export isl_token_free and isl_stream_error
[isl.git] / isl_map_simplify.c
blob57b13a3d26e94dbd48ed6167bb214ba5c8418ad8
1 #include "isl_equalities.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_seq.h"
5 #include "isl_tab.h"
7 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
9 isl_int *t = bmap->eq[a];
10 bmap->eq[a] = bmap->eq[b];
11 bmap->eq[b] = t;
14 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
16 if (a != b) {
17 isl_int *t = bmap->ineq[a];
18 bmap->ineq[a] = bmap->ineq[b];
19 bmap->ineq[b] = t;
23 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
25 swap_inequality((struct isl_basic_map *)bset, a, b);
28 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
30 isl_seq_cpy(c, c + n, rem);
31 isl_seq_clr(c + rem, n);
34 /* Drop n dimensions starting at first.
36 * In principle, this frees up some extra variables as the number
37 * of columns remains constant, but we would have to extend
38 * the div array too as the number of rows in this array is assumed
39 * to be equal to extra.
41 struct isl_basic_set *isl_basic_set_drop_dims(
42 struct isl_basic_set *bset, unsigned first, unsigned n)
44 int i;
46 if (!bset)
47 goto error;
49 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
51 if (n == 0)
52 return bset;
54 bset = isl_basic_set_cow(bset);
55 if (!bset)
56 return NULL;
58 for (i = 0; i < bset->n_eq; ++i)
59 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
60 (bset->dim->n_out-first-n)+bset->extra);
62 for (i = 0; i < bset->n_ineq; ++i)
63 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
64 (bset->dim->n_out-first-n)+bset->extra);
66 for (i = 0; i < bset->n_div; ++i)
67 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
68 (bset->dim->n_out-first-n)+bset->extra);
70 bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
71 if (!bset->dim)
72 goto error;
74 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
75 bset = isl_basic_set_simplify(bset);
76 return isl_basic_set_finalize(bset);
77 error:
78 isl_basic_set_free(bset);
79 return NULL;
82 struct isl_set *isl_set_drop_dims(
83 struct isl_set *set, unsigned first, unsigned n)
85 int i;
87 if (!set)
88 goto error;
90 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
92 if (n == 0)
93 return set;
94 set = isl_set_cow(set);
95 if (!set)
96 goto error;
97 set->dim = isl_dim_drop_outputs(set->dim, first, n);
98 if (!set->dim)
99 goto error;
101 for (i = 0; i < set->n; ++i) {
102 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
103 if (!set->p[i])
104 goto error;
107 ISL_F_CLR(set, ISL_SET_NORMALIZED);
108 return set;
109 error:
110 isl_set_free(set);
111 return NULL;
114 /* Move "n" divs starting at "first" to the end of the list of divs.
116 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
117 unsigned first, unsigned n)
119 isl_int **div;
120 int i;
122 if (first + n == bmap->n_div)
123 return bmap;
125 div = isl_alloc_array(bmap->ctx, isl_int *, n);
126 if (!div)
127 goto error;
128 for (i = 0; i < n; ++i)
129 div[i] = bmap->div[first + i];
130 for (i = 0; i < bmap->n_div - first - n; ++i)
131 bmap->div[first + i] = bmap->div[first + n + i];
132 for (i = 0; i < n; ++i)
133 bmap->div[bmap->n_div - n + i] = div[i];
134 free(div);
135 return bmap;
136 error:
137 isl_basic_map_free(bmap);
138 return NULL;
141 /* Drop "n" dimensions of type "type" starting at "first".
143 * In principle, this frees up some extra variables as the number
144 * of columns remains constant, but we would have to extend
145 * the div array too as the number of rows in this array is assumed
146 * to be equal to extra.
148 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
149 enum isl_dim_type type, unsigned first, unsigned n)
151 int i;
152 unsigned dim;
153 unsigned offset;
154 unsigned left;
156 if (!bmap)
157 goto error;
159 dim = isl_basic_map_dim(bmap, type);
160 isl_assert(bmap->ctx, first + n <= dim, goto error);
162 if (n == 0)
163 return bmap;
165 bmap = isl_basic_map_cow(bmap);
166 if (!bmap)
167 return NULL;
169 offset = isl_basic_map_offset(bmap, type) + first;
170 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
171 for (i = 0; i < bmap->n_eq; ++i)
172 constraint_drop_vars(bmap->eq[i]+offset, n, left);
174 for (i = 0; i < bmap->n_ineq; ++i)
175 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
177 for (i = 0; i < bmap->n_div; ++i)
178 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
180 if (type == isl_dim_div) {
181 bmap = move_divs_last(bmap, first, n);
182 if (!bmap)
183 goto error;
184 isl_basic_map_free_div(bmap, n);
185 } else
186 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
187 if (!bmap->dim)
188 goto error;
190 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
191 bmap = isl_basic_map_simplify(bmap);
192 return isl_basic_map_finalize(bmap);
193 error:
194 isl_basic_map_free(bmap);
195 return NULL;
198 struct isl_basic_map *isl_basic_map_drop_inputs(
199 struct isl_basic_map *bmap, unsigned first, unsigned n)
201 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
204 struct isl_map *isl_map_drop(struct isl_map *map,
205 enum isl_dim_type type, unsigned first, unsigned n)
207 int i;
209 if (!map)
210 goto error;
212 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
214 if (n == 0)
215 return map;
216 map = isl_map_cow(map);
217 if (!map)
218 goto error;
219 map->dim = isl_dim_drop(map->dim, type, first, n);
220 if (!map->dim)
221 goto error;
223 for (i = 0; i < map->n; ++i) {
224 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
225 if (!map->p[i])
226 goto error;
228 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
230 return map;
231 error:
232 isl_map_free(map);
233 return NULL;
236 struct isl_map *isl_map_drop_inputs(
237 struct isl_map *map, unsigned first, unsigned n)
239 return isl_map_drop(map, isl_dim_in, first, n);
243 * We don't cow, as the div is assumed to be redundant.
245 static struct isl_basic_map *isl_basic_map_drop_div(
246 struct isl_basic_map *bmap, unsigned div)
248 int i;
249 unsigned pos;
251 if (!bmap)
252 goto error;
254 pos = 1 + isl_dim_total(bmap->dim) + div;
256 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
258 for (i = 0; i < bmap->n_eq; ++i)
259 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
261 for (i = 0; i < bmap->n_ineq; ++i) {
262 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
263 isl_basic_map_drop_inequality(bmap, i);
264 --i;
265 continue;
267 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
270 for (i = 0; i < bmap->n_div; ++i)
271 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
273 if (div != bmap->n_div - 1) {
274 int j;
275 isl_int *t = bmap->div[div];
277 for (j = div; j < bmap->n_div - 1; ++j)
278 bmap->div[j] = bmap->div[j+1];
280 bmap->div[bmap->n_div - 1] = t;
282 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
283 isl_basic_map_free_div(bmap, 1);
285 return bmap;
286 error:
287 isl_basic_map_free(bmap);
288 return NULL;
291 struct isl_basic_map *isl_basic_map_normalize_constraints(
292 struct isl_basic_map *bmap)
294 int i;
295 isl_int gcd;
296 unsigned total = isl_basic_map_total_dim(bmap);
298 isl_int_init(gcd);
299 for (i = bmap->n_eq - 1; i >= 0; --i) {
300 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
301 if (isl_int_is_zero(gcd)) {
302 if (!isl_int_is_zero(bmap->eq[i][0])) {
303 bmap = isl_basic_map_set_to_empty(bmap);
304 break;
306 isl_basic_map_drop_equality(bmap, i);
307 continue;
309 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
310 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
311 if (isl_int_is_one(gcd))
312 continue;
313 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
314 bmap = isl_basic_map_set_to_empty(bmap);
315 break;
317 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
320 for (i = bmap->n_ineq - 1; i >= 0; --i) {
321 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
322 if (isl_int_is_zero(gcd)) {
323 if (isl_int_is_neg(bmap->ineq[i][0])) {
324 bmap = isl_basic_map_set_to_empty(bmap);
325 break;
327 isl_basic_map_drop_inequality(bmap, i);
328 continue;
330 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
331 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
332 if (isl_int_is_one(gcd))
333 continue;
334 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
335 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
337 isl_int_clear(gcd);
339 return bmap;
342 struct isl_basic_set *isl_basic_set_normalize_constraints(
343 struct isl_basic_set *bset)
345 (struct isl_basic_set *)isl_basic_map_normalize_constraints(
346 (struct isl_basic_map *)bset);
349 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq, unsigned div)
351 int i;
352 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
353 unsigned len;
354 len = 1 + isl_basic_map_total_dim(bmap);
356 for (i = 0; i < bmap->n_eq; ++i)
357 if (bmap->eq[i] != eq)
358 isl_seq_elim(bmap->eq[i], eq, pos, len, NULL);
360 for (i = 0; i < bmap->n_ineq; ++i)
361 isl_seq_elim(bmap->ineq[i], eq, pos, len, NULL);
363 /* We need to be careful about circular definitions,
364 * so for now we just remove the definitions of other divs that
365 * depend on this div and (possibly) recompute them later.
367 for (i = 0; i < bmap->n_div; ++i)
368 if (!isl_int_is_zero(bmap->div[i][0]) &&
369 !isl_int_is_zero(bmap->div[i][1 + pos]))
370 isl_seq_clr(bmap->div[i], 1 + len);
372 isl_basic_map_drop_div(bmap, div);
375 /* Elimininate divs based on equalities
377 static struct isl_basic_map *eliminate_divs_eq(
378 struct isl_basic_map *bmap, int *progress)
380 int d;
381 int i;
382 int modified = 0;
383 unsigned off;
385 if (!bmap)
386 return NULL;
388 off = 1 + isl_dim_total(bmap->dim);
390 for (d = bmap->n_div - 1; d >= 0 ; --d) {
391 for (i = 0; i < bmap->n_eq; ++i) {
392 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
393 !isl_int_is_negone(bmap->eq[i][off + d]))
394 continue;
395 modified = 1;
396 *progress = 1;
397 eliminate_div(bmap, bmap->eq[i], d);
398 isl_basic_map_drop_equality(bmap, i);
399 break;
402 if (modified)
403 return eliminate_divs_eq(bmap, progress);
404 return bmap;
407 /* Elimininate divs based on inequalities
409 static struct isl_basic_map *eliminate_divs_ineq(
410 struct isl_basic_map *bmap, int *progress)
412 int d;
413 int i;
414 unsigned off;
415 struct isl_ctx *ctx;
417 if (!bmap)
418 return NULL;
420 ctx = bmap->ctx;
421 off = 1 + isl_dim_total(bmap->dim);
423 for (d = bmap->n_div - 1; d >= 0 ; --d) {
424 for (i = 0; i < bmap->n_eq; ++i)
425 if (!isl_int_is_zero(bmap->eq[i][off + d]))
426 break;
427 if (i < bmap->n_eq)
428 continue;
429 for (i = 0; i < bmap->n_ineq; ++i)
430 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
431 break;
432 if (i < bmap->n_ineq)
433 continue;
434 *progress = 1;
435 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
436 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
437 break;
438 bmap = isl_basic_map_drop_div(bmap, d);
439 if (!bmap)
440 break;
442 return bmap;
445 /* Assumes divs have been ordered if keep_divs is set.
447 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
448 unsigned pos, isl_int *eq, int keep_divs, int *progress)
450 unsigned total;
451 int k;
452 int last_div;
454 total = isl_basic_map_total_dim(bmap);
455 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
456 bmap->n_div);
457 for (k = 0; k < bmap->n_eq; ++k) {
458 if (bmap->eq[k] == eq)
459 continue;
460 if (isl_int_is_zero(bmap->eq[k][1+pos]))
461 continue;
462 if (progress)
463 *progress = 1;
464 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
467 for (k = 0; k < bmap->n_ineq; ++k) {
468 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
469 continue;
470 if (progress)
471 *progress = 1;
472 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
473 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
476 for (k = 0; k < bmap->n_div; ++k) {
477 if (isl_int_is_zero(bmap->div[k][0]))
478 continue;
479 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
480 continue;
481 if (progress)
482 *progress = 1;
483 /* We need to be careful about circular definitions,
484 * so for now we just remove the definition of div k
485 * if the equality contains any divs.
486 * If keep_divs is set, then the divs have been ordered
487 * and we can keep the definition as long as the result
488 * is still ordered.
490 if (last_div == -1 || (keep_divs && last_div < k))
491 isl_seq_elim(bmap->div[k]+1, eq,
492 1+pos, 1+total, &bmap->div[k][0]);
493 else
494 isl_seq_clr(bmap->div[k], 1 + total);
495 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
499 struct isl_basic_map *isl_basic_map_gauss(
500 struct isl_basic_map *bmap, int *progress)
502 int k;
503 int done;
504 int last_var;
505 unsigned total_var;
506 unsigned total;
508 bmap = isl_basic_map_order_divs(bmap);
510 if (!bmap)
511 return NULL;
513 total = isl_basic_map_total_dim(bmap);
514 total_var = total - bmap->n_div;
516 last_var = total - 1;
517 for (done = 0; done < bmap->n_eq; ++done) {
518 for (; last_var >= 0; --last_var) {
519 for (k = done; k < bmap->n_eq; ++k)
520 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
521 break;
522 if (k < bmap->n_eq)
523 break;
525 if (last_var < 0)
526 break;
527 if (k != done)
528 swap_equality(bmap, k, done);
529 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
530 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
532 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
533 progress);
535 if (last_var >= total_var &&
536 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
537 unsigned div = last_var - total_var;
538 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
539 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
540 isl_int_set(bmap->div[div][0],
541 bmap->eq[done][1+last_var]);
542 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
545 if (done == bmap->n_eq)
546 return bmap;
547 for (k = done; k < bmap->n_eq; ++k) {
548 if (isl_int_is_zero(bmap->eq[k][0]))
549 continue;
550 return isl_basic_map_set_to_empty(bmap);
552 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
553 return bmap;
556 struct isl_basic_set *isl_basic_set_gauss(
557 struct isl_basic_set *bset, int *progress)
559 return (struct isl_basic_set*)isl_basic_map_gauss(
560 (struct isl_basic_map *)bset, progress);
564 static unsigned int round_up(unsigned int v)
566 int old_v = v;
568 while (v) {
569 old_v = v;
570 v ^= v & -v;
572 return old_v << 1;
575 static int hash_index(isl_int ***index, unsigned int size, int bits,
576 struct isl_basic_map *bmap, int k)
578 int h;
579 unsigned total = isl_basic_map_total_dim(bmap);
580 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
581 for (h = hash; index[h]; h = (h+1) % size)
582 if (&bmap->ineq[k] != index[h] &&
583 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
584 break;
585 return h;
588 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
589 struct isl_basic_set *bset, int k)
591 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
594 /* If we can eliminate more than one div, then we need to make
595 * sure we do it from last div to first div, in order not to
596 * change the position of the other divs that still need to
597 * be removed.
599 static struct isl_basic_map *remove_duplicate_divs(
600 struct isl_basic_map *bmap, int *progress)
602 unsigned int size;
603 int *index;
604 int *elim_for;
605 int k, l, h;
606 int bits;
607 struct isl_blk eq;
608 unsigned total_var = isl_dim_total(bmap->dim);
609 unsigned total = total_var + bmap->n_div;
610 struct isl_ctx *ctx;
612 if (bmap->n_div <= 1)
613 return bmap;
615 ctx = bmap->ctx;
616 for (k = bmap->n_div - 1; k >= 0; --k)
617 if (!isl_int_is_zero(bmap->div[k][0]))
618 break;
619 if (k <= 0)
620 return bmap;
622 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
623 size = round_up(4 * bmap->n_div / 3 - 1);
624 bits = ffs(size) - 1;
625 index = isl_calloc_array(ctx, int, size);
626 if (!index)
627 return bmap;
628 eq = isl_blk_alloc(ctx, 1+total);
629 if (isl_blk_is_error(eq))
630 goto out;
632 isl_seq_clr(eq.data, 1+total);
633 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
634 for (--k; k >= 0; --k) {
635 uint32_t hash;
637 if (isl_int_is_zero(bmap->div[k][0]))
638 continue;
640 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
641 for (h = hash; index[h]; h = (h+1) % size)
642 if (isl_seq_eq(bmap->div[k],
643 bmap->div[index[h]-1], 2+total))
644 break;
645 if (index[h]) {
646 *progress = 1;
647 l = index[h] - 1;
648 elim_for[l] = k + 1;
650 index[h] = k+1;
652 for (l = bmap->n_div - 1; l >= 0; --l) {
653 if (!elim_for[l])
654 continue;
655 k = elim_for[l] - 1;
656 isl_int_set_si(eq.data[1+total_var+k], -1);
657 isl_int_set_si(eq.data[1+total_var+l], 1);
658 eliminate_div(bmap, eq.data, l);
659 isl_int_set_si(eq.data[1+total_var+k], 0);
660 isl_int_set_si(eq.data[1+total_var+l], 0);
663 isl_blk_free(ctx, eq);
664 out:
665 free(index);
666 free(elim_for);
667 return bmap;
670 static int n_pure_div_eq(struct isl_basic_map *bmap)
672 int i, j;
673 unsigned total;
675 total = isl_dim_total(bmap->dim);
676 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
677 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
678 --j;
679 if (j < 0)
680 break;
681 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
682 return 0;
684 return i;
687 /* Normalize divs that appear in equalities.
689 * In particular, we assume that bmap contains some equalities
690 * of the form
692 * a x = m * e_i
694 * and we want to replace the set of e_i by a minimal set and
695 * such that the new e_i have a canonical representation in terms
696 * of the vector x.
697 * If any of the equalities involves more than one divs, then
698 * we currently simply bail out.
700 * Let us first additionally assume that all equalities involve
701 * a div. The equalities then express modulo constraints on the
702 * remaining variables and we can use "parameter compression"
703 * to find a minimal set of constraints. The result is a transformation
705 * x = T(x') = x_0 + G x'
707 * with G a lower-triangular matrix with all elements below the diagonal
708 * non-negative and smaller than the diagonal element on the same row.
709 * We first normalize x_0 by making the same property hold in the affine
710 * T matrix.
711 * The rows i of G with a 1 on the diagonal do not impose any modulo
712 * constraint and simply express x_i = x'_i.
713 * For each of the remaining rows i, we introduce a div and a corresponding
714 * equality. In particular
716 * g_ii e_j = x_i - g_i(x')
718 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
719 * corresponding div (if g_kk != 1).
721 * If there are any equalities not involving any div, then we
722 * first apply a variable compression on the variables x:
724 * x = C x'' x'' = C_2 x
726 * and perform the above parameter compression on A C instead of on A.
727 * The resulting compression is then of the form
729 * x'' = T(x') = x_0 + G x'
731 * and in constructing the new divs and the corresponding equalities,
732 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
733 * by the corresponding row from C_2.
735 static struct isl_basic_map *normalize_divs(
736 struct isl_basic_map *bmap, int *progress)
738 int i, j, k;
739 int total;
740 int div_eq;
741 struct isl_mat *B;
742 struct isl_vec *d;
743 struct isl_mat *T = NULL;
744 struct isl_mat *C = NULL;
745 struct isl_mat *C2 = NULL;
746 isl_int v;
747 int *pos;
748 int dropped, needed;
750 if (!bmap)
751 return NULL;
753 if (bmap->n_div == 0)
754 return bmap;
756 if (bmap->n_eq == 0)
757 return bmap;
759 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
760 return bmap;
762 total = isl_dim_total(bmap->dim);
763 div_eq = n_pure_div_eq(bmap);
764 if (div_eq == 0)
765 return bmap;
767 if (div_eq < bmap->n_eq) {
768 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
769 bmap->n_eq - div_eq, 0, 1 + total);
770 C = isl_mat_variable_compression(B, &C2);
771 if (!C || !C2)
772 goto error;
773 if (C->n_col == 0) {
774 bmap = isl_basic_map_set_to_empty(bmap);
775 isl_mat_free(C);
776 isl_mat_free(C2);
777 goto done;
781 d = isl_vec_alloc(bmap->ctx, div_eq);
782 if (!d)
783 goto error;
784 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
785 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
786 --j;
787 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
789 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
791 if (C) {
792 B = isl_mat_product(B, C);
793 C = NULL;
796 T = isl_mat_parameter_compression(B, d);
797 if (!T)
798 goto error;
799 if (T->n_col == 0) {
800 bmap = isl_basic_map_set_to_empty(bmap);
801 isl_mat_free(C2);
802 isl_mat_free(T);
803 goto done;
805 isl_int_init(v);
806 for (i = 0; i < T->n_row - 1; ++i) {
807 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
808 if (isl_int_is_zero(v))
809 continue;
810 isl_mat_col_submul(T, 0, v, 1 + i);
812 isl_int_clear(v);
813 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
814 /* We have to be careful because dropping equalities may reorder them */
815 dropped = 0;
816 for (j = bmap->n_div - 1; j >= 0; --j) {
817 for (i = 0; i < bmap->n_eq; ++i)
818 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
819 break;
820 if (i < bmap->n_eq) {
821 bmap = isl_basic_map_drop_div(bmap, j);
822 isl_basic_map_drop_equality(bmap, i);
823 ++dropped;
826 pos[0] = 0;
827 needed = 0;
828 for (i = 1; i < T->n_row; ++i) {
829 if (isl_int_is_one(T->row[i][i]))
830 pos[i] = i;
831 else
832 needed++;
834 if (needed > dropped) {
835 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
836 needed, needed, 0);
837 if (!bmap)
838 goto error;
840 for (i = 1; i < T->n_row; ++i) {
841 if (isl_int_is_one(T->row[i][i]))
842 continue;
843 k = isl_basic_map_alloc_div(bmap);
844 pos[i] = 1 + total + k;
845 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
846 isl_int_set(bmap->div[k][0], T->row[i][i]);
847 if (C2)
848 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
849 else
850 isl_int_set_si(bmap->div[k][1 + i], 1);
851 for (j = 0; j < i; ++j) {
852 if (isl_int_is_zero(T->row[i][j]))
853 continue;
854 if (pos[j] < T->n_row && C2)
855 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
856 C2->row[pos[j]], 1 + total);
857 else
858 isl_int_neg(bmap->div[k][1 + pos[j]],
859 T->row[i][j]);
861 j = isl_basic_map_alloc_equality(bmap);
862 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
863 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
865 free(pos);
866 isl_mat_free(C2);
867 isl_mat_free(T);
869 if (progress)
870 *progress = 1;
871 done:
872 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
874 return bmap;
875 error:
876 isl_mat_free(C);
877 isl_mat_free(C2);
878 isl_mat_free(T);
879 return bmap;
882 static struct isl_basic_map *set_div_from_lower_bound(
883 struct isl_basic_map *bmap, int div, int ineq)
885 unsigned total = 1 + isl_dim_total(bmap->dim);
887 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
888 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
889 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
890 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
891 isl_int_set_si(bmap->div[div][1 + total + div], 0);
893 return bmap;
896 /* Check whether it is ok to define a div based on an inequality.
897 * To avoid the introduction of circular definitions of divs, we
898 * do not allow such a definition if the resulting expression would refer to
899 * any other undefined divs or if any known div is defined in
900 * terms of the unknown div.
902 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
903 int div, int ineq)
905 int j;
906 unsigned total = 1 + isl_dim_total(bmap->dim);
908 /* Not defined in terms of unknown divs */
909 for (j = 0; j < bmap->n_div; ++j) {
910 if (div == j)
911 continue;
912 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
913 continue;
914 if (isl_int_is_zero(bmap->div[j][0]))
915 return 0;
918 /* No other div defined in terms of this one => avoid loops */
919 for (j = 0; j < bmap->n_div; ++j) {
920 if (div == j)
921 continue;
922 if (isl_int_is_zero(bmap->div[j][0]))
923 continue;
924 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
925 return 0;
928 return 1;
931 /* Given two constraints "k" and "l" that are opposite to each other,
932 * except for the constant term, check if we can use them
933 * to obtain an expression for one of the hitherto unknown divs.
934 * "sum" is the sum of the constant terms of the constraints.
935 * If this sum is strictly smaller than the coefficient of one
936 * of the divs, then this pair can be used define the div.
937 * To avoid the introduction of circular definitions of divs, we
938 * do not use the pair if the resulting expression would refer to
939 * any other undefined divs or if any known div is defined in
940 * terms of the unknown div.
942 static struct isl_basic_map *check_for_div_constraints(
943 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
945 int i, j;
946 unsigned total = 1 + isl_dim_total(bmap->dim);
948 for (i = 0; i < bmap->n_div; ++i) {
949 if (!isl_int_is_zero(bmap->div[i][0]))
950 continue;
951 if (isl_int_is_zero(bmap->ineq[k][total + i]))
952 continue;
953 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
954 continue;
955 if (!ok_to_set_div_from_bound(bmap, i, k))
956 break;
957 if (isl_int_is_pos(bmap->ineq[k][total + i]))
958 bmap = set_div_from_lower_bound(bmap, i, k);
959 else
960 bmap = set_div_from_lower_bound(bmap, i, l);
961 if (progress)
962 *progress = 1;
963 break;
965 return bmap;
968 static struct isl_basic_map *remove_duplicate_constraints(
969 struct isl_basic_map *bmap, int *progress)
971 unsigned int size;
972 isl_int ***index;
973 int k, l, h;
974 int bits;
975 unsigned total = isl_basic_map_total_dim(bmap);
976 isl_int sum;
978 if (bmap->n_ineq <= 1)
979 return bmap;
981 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
982 bits = ffs(size) - 1;
983 index = isl_calloc_array(ctx, isl_int **, size);
984 if (!index)
985 return bmap;
987 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
988 for (k = 1; k < bmap->n_ineq; ++k) {
989 h = hash_index(index, size, bits, bmap, k);
990 if (!index[h]) {
991 index[h] = &bmap->ineq[k];
992 continue;
994 if (progress)
995 *progress = 1;
996 l = index[h] - &bmap->ineq[0];
997 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
998 swap_inequality(bmap, k, l);
999 isl_basic_map_drop_inequality(bmap, k);
1000 --k;
1002 isl_int_init(sum);
1003 for (k = 0; k < bmap->n_ineq-1; ++k) {
1004 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1005 h = hash_index(index, size, bits, bmap, k);
1006 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1007 if (!index[h])
1008 continue;
1009 l = index[h] - &bmap->ineq[0];
1010 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1011 if (isl_int_is_pos(sum)) {
1012 bmap = check_for_div_constraints(bmap, k, l, sum,
1013 progress);
1014 continue;
1016 if (isl_int_is_zero(sum)) {
1017 /* We need to break out of the loop after these
1018 * changes since the contents of the hash
1019 * will no longer be valid.
1020 * Plus, we probably we want to regauss first.
1022 isl_basic_map_drop_inequality(bmap, l);
1023 isl_basic_map_inequality_to_equality(bmap, k);
1024 } else
1025 bmap = isl_basic_map_set_to_empty(bmap);
1026 break;
1028 isl_int_clear(sum);
1030 free(index);
1031 return bmap;
1035 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1037 int progress = 1;
1038 if (!bmap)
1039 return NULL;
1040 while (progress) {
1041 progress = 0;
1042 bmap = isl_basic_map_normalize_constraints(bmap);
1043 bmap = remove_duplicate_divs(bmap, &progress);
1044 bmap = eliminate_divs_eq(bmap, &progress);
1045 bmap = eliminate_divs_ineq(bmap, &progress);
1046 bmap = isl_basic_map_gauss(bmap, &progress);
1047 /* requires equalities in normal form */
1048 bmap = normalize_divs(bmap, &progress);
1049 bmap = remove_duplicate_constraints(bmap, &progress);
1051 return bmap;
1054 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1056 return (struct isl_basic_set *)
1057 isl_basic_map_simplify((struct isl_basic_map *)bset);
1061 /* If the only constraints a div d=floor(f/m)
1062 * appears in are its two defining constraints
1064 * f - m d >=0
1065 * -(f - (m - 1)) + m d >= 0
1067 * then it can safely be removed.
1069 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1071 int i;
1072 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1074 for (i = 0; i < bmap->n_eq; ++i)
1075 if (!isl_int_is_zero(bmap->eq[i][pos]))
1076 return 0;
1078 for (i = 0; i < bmap->n_ineq; ++i) {
1079 if (isl_int_is_zero(bmap->ineq[i][pos]))
1080 continue;
1081 if (isl_int_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1082 int neg;
1083 isl_int_sub(bmap->div[div][1],
1084 bmap->div[div][1], bmap->div[div][0]);
1085 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1086 neg = isl_seq_is_neg(bmap->ineq[i], bmap->div[div]+1, pos);
1087 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1088 isl_int_add(bmap->div[div][1],
1089 bmap->div[div][1], bmap->div[div][0]);
1090 if (!neg)
1091 return 0;
1092 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1093 bmap->n_div-div-1) != -1)
1094 return 0;
1095 } else if (isl_int_abs_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1096 if (!isl_seq_eq(bmap->ineq[i], bmap->div[div]+1, pos))
1097 return 0;
1098 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1099 bmap->n_div-div-1) != -1)
1100 return 0;
1101 } else
1102 return 0;
1105 for (i = 0; i < bmap->n_div; ++i)
1106 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1107 return 0;
1109 return 1;
1113 * Remove divs that don't occur in any of the constraints or other divs.
1114 * These can arise when dropping some of the variables in a quast
1115 * returned by piplib.
1117 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1119 int i;
1121 if (!bmap)
1122 return NULL;
1124 for (i = bmap->n_div-1; i >= 0; --i) {
1125 if (!div_is_redundant(bmap, i))
1126 continue;
1127 bmap = isl_basic_map_drop_div(bmap, i);
1129 return bmap;
1132 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1134 bmap = remove_redundant_divs(bmap);
1135 if (!bmap)
1136 return NULL;
1137 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1138 return bmap;
1141 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1143 return (struct isl_basic_set *)
1144 isl_basic_map_finalize((struct isl_basic_map *)bset);
1147 struct isl_set *isl_set_finalize(struct isl_set *set)
1149 int i;
1151 if (!set)
1152 return NULL;
1153 for (i = 0; i < set->n; ++i) {
1154 set->p[i] = isl_basic_set_finalize(set->p[i]);
1155 if (!set->p[i])
1156 goto error;
1158 return set;
1159 error:
1160 isl_set_free(set);
1161 return NULL;
1164 struct isl_map *isl_map_finalize(struct isl_map *map)
1166 int i;
1168 if (!map)
1169 return NULL;
1170 for (i = 0; i < map->n; ++i) {
1171 map->p[i] = isl_basic_map_finalize(map->p[i]);
1172 if (!map->p[i])
1173 goto error;
1175 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1176 return map;
1177 error:
1178 isl_map_free(map);
1179 return NULL;
1183 /* Remove definition of any div that is defined in terms of the given variable.
1184 * The div itself is not removed. Functions such as
1185 * eliminate_divs_ineq depend on the other divs remaining in place.
1187 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1188 int pos)
1190 int i;
1191 unsigned dim = isl_dim_total(bmap->dim);
1193 for (i = 0; i < bmap->n_div; ++i) {
1194 if (isl_int_is_zero(bmap->div[i][0]))
1195 continue;
1196 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1197 continue;
1198 isl_int_set_si(bmap->div[i][0], 0);
1200 return bmap;
1203 /* Eliminate the specified variables from the constraints using
1204 * Fourier-Motzkin. The variables themselves are not removed.
1206 struct isl_basic_map *isl_basic_map_eliminate_vars(
1207 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1209 int d;
1210 int i, j, k;
1211 unsigned total;
1213 if (n == 0)
1214 return bmap;
1215 if (!bmap)
1216 return NULL;
1217 total = isl_basic_map_total_dim(bmap);
1219 bmap = isl_basic_map_cow(bmap);
1220 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1221 bmap = remove_dependent_vars(bmap, d);
1223 for (d = pos + n - 1;
1224 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1225 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1226 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1227 int n_lower, n_upper;
1228 if (!bmap)
1229 return NULL;
1230 for (i = 0; i < bmap->n_eq; ++i) {
1231 if (isl_int_is_zero(bmap->eq[i][1+d]))
1232 continue;
1233 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1234 isl_basic_map_drop_equality(bmap, i);
1235 break;
1237 if (i < bmap->n_eq)
1238 continue;
1239 n_lower = 0;
1240 n_upper = 0;
1241 for (i = 0; i < bmap->n_ineq; ++i) {
1242 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1243 n_lower++;
1244 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1245 n_upper++;
1247 bmap = isl_basic_map_extend_constraints(bmap,
1248 0, n_lower * n_upper);
1249 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1250 int last;
1251 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1252 continue;
1253 last = -1;
1254 for (j = 0; j < i; ++j) {
1255 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1256 continue;
1257 last = j;
1258 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1259 isl_int_sgn(bmap->ineq[j][1+d]))
1260 continue;
1261 k = isl_basic_map_alloc_inequality(bmap);
1262 if (k < 0)
1263 goto error;
1264 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1265 1+total);
1266 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1267 1+d, 1+total, NULL);
1269 isl_basic_map_drop_inequality(bmap, i);
1270 i = last + 1;
1272 if (n_lower > 0 && n_upper > 0) {
1273 bmap = isl_basic_map_normalize_constraints(bmap);
1274 bmap = remove_duplicate_constraints(bmap, NULL);
1275 bmap = isl_basic_map_gauss(bmap, NULL);
1276 bmap = isl_basic_map_convex_hull(bmap);
1277 if (!bmap)
1278 goto error;
1279 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1280 break;
1283 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1284 return bmap;
1285 error:
1286 isl_basic_map_free(bmap);
1287 return NULL;
1290 struct isl_basic_set *isl_basic_set_eliminate_vars(
1291 struct isl_basic_set *bset, unsigned pos, unsigned n)
1293 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1294 (struct isl_basic_map *)bset, pos, n);
1297 /* Don't assume equalities are in order, because align_divs
1298 * may have changed the order of the divs.
1300 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1302 int d, i;
1303 unsigned total;
1305 total = isl_dim_total(bmap->dim);
1306 for (d = 0; d < total; ++d)
1307 elim[d] = -1;
1308 for (i = 0; i < bmap->n_eq; ++i) {
1309 for (d = total - 1; d >= 0; --d) {
1310 if (isl_int_is_zero(bmap->eq[i][1+d]))
1311 continue;
1312 elim[d] = i;
1313 break;
1318 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1320 compute_elimination_index((struct isl_basic_map *)bset, elim);
1323 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1324 struct isl_basic_map *bmap, int *elim)
1326 int d, i;
1327 int copied = 0;
1328 unsigned total;
1330 total = isl_dim_total(bmap->dim);
1331 for (d = total - 1; d >= 0; --d) {
1332 if (isl_int_is_zero(src[1+d]))
1333 continue;
1334 if (elim[d] == -1)
1335 continue;
1336 if (!copied) {
1337 isl_seq_cpy(dst, src, 1 + total);
1338 copied = 1;
1340 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1342 return copied;
1345 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1346 struct isl_basic_set *bset, int *elim)
1348 return reduced_using_equalities(dst, src,
1349 (struct isl_basic_map *)bset, elim);
1352 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1353 struct isl_basic_set *bset, struct isl_basic_set *context)
1355 int i;
1356 int *elim;
1358 if (!bset || !context)
1359 goto error;
1361 bset = isl_basic_set_cow(bset);
1362 if (!bset)
1363 goto error;
1365 elim = isl_alloc_array(ctx, int, isl_basic_set_n_dim(bset));
1366 if (!elim)
1367 goto error;
1368 set_compute_elimination_index(context, elim);
1369 for (i = 0; i < bset->n_eq; ++i)
1370 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1371 context, elim);
1372 for (i = 0; i < bset->n_ineq; ++i)
1373 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1374 context, elim);
1375 isl_basic_set_free(context);
1376 free(elim);
1377 bset = isl_basic_set_simplify(bset);
1378 bset = isl_basic_set_finalize(bset);
1379 return bset;
1380 error:
1381 isl_basic_set_free(bset);
1382 isl_basic_set_free(context);
1383 return NULL;
1386 static struct isl_basic_set *remove_shifted_constraints(
1387 struct isl_basic_set *bset, struct isl_basic_set *context)
1389 unsigned int size;
1390 isl_int ***index;
1391 int bits;
1392 int k, h, l;
1394 if (!bset)
1395 return NULL;
1397 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1398 bits = ffs(size) - 1;
1399 index = isl_calloc_array(ctx, isl_int **, size);
1400 if (!index)
1401 return bset;
1403 for (k = 0; k < context->n_ineq; ++k) {
1404 h = set_hash_index(index, size, bits, context, k);
1405 index[h] = &context->ineq[k];
1407 for (k = 0; k < bset->n_ineq; ++k) {
1408 h = set_hash_index(index, size, bits, bset, k);
1409 if (!index[h])
1410 continue;
1411 l = index[h] - &context->ineq[0];
1412 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1413 continue;
1414 bset = isl_basic_set_cow(bset);
1415 if (!bset)
1416 goto error;
1417 isl_basic_set_drop_inequality(bset, k);
1418 --k;
1420 free(index);
1421 return bset;
1422 error:
1423 free(index);
1424 return bset;
1427 /* Tighten (decrease) the constant terms of the inequalities based
1428 * on the equalities, without removing any integer points.
1429 * For example, if there is an equality
1431 * i = 3 * j
1433 * and an inequality
1435 * i >= 1
1437 * then we want to replace the inequality by
1439 * i >= 3
1441 * We do this by computing a variable compression and translating
1442 * the constraints to the compressed space.
1443 * If any constraint has coefficients (except the contant term)
1444 * with a common factor "f", then we can replace the constant term "c"
1445 * by
1447 * f * floor(c/f)
1449 * That is, we add
1451 * f * floor(c/f) - c = -fract(c/f)
1453 * and we can add the same value to the original constraint.
1455 * In the example, the compressed space only contains "j",
1456 * and the inequality translates to
1458 * 3 * j - 1 >= 0
1460 * We add -fract(-1/3) = -2 to the original constraint to obtain
1462 * i - 3 >= 0
1464 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1465 struct isl_basic_set *bset)
1467 int i;
1468 unsigned total;
1469 struct isl_mat *B, *C;
1470 isl_int gcd;
1472 if (!bset)
1473 return NULL;
1475 if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1476 return bset;
1478 if (!bset->n_ineq)
1479 return bset;
1481 bset = isl_basic_set_cow(bset);
1482 if (!bset)
1483 return NULL;
1485 total = isl_basic_set_total_dim(bset);
1486 B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1487 C = isl_mat_variable_compression(B, NULL);
1488 if (!C)
1489 return bset;
1490 if (C->n_col == 0) {
1491 isl_mat_free(C);
1492 return isl_basic_set_set_to_empty(bset);
1494 B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
1495 0, bset->n_ineq, 0, 1 + total);
1496 C = isl_mat_product(B, C);
1497 if (!C)
1498 return bset;
1500 isl_int_init(gcd);
1501 for (i = 0; i < bset->n_ineq; ++i) {
1502 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1503 if (isl_int_is_one(gcd))
1504 continue;
1505 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1506 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1508 isl_int_clear(gcd);
1510 isl_mat_free(C);
1512 return bset;
1515 /* Remove all information from bset that is redundant in the context
1516 * of context. In particular, equalities that are linear combinations
1517 * of those in context are removed. Then the inequalities that are
1518 * redundant in the context of the equalities and inequalities of
1519 * context are removed.
1521 * We first simplify the constraints of "bset" in the context of the
1522 * equalities of "context".
1523 * Then we simplify the inequalities of the context in the context
1524 * of the equalities of bset and remove the inequalities from "bset"
1525 * that are obviously redundant with respect to some inequality in "context".
1527 * If there are any inequalities left, we construct a tableau for
1528 * the context and then add the inequalities of "bset".
1529 * Before adding these equalities, we freeze all constraints such that
1530 * they won't be considered redundant in terms of the constraints of "bset".
1531 * Then we detect all equalities and redundant constraints (among the
1532 * constraints that weren't frozen) and update bset according to the results.
1533 * We have to be careful here because we don't want any of the context
1534 * constraints to remain and because we haven't added the equalities of "bset"
1535 * to the tableau so we temporarily have to pretend that there were no
1536 * equalities.
1538 static struct isl_basic_set *uset_gist(struct isl_basic_set *bset,
1539 struct isl_basic_set *context)
1541 int i;
1542 struct isl_tab *tab;
1543 unsigned context_ineq;
1544 struct isl_basic_set *combined = NULL;
1546 if (!context || !bset)
1547 goto error;
1549 if (context->n_eq > 0)
1550 bset = isl_basic_set_reduce_using_equalities(bset,
1551 isl_basic_set_copy(context));
1552 if (!bset)
1553 goto error;
1554 if (isl_basic_set_fast_is_empty(bset))
1555 goto done;
1556 if (!bset->n_ineq)
1557 goto done;
1559 if (bset->n_eq > 0) {
1560 struct isl_basic_set *affine_hull;
1561 affine_hull = isl_basic_set_copy(bset);
1562 affine_hull = isl_basic_set_cow(affine_hull);
1563 if (!affine_hull)
1564 goto error;
1565 isl_basic_set_free_inequality(affine_hull, affine_hull->n_ineq);
1566 context = isl_basic_set_intersect(context, affine_hull);
1567 context = isl_basic_set_gauss(context, NULL);
1568 context = normalize_constraints_in_compressed_space(context);
1570 if (!context)
1571 goto error;
1572 if (ISL_F_ISSET(context, ISL_BASIC_SET_EMPTY)) {
1573 isl_basic_set_free(bset);
1574 return context;
1576 if (!context->n_ineq)
1577 goto done;
1578 bset = remove_shifted_constraints(bset, context);
1579 if (!bset->n_ineq)
1580 goto done;
1581 isl_basic_set_free_equality(context, context->n_eq);
1582 context_ineq = context->n_ineq;
1583 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1584 combined = isl_basic_set_extend_constraints(combined,
1585 bset->n_eq, bset->n_ineq);
1586 tab = isl_tab_from_basic_set(combined);
1587 if (!tab)
1588 goto error;
1589 for (i = 0; i < context_ineq; ++i)
1590 tab->con[i].frozen = 1;
1591 tab = isl_tab_extend(tab, bset->n_ineq);
1592 if (!tab)
1593 goto error;
1594 for (i = 0; i < bset->n_ineq; ++i)
1595 tab = isl_tab_add_ineq(tab, bset->ineq[i]);
1596 bset = isl_basic_set_add_constraints(combined, bset, 0);
1597 tab = isl_tab_detect_equalities(tab);
1598 tab = isl_tab_detect_redundant(tab);
1599 if (!tab)
1600 goto error2;
1601 for (i = 0; i < context_ineq; ++i) {
1602 tab->con[i].is_zero = 0;
1603 tab->con[i].is_redundant = 1;
1605 bset = isl_basic_set_update_from_tab(bset, tab);
1606 isl_tab_free(tab);
1607 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1608 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1609 done:
1610 bset = isl_basic_set_simplify(bset);
1611 bset = isl_basic_set_finalize(bset);
1612 isl_basic_set_free(context);
1613 return bset;
1614 error:
1615 isl_basic_set_free(combined);
1616 error2:
1617 isl_basic_set_free(bset);
1618 isl_basic_set_free(context);
1619 return NULL;
1622 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1623 * We simply add the equalities in context to bmap and then do a regular
1624 * div normalizations. Better results can be obtained by normalizing
1625 * only the divs in bmap than do not also appear in context.
1626 * We need to be careful to reduce the divs using the equalities
1627 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1628 * spurious constraints.
1630 static struct isl_basic_map *normalize_divs_in_context(
1631 struct isl_basic_map *bmap, struct isl_basic_map *context)
1633 int i;
1634 unsigned total_context;
1635 int div_eq;
1637 div_eq = n_pure_div_eq(bmap);
1638 if (div_eq == 0)
1639 return bmap;
1641 if (context->n_div > 0)
1642 bmap = isl_basic_map_align_divs(bmap, context);
1644 total_context = isl_basic_map_total_dim(context);
1645 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1646 for (i = 0; i < context->n_eq; ++i) {
1647 int k;
1648 k = isl_basic_map_alloc_equality(bmap);
1649 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1650 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1651 isl_basic_map_total_dim(bmap) - total_context);
1653 bmap = isl_basic_map_gauss(bmap, NULL);
1654 bmap = normalize_divs(bmap, NULL);
1655 bmap = isl_basic_map_gauss(bmap, NULL);
1656 return bmap;
1659 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1660 struct isl_basic_map *context)
1662 struct isl_basic_set *bset;
1664 if (!bmap || !context)
1665 goto error;
1667 if (isl_basic_map_is_universe(context)) {
1668 isl_basic_map_free(context);
1669 return bmap;
1671 if (isl_basic_map_is_universe(bmap)) {
1672 isl_basic_map_free(context);
1673 return bmap;
1675 if (isl_basic_map_fast_is_empty(context)) {
1676 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1677 isl_basic_map_free(context);
1678 isl_basic_map_free(bmap);
1679 return isl_basic_map_universe(dim);
1681 if (isl_basic_map_fast_is_empty(bmap)) {
1682 isl_basic_map_free(context);
1683 return bmap;
1686 bmap = isl_basic_map_convex_hull(bmap);
1687 context = isl_basic_map_convex_hull(context);
1689 if (context->n_eq)
1690 bmap = normalize_divs_in_context(bmap, context);
1692 context = isl_basic_map_align_divs(context, bmap);
1693 bmap = isl_basic_map_align_divs(bmap, context);
1695 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1696 isl_basic_map_underlying_set(context));
1698 return isl_basic_map_overlying_set(bset, bmap);
1699 error:
1700 isl_basic_map_free(bmap);
1701 isl_basic_map_free(context);
1702 return NULL;
1706 * Assumes context has no implicit divs.
1708 struct isl_map *isl_map_gist(struct isl_map *map, struct isl_basic_map *context)
1710 int i;
1712 if (!map || !context)
1713 goto error;;
1715 if (isl_basic_map_is_universe(context)) {
1716 isl_basic_map_free(context);
1717 return map;
1719 if (isl_basic_map_fast_is_empty(context)) {
1720 struct isl_dim *dim = isl_dim_copy(map->dim);
1721 isl_basic_map_free(context);
1722 isl_map_free(map);
1723 return isl_map_universe(dim);
1726 context = isl_basic_map_convex_hull(context);
1727 map = isl_map_cow(map);
1728 if (!map || !context)
1729 goto error;;
1730 isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1731 map = isl_map_compute_divs(map);
1732 for (i = 0; i < map->n; ++i)
1733 context = isl_basic_map_align_divs(context, map->p[i]);
1734 for (i = 0; i < map->n; ++i) {
1735 map->p[i] = isl_basic_map_gist(map->p[i],
1736 isl_basic_map_copy(context));
1737 if (!map->p[i])
1738 goto error;
1740 isl_basic_map_free(context);
1741 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1742 return map;
1743 error:
1744 isl_map_free(map);
1745 isl_basic_map_free(context);
1746 return NULL;
1749 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1750 struct isl_basic_set *context)
1752 return (struct isl_basic_set *)isl_basic_map_gist(
1753 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1756 struct isl_set *isl_set_gist(struct isl_set *set, struct isl_basic_set *context)
1758 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1759 (struct isl_basic_map *)context);
1762 /* Quick check to see if two basic maps are disjoint.
1763 * In particular, we reduce the equalities and inequalities of
1764 * one basic map in the context of the equalities of the other
1765 * basic map and check if we get a contradiction.
1767 int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
1768 struct isl_basic_map *bmap2)
1770 struct isl_vec *v = NULL;
1771 int *elim = NULL;
1772 unsigned total;
1773 int d, i;
1775 if (!bmap1 || !bmap2)
1776 return -1;
1777 isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1778 return -1);
1779 if (bmap1->n_div || bmap2->n_div)
1780 return 0;
1781 if (!bmap1->n_eq && !bmap2->n_eq)
1782 return 0;
1784 total = isl_dim_total(bmap1->dim);
1785 if (total == 0)
1786 return 0;
1787 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1788 if (!v)
1789 goto error;
1790 elim = isl_alloc_array(bmap1->ctx, int, total);
1791 if (!elim)
1792 goto error;
1793 compute_elimination_index(bmap1, elim);
1794 for (i = 0; i < bmap2->n_eq; ++i) {
1795 int reduced;
1796 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1797 bmap1, elim);
1798 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1799 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1800 goto disjoint;
1802 for (i = 0; i < bmap2->n_ineq; ++i) {
1803 int reduced;
1804 reduced = reduced_using_equalities(v->block.data,
1805 bmap2->ineq[i], bmap1, elim);
1806 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1807 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1808 goto disjoint;
1810 compute_elimination_index(bmap2, elim);
1811 for (i = 0; i < bmap1->n_ineq; ++i) {
1812 int reduced;
1813 reduced = reduced_using_equalities(v->block.data,
1814 bmap1->ineq[i], bmap2, elim);
1815 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1816 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1817 goto disjoint;
1819 isl_vec_free(v);
1820 free(elim);
1821 return 0;
1822 disjoint:
1823 isl_vec_free(v);
1824 free(elim);
1825 return 1;
1826 error:
1827 isl_vec_free(v);
1828 free(elim);
1829 return -1;
1832 int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
1833 struct isl_basic_set *bset2)
1835 return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
1836 (struct isl_basic_map *)bset2);
1839 int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
1841 int i, j;
1843 if (!map1 || !map2)
1844 return -1;
1846 if (isl_map_fast_is_equal(map1, map2))
1847 return 0;
1849 for (i = 0; i < map1->n; ++i) {
1850 for (j = 0; j < map2->n; ++j) {
1851 int d = isl_basic_map_fast_is_disjoint(map1->p[i],
1852 map2->p[j]);
1853 if (d != 1)
1854 return d;
1857 return 1;
1860 int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
1862 return isl_map_fast_is_disjoint((struct isl_map *)set1,
1863 (struct isl_map *)set2);
1866 /* Check if we can combine a given div with lower bound l and upper
1867 * bound u with some other div and if so return that other div.
1868 * Otherwise return -1.
1870 * We first check that
1871 * - the bounds are opposites of each other (except for the constant
1872 * term)
1873 * - the bounds do not reference any other div
1874 * - no div is defined in terms of this div
1876 * Let m be the size of the range allowed on the div by the bounds.
1877 * That is, the bounds are of the form
1879 * e <= a <= e + m - 1
1881 * with e some expression in the other variables.
1882 * We look for another div b such that no third div is defined in terms
1883 * of this second div b and such that in any constraint that contains
1884 * a (except for the given lower and upper bound), also contains b
1885 * with a coefficient that is m times that of b.
1886 * That is, all constraints (execpt for the lower and upper bound)
1887 * are of the form
1889 * e + f (a + m b) >= 0
1891 * If so, we return b so that "a + m b" can be replaced by
1892 * a single div "c = a + m b".
1894 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
1895 unsigned div, unsigned l, unsigned u)
1897 int i, j;
1898 unsigned dim;
1899 int coalesce = -1;
1901 if (bmap->n_div <= 1)
1902 return -1;
1903 dim = isl_dim_total(bmap->dim);
1904 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
1905 return -1;
1906 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
1907 bmap->n_div - div - 1) != -1)
1908 return -1;
1909 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
1910 dim + bmap->n_div))
1911 return -1;
1913 for (i = 0; i < bmap->n_div; ++i) {
1914 if (isl_int_is_zero(bmap->div[i][0]))
1915 continue;
1916 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
1917 return -1;
1920 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
1921 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
1922 for (i = 0; i < bmap->n_div; ++i) {
1923 if (i == div)
1924 continue;
1925 if (!pairs[i])
1926 continue;
1927 for (j = 0; j < bmap->n_div; ++j) {
1928 if (isl_int_is_zero(bmap->div[j][0]))
1929 continue;
1930 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
1931 break;
1933 if (j < bmap->n_div)
1934 continue;
1935 for (j = 0; j < bmap->n_ineq; ++j) {
1936 int valid;
1937 if (j == l || j == u)
1938 continue;
1939 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
1940 continue;
1941 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
1942 break;
1943 isl_int_mul(bmap->ineq[j][1 + dim + div],
1944 bmap->ineq[j][1 + dim + div],
1945 bmap->ineq[l][0]);
1946 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
1947 bmap->ineq[j][1 + dim + i]);
1948 isl_int_divexact(bmap->ineq[j][1 + dim + div],
1949 bmap->ineq[j][1 + dim + div],
1950 bmap->ineq[l][0]);
1951 if (!valid)
1952 break;
1954 if (j < bmap->n_ineq)
1955 continue;
1956 coalesce = i;
1957 break;
1959 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
1960 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
1961 return coalesce;
1964 /* Given a lower and an upper bound on div i, construct an inequality
1965 * that when nonnegative ensures that this pair of bounds always allows
1966 * for an integer value of the given div.
1967 * The lower bound is inequality l, while the upper bound is inequality u.
1968 * The constructed inequality is stored in ineq.
1969 * g, fl, fu are temporary scalars.
1971 * Let the upper bound be
1973 * -n_u a + e_u >= 0
1975 * and the lower bound
1977 * n_l a + e_l >= 0
1979 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
1980 * We have
1982 * - f_u e_l <= f_u f_l g a <= f_l e_u
1984 * Since all variables are integer valued, this is equivalent to
1986 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
1988 * If this interval is at least f_u f_l g, then it contains at least
1989 * one integer value for a.
1990 * That is, the test constraint is
1992 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
1994 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
1995 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
1997 unsigned dim;
1998 dim = isl_dim_total(bmap->dim);
2000 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2001 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2002 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2003 isl_int_neg(fu, fu);
2004 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2005 1 + dim + bmap->n_div);
2006 isl_int_add(ineq[0], ineq[0], fl);
2007 isl_int_add(ineq[0], ineq[0], fu);
2008 isl_int_sub_ui(ineq[0], ineq[0], 1);
2009 isl_int_mul(g, g, fl);
2010 isl_int_mul(g, g, fu);
2011 isl_int_sub(ineq[0], ineq[0], g);
2014 /* Remove more kinds of divs that are not strictly needed.
2015 * In particular, if all pairs of lower and upper bounds on a div
2016 * are such that they allow at least one integer value of the div,
2017 * the we can eliminate the div using Fourier-Motzkin without
2018 * introducing any spurious solutions.
2020 static struct isl_basic_map *drop_more_redundant_divs(
2021 struct isl_basic_map *bmap, int *pairs, int n)
2023 struct isl_tab *tab = NULL;
2024 struct isl_vec *vec = NULL;
2025 unsigned dim;
2026 int remove = -1;
2027 isl_int g, fl, fu;
2029 isl_int_init(g);
2030 isl_int_init(fl);
2031 isl_int_init(fu);
2033 if (!bmap)
2034 goto error;
2036 dim = isl_dim_total(bmap->dim);
2037 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2038 if (!vec)
2039 goto error;
2041 tab = isl_tab_from_basic_map(bmap);
2043 while (n > 0) {
2044 int i, l, u;
2045 int best = -1;
2046 enum isl_lp_result res;
2048 for (i = 0; i < bmap->n_div; ++i) {
2049 if (!pairs[i])
2050 continue;
2051 if (best >= 0 && pairs[best] <= pairs[i])
2052 continue;
2053 best = i;
2056 i = best;
2057 for (l = 0; l < bmap->n_ineq; ++l) {
2058 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2059 continue;
2060 for (u = 0; u < bmap->n_ineq; ++u) {
2061 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2062 continue;
2063 construct_test_ineq(bmap, i, l, u,
2064 vec->el, g, fl, fu);
2065 res = isl_tab_min(tab, vec->el,
2066 bmap->ctx->one, &g, NULL, 0);
2067 if (res == isl_lp_error)
2068 goto error;
2069 if (res == isl_lp_empty) {
2070 bmap = isl_basic_map_set_to_empty(bmap);
2071 break;
2073 if (res != isl_lp_ok || isl_int_is_neg(g))
2074 break;
2076 if (u < bmap->n_ineq)
2077 break;
2079 if (l == bmap->n_ineq) {
2080 remove = i;
2081 break;
2083 pairs[i] = 0;
2084 --n;
2087 isl_tab_free(tab);
2088 isl_vec_free(vec);
2090 isl_int_clear(g);
2091 isl_int_clear(fl);
2092 isl_int_clear(fu);
2094 free(pairs);
2096 if (remove < 0)
2097 return bmap;
2099 bmap = isl_basic_map_remove(bmap, isl_dim_div, remove, 1);
2100 return isl_basic_map_drop_redundant_divs(bmap);
2101 error:
2102 free(pairs);
2103 isl_basic_map_free(bmap);
2104 isl_tab_free(tab);
2105 isl_vec_free(vec);
2106 isl_int_clear(g);
2107 isl_int_clear(fl);
2108 isl_int_clear(fu);
2109 return NULL;
2112 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2113 * and the upper bound u, div1 always occurs together with div2 in the form
2114 * (div1 + m div2), where m is the constant range on the variable div1
2115 * allowed by l and u, replace the pair div1 and div2 by a single
2116 * div that is equal to div1 + m div2.
2118 * The new div will appear in the location that contains div2.
2119 * We need to modify all constraints that contain
2120 * div2 = (div - div1) / m
2121 * (If a constraint does not contain div2, it will also not contain div1.)
2122 * If the constraint also contains div1, then we know they appear
2123 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2124 * i.e., the coefficient of div is f.
2126 * Otherwise, we first need to introduce div1 into the constraint.
2127 * Let the l be
2129 * div1 + f >=0
2131 * and u
2133 * -div1 + f' >= 0
2135 * A lower bound on div2
2137 * n div2 + t >= 0
2139 * can be replaced by
2141 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2143 * with g = gcd(m,n).
2144 * An upper bound
2146 * -n div2 + t >= 0
2148 * can be replaced by
2150 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2152 * These constraint are those that we would obtain from eliminating
2153 * div1 using Fourier-Motzkin.
2155 * After all constraints have been modified, we drop the lower and upper
2156 * bound and then drop div1.
2158 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2159 unsigned div1, unsigned div2, unsigned l, unsigned u)
2161 isl_int a;
2162 isl_int b;
2163 isl_int m;
2164 unsigned dim, total;
2165 int i;
2167 dim = isl_dim_total(bmap->dim);
2168 total = 1 + dim + bmap->n_div;
2170 isl_int_init(a);
2171 isl_int_init(b);
2172 isl_int_init(m);
2173 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2174 isl_int_add_ui(m, m, 1);
2176 for (i = 0; i < bmap->n_ineq; ++i) {
2177 if (i == l || i == u)
2178 continue;
2179 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2180 continue;
2181 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2182 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2183 isl_int_divexact(a, m, b);
2184 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2185 if (isl_int_is_pos(b)) {
2186 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2187 b, bmap->ineq[l], total);
2188 } else {
2189 isl_int_neg(b, b);
2190 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2191 b, bmap->ineq[u], total);
2194 isl_int_set(bmap->ineq[i][1 + dim + div2],
2195 bmap->ineq[i][1 + dim + div1]);
2196 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2199 isl_int_clear(a);
2200 isl_int_clear(b);
2201 isl_int_clear(m);
2202 if (l > u) {
2203 isl_basic_map_drop_inequality(bmap, l);
2204 isl_basic_map_drop_inequality(bmap, u);
2205 } else {
2206 isl_basic_map_drop_inequality(bmap, u);
2207 isl_basic_map_drop_inequality(bmap, l);
2209 bmap = isl_basic_map_drop_div(bmap, div1);
2210 return bmap;
2213 /* First check if we can coalesce any pair of divs and
2214 * then continue with dropping more redundant divs.
2216 * We loop over all pairs of lower and upper bounds on a div
2217 * with coefficient 1 and -1, respectively, check if there
2218 * is any other div "c" with which we can coalesce the div
2219 * and if so, perform the coalescing.
2221 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2222 struct isl_basic_map *bmap, int *pairs, int n)
2224 int i, l, u;
2225 unsigned dim;
2227 dim = isl_dim_total(bmap->dim);
2229 for (i = 0; i < bmap->n_div; ++i) {
2230 if (!pairs[i])
2231 continue;
2232 for (l = 0; l < bmap->n_ineq; ++l) {
2233 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2234 continue;
2235 for (u = 0; u < bmap->n_ineq; ++u) {
2236 int c;
2238 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2239 continue;
2240 c = div_find_coalesce(bmap, pairs, i, l, u);
2241 if (c < 0)
2242 continue;
2243 free(pairs);
2244 bmap = coalesce_divs(bmap, i, c, l, u);
2245 return isl_basic_map_drop_redundant_divs(bmap);
2250 return drop_more_redundant_divs(bmap, pairs, n);
2253 /* Remove divs that are not strictly needed.
2254 * In particular, if a div only occurs positively (or negatively)
2255 * in constraints, then it can simply be dropped.
2256 * Also, if a div occurs only occurs in two constraints and if moreover
2257 * those two constraints are opposite to each other, except for the constant
2258 * term and if the sum of the constant terms is such that for any value
2259 * of the other values, there is always at least one integer value of the
2260 * div, i.e., if one plus this sum is greater than or equal to
2261 * the (absolute value) of the coefficent of the div in the constraints,
2262 * then we can also simply drop the div.
2264 * If any divs are left after these simple checks then we move on
2265 * to more complicated cases in drop_more_redundant_divs.
2267 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2268 struct isl_basic_map *bmap)
2270 int i, j;
2271 unsigned off;
2272 int *pairs = NULL;
2273 int n = 0;
2275 if (!bmap)
2276 goto error;
2278 off = isl_dim_total(bmap->dim);
2279 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2280 if (!pairs)
2281 goto error;
2283 for (i = 0; i < bmap->n_div; ++i) {
2284 int pos, neg;
2285 int last_pos, last_neg;
2286 int redundant;
2287 int defined;
2289 defined = !isl_int_is_zero(bmap->div[i][0]);
2290 for (j = 0; j < bmap->n_eq; ++j)
2291 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2292 break;
2293 if (j < bmap->n_eq)
2294 continue;
2295 ++n;
2296 pos = neg = 0;
2297 for (j = 0; j < bmap->n_ineq; ++j) {
2298 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2299 last_pos = j;
2300 ++pos;
2302 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2303 last_neg = j;
2304 ++neg;
2307 pairs[i] = pos * neg;
2308 if (pairs[i] == 0) {
2309 for (j = bmap->n_ineq - 1; j >= 0; --j)
2310 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2311 isl_basic_map_drop_inequality(bmap, j);
2312 bmap = isl_basic_map_drop_div(bmap, i);
2313 free(pairs);
2314 return isl_basic_map_drop_redundant_divs(bmap);
2316 if (pairs[i] != 1)
2317 continue;
2318 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2319 bmap->ineq[last_neg] + 1,
2320 off + bmap->n_div))
2321 continue;
2323 isl_int_add(bmap->ineq[last_pos][0],
2324 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2325 isl_int_add_ui(bmap->ineq[last_pos][0],
2326 bmap->ineq[last_pos][0], 1);
2327 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2328 bmap->ineq[last_pos][1+off+i]);
2329 isl_int_sub_ui(bmap->ineq[last_pos][0],
2330 bmap->ineq[last_pos][0], 1);
2331 isl_int_sub(bmap->ineq[last_pos][0],
2332 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2333 if (!redundant) {
2334 if (defined ||
2335 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2336 pairs[i] = 0;
2337 --n;
2338 continue;
2340 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2341 bmap = isl_basic_map_simplify(bmap);
2342 free(pairs);
2343 return isl_basic_map_drop_redundant_divs(bmap);
2345 if (last_pos > last_neg) {
2346 isl_basic_map_drop_inequality(bmap, last_pos);
2347 isl_basic_map_drop_inequality(bmap, last_neg);
2348 } else {
2349 isl_basic_map_drop_inequality(bmap, last_neg);
2350 isl_basic_map_drop_inequality(bmap, last_pos);
2352 bmap = isl_basic_map_drop_div(bmap, i);
2353 free(pairs);
2354 return isl_basic_map_drop_redundant_divs(bmap);
2357 if (n > 0)
2358 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2360 free(pairs);
2361 return bmap;
2362 error:
2363 free(pairs);
2364 isl_basic_map_free(bmap);
2365 return NULL;
2368 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2369 struct isl_basic_set *bset)
2371 return (struct isl_basic_set *)
2372 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2375 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2377 int i;
2379 if (!map)
2380 return NULL;
2381 for (i = 0; i < map->n; ++i) {
2382 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2383 if (!map->p[i])
2384 goto error;
2386 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2387 return map;
2388 error:
2389 isl_map_free(map);
2390 return NULL;
2393 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2395 return (struct isl_set *)
2396 isl_map_drop_redundant_divs((struct isl_map *)set);