schedule_wcc_whole(node
, graph
);
7266 return compute_schedule_wcc_clustering(node
, graph
);
7269 /* Compute a schedule for each group of nodes identified by node->scc
7270 * separately and then combine them in a sequence node (or as set node
7271 * if graph->weak is set) inserted at position "node" of the schedule tree.
7272 * Return the updated schedule node.
7274 * If "wcc" is set then each of the groups belongs to a single
7275 * weakly connected component in the dependence graph so that
7276 * there is no need for compute_sub_schedule to look for weakly
7277 * connected components.
7279 * If a set node would be introduced and if the number of components
7280 * is equal to the number of nodes, then check if the schedule
7281 * is already complete. If so, a redundant set node would be introduced
7282 * (without any further descendants) stating that the statements
7283 * can be executed in arbitrary order, which is also expressed
7284 * by the absence of any node. Refrain from inserting any nodes
7285 * in this case and simply return.
7287 static __isl_give isl_schedule_node
*compute_component_schedule(
7288 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7293 isl_union_set_list
*filters
;
7298 if (graph
->weak
&& graph
->scc
== graph
->n
) {
7299 if (compute_maxvar(graph
) < 0)
7300 return isl_schedule_node_free(node
);
7301 if (graph
->n_row
>= graph
->maxvar
)
7305 ctx
= isl_schedule_node_get_ctx(node
);
7306 filters
= extract_sccs(ctx
, graph
);
7308 node
= isl_schedule_node_insert_set(node
, filters
);
7310 node
= isl_schedule_node_insert_sequence(node
, filters
);
7312 for (component
= 0; component
< graph
->scc
; ++component
) {
7313 node
= isl_schedule_node_child(node
, component
);
7314 node
= isl_schedule_node_child(node
, 0);
7315 node
= compute_sub_schedule(node
, ctx
, graph
,
7317 &edge_scc_exactly
, component
, wcc
);
7318 node
= isl_schedule_node_parent(node
);
7319 node
= isl_schedule_node_parent(node
);
7325 /* Compute a schedule for the given dependence graph and insert it at "node".
7326 * Return the updated schedule node.
7328 * We first check if the graph is connected (through validity and conditional
7329 * validity dependences) and, if not, compute a schedule
7330 * for each component separately.
7331 * If the schedule_serialize_sccs option is set, then we check for strongly
7332 * connected components instead and compute a separate schedule for
7333 * each such strongly connected component.
7335 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
7336 struct isl_sched_graph
*graph
)
7343 ctx
= isl_schedule_node_get_ctx(node
);
7344 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
7345 if (detect_sccs(ctx
, graph
) < 0)
7346 return isl_schedule_node_free(node
);
7348 if (detect_wccs(ctx
, graph
) < 0)
7349 return isl_schedule_node_free(node
);
7353 return compute_component_schedule(node
, graph
, 1);
7355 return compute_schedule_wcc(node
, graph
);
7358 /* Compute a schedule on sc->domain that respects the given schedule
7361 * In particular, the schedule respects all the validity dependences.
7362 * If the default isl scheduling algorithm is used, it tries to minimize
7363 * the dependence distances over the proximity dependences.
7364 * If Feautrier's scheduling algorithm is used, the proximity dependence
7365 * distances are only minimized during the extension to a full-dimensional
7368 * If there are any condition and conditional validity dependences,
7369 * then the conditional validity dependences may be violated inside
7370 * a tilable band, provided they have no adjacent non-local
7371 * condition dependences.
7373 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
7374 __isl_take isl_schedule_constraints
*sc
)
7376 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
7377 struct isl_sched_graph graph
= { 0 };
7378 isl_schedule
*sched
;
7379 isl_schedule_node
*node
;
7380 isl_union_set
*domain
;
7382 sc
= isl_schedule_constraints_align_params(sc
);
7384 domain
= isl_schedule_constraints_get_domain(sc
);
7385 if (isl_union_set_n_set(domain
) == 0) {
7386 isl_schedule_constraints_free(sc
);
7387 return isl_schedule_from_domain(domain
);
7390 if (graph_init(&graph
, sc
) < 0)
7391 domain
= isl_union_set_free(domain
);
7393 node
= isl_schedule_node_from_domain(domain
);
7394 node
= isl_schedule_node_child(node
, 0);
7396 node
= compute_schedule(node
, &graph
);
7397 sched
= isl_schedule_node_get_schedule(node
);
7398 isl_schedule_node_free(node
);
7400 graph_free(ctx
, &graph
);
7401 isl_schedule_constraints_free(sc
);
7406 /* Compute a schedule for the given union of domains that respects
7407 * all the validity dependences and minimizes
7408 * the dependence distances over the proximity dependences.
7410 * This function is kept for backward compatibility.
7412 __isl_give isl_schedule
*isl_union_set_compute_schedule(
7413 __isl_take isl_union_set
*domain
,
7414 __isl_take isl_union_map
*validity
,
7415 __isl_take isl_union_map
*proximity
)
7417 isl_schedule_constraints
*sc
;
7419 sc
= isl_schedule_constraints_on_domain(domain
);
7420 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
7421 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
7423 return isl_schedule_constraints_compute_schedule(sc
);