add isl_stream_read_space
[isl.git] / isl_ast_build_expr.c
blob3f6f3f5ae5457c0e9a6926e06595118a66988ef6
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/id.h>
14 #include <isl/space.h>
15 #include <isl/constraint.h>
16 #include <isl/ilp.h>
17 #include <isl/val.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
21 #include <isl_sort.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
28 * -aff + (d - 1)
30 static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
31 __isl_take isl_val *d)
33 aff = isl_aff_neg(aff);
34 aff = isl_aff_add_constant_val(aff, d);
35 aff = isl_aff_add_constant_si(aff, -1);
37 return aff;
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "cst" is the constant term of the expression in which the added term
44 * appears. It may be modified by isl_ast_expr_add_term.
46 * "v" is the coefficient of the term that is being constructed and
47 * is set internally by isl_ast_expr_add_term.
49 struct isl_ast_add_term_data {
50 isl_ast_build *build;
51 isl_val *cst;
52 isl_val *v;
55 /* Given the numerator "aff" of the argument of an integer division
56 * with denominator "d", check if it can be made non-negative over
57 * data->build->domain by stealing part of the constant term of
58 * the expression in which the integer division appears.
60 * In particular, the outer expression is of the form
62 * v * floor(aff/d) + cst
64 * We already know that "aff" itself may attain negative values.
65 * Here we check if aff + d*floor(cst/v) is non-negative, such
66 * that we could rewrite the expression to
68 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
70 * Note that aff + d*floor(cst/v) can only possibly be non-negative
71 * if data->cst and data->v have the same sign.
72 * Similarly, if floor(cst/v) is zero, then there is no point in
73 * checking again.
75 static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
76 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
78 isl_aff *shifted;
79 isl_val *shift;
80 int is_zero;
81 int non_neg;
83 if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
84 return 0;
86 shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
87 shift = isl_val_floor(shift);
88 is_zero = isl_val_is_zero(shift);
89 if (is_zero < 0 || is_zero) {
90 isl_val_free(shift);
91 return is_zero < 0 ? -1 : 0;
93 shift = isl_val_mul(shift, isl_val_copy(d));
94 shifted = isl_aff_copy(aff);
95 shifted = isl_aff_add_constant_val(shifted, shift);
96 non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
97 isl_aff_free(shifted);
99 return non_neg;
102 /* Given the numerator "aff" of the argument of an integer division
103 * with denominator "d", steal part of the constant term of
104 * the expression in which the integer division appears to make it
105 * non-negative over data->build->domain.
107 * In particular, the outer expression is of the form
109 * v * floor(aff/d) + cst
111 * We know that "aff" itself may attain negative values,
112 * but that aff + d*floor(cst/v) is non-negative.
113 * Find the minimal positive value that we need to add to "aff"
114 * to make it positive and adjust data->cst accordingly.
115 * That is, compute the minimal value "m" of "aff" over
116 * data->build->domain and take
118 * s = ceil(-m/d)
120 * such that
122 * aff + d * s >= 0
124 * and rewrite the expression to
126 * v * floor((aff + s*d)/d) + (cst - v*s)
128 static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
129 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
131 isl_set *domain;
132 isl_val *shift, *t;
134 domain = isl_ast_build_get_domain(data->build);
135 shift = isl_set_min_val(domain, aff);
136 isl_set_free(domain);
138 shift = isl_val_neg(shift);
139 shift = isl_val_div(shift, isl_val_copy(d));
140 shift = isl_val_ceil(shift);
142 t = isl_val_copy(shift);
143 t = isl_val_mul(t, isl_val_copy(data->v));
144 data->cst = isl_val_sub(data->cst, t);
146 shift = isl_val_mul(shift, isl_val_copy(d));
147 return isl_aff_add_constant_val(aff, shift);
150 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
151 * The result is simplified in terms of data->build->domain.
152 * This function may change (the sign of) data->v.
154 * "ls" is known to be non-NULL.
156 * Let the div be of the form floor(e/d).
157 * If the ast_build_prefer_pdiv option is set then we check if "e"
158 * is non-negative, so that we can generate
160 * (pdiv_q, expr(e), expr(d))
162 * instead of
164 * (fdiv_q, expr(e), expr(d))
166 * If the ast_build_prefer_pdiv option is set and
167 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
168 * If so, we can rewrite
170 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
172 * and still use pdiv_q, while changing the sign of data->v.
174 * Otherwise, we check if
176 * e + d*floor(cst/v)
178 * is non-negative and if so, replace floor(e/d) by
180 * floor((e + s*d)/d) - s
182 * with s the minimal shift that makes the argument non-negative.
184 static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
185 __isl_keep isl_local_space *ls, int pos)
187 isl_ctx *ctx = isl_local_space_get_ctx(ls);
188 isl_aff *aff;
189 isl_ast_expr *num, *den;
190 isl_val *d;
191 enum isl_ast_expr_op_type type;
193 aff = isl_local_space_get_div(ls, pos);
194 d = isl_aff_get_denominator_val(aff);
195 aff = isl_aff_scale_val(aff, isl_val_copy(d));
196 den = isl_ast_expr_from_val(isl_val_copy(d));
198 type = isl_ast_expr_op_fdiv_q;
199 if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
200 int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
201 if (non_neg >= 0 && !non_neg) {
202 isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
203 isl_val_copy(d));
204 non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
205 if (non_neg >= 0 && non_neg) {
206 data->v = isl_val_neg(data->v);
207 isl_aff_free(aff);
208 aff = opp;
209 } else
210 isl_aff_free(opp);
212 if (non_neg >= 0 && !non_neg) {
213 non_neg = is_non_neg_after_stealing(aff, d, data);
214 if (non_neg >= 0 && non_neg)
215 aff = steal_from_cst(aff, d, data);
217 if (non_neg < 0)
218 aff = isl_aff_free(aff);
219 else if (non_neg)
220 type = isl_ast_expr_op_pdiv_q;
223 isl_val_free(d);
224 num = isl_ast_expr_from_aff(aff, data->build);
225 return isl_ast_expr_alloc_binary(type, num, den);
228 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
229 * The result is simplified in terms of data->build->domain.
230 * This function may change (the sign of) data->v.
232 * The isl_ast_expr is constructed based on the type of the dimension.
233 * - divs are constructed by var_div
234 * - set variables are constructed from the iterator isl_ids in data->build
235 * - parameters are constructed from the isl_ids in "ls"
237 static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
238 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
240 isl_ctx *ctx = isl_local_space_get_ctx(ls);
241 isl_id *id;
243 if (type == isl_dim_div)
244 return var_div(data, ls, pos);
246 if (type == isl_dim_set) {
247 id = isl_ast_build_get_iterator_id(data->build, pos);
248 return isl_ast_expr_from_id(id);
251 if (!isl_local_space_has_dim_id(ls, type, pos))
252 isl_die(ctx, isl_error_internal, "unnamed dimension",
253 return NULL);
254 id = isl_local_space_get_dim_id(ls, type, pos);
255 return isl_ast_expr_from_id(id);
258 /* Does "expr" represent the zero integer?
260 static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
262 if (!expr)
263 return -1;
264 if (expr->type != isl_ast_expr_int)
265 return 0;
266 return isl_val_is_zero(expr->u.v);
269 /* Create an expression representing the sum of "expr1" and "expr2",
270 * provided neither of the two expressions is identically zero.
272 static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
273 __isl_take isl_ast_expr *expr2)
275 if (!expr1 || !expr2)
276 goto error;
278 if (ast_expr_is_zero(expr1)) {
279 isl_ast_expr_free(expr1);
280 return expr2;
283 if (ast_expr_is_zero(expr2)) {
284 isl_ast_expr_free(expr2);
285 return expr1;
288 return isl_ast_expr_add(expr1, expr2);
289 error:
290 isl_ast_expr_free(expr1);
291 isl_ast_expr_free(expr2);
292 return NULL;
295 /* Subtract expr2 from expr1.
297 * If expr2 is zero, we simply return expr1.
298 * If expr1 is zero, we return
300 * (isl_ast_expr_op_minus, expr2)
302 * Otherwise, we return
304 * (isl_ast_expr_op_sub, expr1, expr2)
306 static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
307 __isl_take isl_ast_expr *expr2)
309 if (!expr1 || !expr2)
310 goto error;
312 if (ast_expr_is_zero(expr2)) {
313 isl_ast_expr_free(expr2);
314 return expr1;
317 if (ast_expr_is_zero(expr1)) {
318 isl_ast_expr_free(expr1);
319 return isl_ast_expr_neg(expr2);
322 return isl_ast_expr_sub(expr1, expr2);
323 error:
324 isl_ast_expr_free(expr1);
325 isl_ast_expr_free(expr2);
326 return NULL;
329 /* Return an isl_ast_expr that represents
331 * v * (aff mod d)
333 * v is assumed to be non-negative.
334 * The result is simplified in terms of build->domain.
336 static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
337 __isl_keep isl_aff *aff, __isl_keep isl_val *d,
338 __isl_keep isl_ast_build *build)
340 isl_ast_expr *expr;
341 isl_ast_expr *c;
343 if (!aff)
344 return NULL;
346 expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
348 c = isl_ast_expr_from_val(isl_val_copy(d));
349 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_pdiv_r, expr, c);
351 if (!isl_val_is_one(v)) {
352 c = isl_ast_expr_from_val(isl_val_copy(v));
353 expr = isl_ast_expr_mul(c, expr);
356 return expr;
359 /* Create an isl_ast_expr that scales "expr" by "v".
361 * If v is 1, we simply return expr.
362 * If v is -1, we return
364 * (isl_ast_expr_op_minus, expr)
366 * Otherwise, we return
368 * (isl_ast_expr_op_mul, expr(v), expr)
370 static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
371 __isl_take isl_val *v)
373 isl_ast_expr *c;
375 if (!expr || !v)
376 goto error;
377 if (isl_val_is_one(v)) {
378 isl_val_free(v);
379 return expr;
382 if (isl_val_is_negone(v)) {
383 isl_val_free(v);
384 expr = isl_ast_expr_neg(expr);
385 } else {
386 c = isl_ast_expr_from_val(v);
387 expr = isl_ast_expr_mul(c, expr);
390 return expr;
391 error:
392 isl_val_free(v);
393 isl_ast_expr_free(expr);
394 return NULL;
397 /* Add an expression for "*v" times the specified dimension of "ls"
398 * to expr.
399 * If the dimension is an integer division, then this function
400 * may modify data->cst in order to make the numerator non-negative.
401 * The result is simplified in terms of data->build->domain.
403 * Let e be the expression for the specified dimension,
404 * multiplied by the absolute value of "*v".
405 * If "*v" is negative, we create
407 * (isl_ast_expr_op_sub, expr, e)
409 * except when expr is trivially zero, in which case we create
411 * (isl_ast_expr_op_minus, e)
413 * instead.
415 * If "*v" is positive, we simply create
417 * (isl_ast_expr_op_add, expr, e)
420 static __isl_give isl_ast_expr *isl_ast_expr_add_term(
421 __isl_take isl_ast_expr *expr,
422 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
423 __isl_take isl_val *v, struct isl_ast_add_term_data *data)
425 isl_ast_expr *term;
427 if (!expr)
428 return NULL;
430 data->v = v;
431 term = var(data, ls, type, pos);
432 v = data->v;
434 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
435 v = isl_val_neg(v);
436 term = scale(term, v);
437 return ast_expr_sub(expr, term);
438 } else {
439 term = scale(term, v);
440 return ast_expr_add(expr, term);
444 /* Add an expression for "v" to expr.
446 static __isl_give isl_ast_expr *isl_ast_expr_add_int(
447 __isl_take isl_ast_expr *expr, __isl_take isl_val *v)
449 isl_ast_expr *expr_int;
451 if (!expr || !v)
452 goto error;
454 if (isl_val_is_zero(v)) {
455 isl_val_free(v);
456 return expr;
459 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
460 v = isl_val_neg(v);
461 expr_int = isl_ast_expr_from_val(v);
462 return ast_expr_sub(expr, expr_int);
463 } else {
464 expr_int = isl_ast_expr_from_val(v);
465 return ast_expr_add(expr, expr_int);
467 error:
468 isl_ast_expr_free(expr);
469 isl_val_free(v);
470 return NULL;
473 /* Internal data structure used inside extract_modulos.
475 * If any modulo expressions are detected in "aff", then the
476 * expression is removed from "aff" and added to either "pos" or "neg"
477 * depending on the sign of the coefficient of the modulo expression
478 * inside "aff".
480 * "add" is an expression that needs to be added to "aff" at the end of
481 * the computation. It is NULL as long as no modulos have been extracted.
483 * "i" is the position in "aff" of the div under investigation
484 * "v" is the coefficient in "aff" of the div
485 * "div" is the argument of the div, with the denominator removed
486 * "d" is the original denominator of the argument of the div
488 * "nonneg" is an affine expression that is non-negative over "build"
489 * and that can be used to extract a modulo expression from "div".
490 * In particular, if "sign" is 1, then the coefficients of "nonneg"
491 * are equal to those of "div" modulo "d". If "sign" is -1, then
492 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
493 * If "sign" is 0, then no such affine expression has been found (yet).
495 struct isl_extract_mod_data {
496 isl_ast_build *build;
497 isl_aff *aff;
499 isl_ast_expr *pos;
500 isl_ast_expr *neg;
502 isl_aff *add;
504 int i;
505 isl_val *v;
506 isl_val *d;
507 isl_aff *div;
509 isl_aff *nonneg;
510 int sign;
513 /* Does
515 * arg mod data->d
517 * represent (a special case of) a test for some linear expression
518 * being even?
520 * In particular, is it of the form
522 * (lin - 1) mod 2
526 static isl_bool is_even_test(struct isl_extract_mod_data *data,
527 __isl_keep isl_aff *arg)
529 isl_bool res;
530 isl_val *cst;
532 res = isl_val_eq_si(data->d, 2);
533 if (res < 0 || !res)
534 return res;
536 cst = isl_aff_get_constant_val(arg);
537 res = isl_val_eq_si(cst, -1);
538 isl_val_free(cst);
540 return res;
543 /* Given that data->v * div_i in data->aff is equal to
545 * f * (term - (arg mod d))
547 * with data->d * f = data->v and "arg" non-negative on data->build, add
549 * f * term
551 * to data->add and
553 * abs(f) * (arg mod d)
555 * to data->neg or data->pos depending on the sign of -f.
557 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
558 * with "lin" some linear expression, first replace
560 * f * (term - ((lin - 1) mod 2))
562 * by
564 * -f * (1 - term - (lin mod 2))
566 * These two are equal because
568 * ((lin - 1) mod 2) + (lin mod 2) = 1
570 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
572 static int extract_term_and_mod(struct isl_extract_mod_data *data,
573 __isl_take isl_aff *term, __isl_take isl_aff *arg)
575 isl_bool even;
576 isl_ast_expr *expr;
577 int s;
579 even = is_even_test(data, arg);
580 if (even < 0) {
581 arg = isl_aff_free(arg);
582 } else if (even) {
583 term = oppose_div_arg(term, isl_val_copy(data->d));
584 data->v = isl_val_neg(data->v);
585 arg = isl_aff_set_constant_si(arg, 0);
588 data->v = isl_val_div(data->v, isl_val_copy(data->d));
589 s = isl_val_sgn(data->v);
590 data->v = isl_val_abs(data->v);
591 expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
592 isl_aff_free(arg);
593 if (s > 0)
594 data->neg = ast_expr_add(data->neg, expr);
595 else
596 data->pos = ast_expr_add(data->pos, expr);
597 data->aff = isl_aff_set_coefficient_si(data->aff,
598 isl_dim_div, data->i, 0);
599 if (s < 0)
600 data->v = isl_val_neg(data->v);
601 term = isl_aff_scale_val(term, isl_val_copy(data->v));
603 if (!data->add)
604 data->add = term;
605 else
606 data->add = isl_aff_add(data->add, term);
607 if (!data->add)
608 return -1;
610 return 0;
613 /* Given that data->v * div_i in data->aff is of the form
615 * f * d * floor(div/d)
617 * with div nonnegative on data->build, rewrite it as
619 * f * (div - (div mod d)) = f * div - f * (div mod d)
621 * and add
623 * f * div
625 * to data->add and
627 * abs(f) * (div mod d)
629 * to data->neg or data->pos depending on the sign of -f.
631 static int extract_mod(struct isl_extract_mod_data *data)
633 return extract_term_and_mod(data, isl_aff_copy(data->div),
634 isl_aff_copy(data->div));
637 /* Given that data->v * div_i in data->aff is of the form
639 * f * d * floor(div/d) (1)
641 * check if div is non-negative on data->build and, if so,
642 * extract the corresponding modulo from data->aff.
643 * If not, then check if
645 * -div + d - 1
647 * is non-negative on data->build. If so, replace (1) by
649 * -f * d * floor((-div + d - 1)/d)
651 * and extract the corresponding modulo from data->aff.
653 * This function may modify data->div.
655 static int extract_nonneg_mod(struct isl_extract_mod_data *data)
657 int mod;
659 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
660 if (mod < 0)
661 goto error;
662 if (mod)
663 return extract_mod(data);
665 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
666 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
667 if (mod < 0)
668 goto error;
669 if (mod) {
670 data->v = isl_val_neg(data->v);
671 return extract_mod(data);
674 return 0;
675 error:
676 data->aff = isl_aff_free(data->aff);
677 return -1;
680 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
681 * for use in extracting a modulo expression?
683 * We currently only consider the constant term of the affine expression.
684 * In particular, we prefer the affine expression with the smallest constant
685 * term.
686 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
687 * then we would pick x >= 0
689 * More detailed heuristics could be used if it turns out that there is a need.
691 static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
692 __isl_keep isl_constraint *c)
694 isl_val *v1, *v2;
695 int simpler;
697 if (!data->nonneg)
698 return 1;
700 v1 = isl_val_abs(isl_constraint_get_constant_val(c));
701 v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
702 simpler = isl_val_lt(v1, v2);
703 isl_val_free(v1);
704 isl_val_free(v2);
706 return simpler;
709 /* Check if the coefficients of "c" are either equal or opposite to those
710 * of data->div modulo data->d. If so, and if "c" is "simpler" than
711 * data->nonneg, then replace data->nonneg by the affine expression of "c"
712 * and set data->sign accordingly.
714 * Both "c" and data->div are assumed not to involve any integer divisions.
716 * Before we start the actual comparison, we first quickly check if
717 * "c" and data->div have the same non-zero coefficients.
718 * If not, then we assume that "c" is not of the desired form.
719 * Note that while the coefficients of data->div can be reasonably expected
720 * not to involve any coefficients that are multiples of d, "c" may
721 * very well involve such coefficients. This means that we may actually
722 * miss some cases.
724 * If the constant term is "too large", then the constraint is rejected,
725 * where "too large" is fairly arbitrarily set to 1 << 15.
726 * We do this to avoid picking up constraints that bound a variable
727 * by a very large number, say the largest or smallest possible
728 * variable in the representation of some integer type.
730 static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
731 void *user)
733 struct isl_extract_mod_data *data = user;
734 enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
735 enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
736 int i, t;
737 isl_size n[2];
738 int parallel = 1, opposite = 1;
740 for (t = 0; t < 2; ++t) {
741 n[t] = isl_constraint_dim(c, c_type[t]);
742 if (n[t] < 0)
743 return isl_stat_error;
744 for (i = 0; i < n[t]; ++i) {
745 int a, b;
747 a = isl_constraint_involves_dims(c, c_type[t], i, 1);
748 b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
749 if (a != b)
750 parallel = opposite = 0;
754 if (parallel || opposite) {
755 isl_val *v;
757 v = isl_val_abs(isl_constraint_get_constant_val(c));
758 if (isl_val_cmp_si(v, 1 << 15) > 0)
759 parallel = opposite = 0;
760 isl_val_free(v);
763 for (t = 0; t < 2; ++t) {
764 for (i = 0; i < n[t]; ++i) {
765 isl_val *v1, *v2;
767 if (!parallel && !opposite)
768 break;
769 v1 = isl_constraint_get_coefficient_val(c,
770 c_type[t], i);
771 v2 = isl_aff_get_coefficient_val(data->div,
772 a_type[t], i);
773 if (parallel) {
774 v1 = isl_val_sub(v1, isl_val_copy(v2));
775 parallel = isl_val_is_divisible_by(v1, data->d);
776 v1 = isl_val_add(v1, isl_val_copy(v2));
778 if (opposite) {
779 v1 = isl_val_add(v1, isl_val_copy(v2));
780 opposite = isl_val_is_divisible_by(v1, data->d);
782 isl_val_free(v1);
783 isl_val_free(v2);
787 if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
788 isl_aff_free(data->nonneg);
789 data->nonneg = isl_constraint_get_aff(c);
790 data->sign = parallel ? 1 : -1;
793 isl_constraint_free(c);
795 if (data->sign != 0 && data->nonneg == NULL)
796 return isl_stat_error;
798 return isl_stat_ok;
801 /* Given that data->v * div_i in data->aff is of the form
803 * f * d * floor(div/d) (1)
805 * see if we can find an expression div' that is non-negative over data->build
806 * and that is related to div through
808 * div' = div + d * e
810 * or
812 * div' = -div + d - 1 + d * e
814 * with e some affine expression.
815 * If so, we write (1) as
817 * f * div + f * (div' mod d)
819 * or
821 * -f * (-div + d - 1) - f * (div' mod d)
823 * exploiting (in the second case) the fact that
825 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
828 * We first try to find an appropriate expression for div'
829 * from the constraints of data->build->domain (which is therefore
830 * guaranteed to be non-negative on data->build), where we remove
831 * any integer divisions from the constraints and skip this step
832 * if "div" itself involves any integer divisions.
833 * If we cannot find an appropriate expression this way, then
834 * we pass control to extract_nonneg_mod where check
835 * if div or "-div + d -1" themselves happen to be
836 * non-negative on data->build.
838 * While looking for an appropriate constraint in data->build->domain,
839 * we ignore the constant term, so after finding such a constraint,
840 * we still need to fix up the constant term.
841 * In particular, if a is the constant term of "div"
842 * (or d - 1 - the constant term of "div" if data->sign < 0)
843 * and b is the constant term of the constraint, then we need to find
844 * a non-negative constant c such that
846 * b + c \equiv a mod d
848 * We therefore take
850 * c = (a - b) mod d
852 * and add it to b to obtain the constant term of div'.
853 * If this constant term is "too negative", then we add an appropriate
854 * multiple of d to make it positive.
857 * Note that the above is only a very simple heuristic for finding an
858 * appropriate expression. We could try a bit harder by also considering
859 * sums of constraints that involve disjoint sets of variables or
860 * we could consider arbitrary linear combinations of constraints,
861 * although that could potentially be much more expensive as it involves
862 * the solution of an LP problem.
864 * In particular, if v_i is a column vector representing constraint i,
865 * w represents div and e_i is the i-th unit vector, then we are looking
866 * for a solution of the constraints
868 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
870 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
871 * If we are not just interested in a non-negative expression, but
872 * also in one with a minimal range, then we don't just want
873 * c = \sum_i lambda_i v_i to be non-negative over the domain,
874 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
875 * that we want to minimize and we now also have to take into account
876 * the constant terms of the constraints.
877 * Alternatively, we could first compute the dual of the domain
878 * and plug in the constraints on the coefficients.
880 static int try_extract_mod(struct isl_extract_mod_data *data)
882 isl_basic_set *hull;
883 isl_val *v1, *v2;
884 isl_stat r;
885 isl_size n;
887 if (!data->build)
888 goto error;
890 n = isl_aff_dim(data->div, isl_dim_div);
891 if (n < 0)
892 goto error;
894 if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
895 return extract_nonneg_mod(data);
897 hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
898 hull = isl_basic_set_remove_divs(hull);
899 data->sign = 0;
900 data->nonneg = NULL;
901 r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
902 data);
903 isl_basic_set_free(hull);
905 if (!data->sign || r < 0) {
906 isl_aff_free(data->nonneg);
907 if (r < 0)
908 goto error;
909 return extract_nonneg_mod(data);
912 v1 = isl_aff_get_constant_val(data->div);
913 v2 = isl_aff_get_constant_val(data->nonneg);
914 if (data->sign < 0) {
915 v1 = isl_val_neg(v1);
916 v1 = isl_val_add(v1, isl_val_copy(data->d));
917 v1 = isl_val_sub_ui(v1, 1);
919 v1 = isl_val_sub(v1, isl_val_copy(v2));
920 v1 = isl_val_mod(v1, isl_val_copy(data->d));
921 v1 = isl_val_add(v1, v2);
922 v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
923 v2 = isl_val_ceil(v2);
924 if (isl_val_is_neg(v2)) {
925 v2 = isl_val_mul(v2, isl_val_copy(data->d));
926 v1 = isl_val_sub(v1, isl_val_copy(v2));
928 data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
929 isl_val_free(v2);
931 if (data->sign < 0) {
932 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
933 data->v = isl_val_neg(data->v);
936 return extract_term_and_mod(data,
937 isl_aff_copy(data->div), data->nonneg);
938 error:
939 data->aff = isl_aff_free(data->aff);
940 return -1;
943 /* Check if "data->aff" involves any (implicit) modulo computations based
944 * on div "data->i".
945 * If so, remove them from aff and add expressions corresponding
946 * to those modulo computations to data->pos and/or data->neg.
948 * "aff" is assumed to be an integer affine expression.
950 * In particular, check if (v * div_j) is of the form
952 * f * m * floor(a / m)
954 * and, if so, rewrite it as
956 * f * (a - (a mod m)) = f * a - f * (a mod m)
958 * and extract out -f * (a mod m).
959 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
960 * If f < 0, we add ((-f) * (a mod m)) to *pos.
962 * Note that in order to represent "a mod m" as
964 * (isl_ast_expr_op_pdiv_r, a, m)
966 * we need to make sure that a is non-negative.
967 * If not, we check if "-a + m - 1" is non-negative.
968 * If so, we can rewrite
970 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
972 * and still extract a modulo.
974 static int extract_modulo(struct isl_extract_mod_data *data)
976 data->div = isl_aff_get_div(data->aff, data->i);
977 data->d = isl_aff_get_denominator_val(data->div);
978 if (isl_val_is_divisible_by(data->v, data->d)) {
979 data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
980 if (try_extract_mod(data) < 0)
981 data->aff = isl_aff_free(data->aff);
983 isl_aff_free(data->div);
984 isl_val_free(data->d);
985 return 0;
988 /* Check if "aff" involves any (implicit) modulo computations.
989 * If so, remove them from aff and add expressions corresponding
990 * to those modulo computations to *pos and/or *neg.
991 * We only do this if the option ast_build_prefer_pdiv is set.
993 * "aff" is assumed to be an integer affine expression.
995 * A modulo expression is of the form
997 * a mod m = a - m * floor(a / m)
999 * To detect them in aff, we look for terms of the form
1001 * f * m * floor(a / m)
1003 * rewrite them as
1005 * f * (a - (a mod m)) = f * a - f * (a mod m)
1007 * and extract out -f * (a mod m).
1008 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1009 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1011 static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
1012 __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
1013 __isl_keep isl_ast_build *build)
1015 struct isl_extract_mod_data data = { build, aff, *pos, *neg };
1016 isl_ctx *ctx;
1017 isl_size n;
1019 if (!aff)
1020 return NULL;
1022 ctx = isl_aff_get_ctx(aff);
1023 if (!isl_options_get_ast_build_prefer_pdiv(ctx))
1024 return aff;
1026 n = isl_aff_dim(data.aff, isl_dim_div);
1027 if (n < 0)
1028 return isl_aff_free(aff);
1029 for (data.i = 0; data.i < n; ++data.i) {
1030 data.v = isl_aff_get_coefficient_val(data.aff,
1031 isl_dim_div, data.i);
1032 if (!data.v)
1033 return isl_aff_free(aff);
1034 if (isl_val_is_zero(data.v) ||
1035 isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
1036 isl_val_free(data.v);
1037 continue;
1039 if (extract_modulo(&data) < 0)
1040 data.aff = isl_aff_free(data.aff);
1041 isl_val_free(data.v);
1042 if (!data.aff)
1043 break;
1046 if (data.add)
1047 data.aff = isl_aff_add(data.aff, data.add);
1049 *pos = data.pos;
1050 *neg = data.neg;
1051 return data.aff;
1054 /* Check if aff involves any non-integer coefficients.
1055 * If so, split aff into
1057 * aff = aff1 + (aff2 / d)
1059 * with both aff1 and aff2 having only integer coefficients.
1060 * Return aff1 and add (aff2 / d) to *expr.
1062 static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
1063 __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
1065 int i, j;
1066 isl_size n;
1067 isl_aff *rat = NULL;
1068 isl_local_space *ls = NULL;
1069 isl_ast_expr *rat_expr;
1070 isl_val *v, *d;
1071 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1072 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1074 if (!aff)
1075 return NULL;
1076 d = isl_aff_get_denominator_val(aff);
1077 if (!d)
1078 goto error;
1079 if (isl_val_is_one(d)) {
1080 isl_val_free(d);
1081 return aff;
1084 aff = isl_aff_scale_val(aff, isl_val_copy(d));
1086 ls = isl_aff_get_domain_local_space(aff);
1087 rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1089 for (i = 0; i < 3; ++i) {
1090 n = isl_aff_dim(aff, t[i]);
1091 if (n < 0)
1092 goto error;
1093 for (j = 0; j < n; ++j) {
1094 isl_aff *rat_j;
1096 v = isl_aff_get_coefficient_val(aff, t[i], j);
1097 if (!v)
1098 goto error;
1099 if (isl_val_is_divisible_by(v, d)) {
1100 isl_val_free(v);
1101 continue;
1103 rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
1104 l[i], j);
1105 rat_j = isl_aff_scale_val(rat_j, v);
1106 rat = isl_aff_add(rat, rat_j);
1110 v = isl_aff_get_constant_val(aff);
1111 if (isl_val_is_divisible_by(v, d)) {
1112 isl_val_free(v);
1113 } else {
1114 isl_aff *rat_0;
1116 rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
1117 rat = isl_aff_add(rat, rat_0);
1120 isl_local_space_free(ls);
1122 aff = isl_aff_sub(aff, isl_aff_copy(rat));
1123 aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
1125 rat_expr = isl_ast_expr_from_aff(rat, build);
1126 rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
1127 *expr = ast_expr_add(*expr, rat_expr);
1129 return aff;
1130 error:
1131 isl_aff_free(rat);
1132 isl_local_space_free(ls);
1133 isl_aff_free(aff);
1134 isl_val_free(d);
1135 return NULL;
1138 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1139 * The result is simplified in terms of build->domain.
1141 * We first extract hidden modulo computations from the affine expression
1142 * and then add terms for each variable with a non-zero coefficient.
1143 * Finally, if the affine expression has a non-trivial denominator,
1144 * we divide the resulting isl_ast_expr by this denominator.
1146 __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
1147 __isl_keep isl_ast_build *build)
1149 int i, j;
1150 isl_size n;
1151 isl_val *v;
1152 isl_ctx *ctx = isl_aff_get_ctx(aff);
1153 isl_ast_expr *expr, *expr_neg;
1154 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1155 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1156 isl_local_space *ls;
1157 struct isl_ast_add_term_data data;
1159 if (!aff)
1160 return NULL;
1162 expr = isl_ast_expr_alloc_int_si(ctx, 0);
1163 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1165 aff = extract_rational(aff, &expr, build);
1167 aff = extract_modulos(aff, &expr, &expr_neg, build);
1168 expr = ast_expr_sub(expr, expr_neg);
1170 ls = isl_aff_get_domain_local_space(aff);
1172 data.build = build;
1173 data.cst = isl_aff_get_constant_val(aff);
1174 for (i = 0; i < 3; ++i) {
1175 n = isl_aff_dim(aff, t[i]);
1176 if (n < 0)
1177 expr = isl_ast_expr_free(expr);
1178 for (j = 0; j < n; ++j) {
1179 v = isl_aff_get_coefficient_val(aff, t[i], j);
1180 if (!v)
1181 expr = isl_ast_expr_free(expr);
1182 if (isl_val_is_zero(v)) {
1183 isl_val_free(v);
1184 continue;
1186 expr = isl_ast_expr_add_term(expr,
1187 ls, l[i], j, v, &data);
1191 expr = isl_ast_expr_add_int(expr, data.cst);
1193 isl_local_space_free(ls);
1194 isl_aff_free(aff);
1195 return expr;
1198 /* Add terms to "expr" for each variable in "aff" with a coefficient
1199 * with sign equal to "sign".
1200 * The result is simplified in terms of data->build->domain.
1202 static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
1203 __isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
1205 int i, j;
1206 isl_val *v;
1207 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1208 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1209 isl_local_space *ls;
1211 ls = isl_aff_get_domain_local_space(aff);
1213 for (i = 0; i < 3; ++i) {
1214 isl_size n = isl_aff_dim(aff, t[i]);
1215 if (n < 0)
1216 expr = isl_ast_expr_free(expr);
1217 for (j = 0; j < n; ++j) {
1218 v = isl_aff_get_coefficient_val(aff, t[i], j);
1219 if (sign * isl_val_sgn(v) <= 0) {
1220 isl_val_free(v);
1221 continue;
1223 v = isl_val_abs(v);
1224 expr = isl_ast_expr_add_term(expr,
1225 ls, l[i], j, v, data);
1229 isl_local_space_free(ls);
1231 return expr;
1234 /* Should the constant term "v" be considered positive?
1236 * A positive constant will be added to "pos" by the caller,
1237 * while a negative constant will be added to "neg".
1238 * If either "pos" or "neg" is exactly zero, then we prefer
1239 * to add the constant "v" to that side, irrespective of the sign of "v".
1240 * This results in slightly shorter expressions and may reduce the risk
1241 * of overflows.
1243 static int constant_is_considered_positive(__isl_keep isl_val *v,
1244 __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
1246 if (ast_expr_is_zero(pos))
1247 return 1;
1248 if (ast_expr_is_zero(neg))
1249 return 0;
1250 return isl_val_is_pos(v);
1253 /* Check if the equality
1255 * aff = 0
1257 * represents a stride constraint on the integer division "pos".
1259 * In particular, if the integer division "pos" is equal to
1261 * floor(e/d)
1263 * then check if aff is equal to
1265 * e - d floor(e/d)
1267 * or its opposite.
1269 * If so, the equality is exactly
1271 * e mod d = 0
1273 * Note that in principle we could also accept
1275 * e - d floor(e'/d)
1277 * where e and e' differ by a constant.
1279 static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
1281 isl_aff *div;
1282 isl_val *c, *d;
1283 int eq;
1285 div = isl_aff_get_div(aff, pos);
1286 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1287 d = isl_aff_get_denominator_val(div);
1288 eq = isl_val_abs_eq(c, d);
1289 if (eq >= 0 && eq) {
1290 aff = isl_aff_copy(aff);
1291 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1292 div = isl_aff_scale_val(div, d);
1293 if (isl_val_is_pos(c))
1294 div = isl_aff_neg(div);
1295 eq = isl_aff_plain_is_equal(div, aff);
1296 isl_aff_free(aff);
1297 } else
1298 isl_val_free(d);
1299 isl_val_free(c);
1300 isl_aff_free(div);
1302 return eq;
1305 /* Are all coefficients of "aff" (zero or) negative?
1307 static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
1309 int i;
1310 isl_size n;
1312 n = isl_aff_dim(aff, isl_dim_param);
1313 if (n < 0)
1314 return isl_bool_error;
1315 for (i = 0; i < n; ++i)
1316 if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
1317 return isl_bool_false;
1319 n = isl_aff_dim(aff, isl_dim_in);
1320 if (n < 0)
1321 return isl_bool_error;
1322 for (i = 0; i < n; ++i)
1323 if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
1324 return isl_bool_false;
1326 return isl_bool_true;
1329 /* Give an equality of the form
1331 * aff = e - d floor(e/d) = 0
1333 * or
1335 * aff = -e + d floor(e/d) = 0
1337 * with the integer division "pos" equal to floor(e/d),
1338 * construct the AST expression
1340 * (isl_ast_expr_op_eq,
1341 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1343 * If e only has negative coefficients, then construct
1345 * (isl_ast_expr_op_eq,
1346 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1348 * instead.
1350 static __isl_give isl_ast_expr *extract_stride_constraint(
1351 __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
1353 isl_bool all_neg;
1354 isl_ctx *ctx;
1355 isl_val *c;
1356 isl_ast_expr *expr, *cst;
1358 if (!aff)
1359 return NULL;
1361 ctx = isl_aff_get_ctx(aff);
1363 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1364 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1366 all_neg = all_negative_coefficients(aff);
1367 if (all_neg < 0)
1368 aff = isl_aff_free(aff);
1369 else if (all_neg)
1370 aff = isl_aff_neg(aff);
1372 cst = isl_ast_expr_from_val(isl_val_abs(c));
1373 expr = isl_ast_expr_from_aff(aff, build);
1375 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
1376 cst = isl_ast_expr_alloc_int_si(ctx, 0);
1377 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);
1379 return expr;
1382 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1383 * The result is simplified in terms of build->domain.
1385 * We first check if the constraint is an equality of the form
1387 * e - d floor(e/d) = 0
1389 * i.e.,
1391 * e mod d = 0
1393 * If so, we convert it to
1395 * (isl_ast_expr_op_eq,
1396 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1398 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1399 * We first extract hidden modulo computations from "a"
1400 * and then collect all the terms with a positive coefficient in cons_pos
1401 * and the terms with a negative coefficient in cons_neg.
1403 * The result is then of the form
1405 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1407 * or
1409 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1411 * However, if the first expression is an integer constant (and the second
1412 * is not), then we swap the two expressions. This ensures that we construct,
1413 * e.g., "i <= 5" rather than "5 >= i".
1415 * Furthermore, is there are no terms with positive coefficients (or no terms
1416 * with negative coefficients), then the constant term is added to "pos"
1417 * (or "neg"), ignoring the sign of the constant term.
1419 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
1420 __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
1422 int i;
1423 isl_size n;
1424 isl_ctx *ctx;
1425 isl_ast_expr *expr_pos;
1426 isl_ast_expr *expr_neg;
1427 isl_ast_expr *expr;
1428 isl_aff *aff;
1429 int eq;
1430 enum isl_ast_expr_op_type type;
1431 struct isl_ast_add_term_data data;
1433 if (!constraint)
1434 return NULL;
1436 aff = isl_constraint_get_aff(constraint);
1437 eq = isl_constraint_is_equality(constraint);
1438 isl_constraint_free(constraint);
1440 n = isl_aff_dim(aff, isl_dim_div);
1441 if (n < 0)
1442 aff = isl_aff_free(aff);
1443 if (eq && n > 0)
1444 for (i = 0; i < n; ++i) {
1445 int is_stride;
1446 is_stride = is_stride_constraint(aff, i);
1447 if (is_stride < 0)
1448 goto error;
1449 if (is_stride)
1450 return extract_stride_constraint(aff, i, build);
1453 ctx = isl_aff_get_ctx(aff);
1454 expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
1455 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1457 aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
1459 data.build = build;
1460 data.cst = isl_aff_get_constant_val(aff);
1461 expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
1462 data.cst = isl_val_neg(data.cst);
1463 expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
1464 data.cst = isl_val_neg(data.cst);
1466 if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
1467 expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
1468 } else {
1469 data.cst = isl_val_neg(data.cst);
1470 expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
1473 if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
1474 isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
1475 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
1476 expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
1477 } else {
1478 type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
1479 expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
1482 isl_aff_free(aff);
1483 return expr;
1484 error:
1485 isl_aff_free(aff);
1486 return NULL;
1489 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1490 * as a callback to isl_constraint_list_sort.
1491 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1492 * apart, then use isl_constraint_plain_cmp instead.
1494 static int cmp_constraint(__isl_keep isl_constraint *a,
1495 __isl_keep isl_constraint *b, void *user)
1497 int cmp;
1499 cmp = isl_constraint_cmp_last_non_zero(a, b);
1500 if (cmp != 0)
1501 return cmp;
1502 return isl_constraint_plain_cmp(a, b);
1505 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1506 * The result is simplified in terms of build->domain.
1508 * If "bset" is not bounded by any constraint, then we construct
1509 * the expression "1", i.e., "true".
1511 * Otherwise, we sort the constraints, putting constraints that involve
1512 * integer divisions after those that do not, and construct an "and"
1513 * of the ast expressions of the individual constraints.
1515 * Each constraint is added to the generated constraints of the build
1516 * after it has been converted to an AST expression so that it can be used
1517 * to simplify the following constraints. This may change the truth value
1518 * of subsequent constraints that do not satisfy the earlier constraints,
1519 * but this does not affect the outcome of the conjunction as it is
1520 * only true if all the conjuncts are true (no matter in what order
1521 * they are evaluated). In particular, the constraints that do not
1522 * involve integer divisions may serve to simplify some constraints
1523 * that do involve integer divisions.
1525 __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
1526 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
1528 int i;
1529 isl_size n;
1530 isl_constraint *c;
1531 isl_constraint_list *list;
1532 isl_ast_expr *res;
1533 isl_set *set;
1535 list = isl_basic_set_get_constraint_list(bset);
1536 isl_basic_set_free(bset);
1537 list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
1538 n = isl_constraint_list_n_constraint(list);
1539 if (n < 0)
1540 build = NULL;
1541 if (n == 0) {
1542 isl_ctx *ctx = isl_constraint_list_get_ctx(list);
1543 isl_constraint_list_free(list);
1544 return isl_ast_expr_alloc_int_si(ctx, 1);
1547 build = isl_ast_build_copy(build);
1549 c = isl_constraint_list_get_constraint(list, 0);
1550 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1551 set = isl_set_from_basic_set(bset);
1552 res = isl_ast_expr_from_constraint(c, build);
1553 build = isl_ast_build_restrict_generated(build, set);
1555 for (i = 1; i < n; ++i) {
1556 isl_ast_expr *expr;
1558 c = isl_constraint_list_get_constraint(list, i);
1559 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1560 set = isl_set_from_basic_set(bset);
1561 expr = isl_ast_expr_from_constraint(c, build);
1562 build = isl_ast_build_restrict_generated(build, set);
1563 res = isl_ast_expr_and(res, expr);
1566 isl_constraint_list_free(list);
1567 isl_ast_build_free(build);
1568 return res;
1571 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1572 * The result is simplified in terms of build->domain.
1574 * If "set" is an (obviously) empty set, then return the expression "0".
1576 * If there are multiple disjuncts in the description of the set,
1577 * then subsequent disjuncts are simplified in a context where
1578 * the previous disjuncts have been removed from build->domain.
1579 * In particular, constraints that ensure that there is no overlap
1580 * with these previous disjuncts, can be removed.
1581 * This is mostly useful for disjuncts that are only defined by
1582 * a single constraint (relative to the build domain) as the opposite
1583 * of that single constraint can then be removed from the other disjuncts.
1584 * In order not to increase the number of disjuncts in the build domain
1585 * after subtracting the previous disjuncts of "set", the simple hull
1586 * is computed after taking the difference with each of these disjuncts.
1587 * This means that constraints that prevent overlap with a union
1588 * of multiple previous disjuncts are not removed.
1590 * "set" lives in the internal schedule space.
1592 __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
1593 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1595 int i;
1596 isl_size n;
1597 isl_basic_set *bset;
1598 isl_basic_set_list *list;
1599 isl_set *domain;
1600 isl_ast_expr *res;
1602 list = isl_set_get_basic_set_list(set);
1603 isl_set_free(set);
1605 n = isl_basic_set_list_n_basic_set(list);
1606 if (n < 0)
1607 build = NULL;
1608 if (n == 0) {
1609 isl_ctx *ctx = isl_ast_build_get_ctx(build);
1610 isl_basic_set_list_free(list);
1611 return isl_ast_expr_from_val(isl_val_zero(ctx));
1614 domain = isl_ast_build_get_domain(build);
1616 bset = isl_basic_set_list_get_basic_set(list, 0);
1617 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1618 res = isl_ast_build_expr_from_basic_set(build, bset);
1620 for (i = 1; i < n; ++i) {
1621 isl_ast_expr *expr;
1622 isl_set *rest;
1624 rest = isl_set_subtract(isl_set_copy(domain), set);
1625 rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
1626 domain = isl_set_intersect(domain, rest);
1627 bset = isl_basic_set_list_get_basic_set(list, i);
1628 set = isl_set_from_basic_set(isl_basic_set_copy(bset));
1629 bset = isl_basic_set_gist(bset,
1630 isl_set_simple_hull(isl_set_copy(domain)));
1631 expr = isl_ast_build_expr_from_basic_set(build, bset);
1632 res = isl_ast_expr_or(res, expr);
1635 isl_set_free(domain);
1636 isl_set_free(set);
1637 isl_basic_set_list_free(list);
1638 return res;
1641 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1642 * The result is simplified in terms of build->domain.
1644 * If "set" is an (obviously) empty set, then return the expression "0".
1646 * "set" lives in the external schedule space.
1648 * The internal AST expression generation assumes that there are
1649 * no unknown divs, so make sure an explicit representation is available.
1650 * Since the set comes from the outside, it may have constraints that
1651 * are redundant with respect to the build domain. Remove them first.
1653 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
1654 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1656 isl_bool needs_map;
1658 needs_map = isl_ast_build_need_schedule_map(build);
1659 if (needs_map < 0) {
1660 set = isl_set_free(set);
1661 } else if (needs_map) {
1662 isl_multi_aff *ma;
1663 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1664 set = isl_set_preimage_multi_aff(set, ma);
1667 set = isl_set_compute_divs(set);
1668 set = isl_ast_build_compute_gist(build, set);
1669 return isl_ast_build_expr_from_set_internal(build, set);
1672 /* State of data about previous pieces in
1673 * isl_ast_build_expr_from_pw_aff_internal.
1675 * isl_state_none: no data about previous pieces
1676 * isl_state_single: data about a single previous piece
1677 * isl_state_min: data represents minimum of several pieces
1678 * isl_state_max: data represents maximum of several pieces
1680 enum isl_from_pw_aff_state {
1681 isl_state_none,
1682 isl_state_single,
1683 isl_state_min,
1684 isl_state_max
1687 /* Internal date structure representing a single piece in the input of
1688 * isl_ast_build_expr_from_pw_aff_internal.
1690 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1691 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1692 * single previous subpiece.
1693 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1694 * a sequence of several previous subpieces that are equal to the minimum
1695 * of the entries in "aff_list" over the union of "set_list"
1696 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1697 * a sequence of several previous subpieces that are equal to the maximum
1698 * of the entries in "aff_list" over the union of "set_list"
1700 * During the construction of the pieces, "set" is NULL.
1701 * After the construction, "set" is set to the union of the elements
1702 * in "set_list", at which point "set_list" is set to NULL.
1704 struct isl_from_pw_aff_piece {
1705 enum isl_from_pw_aff_state state;
1706 isl_set *set;
1707 isl_set_list *set_list;
1708 isl_aff_list *aff_list;
1711 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1713 * "build" specifies the domain against which the result is simplified.
1714 * "dom" is the domain of the entire isl_pw_aff.
1716 * "n" is the number of pieces constructed already.
1717 * In particular, during the construction of the pieces, "n" points to
1718 * the piece that is being constructed. After the construction of the
1719 * pieces, "n" is set to the total number of pieces.
1720 * "max" is the total number of allocated entries.
1721 * "p" contains the individual pieces.
1723 struct isl_from_pw_aff_data {
1724 isl_ast_build *build;
1725 isl_set *dom;
1727 int n;
1728 int max;
1729 struct isl_from_pw_aff_piece *p;
1732 /* Initialize "data" based on "build" and "pa".
1734 static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
1735 __isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
1737 isl_size n;
1738 isl_ctx *ctx;
1740 ctx = isl_pw_aff_get_ctx(pa);
1741 n = isl_pw_aff_n_piece(pa);
1742 if (n < 0)
1743 return isl_stat_error;
1744 if (n == 0)
1745 isl_die(ctx, isl_error_invalid,
1746 "cannot handle void expression", return isl_stat_error);
1747 data->max = n;
1748 data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
1749 if (!data->p)
1750 return isl_stat_error;
1751 data->build = build;
1752 data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1753 data->n = 0;
1755 return isl_stat_ok;
1758 /* Free all memory allocated for "data".
1760 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
1762 int i;
1764 isl_set_free(data->dom);
1765 if (!data->p)
1766 return;
1768 for (i = 0; i < data->max; ++i) {
1769 isl_set_free(data->p[i].set);
1770 isl_set_list_free(data->p[i].set_list);
1771 isl_aff_list_free(data->p[i].aff_list);
1773 free(data->p);
1776 /* Initialize the current entry of "data" to an unused piece.
1778 static void set_none(struct isl_from_pw_aff_data *data)
1780 data->p[data->n].state = isl_state_none;
1781 data->p[data->n].set_list = NULL;
1782 data->p[data->n].aff_list = NULL;
1785 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1787 static void set_single(struct isl_from_pw_aff_data *data,
1788 __isl_take isl_set *set, __isl_take isl_aff *aff)
1790 data->p[data->n].state = isl_state_single;
1791 data->p[data->n].set_list = isl_set_list_from_set(set);
1792 data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
1795 /* Extend the current entry of "data" with "set" and "aff"
1796 * as a minimum expression.
1798 static isl_stat extend_min(struct isl_from_pw_aff_data *data,
1799 __isl_take isl_set *set, __isl_take isl_aff *aff)
1801 int n = data->n;
1802 data->p[n].state = isl_state_min;
1803 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1804 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1806 if (!data->p[n].set_list || !data->p[n].aff_list)
1807 return isl_stat_error;
1808 return isl_stat_ok;
1811 /* Extend the current entry of "data" with "set" and "aff"
1812 * as a maximum expression.
1814 static isl_stat extend_max(struct isl_from_pw_aff_data *data,
1815 __isl_take isl_set *set, __isl_take isl_aff *aff)
1817 int n = data->n;
1818 data->p[n].state = isl_state_max;
1819 data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
1820 data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
1822 if (!data->p[n].set_list || !data->p[n].aff_list)
1823 return isl_stat_error;
1824 return isl_stat_ok;
1827 /* Extend the domain of the current entry of "data", which is assumed
1828 * to contain a single subpiece, with "set". If "replace" is set,
1829 * then also replace the affine function by "aff". Otherwise,
1830 * simply free "aff".
1832 static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
1833 __isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
1835 int n = data->n;
1836 isl_set *set_n;
1838 set_n = isl_set_list_get_set(data->p[n].set_list, 0);
1839 set_n = isl_set_union(set_n, set);
1840 data->p[n].set_list =
1841 isl_set_list_set_set(data->p[n].set_list, 0, set_n);
1843 if (replace)
1844 data->p[n].aff_list =
1845 isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
1846 else
1847 isl_aff_free(aff);
1849 if (!data->p[n].set_list || !data->p[n].aff_list)
1850 return isl_stat_error;
1851 return isl_stat_ok;
1854 /* Construct an isl_ast_expr from "list" within "build".
1855 * If "state" is isl_state_single, then "list" contains a single entry and
1856 * an isl_ast_expr is constructed for that entry.
1857 * Otherwise a min or max expression is constructed from "list"
1858 * depending on "state".
1860 static __isl_give isl_ast_expr *ast_expr_from_aff_list(
1861 __isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
1862 __isl_keep isl_ast_build *build)
1864 int i;
1865 isl_size n;
1866 isl_aff *aff;
1867 isl_ast_expr *expr = NULL;
1868 enum isl_ast_expr_op_type op_type;
1870 if (state == isl_state_single) {
1871 aff = isl_aff_list_get_aff(list, 0);
1872 isl_aff_list_free(list);
1873 return isl_ast_expr_from_aff(aff, build);
1875 n = isl_aff_list_n_aff(list);
1876 if (n < 0)
1877 goto error;
1878 op_type = state == isl_state_min ? isl_ast_expr_op_min
1879 : isl_ast_expr_op_max;
1880 expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
1881 if (!expr)
1882 goto error;
1884 for (i = 0; i < n; ++i) {
1885 isl_ast_expr *expr_i;
1887 aff = isl_aff_list_get_aff(list, i);
1888 expr_i = isl_ast_expr_from_aff(aff, build);
1889 if (!expr_i)
1890 goto error;
1891 expr->u.op.args[i] = expr_i;
1894 isl_aff_list_free(list);
1895 return expr;
1896 error:
1897 isl_aff_list_free(list);
1898 isl_ast_expr_free(expr);
1899 return NULL;
1902 /* Extend the expression in "next" to take into account
1903 * the piece at position "pos" in "data", allowing for a further extension
1904 * for the next piece(s).
1905 * In particular, "next" is set to a select operation that selects
1906 * an isl_ast_expr corresponding to data->aff_list on data->set and
1907 * to an expression that will be filled in by later calls.
1908 * Return a pointer to this location.
1909 * Afterwards, the state of "data" is set to isl_state_none.
1911 * The constraints of data->set are added to the generated
1912 * constraints of the build such that they can be exploited to simplify
1913 * the AST expression constructed from data->aff_list.
1915 static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
1916 int pos, isl_ast_expr **next)
1918 isl_ctx *ctx;
1919 isl_ast_build *build;
1920 isl_ast_expr *ternary, *arg;
1921 isl_set *set, *gist;
1923 set = data->p[pos].set;
1924 data->p[pos].set = NULL;
1925 ctx = isl_ast_build_get_ctx(data->build);
1926 ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
1927 gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
1928 arg = isl_ast_build_expr_from_set_internal(data->build, gist);
1929 ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
1930 build = isl_ast_build_copy(data->build);
1931 build = isl_ast_build_restrict_generated(build, set);
1932 arg = ast_expr_from_aff_list(data->p[pos].aff_list,
1933 data->p[pos].state, build);
1934 data->p[pos].aff_list = NULL;
1935 isl_ast_build_free(build);
1936 ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
1937 data->p[pos].state = isl_state_none;
1938 if (!ternary)
1939 return NULL;
1941 *next = ternary;
1942 return &ternary->u.op.args[2];
1945 /* Extend the expression in "next" to take into account
1946 * the final piece, located at position "pos" in "data".
1947 * In particular, "next" is set to evaluate data->aff_list
1948 * and the domain is ignored.
1949 * Return isl_stat_ok on success and isl_stat_error on failure.
1951 * The constraints of data->set are however added to the generated
1952 * constraints of the build such that they can be exploited to simplify
1953 * the AST expression constructed from data->aff_list.
1955 static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
1956 int pos, isl_ast_expr **next)
1958 isl_ast_build *build;
1960 if (data->p[pos].state == isl_state_none)
1961 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
1962 "cannot handle void expression", return isl_stat_error);
1964 build = isl_ast_build_copy(data->build);
1965 build = isl_ast_build_restrict_generated(build, data->p[pos].set);
1966 data->p[pos].set = NULL;
1967 *next = ast_expr_from_aff_list(data->p[pos].aff_list,
1968 data->p[pos].state, build);
1969 data->p[pos].aff_list = NULL;
1970 isl_ast_build_free(build);
1971 data->p[pos].state = isl_state_none;
1972 if (!*next)
1973 return isl_stat_error;
1975 return isl_stat_ok;
1978 /* Return -1 if the piece "p1" should be sorted before "p2"
1979 * and 1 if it should be sorted after "p2".
1980 * Return 0 if they do not need to be sorted in a specific order.
1982 * Pieces are sorted according to the number of disjuncts
1983 * in their domains.
1985 static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
1987 const struct isl_from_pw_aff_piece *piece1 = p1;
1988 const struct isl_from_pw_aff_piece *piece2 = p2;
1989 isl_size n1, n2;
1991 n1 = isl_set_n_basic_set(piece1->set);
1992 n2 = isl_set_n_basic_set(piece2->set);
1994 return n1 - n2;
1997 /* Construct an isl_ast_expr from the pieces in "data".
1998 * Return the result or NULL on failure.
2000 * When this function is called, data->n points to the current piece.
2001 * If this is an effective piece, then first increment data->n such
2002 * that data->n contains the number of pieces.
2003 * The "set_list" fields are subsequently replaced by the corresponding
2004 * "set" fields, after which the pieces are sorted according to
2005 * the number of disjuncts in these "set" fields.
2007 * Construct intermediate AST expressions for the initial pieces and
2008 * finish off with the final pieces.
2010 static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
2012 int i;
2013 isl_ast_expr *res = NULL;
2014 isl_ast_expr **next = &res;
2016 if (data->p[data->n].state != isl_state_none)
2017 data->n++;
2018 if (data->n == 0)
2019 isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
2020 "cannot handle void expression", return NULL);
2022 for (i = 0; i < data->n; ++i) {
2023 data->p[i].set = isl_set_list_union(data->p[i].set_list);
2024 if (data->p[i].state != isl_state_single)
2025 data->p[i].set = isl_set_coalesce(data->p[i].set);
2026 data->p[i].set_list = NULL;
2029 if (isl_sort(data->p, data->n, sizeof(data->p[0]),
2030 &sort_pieces_cmp, NULL) < 0)
2031 return isl_ast_expr_free(res);
2033 for (i = 0; i + 1 < data->n; ++i) {
2034 next = add_intermediate_piece(data, i, next);
2035 if (!next)
2036 return isl_ast_expr_free(res);
2039 if (add_last_piece(data, data->n - 1, next) < 0)
2040 return isl_ast_expr_free(res);
2042 return res;
2045 /* Is the domain of the current entry of "data", which is assumed
2046 * to contain a single subpiece, a subset of "set"?
2048 static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
2049 __isl_keep isl_set *set)
2051 isl_bool subset;
2052 isl_set *set_n;
2054 set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
2055 subset = isl_set_is_subset(set_n, set);
2056 isl_set_free(set_n);
2058 return subset;
2061 /* Is "aff" a rational expression, i.e., does it have a denominator
2062 * different from one?
2064 static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
2066 isl_bool rational;
2067 isl_val *den;
2069 den = isl_aff_get_denominator_val(aff);
2070 rational = isl_bool_not(isl_val_is_one(den));
2071 isl_val_free(den);
2073 return rational;
2076 /* Does "list" consist of a single rational affine expression?
2078 static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
2080 isl_size n;
2081 isl_bool rational;
2082 isl_aff *aff;
2084 n = isl_aff_list_n_aff(list);
2085 if (n < 0)
2086 return isl_bool_error;
2087 if (n != 1)
2088 return isl_bool_false;
2089 aff = isl_aff_list_get_aff(list, 0);
2090 rational = aff_is_rational(aff);
2091 isl_aff_free(aff);
2093 return rational;
2096 /* Can the list of subpieces in the last piece of "data" be extended with
2097 * "set" and "aff" based on "test"?
2098 * In particular, is it the case for each entry (set_i, aff_i) that
2100 * test(aff, aff_i) holds on set_i, and
2101 * test(aff_i, aff) holds on set?
2103 * "test" returns the set of elements where the tests holds, meaning
2104 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2106 * This function is used to detect min/max expressions.
2107 * If the ast_build_detect_min_max option is turned off, then
2108 * do not even try and perform any detection and return false instead.
2110 * Rational affine expressions are not considered for min/max expressions
2111 * since the combined expression will be defined on the union of the domains,
2112 * while a rational expression may only yield integer values
2113 * on its own definition domain.
2115 static isl_bool extends(struct isl_from_pw_aff_data *data,
2116 __isl_keep isl_set *set, __isl_keep isl_aff *aff,
2117 __isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
2118 __isl_take isl_aff *aff2))
2120 int i;
2121 isl_size n;
2122 isl_bool is_rational;
2123 isl_ctx *ctx;
2124 isl_set *dom;
2126 is_rational = aff_is_rational(aff);
2127 if (is_rational >= 0 && !is_rational)
2128 is_rational = is_single_rational_aff(data->p[data->n].aff_list);
2129 if (is_rational < 0 || is_rational)
2130 return isl_bool_not(is_rational);
2132 ctx = isl_ast_build_get_ctx(data->build);
2133 if (!isl_options_get_ast_build_detect_min_max(ctx))
2134 return isl_bool_false;
2136 n = isl_set_list_n_set(data->p[data->n].set_list);
2137 if (n < 0)
2138 return isl_bool_error;
2140 dom = isl_ast_build_get_domain(data->build);
2141 set = isl_set_intersect(dom, isl_set_copy(set));
2143 for (i = 0; i < n ; ++i) {
2144 isl_aff *aff_i;
2145 isl_set *valid;
2146 isl_set *dom, *required;
2147 isl_bool is_valid;
2149 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2150 valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
2151 required = isl_set_list_get_set(data->p[data->n].set_list, i);
2152 dom = isl_ast_build_get_domain(data->build);
2153 required = isl_set_intersect(dom, required);
2154 is_valid = isl_set_is_subset(required, valid);
2155 isl_set_free(required);
2156 isl_set_free(valid);
2157 if (is_valid < 0 || !is_valid) {
2158 isl_set_free(set);
2159 return is_valid;
2162 aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
2163 valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
2164 is_valid = isl_set_is_subset(set, valid);
2165 isl_set_free(valid);
2166 if (is_valid < 0 || !is_valid) {
2167 isl_set_free(set);
2168 return is_valid;
2172 isl_set_free(set);
2173 return isl_bool_true;
2176 /* Can the list of pieces in "data" be extended with "set" and "aff"
2177 * to form/preserve a minimum expression?
2178 * In particular, is it the case for each entry (set_i, aff_i) that
2180 * aff >= aff_i on set_i, and
2181 * aff_i >= aff on set?
2183 static isl_bool extends_min(struct isl_from_pw_aff_data *data,
2184 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2186 return extends(data, set, aff, &isl_aff_ge_basic_set);
2189 /* Can the list of pieces in "data" be extended with "set" and "aff"
2190 * to form/preserve a maximum expression?
2191 * In particular, is it the case for each entry (set_i, aff_i) that
2193 * aff <= aff_i on set_i, and
2194 * aff_i <= aff on set?
2196 static isl_bool extends_max(struct isl_from_pw_aff_data *data,
2197 __isl_keep isl_set *set, __isl_keep isl_aff *aff)
2199 return extends(data, set, aff, &isl_aff_le_basic_set);
2202 /* This function is called during the construction of an isl_ast_expr
2203 * that evaluates an isl_pw_aff.
2204 * If the last piece of "data" contains a single subpiece and
2205 * if its affine function is equal to "aff" on a part of the domain
2206 * that includes either "set" or the domain of that single subpiece,
2207 * then extend the domain of that single subpiece with "set".
2208 * If it was the original domain of the single subpiece where
2209 * the two affine functions are equal, then also replace
2210 * the affine function of the single subpiece by "aff".
2211 * If the last piece of "data" contains either a single subpiece
2212 * or a minimum, then check if this minimum expression can be extended
2213 * with (set, aff).
2214 * If so, extend the sequence and return.
2215 * Perform the same operation for maximum expressions.
2216 * If no such extension can be performed, then move to the next piece
2217 * in "data" (if the current piece contains any data), and then store
2218 * the current subpiece in the current piece of "data" for later handling.
2220 static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
2221 __isl_take isl_aff *aff, void *user)
2223 struct isl_from_pw_aff_data *data = user;
2224 isl_bool test;
2225 enum isl_from_pw_aff_state state;
2227 state = data->p[data->n].state;
2228 if (state == isl_state_single) {
2229 isl_aff *aff0;
2230 isl_set *eq;
2231 isl_bool subset1, subset2 = isl_bool_false;
2232 aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
2233 eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
2234 subset1 = isl_set_is_subset(set, eq);
2235 if (subset1 >= 0 && !subset1)
2236 subset2 = single_is_subset(data, eq);
2237 isl_set_free(eq);
2238 if (subset1 < 0 || subset2 < 0)
2239 goto error;
2240 if (subset1)
2241 return extend_domain(data, set, aff, 0);
2242 if (subset2)
2243 return extend_domain(data, set, aff, 1);
2245 if (state == isl_state_single || state == isl_state_min) {
2246 test = extends_min(data, set, aff);
2247 if (test < 0)
2248 goto error;
2249 if (test)
2250 return extend_min(data, set, aff);
2252 if (state == isl_state_single || state == isl_state_max) {
2253 test = extends_max(data, set, aff);
2254 if (test < 0)
2255 goto error;
2256 if (test)
2257 return extend_max(data, set, aff);
2259 if (state != isl_state_none)
2260 data->n++;
2261 set_single(data, set, aff);
2263 return isl_stat_ok;
2264 error:
2265 isl_set_free(set);
2266 isl_aff_free(aff);
2267 return isl_stat_error;
2270 /* Construct an isl_ast_expr that evaluates "pa".
2271 * The result is simplified in terms of build->domain.
2273 * The domain of "pa" lives in the internal schedule space.
2275 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
2276 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2278 struct isl_from_pw_aff_data data = { NULL };
2279 isl_ast_expr *res = NULL;
2281 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
2282 pa = isl_pw_aff_coalesce(pa);
2283 if (!pa)
2284 return NULL;
2286 if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
2287 goto error;
2288 set_none(&data);
2290 if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
2291 res = build_pieces(&data);
2293 isl_pw_aff_free(pa);
2294 isl_from_pw_aff_data_clear(&data);
2295 return res;
2296 error:
2297 isl_pw_aff_free(pa);
2298 isl_from_pw_aff_data_clear(&data);
2299 return NULL;
2302 /* Construct an isl_ast_expr that evaluates "pa".
2303 * The result is simplified in terms of build->domain.
2305 * The domain of "pa" lives in the external schedule space.
2307 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
2308 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
2310 isl_ast_expr *expr;
2311 isl_bool needs_map;
2313 needs_map = isl_ast_build_need_schedule_map(build);
2314 if (needs_map < 0) {
2315 pa = isl_pw_aff_free(pa);
2316 } else if (needs_map) {
2317 isl_multi_aff *ma;
2318 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2319 pa = isl_pw_aff_pullback_multi_aff(pa, ma);
2321 expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2322 return expr;
2325 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2326 * of "build".
2328 * The domain of "mpa" is assumed to live in the internal schedule domain.
2330 static __isl_give isl_multi_pw_aff *set_iterator_names(
2331 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2333 int i;
2334 isl_size n;
2336 n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
2337 if (n < 0)
2338 return isl_multi_pw_aff_free(mpa);
2339 for (i = 0; i < n; ++i) {
2340 isl_id *id;
2342 id = isl_ast_build_get_iterator_id(build, i);
2343 mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
2346 return mpa;
2349 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2350 * the remaining arguments derived from "mpa".
2351 * That is, construct a call or access expression that calls/accesses "arg0"
2352 * with arguments/indices specified by "mpa".
2354 static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
2355 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2356 __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
2358 int i;
2359 isl_size n;
2360 isl_ctx *ctx;
2361 isl_ast_expr *expr;
2363 ctx = isl_ast_build_get_ctx(build);
2365 n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
2366 expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
2367 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2368 for (i = 0; i < n; ++i) {
2369 isl_pw_aff *pa;
2370 isl_ast_expr *arg;
2372 pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
2373 arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
2374 expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
2377 isl_multi_pw_aff_free(mpa);
2378 return expr;
2381 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2382 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2383 __isl_take isl_multi_pw_aff *mpa);
2385 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2386 * The range of "mpa" is assumed to be wrapped relation.
2387 * The domain of this wrapped relation specifies the structure being
2388 * accessed, while the range of this wrapped relation spacifies the
2389 * member of the structure being accessed.
2391 * The domain of "mpa" is assumed to live in the internal schedule domain.
2393 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
2394 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2396 isl_id *id;
2397 isl_multi_pw_aff *domain;
2398 isl_ast_expr *domain_expr, *expr;
2399 enum isl_ast_expr_op_type type = isl_ast_expr_op_access;
2401 domain = isl_multi_pw_aff_copy(mpa);
2402 domain = isl_multi_pw_aff_range_factor_domain(domain);
2403 domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
2404 type, domain);
2405 mpa = isl_multi_pw_aff_range_factor_range(mpa);
2406 if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2407 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2408 "missing field name", goto error);
2409 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2410 expr = isl_ast_expr_from_id(id);
2411 expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
2412 domain_expr, expr);
2413 return isl_ast_build_with_arguments(build, type, expr, mpa);
2414 error:
2415 isl_multi_pw_aff_free(mpa);
2416 return NULL;
2419 /* Construct an isl_ast_expr of type "type" that calls or accesses
2420 * the element specified by "mpa".
2421 * The first argument is obtained from the output tuple name.
2422 * The remaining arguments are given by the piecewise affine expressions.
2424 * If the range of "mpa" is a mapped relation, then we assume it
2425 * represents an access to a member of a structure.
2427 * The domain of "mpa" is assumed to live in the internal schedule domain.
2429 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
2430 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2431 __isl_take isl_multi_pw_aff *mpa)
2433 isl_ctx *ctx;
2434 isl_id *id;
2435 isl_ast_expr *expr;
2437 if (!mpa)
2438 goto error;
2440 if (type == isl_ast_expr_op_access &&
2441 isl_multi_pw_aff_range_is_wrapping(mpa))
2442 return isl_ast_build_from_multi_pw_aff_member(build, mpa);
2444 mpa = set_iterator_names(build, mpa);
2445 if (!build || !mpa)
2446 goto error;
2448 ctx = isl_ast_build_get_ctx(build);
2450 if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
2451 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
2452 else
2453 id = isl_id_alloc(ctx, "", NULL);
2455 expr = isl_ast_expr_from_id(id);
2456 return isl_ast_build_with_arguments(build, type, expr, mpa);
2457 error:
2458 isl_multi_pw_aff_free(mpa);
2459 return NULL;
2462 /* Construct an isl_ast_expr of type "type" that calls or accesses
2463 * the element specified by "pma".
2464 * The first argument is obtained from the output tuple name.
2465 * The remaining arguments are given by the piecewise affine expressions.
2467 * The domain of "pma" is assumed to live in the internal schedule domain.
2469 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
2470 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2471 __isl_take isl_pw_multi_aff *pma)
2473 isl_multi_pw_aff *mpa;
2475 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2476 return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2479 /* Construct an isl_ast_expr of type "type" that calls or accesses
2480 * the element specified by "mpa".
2481 * The first argument is obtained from the output tuple name.
2482 * The remaining arguments are given by the piecewise affine expressions.
2484 * The domain of "mpa" is assumed to live in the external schedule domain.
2486 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
2487 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2488 __isl_take isl_multi_pw_aff *mpa)
2490 isl_bool is_domain;
2491 isl_bool needs_map;
2492 isl_ast_expr *expr;
2493 isl_space *space_build, *space_mpa;
2495 space_build = isl_ast_build_get_space(build, 0);
2496 space_mpa = isl_multi_pw_aff_get_space(mpa);
2497 is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
2498 space_mpa, isl_dim_in);
2499 isl_space_free(space_build);
2500 isl_space_free(space_mpa);
2501 if (is_domain < 0)
2502 goto error;
2503 if (!is_domain)
2504 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
2505 "spaces don't match", goto error);
2507 needs_map = isl_ast_build_need_schedule_map(build);
2508 if (needs_map < 0)
2509 goto error;
2510 if (needs_map) {
2511 isl_multi_aff *ma;
2512 ma = isl_ast_build_get_schedule_map_multi_aff(build);
2513 mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
2516 expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
2517 return expr;
2518 error:
2519 isl_multi_pw_aff_free(mpa);
2520 return NULL;
2523 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2524 * The name of the function is obtained from the output tuple name.
2525 * The arguments are given by the piecewise affine expressions.
2527 * The domain of "mpa" is assumed to live in the external schedule domain.
2529 __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
2530 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2532 return isl_ast_build_from_multi_pw_aff(build,
2533 isl_ast_expr_op_call, mpa);
2536 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2537 * The name of the array is obtained from the output tuple name.
2538 * The index expressions are given by the piecewise affine expressions.
2540 * The domain of "mpa" is assumed to live in the external schedule domain.
2542 __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
2543 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
2545 return isl_ast_build_from_multi_pw_aff(build,
2546 isl_ast_expr_op_access, mpa);
2549 /* Construct an isl_ast_expr of type "type" that calls or accesses
2550 * the element specified by "pma".
2551 * The first argument is obtained from the output tuple name.
2552 * The remaining arguments are given by the piecewise affine expressions.
2554 * The domain of "pma" is assumed to live in the external schedule domain.
2556 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
2557 __isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
2558 __isl_take isl_pw_multi_aff *pma)
2560 isl_multi_pw_aff *mpa;
2562 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
2563 return isl_ast_build_from_multi_pw_aff(build, type, mpa);
2566 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2567 * The name of the function is obtained from the output tuple name.
2568 * The arguments are given by the piecewise affine expressions.
2570 * The domain of "pma" is assumed to live in the external schedule domain.
2572 __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
2573 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2575 return isl_ast_build_from_pw_multi_aff(build,
2576 isl_ast_expr_op_call, pma);
2579 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2580 * The name of the array is obtained from the output tuple name.
2581 * The index expressions are given by the piecewise affine expressions.
2583 * The domain of "pma" is assumed to live in the external schedule domain.
2585 __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
2586 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
2588 return isl_ast_build_from_pw_multi_aff(build,
2589 isl_ast_expr_op_access, pma);
2592 /* Construct an isl_ast_expr that calls the domain element
2593 * specified by "executed".
2595 * "executed" is assumed to be single-valued, with a domain that lives
2596 * in the internal schedule space.
2598 __isl_give isl_ast_node *isl_ast_build_call_from_executed(
2599 __isl_keep isl_ast_build *build, __isl_take isl_map *executed)
2601 isl_pw_multi_aff *iteration;
2602 isl_ast_expr *expr;
2604 iteration = isl_pw_multi_aff_from_map(executed);
2605 iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
2606 iteration = isl_pw_multi_aff_intersect_domain(iteration,
2607 isl_ast_build_get_domain(build));
2608 expr = isl_ast_build_from_pw_multi_aff_internal(build,
2609 isl_ast_expr_op_call, iteration);
2610 return isl_ast_node_alloc_user(expr);