2 #include "isl_map_private.h"
3 #include "isl_sample.h"
5 #include "isl_equalities.h"
7 /* Given a basic set "bset", construct a basic set U such that for
8 * each element x in U, the whole unit box positioned at x is inside
10 * Note that U may not contain all points that satisfy this property.
12 * We simply add the sum of all negative coefficients to the constant
13 * term. This ensures that if x satisfies the resulting constraints,
14 * then x plus any sum of unit vectors satisfies the original constraints.
16 static struct isl_basic_set
*unit_box_base_points(struct isl_basic_set
*bset
)
19 struct isl_basic_set
*unit_box
= NULL
;
25 if (bset
->n_eq
!= 0) {
26 unit_box
= isl_basic_set_empty_like(bset
);
27 isl_basic_set_free(bset
);
31 total
= isl_basic_set_total_dim(bset
);
32 unit_box
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
),
35 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
36 k
= isl_basic_set_alloc_inequality(unit_box
);
39 isl_seq_cpy(unit_box
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
40 for (j
= 0; j
< total
; ++j
) {
41 if (isl_int_is_nonneg(unit_box
->ineq
[k
][1 + j
]))
43 isl_int_add(unit_box
->ineq
[k
][0],
44 unit_box
->ineq
[k
][0], unit_box
->ineq
[k
][1 + j
]);
48 isl_basic_set_free(bset
);
51 isl_basic_set_free(bset
);
52 isl_basic_set_free(unit_box
);
56 /* Find an integer point in "bset", preferably one that is
57 * close to minimizing "f".
59 * We first check if we can easily put unit boxes inside bset.
60 * If so, we take the best base point of any of the unit boxes we can find
61 * and round it up to the nearest integer.
62 * If not, we simply pick any integer point in "bset".
64 static struct isl_vec
*initial_solution(struct isl_basic_set
*bset
, isl_int
*f
)
66 enum isl_lp_result res
;
67 struct isl_basic_set
*unit_box
;
70 unit_box
= unit_box_base_points(isl_basic_set_copy(bset
));
72 res
= isl_basic_set_solve_lp(unit_box
, 0, f
, bset
->ctx
->one
,
74 if (res
== isl_lp_ok
) {
75 isl_basic_set_free(unit_box
);
76 return isl_vec_ceil(sol
);
79 isl_basic_set_free(unit_box
);
81 return isl_basic_set_sample(isl_basic_set_copy(bset
));
84 /* Restrict "bset" to those points with values for f in the interval [l, u].
86 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
87 isl_int
*f
, isl_int l
, isl_int u
)
92 total
= isl_basic_set_total_dim(bset
);
93 bset
= isl_basic_set_extend_constraints(bset
, 0, 2);
95 k
= isl_basic_set_alloc_inequality(bset
);
98 isl_seq_cpy(bset
->ineq
[k
], f
, 1 + total
);
99 isl_int_sub(bset
->ineq
[k
][0], bset
->ineq
[k
][0], l
);
101 k
= isl_basic_set_alloc_inequality(bset
);
104 isl_seq_neg(bset
->ineq
[k
], f
, 1 + total
);
105 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], u
);
109 isl_basic_set_free(bset
);
113 /* Find an integer point in "bset" that minimizes f (if any).
114 * If sol_p is not NULL then the integer point is returned in *sol_p.
115 * The optimal value of f is returned in *opt.
117 * The algorithm maintains a currently best solution and an interval [l, u]
118 * of values of f for which integer solutions could potentially still be found.
119 * The initial value of the best solution so far is any solution.
120 * The initial value of l is minimal value of f over the rationals
121 * (rounded up to the nearest integer).
122 * The initial value of u is the value of f at the current solution minus 1.
124 * We perform a number of steps until l > u.
125 * In each step, we look for an integer point with value in either
126 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
127 * The choice depends on whether we have found an integer point in the
128 * previous step. If so, we look for the next point in half of the remaining
130 * If we find a point, the current solution is updated and u is set
131 * to its value minus 1.
132 * If no point can be found, we update l to the upper bound of the interval
133 * we checked (u or l+floor(u-l-1/2)) plus 1.
135 static enum isl_lp_result
solve_ilp(struct isl_basic_set
*bset
,
136 isl_int
*f
, isl_int
*opt
,
137 struct isl_vec
**sol_p
)
139 enum isl_lp_result res
;
144 res
= isl_basic_set_solve_lp(bset
, 0, f
, bset
->ctx
->one
,
146 if (res
== isl_lp_ok
&& isl_int_is_one(sol
->el
[0])) {
154 if (res
== isl_lp_error
|| res
== isl_lp_empty
)
157 sol
= initial_solution(bset
, f
);
160 if (sol
->size
== 0) {
164 if (res
== isl_lp_unbounded
) {
166 return isl_lp_unbounded
;
173 isl_int_set(l
, *opt
);
175 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
176 isl_int_sub_ui(u
, *opt
, 1);
178 while (isl_int_le(l
, u
)) {
179 struct isl_basic_set
*slice
;
180 struct isl_vec
*sample
;
185 isl_int_sub(tmp
, u
, l
);
186 isl_int_fdiv_q_ui(tmp
, tmp
, 2);
187 isl_int_add(tmp
, tmp
, l
);
189 slice
= add_bounds(isl_basic_set_copy(bset
), f
, l
, tmp
);
190 sample
= isl_basic_set_sample(slice
);
197 if (sample
->size
> 0) {
200 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
201 isl_int_sub_ui(u
, *opt
, 1);
204 isl_vec_free(sample
);
207 isl_int_add_ui(l
, tmp
, 1);
224 enum isl_lp_result
solve_ilp_with_eq(struct isl_basic_set
*bset
, int max
,
225 isl_int
*f
, isl_int
*opt
,
226 struct isl_vec
**sol_p
)
229 enum isl_lp_result res
;
230 struct isl_mat
*T
= NULL
;
233 dim
= isl_basic_set_total_dim(bset
);
234 v
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
237 isl_seq_cpy(v
->el
, f
, 1 + dim
);
238 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
239 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
242 res
= isl_basic_set_solve_ilp(bset
, max
, v
->el
, opt
, sol_p
);
244 if (res
== isl_lp_ok
&& *sol_p
) {
245 *sol_p
= isl_mat_vec_product(T
, *sol_p
);
253 isl_basic_set_free(bset
);
257 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
259 * If sol_p is not NULL then the integer point is returned in *sol_p.
260 * The optimal value of f is returned in *opt.
262 * If there is any equality among the points in "bset", then we first
263 * project it out. Otherwise, we continue with solve_ilp above.
265 enum isl_lp_result
isl_basic_set_solve_ilp(struct isl_basic_set
*bset
, int max
,
266 isl_int
*f
, isl_int
*opt
,
267 struct isl_vec
**sol_p
)
270 enum isl_lp_result res
;
277 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
280 return solve_ilp_with_eq(bset
, max
, f
, opt
, sol_p
);
282 dim
= isl_basic_set_total_dim(bset
);
285 isl_seq_neg(f
, f
, 1 + dim
);
287 res
= solve_ilp(bset
, f
, opt
, sol_p
);
290 isl_seq_neg(f
, f
, 1 + dim
);
291 isl_int_neg(*opt
, *opt
);
296 isl_basic_set_free(bset
);