2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
13 #include "isl_sample.h"
15 #include "isl_equalities.h"
16 #include <isl_aff_private.h>
17 #include <isl_local_space_private.h>
18 #include <isl_mat_private.h>
20 /* Given a basic set "bset", construct a basic set U such that for
21 * each element x in U, the whole unit box positioned at x is inside
22 * the given basic set.
23 * Note that U may not contain all points that satisfy this property.
25 * We simply add the sum of all negative coefficients to the constant
26 * term. This ensures that if x satisfies the resulting constraints,
27 * then x plus any sum of unit vectors satisfies the original constraints.
29 static struct isl_basic_set
*unit_box_base_points(struct isl_basic_set
*bset
)
32 struct isl_basic_set
*unit_box
= NULL
;
38 if (bset
->n_eq
!= 0) {
39 unit_box
= isl_basic_set_empty_like(bset
);
40 isl_basic_set_free(bset
);
44 total
= isl_basic_set_total_dim(bset
);
45 unit_box
= isl_basic_set_alloc_space(isl_basic_set_get_space(bset
),
48 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
49 k
= isl_basic_set_alloc_inequality(unit_box
);
52 isl_seq_cpy(unit_box
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
53 for (j
= 0; j
< total
; ++j
) {
54 if (isl_int_is_nonneg(unit_box
->ineq
[k
][1 + j
]))
56 isl_int_add(unit_box
->ineq
[k
][0],
57 unit_box
->ineq
[k
][0], unit_box
->ineq
[k
][1 + j
]);
61 isl_basic_set_free(bset
);
64 isl_basic_set_free(bset
);
65 isl_basic_set_free(unit_box
);
69 /* Find an integer point in "bset", preferably one that is
70 * close to minimizing "f".
72 * We first check if we can easily put unit boxes inside bset.
73 * If so, we take the best base point of any of the unit boxes we can find
74 * and round it up to the nearest integer.
75 * If not, we simply pick any integer point in "bset".
77 static struct isl_vec
*initial_solution(struct isl_basic_set
*bset
, isl_int
*f
)
79 enum isl_lp_result res
;
80 struct isl_basic_set
*unit_box
;
83 unit_box
= unit_box_base_points(isl_basic_set_copy(bset
));
85 res
= isl_basic_set_solve_lp(unit_box
, 0, f
, bset
->ctx
->one
,
87 if (res
== isl_lp_ok
) {
88 isl_basic_set_free(unit_box
);
89 return isl_vec_ceil(sol
);
92 isl_basic_set_free(unit_box
);
94 return isl_basic_set_sample_vec(isl_basic_set_copy(bset
));
97 /* Restrict "bset" to those points with values for f in the interval [l, u].
99 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
100 isl_int
*f
, isl_int l
, isl_int u
)
105 total
= isl_basic_set_total_dim(bset
);
106 bset
= isl_basic_set_extend_constraints(bset
, 0, 2);
108 k
= isl_basic_set_alloc_inequality(bset
);
111 isl_seq_cpy(bset
->ineq
[k
], f
, 1 + total
);
112 isl_int_sub(bset
->ineq
[k
][0], bset
->ineq
[k
][0], l
);
114 k
= isl_basic_set_alloc_inequality(bset
);
117 isl_seq_neg(bset
->ineq
[k
], f
, 1 + total
);
118 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], u
);
122 isl_basic_set_free(bset
);
126 /* Find an integer point in "bset" that minimizes f (in any) such that
127 * the value of f lies inside the interval [l, u].
128 * Return this integer point if it can be found.
129 * Otherwise, return sol.
131 * We perform a number of steps until l > u.
132 * In each step, we look for an integer point with value in either
133 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
134 * The choice depends on whether we have found an integer point in the
135 * previous step. If so, we look for the next point in half of the remaining
137 * If we find a point, the current solution is updated and u is set
138 * to its value minus 1.
139 * If no point can be found, we update l to the upper bound of the interval
140 * we checked (u or l+floor(u-l-1/2)) plus 1.
142 static struct isl_vec
*solve_ilp_search(struct isl_basic_set
*bset
,
143 isl_int
*f
, isl_int
*opt
, struct isl_vec
*sol
, isl_int l
, isl_int u
)
150 while (isl_int_le(l
, u
)) {
151 struct isl_basic_set
*slice
;
152 struct isl_vec
*sample
;
157 isl_int_sub(tmp
, u
, l
);
158 isl_int_fdiv_q_ui(tmp
, tmp
, 2);
159 isl_int_add(tmp
, tmp
, l
);
161 slice
= add_bounds(isl_basic_set_copy(bset
), f
, l
, tmp
);
162 sample
= isl_basic_set_sample_vec(slice
);
168 if (sample
->size
> 0) {
171 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
172 isl_int_sub_ui(u
, *opt
, 1);
175 isl_vec_free(sample
);
178 isl_int_add_ui(l
, tmp
, 1);
188 /* Find an integer point in "bset" that minimizes f (if any).
189 * If sol_p is not NULL then the integer point is returned in *sol_p.
190 * The optimal value of f is returned in *opt.
192 * The algorithm maintains a currently best solution and an interval [l, u]
193 * of values of f for which integer solutions could potentially still be found.
194 * The initial value of the best solution so far is any solution.
195 * The initial value of l is minimal value of f over the rationals
196 * (rounded up to the nearest integer).
197 * The initial value of u is the value of f at the initial solution minus 1.
199 * We then call solve_ilp_search to perform a binary search on the interval.
201 static enum isl_lp_result
solve_ilp(struct isl_basic_set
*bset
,
202 isl_int
*f
, isl_int
*opt
,
203 struct isl_vec
**sol_p
)
205 enum isl_lp_result res
;
209 res
= isl_basic_set_solve_lp(bset
, 0, f
, bset
->ctx
->one
,
211 if (res
== isl_lp_ok
&& isl_int_is_one(sol
->el
[0])) {
219 if (res
== isl_lp_error
|| res
== isl_lp_empty
)
222 sol
= initial_solution(bset
, f
);
225 if (sol
->size
== 0) {
229 if (res
== isl_lp_unbounded
) {
231 return isl_lp_unbounded
;
237 isl_int_set(l
, *opt
);
239 isl_seq_inner_product(f
, sol
->el
, sol
->size
, opt
);
240 isl_int_sub_ui(u
, *opt
, 1);
242 sol
= solve_ilp_search(bset
, f
, opt
, sol
, l
, u
);
257 static enum isl_lp_result
solve_ilp_with_eq(struct isl_basic_set
*bset
, int max
,
258 isl_int
*f
, isl_int
*opt
,
259 struct isl_vec
**sol_p
)
262 enum isl_lp_result res
;
263 struct isl_mat
*T
= NULL
;
266 bset
= isl_basic_set_copy(bset
);
267 dim
= isl_basic_set_total_dim(bset
);
268 v
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
271 isl_seq_cpy(v
->el
, f
, 1 + dim
);
272 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
273 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
276 res
= isl_basic_set_solve_ilp(bset
, max
, v
->el
, opt
, sol_p
);
278 if (res
== isl_lp_ok
&& sol_p
) {
279 *sol_p
= isl_mat_vec_product(T
, *sol_p
);
284 isl_basic_set_free(bset
);
288 isl_basic_set_free(bset
);
292 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
294 * If sol_p is not NULL then the integer point is returned in *sol_p.
295 * The optimal value of f is returned in *opt.
297 * If there is any equality among the points in "bset", then we first
298 * project it out. Otherwise, we continue with solve_ilp above.
300 enum isl_lp_result
isl_basic_set_solve_ilp(struct isl_basic_set
*bset
, int max
,
301 isl_int
*f
, isl_int
*opt
,
302 struct isl_vec
**sol_p
)
305 enum isl_lp_result res
;
312 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
314 if (isl_basic_set_plain_is_empty(bset
))
318 return solve_ilp_with_eq(bset
, max
, f
, opt
, sol_p
);
320 dim
= isl_basic_set_total_dim(bset
);
323 isl_seq_neg(f
, f
, 1 + dim
);
325 res
= solve_ilp(bset
, f
, opt
, sol_p
);
328 isl_seq_neg(f
, f
, 1 + dim
);
329 isl_int_neg(*opt
, *opt
);
334 isl_basic_set_free(bset
);
338 static enum isl_lp_result
basic_set_opt(__isl_keep isl_basic_set
*bset
, int max
,
339 __isl_keep isl_aff
*obj
, isl_int
*opt
)
341 enum isl_lp_result res
;
345 bset
= isl_basic_set_copy(bset
);
346 bset
= isl_basic_set_underlying_set(bset
);
347 res
= isl_basic_set_solve_ilp(bset
, max
, obj
->v
->el
+ 1, opt
, NULL
);
348 isl_basic_set_free(bset
);
352 static __isl_give isl_mat
*extract_divs(__isl_keep isl_basic_set
*bset
)
355 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
358 div
= isl_mat_alloc(ctx
, bset
->n_div
,
359 1 + 1 + isl_basic_set_total_dim(bset
));
363 for (i
= 0; i
< bset
->n_div
; ++i
)
364 isl_seq_cpy(div
->row
[i
], bset
->div
[i
], div
->n_col
);
369 enum isl_lp_result
isl_basic_set_opt(__isl_keep isl_basic_set
*bset
, int max
,
370 __isl_keep isl_aff
*obj
, isl_int
*opt
)
375 isl_mat
*bset_div
= NULL
;
377 enum isl_lp_result res
;
382 ctx
= isl_aff_get_ctx(obj
);
383 if (!isl_space_is_equal(bset
->dim
, obj
->ls
->dim
))
384 isl_die(ctx
, isl_error_invalid
,
385 "spaces don't match", return isl_lp_error
);
386 if (!isl_int_is_one(obj
->v
->el
[0]))
387 isl_die(ctx
, isl_error_unsupported
,
388 "expecting integer affine expression",
389 return isl_lp_error
);
391 if (bset
->n_div
== 0 && obj
->ls
->div
->n_row
== 0)
392 return basic_set_opt(bset
, max
, obj
, opt
);
394 bset
= isl_basic_set_copy(bset
);
395 obj
= isl_aff_copy(obj
);
397 bset_div
= extract_divs(bset
);
398 exp1
= isl_alloc_array(ctx
, int, bset_div
->n_row
);
399 exp2
= isl_alloc_array(ctx
, int, obj
->ls
->div
->n_row
);
400 if (!bset_div
|| !exp1
|| !exp2
)
403 div
= isl_merge_divs(bset_div
, obj
->ls
->div
, exp1
, exp2
);
405 bset
= isl_basic_set_expand_divs(bset
, isl_mat_copy(div
), exp1
);
406 obj
= isl_aff_expand_divs(obj
, isl_mat_copy(div
), exp2
);
408 res
= basic_set_opt(bset
, max
, obj
, opt
);
410 isl_mat_free(bset_div
);
414 isl_basic_set_free(bset
);
420 isl_mat_free(bset_div
);
423 isl_basic_set_free(bset
);
428 /* Compute the minimum (maximum if max is set) of the integer affine
429 * expression obj over the points in set and put the result in *opt.
431 * The parameters are assumed to have been aligned.
433 static enum isl_lp_result
isl_set_opt_aligned(__isl_keep isl_set
*set
, int max
,
434 __isl_keep isl_aff
*obj
, isl_int
*opt
)
437 enum isl_lp_result res
;
446 res
= isl_basic_set_opt(set
->p
[0], max
, obj
, opt
);
447 if (res
== isl_lp_error
|| res
== isl_lp_unbounded
)
451 if (res
== isl_lp_ok
)
455 for (i
= 1; i
< set
->n
; ++i
) {
456 res
= isl_basic_set_opt(set
->p
[i
], max
, obj
, &opt_i
);
457 if (res
== isl_lp_error
|| res
== isl_lp_unbounded
) {
458 isl_int_clear(opt_i
);
461 if (res
== isl_lp_ok
)
463 if (isl_int_gt(opt_i
, *opt
))
464 isl_int_set(*opt
, opt_i
);
466 isl_int_clear(opt_i
);
468 return empty
? isl_lp_empty
: isl_lp_ok
;
471 /* Compute the minimum (maximum if max is set) of the integer affine
472 * expression obj over the points in set and put the result in *opt.
474 enum isl_lp_result
isl_set_opt(__isl_keep isl_set
*set
, int max
,
475 __isl_keep isl_aff
*obj
, isl_int
*opt
)
477 enum isl_lp_result res
;
482 if (isl_space_match(set
->dim
, isl_dim_param
,
483 obj
->ls
->dim
, isl_dim_param
))
484 return isl_set_opt_aligned(set
, max
, obj
, opt
);
486 set
= isl_set_copy(set
);
487 obj
= isl_aff_copy(obj
);
488 set
= isl_set_align_params(set
, isl_aff_get_domain_space(obj
));
489 obj
= isl_aff_align_params(obj
, isl_set_get_space(set
));
491 res
= isl_set_opt_aligned(set
, max
, obj
, opt
);
499 enum isl_lp_result
isl_basic_set_max(__isl_keep isl_basic_set
*bset
,
500 __isl_keep isl_aff
*obj
, isl_int
*opt
)
502 return isl_basic_set_opt(bset
, 1, obj
, opt
);
505 enum isl_lp_result
isl_set_max(__isl_keep isl_set
*set
,
506 __isl_keep isl_aff
*obj
, isl_int
*opt
)
508 return isl_set_opt(set
, 1, obj
, opt
);
511 enum isl_lp_result
isl_set_min(__isl_keep isl_set
*set
,
512 __isl_keep isl_aff
*obj
, isl_int
*opt
)
514 return isl_set_opt(set
, 0, obj
, opt
);