3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
186 C<isl> is released under the MIT license.
190 Permission is hereby granted, free of charge, to any person obtaining a copy of
191 this software and associated documentation files (the "Software"), to deal in
192 the Software without restriction, including without limitation the rights to
193 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
194 of the Software, and to permit persons to whom the Software is furnished to do
195 so, subject to the following conditions:
197 The above copyright notice and this permission notice shall be included in all
198 copies or substantial portions of the Software.
200 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
201 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
202 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
203 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
204 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
205 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
210 Note that C<isl> currently requires C<GMP>, which is released
211 under the GNU Lesser General Public License (LGPL). This means
212 that code linked against C<isl> is also linked against LGPL code.
216 The source of C<isl> can be obtained either as a tarball
217 or from the git repository. Both are available from
218 L<http://freshmeat.net/projects/isl/>.
219 The installation process depends on how you obtained
222 =head2 Installation from the git repository
226 =item 1 Clone or update the repository
228 The first time the source is obtained, you need to clone
231 git clone git://repo.or.cz/isl.git
233 To obtain updates, you need to pull in the latest changes
237 =item 2 Generate C<configure>
243 After performing the above steps, continue
244 with the L<Common installation instructions>.
246 =head2 Common installation instructions
250 =item 1 Obtain C<GMP>
252 Building C<isl> requires C<GMP>, including its headers files.
253 Your distribution may not provide these header files by default
254 and you may need to install a package called C<gmp-devel> or something
255 similar. Alternatively, C<GMP> can be built from
256 source, available from L<http://gmplib.org/>.
260 C<isl> uses the standard C<autoconf> C<configure> script.
265 optionally followed by some configure options.
266 A complete list of options can be obtained by running
270 Below we discuss some of the more common options.
272 C<isl> can optionally use C<piplib>, but no
273 C<piplib> functionality is currently used by default.
274 The C<--with-piplib> option can
275 be used to specify which C<piplib>
276 library to use, either an installed version (C<system>),
277 an externally built version (C<build>)
278 or no version (C<no>). The option C<build> is mostly useful
279 in C<configure> scripts of larger projects that bundle both C<isl>
286 Installation prefix for C<isl>
288 =item C<--with-gmp-prefix>
290 Installation prefix for C<GMP> (architecture-independent files).
292 =item C<--with-gmp-exec-prefix>
294 Installation prefix for C<GMP> (architecture-dependent files).
296 =item C<--with-piplib>
298 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
300 =item C<--with-piplib-prefix>
302 Installation prefix for C<system> C<piplib> (architecture-independent files).
304 =item C<--with-piplib-exec-prefix>
306 Installation prefix for C<system> C<piplib> (architecture-dependent files).
308 =item C<--with-piplib-builddir>
310 Location where C<build> C<piplib> was built.
318 =item 4 Install (optional)
324 =head1 Integer Set Library
326 =head2 Initialization
328 All manipulations of integer sets and relations occur within
329 the context of an C<isl_ctx>.
330 A given C<isl_ctx> can only be used within a single thread.
331 All arguments of a function are required to have been allocated
332 within the same context.
333 There are currently no functions available for moving an object
334 from one C<isl_ctx> to another C<isl_ctx>. This means that
335 there is currently no way of safely moving an object from one
336 thread to another, unless the whole C<isl_ctx> is moved.
338 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
339 freed using C<isl_ctx_free>.
340 All objects allocated within an C<isl_ctx> should be freed
341 before the C<isl_ctx> itself is freed.
343 isl_ctx *isl_ctx_alloc();
344 void isl_ctx_free(isl_ctx *ctx);
348 An C<isl_val> represents an integer value, a rational value
349 or one of three special values, infinity, negative infinity and NaN.
350 Some predefined values can be created using the following functions.
353 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
354 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
355 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
356 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
357 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
359 Specific integer values can be created using the following functions.
362 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
364 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
367 They can be copied and freed using the following functions.
370 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
371 void *isl_val_free(__isl_take isl_val *v);
373 They can be inspected using the following functions.
376 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
377 long isl_val_get_num_si(__isl_keep isl_val *v);
378 long isl_val_get_den_si(__isl_keep isl_val *v);
379 double isl_val_get_d(__isl_keep isl_val *v);
381 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si> and
382 C<isl_val_get_d> can only be applied to rational values.
384 An C<isl_val> can be modified using the following function.
387 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
390 The following unary properties are defined on C<isl_val>s.
393 int isl_val_sgn(__isl_keep isl_val *v);
394 int isl_val_is_zero(__isl_keep isl_val *v);
395 int isl_val_is_one(__isl_keep isl_val *v);
396 int isl_val_is_negone(__isl_keep isl_val *v);
397 int isl_val_is_nonneg(__isl_keep isl_val *v);
398 int isl_val_is_nonpos(__isl_keep isl_val *v);
399 int isl_val_is_pos(__isl_keep isl_val *v);
400 int isl_val_is_neg(__isl_keep isl_val *v);
401 int isl_val_is_int(__isl_keep isl_val *v);
402 int isl_val_is_rat(__isl_keep isl_val *v);
403 int isl_val_is_nan(__isl_keep isl_val *v);
404 int isl_val_is_infty(__isl_keep isl_val *v);
405 int isl_val_is_neginfty(__isl_keep isl_val *v);
407 Note that the sign of NaN is undefined.
409 The following binary properties are defined on pairs of C<isl_val>s.
412 int isl_val_lt(__isl_keep isl_val *v1,
413 __isl_keep isl_val *v2);
414 int isl_val_le(__isl_keep isl_val *v1,
415 __isl_keep isl_val *v2);
416 int isl_val_gt(__isl_keep isl_val *v1,
417 __isl_keep isl_val *v2);
418 int isl_val_ge(__isl_keep isl_val *v1,
419 __isl_keep isl_val *v2);
420 int isl_val_eq(__isl_keep isl_val *v1,
421 __isl_keep isl_val *v2);
422 int isl_val_ne(__isl_keep isl_val *v1,
423 __isl_keep isl_val *v2);
425 For integer C<isl_val>s we additionally have the following binary property.
428 int isl_val_is_divisible_by(__isl_keep isl_val *v1,
429 __isl_keep isl_val *v2);
431 An C<isl_val> can also be compared to an integer using the following
432 function. The result is undefined for NaN.
435 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
437 The following unary operations are available on C<isl_val>s.
440 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
441 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
442 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
443 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
444 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
446 The following binary operations are available on C<isl_val>s.
449 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
450 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
451 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
452 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
453 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
454 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
455 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
456 __isl_take isl_val *v2);
457 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
458 __isl_take isl_val *v2);
459 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
460 __isl_take isl_val *v2);
461 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
463 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
464 __isl_take isl_val *v2);
465 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
467 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
468 __isl_take isl_val *v2);
469 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
471 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
472 __isl_take isl_val *v2);
474 On integer values, we additionally have the following operations.
477 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
478 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
479 __isl_take isl_val *v2);
480 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
481 __isl_take isl_val *v2);
482 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
483 __isl_take isl_val *v2, __isl_give isl_val **x,
484 __isl_give isl_val **y);
486 The function C<isl_val_gcdext> returns the greatest common divisor g
487 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
488 that C<*x> * C<v1> + C<*y> * C<v2> = g.
490 A value can be read from input using
493 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
496 A value can be printed using
499 __isl_give isl_printer *isl_printer_print_val(
500 __isl_take isl_printer *p, __isl_keep isl_val *v);
502 =head3 GMP specific functions
504 These functions are only available if C<isl> has been compiled with C<GMP>
507 Specific integer and rational values can be created from C<GMP> values using
508 the following functions.
510 #include <isl/val_gmp.h>
511 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
513 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
514 const mpz_t n, const mpz_t d);
516 The numerator and denominator of a rational value can be extracted as
517 C<GMP> values using the following functions.
519 #include <isl/val_gmp.h>
520 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
521 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
523 =head2 Integers (obsolescent)
525 All operations on integers, mainly the coefficients
526 of the constraints describing the sets and relations,
527 are performed in exact integer arithmetic using C<GMP>.
528 However, to allow future versions of C<isl> to optionally
529 support fixed integer arithmetic, all calls to C<GMP>
530 are wrapped inside C<isl> specific macros.
531 The basic type is C<isl_int> and the operations below
532 are available on this type.
533 The meanings of these operations are essentially the same
534 as their C<GMP> C<mpz_> counterparts.
535 As always with C<GMP> types, C<isl_int>s need to be
536 initialized with C<isl_int_init> before they can be used
537 and they need to be released with C<isl_int_clear>
539 The user should not assume that an C<isl_int> is represented
540 as a C<mpz_t>, but should instead explicitly convert between
541 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
542 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
546 =item isl_int_init(i)
548 =item isl_int_clear(i)
550 =item isl_int_set(r,i)
552 =item isl_int_set_si(r,i)
554 =item isl_int_set_gmp(r,g)
556 =item isl_int_get_gmp(i,g)
558 =item isl_int_abs(r,i)
560 =item isl_int_neg(r,i)
562 =item isl_int_swap(i,j)
564 =item isl_int_swap_or_set(i,j)
566 =item isl_int_add_ui(r,i,j)
568 =item isl_int_sub_ui(r,i,j)
570 =item isl_int_add(r,i,j)
572 =item isl_int_sub(r,i,j)
574 =item isl_int_mul(r,i,j)
576 =item isl_int_mul_ui(r,i,j)
578 =item isl_int_addmul(r,i,j)
580 =item isl_int_submul(r,i,j)
582 =item isl_int_gcd(r,i,j)
584 =item isl_int_lcm(r,i,j)
586 =item isl_int_divexact(r,i,j)
588 =item isl_int_cdiv_q(r,i,j)
590 =item isl_int_fdiv_q(r,i,j)
592 =item isl_int_fdiv_r(r,i,j)
594 =item isl_int_fdiv_q_ui(r,i,j)
596 =item isl_int_read(r,s)
598 =item isl_int_print(out,i,width)
602 =item isl_int_cmp(i,j)
604 =item isl_int_cmp_si(i,si)
606 =item isl_int_eq(i,j)
608 =item isl_int_ne(i,j)
610 =item isl_int_lt(i,j)
612 =item isl_int_le(i,j)
614 =item isl_int_gt(i,j)
616 =item isl_int_ge(i,j)
618 =item isl_int_abs_eq(i,j)
620 =item isl_int_abs_ne(i,j)
622 =item isl_int_abs_lt(i,j)
624 =item isl_int_abs_gt(i,j)
626 =item isl_int_abs_ge(i,j)
628 =item isl_int_is_zero(i)
630 =item isl_int_is_one(i)
632 =item isl_int_is_negone(i)
634 =item isl_int_is_pos(i)
636 =item isl_int_is_neg(i)
638 =item isl_int_is_nonpos(i)
640 =item isl_int_is_nonneg(i)
642 =item isl_int_is_divisible_by(i,j)
646 =head2 Sets and Relations
648 C<isl> uses six types of objects for representing sets and relations,
649 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
650 C<isl_union_set> and C<isl_union_map>.
651 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
652 can be described as a conjunction of affine constraints, while
653 C<isl_set> and C<isl_map> represent unions of
654 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
655 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
656 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
657 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
658 where spaces are considered different if they have a different number
659 of dimensions and/or different names (see L<"Spaces">).
660 The difference between sets and relations (maps) is that sets have
661 one set of variables, while relations have two sets of variables,
662 input variables and output variables.
664 =head2 Memory Management
666 Since a high-level operation on sets and/or relations usually involves
667 several substeps and since the user is usually not interested in
668 the intermediate results, most functions that return a new object
669 will also release all the objects passed as arguments.
670 If the user still wants to use one or more of these arguments
671 after the function call, she should pass along a copy of the
672 object rather than the object itself.
673 The user is then responsible for making sure that the original
674 object gets used somewhere else or is explicitly freed.
676 The arguments and return values of all documented functions are
677 annotated to make clear which arguments are released and which
678 arguments are preserved. In particular, the following annotations
685 C<__isl_give> means that a new object is returned.
686 The user should make sure that the returned pointer is
687 used exactly once as a value for an C<__isl_take> argument.
688 In between, it can be used as a value for as many
689 C<__isl_keep> arguments as the user likes.
690 There is one exception, and that is the case where the
691 pointer returned is C<NULL>. Is this case, the user
692 is free to use it as an C<__isl_take> argument or not.
696 C<__isl_take> means that the object the argument points to
697 is taken over by the function and may no longer be used
698 by the user as an argument to any other function.
699 The pointer value must be one returned by a function
700 returning an C<__isl_give> pointer.
701 If the user passes in a C<NULL> value, then this will
702 be treated as an error in the sense that the function will
703 not perform its usual operation. However, it will still
704 make sure that all the other C<__isl_take> arguments
709 C<__isl_keep> means that the function will only use the object
710 temporarily. After the function has finished, the user
711 can still use it as an argument to other functions.
712 A C<NULL> value will be treated in the same way as
713 a C<NULL> value for an C<__isl_take> argument.
717 =head2 Error Handling
719 C<isl> supports different ways to react in case a runtime error is triggered.
720 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
721 with two maps that have incompatible spaces. There are three possible ways
722 to react on error: to warn, to continue or to abort.
724 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
725 the last error in the corresponding C<isl_ctx> and the function in which the
726 error was triggered returns C<NULL>. An error does not corrupt internal state,
727 such that isl can continue to be used. C<isl> also provides functions to
728 read the last error and to reset the memory that stores the last error. The
729 last error is only stored for information purposes. Its presence does not
730 change the behavior of C<isl>. Hence, resetting an error is not required to
731 continue to use isl, but only to observe new errors.
734 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
735 void isl_ctx_reset_error(isl_ctx *ctx);
737 Another option is to continue on error. This is similar to warn on error mode,
738 except that C<isl> does not print any warning. This allows a program to
739 implement its own error reporting.
741 The last option is to directly abort the execution of the program from within
742 the isl library. This makes it obviously impossible to recover from an error,
743 but it allows to directly spot the error location. By aborting on error,
744 debuggers break at the location the error occurred and can provide a stack
745 trace. Other tools that automatically provide stack traces on abort or that do
746 not want to continue execution after an error was triggered may also prefer to
749 The on error behavior of isl can be specified by calling
750 C<isl_options_set_on_error> or by setting the command line option
751 C<--isl-on-error>. Valid arguments for the function call are
752 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
753 choices for the command line option are C<warn>, C<continue> and C<abort>.
754 It is also possible to query the current error mode.
756 #include <isl/options.h>
757 int isl_options_set_on_error(isl_ctx *ctx, int val);
758 int isl_options_get_on_error(isl_ctx *ctx);
762 Identifiers are used to identify both individual dimensions
763 and tuples of dimensions. They consist of an optional name and an optional
764 user pointer. The name and the user pointer cannot both be C<NULL>, however.
765 Identifiers with the same name but different pointer values
766 are considered to be distinct.
767 Similarly, identifiers with different names but the same pointer value
768 are also considered to be distinct.
769 Equal identifiers are represented using the same object.
770 Pairs of identifiers can therefore be tested for equality using the
772 Identifiers can be constructed, copied, freed, inspected and printed
773 using the following functions.
776 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
777 __isl_keep const char *name, void *user);
778 __isl_give isl_id *isl_id_set_free_user(
779 __isl_take isl_id *id,
780 __isl_give void (*free_user)(void *user));
781 __isl_give isl_id *isl_id_copy(isl_id *id);
782 void *isl_id_free(__isl_take isl_id *id);
784 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
785 void *isl_id_get_user(__isl_keep isl_id *id);
786 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
788 __isl_give isl_printer *isl_printer_print_id(
789 __isl_take isl_printer *p, __isl_keep isl_id *id);
791 The callback set by C<isl_id_set_free_user> is called on the user
792 pointer when the last reference to the C<isl_id> is freed.
793 Note that C<isl_id_get_name> returns a pointer to some internal
794 data structure, so the result can only be used while the
795 corresponding C<isl_id> is alive.
799 Whenever a new set, relation or similiar object is created from scratch,
800 the space in which it lives needs to be specified using an C<isl_space>.
801 Each space involves zero or more parameters and zero, one or two
802 tuples of set or input/output dimensions. The parameters and dimensions
803 are identified by an C<isl_dim_type> and a position.
804 The type C<isl_dim_param> refers to parameters,
805 the type C<isl_dim_set> refers to set dimensions (for spaces
806 with a single tuple of dimensions) and the types C<isl_dim_in>
807 and C<isl_dim_out> refer to input and output dimensions
808 (for spaces with two tuples of dimensions).
809 Local spaces (see L</"Local Spaces">) also contain dimensions
810 of type C<isl_dim_div>.
811 Note that parameters are only identified by their position within
812 a given object. Across different objects, parameters are (usually)
813 identified by their names or identifiers. Only unnamed parameters
814 are identified by their positions across objects. The use of unnamed
815 parameters is discouraged.
817 #include <isl/space.h>
818 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
819 unsigned nparam, unsigned n_in, unsigned n_out);
820 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
822 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
823 unsigned nparam, unsigned dim);
824 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
825 void *isl_space_free(__isl_take isl_space *space);
826 unsigned isl_space_dim(__isl_keep isl_space *space,
827 enum isl_dim_type type);
829 The space used for creating a parameter domain
830 needs to be created using C<isl_space_params_alloc>.
831 For other sets, the space
832 needs to be created using C<isl_space_set_alloc>, while
833 for a relation, the space
834 needs to be created using C<isl_space_alloc>.
835 C<isl_space_dim> can be used
836 to find out the number of dimensions of each type in
837 a space, where type may be
838 C<isl_dim_param>, C<isl_dim_in> (only for relations),
839 C<isl_dim_out> (only for relations), C<isl_dim_set>
840 (only for sets) or C<isl_dim_all>.
842 To check whether a given space is that of a set or a map
843 or whether it is a parameter space, use these functions:
845 #include <isl/space.h>
846 int isl_space_is_params(__isl_keep isl_space *space);
847 int isl_space_is_set(__isl_keep isl_space *space);
848 int isl_space_is_map(__isl_keep isl_space *space);
850 Spaces can be compared using the following functions:
852 #include <isl/space.h>
853 int isl_space_is_equal(__isl_keep isl_space *space1,
854 __isl_keep isl_space *space2);
855 int isl_space_is_domain(__isl_keep isl_space *space1,
856 __isl_keep isl_space *space2);
857 int isl_space_is_range(__isl_keep isl_space *space1,
858 __isl_keep isl_space *space2);
860 C<isl_space_is_domain> checks whether the first argument is equal
861 to the domain of the second argument. This requires in particular that
862 the first argument is a set space and that the second argument
865 It is often useful to create objects that live in the
866 same space as some other object. This can be accomplished
867 by creating the new objects
868 (see L<Creating New Sets and Relations> or
869 L<Creating New (Piecewise) Quasipolynomials>) based on the space
870 of the original object.
873 __isl_give isl_space *isl_basic_set_get_space(
874 __isl_keep isl_basic_set *bset);
875 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
877 #include <isl/union_set.h>
878 __isl_give isl_space *isl_union_set_get_space(
879 __isl_keep isl_union_set *uset);
882 __isl_give isl_space *isl_basic_map_get_space(
883 __isl_keep isl_basic_map *bmap);
884 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
886 #include <isl/union_map.h>
887 __isl_give isl_space *isl_union_map_get_space(
888 __isl_keep isl_union_map *umap);
890 #include <isl/constraint.h>
891 __isl_give isl_space *isl_constraint_get_space(
892 __isl_keep isl_constraint *constraint);
894 #include <isl/polynomial.h>
895 __isl_give isl_space *isl_qpolynomial_get_domain_space(
896 __isl_keep isl_qpolynomial *qp);
897 __isl_give isl_space *isl_qpolynomial_get_space(
898 __isl_keep isl_qpolynomial *qp);
899 __isl_give isl_space *isl_qpolynomial_fold_get_space(
900 __isl_keep isl_qpolynomial_fold *fold);
901 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
902 __isl_keep isl_pw_qpolynomial *pwqp);
903 __isl_give isl_space *isl_pw_qpolynomial_get_space(
904 __isl_keep isl_pw_qpolynomial *pwqp);
905 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
906 __isl_keep isl_pw_qpolynomial_fold *pwf);
907 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
908 __isl_keep isl_pw_qpolynomial_fold *pwf);
909 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
910 __isl_keep isl_union_pw_qpolynomial *upwqp);
911 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
912 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
915 __isl_give isl_space *isl_multi_val_get_space(
916 __isl_keep isl_multi_val *mv);
919 __isl_give isl_space *isl_aff_get_domain_space(
920 __isl_keep isl_aff *aff);
921 __isl_give isl_space *isl_aff_get_space(
922 __isl_keep isl_aff *aff);
923 __isl_give isl_space *isl_pw_aff_get_domain_space(
924 __isl_keep isl_pw_aff *pwaff);
925 __isl_give isl_space *isl_pw_aff_get_space(
926 __isl_keep isl_pw_aff *pwaff);
927 __isl_give isl_space *isl_multi_aff_get_domain_space(
928 __isl_keep isl_multi_aff *maff);
929 __isl_give isl_space *isl_multi_aff_get_space(
930 __isl_keep isl_multi_aff *maff);
931 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
932 __isl_keep isl_pw_multi_aff *pma);
933 __isl_give isl_space *isl_pw_multi_aff_get_space(
934 __isl_keep isl_pw_multi_aff *pma);
935 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
936 __isl_keep isl_union_pw_multi_aff *upma);
937 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
938 __isl_keep isl_multi_pw_aff *mpa);
939 __isl_give isl_space *isl_multi_pw_aff_get_space(
940 __isl_keep isl_multi_pw_aff *mpa);
942 #include <isl/point.h>
943 __isl_give isl_space *isl_point_get_space(
944 __isl_keep isl_point *pnt);
946 The identifiers or names of the individual dimensions may be set or read off
947 using the following functions.
949 #include <isl/space.h>
950 __isl_give isl_space *isl_space_set_dim_id(
951 __isl_take isl_space *space,
952 enum isl_dim_type type, unsigned pos,
953 __isl_take isl_id *id);
954 int isl_space_has_dim_id(__isl_keep isl_space *space,
955 enum isl_dim_type type, unsigned pos);
956 __isl_give isl_id *isl_space_get_dim_id(
957 __isl_keep isl_space *space,
958 enum isl_dim_type type, unsigned pos);
959 __isl_give isl_space *isl_space_set_dim_name(
960 __isl_take isl_space *space,
961 enum isl_dim_type type, unsigned pos,
962 __isl_keep const char *name);
963 int isl_space_has_dim_name(__isl_keep isl_space *space,
964 enum isl_dim_type type, unsigned pos);
965 __isl_keep const char *isl_space_get_dim_name(
966 __isl_keep isl_space *space,
967 enum isl_dim_type type, unsigned pos);
969 Note that C<isl_space_get_name> returns a pointer to some internal
970 data structure, so the result can only be used while the
971 corresponding C<isl_space> is alive.
972 Also note that every function that operates on two sets or relations
973 requires that both arguments have the same parameters. This also
974 means that if one of the arguments has named parameters, then the
975 other needs to have named parameters too and the names need to match.
976 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
977 arguments may have different parameters (as long as they are named),
978 in which case the result will have as parameters the union of the parameters of
981 Given the identifier or name of a dimension (typically a parameter),
982 its position can be obtained from the following function.
984 #include <isl/space.h>
985 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
986 enum isl_dim_type type, __isl_keep isl_id *id);
987 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
988 enum isl_dim_type type, const char *name);
990 The identifiers or names of entire spaces may be set or read off
991 using the following functions.
993 #include <isl/space.h>
994 __isl_give isl_space *isl_space_set_tuple_id(
995 __isl_take isl_space *space,
996 enum isl_dim_type type, __isl_take isl_id *id);
997 __isl_give isl_space *isl_space_reset_tuple_id(
998 __isl_take isl_space *space, enum isl_dim_type type);
999 int isl_space_has_tuple_id(__isl_keep isl_space *space,
1000 enum isl_dim_type type);
1001 __isl_give isl_id *isl_space_get_tuple_id(
1002 __isl_keep isl_space *space, enum isl_dim_type type);
1003 __isl_give isl_space *isl_space_set_tuple_name(
1004 __isl_take isl_space *space,
1005 enum isl_dim_type type, const char *s);
1006 int isl_space_has_tuple_name(__isl_keep isl_space *space,
1007 enum isl_dim_type type);
1008 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
1009 enum isl_dim_type type);
1011 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1012 or C<isl_dim_set>. As with C<isl_space_get_name>,
1013 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1015 Binary operations require the corresponding spaces of their arguments
1016 to have the same name.
1018 Spaces can be nested. In particular, the domain of a set or
1019 the domain or range of a relation can be a nested relation.
1020 The following functions can be used to construct and deconstruct
1023 #include <isl/space.h>
1024 int isl_space_is_wrapping(__isl_keep isl_space *space);
1025 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
1026 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
1028 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
1029 be the space of a set, while that of
1030 C<isl_space_wrap> should be the space of a relation.
1031 Conversely, the output of C<isl_space_unwrap> is the space
1032 of a relation, while that of C<isl_space_wrap> is the space of a set.
1034 Spaces can be created from other spaces
1035 using the following functions.
1037 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
1038 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
1039 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
1040 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
1041 __isl_give isl_space *isl_space_params(
1042 __isl_take isl_space *space);
1043 __isl_give isl_space *isl_space_set_from_params(
1044 __isl_take isl_space *space);
1045 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
1046 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
1047 __isl_take isl_space *right);
1048 __isl_give isl_space *isl_space_align_params(
1049 __isl_take isl_space *space1, __isl_take isl_space *space2)
1050 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
1051 enum isl_dim_type type, unsigned pos, unsigned n);
1052 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
1053 enum isl_dim_type type, unsigned n);
1054 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
1055 enum isl_dim_type type, unsigned first, unsigned n);
1056 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
1057 enum isl_dim_type dst_type, unsigned dst_pos,
1058 enum isl_dim_type src_type, unsigned src_pos,
1060 __isl_give isl_space *isl_space_map_from_set(
1061 __isl_take isl_space *space);
1062 __isl_give isl_space *isl_space_map_from_domain_and_range(
1063 __isl_take isl_space *domain,
1064 __isl_take isl_space *range);
1065 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
1066 __isl_give isl_space *isl_space_curry(
1067 __isl_take isl_space *space);
1068 __isl_give isl_space *isl_space_uncurry(
1069 __isl_take isl_space *space);
1071 Note that if dimensions are added or removed from a space, then
1072 the name and the internal structure are lost.
1076 A local space is essentially a space with
1077 zero or more existentially quantified variables.
1078 The local space of a (constraint of a) basic set or relation can be obtained
1079 using the following functions.
1081 #include <isl/constraint.h>
1082 __isl_give isl_local_space *isl_constraint_get_local_space(
1083 __isl_keep isl_constraint *constraint);
1085 #include <isl/set.h>
1086 __isl_give isl_local_space *isl_basic_set_get_local_space(
1087 __isl_keep isl_basic_set *bset);
1089 #include <isl/map.h>
1090 __isl_give isl_local_space *isl_basic_map_get_local_space(
1091 __isl_keep isl_basic_map *bmap);
1093 A new local space can be created from a space using
1095 #include <isl/local_space.h>
1096 __isl_give isl_local_space *isl_local_space_from_space(
1097 __isl_take isl_space *space);
1099 They can be inspected, modified, copied and freed using the following functions.
1101 #include <isl/local_space.h>
1102 isl_ctx *isl_local_space_get_ctx(
1103 __isl_keep isl_local_space *ls);
1104 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
1105 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1106 enum isl_dim_type type);
1107 int isl_local_space_has_dim_id(
1108 __isl_keep isl_local_space *ls,
1109 enum isl_dim_type type, unsigned pos);
1110 __isl_give isl_id *isl_local_space_get_dim_id(
1111 __isl_keep isl_local_space *ls,
1112 enum isl_dim_type type, unsigned pos);
1113 int isl_local_space_has_dim_name(
1114 __isl_keep isl_local_space *ls,
1115 enum isl_dim_type type, unsigned pos)
1116 const char *isl_local_space_get_dim_name(
1117 __isl_keep isl_local_space *ls,
1118 enum isl_dim_type type, unsigned pos);
1119 __isl_give isl_local_space *isl_local_space_set_dim_name(
1120 __isl_take isl_local_space *ls,
1121 enum isl_dim_type type, unsigned pos, const char *s);
1122 __isl_give isl_local_space *isl_local_space_set_dim_id(
1123 __isl_take isl_local_space *ls,
1124 enum isl_dim_type type, unsigned pos,
1125 __isl_take isl_id *id);
1126 __isl_give isl_space *isl_local_space_get_space(
1127 __isl_keep isl_local_space *ls);
1128 __isl_give isl_aff *isl_local_space_get_div(
1129 __isl_keep isl_local_space *ls, int pos);
1130 __isl_give isl_local_space *isl_local_space_copy(
1131 __isl_keep isl_local_space *ls);
1132 void *isl_local_space_free(__isl_take isl_local_space *ls);
1134 Note that C<isl_local_space_get_div> can only be used on local spaces
1137 Two local spaces can be compared using
1139 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
1140 __isl_keep isl_local_space *ls2);
1142 Local spaces can be created from other local spaces
1143 using the following functions.
1145 __isl_give isl_local_space *isl_local_space_domain(
1146 __isl_take isl_local_space *ls);
1147 __isl_give isl_local_space *isl_local_space_range(
1148 __isl_take isl_local_space *ls);
1149 __isl_give isl_local_space *isl_local_space_from_domain(
1150 __isl_take isl_local_space *ls);
1151 __isl_give isl_local_space *isl_local_space_intersect(
1152 __isl_take isl_local_space *ls1,
1153 __isl_take isl_local_space *ls2);
1154 __isl_give isl_local_space *isl_local_space_add_dims(
1155 __isl_take isl_local_space *ls,
1156 enum isl_dim_type type, unsigned n);
1157 __isl_give isl_local_space *isl_local_space_insert_dims(
1158 __isl_take isl_local_space *ls,
1159 enum isl_dim_type type, unsigned first, unsigned n);
1160 __isl_give isl_local_space *isl_local_space_drop_dims(
1161 __isl_take isl_local_space *ls,
1162 enum isl_dim_type type, unsigned first, unsigned n);
1164 =head2 Input and Output
1166 C<isl> supports its own input/output format, which is similar
1167 to the C<Omega> format, but also supports the C<PolyLib> format
1170 =head3 C<isl> format
1172 The C<isl> format is similar to that of C<Omega>, but has a different
1173 syntax for describing the parameters and allows for the definition
1174 of an existentially quantified variable as the integer division
1175 of an affine expression.
1176 For example, the set of integers C<i> between C<0> and C<n>
1177 such that C<i % 10 <= 6> can be described as
1179 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
1182 A set or relation can have several disjuncts, separated
1183 by the keyword C<or>. Each disjunct is either a conjunction
1184 of constraints or a projection (C<exists>) of a conjunction
1185 of constraints. The constraints are separated by the keyword
1188 =head3 C<PolyLib> format
1190 If the represented set is a union, then the first line
1191 contains a single number representing the number of disjuncts.
1192 Otherwise, a line containing the number C<1> is optional.
1194 Each disjunct is represented by a matrix of constraints.
1195 The first line contains two numbers representing
1196 the number of rows and columns,
1197 where the number of rows is equal to the number of constraints
1198 and the number of columns is equal to two plus the number of variables.
1199 The following lines contain the actual rows of the constraint matrix.
1200 In each row, the first column indicates whether the constraint
1201 is an equality (C<0>) or inequality (C<1>). The final column
1202 corresponds to the constant term.
1204 If the set is parametric, then the coefficients of the parameters
1205 appear in the last columns before the constant column.
1206 The coefficients of any existentially quantified variables appear
1207 between those of the set variables and those of the parameters.
1209 =head3 Extended C<PolyLib> format
1211 The extended C<PolyLib> format is nearly identical to the
1212 C<PolyLib> format. The only difference is that the line
1213 containing the number of rows and columns of a constraint matrix
1214 also contains four additional numbers:
1215 the number of output dimensions, the number of input dimensions,
1216 the number of local dimensions (i.e., the number of existentially
1217 quantified variables) and the number of parameters.
1218 For sets, the number of ``output'' dimensions is equal
1219 to the number of set dimensions, while the number of ``input''
1224 #include <isl/set.h>
1225 __isl_give isl_basic_set *isl_basic_set_read_from_file(
1226 isl_ctx *ctx, FILE *input);
1227 __isl_give isl_basic_set *isl_basic_set_read_from_str(
1228 isl_ctx *ctx, const char *str);
1229 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
1231 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
1234 #include <isl/map.h>
1235 __isl_give isl_basic_map *isl_basic_map_read_from_file(
1236 isl_ctx *ctx, FILE *input);
1237 __isl_give isl_basic_map *isl_basic_map_read_from_str(
1238 isl_ctx *ctx, const char *str);
1239 __isl_give isl_map *isl_map_read_from_file(
1240 isl_ctx *ctx, FILE *input);
1241 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
1244 #include <isl/union_set.h>
1245 __isl_give isl_union_set *isl_union_set_read_from_file(
1246 isl_ctx *ctx, FILE *input);
1247 __isl_give isl_union_set *isl_union_set_read_from_str(
1248 isl_ctx *ctx, const char *str);
1250 #include <isl/union_map.h>
1251 __isl_give isl_union_map *isl_union_map_read_from_file(
1252 isl_ctx *ctx, FILE *input);
1253 __isl_give isl_union_map *isl_union_map_read_from_str(
1254 isl_ctx *ctx, const char *str);
1256 The input format is autodetected and may be either the C<PolyLib> format
1257 or the C<isl> format.
1261 Before anything can be printed, an C<isl_printer> needs to
1264 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
1266 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
1267 void *isl_printer_free(__isl_take isl_printer *printer);
1268 __isl_give char *isl_printer_get_str(
1269 __isl_keep isl_printer *printer);
1271 The printer can be inspected using the following functions.
1273 FILE *isl_printer_get_file(
1274 __isl_keep isl_printer *printer);
1275 int isl_printer_get_output_format(
1276 __isl_keep isl_printer *p);
1278 The behavior of the printer can be modified in various ways
1280 __isl_give isl_printer *isl_printer_set_output_format(
1281 __isl_take isl_printer *p, int output_format);
1282 __isl_give isl_printer *isl_printer_set_indent(
1283 __isl_take isl_printer *p, int indent);
1284 __isl_give isl_printer *isl_printer_indent(
1285 __isl_take isl_printer *p, int indent);
1286 __isl_give isl_printer *isl_printer_set_prefix(
1287 __isl_take isl_printer *p, const char *prefix);
1288 __isl_give isl_printer *isl_printer_set_suffix(
1289 __isl_take isl_printer *p, const char *suffix);
1291 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
1292 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
1293 and defaults to C<ISL_FORMAT_ISL>.
1294 Each line in the output is indented by C<indent> (set by
1295 C<isl_printer_set_indent>) spaces
1296 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
1297 In the C<PolyLib> format output,
1298 the coefficients of the existentially quantified variables
1299 appear between those of the set variables and those
1301 The function C<isl_printer_indent> increases the indentation
1302 by the specified amount (which may be negative).
1304 To actually print something, use
1306 #include <isl/printer.h>
1307 __isl_give isl_printer *isl_printer_print_double(
1308 __isl_take isl_printer *p, double d);
1310 #include <isl/set.h>
1311 __isl_give isl_printer *isl_printer_print_basic_set(
1312 __isl_take isl_printer *printer,
1313 __isl_keep isl_basic_set *bset);
1314 __isl_give isl_printer *isl_printer_print_set(
1315 __isl_take isl_printer *printer,
1316 __isl_keep isl_set *set);
1318 #include <isl/map.h>
1319 __isl_give isl_printer *isl_printer_print_basic_map(
1320 __isl_take isl_printer *printer,
1321 __isl_keep isl_basic_map *bmap);
1322 __isl_give isl_printer *isl_printer_print_map(
1323 __isl_take isl_printer *printer,
1324 __isl_keep isl_map *map);
1326 #include <isl/union_set.h>
1327 __isl_give isl_printer *isl_printer_print_union_set(
1328 __isl_take isl_printer *p,
1329 __isl_keep isl_union_set *uset);
1331 #include <isl/union_map.h>
1332 __isl_give isl_printer *isl_printer_print_union_map(
1333 __isl_take isl_printer *p,
1334 __isl_keep isl_union_map *umap);
1336 When called on a file printer, the following function flushes
1337 the file. When called on a string printer, the buffer is cleared.
1339 __isl_give isl_printer *isl_printer_flush(
1340 __isl_take isl_printer *p);
1342 =head2 Creating New Sets and Relations
1344 C<isl> has functions for creating some standard sets and relations.
1348 =item * Empty sets and relations
1350 __isl_give isl_basic_set *isl_basic_set_empty(
1351 __isl_take isl_space *space);
1352 __isl_give isl_basic_map *isl_basic_map_empty(
1353 __isl_take isl_space *space);
1354 __isl_give isl_set *isl_set_empty(
1355 __isl_take isl_space *space);
1356 __isl_give isl_map *isl_map_empty(
1357 __isl_take isl_space *space);
1358 __isl_give isl_union_set *isl_union_set_empty(
1359 __isl_take isl_space *space);
1360 __isl_give isl_union_map *isl_union_map_empty(
1361 __isl_take isl_space *space);
1363 For C<isl_union_set>s and C<isl_union_map>s, the space
1364 is only used to specify the parameters.
1366 =item * Universe sets and relations
1368 __isl_give isl_basic_set *isl_basic_set_universe(
1369 __isl_take isl_space *space);
1370 __isl_give isl_basic_map *isl_basic_map_universe(
1371 __isl_take isl_space *space);
1372 __isl_give isl_set *isl_set_universe(
1373 __isl_take isl_space *space);
1374 __isl_give isl_map *isl_map_universe(
1375 __isl_take isl_space *space);
1376 __isl_give isl_union_set *isl_union_set_universe(
1377 __isl_take isl_union_set *uset);
1378 __isl_give isl_union_map *isl_union_map_universe(
1379 __isl_take isl_union_map *umap);
1381 The sets and relations constructed by the functions above
1382 contain all integer values, while those constructed by the
1383 functions below only contain non-negative values.
1385 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1386 __isl_take isl_space *space);
1387 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1388 __isl_take isl_space *space);
1389 __isl_give isl_set *isl_set_nat_universe(
1390 __isl_take isl_space *space);
1391 __isl_give isl_map *isl_map_nat_universe(
1392 __isl_take isl_space *space);
1394 =item * Identity relations
1396 __isl_give isl_basic_map *isl_basic_map_identity(
1397 __isl_take isl_space *space);
1398 __isl_give isl_map *isl_map_identity(
1399 __isl_take isl_space *space);
1401 The number of input and output dimensions in C<space> needs
1404 =item * Lexicographic order
1406 __isl_give isl_map *isl_map_lex_lt(
1407 __isl_take isl_space *set_space);
1408 __isl_give isl_map *isl_map_lex_le(
1409 __isl_take isl_space *set_space);
1410 __isl_give isl_map *isl_map_lex_gt(
1411 __isl_take isl_space *set_space);
1412 __isl_give isl_map *isl_map_lex_ge(
1413 __isl_take isl_space *set_space);
1414 __isl_give isl_map *isl_map_lex_lt_first(
1415 __isl_take isl_space *space, unsigned n);
1416 __isl_give isl_map *isl_map_lex_le_first(
1417 __isl_take isl_space *space, unsigned n);
1418 __isl_give isl_map *isl_map_lex_gt_first(
1419 __isl_take isl_space *space, unsigned n);
1420 __isl_give isl_map *isl_map_lex_ge_first(
1421 __isl_take isl_space *space, unsigned n);
1423 The first four functions take a space for a B<set>
1424 and return relations that express that the elements in the domain
1425 are lexicographically less
1426 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1427 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1428 than the elements in the range.
1429 The last four functions take a space for a map
1430 and return relations that express that the first C<n> dimensions
1431 in the domain are lexicographically less
1432 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1433 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1434 than the first C<n> dimensions in the range.
1438 A basic set or relation can be converted to a set or relation
1439 using the following functions.
1441 __isl_give isl_set *isl_set_from_basic_set(
1442 __isl_take isl_basic_set *bset);
1443 __isl_give isl_map *isl_map_from_basic_map(
1444 __isl_take isl_basic_map *bmap);
1446 Sets and relations can be converted to union sets and relations
1447 using the following functions.
1449 __isl_give isl_union_set *isl_union_set_from_basic_set(
1450 __isl_take isl_basic_set *bset);
1451 __isl_give isl_union_map *isl_union_map_from_basic_map(
1452 __isl_take isl_basic_map *bmap);
1453 __isl_give isl_union_set *isl_union_set_from_set(
1454 __isl_take isl_set *set);
1455 __isl_give isl_union_map *isl_union_map_from_map(
1456 __isl_take isl_map *map);
1458 The inverse conversions below can only be used if the input
1459 union set or relation is known to contain elements in exactly one
1462 __isl_give isl_set *isl_set_from_union_set(
1463 __isl_take isl_union_set *uset);
1464 __isl_give isl_map *isl_map_from_union_map(
1465 __isl_take isl_union_map *umap);
1467 A zero-dimensional (basic) set can be constructed on a given parameter domain
1468 using the following function.
1470 __isl_give isl_basic_set *isl_basic_set_from_params(
1471 __isl_take isl_basic_set *bset);
1472 __isl_give isl_set *isl_set_from_params(
1473 __isl_take isl_set *set);
1475 Sets and relations can be copied and freed again using the following
1478 __isl_give isl_basic_set *isl_basic_set_copy(
1479 __isl_keep isl_basic_set *bset);
1480 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1481 __isl_give isl_union_set *isl_union_set_copy(
1482 __isl_keep isl_union_set *uset);
1483 __isl_give isl_basic_map *isl_basic_map_copy(
1484 __isl_keep isl_basic_map *bmap);
1485 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1486 __isl_give isl_union_map *isl_union_map_copy(
1487 __isl_keep isl_union_map *umap);
1488 void *isl_basic_set_free(__isl_take isl_basic_set *bset);
1489 void *isl_set_free(__isl_take isl_set *set);
1490 void *isl_union_set_free(__isl_take isl_union_set *uset);
1491 void *isl_basic_map_free(__isl_take isl_basic_map *bmap);
1492 void *isl_map_free(__isl_take isl_map *map);
1493 void *isl_union_map_free(__isl_take isl_union_map *umap);
1495 Other sets and relations can be constructed by starting
1496 from a universe set or relation, adding equality and/or
1497 inequality constraints and then projecting out the
1498 existentially quantified variables, if any.
1499 Constraints can be constructed, manipulated and
1500 added to (or removed from) (basic) sets and relations
1501 using the following functions.
1503 #include <isl/constraint.h>
1504 __isl_give isl_constraint *isl_equality_alloc(
1505 __isl_take isl_local_space *ls);
1506 __isl_give isl_constraint *isl_inequality_alloc(
1507 __isl_take isl_local_space *ls);
1508 __isl_give isl_constraint *isl_constraint_set_constant(
1509 __isl_take isl_constraint *constraint, isl_int v);
1510 __isl_give isl_constraint *isl_constraint_set_constant_si(
1511 __isl_take isl_constraint *constraint, int v);
1512 __isl_give isl_constraint *isl_constraint_set_constant_val(
1513 __isl_take isl_constraint *constraint,
1514 __isl_take isl_val *v);
1515 __isl_give isl_constraint *isl_constraint_set_coefficient(
1516 __isl_take isl_constraint *constraint,
1517 enum isl_dim_type type, int pos, isl_int v);
1518 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1519 __isl_take isl_constraint *constraint,
1520 enum isl_dim_type type, int pos, int v);
1521 __isl_give isl_constraint *
1522 isl_constraint_set_coefficient_val(
1523 __isl_take isl_constraint *constraint,
1524 enum isl_dim_type type, int pos, isl_val *v);
1525 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1526 __isl_take isl_basic_map *bmap,
1527 __isl_take isl_constraint *constraint);
1528 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1529 __isl_take isl_basic_set *bset,
1530 __isl_take isl_constraint *constraint);
1531 __isl_give isl_map *isl_map_add_constraint(
1532 __isl_take isl_map *map,
1533 __isl_take isl_constraint *constraint);
1534 __isl_give isl_set *isl_set_add_constraint(
1535 __isl_take isl_set *set,
1536 __isl_take isl_constraint *constraint);
1537 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1538 __isl_take isl_basic_set *bset,
1539 __isl_take isl_constraint *constraint);
1541 For example, to create a set containing the even integers
1542 between 10 and 42, you would use the following code.
1545 isl_local_space *ls;
1547 isl_basic_set *bset;
1549 space = isl_space_set_alloc(ctx, 0, 2);
1550 bset = isl_basic_set_universe(isl_space_copy(space));
1551 ls = isl_local_space_from_space(space);
1553 c = isl_equality_alloc(isl_local_space_copy(ls));
1554 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1555 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1556 bset = isl_basic_set_add_constraint(bset, c);
1558 c = isl_inequality_alloc(isl_local_space_copy(ls));
1559 c = isl_constraint_set_constant_si(c, -10);
1560 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1561 bset = isl_basic_set_add_constraint(bset, c);
1563 c = isl_inequality_alloc(ls);
1564 c = isl_constraint_set_constant_si(c, 42);
1565 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1566 bset = isl_basic_set_add_constraint(bset, c);
1568 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1572 isl_basic_set *bset;
1573 bset = isl_basic_set_read_from_str(ctx,
1574 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1576 A basic set or relation can also be constructed from two matrices
1577 describing the equalities and the inequalities.
1579 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1580 __isl_take isl_space *space,
1581 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1582 enum isl_dim_type c1,
1583 enum isl_dim_type c2, enum isl_dim_type c3,
1584 enum isl_dim_type c4);
1585 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1586 __isl_take isl_space *space,
1587 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1588 enum isl_dim_type c1,
1589 enum isl_dim_type c2, enum isl_dim_type c3,
1590 enum isl_dim_type c4, enum isl_dim_type c5);
1592 The C<isl_dim_type> arguments indicate the order in which
1593 different kinds of variables appear in the input matrices
1594 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1595 C<isl_dim_set> and C<isl_dim_div> for sets and
1596 of C<isl_dim_cst>, C<isl_dim_param>,
1597 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1599 A (basic or union) set or relation can also be constructed from a
1600 (union) (piecewise) (multiple) affine expression
1601 or a list of affine expressions
1602 (See L<"Piecewise Quasi Affine Expressions"> and
1603 L<"Piecewise Multiple Quasi Affine Expressions">).
1605 __isl_give isl_basic_map *isl_basic_map_from_aff(
1606 __isl_take isl_aff *aff);
1607 __isl_give isl_map *isl_map_from_aff(
1608 __isl_take isl_aff *aff);
1609 __isl_give isl_set *isl_set_from_pw_aff(
1610 __isl_take isl_pw_aff *pwaff);
1611 __isl_give isl_map *isl_map_from_pw_aff(
1612 __isl_take isl_pw_aff *pwaff);
1613 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1614 __isl_take isl_space *domain_space,
1615 __isl_take isl_aff_list *list);
1616 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1617 __isl_take isl_multi_aff *maff)
1618 __isl_give isl_map *isl_map_from_multi_aff(
1619 __isl_take isl_multi_aff *maff)
1620 __isl_give isl_set *isl_set_from_pw_multi_aff(
1621 __isl_take isl_pw_multi_aff *pma);
1622 __isl_give isl_map *isl_map_from_pw_multi_aff(
1623 __isl_take isl_pw_multi_aff *pma);
1624 __isl_give isl_union_map *
1625 isl_union_map_from_union_pw_multi_aff(
1626 __isl_take isl_union_pw_multi_aff *upma);
1628 The C<domain_dim> argument describes the domain of the resulting
1629 basic relation. It is required because the C<list> may consist
1630 of zero affine expressions.
1632 =head2 Inspecting Sets and Relations
1634 Usually, the user should not have to care about the actual constraints
1635 of the sets and maps, but should instead apply the abstract operations
1636 explained in the following sections.
1637 Occasionally, however, it may be required to inspect the individual
1638 coefficients of the constraints. This section explains how to do so.
1639 In these cases, it may also be useful to have C<isl> compute
1640 an explicit representation of the existentially quantified variables.
1642 __isl_give isl_set *isl_set_compute_divs(
1643 __isl_take isl_set *set);
1644 __isl_give isl_map *isl_map_compute_divs(
1645 __isl_take isl_map *map);
1646 __isl_give isl_union_set *isl_union_set_compute_divs(
1647 __isl_take isl_union_set *uset);
1648 __isl_give isl_union_map *isl_union_map_compute_divs(
1649 __isl_take isl_union_map *umap);
1651 This explicit representation defines the existentially quantified
1652 variables as integer divisions of the other variables, possibly
1653 including earlier existentially quantified variables.
1654 An explicitly represented existentially quantified variable therefore
1655 has a unique value when the values of the other variables are known.
1656 If, furthermore, the same existentials, i.e., existentials
1657 with the same explicit representations, should appear in the
1658 same order in each of the disjuncts of a set or map, then the user should call
1659 either of the following functions.
1661 __isl_give isl_set *isl_set_align_divs(
1662 __isl_take isl_set *set);
1663 __isl_give isl_map *isl_map_align_divs(
1664 __isl_take isl_map *map);
1666 Alternatively, the existentially quantified variables can be removed
1667 using the following functions, which compute an overapproximation.
1669 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1670 __isl_take isl_basic_set *bset);
1671 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1672 __isl_take isl_basic_map *bmap);
1673 __isl_give isl_set *isl_set_remove_divs(
1674 __isl_take isl_set *set);
1675 __isl_give isl_map *isl_map_remove_divs(
1676 __isl_take isl_map *map);
1678 It is also possible to only remove those divs that are defined
1679 in terms of a given range of dimensions or only those for which
1680 no explicit representation is known.
1682 __isl_give isl_basic_set *
1683 isl_basic_set_remove_divs_involving_dims(
1684 __isl_take isl_basic_set *bset,
1685 enum isl_dim_type type,
1686 unsigned first, unsigned n);
1687 __isl_give isl_basic_map *
1688 isl_basic_map_remove_divs_involving_dims(
1689 __isl_take isl_basic_map *bmap,
1690 enum isl_dim_type type,
1691 unsigned first, unsigned n);
1692 __isl_give isl_set *isl_set_remove_divs_involving_dims(
1693 __isl_take isl_set *set, enum isl_dim_type type,
1694 unsigned first, unsigned n);
1695 __isl_give isl_map *isl_map_remove_divs_involving_dims(
1696 __isl_take isl_map *map, enum isl_dim_type type,
1697 unsigned first, unsigned n);
1699 __isl_give isl_basic_set *
1700 isl_basic_set_remove_unknown_divs(
1701 __isl_take isl_basic_set *bset);
1702 __isl_give isl_set *isl_set_remove_unknown_divs(
1703 __isl_take isl_set *set);
1704 __isl_give isl_map *isl_map_remove_unknown_divs(
1705 __isl_take isl_map *map);
1707 To iterate over all the sets or maps in a union set or map, use
1709 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1710 int (*fn)(__isl_take isl_set *set, void *user),
1712 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1713 int (*fn)(__isl_take isl_map *map, void *user),
1716 The number of sets or maps in a union set or map can be obtained
1719 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1720 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1722 To extract the set or map in a given space from a union, use
1724 __isl_give isl_set *isl_union_set_extract_set(
1725 __isl_keep isl_union_set *uset,
1726 __isl_take isl_space *space);
1727 __isl_give isl_map *isl_union_map_extract_map(
1728 __isl_keep isl_union_map *umap,
1729 __isl_take isl_space *space);
1731 To iterate over all the basic sets or maps in a set or map, use
1733 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1734 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1736 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1737 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1740 The callback function C<fn> should return 0 if successful and
1741 -1 if an error occurs. In the latter case, or if any other error
1742 occurs, the above functions will return -1.
1744 It should be noted that C<isl> does not guarantee that
1745 the basic sets or maps passed to C<fn> are disjoint.
1746 If this is required, then the user should call one of
1747 the following functions first.
1749 __isl_give isl_set *isl_set_make_disjoint(
1750 __isl_take isl_set *set);
1751 __isl_give isl_map *isl_map_make_disjoint(
1752 __isl_take isl_map *map);
1754 The number of basic sets in a set can be obtained
1757 int isl_set_n_basic_set(__isl_keep isl_set *set);
1759 To iterate over the constraints of a basic set or map, use
1761 #include <isl/constraint.h>
1763 int isl_basic_set_n_constraint(
1764 __isl_keep isl_basic_set *bset);
1765 int isl_basic_set_foreach_constraint(
1766 __isl_keep isl_basic_set *bset,
1767 int (*fn)(__isl_take isl_constraint *c, void *user),
1769 int isl_basic_map_foreach_constraint(
1770 __isl_keep isl_basic_map *bmap,
1771 int (*fn)(__isl_take isl_constraint *c, void *user),
1773 void *isl_constraint_free(__isl_take isl_constraint *c);
1775 Again, the callback function C<fn> should return 0 if successful and
1776 -1 if an error occurs. In the latter case, or if any other error
1777 occurs, the above functions will return -1.
1778 The constraint C<c> represents either an equality or an inequality.
1779 Use the following function to find out whether a constraint
1780 represents an equality. If not, it represents an inequality.
1782 int isl_constraint_is_equality(
1783 __isl_keep isl_constraint *constraint);
1785 The coefficients of the constraints can be inspected using
1786 the following functions.
1788 int isl_constraint_is_lower_bound(
1789 __isl_keep isl_constraint *constraint,
1790 enum isl_dim_type type, unsigned pos);
1791 int isl_constraint_is_upper_bound(
1792 __isl_keep isl_constraint *constraint,
1793 enum isl_dim_type type, unsigned pos);
1794 void isl_constraint_get_constant(
1795 __isl_keep isl_constraint *constraint, isl_int *v);
1796 __isl_give isl_val *isl_constraint_get_constant_val(
1797 __isl_keep isl_constraint *constraint);
1798 void isl_constraint_get_coefficient(
1799 __isl_keep isl_constraint *constraint,
1800 enum isl_dim_type type, int pos, isl_int *v);
1801 __isl_give isl_val *isl_constraint_get_coefficient_val(
1802 __isl_keep isl_constraint *constraint,
1803 enum isl_dim_type type, int pos);
1804 int isl_constraint_involves_dims(
1805 __isl_keep isl_constraint *constraint,
1806 enum isl_dim_type type, unsigned first, unsigned n);
1808 The explicit representations of the existentially quantified
1809 variables can be inspected using the following function.
1810 Note that the user is only allowed to use this function
1811 if the inspected set or map is the result of a call
1812 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1813 The existentially quantified variable is equal to the floor
1814 of the returned affine expression. The affine expression
1815 itself can be inspected using the functions in
1816 L<"Piecewise Quasi Affine Expressions">.
1818 __isl_give isl_aff *isl_constraint_get_div(
1819 __isl_keep isl_constraint *constraint, int pos);
1821 To obtain the constraints of a basic set or map in matrix
1822 form, use the following functions.
1824 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1825 __isl_keep isl_basic_set *bset,
1826 enum isl_dim_type c1, enum isl_dim_type c2,
1827 enum isl_dim_type c3, enum isl_dim_type c4);
1828 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1829 __isl_keep isl_basic_set *bset,
1830 enum isl_dim_type c1, enum isl_dim_type c2,
1831 enum isl_dim_type c3, enum isl_dim_type c4);
1832 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1833 __isl_keep isl_basic_map *bmap,
1834 enum isl_dim_type c1,
1835 enum isl_dim_type c2, enum isl_dim_type c3,
1836 enum isl_dim_type c4, enum isl_dim_type c5);
1837 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1838 __isl_keep isl_basic_map *bmap,
1839 enum isl_dim_type c1,
1840 enum isl_dim_type c2, enum isl_dim_type c3,
1841 enum isl_dim_type c4, enum isl_dim_type c5);
1843 The C<isl_dim_type> arguments dictate the order in which
1844 different kinds of variables appear in the resulting matrix
1845 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1846 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1848 The number of parameters, input, output or set dimensions can
1849 be obtained using the following functions.
1851 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1852 enum isl_dim_type type);
1853 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1854 enum isl_dim_type type);
1855 unsigned isl_set_dim(__isl_keep isl_set *set,
1856 enum isl_dim_type type);
1857 unsigned isl_map_dim(__isl_keep isl_map *map,
1858 enum isl_dim_type type);
1860 To check whether the description of a set or relation depends
1861 on one or more given dimensions, it is not necessary to iterate over all
1862 constraints. Instead the following functions can be used.
1864 int isl_basic_set_involves_dims(
1865 __isl_keep isl_basic_set *bset,
1866 enum isl_dim_type type, unsigned first, unsigned n);
1867 int isl_set_involves_dims(__isl_keep isl_set *set,
1868 enum isl_dim_type type, unsigned first, unsigned n);
1869 int isl_basic_map_involves_dims(
1870 __isl_keep isl_basic_map *bmap,
1871 enum isl_dim_type type, unsigned first, unsigned n);
1872 int isl_map_involves_dims(__isl_keep isl_map *map,
1873 enum isl_dim_type type, unsigned first, unsigned n);
1875 Similarly, the following functions can be used to check whether
1876 a given dimension is involved in any lower or upper bound.
1878 int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
1879 enum isl_dim_type type, unsigned pos);
1880 int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
1881 enum isl_dim_type type, unsigned pos);
1883 Note that these functions return true even if there is a bound on
1884 the dimension on only some of the basic sets of C<set>.
1885 To check if they have a bound for all of the basic sets in C<set>,
1886 use the following functions instead.
1888 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1889 enum isl_dim_type type, unsigned pos);
1890 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1891 enum isl_dim_type type, unsigned pos);
1893 The identifiers or names of the domain and range spaces of a set
1894 or relation can be read off or set using the following functions.
1896 __isl_give isl_set *isl_set_set_tuple_id(
1897 __isl_take isl_set *set, __isl_take isl_id *id);
1898 __isl_give isl_set *isl_set_reset_tuple_id(
1899 __isl_take isl_set *set);
1900 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1901 __isl_give isl_id *isl_set_get_tuple_id(
1902 __isl_keep isl_set *set);
1903 __isl_give isl_map *isl_map_set_tuple_id(
1904 __isl_take isl_map *map, enum isl_dim_type type,
1905 __isl_take isl_id *id);
1906 __isl_give isl_map *isl_map_reset_tuple_id(
1907 __isl_take isl_map *map, enum isl_dim_type type);
1908 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1909 enum isl_dim_type type);
1910 __isl_give isl_id *isl_map_get_tuple_id(
1911 __isl_keep isl_map *map, enum isl_dim_type type);
1913 const char *isl_basic_set_get_tuple_name(
1914 __isl_keep isl_basic_set *bset);
1915 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1916 __isl_take isl_basic_set *set, const char *s);
1917 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1918 const char *isl_set_get_tuple_name(
1919 __isl_keep isl_set *set);
1920 const char *isl_basic_map_get_tuple_name(
1921 __isl_keep isl_basic_map *bmap,
1922 enum isl_dim_type type);
1923 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1924 __isl_take isl_basic_map *bmap,
1925 enum isl_dim_type type, const char *s);
1926 int isl_map_has_tuple_name(__isl_keep isl_map *map,
1927 enum isl_dim_type type);
1928 const char *isl_map_get_tuple_name(
1929 __isl_keep isl_map *map,
1930 enum isl_dim_type type);
1932 As with C<isl_space_get_tuple_name>, the value returned points to
1933 an internal data structure.
1934 The identifiers, positions or names of individual dimensions can be
1935 read off using the following functions.
1937 __isl_give isl_id *isl_basic_set_get_dim_id(
1938 __isl_keep isl_basic_set *bset,
1939 enum isl_dim_type type, unsigned pos);
1940 __isl_give isl_set *isl_set_set_dim_id(
1941 __isl_take isl_set *set, enum isl_dim_type type,
1942 unsigned pos, __isl_take isl_id *id);
1943 int isl_set_has_dim_id(__isl_keep isl_set *set,
1944 enum isl_dim_type type, unsigned pos);
1945 __isl_give isl_id *isl_set_get_dim_id(
1946 __isl_keep isl_set *set, enum isl_dim_type type,
1948 int isl_basic_map_has_dim_id(
1949 __isl_keep isl_basic_map *bmap,
1950 enum isl_dim_type type, unsigned pos);
1951 __isl_give isl_map *isl_map_set_dim_id(
1952 __isl_take isl_map *map, enum isl_dim_type type,
1953 unsigned pos, __isl_take isl_id *id);
1954 int isl_map_has_dim_id(__isl_keep isl_map *map,
1955 enum isl_dim_type type, unsigned pos);
1956 __isl_give isl_id *isl_map_get_dim_id(
1957 __isl_keep isl_map *map, enum isl_dim_type type,
1960 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1961 enum isl_dim_type type, __isl_keep isl_id *id);
1962 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1963 enum isl_dim_type type, __isl_keep isl_id *id);
1964 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1965 enum isl_dim_type type, const char *name);
1966 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1967 enum isl_dim_type type, const char *name);
1969 const char *isl_constraint_get_dim_name(
1970 __isl_keep isl_constraint *constraint,
1971 enum isl_dim_type type, unsigned pos);
1972 const char *isl_basic_set_get_dim_name(
1973 __isl_keep isl_basic_set *bset,
1974 enum isl_dim_type type, unsigned pos);
1975 int isl_set_has_dim_name(__isl_keep isl_set *set,
1976 enum isl_dim_type type, unsigned pos);
1977 const char *isl_set_get_dim_name(
1978 __isl_keep isl_set *set,
1979 enum isl_dim_type type, unsigned pos);
1980 const char *isl_basic_map_get_dim_name(
1981 __isl_keep isl_basic_map *bmap,
1982 enum isl_dim_type type, unsigned pos);
1983 int isl_map_has_dim_name(__isl_keep isl_map *map,
1984 enum isl_dim_type type, unsigned pos);
1985 const char *isl_map_get_dim_name(
1986 __isl_keep isl_map *map,
1987 enum isl_dim_type type, unsigned pos);
1989 These functions are mostly useful to obtain the identifiers, positions
1990 or names of the parameters. Identifiers of individual dimensions are
1991 essentially only useful for printing. They are ignored by all other
1992 operations and may not be preserved across those operations.
1996 =head3 Unary Properties
2002 The following functions test whether the given set or relation
2003 contains any integer points. The ``plain'' variants do not perform
2004 any computations, but simply check if the given set or relation
2005 is already known to be empty.
2007 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
2008 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
2009 int isl_set_plain_is_empty(__isl_keep isl_set *set);
2010 int isl_set_is_empty(__isl_keep isl_set *set);
2011 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
2012 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
2013 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
2014 int isl_map_plain_is_empty(__isl_keep isl_map *map);
2015 int isl_map_is_empty(__isl_keep isl_map *map);
2016 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
2018 =item * Universality
2020 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
2021 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
2022 int isl_set_plain_is_universe(__isl_keep isl_set *set);
2024 =item * Single-valuedness
2026 int isl_basic_map_is_single_valued(
2027 __isl_keep isl_basic_map *bmap);
2028 int isl_map_plain_is_single_valued(
2029 __isl_keep isl_map *map);
2030 int isl_map_is_single_valued(__isl_keep isl_map *map);
2031 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
2035 int isl_map_plain_is_injective(__isl_keep isl_map *map);
2036 int isl_map_is_injective(__isl_keep isl_map *map);
2037 int isl_union_map_plain_is_injective(
2038 __isl_keep isl_union_map *umap);
2039 int isl_union_map_is_injective(
2040 __isl_keep isl_union_map *umap);
2044 int isl_map_is_bijective(__isl_keep isl_map *map);
2045 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
2049 int isl_basic_map_plain_is_fixed(
2050 __isl_keep isl_basic_map *bmap,
2051 enum isl_dim_type type, unsigned pos,
2053 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
2054 enum isl_dim_type type, unsigned pos,
2056 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
2057 enum isl_dim_type type, unsigned pos,
2060 Check if the relation obviously lies on a hyperplane where the given dimension
2061 has a fixed value and if so, return that value in C<*val>.
2065 To check whether a set is a parameter domain, use this function:
2067 int isl_set_is_params(__isl_keep isl_set *set);
2068 int isl_union_set_is_params(
2069 __isl_keep isl_union_set *uset);
2073 The following functions check whether the domain of the given
2074 (basic) set is a wrapped relation.
2076 int isl_basic_set_is_wrapping(
2077 __isl_keep isl_basic_set *bset);
2078 int isl_set_is_wrapping(__isl_keep isl_set *set);
2080 =item * Internal Product
2082 int isl_basic_map_can_zip(
2083 __isl_keep isl_basic_map *bmap);
2084 int isl_map_can_zip(__isl_keep isl_map *map);
2086 Check whether the product of domain and range of the given relation
2088 i.e., whether both domain and range are nested relations.
2092 int isl_basic_map_can_curry(
2093 __isl_keep isl_basic_map *bmap);
2094 int isl_map_can_curry(__isl_keep isl_map *map);
2096 Check whether the domain of the (basic) relation is a wrapped relation.
2098 int isl_basic_map_can_uncurry(
2099 __isl_keep isl_basic_map *bmap);
2100 int isl_map_can_uncurry(__isl_keep isl_map *map);
2102 Check whether the range of the (basic) relation is a wrapped relation.
2106 =head3 Binary Properties
2112 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
2113 __isl_keep isl_set *set2);
2114 int isl_set_is_equal(__isl_keep isl_set *set1,
2115 __isl_keep isl_set *set2);
2116 int isl_union_set_is_equal(
2117 __isl_keep isl_union_set *uset1,
2118 __isl_keep isl_union_set *uset2);
2119 int isl_basic_map_is_equal(
2120 __isl_keep isl_basic_map *bmap1,
2121 __isl_keep isl_basic_map *bmap2);
2122 int isl_map_is_equal(__isl_keep isl_map *map1,
2123 __isl_keep isl_map *map2);
2124 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
2125 __isl_keep isl_map *map2);
2126 int isl_union_map_is_equal(
2127 __isl_keep isl_union_map *umap1,
2128 __isl_keep isl_union_map *umap2);
2130 =item * Disjointness
2132 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2133 __isl_keep isl_set *set2);
2134 int isl_set_is_disjoint(__isl_keep isl_set *set1,
2135 __isl_keep isl_set *set2);
2136 int isl_map_is_disjoint(__isl_keep isl_map *map1,
2137 __isl_keep isl_map *map2);
2141 int isl_basic_set_is_subset(
2142 __isl_keep isl_basic_set *bset1,
2143 __isl_keep isl_basic_set *bset2);
2144 int isl_set_is_subset(__isl_keep isl_set *set1,
2145 __isl_keep isl_set *set2);
2146 int isl_set_is_strict_subset(
2147 __isl_keep isl_set *set1,
2148 __isl_keep isl_set *set2);
2149 int isl_union_set_is_subset(
2150 __isl_keep isl_union_set *uset1,
2151 __isl_keep isl_union_set *uset2);
2152 int isl_union_set_is_strict_subset(
2153 __isl_keep isl_union_set *uset1,
2154 __isl_keep isl_union_set *uset2);
2155 int isl_basic_map_is_subset(
2156 __isl_keep isl_basic_map *bmap1,
2157 __isl_keep isl_basic_map *bmap2);
2158 int isl_basic_map_is_strict_subset(
2159 __isl_keep isl_basic_map *bmap1,
2160 __isl_keep isl_basic_map *bmap2);
2161 int isl_map_is_subset(
2162 __isl_keep isl_map *map1,
2163 __isl_keep isl_map *map2);
2164 int isl_map_is_strict_subset(
2165 __isl_keep isl_map *map1,
2166 __isl_keep isl_map *map2);
2167 int isl_union_map_is_subset(
2168 __isl_keep isl_union_map *umap1,
2169 __isl_keep isl_union_map *umap2);
2170 int isl_union_map_is_strict_subset(
2171 __isl_keep isl_union_map *umap1,
2172 __isl_keep isl_union_map *umap2);
2174 Check whether the first argument is a (strict) subset of the
2179 int isl_set_plain_cmp(__isl_keep isl_set *set1,
2180 __isl_keep isl_set *set2);
2182 This function is useful for sorting C<isl_set>s.
2183 The order depends on the internal representation of the inputs.
2184 The order is fixed over different calls to the function (assuming
2185 the internal representation of the inputs has not changed), but may
2186 change over different versions of C<isl>.
2190 =head2 Unary Operations
2196 __isl_give isl_set *isl_set_complement(
2197 __isl_take isl_set *set);
2198 __isl_give isl_map *isl_map_complement(
2199 __isl_take isl_map *map);
2203 __isl_give isl_basic_map *isl_basic_map_reverse(
2204 __isl_take isl_basic_map *bmap);
2205 __isl_give isl_map *isl_map_reverse(
2206 __isl_take isl_map *map);
2207 __isl_give isl_union_map *isl_union_map_reverse(
2208 __isl_take isl_union_map *umap);
2212 __isl_give isl_basic_set *isl_basic_set_project_out(
2213 __isl_take isl_basic_set *bset,
2214 enum isl_dim_type type, unsigned first, unsigned n);
2215 __isl_give isl_basic_map *isl_basic_map_project_out(
2216 __isl_take isl_basic_map *bmap,
2217 enum isl_dim_type type, unsigned first, unsigned n);
2218 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
2219 enum isl_dim_type type, unsigned first, unsigned n);
2220 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
2221 enum isl_dim_type type, unsigned first, unsigned n);
2222 __isl_give isl_basic_set *isl_basic_set_params(
2223 __isl_take isl_basic_set *bset);
2224 __isl_give isl_basic_set *isl_basic_map_domain(
2225 __isl_take isl_basic_map *bmap);
2226 __isl_give isl_basic_set *isl_basic_map_range(
2227 __isl_take isl_basic_map *bmap);
2228 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
2229 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
2230 __isl_give isl_set *isl_map_domain(
2231 __isl_take isl_map *bmap);
2232 __isl_give isl_set *isl_map_range(
2233 __isl_take isl_map *map);
2234 __isl_give isl_set *isl_union_set_params(
2235 __isl_take isl_union_set *uset);
2236 __isl_give isl_set *isl_union_map_params(
2237 __isl_take isl_union_map *umap);
2238 __isl_give isl_union_set *isl_union_map_domain(
2239 __isl_take isl_union_map *umap);
2240 __isl_give isl_union_set *isl_union_map_range(
2241 __isl_take isl_union_map *umap);
2243 __isl_give isl_basic_map *isl_basic_map_domain_map(
2244 __isl_take isl_basic_map *bmap);
2245 __isl_give isl_basic_map *isl_basic_map_range_map(
2246 __isl_take isl_basic_map *bmap);
2247 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
2248 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
2249 __isl_give isl_union_map *isl_union_map_domain_map(
2250 __isl_take isl_union_map *umap);
2251 __isl_give isl_union_map *isl_union_map_range_map(
2252 __isl_take isl_union_map *umap);
2254 The functions above construct a (basic, regular or union) relation
2255 that maps (a wrapped version of) the input relation to its domain or range.
2259 __isl_give isl_basic_set *isl_basic_set_eliminate(
2260 __isl_take isl_basic_set *bset,
2261 enum isl_dim_type type,
2262 unsigned first, unsigned n);
2263 __isl_give isl_set *isl_set_eliminate(
2264 __isl_take isl_set *set, enum isl_dim_type type,
2265 unsigned first, unsigned n);
2266 __isl_give isl_basic_map *isl_basic_map_eliminate(
2267 __isl_take isl_basic_map *bmap,
2268 enum isl_dim_type type,
2269 unsigned first, unsigned n);
2270 __isl_give isl_map *isl_map_eliminate(
2271 __isl_take isl_map *map, enum isl_dim_type type,
2272 unsigned first, unsigned n);
2274 Eliminate the coefficients for the given dimensions from the constraints,
2275 without removing the dimensions.
2279 __isl_give isl_basic_set *isl_basic_set_fix(
2280 __isl_take isl_basic_set *bset,
2281 enum isl_dim_type type, unsigned pos,
2283 __isl_give isl_basic_set *isl_basic_set_fix_si(
2284 __isl_take isl_basic_set *bset,
2285 enum isl_dim_type type, unsigned pos, int value);
2286 __isl_give isl_basic_set *isl_basic_set_fix_val(
2287 __isl_take isl_basic_set *bset,
2288 enum isl_dim_type type, unsigned pos,
2289 __isl_take isl_val *v);
2290 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
2291 enum isl_dim_type type, unsigned pos,
2293 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
2294 enum isl_dim_type type, unsigned pos, int value);
2295 __isl_give isl_set *isl_set_fix_val(
2296 __isl_take isl_set *set,
2297 enum isl_dim_type type, unsigned pos,
2298 __isl_take isl_val *v);
2299 __isl_give isl_basic_map *isl_basic_map_fix_si(
2300 __isl_take isl_basic_map *bmap,
2301 enum isl_dim_type type, unsigned pos, int value);
2302 __isl_give isl_basic_map *isl_basic_map_fix_val(
2303 __isl_take isl_basic_map *bmap,
2304 enum isl_dim_type type, unsigned pos,
2305 __isl_take isl_val *v);
2306 __isl_give isl_map *isl_map_fix(__isl_take isl_map *map,
2307 enum isl_dim_type type, unsigned pos,
2309 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
2310 enum isl_dim_type type, unsigned pos, int value);
2311 __isl_give isl_map *isl_map_fix_val(
2312 __isl_take isl_map *map,
2313 enum isl_dim_type type, unsigned pos,
2314 __isl_take isl_val *v);
2316 Intersect the set or relation with the hyperplane where the given
2317 dimension has the fixed given value.
2319 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
2320 __isl_take isl_basic_map *bmap,
2321 enum isl_dim_type type, unsigned pos, int value);
2322 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
2323 __isl_take isl_basic_map *bmap,
2324 enum isl_dim_type type, unsigned pos, int value);
2325 __isl_give isl_set *isl_set_lower_bound(
2326 __isl_take isl_set *set,
2327 enum isl_dim_type type, unsigned pos,
2329 __isl_give isl_set *isl_set_lower_bound_si(
2330 __isl_take isl_set *set,
2331 enum isl_dim_type type, unsigned pos, int value);
2332 __isl_give isl_set *isl_set_lower_bound_val(
2333 __isl_take isl_set *set,
2334 enum isl_dim_type type, unsigned pos,
2335 __isl_take isl_val *value);
2336 __isl_give isl_map *isl_map_lower_bound_si(
2337 __isl_take isl_map *map,
2338 enum isl_dim_type type, unsigned pos, int value);
2339 __isl_give isl_set *isl_set_upper_bound(
2340 __isl_take isl_set *set,
2341 enum isl_dim_type type, unsigned pos,
2343 __isl_give isl_set *isl_set_upper_bound_si(
2344 __isl_take isl_set *set,
2345 enum isl_dim_type type, unsigned pos, int value);
2346 __isl_give isl_set *isl_set_upper_bound_val(
2347 __isl_take isl_set *set,
2348 enum isl_dim_type type, unsigned pos,
2349 __isl_take isl_val *value);
2350 __isl_give isl_map *isl_map_upper_bound_si(
2351 __isl_take isl_map *map,
2352 enum isl_dim_type type, unsigned pos, int value);
2354 Intersect the set or relation with the half-space where the given
2355 dimension has a value bounded by the fixed given integer value.
2357 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
2358 enum isl_dim_type type1, int pos1,
2359 enum isl_dim_type type2, int pos2);
2360 __isl_give isl_basic_map *isl_basic_map_equate(
2361 __isl_take isl_basic_map *bmap,
2362 enum isl_dim_type type1, int pos1,
2363 enum isl_dim_type type2, int pos2);
2364 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
2365 enum isl_dim_type type1, int pos1,
2366 enum isl_dim_type type2, int pos2);
2368 Intersect the set or relation with the hyperplane where the given
2369 dimensions are equal to each other.
2371 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
2372 enum isl_dim_type type1, int pos1,
2373 enum isl_dim_type type2, int pos2);
2375 Intersect the relation with the hyperplane where the given
2376 dimensions have opposite values.
2378 __isl_give isl_basic_map *isl_basic_map_order_ge(
2379 __isl_take isl_basic_map *bmap,
2380 enum isl_dim_type type1, int pos1,
2381 enum isl_dim_type type2, int pos2);
2382 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
2383 enum isl_dim_type type1, int pos1,
2384 enum isl_dim_type type2, int pos2);
2385 __isl_give isl_basic_map *isl_basic_map_order_gt(
2386 __isl_take isl_basic_map *bmap,
2387 enum isl_dim_type type1, int pos1,
2388 enum isl_dim_type type2, int pos2);
2389 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
2390 enum isl_dim_type type1, int pos1,
2391 enum isl_dim_type type2, int pos2);
2393 Intersect the relation with the half-space where the given
2394 dimensions satisfy the given ordering.
2398 __isl_give isl_map *isl_set_identity(
2399 __isl_take isl_set *set);
2400 __isl_give isl_union_map *isl_union_set_identity(
2401 __isl_take isl_union_set *uset);
2403 Construct an identity relation on the given (union) set.
2407 __isl_give isl_basic_set *isl_basic_map_deltas(
2408 __isl_take isl_basic_map *bmap);
2409 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
2410 __isl_give isl_union_set *isl_union_map_deltas(
2411 __isl_take isl_union_map *umap);
2413 These functions return a (basic) set containing the differences
2414 between image elements and corresponding domain elements in the input.
2416 __isl_give isl_basic_map *isl_basic_map_deltas_map(
2417 __isl_take isl_basic_map *bmap);
2418 __isl_give isl_map *isl_map_deltas_map(
2419 __isl_take isl_map *map);
2420 __isl_give isl_union_map *isl_union_map_deltas_map(
2421 __isl_take isl_union_map *umap);
2423 The functions above construct a (basic, regular or union) relation
2424 that maps (a wrapped version of) the input relation to its delta set.
2428 Simplify the representation of a set or relation by trying
2429 to combine pairs of basic sets or relations into a single
2430 basic set or relation.
2432 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
2433 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
2434 __isl_give isl_union_set *isl_union_set_coalesce(
2435 __isl_take isl_union_set *uset);
2436 __isl_give isl_union_map *isl_union_map_coalesce(
2437 __isl_take isl_union_map *umap);
2439 One of the methods for combining pairs of basic sets or relations
2440 can result in coefficients that are much larger than those that appear
2441 in the constraints of the input. By default, the coefficients are
2442 not allowed to grow larger, but this can be changed by unsetting
2443 the following option.
2445 int isl_options_set_coalesce_bounded_wrapping(
2446 isl_ctx *ctx, int val);
2447 int isl_options_get_coalesce_bounded_wrapping(
2450 =item * Detecting equalities
2452 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
2453 __isl_take isl_basic_set *bset);
2454 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
2455 __isl_take isl_basic_map *bmap);
2456 __isl_give isl_set *isl_set_detect_equalities(
2457 __isl_take isl_set *set);
2458 __isl_give isl_map *isl_map_detect_equalities(
2459 __isl_take isl_map *map);
2460 __isl_give isl_union_set *isl_union_set_detect_equalities(
2461 __isl_take isl_union_set *uset);
2462 __isl_give isl_union_map *isl_union_map_detect_equalities(
2463 __isl_take isl_union_map *umap);
2465 Simplify the representation of a set or relation by detecting implicit
2468 =item * Removing redundant constraints
2470 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
2471 __isl_take isl_basic_set *bset);
2472 __isl_give isl_set *isl_set_remove_redundancies(
2473 __isl_take isl_set *set);
2474 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
2475 __isl_take isl_basic_map *bmap);
2476 __isl_give isl_map *isl_map_remove_redundancies(
2477 __isl_take isl_map *map);
2481 __isl_give isl_basic_set *isl_set_convex_hull(
2482 __isl_take isl_set *set);
2483 __isl_give isl_basic_map *isl_map_convex_hull(
2484 __isl_take isl_map *map);
2486 If the input set or relation has any existentially quantified
2487 variables, then the result of these operations is currently undefined.
2491 __isl_give isl_basic_set *
2492 isl_set_unshifted_simple_hull(
2493 __isl_take isl_set *set);
2494 __isl_give isl_basic_map *
2495 isl_map_unshifted_simple_hull(
2496 __isl_take isl_map *map);
2497 __isl_give isl_basic_set *isl_set_simple_hull(
2498 __isl_take isl_set *set);
2499 __isl_give isl_basic_map *isl_map_simple_hull(
2500 __isl_take isl_map *map);
2501 __isl_give isl_union_map *isl_union_map_simple_hull(
2502 __isl_take isl_union_map *umap);
2504 These functions compute a single basic set or relation
2505 that contains the whole input set or relation.
2506 In particular, the output is described by translates
2507 of the constraints describing the basic sets or relations in the input.
2508 In case of C<isl_set_unshifted_simple_hull>, only the original
2509 constraints are used, without any translation.
2513 (See \autoref{s:simple hull}.)
2519 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2520 __isl_take isl_basic_set *bset);
2521 __isl_give isl_basic_set *isl_set_affine_hull(
2522 __isl_take isl_set *set);
2523 __isl_give isl_union_set *isl_union_set_affine_hull(
2524 __isl_take isl_union_set *uset);
2525 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2526 __isl_take isl_basic_map *bmap);
2527 __isl_give isl_basic_map *isl_map_affine_hull(
2528 __isl_take isl_map *map);
2529 __isl_give isl_union_map *isl_union_map_affine_hull(
2530 __isl_take isl_union_map *umap);
2532 In case of union sets and relations, the affine hull is computed
2535 =item * Polyhedral hull
2537 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2538 __isl_take isl_set *set);
2539 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2540 __isl_take isl_map *map);
2541 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2542 __isl_take isl_union_set *uset);
2543 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2544 __isl_take isl_union_map *umap);
2546 These functions compute a single basic set or relation
2547 not involving any existentially quantified variables
2548 that contains the whole input set or relation.
2549 In case of union sets and relations, the polyhedral hull is computed
2552 =item * Other approximations
2554 __isl_give isl_basic_set *
2555 isl_basic_set_drop_constraints_involving_dims(
2556 __isl_take isl_basic_set *bset,
2557 enum isl_dim_type type,
2558 unsigned first, unsigned n);
2559 __isl_give isl_basic_map *
2560 isl_basic_map_drop_constraints_involving_dims(
2561 __isl_take isl_basic_map *bmap,
2562 enum isl_dim_type type,
2563 unsigned first, unsigned n);
2564 __isl_give isl_basic_set *
2565 isl_basic_set_drop_constraints_not_involving_dims(
2566 __isl_take isl_basic_set *bset,
2567 enum isl_dim_type type,
2568 unsigned first, unsigned n);
2569 __isl_give isl_set *
2570 isl_set_drop_constraints_involving_dims(
2571 __isl_take isl_set *set,
2572 enum isl_dim_type type,
2573 unsigned first, unsigned n);
2574 __isl_give isl_map *
2575 isl_map_drop_constraints_involving_dims(
2576 __isl_take isl_map *map,
2577 enum isl_dim_type type,
2578 unsigned first, unsigned n);
2580 These functions drop any constraints (not) involving the specified dimensions.
2581 Note that the result depends on the representation of the input.
2585 __isl_give isl_basic_set *isl_basic_set_sample(
2586 __isl_take isl_basic_set *bset);
2587 __isl_give isl_basic_set *isl_set_sample(
2588 __isl_take isl_set *set);
2589 __isl_give isl_basic_map *isl_basic_map_sample(
2590 __isl_take isl_basic_map *bmap);
2591 __isl_give isl_basic_map *isl_map_sample(
2592 __isl_take isl_map *map);
2594 If the input (basic) set or relation is non-empty, then return
2595 a singleton subset of the input. Otherwise, return an empty set.
2597 =item * Optimization
2599 #include <isl/ilp.h>
2600 enum isl_lp_result isl_basic_set_max(
2601 __isl_keep isl_basic_set *bset,
2602 __isl_keep isl_aff *obj, isl_int *opt)
2603 __isl_give isl_val *isl_basic_set_max_val(
2604 __isl_keep isl_basic_set *bset,
2605 __isl_keep isl_aff *obj);
2606 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2607 __isl_keep isl_aff *obj, isl_int *opt);
2608 __isl_give isl_val *isl_set_min_val(
2609 __isl_keep isl_set *set,
2610 __isl_keep isl_aff *obj);
2611 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2612 __isl_keep isl_aff *obj, isl_int *opt);
2613 __isl_give isl_val *isl_set_max_val(
2614 __isl_keep isl_set *set,
2615 __isl_keep isl_aff *obj);
2617 Compute the minimum or maximum of the integer affine expression C<obj>
2618 over the points in C<set>, returning the result in C<opt>.
2619 The return value may be one of C<isl_lp_error>,
2620 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>, in case of
2621 an C<isl_lp_result>. If the result is an C<isl_val> then
2622 the result is C<NULL> in case of an error, the optimal value in case
2623 there is one, negative infinity or infinity if the problem is unbounded and
2624 NaN if the problem is empty.
2626 =item * Parametric optimization
2628 __isl_give isl_pw_aff *isl_set_dim_min(
2629 __isl_take isl_set *set, int pos);
2630 __isl_give isl_pw_aff *isl_set_dim_max(
2631 __isl_take isl_set *set, int pos);
2632 __isl_give isl_pw_aff *isl_map_dim_max(
2633 __isl_take isl_map *map, int pos);
2635 Compute the minimum or maximum of the given set or output dimension
2636 as a function of the parameters (and input dimensions), but independently
2637 of the other set or output dimensions.
2638 For lexicographic optimization, see L<"Lexicographic Optimization">.
2642 The following functions compute either the set of (rational) coefficient
2643 values of valid constraints for the given set or the set of (rational)
2644 values satisfying the constraints with coefficients from the given set.
2645 Internally, these two sets of functions perform essentially the
2646 same operations, except that the set of coefficients is assumed to
2647 be a cone, while the set of values may be any polyhedron.
2648 The current implementation is based on the Farkas lemma and
2649 Fourier-Motzkin elimination, but this may change or be made optional
2650 in future. In particular, future implementations may use different
2651 dualization algorithms or skip the elimination step.
2653 __isl_give isl_basic_set *isl_basic_set_coefficients(
2654 __isl_take isl_basic_set *bset);
2655 __isl_give isl_basic_set *isl_set_coefficients(
2656 __isl_take isl_set *set);
2657 __isl_give isl_union_set *isl_union_set_coefficients(
2658 __isl_take isl_union_set *bset);
2659 __isl_give isl_basic_set *isl_basic_set_solutions(
2660 __isl_take isl_basic_set *bset);
2661 __isl_give isl_basic_set *isl_set_solutions(
2662 __isl_take isl_set *set);
2663 __isl_give isl_union_set *isl_union_set_solutions(
2664 __isl_take isl_union_set *bset);
2668 __isl_give isl_map *isl_map_fixed_power(
2669 __isl_take isl_map *map, isl_int exp);
2670 __isl_give isl_union_map *isl_union_map_fixed_power(
2671 __isl_take isl_union_map *umap, isl_int exp);
2673 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2674 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2675 of C<map> is computed.
2677 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2679 __isl_give isl_union_map *isl_union_map_power(
2680 __isl_take isl_union_map *umap, int *exact);
2682 Compute a parametric representation for all positive powers I<k> of C<map>.
2683 The result maps I<k> to a nested relation corresponding to the
2684 I<k>th power of C<map>.
2685 The result may be an overapproximation. If the result is known to be exact,
2686 then C<*exact> is set to C<1>.
2688 =item * Transitive closure
2690 __isl_give isl_map *isl_map_transitive_closure(
2691 __isl_take isl_map *map, int *exact);
2692 __isl_give isl_union_map *isl_union_map_transitive_closure(
2693 __isl_take isl_union_map *umap, int *exact);
2695 Compute the transitive closure of C<map>.
2696 The result may be an overapproximation. If the result is known to be exact,
2697 then C<*exact> is set to C<1>.
2699 =item * Reaching path lengths
2701 __isl_give isl_map *isl_map_reaching_path_lengths(
2702 __isl_take isl_map *map, int *exact);
2704 Compute a relation that maps each element in the range of C<map>
2705 to the lengths of all paths composed of edges in C<map> that
2706 end up in the given element.
2707 The result may be an overapproximation. If the result is known to be exact,
2708 then C<*exact> is set to C<1>.
2709 To compute the I<maximal> path length, the resulting relation
2710 should be postprocessed by C<isl_map_lexmax>.
2711 In particular, if the input relation is a dependence relation
2712 (mapping sources to sinks), then the maximal path length corresponds
2713 to the free schedule.
2714 Note, however, that C<isl_map_lexmax> expects the maximum to be
2715 finite, so if the path lengths are unbounded (possibly due to
2716 the overapproximation), then you will get an error message.
2720 __isl_give isl_basic_set *isl_basic_map_wrap(
2721 __isl_take isl_basic_map *bmap);
2722 __isl_give isl_set *isl_map_wrap(
2723 __isl_take isl_map *map);
2724 __isl_give isl_union_set *isl_union_map_wrap(
2725 __isl_take isl_union_map *umap);
2726 __isl_give isl_basic_map *isl_basic_set_unwrap(
2727 __isl_take isl_basic_set *bset);
2728 __isl_give isl_map *isl_set_unwrap(
2729 __isl_take isl_set *set);
2730 __isl_give isl_union_map *isl_union_set_unwrap(
2731 __isl_take isl_union_set *uset);
2735 Remove any internal structure of domain (and range) of the given
2736 set or relation. If there is any such internal structure in the input,
2737 then the name of the space is also removed.
2739 __isl_give isl_basic_set *isl_basic_set_flatten(
2740 __isl_take isl_basic_set *bset);
2741 __isl_give isl_set *isl_set_flatten(
2742 __isl_take isl_set *set);
2743 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2744 __isl_take isl_basic_map *bmap);
2745 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2746 __isl_take isl_basic_map *bmap);
2747 __isl_give isl_map *isl_map_flatten_range(
2748 __isl_take isl_map *map);
2749 __isl_give isl_map *isl_map_flatten_domain(
2750 __isl_take isl_map *map);
2751 __isl_give isl_basic_map *isl_basic_map_flatten(
2752 __isl_take isl_basic_map *bmap);
2753 __isl_give isl_map *isl_map_flatten(
2754 __isl_take isl_map *map);
2756 __isl_give isl_map *isl_set_flatten_map(
2757 __isl_take isl_set *set);
2759 The function above constructs a relation
2760 that maps the input set to a flattened version of the set.
2764 Lift the input set to a space with extra dimensions corresponding
2765 to the existentially quantified variables in the input.
2766 In particular, the result lives in a wrapped map where the domain
2767 is the original space and the range corresponds to the original
2768 existentially quantified variables.
2770 __isl_give isl_basic_set *isl_basic_set_lift(
2771 __isl_take isl_basic_set *bset);
2772 __isl_give isl_set *isl_set_lift(
2773 __isl_take isl_set *set);
2774 __isl_give isl_union_set *isl_union_set_lift(
2775 __isl_take isl_union_set *uset);
2777 Given a local space that contains the existentially quantified
2778 variables of a set, a basic relation that, when applied to
2779 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2780 can be constructed using the following function.
2782 #include <isl/local_space.h>
2783 __isl_give isl_basic_map *isl_local_space_lifting(
2784 __isl_take isl_local_space *ls);
2786 =item * Internal Product
2788 __isl_give isl_basic_map *isl_basic_map_zip(
2789 __isl_take isl_basic_map *bmap);
2790 __isl_give isl_map *isl_map_zip(
2791 __isl_take isl_map *map);
2792 __isl_give isl_union_map *isl_union_map_zip(
2793 __isl_take isl_union_map *umap);
2795 Given a relation with nested relations for domain and range,
2796 interchange the range of the domain with the domain of the range.
2800 __isl_give isl_basic_map *isl_basic_map_curry(
2801 __isl_take isl_basic_map *bmap);
2802 __isl_give isl_basic_map *isl_basic_map_uncurry(
2803 __isl_take isl_basic_map *bmap);
2804 __isl_give isl_map *isl_map_curry(
2805 __isl_take isl_map *map);
2806 __isl_give isl_map *isl_map_uncurry(
2807 __isl_take isl_map *map);
2808 __isl_give isl_union_map *isl_union_map_curry(
2809 __isl_take isl_union_map *umap);
2810 __isl_give isl_union_map *isl_union_map_uncurry(
2811 __isl_take isl_union_map *umap);
2813 Given a relation with a nested relation for domain,
2814 the C<curry> functions
2815 move the range of the nested relation out of the domain
2816 and use it as the domain of a nested relation in the range,
2817 with the original range as range of this nested relation.
2818 The C<uncurry> functions perform the inverse operation.
2820 =item * Aligning parameters
2822 __isl_give isl_basic_set *isl_basic_set_align_params(
2823 __isl_take isl_basic_set *bset,
2824 __isl_take isl_space *model);
2825 __isl_give isl_set *isl_set_align_params(
2826 __isl_take isl_set *set,
2827 __isl_take isl_space *model);
2828 __isl_give isl_basic_map *isl_basic_map_align_params(
2829 __isl_take isl_basic_map *bmap,
2830 __isl_take isl_space *model);
2831 __isl_give isl_map *isl_map_align_params(
2832 __isl_take isl_map *map,
2833 __isl_take isl_space *model);
2835 Change the order of the parameters of the given set or relation
2836 such that the first parameters match those of C<model>.
2837 This may involve the introduction of extra parameters.
2838 All parameters need to be named.
2840 =item * Dimension manipulation
2842 __isl_give isl_basic_set *isl_basic_set_add_dims(
2843 __isl_take isl_basic_set *bset,
2844 enum isl_dim_type type, unsigned n);
2845 __isl_give isl_set *isl_set_add_dims(
2846 __isl_take isl_set *set,
2847 enum isl_dim_type type, unsigned n);
2848 __isl_give isl_map *isl_map_add_dims(
2849 __isl_take isl_map *map,
2850 enum isl_dim_type type, unsigned n);
2851 __isl_give isl_basic_set *isl_basic_set_insert_dims(
2852 __isl_take isl_basic_set *bset,
2853 enum isl_dim_type type, unsigned pos,
2855 __isl_give isl_basic_map *isl_basic_map_insert_dims(
2856 __isl_take isl_basic_map *bmap,
2857 enum isl_dim_type type, unsigned pos,
2859 __isl_give isl_set *isl_set_insert_dims(
2860 __isl_take isl_set *set,
2861 enum isl_dim_type type, unsigned pos, unsigned n);
2862 __isl_give isl_map *isl_map_insert_dims(
2863 __isl_take isl_map *map,
2864 enum isl_dim_type type, unsigned pos, unsigned n);
2865 __isl_give isl_basic_set *isl_basic_set_move_dims(
2866 __isl_take isl_basic_set *bset,
2867 enum isl_dim_type dst_type, unsigned dst_pos,
2868 enum isl_dim_type src_type, unsigned src_pos,
2870 __isl_give isl_basic_map *isl_basic_map_move_dims(
2871 __isl_take isl_basic_map *bmap,
2872 enum isl_dim_type dst_type, unsigned dst_pos,
2873 enum isl_dim_type src_type, unsigned src_pos,
2875 __isl_give isl_set *isl_set_move_dims(
2876 __isl_take isl_set *set,
2877 enum isl_dim_type dst_type, unsigned dst_pos,
2878 enum isl_dim_type src_type, unsigned src_pos,
2880 __isl_give isl_map *isl_map_move_dims(
2881 __isl_take isl_map *map,
2882 enum isl_dim_type dst_type, unsigned dst_pos,
2883 enum isl_dim_type src_type, unsigned src_pos,
2886 It is usually not advisable to directly change the (input or output)
2887 space of a set or a relation as this removes the name and the internal
2888 structure of the space. However, the above functions can be useful
2889 to add new parameters, assuming
2890 C<isl_set_align_params> and C<isl_map_align_params>
2895 =head2 Binary Operations
2897 The two arguments of a binary operation not only need to live
2898 in the same C<isl_ctx>, they currently also need to have
2899 the same (number of) parameters.
2901 =head3 Basic Operations
2905 =item * Intersection
2907 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2908 __isl_take isl_basic_set *bset1,
2909 __isl_take isl_basic_set *bset2);
2910 __isl_give isl_basic_set *isl_basic_set_intersect(
2911 __isl_take isl_basic_set *bset1,
2912 __isl_take isl_basic_set *bset2);
2913 __isl_give isl_set *isl_set_intersect_params(
2914 __isl_take isl_set *set,
2915 __isl_take isl_set *params);
2916 __isl_give isl_set *isl_set_intersect(
2917 __isl_take isl_set *set1,
2918 __isl_take isl_set *set2);
2919 __isl_give isl_union_set *isl_union_set_intersect_params(
2920 __isl_take isl_union_set *uset,
2921 __isl_take isl_set *set);
2922 __isl_give isl_union_map *isl_union_map_intersect_params(
2923 __isl_take isl_union_map *umap,
2924 __isl_take isl_set *set);
2925 __isl_give isl_union_set *isl_union_set_intersect(
2926 __isl_take isl_union_set *uset1,
2927 __isl_take isl_union_set *uset2);
2928 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2929 __isl_take isl_basic_map *bmap,
2930 __isl_take isl_basic_set *bset);
2931 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2932 __isl_take isl_basic_map *bmap,
2933 __isl_take isl_basic_set *bset);
2934 __isl_give isl_basic_map *isl_basic_map_intersect(
2935 __isl_take isl_basic_map *bmap1,
2936 __isl_take isl_basic_map *bmap2);
2937 __isl_give isl_map *isl_map_intersect_params(
2938 __isl_take isl_map *map,
2939 __isl_take isl_set *params);
2940 __isl_give isl_map *isl_map_intersect_domain(
2941 __isl_take isl_map *map,
2942 __isl_take isl_set *set);
2943 __isl_give isl_map *isl_map_intersect_range(
2944 __isl_take isl_map *map,
2945 __isl_take isl_set *set);
2946 __isl_give isl_map *isl_map_intersect(
2947 __isl_take isl_map *map1,
2948 __isl_take isl_map *map2);
2949 __isl_give isl_union_map *isl_union_map_intersect_domain(
2950 __isl_take isl_union_map *umap,
2951 __isl_take isl_union_set *uset);
2952 __isl_give isl_union_map *isl_union_map_intersect_range(
2953 __isl_take isl_union_map *umap,
2954 __isl_take isl_union_set *uset);
2955 __isl_give isl_union_map *isl_union_map_intersect(
2956 __isl_take isl_union_map *umap1,
2957 __isl_take isl_union_map *umap2);
2959 The second argument to the C<_params> functions needs to be
2960 a parametric (basic) set. For the other functions, a parametric set
2961 for either argument is only allowed if the other argument is
2962 a parametric set as well.
2966 __isl_give isl_set *isl_basic_set_union(
2967 __isl_take isl_basic_set *bset1,
2968 __isl_take isl_basic_set *bset2);
2969 __isl_give isl_map *isl_basic_map_union(
2970 __isl_take isl_basic_map *bmap1,
2971 __isl_take isl_basic_map *bmap2);
2972 __isl_give isl_set *isl_set_union(
2973 __isl_take isl_set *set1,
2974 __isl_take isl_set *set2);
2975 __isl_give isl_map *isl_map_union(
2976 __isl_take isl_map *map1,
2977 __isl_take isl_map *map2);
2978 __isl_give isl_union_set *isl_union_set_union(
2979 __isl_take isl_union_set *uset1,
2980 __isl_take isl_union_set *uset2);
2981 __isl_give isl_union_map *isl_union_map_union(
2982 __isl_take isl_union_map *umap1,
2983 __isl_take isl_union_map *umap2);
2985 =item * Set difference
2987 __isl_give isl_set *isl_set_subtract(
2988 __isl_take isl_set *set1,
2989 __isl_take isl_set *set2);
2990 __isl_give isl_map *isl_map_subtract(
2991 __isl_take isl_map *map1,
2992 __isl_take isl_map *map2);
2993 __isl_give isl_map *isl_map_subtract_domain(
2994 __isl_take isl_map *map,
2995 __isl_take isl_set *dom);
2996 __isl_give isl_map *isl_map_subtract_range(
2997 __isl_take isl_map *map,
2998 __isl_take isl_set *dom);
2999 __isl_give isl_union_set *isl_union_set_subtract(
3000 __isl_take isl_union_set *uset1,
3001 __isl_take isl_union_set *uset2);
3002 __isl_give isl_union_map *isl_union_map_subtract(
3003 __isl_take isl_union_map *umap1,
3004 __isl_take isl_union_map *umap2);
3005 __isl_give isl_union_map *isl_union_map_subtract_domain(
3006 __isl_take isl_union_map *umap,
3007 __isl_take isl_union_set *dom);
3008 __isl_give isl_union_map *isl_union_map_subtract_range(
3009 __isl_take isl_union_map *umap,
3010 __isl_take isl_union_set *dom);
3014 __isl_give isl_basic_set *isl_basic_set_apply(
3015 __isl_take isl_basic_set *bset,
3016 __isl_take isl_basic_map *bmap);
3017 __isl_give isl_set *isl_set_apply(
3018 __isl_take isl_set *set,
3019 __isl_take isl_map *map);
3020 __isl_give isl_union_set *isl_union_set_apply(
3021 __isl_take isl_union_set *uset,
3022 __isl_take isl_union_map *umap);
3023 __isl_give isl_basic_map *isl_basic_map_apply_domain(
3024 __isl_take isl_basic_map *bmap1,
3025 __isl_take isl_basic_map *bmap2);
3026 __isl_give isl_basic_map *isl_basic_map_apply_range(
3027 __isl_take isl_basic_map *bmap1,
3028 __isl_take isl_basic_map *bmap2);
3029 __isl_give isl_map *isl_map_apply_domain(
3030 __isl_take isl_map *map1,
3031 __isl_take isl_map *map2);
3032 __isl_give isl_union_map *isl_union_map_apply_domain(
3033 __isl_take isl_union_map *umap1,
3034 __isl_take isl_union_map *umap2);
3035 __isl_give isl_map *isl_map_apply_range(
3036 __isl_take isl_map *map1,
3037 __isl_take isl_map *map2);
3038 __isl_give isl_union_map *isl_union_map_apply_range(
3039 __isl_take isl_union_map *umap1,
3040 __isl_take isl_union_map *umap2);
3044 __isl_give isl_basic_set *
3045 isl_basic_set_preimage_multi_aff(
3046 __isl_take isl_basic_set *bset,
3047 __isl_take isl_multi_aff *ma);
3048 __isl_give isl_set *isl_set_preimage_multi_aff(
3049 __isl_take isl_set *set,
3050 __isl_take isl_multi_aff *ma);
3051 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
3052 __isl_take isl_set *set,
3053 __isl_take isl_pw_multi_aff *pma);
3054 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
3055 __isl_take isl_map *map,
3056 __isl_take isl_multi_aff *ma);
3057 __isl_give isl_union_map *
3058 isl_union_map_preimage_domain_multi_aff(
3059 __isl_take isl_union_map *umap,
3060 __isl_take isl_multi_aff *ma);
3062 These functions compute the preimage of the given set or map domain under
3063 the given function. In other words, the expression is plugged
3064 into the set description or into the domain of the map.
3065 Objects of types C<isl_multi_aff> and C<isl_pw_multi_aff> are described in
3066 L</"Piecewise Multiple Quasi Affine Expressions">.
3068 =item * Cartesian Product
3070 __isl_give isl_set *isl_set_product(
3071 __isl_take isl_set *set1,
3072 __isl_take isl_set *set2);
3073 __isl_give isl_union_set *isl_union_set_product(
3074 __isl_take isl_union_set *uset1,
3075 __isl_take isl_union_set *uset2);
3076 __isl_give isl_basic_map *isl_basic_map_domain_product(
3077 __isl_take isl_basic_map *bmap1,
3078 __isl_take isl_basic_map *bmap2);
3079 __isl_give isl_basic_map *isl_basic_map_range_product(
3080 __isl_take isl_basic_map *bmap1,
3081 __isl_take isl_basic_map *bmap2);
3082 __isl_give isl_basic_map *isl_basic_map_product(
3083 __isl_take isl_basic_map *bmap1,
3084 __isl_take isl_basic_map *bmap2);
3085 __isl_give isl_map *isl_map_domain_product(
3086 __isl_take isl_map *map1,
3087 __isl_take isl_map *map2);
3088 __isl_give isl_map *isl_map_range_product(
3089 __isl_take isl_map *map1,
3090 __isl_take isl_map *map2);
3091 __isl_give isl_union_map *isl_union_map_domain_product(
3092 __isl_take isl_union_map *umap1,
3093 __isl_take isl_union_map *umap2);
3094 __isl_give isl_union_map *isl_union_map_range_product(
3095 __isl_take isl_union_map *umap1,
3096 __isl_take isl_union_map *umap2);
3097 __isl_give isl_map *isl_map_product(
3098 __isl_take isl_map *map1,
3099 __isl_take isl_map *map2);
3100 __isl_give isl_union_map *isl_union_map_product(
3101 __isl_take isl_union_map *umap1,
3102 __isl_take isl_union_map *umap2);
3104 The above functions compute the cross product of the given
3105 sets or relations. The domains and ranges of the results
3106 are wrapped maps between domains and ranges of the inputs.
3107 To obtain a ``flat'' product, use the following functions
3110 __isl_give isl_basic_set *isl_basic_set_flat_product(
3111 __isl_take isl_basic_set *bset1,
3112 __isl_take isl_basic_set *bset2);
3113 __isl_give isl_set *isl_set_flat_product(
3114 __isl_take isl_set *set1,
3115 __isl_take isl_set *set2);
3116 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
3117 __isl_take isl_basic_map *bmap1,
3118 __isl_take isl_basic_map *bmap2);
3119 __isl_give isl_map *isl_map_flat_domain_product(
3120 __isl_take isl_map *map1,
3121 __isl_take isl_map *map2);
3122 __isl_give isl_map *isl_map_flat_range_product(
3123 __isl_take isl_map *map1,
3124 __isl_take isl_map *map2);
3125 __isl_give isl_union_map *isl_union_map_flat_range_product(
3126 __isl_take isl_union_map *umap1,
3127 __isl_take isl_union_map *umap2);
3128 __isl_give isl_basic_map *isl_basic_map_flat_product(
3129 __isl_take isl_basic_map *bmap1,
3130 __isl_take isl_basic_map *bmap2);
3131 __isl_give isl_map *isl_map_flat_product(
3132 __isl_take isl_map *map1,
3133 __isl_take isl_map *map2);
3135 =item * Simplification
3137 __isl_give isl_basic_set *isl_basic_set_gist(
3138 __isl_take isl_basic_set *bset,
3139 __isl_take isl_basic_set *context);
3140 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3141 __isl_take isl_set *context);
3142 __isl_give isl_set *isl_set_gist_params(
3143 __isl_take isl_set *set,
3144 __isl_take isl_set *context);
3145 __isl_give isl_union_set *isl_union_set_gist(
3146 __isl_take isl_union_set *uset,
3147 __isl_take isl_union_set *context);
3148 __isl_give isl_union_set *isl_union_set_gist_params(
3149 __isl_take isl_union_set *uset,
3150 __isl_take isl_set *set);
3151 __isl_give isl_basic_map *isl_basic_map_gist(
3152 __isl_take isl_basic_map *bmap,
3153 __isl_take isl_basic_map *context);
3154 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3155 __isl_take isl_map *context);
3156 __isl_give isl_map *isl_map_gist_params(
3157 __isl_take isl_map *map,
3158 __isl_take isl_set *context);
3159 __isl_give isl_map *isl_map_gist_domain(
3160 __isl_take isl_map *map,
3161 __isl_take isl_set *context);
3162 __isl_give isl_map *isl_map_gist_range(
3163 __isl_take isl_map *map,
3164 __isl_take isl_set *context);
3165 __isl_give isl_union_map *isl_union_map_gist(
3166 __isl_take isl_union_map *umap,
3167 __isl_take isl_union_map *context);
3168 __isl_give isl_union_map *isl_union_map_gist_params(
3169 __isl_take isl_union_map *umap,
3170 __isl_take isl_set *set);
3171 __isl_give isl_union_map *isl_union_map_gist_domain(
3172 __isl_take isl_union_map *umap,
3173 __isl_take isl_union_set *uset);
3174 __isl_give isl_union_map *isl_union_map_gist_range(
3175 __isl_take isl_union_map *umap,
3176 __isl_take isl_union_set *uset);
3178 The gist operation returns a set or relation that has the
3179 same intersection with the context as the input set or relation.
3180 Any implicit equality in the intersection is made explicit in the result,
3181 while all inequalities that are redundant with respect to the intersection
3183 In case of union sets and relations, the gist operation is performed
3188 =head3 Lexicographic Optimization
3190 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
3191 the following functions
3192 compute a set that contains the lexicographic minimum or maximum
3193 of the elements in C<set> (or C<bset>) for those values of the parameters
3194 that satisfy C<dom>.
3195 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
3196 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
3198 In other words, the union of the parameter values
3199 for which the result is non-empty and of C<*empty>
3202 __isl_give isl_set *isl_basic_set_partial_lexmin(
3203 __isl_take isl_basic_set *bset,
3204 __isl_take isl_basic_set *dom,
3205 __isl_give isl_set **empty);
3206 __isl_give isl_set *isl_basic_set_partial_lexmax(
3207 __isl_take isl_basic_set *bset,
3208 __isl_take isl_basic_set *dom,
3209 __isl_give isl_set **empty);
3210 __isl_give isl_set *isl_set_partial_lexmin(
3211 __isl_take isl_set *set, __isl_take isl_set *dom,
3212 __isl_give isl_set **empty);
3213 __isl_give isl_set *isl_set_partial_lexmax(
3214 __isl_take isl_set *set, __isl_take isl_set *dom,
3215 __isl_give isl_set **empty);
3217 Given a (basic) set C<set> (or C<bset>), the following functions simply
3218 return a set containing the lexicographic minimum or maximum
3219 of the elements in C<set> (or C<bset>).
3220 In case of union sets, the optimum is computed per space.
3222 __isl_give isl_set *isl_basic_set_lexmin(
3223 __isl_take isl_basic_set *bset);
3224 __isl_give isl_set *isl_basic_set_lexmax(
3225 __isl_take isl_basic_set *bset);
3226 __isl_give isl_set *isl_set_lexmin(
3227 __isl_take isl_set *set);
3228 __isl_give isl_set *isl_set_lexmax(
3229 __isl_take isl_set *set);
3230 __isl_give isl_union_set *isl_union_set_lexmin(
3231 __isl_take isl_union_set *uset);
3232 __isl_give isl_union_set *isl_union_set_lexmax(
3233 __isl_take isl_union_set *uset);
3235 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
3236 the following functions
3237 compute a relation that maps each element of C<dom>
3238 to the single lexicographic minimum or maximum
3239 of the elements that are associated to that same
3240 element in C<map> (or C<bmap>).
3241 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
3242 that contains the elements in C<dom> that do not map
3243 to any elements in C<map> (or C<bmap>).
3244 In other words, the union of the domain of the result and of C<*empty>
3247 __isl_give isl_map *isl_basic_map_partial_lexmax(
3248 __isl_take isl_basic_map *bmap,
3249 __isl_take isl_basic_set *dom,
3250 __isl_give isl_set **empty);
3251 __isl_give isl_map *isl_basic_map_partial_lexmin(
3252 __isl_take isl_basic_map *bmap,
3253 __isl_take isl_basic_set *dom,
3254 __isl_give isl_set **empty);
3255 __isl_give isl_map *isl_map_partial_lexmax(
3256 __isl_take isl_map *map, __isl_take isl_set *dom,
3257 __isl_give isl_set **empty);
3258 __isl_give isl_map *isl_map_partial_lexmin(
3259 __isl_take isl_map *map, __isl_take isl_set *dom,
3260 __isl_give isl_set **empty);
3262 Given a (basic) map C<map> (or C<bmap>), the following functions simply
3263 return a map mapping each element in the domain of
3264 C<map> (or C<bmap>) to the lexicographic minimum or maximum
3265 of all elements associated to that element.
3266 In case of union relations, the optimum is computed per space.
3268 __isl_give isl_map *isl_basic_map_lexmin(
3269 __isl_take isl_basic_map *bmap);
3270 __isl_give isl_map *isl_basic_map_lexmax(
3271 __isl_take isl_basic_map *bmap);
3272 __isl_give isl_map *isl_map_lexmin(
3273 __isl_take isl_map *map);
3274 __isl_give isl_map *isl_map_lexmax(
3275 __isl_take isl_map *map);
3276 __isl_give isl_union_map *isl_union_map_lexmin(
3277 __isl_take isl_union_map *umap);
3278 __isl_give isl_union_map *isl_union_map_lexmax(
3279 __isl_take isl_union_map *umap);
3281 The following functions return their result in the form of
3282 a piecewise multi-affine expression
3283 (See L<"Piecewise Multiple Quasi Affine Expressions">),
3284 but are otherwise equivalent to the corresponding functions
3285 returning a basic set or relation.
3287 __isl_give isl_pw_multi_aff *
3288 isl_basic_map_lexmin_pw_multi_aff(
3289 __isl_take isl_basic_map *bmap);
3290 __isl_give isl_pw_multi_aff *
3291 isl_basic_set_partial_lexmin_pw_multi_aff(
3292 __isl_take isl_basic_set *bset,
3293 __isl_take isl_basic_set *dom,
3294 __isl_give isl_set **empty);
3295 __isl_give isl_pw_multi_aff *
3296 isl_basic_set_partial_lexmax_pw_multi_aff(
3297 __isl_take isl_basic_set *bset,
3298 __isl_take isl_basic_set *dom,
3299 __isl_give isl_set **empty);
3300 __isl_give isl_pw_multi_aff *
3301 isl_basic_map_partial_lexmin_pw_multi_aff(
3302 __isl_take isl_basic_map *bmap,
3303 __isl_take isl_basic_set *dom,
3304 __isl_give isl_set **empty);
3305 __isl_give isl_pw_multi_aff *
3306 isl_basic_map_partial_lexmax_pw_multi_aff(
3307 __isl_take isl_basic_map *bmap,
3308 __isl_take isl_basic_set *dom,
3309 __isl_give isl_set **empty);
3310 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
3311 __isl_take isl_set *set);
3312 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
3313 __isl_take isl_set *set);
3314 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
3315 __isl_take isl_map *map);
3316 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
3317 __isl_take isl_map *map);
3321 Lists are defined over several element types, including
3322 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_constraint>,
3323 C<isl_basic_set>, C<isl_set>, C<isl_ast_expr> and C<isl_ast_node>.
3324 Here we take lists of C<isl_set>s as an example.
3325 Lists can be created, copied, modified and freed using the following functions.
3327 #include <isl/list.h>
3328 __isl_give isl_set_list *isl_set_list_from_set(
3329 __isl_take isl_set *el);
3330 __isl_give isl_set_list *isl_set_list_alloc(
3331 isl_ctx *ctx, int n);
3332 __isl_give isl_set_list *isl_set_list_copy(
3333 __isl_keep isl_set_list *list);
3334 __isl_give isl_set_list *isl_set_list_insert(
3335 __isl_take isl_set_list *list, unsigned pos,
3336 __isl_take isl_set *el);
3337 __isl_give isl_set_list *isl_set_list_add(
3338 __isl_take isl_set_list *list,
3339 __isl_take isl_set *el);
3340 __isl_give isl_set_list *isl_set_list_drop(
3341 __isl_take isl_set_list *list,
3342 unsigned first, unsigned n);
3343 __isl_give isl_set_list *isl_set_list_set_set(
3344 __isl_take isl_set_list *list, int index,
3345 __isl_take isl_set *set);
3346 __isl_give isl_set_list *isl_set_list_concat(
3347 __isl_take isl_set_list *list1,
3348 __isl_take isl_set_list *list2);
3349 __isl_give isl_set_list *isl_set_list_sort(
3350 __isl_take isl_set_list *list,
3351 int (*cmp)(__isl_keep isl_set *a,
3352 __isl_keep isl_set *b, void *user),
3354 void *isl_set_list_free(__isl_take isl_set_list *list);
3356 C<isl_set_list_alloc> creates an empty list with a capacity for
3357 C<n> elements. C<isl_set_list_from_set> creates a list with a single
3360 Lists can be inspected using the following functions.
3362 #include <isl/list.h>
3363 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
3364 int isl_set_list_n_set(__isl_keep isl_set_list *list);
3365 __isl_give isl_set *isl_set_list_get_set(
3366 __isl_keep isl_set_list *list, int index);
3367 int isl_set_list_foreach(__isl_keep isl_set_list *list,
3368 int (*fn)(__isl_take isl_set *el, void *user),
3370 int isl_set_list_foreach_scc(__isl_keep isl_set_list *list,
3371 int (*follows)(__isl_keep isl_set *a,
3372 __isl_keep isl_set *b, void *user),
3374 int (*fn)(__isl_take isl_set *el, void *user),
3377 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
3378 strongly connected components of the graph with as vertices the elements
3379 of C<list> and a directed edge from vertex C<b> to vertex C<a>
3380 iff C<follows(a, b)> returns C<1>. The callbacks C<follows> and C<fn>
3381 should return C<-1> on error.
3383 Lists can be printed using
3385 #include <isl/list.h>
3386 __isl_give isl_printer *isl_printer_print_set_list(
3387 __isl_take isl_printer *p,
3388 __isl_keep isl_set_list *list);
3390 =head2 Multiple Values
3392 An C<isl_multi_val> object represents a sequence of zero or more values,
3393 living in a set space.
3395 An C<isl_multi_val> can be constructed from an C<isl_val_list>
3396 using the following function
3398 #include <isl/val.h>
3399 __isl_give isl_multi_val *isl_multi_val_from_val_list(
3400 __isl_take isl_space *space,
3401 __isl_take isl_val_list *list);
3403 The zero multiple value (with value zero for each set dimension)
3404 can be created using the following function.
3406 #include <isl/val.h>
3407 __isl_give isl_multi_val *isl_multi_val_zero(
3408 __isl_take isl_space *space);
3410 Multiple values can be copied and freed using
3412 #include <isl/val.h>
3413 __isl_give isl_multi_val *isl_multi_val_copy(
3414 __isl_keep isl_multi_val *mv);
3415 void *isl_multi_val_free(__isl_take isl_multi_val *mv);
3417 They can be inspected using
3419 #include <isl/val.h>
3420 isl_ctx *isl_multi_val_get_ctx(
3421 __isl_keep isl_multi_val *mv);
3422 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
3423 enum isl_dim_type type);
3424 __isl_give isl_val *isl_multi_val_get_val(
3425 __isl_keep isl_multi_val *mv, int pos);
3426 const char *isl_multi_val_get_tuple_name(
3427 __isl_keep isl_multi_val *mv,
3428 enum isl_dim_type type);
3430 They can be modified using
3432 #include <isl/val.h>
3433 __isl_give isl_multi_val *isl_multi_val_set_val(
3434 __isl_take isl_multi_val *mv, int pos,
3435 __isl_take isl_val *val);
3436 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
3437 __isl_take isl_multi_val *mv,
3438 enum isl_dim_type type, unsigned pos, const char *s);
3439 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
3440 __isl_take isl_multi_val *mv,
3441 enum isl_dim_type type, const char *s);
3442 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
3443 __isl_take isl_multi_val *mv,
3444 enum isl_dim_type type, __isl_take isl_id *id);
3446 __isl_give isl_multi_val *isl_multi_val_insert_dims(
3447 __isl_take isl_multi_val *mv,
3448 enum isl_dim_type type, unsigned first, unsigned n);
3449 __isl_give isl_multi_val *isl_multi_val_add_dims(
3450 __isl_take isl_multi_val *mv,
3451 enum isl_dim_type type, unsigned n);
3452 __isl_give isl_multi_val *isl_multi_val_drop_dims(
3453 __isl_take isl_multi_val *mv,
3454 enum isl_dim_type type, unsigned first, unsigned n);
3458 #include <isl/val.h>
3459 __isl_give isl_multi_val *isl_multi_val_align_params(
3460 __isl_take isl_multi_val *mv,
3461 __isl_take isl_space *model);
3462 __isl_give isl_multi_val *isl_multi_val_range_splice(
3463 __isl_take isl_multi_val *mv1, unsigned pos,
3464 __isl_take isl_multi_val *mv2);
3465 __isl_give isl_multi_val *isl_multi_val_range_product(
3466 __isl_take isl_multi_val *mv1,
3467 __isl_take isl_multi_val *mv2);
3468 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
3469 __isl_take isl_multi_val *mv1,
3470 __isl_take isl_multi_aff *mv2);
3471 __isl_give isl_multi_val *isl_multi_val_add_val(
3472 __isl_take isl_multi_val *mv,
3473 __isl_take isl_val *v);
3474 __isl_give isl_multi_val *isl_multi_val_mod_val(
3475 __isl_take isl_multi_val *mv,
3476 __isl_take isl_val *v);
3477 __isl_give isl_multi_val *isl_multi_val_scale_val(
3478 __isl_take isl_multi_val *mv,
3479 __isl_take isl_val *v);
3483 Vectors can be created, copied and freed using the following functions.
3485 #include <isl/vec.h>
3486 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
3488 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
3489 void *isl_vec_free(__isl_take isl_vec *vec);
3491 Note that the elements of a newly created vector may have arbitrary values.
3492 The elements can be changed and inspected using the following functions.
3494 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
3495 int isl_vec_size(__isl_keep isl_vec *vec);
3496 int isl_vec_get_element(__isl_keep isl_vec *vec,
3497 int pos, isl_int *v);
3498 __isl_give isl_val *isl_vec_get_element_val(
3499 __isl_keep isl_vec *vec, int pos);
3500 __isl_give isl_vec *isl_vec_set_element(
3501 __isl_take isl_vec *vec, int pos, isl_int v);
3502 __isl_give isl_vec *isl_vec_set_element_si(
3503 __isl_take isl_vec *vec, int pos, int v);
3504 __isl_give isl_vec *isl_vec_set_element_val(
3505 __isl_take isl_vec *vec, int pos,
3506 __isl_take isl_val *v);
3507 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
3509 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
3511 __isl_give isl_vec *isl_vec_set_val(
3512 __isl_take isl_vec *vec, __isl_take isl_val *v);
3513 __isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec,
3516 C<isl_vec_get_element> will return a negative value if anything went wrong.
3517 In that case, the value of C<*v> is undefined.
3519 The following function can be used to concatenate two vectors.
3521 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
3522 __isl_take isl_vec *vec2);
3526 Matrices can be created, copied and freed using the following functions.
3528 #include <isl/mat.h>
3529 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
3530 unsigned n_row, unsigned n_col);
3531 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
3532 void *isl_mat_free(__isl_take isl_mat *mat);
3534 Note that the elements of a newly created matrix may have arbitrary values.
3535 The elements can be changed and inspected using the following functions.
3537 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
3538 int isl_mat_rows(__isl_keep isl_mat *mat);
3539 int isl_mat_cols(__isl_keep isl_mat *mat);
3540 int isl_mat_get_element(__isl_keep isl_mat *mat,
3541 int row, int col, isl_int *v);
3542 __isl_give isl_val *isl_mat_get_element_val(
3543 __isl_keep isl_mat *mat, int row, int col);
3544 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
3545 int row, int col, isl_int v);
3546 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
3547 int row, int col, int v);
3548 __isl_give isl_mat *isl_mat_set_element_val(
3549 __isl_take isl_mat *mat, int row, int col,
3550 __isl_take isl_val *v);
3552 C<isl_mat_get_element> will return a negative value if anything went wrong.
3553 In that case, the value of C<*v> is undefined.
3555 The following function can be used to compute the (right) inverse
3556 of a matrix, i.e., a matrix such that the product of the original
3557 and the inverse (in that order) is a multiple of the identity matrix.
3558 The input matrix is assumed to be of full row-rank.
3560 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
3562 The following function can be used to compute the (right) kernel
3563 (or null space) of a matrix, i.e., a matrix such that the product of
3564 the original and the kernel (in that order) is the zero matrix.
3566 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
3568 =head2 Piecewise Quasi Affine Expressions
3570 The zero quasi affine expression or the quasi affine expression
3571 that is equal to a specified dimension on a given domain can be created using
3573 __isl_give isl_aff *isl_aff_zero_on_domain(
3574 __isl_take isl_local_space *ls);
3575 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3576 __isl_take isl_local_space *ls);
3577 __isl_give isl_aff *isl_aff_var_on_domain(
3578 __isl_take isl_local_space *ls,
3579 enum isl_dim_type type, unsigned pos);
3580 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3581 __isl_take isl_local_space *ls,
3582 enum isl_dim_type type, unsigned pos);
3584 Note that the space in which the resulting objects live is a map space
3585 with the given space as domain and a one-dimensional range.
3587 An empty piecewise quasi affine expression (one with no cells)
3588 or a piecewise quasi affine expression with a single cell can
3589 be created using the following functions.
3591 #include <isl/aff.h>
3592 __isl_give isl_pw_aff *isl_pw_aff_empty(
3593 __isl_take isl_space *space);
3594 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3595 __isl_take isl_set *set, __isl_take isl_aff *aff);
3596 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
3597 __isl_take isl_aff *aff);
3599 A piecewise quasi affine expression that is equal to 1 on a set
3600 and 0 outside the set can be created using the following function.
3602 #include <isl/aff.h>
3603 __isl_give isl_pw_aff *isl_set_indicator_function(
3604 __isl_take isl_set *set);
3606 Quasi affine expressions can be copied and freed using
3608 #include <isl/aff.h>
3609 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
3610 void *isl_aff_free(__isl_take isl_aff *aff);
3612 __isl_give isl_pw_aff *isl_pw_aff_copy(
3613 __isl_keep isl_pw_aff *pwaff);
3614 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
3616 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
3617 using the following function. The constraint is required to have
3618 a non-zero coefficient for the specified dimension.
3620 #include <isl/constraint.h>
3621 __isl_give isl_aff *isl_constraint_get_bound(
3622 __isl_keep isl_constraint *constraint,
3623 enum isl_dim_type type, int pos);
3625 The entire affine expression of the constraint can also be extracted
3626 using the following function.
3628 #include <isl/constraint.h>
3629 __isl_give isl_aff *isl_constraint_get_aff(
3630 __isl_keep isl_constraint *constraint);
3632 Conversely, an equality constraint equating
3633 the affine expression to zero or an inequality constraint enforcing
3634 the affine expression to be non-negative, can be constructed using
3636 __isl_give isl_constraint *isl_equality_from_aff(
3637 __isl_take isl_aff *aff);
3638 __isl_give isl_constraint *isl_inequality_from_aff(
3639 __isl_take isl_aff *aff);
3641 The expression can be inspected using
3643 #include <isl/aff.h>
3644 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
3645 int isl_aff_dim(__isl_keep isl_aff *aff,
3646 enum isl_dim_type type);
3647 __isl_give isl_local_space *isl_aff_get_domain_local_space(
3648 __isl_keep isl_aff *aff);
3649 __isl_give isl_local_space *isl_aff_get_local_space(
3650 __isl_keep isl_aff *aff);
3651 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
3652 enum isl_dim_type type, unsigned pos);
3653 const char *isl_pw_aff_get_dim_name(
3654 __isl_keep isl_pw_aff *pa,
3655 enum isl_dim_type type, unsigned pos);
3656 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
3657 enum isl_dim_type type, unsigned pos);
3658 __isl_give isl_id *isl_pw_aff_get_dim_id(
3659 __isl_keep isl_pw_aff *pa,
3660 enum isl_dim_type type, unsigned pos);
3661 __isl_give isl_id *isl_pw_aff_get_tuple_id(
3662 __isl_keep isl_pw_aff *pa,
3663 enum isl_dim_type type);
3664 int isl_aff_get_constant(__isl_keep isl_aff *aff,
3666 __isl_give isl_val *isl_aff_get_constant_val(
3667 __isl_keep isl_aff *aff);
3668 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
3669 enum isl_dim_type type, int pos, isl_int *v);
3670 __isl_give isl_val *isl_aff_get_coefficient_val(
3671 __isl_keep isl_aff *aff,
3672 enum isl_dim_type type, int pos);
3673 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
3675 __isl_give isl_val *isl_aff_get_denominator_val(
3676 __isl_keep isl_aff *aff);
3677 __isl_give isl_aff *isl_aff_get_div(
3678 __isl_keep isl_aff *aff, int pos);
3680 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3681 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
3682 int (*fn)(__isl_take isl_set *set,
3683 __isl_take isl_aff *aff,
3684 void *user), void *user);
3686 int isl_aff_is_cst(__isl_keep isl_aff *aff);
3687 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
3689 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
3690 enum isl_dim_type type, unsigned first, unsigned n);
3691 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
3692 enum isl_dim_type type, unsigned first, unsigned n);
3694 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
3695 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
3696 enum isl_dim_type type);
3697 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3699 It can be modified using
3701 #include <isl/aff.h>
3702 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
3703 __isl_take isl_pw_aff *pwaff,
3704 enum isl_dim_type type, __isl_take isl_id *id);
3705 __isl_give isl_aff *isl_aff_set_dim_name(
3706 __isl_take isl_aff *aff, enum isl_dim_type type,
3707 unsigned pos, const char *s);
3708 __isl_give isl_aff *isl_aff_set_dim_id(
3709 __isl_take isl_aff *aff, enum isl_dim_type type,
3710 unsigned pos, __isl_take isl_id *id);
3711 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
3712 __isl_take isl_pw_aff *pma,
3713 enum isl_dim_type type, unsigned pos,
3714 __isl_take isl_id *id);
3715 __isl_give isl_aff *isl_aff_set_constant(
3716 __isl_take isl_aff *aff, isl_int v);
3717 __isl_give isl_aff *isl_aff_set_constant_si(
3718 __isl_take isl_aff *aff, int v);
3719 __isl_give isl_aff *isl_aff_set_constant_val(
3720 __isl_take isl_aff *aff, __isl_take isl_val *v);
3721 __isl_give isl_aff *isl_aff_set_coefficient(
3722 __isl_take isl_aff *aff,
3723 enum isl_dim_type type, int pos, isl_int v);
3724 __isl_give isl_aff *isl_aff_set_coefficient_si(
3725 __isl_take isl_aff *aff,
3726 enum isl_dim_type type, int pos, int v);
3727 __isl_give isl_aff *isl_aff_set_coefficient_val(
3728 __isl_take isl_aff *aff,
3729 enum isl_dim_type type, int pos,
3730 __isl_take isl_val *v);
3731 __isl_give isl_aff *isl_aff_set_denominator(
3732 __isl_take isl_aff *aff, isl_int v);
3734 __isl_give isl_aff *isl_aff_add_constant(
3735 __isl_take isl_aff *aff, isl_int v);
3736 __isl_give isl_aff *isl_aff_add_constant_si(
3737 __isl_take isl_aff *aff, int v);
3738 __isl_give isl_aff *isl_aff_add_constant_val(
3739 __isl_take isl_aff *aff, __isl_take isl_val *v);
3740 __isl_give isl_aff *isl_aff_add_constant_num(
3741 __isl_take isl_aff *aff, isl_int v);
3742 __isl_give isl_aff *isl_aff_add_constant_num_si(
3743 __isl_take isl_aff *aff, int v);
3744 __isl_give isl_aff *isl_aff_add_coefficient(
3745 __isl_take isl_aff *aff,
3746 enum isl_dim_type type, int pos, isl_int v);
3747 __isl_give isl_aff *isl_aff_add_coefficient_si(
3748 __isl_take isl_aff *aff,
3749 enum isl_dim_type type, int pos, int v);
3750 __isl_give isl_aff *isl_aff_add_coefficient_val(
3751 __isl_take isl_aff *aff,
3752 enum isl_dim_type type, int pos,
3753 __isl_take isl_val *v);
3755 __isl_give isl_aff *isl_aff_insert_dims(
3756 __isl_take isl_aff *aff,
3757 enum isl_dim_type type, unsigned first, unsigned n);
3758 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
3759 __isl_take isl_pw_aff *pwaff,
3760 enum isl_dim_type type, unsigned first, unsigned n);
3761 __isl_give isl_aff *isl_aff_add_dims(
3762 __isl_take isl_aff *aff,
3763 enum isl_dim_type type, unsigned n);
3764 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
3765 __isl_take isl_pw_aff *pwaff,
3766 enum isl_dim_type type, unsigned n);
3767 __isl_give isl_aff *isl_aff_drop_dims(
3768 __isl_take isl_aff *aff,
3769 enum isl_dim_type type, unsigned first, unsigned n);
3770 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
3771 __isl_take isl_pw_aff *pwaff,
3772 enum isl_dim_type type, unsigned first, unsigned n);
3774 Note that C<isl_aff_set_constant>, C<isl_aff_set_constant_si>,
3775 C<isl_aff_set_coefficient> and C<isl_aff_set_coefficient_si>
3776 set the I<numerator> of the constant or coefficient, while
3777 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
3778 the constant or coefficient as a whole.
3779 The C<add_constant> and C<add_coefficient> functions add an integer
3780 or rational value to
3781 the possibly rational constant or coefficient.
3782 The C<add_constant_num> functions add an integer value to
3785 To check whether an affine expressions is obviously zero
3786 or obviously equal to some other affine expression, use
3788 #include <isl/aff.h>
3789 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3790 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3791 __isl_keep isl_aff *aff2);
3792 int isl_pw_aff_plain_is_equal(
3793 __isl_keep isl_pw_aff *pwaff1,
3794 __isl_keep isl_pw_aff *pwaff2);
3798 #include <isl/aff.h>
3799 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3800 __isl_take isl_aff *aff2);
3801 __isl_give isl_pw_aff *isl_pw_aff_add(
3802 __isl_take isl_pw_aff *pwaff1,
3803 __isl_take isl_pw_aff *pwaff2);
3804 __isl_give isl_pw_aff *isl_pw_aff_min(
3805 __isl_take isl_pw_aff *pwaff1,
3806 __isl_take isl_pw_aff *pwaff2);
3807 __isl_give isl_pw_aff *isl_pw_aff_max(
3808 __isl_take isl_pw_aff *pwaff1,
3809 __isl_take isl_pw_aff *pwaff2);
3810 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3811 __isl_take isl_aff *aff2);
3812 __isl_give isl_pw_aff *isl_pw_aff_sub(
3813 __isl_take isl_pw_aff *pwaff1,
3814 __isl_take isl_pw_aff *pwaff2);
3815 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3816 __isl_give isl_pw_aff *isl_pw_aff_neg(
3817 __isl_take isl_pw_aff *pwaff);
3818 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3819 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3820 __isl_take isl_pw_aff *pwaff);
3821 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3822 __isl_give isl_pw_aff *isl_pw_aff_floor(
3823 __isl_take isl_pw_aff *pwaff);
3824 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3826 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
3827 __isl_take isl_val *mod);
3828 __isl_give isl_pw_aff *isl_pw_aff_mod(
3829 __isl_take isl_pw_aff *pwaff, isl_int mod);
3830 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
3831 __isl_take isl_pw_aff *pa,
3832 __isl_take isl_val *mod);
3833 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3835 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
3836 __isl_take isl_val *v);
3837 __isl_give isl_pw_aff *isl_pw_aff_scale(
3838 __isl_take isl_pw_aff *pwaff, isl_int f);
3839 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
3840 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
3841 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3843 __isl_give isl_aff *isl_aff_scale_down_ui(
3844 __isl_take isl_aff *aff, unsigned f);
3845 __isl_give isl_aff *isl_aff_scale_down_val(
3846 __isl_take isl_aff *aff, __isl_take isl_val *v);
3847 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3848 __isl_take isl_pw_aff *pwaff, isl_int f);
3849 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
3850 __isl_take isl_pw_aff *pa,
3851 __isl_take isl_val *f);
3853 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3854 __isl_take isl_pw_aff_list *list);
3855 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3856 __isl_take isl_pw_aff_list *list);
3858 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3859 __isl_take isl_pw_aff *pwqp);
3861 __isl_give isl_aff *isl_aff_align_params(
3862 __isl_take isl_aff *aff,
3863 __isl_take isl_space *model);
3864 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3865 __isl_take isl_pw_aff *pwaff,
3866 __isl_take isl_space *model);
3868 __isl_give isl_aff *isl_aff_project_domain_on_params(
3869 __isl_take isl_aff *aff);
3871 __isl_give isl_aff *isl_aff_gist_params(
3872 __isl_take isl_aff *aff,
3873 __isl_take isl_set *context);
3874 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3875 __isl_take isl_set *context);
3876 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3877 __isl_take isl_pw_aff *pwaff,
3878 __isl_take isl_set *context);
3879 __isl_give isl_pw_aff *isl_pw_aff_gist(
3880 __isl_take isl_pw_aff *pwaff,
3881 __isl_take isl_set *context);
3883 __isl_give isl_set *isl_pw_aff_domain(
3884 __isl_take isl_pw_aff *pwaff);
3885 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3886 __isl_take isl_pw_aff *pa,
3887 __isl_take isl_set *set);
3888 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3889 __isl_take isl_pw_aff *pa,
3890 __isl_take isl_set *set);
3892 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3893 __isl_take isl_aff *aff2);
3894 __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
3895 __isl_take isl_aff *aff2);
3896 __isl_give isl_pw_aff *isl_pw_aff_mul(
3897 __isl_take isl_pw_aff *pwaff1,
3898 __isl_take isl_pw_aff *pwaff2);
3899 __isl_give isl_pw_aff *isl_pw_aff_div(
3900 __isl_take isl_pw_aff *pa1,
3901 __isl_take isl_pw_aff *pa2);
3902 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
3903 __isl_take isl_pw_aff *pa1,
3904 __isl_take isl_pw_aff *pa2);
3905 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
3906 __isl_take isl_pw_aff *pa1,
3907 __isl_take isl_pw_aff *pa2);
3909 When multiplying two affine expressions, at least one of the two needs
3910 to be a constant. Similarly, when dividing an affine expression by another,
3911 the second expression needs to be a constant.
3912 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
3913 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
3916 #include <isl/aff.h>
3917 __isl_give isl_aff *isl_aff_pullback_multi_aff(
3918 __isl_take isl_aff *aff,
3919 __isl_take isl_multi_aff *ma);
3920 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
3921 __isl_take isl_pw_aff *pa,
3922 __isl_take isl_multi_aff *ma);
3923 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
3924 __isl_take isl_pw_aff *pa,
3925 __isl_take isl_pw_multi_aff *pma);
3927 These functions precompose the input expression by the given
3928 C<isl_multi_aff> or C<isl_pw_multi_aff>. In other words,
3929 the C<isl_multi_aff> or C<isl_pw_multi_aff> is plugged
3930 into the (piecewise) affine expression.
3931 Objects of type C<isl_multi_aff> are described in
3932 L</"Piecewise Multiple Quasi Affine Expressions">.
3934 #include <isl/aff.h>
3935 __isl_give isl_basic_set *isl_aff_zero_basic_set(
3936 __isl_take isl_aff *aff);
3937 __isl_give isl_basic_set *isl_aff_neg_basic_set(
3938 __isl_take isl_aff *aff);
3939 __isl_give isl_basic_set *isl_aff_le_basic_set(
3940 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3941 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3942 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3943 __isl_give isl_set *isl_pw_aff_eq_set(
3944 __isl_take isl_pw_aff *pwaff1,
3945 __isl_take isl_pw_aff *pwaff2);
3946 __isl_give isl_set *isl_pw_aff_ne_set(
3947 __isl_take isl_pw_aff *pwaff1,
3948 __isl_take isl_pw_aff *pwaff2);
3949 __isl_give isl_set *isl_pw_aff_le_set(
3950 __isl_take isl_pw_aff *pwaff1,
3951 __isl_take isl_pw_aff *pwaff2);
3952 __isl_give isl_set *isl_pw_aff_lt_set(
3953 __isl_take isl_pw_aff *pwaff1,
3954 __isl_take isl_pw_aff *pwaff2);
3955 __isl_give isl_set *isl_pw_aff_ge_set(
3956 __isl_take isl_pw_aff *pwaff1,
3957 __isl_take isl_pw_aff *pwaff2);
3958 __isl_give isl_set *isl_pw_aff_gt_set(
3959 __isl_take isl_pw_aff *pwaff1,
3960 __isl_take isl_pw_aff *pwaff2);
3962 __isl_give isl_set *isl_pw_aff_list_eq_set(
3963 __isl_take isl_pw_aff_list *list1,
3964 __isl_take isl_pw_aff_list *list2);
3965 __isl_give isl_set *isl_pw_aff_list_ne_set(
3966 __isl_take isl_pw_aff_list *list1,
3967 __isl_take isl_pw_aff_list *list2);
3968 __isl_give isl_set *isl_pw_aff_list_le_set(
3969 __isl_take isl_pw_aff_list *list1,
3970 __isl_take isl_pw_aff_list *list2);
3971 __isl_give isl_set *isl_pw_aff_list_lt_set(
3972 __isl_take isl_pw_aff_list *list1,
3973 __isl_take isl_pw_aff_list *list2);
3974 __isl_give isl_set *isl_pw_aff_list_ge_set(
3975 __isl_take isl_pw_aff_list *list1,
3976 __isl_take isl_pw_aff_list *list2);
3977 __isl_give isl_set *isl_pw_aff_list_gt_set(
3978 __isl_take isl_pw_aff_list *list1,
3979 __isl_take isl_pw_aff_list *list2);
3981 The function C<isl_aff_neg_basic_set> returns a basic set
3982 containing those elements in the domain space
3983 of C<aff> where C<aff> is negative.
3984 The function C<isl_aff_ge_basic_set> returns a basic set
3985 containing those elements in the shared space
3986 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3987 The function C<isl_pw_aff_ge_set> returns a set
3988 containing those elements in the shared domain
3989 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3990 The functions operating on C<isl_pw_aff_list> apply the corresponding
3991 C<isl_pw_aff> function to each pair of elements in the two lists.
3993 #include <isl/aff.h>
3994 __isl_give isl_set *isl_pw_aff_nonneg_set(
3995 __isl_take isl_pw_aff *pwaff);
3996 __isl_give isl_set *isl_pw_aff_zero_set(
3997 __isl_take isl_pw_aff *pwaff);
3998 __isl_give isl_set *isl_pw_aff_non_zero_set(
3999 __isl_take isl_pw_aff *pwaff);
4001 The function C<isl_pw_aff_nonneg_set> returns a set
4002 containing those elements in the domain
4003 of C<pwaff> where C<pwaff> is non-negative.
4005 #include <isl/aff.h>
4006 __isl_give isl_pw_aff *isl_pw_aff_cond(
4007 __isl_take isl_pw_aff *cond,
4008 __isl_take isl_pw_aff *pwaff_true,
4009 __isl_take isl_pw_aff *pwaff_false);
4011 The function C<isl_pw_aff_cond> performs a conditional operator
4012 and returns an expression that is equal to C<pwaff_true>
4013 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
4014 where C<cond> is zero.
4016 #include <isl/aff.h>
4017 __isl_give isl_pw_aff *isl_pw_aff_union_min(
4018 __isl_take isl_pw_aff *pwaff1,
4019 __isl_take isl_pw_aff *pwaff2);
4020 __isl_give isl_pw_aff *isl_pw_aff_union_max(
4021 __isl_take isl_pw_aff *pwaff1,
4022 __isl_take isl_pw_aff *pwaff2);
4023 __isl_give isl_pw_aff *isl_pw_aff_union_add(
4024 __isl_take isl_pw_aff *pwaff1,
4025 __isl_take isl_pw_aff *pwaff2);
4027 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
4028 expression with a domain that is the union of those of C<pwaff1> and
4029 C<pwaff2> and such that on each cell, the quasi-affine expression is
4030 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
4031 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
4032 associated expression is the defined one.
4034 An expression can be read from input using
4036 #include <isl/aff.h>
4037 __isl_give isl_aff *isl_aff_read_from_str(
4038 isl_ctx *ctx, const char *str);
4039 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
4040 isl_ctx *ctx, const char *str);
4042 An expression can be printed using
4044 #include <isl/aff.h>
4045 __isl_give isl_printer *isl_printer_print_aff(
4046 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
4048 __isl_give isl_printer *isl_printer_print_pw_aff(
4049 __isl_take isl_printer *p,
4050 __isl_keep isl_pw_aff *pwaff);
4052 =head2 Piecewise Multiple Quasi Affine Expressions
4054 An C<isl_multi_aff> object represents a sequence of
4055 zero or more affine expressions, all defined on the same domain space.
4056 Similarly, an C<isl_multi_pw_aff> object represents a sequence of
4057 zero or more piecewise affine expressions.
4059 An C<isl_multi_aff> can be constructed from a single
4060 C<isl_aff> or an C<isl_aff_list> using the
4061 following functions. Similarly for C<isl_multi_pw_aff>.
4063 #include <isl/aff.h>
4064 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
4065 __isl_take isl_aff *aff);
4066 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
4067 __isl_take isl_pw_aff *pa);
4068 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
4069 __isl_take isl_space *space,
4070 __isl_take isl_aff_list *list);
4072 An empty piecewise multiple quasi affine expression (one with no cells),
4073 the zero piecewise multiple quasi affine expression (with value zero
4074 for each output dimension),
4075 a piecewise multiple quasi affine expression with a single cell (with
4076 either a universe or a specified domain) or
4077 a zero-dimensional piecewise multiple quasi affine expression
4079 can be created using the following functions.
4081 #include <isl/aff.h>
4082 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
4083 __isl_take isl_space *space);
4084 __isl_give isl_multi_aff *isl_multi_aff_zero(
4085 __isl_take isl_space *space);
4086 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
4087 __isl_take isl_space *space);
4088 __isl_give isl_multi_aff *isl_multi_aff_identity(
4089 __isl_take isl_space *space);
4090 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
4091 __isl_take isl_space *space);
4092 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
4093 __isl_take isl_space *space);
4094 __isl_give isl_pw_multi_aff *
4095 isl_pw_multi_aff_from_multi_aff(
4096 __isl_take isl_multi_aff *ma);
4097 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
4098 __isl_take isl_set *set,
4099 __isl_take isl_multi_aff *maff);
4100 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4101 __isl_take isl_set *set);
4103 __isl_give isl_union_pw_multi_aff *
4104 isl_union_pw_multi_aff_empty(
4105 __isl_take isl_space *space);
4106 __isl_give isl_union_pw_multi_aff *
4107 isl_union_pw_multi_aff_add_pw_multi_aff(
4108 __isl_take isl_union_pw_multi_aff *upma,
4109 __isl_take isl_pw_multi_aff *pma);
4110 __isl_give isl_union_pw_multi_aff *
4111 isl_union_pw_multi_aff_from_domain(
4112 __isl_take isl_union_set *uset);
4114 A piecewise multiple quasi affine expression can also be initialized
4115 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4116 and the C<isl_map> is single-valued.
4117 In case of a conversion from an C<isl_union_set> or an C<isl_union_map>
4118 to an C<isl_union_pw_multi_aff>, these properties need to hold in each space.
4120 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4121 __isl_take isl_set *set);
4122 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4123 __isl_take isl_map *map);
4125 __isl_give isl_union_pw_multi_aff *
4126 isl_union_pw_multi_aff_from_union_set(
4127 __isl_take isl_union_set *uset);
4128 __isl_give isl_union_pw_multi_aff *
4129 isl_union_pw_multi_aff_from_union_map(
4130 __isl_take isl_union_map *umap);
4132 Multiple quasi affine expressions can be copied and freed using
4134 #include <isl/aff.h>
4135 __isl_give isl_multi_aff *isl_multi_aff_copy(
4136 __isl_keep isl_multi_aff *maff);
4137 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
4139 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
4140 __isl_keep isl_pw_multi_aff *pma);
4141 void *isl_pw_multi_aff_free(
4142 __isl_take isl_pw_multi_aff *pma);
4144 __isl_give isl_union_pw_multi_aff *
4145 isl_union_pw_multi_aff_copy(
4146 __isl_keep isl_union_pw_multi_aff *upma);
4147 void *isl_union_pw_multi_aff_free(
4148 __isl_take isl_union_pw_multi_aff *upma);
4150 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
4151 __isl_keep isl_multi_pw_aff *mpa);
4152 void *isl_multi_pw_aff_free(
4153 __isl_take isl_multi_pw_aff *mpa);
4155 The expression can be inspected using
4157 #include <isl/aff.h>
4158 isl_ctx *isl_multi_aff_get_ctx(
4159 __isl_keep isl_multi_aff *maff);
4160 isl_ctx *isl_pw_multi_aff_get_ctx(
4161 __isl_keep isl_pw_multi_aff *pma);
4162 isl_ctx *isl_union_pw_multi_aff_get_ctx(
4163 __isl_keep isl_union_pw_multi_aff *upma);
4164 isl_ctx *isl_multi_pw_aff_get_ctx(
4165 __isl_keep isl_multi_pw_aff *mpa);
4166 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
4167 enum isl_dim_type type);
4168 unsigned isl_pw_multi_aff_dim(
4169 __isl_keep isl_pw_multi_aff *pma,
4170 enum isl_dim_type type);
4171 unsigned isl_multi_pw_aff_dim(
4172 __isl_keep isl_multi_pw_aff *mpa,
4173 enum isl_dim_type type);
4174 __isl_give isl_aff *isl_multi_aff_get_aff(
4175 __isl_keep isl_multi_aff *multi, int pos);
4176 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
4177 __isl_keep isl_pw_multi_aff *pma, int pos);
4178 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
4179 __isl_keep isl_multi_pw_aff *mpa, int pos);
4180 const char *isl_pw_multi_aff_get_dim_name(
4181 __isl_keep isl_pw_multi_aff *pma,
4182 enum isl_dim_type type, unsigned pos);
4183 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
4184 __isl_keep isl_pw_multi_aff *pma,
4185 enum isl_dim_type type, unsigned pos);
4186 const char *isl_multi_aff_get_tuple_name(
4187 __isl_keep isl_multi_aff *multi,
4188 enum isl_dim_type type);
4189 int isl_pw_multi_aff_has_tuple_name(
4190 __isl_keep isl_pw_multi_aff *pma,
4191 enum isl_dim_type type);
4192 const char *isl_pw_multi_aff_get_tuple_name(
4193 __isl_keep isl_pw_multi_aff *pma,
4194 enum isl_dim_type type);
4195 int isl_pw_multi_aff_has_tuple_id(
4196 __isl_keep isl_pw_multi_aff *pma,
4197 enum isl_dim_type type);
4198 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
4199 __isl_keep isl_pw_multi_aff *pma,
4200 enum isl_dim_type type);
4202 int isl_pw_multi_aff_foreach_piece(
4203 __isl_keep isl_pw_multi_aff *pma,
4204 int (*fn)(__isl_take isl_set *set,
4205 __isl_take isl_multi_aff *maff,
4206 void *user), void *user);
4208 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
4209 __isl_keep isl_union_pw_multi_aff *upma,
4210 int (*fn)(__isl_take isl_pw_multi_aff *pma,
4211 void *user), void *user);
4213 It can be modified using
4215 #include <isl/aff.h>
4216 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
4217 __isl_take isl_multi_aff *multi, int pos,
4218 __isl_take isl_aff *aff);
4219 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
4220 __isl_take isl_pw_multi_aff *pma, unsigned pos,
4221 __isl_take isl_pw_aff *pa);
4222 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
4223 __isl_take isl_multi_aff *maff,
4224 enum isl_dim_type type, unsigned pos, const char *s);
4225 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
4226 __isl_take isl_multi_aff *maff,
4227 enum isl_dim_type type, const char *s);
4228 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
4229 __isl_take isl_multi_aff *maff,
4230 enum isl_dim_type type, __isl_take isl_id *id);
4231 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
4232 __isl_take isl_pw_multi_aff *pma,
4233 enum isl_dim_type type, __isl_take isl_id *id);
4235 __isl_give isl_multi_pw_aff *
4236 isl_multi_pw_aff_set_dim_name(
4237 __isl_take isl_multi_pw_aff *mpa,
4238 enum isl_dim_type type, unsigned pos, const char *s);
4239 __isl_give isl_multi_pw_aff *
4240 isl_multi_pw_aff_set_tuple_name(
4241 __isl_take isl_multi_pw_aff *mpa,
4242 enum isl_dim_type type, const char *s);
4244 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
4245 __isl_take isl_multi_aff *ma,
4246 enum isl_dim_type type, unsigned first, unsigned n);
4247 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
4248 __isl_take isl_multi_aff *ma,
4249 enum isl_dim_type type, unsigned n);
4250 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
4251 __isl_take isl_multi_aff *maff,
4252 enum isl_dim_type type, unsigned first, unsigned n);
4253 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
4254 __isl_take isl_pw_multi_aff *pma,
4255 enum isl_dim_type type, unsigned first, unsigned n);
4257 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
4258 __isl_take isl_multi_pw_aff *mpa,
4259 enum isl_dim_type type, unsigned first, unsigned n);
4260 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
4261 __isl_take isl_multi_pw_aff *mpa,
4262 enum isl_dim_type type, unsigned n);
4264 To check whether two multiple affine expressions are
4265 obviously equal to each other, use
4267 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
4268 __isl_keep isl_multi_aff *maff2);
4269 int isl_pw_multi_aff_plain_is_equal(
4270 __isl_keep isl_pw_multi_aff *pma1,
4271 __isl_keep isl_pw_multi_aff *pma2);
4275 #include <isl/aff.h>
4276 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
4277 __isl_take isl_pw_multi_aff *pma1,
4278 __isl_take isl_pw_multi_aff *pma2);
4279 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
4280 __isl_take isl_pw_multi_aff *pma1,
4281 __isl_take isl_pw_multi_aff *pma2);
4282 __isl_give isl_multi_aff *isl_multi_aff_add(
4283 __isl_take isl_multi_aff *maff1,
4284 __isl_take isl_multi_aff *maff2);
4285 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
4286 __isl_take isl_pw_multi_aff *pma1,
4287 __isl_take isl_pw_multi_aff *pma2);
4288 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
4289 __isl_take isl_union_pw_multi_aff *upma1,
4290 __isl_take isl_union_pw_multi_aff *upma2);
4291 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
4292 __isl_take isl_pw_multi_aff *pma1,
4293 __isl_take isl_pw_multi_aff *pma2);
4294 __isl_give isl_multi_aff *isl_multi_aff_sub(
4295 __isl_take isl_multi_aff *ma1,
4296 __isl_take isl_multi_aff *ma2);
4297 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
4298 __isl_take isl_pw_multi_aff *pma1,
4299 __isl_take isl_pw_multi_aff *pma2);
4300 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
4301 __isl_take isl_union_pw_multi_aff *upma1,
4302 __isl_take isl_union_pw_multi_aff *upma2);
4304 C<isl_multi_aff_sub> subtracts the second argument from the first.
4306 __isl_give isl_multi_aff *isl_multi_aff_scale(
4307 __isl_take isl_multi_aff *maff,
4309 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
4310 __isl_take isl_multi_aff *ma,
4311 __isl_take isl_val *v);
4312 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
4313 __isl_take isl_pw_multi_aff *pma,
4314 __isl_take isl_val *v);
4315 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
4316 __isl_take isl_multi_pw_aff *mpa,
4317 __isl_take isl_val *v);
4318 __isl_give isl_multi_aff *isl_multi_aff_scale_vec(
4319 __isl_take isl_multi_aff *ma,
4320 __isl_take isl_vec *v);
4321 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_vec(
4322 __isl_take isl_pw_multi_aff *pma,
4323 __isl_take isl_vec *v);
4324 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_vec(
4325 __isl_take isl_union_pw_multi_aff *upma,
4326 __isl_take isl_vec *v);
4328 C<isl_multi_aff_scale_vec> scales the first elements of C<ma>
4329 by the corresponding elements of C<v>.
4331 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
4332 __isl_take isl_pw_multi_aff *pma,
4333 __isl_take isl_set *set);
4334 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
4335 __isl_take isl_pw_multi_aff *pma,
4336 __isl_take isl_set *set);
4337 __isl_give isl_union_pw_multi_aff *
4338 isl_union_pw_multi_aff_intersect_domain(
4339 __isl_take isl_union_pw_multi_aff *upma,
4340 __isl_take isl_union_set *uset);
4341 __isl_give isl_multi_aff *isl_multi_aff_lift(
4342 __isl_take isl_multi_aff *maff,
4343 __isl_give isl_local_space **ls);
4344 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4345 __isl_take isl_pw_multi_aff *pma);
4346 __isl_give isl_multi_aff *isl_multi_aff_align_params(
4347 __isl_take isl_multi_aff *multi,
4348 __isl_take isl_space *model);
4349 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
4350 __isl_take isl_pw_multi_aff *pma,
4351 __isl_take isl_space *model);
4352 __isl_give isl_pw_multi_aff *
4353 isl_pw_multi_aff_project_domain_on_params(
4354 __isl_take isl_pw_multi_aff *pma);
4355 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
4356 __isl_take isl_multi_aff *maff,
4357 __isl_take isl_set *context);
4358 __isl_give isl_multi_aff *isl_multi_aff_gist(
4359 __isl_take isl_multi_aff *maff,
4360 __isl_take isl_set *context);
4361 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
4362 __isl_take isl_pw_multi_aff *pma,
4363 __isl_take isl_set *set);
4364 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
4365 __isl_take isl_pw_multi_aff *pma,
4366 __isl_take isl_set *set);
4367 __isl_give isl_set *isl_pw_multi_aff_domain(
4368 __isl_take isl_pw_multi_aff *pma);
4369 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4370 __isl_take isl_union_pw_multi_aff *upma);
4371 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
4372 __isl_take isl_multi_aff *ma1, unsigned pos,
4373 __isl_take isl_multi_aff *ma2);
4374 __isl_give isl_multi_aff *isl_multi_aff_splice(
4375 __isl_take isl_multi_aff *ma1,
4376 unsigned in_pos, unsigned out_pos,
4377 __isl_take isl_multi_aff *ma2);
4378 __isl_give isl_multi_aff *isl_multi_aff_range_product(
4379 __isl_take isl_multi_aff *ma1,
4380 __isl_take isl_multi_aff *ma2);
4381 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
4382 __isl_take isl_multi_aff *ma1,
4383 __isl_take isl_multi_aff *ma2);
4384 __isl_give isl_multi_aff *isl_multi_aff_product(
4385 __isl_take isl_multi_aff *ma1,
4386 __isl_take isl_multi_aff *ma2);
4387 __isl_give isl_pw_multi_aff *
4388 isl_pw_multi_aff_range_product(
4389 __isl_take isl_pw_multi_aff *pma1,
4390 __isl_take isl_pw_multi_aff *pma2);
4391 __isl_give isl_pw_multi_aff *
4392 isl_pw_multi_aff_flat_range_product(
4393 __isl_take isl_pw_multi_aff *pma1,
4394 __isl_take isl_pw_multi_aff *pma2);
4395 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
4396 __isl_take isl_pw_multi_aff *pma1,
4397 __isl_take isl_pw_multi_aff *pma2);
4398 __isl_give isl_union_pw_multi_aff *
4399 isl_union_pw_multi_aff_flat_range_product(
4400 __isl_take isl_union_pw_multi_aff *upma1,
4401 __isl_take isl_union_pw_multi_aff *upma2);
4402 __isl_give isl_multi_pw_aff *
4403 isl_multi_pw_aff_range_splice(
4404 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
4405 __isl_take isl_multi_pw_aff *mpa2);
4406 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
4407 __isl_take isl_multi_pw_aff *mpa1,
4408 unsigned in_pos, unsigned out_pos,
4409 __isl_take isl_multi_pw_aff *mpa2);
4410 __isl_give isl_multi_pw_aff *
4411 isl_multi_pw_aff_range_product(
4412 __isl_take isl_multi_pw_aff *mpa1,
4413 __isl_take isl_multi_pw_aff *mpa2);
4414 __isl_give isl_multi_pw_aff *
4415 isl_multi_pw_aff_flat_range_product(
4416 __isl_take isl_multi_pw_aff *mpa1,
4417 __isl_take isl_multi_pw_aff *mpa2);
4419 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
4420 then it is assigned the local space that lies at the basis of
4421 the lifting applied.
4423 #include <isl/aff.h>
4424 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
4425 __isl_take isl_multi_aff *ma1,
4426 __isl_take isl_multi_aff *ma2);
4427 __isl_give isl_pw_multi_aff *
4428 isl_pw_multi_aff_pullback_multi_aff(
4429 __isl_take isl_pw_multi_aff *pma,
4430 __isl_take isl_multi_aff *ma);
4431 __isl_give isl_pw_multi_aff *
4432 isl_pw_multi_aff_pullback_pw_multi_aff(
4433 __isl_take isl_pw_multi_aff *pma1,
4434 __isl_take isl_pw_multi_aff *pma2);
4436 The function C<isl_multi_aff_pullback_multi_aff> precomposes C<ma1> by C<ma2>.
4437 In other words, C<ma2> is plugged
4440 __isl_give isl_set *isl_multi_aff_lex_le_set(
4441 __isl_take isl_multi_aff *ma1,
4442 __isl_take isl_multi_aff *ma2);
4443 __isl_give isl_set *isl_multi_aff_lex_ge_set(
4444 __isl_take isl_multi_aff *ma1,
4445 __isl_take isl_multi_aff *ma2);
4447 The function C<isl_multi_aff_lex_le_set> returns a set
4448 containing those elements in the shared domain space
4449 where C<ma1> is lexicographically smaller than or
4452 An expression can be read from input using
4454 #include <isl/aff.h>
4455 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
4456 isl_ctx *ctx, const char *str);
4457 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
4458 isl_ctx *ctx, const char *str);
4459 __isl_give isl_union_pw_multi_aff *
4460 isl_union_pw_multi_aff_read_from_str(
4461 isl_ctx *ctx, const char *str);
4463 An expression can be printed using
4465 #include <isl/aff.h>
4466 __isl_give isl_printer *isl_printer_print_multi_aff(
4467 __isl_take isl_printer *p,
4468 __isl_keep isl_multi_aff *maff);
4469 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
4470 __isl_take isl_printer *p,
4471 __isl_keep isl_pw_multi_aff *pma);
4472 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
4473 __isl_take isl_printer *p,
4474 __isl_keep isl_union_pw_multi_aff *upma);
4475 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
4476 __isl_take isl_printer *p,
4477 __isl_keep isl_multi_pw_aff *mpa);
4481 Points are elements of a set. They can be used to construct
4482 simple sets (boxes) or they can be used to represent the
4483 individual elements of a set.
4484 The zero point (the origin) can be created using
4486 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
4488 The coordinates of a point can be inspected, set and changed
4491 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
4492 enum isl_dim_type type, int pos, isl_int *v);
4493 __isl_give isl_val *isl_point_get_coordinate_val(
4494 __isl_keep isl_point *pnt,
4495 enum isl_dim_type type, int pos);
4496 __isl_give isl_point *isl_point_set_coordinate(
4497 __isl_take isl_point *pnt,
4498 enum isl_dim_type type, int pos, isl_int v);
4499 __isl_give isl_point *isl_point_set_coordinate_val(
4500 __isl_take isl_point *pnt,
4501 enum isl_dim_type type, int pos,
4502 __isl_take isl_val *v);
4504 __isl_give isl_point *isl_point_add_ui(
4505 __isl_take isl_point *pnt,
4506 enum isl_dim_type type, int pos, unsigned val);
4507 __isl_give isl_point *isl_point_sub_ui(
4508 __isl_take isl_point *pnt,
4509 enum isl_dim_type type, int pos, unsigned val);
4511 Other properties can be obtained using
4513 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
4515 Points can be copied or freed using
4517 __isl_give isl_point *isl_point_copy(
4518 __isl_keep isl_point *pnt);
4519 void isl_point_free(__isl_take isl_point *pnt);
4521 A singleton set can be created from a point using
4523 __isl_give isl_basic_set *isl_basic_set_from_point(
4524 __isl_take isl_point *pnt);
4525 __isl_give isl_set *isl_set_from_point(
4526 __isl_take isl_point *pnt);
4528 and a box can be created from two opposite extremal points using
4530 __isl_give isl_basic_set *isl_basic_set_box_from_points(
4531 __isl_take isl_point *pnt1,
4532 __isl_take isl_point *pnt2);
4533 __isl_give isl_set *isl_set_box_from_points(
4534 __isl_take isl_point *pnt1,
4535 __isl_take isl_point *pnt2);
4537 All elements of a B<bounded> (union) set can be enumerated using
4538 the following functions.
4540 int isl_set_foreach_point(__isl_keep isl_set *set,
4541 int (*fn)(__isl_take isl_point *pnt, void *user),
4543 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
4544 int (*fn)(__isl_take isl_point *pnt, void *user),
4547 The function C<fn> is called for each integer point in
4548 C<set> with as second argument the last argument of
4549 the C<isl_set_foreach_point> call. The function C<fn>
4550 should return C<0> on success and C<-1> on failure.
4551 In the latter case, C<isl_set_foreach_point> will stop
4552 enumerating and return C<-1> as well.
4553 If the enumeration is performed successfully and to completion,
4554 then C<isl_set_foreach_point> returns C<0>.
4556 To obtain a single point of a (basic) set, use
4558 __isl_give isl_point *isl_basic_set_sample_point(
4559 __isl_take isl_basic_set *bset);
4560 __isl_give isl_point *isl_set_sample_point(
4561 __isl_take isl_set *set);
4563 If C<set> does not contain any (integer) points, then the
4564 resulting point will be ``void'', a property that can be
4567 int isl_point_is_void(__isl_keep isl_point *pnt);
4569 =head2 Piecewise Quasipolynomials
4571 A piecewise quasipolynomial is a particular kind of function that maps
4572 a parametric point to a rational value.
4573 More specifically, a quasipolynomial is a polynomial expression in greatest
4574 integer parts of affine expressions of parameters and variables.
4575 A piecewise quasipolynomial is a subdivision of a given parametric
4576 domain into disjoint cells with a quasipolynomial associated to
4577 each cell. The value of the piecewise quasipolynomial at a given
4578 point is the value of the quasipolynomial associated to the cell
4579 that contains the point. Outside of the union of cells,
4580 the value is assumed to be zero.
4581 For example, the piecewise quasipolynomial
4583 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
4585 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
4586 A given piecewise quasipolynomial has a fixed domain dimension.
4587 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
4588 defined over different domains.
4589 Piecewise quasipolynomials are mainly used by the C<barvinok>
4590 library for representing the number of elements in a parametric set or map.
4591 For example, the piecewise quasipolynomial above represents
4592 the number of points in the map
4594 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
4596 =head3 Input and Output
4598 Piecewise quasipolynomials can be read from input using
4600 __isl_give isl_union_pw_qpolynomial *
4601 isl_union_pw_qpolynomial_read_from_str(
4602 isl_ctx *ctx, const char *str);
4604 Quasipolynomials and piecewise quasipolynomials can be printed
4605 using the following functions.
4607 __isl_give isl_printer *isl_printer_print_qpolynomial(
4608 __isl_take isl_printer *p,
4609 __isl_keep isl_qpolynomial *qp);
4611 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
4612 __isl_take isl_printer *p,
4613 __isl_keep isl_pw_qpolynomial *pwqp);
4615 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
4616 __isl_take isl_printer *p,
4617 __isl_keep isl_union_pw_qpolynomial *upwqp);
4619 The output format of the printer
4620 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
4621 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
4623 In case of printing in C<ISL_FORMAT_C>, the user may want
4624 to set the names of all dimensions
4626 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
4627 __isl_take isl_qpolynomial *qp,
4628 enum isl_dim_type type, unsigned pos,
4630 __isl_give isl_pw_qpolynomial *
4631 isl_pw_qpolynomial_set_dim_name(
4632 __isl_take isl_pw_qpolynomial *pwqp,
4633 enum isl_dim_type type, unsigned pos,
4636 =head3 Creating New (Piecewise) Quasipolynomials
4638 Some simple quasipolynomials can be created using the following functions.
4639 More complicated quasipolynomials can be created by applying
4640 operations such as addition and multiplication
4641 on the resulting quasipolynomials
4643 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
4644 __isl_take isl_space *domain);
4645 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
4646 __isl_take isl_space *domain);
4647 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
4648 __isl_take isl_space *domain);
4649 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
4650 __isl_take isl_space *domain);
4651 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
4652 __isl_take isl_space *domain);
4653 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
4654 __isl_take isl_space *domain,
4655 const isl_int n, const isl_int d);
4656 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
4657 __isl_take isl_space *domain,
4658 __isl_take isl_val *val);
4659 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
4660 __isl_take isl_space *domain,
4661 enum isl_dim_type type, unsigned pos);
4662 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
4663 __isl_take isl_aff *aff);
4665 Note that the space in which a quasipolynomial lives is a map space
4666 with a one-dimensional range. The C<domain> argument in some of
4667 the functions above corresponds to the domain of this map space.
4669 The zero piecewise quasipolynomial or a piecewise quasipolynomial
4670 with a single cell can be created using the following functions.
4671 Multiple of these single cell piecewise quasipolynomials can
4672 be combined to create more complicated piecewise quasipolynomials.
4674 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
4675 __isl_take isl_space *space);
4676 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
4677 __isl_take isl_set *set,
4678 __isl_take isl_qpolynomial *qp);
4679 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
4680 __isl_take isl_qpolynomial *qp);
4681 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
4682 __isl_take isl_pw_aff *pwaff);
4684 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
4685 __isl_take isl_space *space);
4686 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
4687 __isl_take isl_pw_qpolynomial *pwqp);
4688 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
4689 __isl_take isl_union_pw_qpolynomial *upwqp,
4690 __isl_take isl_pw_qpolynomial *pwqp);
4692 Quasipolynomials can be copied and freed again using the following
4695 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
4696 __isl_keep isl_qpolynomial *qp);
4697 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
4699 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
4700 __isl_keep isl_pw_qpolynomial *pwqp);
4701 void *isl_pw_qpolynomial_free(
4702 __isl_take isl_pw_qpolynomial *pwqp);
4704 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
4705 __isl_keep isl_union_pw_qpolynomial *upwqp);
4706 void *isl_union_pw_qpolynomial_free(
4707 __isl_take isl_union_pw_qpolynomial *upwqp);
4709 =head3 Inspecting (Piecewise) Quasipolynomials
4711 To iterate over all piecewise quasipolynomials in a union
4712 piecewise quasipolynomial, use the following function
4714 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
4715 __isl_keep isl_union_pw_qpolynomial *upwqp,
4716 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
4719 To extract the piecewise quasipolynomial in a given space from a union, use
4721 __isl_give isl_pw_qpolynomial *
4722 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
4723 __isl_keep isl_union_pw_qpolynomial *upwqp,
4724 __isl_take isl_space *space);
4726 To iterate over the cells in a piecewise quasipolynomial,
4727 use either of the following two functions
4729 int isl_pw_qpolynomial_foreach_piece(
4730 __isl_keep isl_pw_qpolynomial *pwqp,
4731 int (*fn)(__isl_take isl_set *set,
4732 __isl_take isl_qpolynomial *qp,
4733 void *user), void *user);
4734 int isl_pw_qpolynomial_foreach_lifted_piece(
4735 __isl_keep isl_pw_qpolynomial *pwqp,
4736 int (*fn)(__isl_take isl_set *set,
4737 __isl_take isl_qpolynomial *qp,
4738 void *user), void *user);
4740 As usual, the function C<fn> should return C<0> on success
4741 and C<-1> on failure. The difference between
4742 C<isl_pw_qpolynomial_foreach_piece> and
4743 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
4744 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
4745 compute unique representations for all existentially quantified
4746 variables and then turn these existentially quantified variables
4747 into extra set variables, adapting the associated quasipolynomial
4748 accordingly. This means that the C<set> passed to C<fn>
4749 will not have any existentially quantified variables, but that
4750 the dimensions of the sets may be different for different
4751 invocations of C<fn>.
4753 The constant term of a quasipolynomial can be extracted using
4755 __isl_give isl_val *isl_qpolynomial_get_constant_val(
4756 __isl_keep isl_qpolynomial *qp);
4758 To iterate over all terms in a quasipolynomial,
4761 int isl_qpolynomial_foreach_term(
4762 __isl_keep isl_qpolynomial *qp,
4763 int (*fn)(__isl_take isl_term *term,
4764 void *user), void *user);
4766 The terms themselves can be inspected and freed using
4769 unsigned isl_term_dim(__isl_keep isl_term *term,
4770 enum isl_dim_type type);
4771 void isl_term_get_num(__isl_keep isl_term *term,
4773 void isl_term_get_den(__isl_keep isl_term *term,
4775 __isl_give isl_val *isl_term_get_coefficient_val(
4776 __isl_keep isl_term *term);
4777 int isl_term_get_exp(__isl_keep isl_term *term,
4778 enum isl_dim_type type, unsigned pos);
4779 __isl_give isl_aff *isl_term_get_div(
4780 __isl_keep isl_term *term, unsigned pos);
4781 void isl_term_free(__isl_take isl_term *term);
4783 Each term is a product of parameters, set variables and
4784 integer divisions. The function C<isl_term_get_exp>
4785 returns the exponent of a given dimensions in the given term.
4786 The C<isl_int>s in the arguments of C<isl_term_get_num>
4787 and C<isl_term_get_den> need to have been initialized
4788 using C<isl_int_init> before calling these functions.
4790 =head3 Properties of (Piecewise) Quasipolynomials
4792 To check whether a quasipolynomial is actually a constant,
4793 use the following function.
4795 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
4796 isl_int *n, isl_int *d);
4798 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
4799 then the numerator and denominator of the constant
4800 are returned in C<*n> and C<*d>, respectively.
4802 To check whether two union piecewise quasipolynomials are
4803 obviously equal, use
4805 int isl_union_pw_qpolynomial_plain_is_equal(
4806 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4807 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4809 =head3 Operations on (Piecewise) Quasipolynomials
4811 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
4812 __isl_take isl_qpolynomial *qp, isl_int v);
4813 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
4814 __isl_take isl_qpolynomial *qp,
4815 __isl_take isl_val *v);
4816 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
4817 __isl_take isl_qpolynomial *qp);
4818 __isl_give isl_qpolynomial *isl_qpolynomial_add(
4819 __isl_take isl_qpolynomial *qp1,
4820 __isl_take isl_qpolynomial *qp2);
4821 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
4822 __isl_take isl_qpolynomial *qp1,
4823 __isl_take isl_qpolynomial *qp2);
4824 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
4825 __isl_take isl_qpolynomial *qp1,
4826 __isl_take isl_qpolynomial *qp2);
4827 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
4828 __isl_take isl_qpolynomial *qp, unsigned exponent);
4830 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
4831 __isl_take isl_pw_qpolynomial *pwqp,
4832 enum isl_dim_type type, unsigned n,
4833 __isl_take isl_val *v);
4834 __isl_give isl_pw_qpolynomial *
4835 isl_pw_qpolynomial_scale_val(
4836 __isl_take isl_pw_qpolynomial *pwqp,
4837 __isl_take isl_val *v);
4838 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
4839 __isl_take isl_pw_qpolynomial *pwqp1,
4840 __isl_take isl_pw_qpolynomial *pwqp2);
4841 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
4842 __isl_take isl_pw_qpolynomial *pwqp1,
4843 __isl_take isl_pw_qpolynomial *pwqp2);
4844 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
4845 __isl_take isl_pw_qpolynomial *pwqp1,
4846 __isl_take isl_pw_qpolynomial *pwqp2);
4847 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
4848 __isl_take isl_pw_qpolynomial *pwqp);
4849 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
4850 __isl_take isl_pw_qpolynomial *pwqp1,
4851 __isl_take isl_pw_qpolynomial *pwqp2);
4852 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
4853 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
4855 __isl_give isl_union_pw_qpolynomial *
4856 isl_union_pw_qpolynomial_scale_val(
4857 __isl_take isl_union_pw_qpolynomial *upwqp,
4858 __isl_take isl_val *v);
4859 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
4860 __isl_take isl_union_pw_qpolynomial *upwqp1,
4861 __isl_take isl_union_pw_qpolynomial *upwqp2);
4862 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
4863 __isl_take isl_union_pw_qpolynomial *upwqp1,
4864 __isl_take isl_union_pw_qpolynomial *upwqp2);
4865 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4866 __isl_take isl_union_pw_qpolynomial *upwqp1,
4867 __isl_take isl_union_pw_qpolynomial *upwqp2);
4869 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
4870 __isl_take isl_pw_qpolynomial *pwqp,
4871 __isl_take isl_point *pnt);
4873 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
4874 __isl_take isl_union_pw_qpolynomial *upwqp,
4875 __isl_take isl_point *pnt);
4877 __isl_give isl_set *isl_pw_qpolynomial_domain(
4878 __isl_take isl_pw_qpolynomial *pwqp);
4879 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
4880 __isl_take isl_pw_qpolynomial *pwpq,
4881 __isl_take isl_set *set);
4882 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
4883 __isl_take isl_pw_qpolynomial *pwpq,
4884 __isl_take isl_set *set);
4886 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4887 __isl_take isl_union_pw_qpolynomial *upwqp);
4888 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
4889 __isl_take isl_union_pw_qpolynomial *upwpq,
4890 __isl_take isl_union_set *uset);
4891 __isl_give isl_union_pw_qpolynomial *
4892 isl_union_pw_qpolynomial_intersect_params(
4893 __isl_take isl_union_pw_qpolynomial *upwpq,
4894 __isl_take isl_set *set);
4896 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4897 __isl_take isl_qpolynomial *qp,
4898 __isl_take isl_space *model);
4900 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
4901 __isl_take isl_qpolynomial *qp);
4902 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
4903 __isl_take isl_pw_qpolynomial *pwqp);
4905 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
4906 __isl_take isl_union_pw_qpolynomial *upwqp);
4908 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
4909 __isl_take isl_qpolynomial *qp,
4910 __isl_take isl_set *context);
4911 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
4912 __isl_take isl_qpolynomial *qp,
4913 __isl_take isl_set *context);
4915 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
4916 __isl_take isl_pw_qpolynomial *pwqp,
4917 __isl_take isl_set *context);
4918 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
4919 __isl_take isl_pw_qpolynomial *pwqp,
4920 __isl_take isl_set *context);
4922 __isl_give isl_union_pw_qpolynomial *
4923 isl_union_pw_qpolynomial_gist_params(
4924 __isl_take isl_union_pw_qpolynomial *upwqp,
4925 __isl_take isl_set *context);
4926 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
4927 __isl_take isl_union_pw_qpolynomial *upwqp,
4928 __isl_take isl_union_set *context);
4930 The gist operation applies the gist operation to each of
4931 the cells in the domain of the input piecewise quasipolynomial.
4932 The context is also exploited
4933 to simplify the quasipolynomials associated to each cell.
4935 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4936 __isl_take isl_pw_qpolynomial *pwqp, int sign);
4937 __isl_give isl_union_pw_qpolynomial *
4938 isl_union_pw_qpolynomial_to_polynomial(
4939 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
4941 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
4942 the polynomial will be an overapproximation. If C<sign> is negative,
4943 it will be an underapproximation. If C<sign> is zero, the approximation
4944 will lie somewhere in between.
4946 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
4948 A piecewise quasipolynomial reduction is a piecewise
4949 reduction (or fold) of quasipolynomials.
4950 In particular, the reduction can be maximum or a minimum.
4951 The objects are mainly used to represent the result of
4952 an upper or lower bound on a quasipolynomial over its domain,
4953 i.e., as the result of the following function.
4955 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
4956 __isl_take isl_pw_qpolynomial *pwqp,
4957 enum isl_fold type, int *tight);
4959 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
4960 __isl_take isl_union_pw_qpolynomial *upwqp,
4961 enum isl_fold type, int *tight);
4963 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
4964 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
4965 is the returned bound is known be tight, i.e., for each value
4966 of the parameters there is at least
4967 one element in the domain that reaches the bound.
4968 If the domain of C<pwqp> is not wrapping, then the bound is computed
4969 over all elements in that domain and the result has a purely parametric
4970 domain. If the domain of C<pwqp> is wrapping, then the bound is
4971 computed over the range of the wrapped relation. The domain of the
4972 wrapped relation becomes the domain of the result.
4974 A (piecewise) quasipolynomial reduction can be copied or freed using the
4975 following functions.
4977 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
4978 __isl_keep isl_qpolynomial_fold *fold);
4979 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
4980 __isl_keep isl_pw_qpolynomial_fold *pwf);
4981 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
4982 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4983 void isl_qpolynomial_fold_free(
4984 __isl_take isl_qpolynomial_fold *fold);
4985 void *isl_pw_qpolynomial_fold_free(
4986 __isl_take isl_pw_qpolynomial_fold *pwf);
4987 void *isl_union_pw_qpolynomial_fold_free(
4988 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4990 =head3 Printing Piecewise Quasipolynomial Reductions
4992 Piecewise quasipolynomial reductions can be printed
4993 using the following function.
4995 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
4996 __isl_take isl_printer *p,
4997 __isl_keep isl_pw_qpolynomial_fold *pwf);
4998 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
4999 __isl_take isl_printer *p,
5000 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
5002 For C<isl_printer_print_pw_qpolynomial_fold>,
5003 output format of the printer
5004 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
5005 For C<isl_printer_print_union_pw_qpolynomial_fold>,
5006 output format of the printer
5007 needs to be set to C<ISL_FORMAT_ISL>.
5008 In case of printing in C<ISL_FORMAT_C>, the user may want
5009 to set the names of all dimensions
5011 __isl_give isl_pw_qpolynomial_fold *
5012 isl_pw_qpolynomial_fold_set_dim_name(
5013 __isl_take isl_pw_qpolynomial_fold *pwf,
5014 enum isl_dim_type type, unsigned pos,
5017 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
5019 To iterate over all piecewise quasipolynomial reductions in a union
5020 piecewise quasipolynomial reduction, use the following function
5022 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
5023 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
5024 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
5025 void *user), void *user);
5027 To iterate over the cells in a piecewise quasipolynomial reduction,
5028 use either of the following two functions
5030 int isl_pw_qpolynomial_fold_foreach_piece(
5031 __isl_keep isl_pw_qpolynomial_fold *pwf,
5032 int (*fn)(__isl_take isl_set *set,
5033 __isl_take isl_qpolynomial_fold *fold,
5034 void *user), void *user);
5035 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
5036 __isl_keep isl_pw_qpolynomial_fold *pwf,
5037 int (*fn)(__isl_take isl_set *set,
5038 __isl_take isl_qpolynomial_fold *fold,
5039 void *user), void *user);
5041 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
5042 of the difference between these two functions.
5044 To iterate over all quasipolynomials in a reduction, use
5046 int isl_qpolynomial_fold_foreach_qpolynomial(
5047 __isl_keep isl_qpolynomial_fold *fold,
5048 int (*fn)(__isl_take isl_qpolynomial *qp,
5049 void *user), void *user);
5051 =head3 Properties of Piecewise Quasipolynomial Reductions
5053 To check whether two union piecewise quasipolynomial reductions are
5054 obviously equal, use
5056 int isl_union_pw_qpolynomial_fold_plain_is_equal(
5057 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
5058 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
5060 =head3 Operations on Piecewise Quasipolynomial Reductions
5062 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
5063 __isl_take isl_qpolynomial_fold *fold, isl_int v);
5064 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
5065 __isl_take isl_qpolynomial_fold *fold,
5066 __isl_take isl_val *v);
5067 __isl_give isl_pw_qpolynomial_fold *
5068 isl_pw_qpolynomial_fold_scale_val(
5069 __isl_take isl_pw_qpolynomial_fold *pwf,
5070 __isl_take isl_val *v);
5071 __isl_give isl_union_pw_qpolynomial_fold *
5072 isl_union_pw_qpolynomial_fold_scale_val(
5073 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5074 __isl_take isl_val *v);
5076 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
5077 __isl_take isl_pw_qpolynomial_fold *pwf1,
5078 __isl_take isl_pw_qpolynomial_fold *pwf2);
5080 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
5081 __isl_take isl_pw_qpolynomial_fold *pwf1,
5082 __isl_take isl_pw_qpolynomial_fold *pwf2);
5084 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
5085 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
5086 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
5088 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
5089 __isl_take isl_pw_qpolynomial_fold *pwf,
5090 __isl_take isl_point *pnt);
5092 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
5093 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5094 __isl_take isl_point *pnt);
5096 __isl_give isl_pw_qpolynomial_fold *
5097 isl_pw_qpolynomial_fold_intersect_params(
5098 __isl_take isl_pw_qpolynomial_fold *pwf,
5099 __isl_take isl_set *set);
5101 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
5102 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5103 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
5104 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5105 __isl_take isl_union_set *uset);
5106 __isl_give isl_union_pw_qpolynomial_fold *
5107 isl_union_pw_qpolynomial_fold_intersect_params(
5108 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5109 __isl_take isl_set *set);
5111 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
5112 __isl_take isl_pw_qpolynomial_fold *pwf);
5114 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
5115 __isl_take isl_pw_qpolynomial_fold *pwf);
5117 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
5118 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5120 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
5121 __isl_take isl_qpolynomial_fold *fold,
5122 __isl_take isl_set *context);
5123 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
5124 __isl_take isl_qpolynomial_fold *fold,
5125 __isl_take isl_set *context);
5127 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
5128 __isl_take isl_pw_qpolynomial_fold *pwf,
5129 __isl_take isl_set *context);
5130 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
5131 __isl_take isl_pw_qpolynomial_fold *pwf,
5132 __isl_take isl_set *context);
5134 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
5135 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5136 __isl_take isl_union_set *context);
5137 __isl_give isl_union_pw_qpolynomial_fold *
5138 isl_union_pw_qpolynomial_fold_gist_params(
5139 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5140 __isl_take isl_set *context);
5142 The gist operation applies the gist operation to each of
5143 the cells in the domain of the input piecewise quasipolynomial reduction.
5144 In future, the operation will also exploit the context
5145 to simplify the quasipolynomial reductions associated to each cell.
5147 __isl_give isl_pw_qpolynomial_fold *
5148 isl_set_apply_pw_qpolynomial_fold(
5149 __isl_take isl_set *set,
5150 __isl_take isl_pw_qpolynomial_fold *pwf,
5152 __isl_give isl_pw_qpolynomial_fold *
5153 isl_map_apply_pw_qpolynomial_fold(
5154 __isl_take isl_map *map,
5155 __isl_take isl_pw_qpolynomial_fold *pwf,
5157 __isl_give isl_union_pw_qpolynomial_fold *
5158 isl_union_set_apply_union_pw_qpolynomial_fold(
5159 __isl_take isl_union_set *uset,
5160 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5162 __isl_give isl_union_pw_qpolynomial_fold *
5163 isl_union_map_apply_union_pw_qpolynomial_fold(
5164 __isl_take isl_union_map *umap,
5165 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5168 The functions taking a map
5169 compose the given map with the given piecewise quasipolynomial reduction.
5170 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
5171 over all elements in the intersection of the range of the map
5172 and the domain of the piecewise quasipolynomial reduction
5173 as a function of an element in the domain of the map.
5174 The functions taking a set compute a bound over all elements in the
5175 intersection of the set and the domain of the
5176 piecewise quasipolynomial reduction.
5178 =head2 Parametric Vertex Enumeration
5180 The parametric vertex enumeration described in this section
5181 is mainly intended to be used internally and by the C<barvinok>
5184 #include <isl/vertices.h>
5185 __isl_give isl_vertices *isl_basic_set_compute_vertices(
5186 __isl_keep isl_basic_set *bset);
5188 The function C<isl_basic_set_compute_vertices> performs the
5189 actual computation of the parametric vertices and the chamber
5190 decomposition and store the result in an C<isl_vertices> object.
5191 This information can be queried by either iterating over all
5192 the vertices or iterating over all the chambers or cells
5193 and then iterating over all vertices that are active on the chamber.
5195 int isl_vertices_foreach_vertex(
5196 __isl_keep isl_vertices *vertices,
5197 int (*fn)(__isl_take isl_vertex *vertex, void *user),
5200 int isl_vertices_foreach_cell(
5201 __isl_keep isl_vertices *vertices,
5202 int (*fn)(__isl_take isl_cell *cell, void *user),
5204 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
5205 int (*fn)(__isl_take isl_vertex *vertex, void *user),
5208 Other operations that can be performed on an C<isl_vertices> object are
5211 isl_ctx *isl_vertices_get_ctx(
5212 __isl_keep isl_vertices *vertices);
5213 int isl_vertices_get_n_vertices(
5214 __isl_keep isl_vertices *vertices);
5215 void isl_vertices_free(__isl_take isl_vertices *vertices);
5217 Vertices can be inspected and destroyed using the following functions.
5219 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
5220 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
5221 __isl_give isl_basic_set *isl_vertex_get_domain(
5222 __isl_keep isl_vertex *vertex);
5223 __isl_give isl_basic_set *isl_vertex_get_expr(
5224 __isl_keep isl_vertex *vertex);
5225 void isl_vertex_free(__isl_take isl_vertex *vertex);
5227 C<isl_vertex_get_expr> returns a singleton parametric set describing
5228 the vertex, while C<isl_vertex_get_domain> returns the activity domain
5230 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
5231 B<rational> basic sets, so they should mainly be used for inspection
5232 and should not be mixed with integer sets.
5234 Chambers can be inspected and destroyed using the following functions.
5236 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
5237 __isl_give isl_basic_set *isl_cell_get_domain(
5238 __isl_keep isl_cell *cell);
5239 void isl_cell_free(__isl_take isl_cell *cell);
5241 =head1 Polyhedral Compilation Library
5243 This section collects functionality in C<isl> that has been specifically
5244 designed for use during polyhedral compilation.
5246 =head2 Dependence Analysis
5248 C<isl> contains specialized functionality for performing
5249 array dataflow analysis. That is, given a I<sink> access relation
5250 and a collection of possible I<source> access relations,
5251 C<isl> can compute relations that describe
5252 for each iteration of the sink access, which iteration
5253 of which of the source access relations was the last
5254 to access the same data element before the given iteration
5256 The resulting dependence relations map source iterations
5257 to the corresponding sink iterations.
5258 To compute standard flow dependences, the sink should be
5259 a read, while the sources should be writes.
5260 If any of the source accesses are marked as being I<may>
5261 accesses, then there will be a dependence from the last
5262 I<must> access B<and> from any I<may> access that follows
5263 this last I<must> access.
5264 In particular, if I<all> sources are I<may> accesses,
5265 then memory based dependence analysis is performed.
5266 If, on the other hand, all sources are I<must> accesses,
5267 then value based dependence analysis is performed.
5269 #include <isl/flow.h>
5271 typedef int (*isl_access_level_before)(void *first, void *second);
5273 __isl_give isl_access_info *isl_access_info_alloc(
5274 __isl_take isl_map *sink,
5275 void *sink_user, isl_access_level_before fn,
5277 __isl_give isl_access_info *isl_access_info_add_source(
5278 __isl_take isl_access_info *acc,
5279 __isl_take isl_map *source, int must,
5281 void *isl_access_info_free(__isl_take isl_access_info *acc);
5283 __isl_give isl_flow *isl_access_info_compute_flow(
5284 __isl_take isl_access_info *acc);
5286 int isl_flow_foreach(__isl_keep isl_flow *deps,
5287 int (*fn)(__isl_take isl_map *dep, int must,
5288 void *dep_user, void *user),
5290 __isl_give isl_map *isl_flow_get_no_source(
5291 __isl_keep isl_flow *deps, int must);
5292 void isl_flow_free(__isl_take isl_flow *deps);
5294 The function C<isl_access_info_compute_flow> performs the actual
5295 dependence analysis. The other functions are used to construct
5296 the input for this function or to read off the output.
5298 The input is collected in an C<isl_access_info>, which can
5299 be created through a call to C<isl_access_info_alloc>.
5300 The arguments to this functions are the sink access relation
5301 C<sink>, a token C<sink_user> used to identify the sink
5302 access to the user, a callback function for specifying the
5303 relative order of source and sink accesses, and the number
5304 of source access relations that will be added.
5305 The callback function has type C<int (*)(void *first, void *second)>.
5306 The function is called with two user supplied tokens identifying
5307 either a source or the sink and it should return the shared nesting
5308 level and the relative order of the two accesses.
5309 In particular, let I<n> be the number of loops shared by
5310 the two accesses. If C<first> precedes C<second> textually,
5311 then the function should return I<2 * n + 1>; otherwise,
5312 it should return I<2 * n>.
5313 The sources can be added to the C<isl_access_info> by performing
5314 (at most) C<max_source> calls to C<isl_access_info_add_source>.
5315 C<must> indicates whether the source is a I<must> access
5316 or a I<may> access. Note that a multi-valued access relation
5317 should only be marked I<must> if every iteration in the domain
5318 of the relation accesses I<all> elements in its image.
5319 The C<source_user> token is again used to identify
5320 the source access. The range of the source access relation
5321 C<source> should have the same dimension as the range
5322 of the sink access relation.
5323 The C<isl_access_info_free> function should usually not be
5324 called explicitly, because it is called implicitly by
5325 C<isl_access_info_compute_flow>.
5327 The result of the dependence analysis is collected in an
5328 C<isl_flow>. There may be elements of
5329 the sink access for which no preceding source access could be
5330 found or for which all preceding sources are I<may> accesses.
5331 The relations containing these elements can be obtained through
5332 calls to C<isl_flow_get_no_source>, the first with C<must> set
5333 and the second with C<must> unset.
5334 In the case of standard flow dependence analysis,
5335 with the sink a read and the sources I<must> writes,
5336 the first relation corresponds to the reads from uninitialized
5337 array elements and the second relation is empty.
5338 The actual flow dependences can be extracted using
5339 C<isl_flow_foreach>. This function will call the user-specified
5340 callback function C<fn> for each B<non-empty> dependence between
5341 a source and the sink. The callback function is called
5342 with four arguments, the actual flow dependence relation
5343 mapping source iterations to sink iterations, a boolean that
5344 indicates whether it is a I<must> or I<may> dependence, a token
5345 identifying the source and an additional C<void *> with value
5346 equal to the third argument of the C<isl_flow_foreach> call.
5347 A dependence is marked I<must> if it originates from a I<must>
5348 source and if it is not followed by any I<may> sources.
5350 After finishing with an C<isl_flow>, the user should call
5351 C<isl_flow_free> to free all associated memory.
5353 A higher-level interface to dependence analysis is provided
5354 by the following function.
5356 #include <isl/flow.h>
5358 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
5359 __isl_take isl_union_map *must_source,
5360 __isl_take isl_union_map *may_source,
5361 __isl_take isl_union_map *schedule,
5362 __isl_give isl_union_map **must_dep,
5363 __isl_give isl_union_map **may_dep,
5364 __isl_give isl_union_map **must_no_source,
5365 __isl_give isl_union_map **may_no_source);
5367 The arrays are identified by the tuple names of the ranges
5368 of the accesses. The iteration domains by the tuple names
5369 of the domains of the accesses and of the schedule.
5370 The relative order of the iteration domains is given by the
5371 schedule. The relations returned through C<must_no_source>
5372 and C<may_no_source> are subsets of C<sink>.
5373 Any of C<must_dep>, C<may_dep>, C<must_no_source>
5374 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
5375 any of the other arguments is treated as an error.
5377 =head3 Interaction with Dependence Analysis
5379 During the dependence analysis, we frequently need to perform
5380 the following operation. Given a relation between sink iterations
5381 and potential source iterations from a particular source domain,
5382 what is the last potential source iteration corresponding to each
5383 sink iteration. It can sometimes be convenient to adjust
5384 the set of potential source iterations before or after each such operation.
5385 The prototypical example is fuzzy array dataflow analysis,
5386 where we need to analyze if, based on data-dependent constraints,
5387 the sink iteration can ever be executed without one or more of
5388 the corresponding potential source iterations being executed.
5389 If so, we can introduce extra parameters and select an unknown
5390 but fixed source iteration from the potential source iterations.
5391 To be able to perform such manipulations, C<isl> provides the following
5394 #include <isl/flow.h>
5396 typedef __isl_give isl_restriction *(*isl_access_restrict)(
5397 __isl_keep isl_map *source_map,
5398 __isl_keep isl_set *sink, void *source_user,
5400 __isl_give isl_access_info *isl_access_info_set_restrict(
5401 __isl_take isl_access_info *acc,
5402 isl_access_restrict fn, void *user);
5404 The function C<isl_access_info_set_restrict> should be called
5405 before calling C<isl_access_info_compute_flow> and registers a callback function
5406 that will be called any time C<isl> is about to compute the last
5407 potential source. The first argument is the (reverse) proto-dependence,
5408 mapping sink iterations to potential source iterations.
5409 The second argument represents the sink iterations for which
5410 we want to compute the last source iteration.
5411 The third argument is the token corresponding to the source
5412 and the final argument is the token passed to C<isl_access_info_set_restrict>.
5413 The callback is expected to return a restriction on either the input or
5414 the output of the operation computing the last potential source.
5415 If the input needs to be restricted then restrictions are needed
5416 for both the source and the sink iterations. The sink iterations
5417 and the potential source iterations will be intersected with these sets.
5418 If the output needs to be restricted then only a restriction on the source
5419 iterations is required.
5420 If any error occurs, the callback should return C<NULL>.
5421 An C<isl_restriction> object can be created, freed and inspected
5422 using the following functions.
5424 #include <isl/flow.h>
5426 __isl_give isl_restriction *isl_restriction_input(
5427 __isl_take isl_set *source_restr,
5428 __isl_take isl_set *sink_restr);
5429 __isl_give isl_restriction *isl_restriction_output(
5430 __isl_take isl_set *source_restr);
5431 __isl_give isl_restriction *isl_restriction_none(
5432 __isl_take isl_map *source_map);
5433 __isl_give isl_restriction *isl_restriction_empty(
5434 __isl_take isl_map *source_map);
5435 void *isl_restriction_free(
5436 __isl_take isl_restriction *restr);
5437 isl_ctx *isl_restriction_get_ctx(
5438 __isl_keep isl_restriction *restr);
5440 C<isl_restriction_none> and C<isl_restriction_empty> are special
5441 cases of C<isl_restriction_input>. C<isl_restriction_none>
5442 is essentially equivalent to
5444 isl_restriction_input(isl_set_universe(
5445 isl_space_range(isl_map_get_space(source_map))),
5447 isl_space_domain(isl_map_get_space(source_map))));
5449 whereas C<isl_restriction_empty> is essentially equivalent to
5451 isl_restriction_input(isl_set_empty(
5452 isl_space_range(isl_map_get_space(source_map))),
5454 isl_space_domain(isl_map_get_space(source_map))));
5458 B<The functionality described in this section is fairly new
5459 and may be subject to change.>
5461 The following function can be used to compute a schedule
5462 for a union of domains.
5463 By default, the algorithm used to construct the schedule is similar
5464 to that of C<Pluto>.
5465 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
5467 The generated schedule respects all C<validity> dependences.
5468 That is, all dependence distances over these dependences in the
5469 scheduled space are lexicographically positive.
5470 The default algorithm tries to minimize the dependence distances over
5471 C<proximity> dependences.
5472 Moreover, it tries to obtain sequences (bands) of schedule dimensions
5473 for groups of domains where the dependence distances have only
5474 non-negative values.
5475 When using Feautrier's algorithm, the C<proximity> dependence
5476 distances are only minimized during the extension to a
5477 full-dimensional schedule.
5479 #include <isl/schedule.h>
5480 __isl_give isl_schedule *isl_union_set_compute_schedule(
5481 __isl_take isl_union_set *domain,
5482 __isl_take isl_union_map *validity,
5483 __isl_take isl_union_map *proximity);
5484 void *isl_schedule_free(__isl_take isl_schedule *sched);
5486 A mapping from the domains to the scheduled space can be obtained
5487 from an C<isl_schedule> using the following function.
5489 __isl_give isl_union_map *isl_schedule_get_map(
5490 __isl_keep isl_schedule *sched);
5492 A representation of the schedule can be printed using
5494 __isl_give isl_printer *isl_printer_print_schedule(
5495 __isl_take isl_printer *p,
5496 __isl_keep isl_schedule *schedule);
5498 A representation of the schedule as a forest of bands can be obtained
5499 using the following function.
5501 __isl_give isl_band_list *isl_schedule_get_band_forest(
5502 __isl_keep isl_schedule *schedule);
5504 The individual bands can be visited in depth-first post-order
5505 using the following function.
5507 #include <isl/schedule.h>
5508 int isl_schedule_foreach_band(
5509 __isl_keep isl_schedule *sched,
5510 int (*fn)(__isl_keep isl_band *band, void *user),
5513 The list can be manipulated as explained in L<"Lists">.
5514 The bands inside the list can be copied and freed using the following
5517 #include <isl/band.h>
5518 __isl_give isl_band *isl_band_copy(
5519 __isl_keep isl_band *band);
5520 void *isl_band_free(__isl_take isl_band *band);
5522 Each band contains zero or more scheduling dimensions.
5523 These are referred to as the members of the band.
5524 The section of the schedule that corresponds to the band is
5525 referred to as the partial schedule of the band.
5526 For those nodes that participate in a band, the outer scheduling
5527 dimensions form the prefix schedule, while the inner scheduling
5528 dimensions form the suffix schedule.
5529 That is, if we take a cut of the band forest, then the union of
5530 the concatenations of the prefix, partial and suffix schedules of
5531 each band in the cut is equal to the entire schedule (modulo
5532 some possible padding at the end with zero scheduling dimensions).
5533 The properties of a band can be inspected using the following functions.
5535 #include <isl/band.h>
5536 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
5538 int isl_band_has_children(__isl_keep isl_band *band);
5539 __isl_give isl_band_list *isl_band_get_children(
5540 __isl_keep isl_band *band);
5542 __isl_give isl_union_map *isl_band_get_prefix_schedule(
5543 __isl_keep isl_band *band);
5544 __isl_give isl_union_map *isl_band_get_partial_schedule(
5545 __isl_keep isl_band *band);
5546 __isl_give isl_union_map *isl_band_get_suffix_schedule(
5547 __isl_keep isl_band *band);
5549 int isl_band_n_member(__isl_keep isl_band *band);
5550 int isl_band_member_is_zero_distance(
5551 __isl_keep isl_band *band, int pos);
5553 int isl_band_list_foreach_band(
5554 __isl_keep isl_band_list *list,
5555 int (*fn)(__isl_keep isl_band *band, void *user),
5558 Note that a scheduling dimension is considered to be ``zero
5559 distance'' if it does not carry any proximity dependences
5561 That is, if the dependence distances of the proximity
5562 dependences are all zero in that direction (for fixed
5563 iterations of outer bands).
5564 Like C<isl_schedule_foreach_band>,
5565 the function C<isl_band_list_foreach_band> calls C<fn> on the bands
5566 in depth-first post-order.
5568 A band can be tiled using the following function.
5570 #include <isl/band.h>
5571 int isl_band_tile(__isl_keep isl_band *band,
5572 __isl_take isl_vec *sizes);
5574 int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
5576 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
5577 int isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
5579 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
5581 The C<isl_band_tile> function tiles the band using the given tile sizes
5582 inside its schedule.
5583 A new child band is created to represent the point loops and it is
5584 inserted between the modified band and its children.
5585 The C<tile_scale_tile_loops> option specifies whether the tile
5586 loops iterators should be scaled by the tile sizes.
5587 If the C<tile_shift_point_loops> option is set, then the point loops
5588 are shifted to start at zero.
5590 A band can be split into two nested bands using the following function.
5592 int isl_band_split(__isl_keep isl_band *band, int pos);
5594 The resulting outer band contains the first C<pos> dimensions of C<band>
5595 while the inner band contains the remaining dimensions.
5597 A representation of the band can be printed using
5599 #include <isl/band.h>
5600 __isl_give isl_printer *isl_printer_print_band(
5601 __isl_take isl_printer *p,
5602 __isl_keep isl_band *band);
5606 #include <isl/schedule.h>
5607 int isl_options_set_schedule_max_coefficient(
5608 isl_ctx *ctx, int val);
5609 int isl_options_get_schedule_max_coefficient(
5611 int isl_options_set_schedule_max_constant_term(
5612 isl_ctx *ctx, int val);
5613 int isl_options_get_schedule_max_constant_term(
5615 int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
5616 int isl_options_get_schedule_fuse(isl_ctx *ctx);
5617 int isl_options_set_schedule_maximize_band_depth(
5618 isl_ctx *ctx, int val);
5619 int isl_options_get_schedule_maximize_band_depth(
5621 int isl_options_set_schedule_outer_zero_distance(
5622 isl_ctx *ctx, int val);
5623 int isl_options_get_schedule_outer_zero_distance(
5625 int isl_options_set_schedule_split_scaled(
5626 isl_ctx *ctx, int val);
5627 int isl_options_get_schedule_split_scaled(
5629 int isl_options_set_schedule_algorithm(
5630 isl_ctx *ctx, int val);
5631 int isl_options_get_schedule_algorithm(
5633 int isl_options_set_schedule_separate_components(
5634 isl_ctx *ctx, int val);
5635 int isl_options_get_schedule_separate_components(
5640 =item * schedule_max_coefficient
5642 This option enforces that the coefficients for variable and parameter
5643 dimensions in the calculated schedule are not larger than the specified value.
5644 This option can significantly increase the speed of the scheduling calculation
5645 and may also prevent fusing of unrelated dimensions. A value of -1 means that
5646 this option does not introduce bounds on the variable or parameter
5649 =item * schedule_max_constant_term
5651 This option enforces that the constant coefficients in the calculated schedule
5652 are not larger than the maximal constant term. This option can significantly
5653 increase the speed of the scheduling calculation and may also prevent fusing of
5654 unrelated dimensions. A value of -1 means that this option does not introduce
5655 bounds on the constant coefficients.
5657 =item * schedule_fuse
5659 This option controls the level of fusion.
5660 If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
5661 resulting schedule will be distributed as much as possible.
5662 If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
5663 try to fuse loops in the resulting schedule.
5665 =item * schedule_maximize_band_depth
5667 If this option is set, we do not split bands at the point
5668 where we detect splitting is necessary. Instead, we
5669 backtrack and split bands as early as possible. This
5670 reduces the number of splits and maximizes the width of
5671 the bands. Wider bands give more possibilities for tiling.
5672 Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
5673 then bands will be split as early as possible, even if there is no need.
5674 The C<schedule_maximize_band_depth> option therefore has no effect in this case.
5676 =item * schedule_outer_zero_distance
5678 If this option is set, then we try to construct schedules
5679 where the outermost scheduling dimension in each band
5680 results in a zero dependence distance over the proximity
5683 =item * schedule_split_scaled
5685 If this option is set, then we try to construct schedules in which the
5686 constant term is split off from the linear part if the linear parts of
5687 the scheduling rows for all nodes in the graphs have a common non-trivial
5689 The constant term is then placed in a separate band and the linear
5692 =item * schedule_algorithm
5694 Selects the scheduling algorithm to be used.
5695 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
5696 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
5698 =item * schedule_separate_components
5700 If at any point the dependence graph contains any (weakly connected) components,
5701 then these components are scheduled separately.
5702 If this option is not set, then some iterations of the domains
5703 in these components may be scheduled together.
5704 If this option is set, then the components are given consecutive
5709 =head2 AST Generation
5711 This section describes the C<isl> functionality for generating
5712 ASTs that visit all the elements
5713 in a domain in an order specified by a schedule.
5714 In particular, given a C<isl_union_map>, an AST is generated
5715 that visits all the elements in the domain of the C<isl_union_map>
5716 according to the lexicographic order of the corresponding image
5717 element(s). If the range of the C<isl_union_map> consists of
5718 elements in more than one space, then each of these spaces is handled
5719 separately in an arbitrary order.
5720 It should be noted that the image elements only specify the I<order>
5721 in which the corresponding domain elements should be visited.
5722 No direct relation between the image elements and the loop iterators
5723 in the generated AST should be assumed.
5725 Each AST is generated within a build. The initial build
5726 simply specifies the constraints on the parameters (if any)
5727 and can be created, inspected, copied and freed using the following functions.
5729 #include <isl/ast_build.h>
5730 __isl_give isl_ast_build *isl_ast_build_from_context(
5731 __isl_take isl_set *set);
5732 isl_ctx *isl_ast_build_get_ctx(
5733 __isl_keep isl_ast_build *build);
5734 __isl_give isl_ast_build *isl_ast_build_copy(
5735 __isl_keep isl_ast_build *build);
5736 void *isl_ast_build_free(
5737 __isl_take isl_ast_build *build);
5739 The C<set> argument is usually a parameter set with zero or more parameters.
5740 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
5741 and L</"Fine-grained Control over AST Generation">.
5742 Finally, the AST itself can be constructed using the following
5745 #include <isl/ast_build.h>
5746 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
5747 __isl_keep isl_ast_build *build,
5748 __isl_take isl_union_map *schedule);
5750 =head3 Inspecting the AST
5752 The basic properties of an AST node can be obtained as follows.
5754 #include <isl/ast.h>
5755 isl_ctx *isl_ast_node_get_ctx(
5756 __isl_keep isl_ast_node *node);
5757 enum isl_ast_node_type isl_ast_node_get_type(
5758 __isl_keep isl_ast_node *node);
5760 The type of an AST node is one of
5761 C<isl_ast_node_for>,
5763 C<isl_ast_node_block> or
5764 C<isl_ast_node_user>.
5765 An C<isl_ast_node_for> represents a for node.
5766 An C<isl_ast_node_if> represents an if node.
5767 An C<isl_ast_node_block> represents a compound node.
5768 An C<isl_ast_node_user> represents an expression statement.
5769 An expression statement typically corresponds to a domain element, i.e.,
5770 one of the elements that is visited by the AST.
5772 Each type of node has its own additional properties.
5774 #include <isl/ast.h>
5775 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
5776 __isl_keep isl_ast_node *node);
5777 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
5778 __isl_keep isl_ast_node *node);
5779 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
5780 __isl_keep isl_ast_node *node);
5781 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
5782 __isl_keep isl_ast_node *node);
5783 __isl_give isl_ast_node *isl_ast_node_for_get_body(
5784 __isl_keep isl_ast_node *node);
5785 int isl_ast_node_for_is_degenerate(
5786 __isl_keep isl_ast_node *node);
5788 An C<isl_ast_for> is considered degenerate if it is known to execute
5791 #include <isl/ast.h>
5792 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
5793 __isl_keep isl_ast_node *node);
5794 __isl_give isl_ast_node *isl_ast_node_if_get_then(
5795 __isl_keep isl_ast_node *node);
5796 int isl_ast_node_if_has_else(
5797 __isl_keep isl_ast_node *node);
5798 __isl_give isl_ast_node *isl_ast_node_if_get_else(
5799 __isl_keep isl_ast_node *node);
5801 __isl_give isl_ast_node_list *
5802 isl_ast_node_block_get_children(
5803 __isl_keep isl_ast_node *node);
5805 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
5806 __isl_keep isl_ast_node *node);
5808 Each of the returned C<isl_ast_expr>s can in turn be inspected using
5809 the following functions.
5811 #include <isl/ast.h>
5812 isl_ctx *isl_ast_expr_get_ctx(
5813 __isl_keep isl_ast_expr *expr);
5814 enum isl_ast_expr_type isl_ast_expr_get_type(
5815 __isl_keep isl_ast_expr *expr);
5817 The type of an AST expression is one of
5819 C<isl_ast_expr_id> or
5820 C<isl_ast_expr_int>.
5821 An C<isl_ast_expr_op> represents the result of an operation.
5822 An C<isl_ast_expr_id> represents an identifier.
5823 An C<isl_ast_expr_int> represents an integer value.
5825 Each type of expression has its own additional properties.
5827 #include <isl/ast.h>
5828 enum isl_ast_op_type isl_ast_expr_get_op_type(
5829 __isl_keep isl_ast_expr *expr);
5830 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
5831 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
5832 __isl_keep isl_ast_expr *expr, int pos);
5833 int isl_ast_node_foreach_ast_op_type(
5834 __isl_keep isl_ast_node *node,
5835 int (*fn)(enum isl_ast_op_type type, void *user),
5838 C<isl_ast_expr_get_op_type> returns the type of the operation
5839 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
5840 arguments. C<isl_ast_expr_get_op_arg> returns the specified
5842 C<isl_ast_node_foreach_ast_op_type> calls C<fn> for each distinct
5843 C<isl_ast_op_type> that appears in C<node>.
5844 The operation type is one of the following.
5848 =item C<isl_ast_op_and>
5850 Logical I<and> of two arguments.
5851 Both arguments can be evaluated.
5853 =item C<isl_ast_op_and_then>
5855 Logical I<and> of two arguments.
5856 The second argument can only be evaluated if the first evaluates to true.
5858 =item C<isl_ast_op_or>
5860 Logical I<or> of two arguments.
5861 Both arguments can be evaluated.
5863 =item C<isl_ast_op_or_else>
5865 Logical I<or> of two arguments.
5866 The second argument can only be evaluated if the first evaluates to false.
5868 =item C<isl_ast_op_max>
5870 Maximum of two or more arguments.
5872 =item C<isl_ast_op_min>
5874 Minimum of two or more arguments.
5876 =item C<isl_ast_op_minus>
5880 =item C<isl_ast_op_add>
5882 Sum of two arguments.
5884 =item C<isl_ast_op_sub>
5886 Difference of two arguments.
5888 =item C<isl_ast_op_mul>
5890 Product of two arguments.
5892 =item C<isl_ast_op_div>
5894 Exact division. That is, the result is known to be an integer.
5896 =item C<isl_ast_op_fdiv_q>
5898 Result of integer division, rounded towards negative
5901 =item C<isl_ast_op_pdiv_q>
5903 Result of integer division, where dividend is known to be non-negative.
5905 =item C<isl_ast_op_pdiv_r>
5907 Remainder of integer division, where dividend is known to be non-negative.
5909 =item C<isl_ast_op_cond>
5911 Conditional operator defined on three arguments.
5912 If the first argument evaluates to true, then the result
5913 is equal to the second argument. Otherwise, the result
5914 is equal to the third argument.
5915 The second and third argument may only be evaluated if
5916 the first argument evaluates to true and false, respectively.
5917 Corresponds to C<a ? b : c> in C.
5919 =item C<isl_ast_op_select>
5921 Conditional operator defined on three arguments.
5922 If the first argument evaluates to true, then the result
5923 is equal to the second argument. Otherwise, the result
5924 is equal to the third argument.
5925 The second and third argument may be evaluated independently
5926 of the value of the first argument.
5927 Corresponds to C<a * b + (1 - a) * c> in C.
5929 =item C<isl_ast_op_eq>
5933 =item C<isl_ast_op_le>
5935 Less than or equal relation.
5937 =item C<isl_ast_op_lt>
5941 =item C<isl_ast_op_ge>
5943 Greater than or equal relation.
5945 =item C<isl_ast_op_gt>
5947 Greater than relation.
5949 =item C<isl_ast_op_call>
5952 The number of arguments of the C<isl_ast_expr> is one more than
5953 the number of arguments in the function call, the first argument
5954 representing the function being called.
5958 #include <isl/ast.h>
5959 __isl_give isl_id *isl_ast_expr_get_id(
5960 __isl_keep isl_ast_expr *expr);
5962 Return the identifier represented by the AST expression.
5964 #include <isl/ast.h>
5965 int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr,
5968 Return the integer represented by the AST expression.
5969 Note that the integer is returned through the C<v> argument.
5970 The return value of the function itself indicates whether the
5971 operation was performed successfully.
5973 =head3 Manipulating and printing the AST
5975 AST nodes can be copied and freed using the following functions.
5977 #include <isl/ast.h>
5978 __isl_give isl_ast_node *isl_ast_node_copy(
5979 __isl_keep isl_ast_node *node);
5980 void *isl_ast_node_free(__isl_take isl_ast_node *node);
5982 AST expressions can be copied and freed using the following functions.
5984 #include <isl/ast.h>
5985 __isl_give isl_ast_expr *isl_ast_expr_copy(
5986 __isl_keep isl_ast_expr *expr);
5987 void *isl_ast_expr_free(__isl_take isl_ast_expr *expr);
5989 New AST expressions can be created either directly or within
5990 the context of an C<isl_ast_build>.
5992 #include <isl/ast.h>
5993 __isl_give isl_ast_expr *isl_ast_expr_from_id(
5994 __isl_take isl_id *id);
5995 __isl_give isl_ast_expr *isl_ast_expr_neg(
5996 __isl_take isl_ast_expr *expr);
5997 __isl_give isl_ast_expr *isl_ast_expr_add(
5998 __isl_take isl_ast_expr *expr1,
5999 __isl_take isl_ast_expr *expr2);
6000 __isl_give isl_ast_expr *isl_ast_expr_sub(
6001 __isl_take isl_ast_expr *expr1,
6002 __isl_take isl_ast_expr *expr2);
6003 __isl_give isl_ast_expr *isl_ast_expr_mul(
6004 __isl_take isl_ast_expr *expr1,
6005 __isl_take isl_ast_expr *expr2);
6006 __isl_give isl_ast_expr *isl_ast_expr_div(
6007 __isl_take isl_ast_expr *expr1,
6008 __isl_take isl_ast_expr *expr2);
6009 __isl_give isl_ast_expr *isl_ast_expr_and(
6010 __isl_take isl_ast_expr *expr1,
6011 __isl_take isl_ast_expr *expr2)
6012 __isl_give isl_ast_expr *isl_ast_expr_or(
6013 __isl_take isl_ast_expr *expr1,
6014 __isl_take isl_ast_expr *expr2)
6016 #include <isl/ast_build.h>
6017 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
6018 __isl_keep isl_ast_build *build,
6019 __isl_take isl_pw_aff *pa);
6020 __isl_give isl_ast_expr *
6021 isl_ast_build_call_from_pw_multi_aff(
6022 __isl_keep isl_ast_build *build,
6023 __isl_take isl_pw_multi_aff *pma);
6025 The domains of C<pa> and C<pma> should correspond
6026 to the schedule space of C<build>.
6027 The tuple id of C<pma> is used as the function being called.
6029 User specified data can be attached to an C<isl_ast_node> and obtained
6030 from the same C<isl_ast_node> using the following functions.
6032 #include <isl/ast.h>
6033 __isl_give isl_ast_node *isl_ast_node_set_annotation(
6034 __isl_take isl_ast_node *node,
6035 __isl_take isl_id *annotation);
6036 __isl_give isl_id *isl_ast_node_get_annotation(
6037 __isl_keep isl_ast_node *node);
6039 Basic printing can be performed using the following functions.
6041 #include <isl/ast.h>
6042 __isl_give isl_printer *isl_printer_print_ast_expr(
6043 __isl_take isl_printer *p,
6044 __isl_keep isl_ast_expr *expr);
6045 __isl_give isl_printer *isl_printer_print_ast_node(
6046 __isl_take isl_printer *p,
6047 __isl_keep isl_ast_node *node);
6049 More advanced printing can be performed using the following functions.
6051 #include <isl/ast.h>
6052 __isl_give isl_printer *isl_ast_op_type_print_macro(
6053 enum isl_ast_op_type type,
6054 __isl_take isl_printer *p);
6055 __isl_give isl_printer *isl_ast_node_print_macros(
6056 __isl_keep isl_ast_node *node,
6057 __isl_take isl_printer *p);
6058 __isl_give isl_printer *isl_ast_node_print(
6059 __isl_keep isl_ast_node *node,
6060 __isl_take isl_printer *p,
6061 __isl_take isl_ast_print_options *options);
6062 __isl_give isl_printer *isl_ast_node_for_print(
6063 __isl_keep isl_ast_node *node,
6064 __isl_take isl_printer *p,
6065 __isl_take isl_ast_print_options *options);
6066 __isl_give isl_printer *isl_ast_node_if_print(
6067 __isl_keep isl_ast_node *node,
6068 __isl_take isl_printer *p,
6069 __isl_take isl_ast_print_options *options);
6071 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
6072 C<isl> may print out an AST that makes use of macros such
6073 as C<floord>, C<min> and C<max>.
6074 C<isl_ast_op_type_print_macro> prints out the macro
6075 corresponding to a specific C<isl_ast_op_type>.
6076 C<isl_ast_node_print_macros> scans the C<isl_ast_node>
6077 for expressions where these macros would be used and prints
6078 out the required macro definitions.
6079 Essentially, C<isl_ast_node_print_macros> calls
6080 C<isl_ast_node_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
6081 as function argument.
6082 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
6083 C<isl_ast_node_if_print> print an C<isl_ast_node>
6084 in C<ISL_FORMAT_C>, but allow for some extra control
6085 through an C<isl_ast_print_options> object.
6086 This object can be created using the following functions.
6088 #include <isl/ast.h>
6089 __isl_give isl_ast_print_options *
6090 isl_ast_print_options_alloc(isl_ctx *ctx);
6091 __isl_give isl_ast_print_options *
6092 isl_ast_print_options_copy(
6093 __isl_keep isl_ast_print_options *options);
6094 void *isl_ast_print_options_free(
6095 __isl_take isl_ast_print_options *options);
6097 __isl_give isl_ast_print_options *
6098 isl_ast_print_options_set_print_user(
6099 __isl_take isl_ast_print_options *options,
6100 __isl_give isl_printer *(*print_user)(
6101 __isl_take isl_printer *p,
6102 __isl_take isl_ast_print_options *options,
6103 __isl_keep isl_ast_node *node, void *user),
6105 __isl_give isl_ast_print_options *
6106 isl_ast_print_options_set_print_for(
6107 __isl_take isl_ast_print_options *options,
6108 __isl_give isl_printer *(*print_for)(
6109 __isl_take isl_printer *p,
6110 __isl_take isl_ast_print_options *options,
6111 __isl_keep isl_ast_node *node, void *user),
6114 The callback set by C<isl_ast_print_options_set_print_user>
6115 is called whenever a node of type C<isl_ast_node_user> needs to
6117 The callback set by C<isl_ast_print_options_set_print_for>
6118 is called whenever a node of type C<isl_ast_node_for> needs to
6120 Note that C<isl_ast_node_for_print> will I<not> call the
6121 callback set by C<isl_ast_print_options_set_print_for> on the node
6122 on which C<isl_ast_node_for_print> is called, but only on nested
6123 nodes of type C<isl_ast_node_for>. It is therefore safe to
6124 call C<isl_ast_node_for_print> from within the callback set by
6125 C<isl_ast_print_options_set_print_for>.
6127 The following option determines the type to be used for iterators
6128 while printing the AST.
6130 int isl_options_set_ast_iterator_type(
6131 isl_ctx *ctx, const char *val);
6132 const char *isl_options_get_ast_iterator_type(
6137 #include <isl/ast_build.h>
6138 int isl_options_set_ast_build_atomic_upper_bound(
6139 isl_ctx *ctx, int val);
6140 int isl_options_get_ast_build_atomic_upper_bound(
6142 int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
6144 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
6145 int isl_options_set_ast_build_exploit_nested_bounds(
6146 isl_ctx *ctx, int val);
6147 int isl_options_get_ast_build_exploit_nested_bounds(
6149 int isl_options_set_ast_build_group_coscheduled(
6150 isl_ctx *ctx, int val);
6151 int isl_options_get_ast_build_group_coscheduled(
6153 int isl_options_set_ast_build_scale_strides(
6154 isl_ctx *ctx, int val);
6155 int isl_options_get_ast_build_scale_strides(
6157 int isl_options_set_ast_build_allow_else(isl_ctx *ctx,
6159 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
6160 int isl_options_set_ast_build_allow_or(isl_ctx *ctx,
6162 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
6166 =item * ast_build_atomic_upper_bound
6168 Generate loop upper bounds that consist of the current loop iterator,
6169 an operator and an expression not involving the iterator.
6170 If this option is not set, then the current loop iterator may appear
6171 several times in the upper bound.
6172 For example, when this option is turned off, AST generation
6175 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
6179 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
6182 When the option is turned on, the following AST is generated
6184 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
6187 =item * ast_build_prefer_pdiv
6189 If this option is turned off, then the AST generation will
6190 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
6191 operators, but no C<isl_ast_op_pdiv_q> or
6192 C<isl_ast_op_pdiv_r> operators.
6193 If this options is turned on, then C<isl> will try to convert
6194 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
6195 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
6197 =item * ast_build_exploit_nested_bounds
6199 Simplify conditions based on bounds of nested for loops.
6200 In particular, remove conditions that are implied by the fact
6201 that one or more nested loops have at least one iteration,
6202 meaning that the upper bound is at least as large as the lower bound.
6203 For example, when this option is turned off, AST generation
6206 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
6212 for (int c0 = 0; c0 <= N; c0 += 1)
6213 for (int c1 = 0; c1 <= M; c1 += 1)
6216 When the option is turned on, the following AST is generated
6218 for (int c0 = 0; c0 <= N; c0 += 1)
6219 for (int c1 = 0; c1 <= M; c1 += 1)
6222 =item * ast_build_group_coscheduled
6224 If two domain elements are assigned the same schedule point, then
6225 they may be executed in any order and they may even appear in different
6226 loops. If this options is set, then the AST generator will make
6227 sure that coscheduled domain elements do not appear in separate parts
6228 of the AST. This is useful in case of nested AST generation
6229 if the outer AST generation is given only part of a schedule
6230 and the inner AST generation should handle the domains that are
6231 coscheduled by this initial part of the schedule together.
6232 For example if an AST is generated for a schedule
6234 { A[i] -> [0]; B[i] -> [0] }
6236 then the C<isl_ast_build_set_create_leaf> callback described
6237 below may get called twice, once for each domain.
6238 Setting this option ensures that the callback is only called once
6239 on both domains together.
6241 =item * ast_build_separation_bounds
6243 This option specifies which bounds to use during separation.
6244 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
6245 then all (possibly implicit) bounds on the current dimension will
6246 be used during separation.
6247 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
6248 then only those bounds that are explicitly available will
6249 be used during separation.
6251 =item * ast_build_scale_strides
6253 This option specifies whether the AST generator is allowed
6254 to scale down iterators of strided loops.
6256 =item * ast_build_allow_else
6258 This option specifies whether the AST generator is allowed
6259 to construct if statements with else branches.
6261 =item * ast_build_allow_or
6263 This option specifies whether the AST generator is allowed
6264 to construct if conditions with disjunctions.
6268 =head3 Fine-grained Control over AST Generation
6270 Besides specifying the constraints on the parameters,
6271 an C<isl_ast_build> object can be used to control
6272 various aspects of the AST generation process.
6273 The most prominent way of control is through ``options'',
6274 which can be set using the following function.
6276 #include <isl/ast_build.h>
6277 __isl_give isl_ast_build *
6278 isl_ast_build_set_options(
6279 __isl_take isl_ast_build *control,
6280 __isl_take isl_union_map *options);
6282 The options are encoded in an <isl_union_map>.
6283 The domain of this union relation refers to the schedule domain,
6284 i.e., the range of the schedule passed to C<isl_ast_build_ast_from_schedule>.
6285 In the case of nested AST generation (see L</"Nested AST Generation">),
6286 the domain of C<options> should refer to the extra piece of the schedule.
6287 That is, it should be equal to the range of the wrapped relation in the
6288 range of the schedule.
6289 The range of the options can consist of elements in one or more spaces,
6290 the names of which determine the effect of the option.
6291 The values of the range typically also refer to the schedule dimension
6292 to which the option applies. In case of nested AST generation
6293 (see L</"Nested AST Generation">), these values refer to the position
6294 of the schedule dimension within the innermost AST generation.
6295 The constraints on the domain elements of
6296 the option should only refer to this dimension and earlier dimensions.
6297 We consider the following spaces.
6301 =item C<separation_class>
6303 This space is a wrapped relation between two one dimensional spaces.
6304 The input space represents the schedule dimension to which the option
6305 applies and the output space represents the separation class.
6306 While constructing a loop corresponding to the specified schedule
6307 dimension(s), the AST generator will try to generate separate loops
6308 for domain elements that are assigned different classes.
6309 If only some of the elements are assigned a class, then those elements
6310 that are not assigned any class will be treated as belonging to a class
6311 that is separate from the explicitly assigned classes.
6312 The typical use case for this option is to separate full tiles from
6314 The other options, described below, are applied after the separation
6317 As an example, consider the separation into full and partial tiles
6318 of a tiling of a triangular domain.
6319 Take, for example, the domain
6321 { A[i,j] : 0 <= i,j and i + j <= 100 }
6323 and a tiling into tiles of 10 by 10. The input to the AST generator
6324 is then the schedule
6326 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
6329 Without any options, the following AST is generated
6331 for (int c0 = 0; c0 <= 10; c0 += 1)
6332 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
6333 for (int c2 = 10 * c0;
6334 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6336 for (int c3 = 10 * c1;
6337 c3 <= min(10 * c1 + 9, -c2 + 100);
6341 Separation into full and partial tiles can be obtained by assigning
6342 a class, say C<0>, to the full tiles. The full tiles are represented by those
6343 values of the first and second schedule dimensions for which there are
6344 values of the third and fourth dimensions to cover an entire tile.
6345 That is, we need to specify the following option
6347 { [a,b,c,d] -> separation_class[[0]->[0]] :
6348 exists b': 0 <= 10a,10b' and
6349 10a+9+10b'+9 <= 100;
6350 [a,b,c,d] -> separation_class[[1]->[0]] :
6351 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
6355 { [a, b, c, d] -> separation_class[[1] -> [0]] :
6356 a >= 0 and b >= 0 and b <= 8 - a;
6357 [a, b, c, d] -> separation_class[[0] -> [0]] :
6360 With this option, the generated AST is as follows
6363 for (int c0 = 0; c0 <= 8; c0 += 1) {
6364 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
6365 for (int c2 = 10 * c0;
6366 c2 <= 10 * c0 + 9; c2 += 1)
6367 for (int c3 = 10 * c1;
6368 c3 <= 10 * c1 + 9; c3 += 1)
6370 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
6371 for (int c2 = 10 * c0;
6372 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6374 for (int c3 = 10 * c1;
6375 c3 <= min(-c2 + 100, 10 * c1 + 9);
6379 for (int c0 = 9; c0 <= 10; c0 += 1)
6380 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
6381 for (int c2 = 10 * c0;
6382 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
6384 for (int c3 = 10 * c1;
6385 c3 <= min(10 * c1 + 9, -c2 + 100);
6392 This is a single-dimensional space representing the schedule dimension(s)
6393 to which ``separation'' should be applied. Separation tries to split
6394 a loop into several pieces if this can avoid the generation of guards
6396 See also the C<atomic> option.
6400 This is a single-dimensional space representing the schedule dimension(s)
6401 for which the domains should be considered ``atomic''. That is, the
6402 AST generator will make sure that any given domain space will only appear
6403 in a single loop at the specified level.
6405 Consider the following schedule
6407 { a[i] -> [i] : 0 <= i < 10;
6408 b[i] -> [i+1] : 0 <= i < 10 }
6410 If the following option is specified
6412 { [i] -> separate[x] }
6414 then the following AST will be generated
6418 for (int c0 = 1; c0 <= 9; c0 += 1) {
6425 If, on the other hand, the following option is specified
6427 { [i] -> atomic[x] }
6429 then the following AST will be generated
6431 for (int c0 = 0; c0 <= 10; c0 += 1) {
6438 If neither C<atomic> nor C<separate> is specified, then the AST generator
6439 may produce either of these two results or some intermediate form.
6443 This is a single-dimensional space representing the schedule dimension(s)
6444 that should be I<completely> unrolled.
6445 To obtain a partial unrolling, the user should apply an additional
6446 strip-mining to the schedule and fully unroll the inner loop.
6450 Additional control is available through the following functions.
6452 #include <isl/ast_build.h>
6453 __isl_give isl_ast_build *
6454 isl_ast_build_set_iterators(
6455 __isl_take isl_ast_build *control,
6456 __isl_take isl_id_list *iterators);
6458 The function C<isl_ast_build_set_iterators> allows the user to
6459 specify a list of iterator C<isl_id>s to be used as iterators.
6460 If the input schedule is injective, then
6461 the number of elements in this list should be as large as the dimension
6462 of the schedule space, but no direct correspondence should be assumed
6463 between dimensions and elements.
6464 If the input schedule is not injective, then an additional number
6465 of C<isl_id>s equal to the largest dimension of the input domains
6467 If the number of provided C<isl_id>s is insufficient, then additional
6468 names are automatically generated.
6470 #include <isl/ast_build.h>
6471 __isl_give isl_ast_build *
6472 isl_ast_build_set_create_leaf(
6473 __isl_take isl_ast_build *control,
6474 __isl_give isl_ast_node *(*fn)(
6475 __isl_take isl_ast_build *build,
6476 void *user), void *user);
6479 C<isl_ast_build_set_create_leaf> function allows for the
6480 specification of a callback that should be called whenever the AST
6481 generator arrives at an element of the schedule domain.
6482 The callback should return an AST node that should be inserted
6483 at the corresponding position of the AST. The default action (when
6484 the callback is not set) is to continue generating parts of the AST to scan
6485 all the domain elements associated to the schedule domain element
6486 and to insert user nodes, ``calling'' the domain element, for each of them.
6487 The C<build> argument contains the current state of the C<isl_ast_build>.
6488 To ease nested AST generation (see L</"Nested AST Generation">),
6489 all control information that is
6490 specific to the current AST generation such as the options and
6491 the callbacks has been removed from this C<isl_ast_build>.
6492 The callback would typically return the result of a nested
6494 user defined node created using the following function.
6496 #include <isl/ast.h>
6497 __isl_give isl_ast_node *isl_ast_node_alloc_user(
6498 __isl_take isl_ast_expr *expr);
6500 #include <isl/ast_build.h>
6501 __isl_give isl_ast_build *
6502 isl_ast_build_set_at_each_domain(
6503 __isl_take isl_ast_build *build,
6504 __isl_give isl_ast_node *(*fn)(
6505 __isl_take isl_ast_node *node,
6506 __isl_keep isl_ast_build *build,
6507 void *user), void *user);
6508 __isl_give isl_ast_build *
6509 isl_ast_build_set_before_each_for(
6510 __isl_take isl_ast_build *build,
6511 __isl_give isl_id *(*fn)(
6512 __isl_keep isl_ast_build *build,
6513 void *user), void *user);
6514 __isl_give isl_ast_build *
6515 isl_ast_build_set_after_each_for(
6516 __isl_take isl_ast_build *build,
6517 __isl_give isl_ast_node *(*fn)(
6518 __isl_take isl_ast_node *node,
6519 __isl_keep isl_ast_build *build,
6520 void *user), void *user);
6522 The callback set by C<isl_ast_build_set_at_each_domain> will
6523 be called for each domain AST node.
6524 The callbacks set by C<isl_ast_build_set_before_each_for>
6525 and C<isl_ast_build_set_after_each_for> will be called
6526 for each for AST node. The first will be called in depth-first
6527 pre-order, while the second will be called in depth-first post-order.
6528 Since C<isl_ast_build_set_before_each_for> is called before the for
6529 node is actually constructed, it is only passed an C<isl_ast_build>.
6530 The returned C<isl_id> will be added as an annotation (using
6531 C<isl_ast_node_set_annotation>) to the constructed for node.
6532 In particular, if the user has also specified an C<after_each_for>
6533 callback, then the annotation can be retrieved from the node passed to
6534 that callback using C<isl_ast_node_get_annotation>.
6535 All callbacks should C<NULL> on failure.
6536 The given C<isl_ast_build> can be used to create new
6537 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
6538 or C<isl_ast_build_call_from_pw_multi_aff>.
6540 =head3 Nested AST Generation
6542 C<isl> allows the user to create an AST within the context
6543 of another AST. These nested ASTs are created using the
6544 same C<isl_ast_build_ast_from_schedule> function that is used to create the
6545 outer AST. The C<build> argument should be an C<isl_ast_build>
6546 passed to a callback set by
6547 C<isl_ast_build_set_create_leaf>.
6548 The space of the range of the C<schedule> argument should refer
6549 to this build. In particular, the space should be a wrapped
6550 relation and the domain of this wrapped relation should be the
6551 same as that of the range of the schedule returned by
6552 C<isl_ast_build_get_schedule> below.
6553 In practice, the new schedule is typically
6554 created by calling C<isl_union_map_range_product> on the old schedule
6555 and some extra piece of the schedule.
6556 The space of the schedule domain is also available from
6557 the C<isl_ast_build>.
6559 #include <isl/ast_build.h>
6560 __isl_give isl_union_map *isl_ast_build_get_schedule(
6561 __isl_keep isl_ast_build *build);
6562 __isl_give isl_space *isl_ast_build_get_schedule_space(
6563 __isl_keep isl_ast_build *build);
6564 __isl_give isl_ast_build *isl_ast_build_restrict(
6565 __isl_take isl_ast_build *build,
6566 __isl_take isl_set *set);
6568 The C<isl_ast_build_get_schedule> function returns a (partial)
6569 schedule for the domains elements for which part of the AST still needs to
6570 be generated in the current build.
6571 In particular, the domain elements are mapped to those iterations of the loops
6572 enclosing the current point of the AST generation inside which
6573 the domain elements are executed.
6574 No direct correspondence between
6575 the input schedule and this schedule should be assumed.
6576 The space obtained from C<isl_ast_build_get_schedule_space> can be used
6577 to create a set for C<isl_ast_build_restrict> to intersect
6578 with the current build. In particular, the set passed to
6579 C<isl_ast_build_restrict> can have additional parameters.
6580 The ids of the set dimensions in the space returned by
6581 C<isl_ast_build_get_schedule_space> correspond to the
6582 iterators of the already generated loops.
6583 The user should not rely on the ids of the output dimensions
6584 of the relations in the union relation returned by
6585 C<isl_ast_build_get_schedule> having any particular value.
6589 Although C<isl> is mainly meant to be used as a library,
6590 it also contains some basic applications that use some
6591 of the functionality of C<isl>.
6592 The input may be specified in either the L<isl format>
6593 or the L<PolyLib format>.
6595 =head2 C<isl_polyhedron_sample>
6597 C<isl_polyhedron_sample> takes a polyhedron as input and prints
6598 an integer element of the polyhedron, if there is any.
6599 The first column in the output is the denominator and is always
6600 equal to 1. If the polyhedron contains no integer points,
6601 then a vector of length zero is printed.
6605 C<isl_pip> takes the same input as the C<example> program
6606 from the C<piplib> distribution, i.e., a set of constraints
6607 on the parameters, a line containing only -1 and finally a set
6608 of constraints on a parametric polyhedron.
6609 The coefficients of the parameters appear in the last columns
6610 (but before the final constant column).
6611 The output is the lexicographic minimum of the parametric polyhedron.
6612 As C<isl> currently does not have its own output format, the output
6613 is just a dump of the internal state.
6615 =head2 C<isl_polyhedron_minimize>
6617 C<isl_polyhedron_minimize> computes the minimum of some linear
6618 or affine objective function over the integer points in a polyhedron.
6619 If an affine objective function
6620 is given, then the constant should appear in the last column.
6622 =head2 C<isl_polytope_scan>
6624 Given a polytope, C<isl_polytope_scan> prints
6625 all integer points in the polytope.
6627 =head2 C<isl_codegen>
6629 Given a schedule, a context set and an options relation,
6630 C<isl_codegen> prints out an AST that scans the domain elements
6631 of the schedule in the order of their image(s) taking into account
6632 the constraints in the context set.