2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_map_private.h>
11 #include "isl_equalities.h"
15 #include <isl_dim_private.h>
16 #include <isl_mat_private.h>
18 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
20 isl_int
*t
= bmap
->eq
[a
];
21 bmap
->eq
[a
] = bmap
->eq
[b
];
25 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
28 isl_int
*t
= bmap
->ineq
[a
];
29 bmap
->ineq
[a
] = bmap
->ineq
[b
];
34 static void set_swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
36 swap_inequality((struct isl_basic_map
*)bset
, a
, b
);
39 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
41 isl_seq_cpy(c
, c
+ n
, rem
);
42 isl_seq_clr(c
+ rem
, n
);
45 /* Drop n dimensions starting at first.
47 * In principle, this frees up some extra variables as the number
48 * of columns remains constant, but we would have to extend
49 * the div array too as the number of rows in this array is assumed
50 * to be equal to extra.
52 struct isl_basic_set
*isl_basic_set_drop_dims(
53 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
60 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
62 if (n
== 0 && !isl_dim_get_tuple_name(bset
->dim
, isl_dim_set
))
65 bset
= isl_basic_set_cow(bset
);
69 for (i
= 0; i
< bset
->n_eq
; ++i
)
70 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
71 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
73 for (i
= 0; i
< bset
->n_ineq
; ++i
)
74 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
75 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
77 for (i
= 0; i
< bset
->n_div
; ++i
)
78 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
79 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
81 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
85 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
86 bset
= isl_basic_set_simplify(bset
);
87 return isl_basic_set_finalize(bset
);
89 isl_basic_set_free(bset
);
93 struct isl_set
*isl_set_drop_dims(
94 struct isl_set
*set
, unsigned first
, unsigned n
)
101 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
103 if (n
== 0 && !isl_dim_get_tuple_name(set
->dim
, isl_dim_set
))
105 set
= isl_set_cow(set
);
108 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
112 for (i
= 0; i
< set
->n
; ++i
) {
113 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
118 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
125 /* Move "n" divs starting at "first" to the end of the list of divs.
127 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
128 unsigned first
, unsigned n
)
133 if (first
+ n
== bmap
->n_div
)
136 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
139 for (i
= 0; i
< n
; ++i
)
140 div
[i
] = bmap
->div
[first
+ i
];
141 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
142 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
143 for (i
= 0; i
< n
; ++i
)
144 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
148 isl_basic_map_free(bmap
);
152 /* Drop "n" dimensions of type "type" starting at "first".
154 * In principle, this frees up some extra variables as the number
155 * of columns remains constant, but we would have to extend
156 * the div array too as the number of rows in this array is assumed
157 * to be equal to extra.
159 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
160 enum isl_dim_type type
, unsigned first
, unsigned n
)
170 dim
= isl_basic_map_dim(bmap
, type
);
171 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
173 if (n
== 0 && !isl_dim_get_tuple_name(bmap
->dim
, type
))
176 bmap
= isl_basic_map_cow(bmap
);
180 offset
= isl_basic_map_offset(bmap
, type
) + first
;
181 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
182 for (i
= 0; i
< bmap
->n_eq
; ++i
)
183 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
185 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
186 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
188 for (i
= 0; i
< bmap
->n_div
; ++i
)
189 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
191 if (type
== isl_dim_div
) {
192 bmap
= move_divs_last(bmap
, first
, n
);
195 isl_basic_map_free_div(bmap
, n
);
197 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
201 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
202 bmap
= isl_basic_map_simplify(bmap
);
203 return isl_basic_map_finalize(bmap
);
205 isl_basic_map_free(bmap
);
209 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
210 enum isl_dim_type type
, unsigned first
, unsigned n
)
212 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
216 struct isl_basic_map
*isl_basic_map_drop_inputs(
217 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
219 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
222 struct isl_map
*isl_map_drop(struct isl_map
*map
,
223 enum isl_dim_type type
, unsigned first
, unsigned n
)
230 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
232 if (n
== 0 && !isl_dim_get_tuple_name(map
->dim
, type
))
234 map
= isl_map_cow(map
);
237 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
241 for (i
= 0; i
< map
->n
; ++i
) {
242 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
246 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
254 struct isl_set
*isl_set_drop(struct isl_set
*set
,
255 enum isl_dim_type type
, unsigned first
, unsigned n
)
257 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
260 struct isl_map
*isl_map_drop_inputs(
261 struct isl_map
*map
, unsigned first
, unsigned n
)
263 return isl_map_drop(map
, isl_dim_in
, first
, n
);
267 * We don't cow, as the div is assumed to be redundant.
269 static struct isl_basic_map
*isl_basic_map_drop_div(
270 struct isl_basic_map
*bmap
, unsigned div
)
278 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
280 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
282 for (i
= 0; i
< bmap
->n_eq
; ++i
)
283 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
285 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
286 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
287 isl_basic_map_drop_inequality(bmap
, i
);
291 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
294 for (i
= 0; i
< bmap
->n_div
; ++i
)
295 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
297 if (div
!= bmap
->n_div
- 1) {
299 isl_int
*t
= bmap
->div
[div
];
301 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
302 bmap
->div
[j
] = bmap
->div
[j
+1];
304 bmap
->div
[bmap
->n_div
- 1] = t
;
306 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
307 isl_basic_map_free_div(bmap
, 1);
311 isl_basic_map_free(bmap
);
315 struct isl_basic_map
*isl_basic_map_normalize_constraints(
316 struct isl_basic_map
*bmap
)
320 unsigned total
= isl_basic_map_total_dim(bmap
);
326 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
327 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
328 if (isl_int_is_zero(gcd
)) {
329 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
330 bmap
= isl_basic_map_set_to_empty(bmap
);
333 isl_basic_map_drop_equality(bmap
, i
);
336 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
337 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
338 if (isl_int_is_one(gcd
))
340 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
341 bmap
= isl_basic_map_set_to_empty(bmap
);
344 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
347 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
348 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
349 if (isl_int_is_zero(gcd
)) {
350 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
351 bmap
= isl_basic_map_set_to_empty(bmap
);
354 isl_basic_map_drop_inequality(bmap
, i
);
357 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
358 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
359 if (isl_int_is_one(gcd
))
361 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
362 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
369 struct isl_basic_set
*isl_basic_set_normalize_constraints(
370 struct isl_basic_set
*bset
)
372 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
373 (struct isl_basic_map
*)bset
);
376 /* Assumes divs have been ordered if keep_divs is set.
378 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
379 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
385 total
= isl_basic_map_total_dim(bmap
);
386 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
388 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
389 if (bmap
->eq
[k
] == eq
)
391 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
395 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
396 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
399 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
400 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
404 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
405 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
406 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
409 for (k
= 0; k
< bmap
->n_div
; ++k
) {
410 if (isl_int_is_zero(bmap
->div
[k
][0]))
412 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
416 /* We need to be careful about circular definitions,
417 * so for now we just remove the definition of div k
418 * if the equality contains any divs.
419 * If keep_divs is set, then the divs have been ordered
420 * and we can keep the definition as long as the result
423 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
424 isl_seq_elim(bmap
->div
[k
]+1, eq
,
425 1+pos
, 1+total
, &bmap
->div
[k
][0]);
427 isl_seq_clr(bmap
->div
[k
], 1 + total
);
428 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
432 /* Assumes divs have been ordered if keep_divs is set.
434 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
435 unsigned div
, int keep_divs
)
437 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
439 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
441 isl_basic_map_drop_div(bmap
, div
);
444 /* Check if elimination of div "div" using equality "eq" would not
445 * result in a div depending on a later div.
447 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
452 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
454 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
456 if (last_div
< 0 || last_div
<= div
)
459 for (k
= 0; k
<= last_div
; ++k
) {
460 if (isl_int_is_zero(bmap
->div
[k
][0]))
462 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
469 /* Elimininate divs based on equalities
471 static struct isl_basic_map
*eliminate_divs_eq(
472 struct isl_basic_map
*bmap
, int *progress
)
479 bmap
= isl_basic_map_order_divs(bmap
);
484 off
= 1 + isl_dim_total(bmap
->dim
);
486 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
487 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
488 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
489 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
491 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
495 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
496 isl_basic_map_drop_equality(bmap
, i
);
501 return eliminate_divs_eq(bmap
, progress
);
505 /* Elimininate divs based on inequalities
507 static struct isl_basic_map
*eliminate_divs_ineq(
508 struct isl_basic_map
*bmap
, int *progress
)
519 off
= 1 + isl_dim_total(bmap
->dim
);
521 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
522 for (i
= 0; i
< bmap
->n_eq
; ++i
)
523 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
527 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
528 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
530 if (i
< bmap
->n_ineq
)
533 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
534 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
536 bmap
= isl_basic_map_drop_div(bmap
, d
);
543 struct isl_basic_map
*isl_basic_map_gauss(
544 struct isl_basic_map
*bmap
, int *progress
)
552 bmap
= isl_basic_map_order_divs(bmap
);
557 total
= isl_basic_map_total_dim(bmap
);
558 total_var
= total
- bmap
->n_div
;
560 last_var
= total
- 1;
561 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
562 for (; last_var
>= 0; --last_var
) {
563 for (k
= done
; k
< bmap
->n_eq
; ++k
)
564 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
572 swap_equality(bmap
, k
, done
);
573 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
574 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
576 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
579 if (last_var
>= total_var
&&
580 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
581 unsigned div
= last_var
- total_var
;
582 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
583 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
584 isl_int_set(bmap
->div
[div
][0],
585 bmap
->eq
[done
][1+last_var
]);
586 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
589 if (done
== bmap
->n_eq
)
591 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
592 if (isl_int_is_zero(bmap
->eq
[k
][0]))
594 return isl_basic_map_set_to_empty(bmap
);
596 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
600 struct isl_basic_set
*isl_basic_set_gauss(
601 struct isl_basic_set
*bset
, int *progress
)
603 return (struct isl_basic_set
*)isl_basic_map_gauss(
604 (struct isl_basic_map
*)bset
, progress
);
608 static unsigned int round_up(unsigned int v
)
619 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
620 struct isl_basic_map
*bmap
, int k
)
623 unsigned total
= isl_basic_map_total_dim(bmap
);
624 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
625 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
626 if (&bmap
->ineq
[k
] != index
[h
] &&
627 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
632 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
633 struct isl_basic_set
*bset
, int k
)
635 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
638 /* If we can eliminate more than one div, then we need to make
639 * sure we do it from last div to first div, in order not to
640 * change the position of the other divs that still need to
643 static struct isl_basic_map
*remove_duplicate_divs(
644 struct isl_basic_map
*bmap
, int *progress
)
656 if (!bmap
|| bmap
->n_div
<= 1)
659 total_var
= isl_dim_total(bmap
->dim
);
660 total
= total_var
+ bmap
->n_div
;
663 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
664 if (!isl_int_is_zero(bmap
->div
[k
][0]))
669 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
670 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
671 bits
= ffs(size
) - 1;
672 index
= isl_calloc_array(ctx
, int, size
);
675 eq
= isl_blk_alloc(ctx
, 1+total
);
676 if (isl_blk_is_error(eq
))
679 isl_seq_clr(eq
.data
, 1+total
);
680 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
681 for (--k
; k
>= 0; --k
) {
684 if (isl_int_is_zero(bmap
->div
[k
][0]))
687 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
688 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
689 if (isl_seq_eq(bmap
->div
[k
],
690 bmap
->div
[index
[h
]-1], 2+total
))
699 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
703 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
704 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
705 eliminate_div(bmap
, eq
.data
, l
, 0);
706 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
707 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
710 isl_blk_free(ctx
, eq
);
717 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
722 total
= isl_dim_total(bmap
->dim
);
723 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
724 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
728 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
734 /* Normalize divs that appear in equalities.
736 * In particular, we assume that bmap contains some equalities
741 * and we want to replace the set of e_i by a minimal set and
742 * such that the new e_i have a canonical representation in terms
744 * If any of the equalities involves more than one divs, then
745 * we currently simply bail out.
747 * Let us first additionally assume that all equalities involve
748 * a div. The equalities then express modulo constraints on the
749 * remaining variables and we can use "parameter compression"
750 * to find a minimal set of constraints. The result is a transformation
752 * x = T(x') = x_0 + G x'
754 * with G a lower-triangular matrix with all elements below the diagonal
755 * non-negative and smaller than the diagonal element on the same row.
756 * We first normalize x_0 by making the same property hold in the affine
758 * The rows i of G with a 1 on the diagonal do not impose any modulo
759 * constraint and simply express x_i = x'_i.
760 * For each of the remaining rows i, we introduce a div and a corresponding
761 * equality. In particular
763 * g_ii e_j = x_i - g_i(x')
765 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
766 * corresponding div (if g_kk != 1).
768 * If there are any equalities not involving any div, then we
769 * first apply a variable compression on the variables x:
771 * x = C x'' x'' = C_2 x
773 * and perform the above parameter compression on A C instead of on A.
774 * The resulting compression is then of the form
776 * x'' = T(x') = x_0 + G x'
778 * and in constructing the new divs and the corresponding equalities,
779 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
780 * by the corresponding row from C_2.
782 static struct isl_basic_map
*normalize_divs(
783 struct isl_basic_map
*bmap
, int *progress
)
790 struct isl_mat
*T
= NULL
;
791 struct isl_mat
*C
= NULL
;
792 struct isl_mat
*C2
= NULL
;
800 if (bmap
->n_div
== 0)
806 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
809 total
= isl_dim_total(bmap
->dim
);
810 div_eq
= n_pure_div_eq(bmap
);
814 if (div_eq
< bmap
->n_eq
) {
815 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, div_eq
,
816 bmap
->n_eq
- div_eq
, 0, 1 + total
);
817 C
= isl_mat_variable_compression(B
, &C2
);
821 bmap
= isl_basic_map_set_to_empty(bmap
);
828 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
831 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
832 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
834 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
836 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
839 B
= isl_mat_product(B
, C
);
843 T
= isl_mat_parameter_compression(B
, d
);
847 bmap
= isl_basic_map_set_to_empty(bmap
);
853 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
854 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
855 if (isl_int_is_zero(v
))
857 isl_mat_col_submul(T
, 0, v
, 1 + i
);
860 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
863 /* We have to be careful because dropping equalities may reorder them */
865 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
866 for (i
= 0; i
< bmap
->n_eq
; ++i
)
867 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
869 if (i
< bmap
->n_eq
) {
870 bmap
= isl_basic_map_drop_div(bmap
, j
);
871 isl_basic_map_drop_equality(bmap
, i
);
877 for (i
= 1; i
< T
->n_row
; ++i
) {
878 if (isl_int_is_one(T
->row
[i
][i
]))
883 if (needed
> dropped
) {
884 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
889 for (i
= 1; i
< T
->n_row
; ++i
) {
890 if (isl_int_is_one(T
->row
[i
][i
]))
892 k
= isl_basic_map_alloc_div(bmap
);
893 pos
[i
] = 1 + total
+ k
;
894 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
895 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
897 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
899 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
900 for (j
= 0; j
< i
; ++j
) {
901 if (isl_int_is_zero(T
->row
[i
][j
]))
903 if (pos
[j
] < T
->n_row
&& C2
)
904 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
905 C2
->row
[pos
[j
]], 1 + total
);
907 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
910 j
= isl_basic_map_alloc_equality(bmap
);
911 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
912 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
921 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
931 static struct isl_basic_map
*set_div_from_lower_bound(
932 struct isl_basic_map
*bmap
, int div
, int ineq
)
934 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
936 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
937 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
938 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
939 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
940 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
945 /* Check whether it is ok to define a div based on an inequality.
946 * To avoid the introduction of circular definitions of divs, we
947 * do not allow such a definition if the resulting expression would refer to
948 * any other undefined divs or if any known div is defined in
949 * terms of the unknown div.
951 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
955 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
957 /* Not defined in terms of unknown divs */
958 for (j
= 0; j
< bmap
->n_div
; ++j
) {
961 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
963 if (isl_int_is_zero(bmap
->div
[j
][0]))
967 /* No other div defined in terms of this one => avoid loops */
968 for (j
= 0; j
< bmap
->n_div
; ++j
) {
971 if (isl_int_is_zero(bmap
->div
[j
][0]))
973 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
980 /* Given two constraints "k" and "l" that are opposite to each other,
981 * except for the constant term, check if we can use them
982 * to obtain an expression for one of the hitherto unknown divs.
983 * "sum" is the sum of the constant terms of the constraints.
984 * If this sum is strictly smaller than the coefficient of one
985 * of the divs, then this pair can be used define the div.
986 * To avoid the introduction of circular definitions of divs, we
987 * do not use the pair if the resulting expression would refer to
988 * any other undefined divs or if any known div is defined in
989 * terms of the unknown div.
991 static struct isl_basic_map
*check_for_div_constraints(
992 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
995 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
997 for (i
= 0; i
< bmap
->n_div
; ++i
) {
998 if (!isl_int_is_zero(bmap
->div
[i
][0]))
1000 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1002 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1004 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1006 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1007 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1009 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1017 static struct isl_basic_map
*remove_duplicate_constraints(
1018 struct isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1024 unsigned total
= isl_basic_map_total_dim(bmap
);
1027 if (!bmap
|| bmap
->n_ineq
<= 1)
1030 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1031 bits
= ffs(size
) - 1;
1032 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1036 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1037 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1038 h
= hash_index(index
, size
, bits
, bmap
, k
);
1040 index
[h
] = &bmap
->ineq
[k
];
1045 l
= index
[h
] - &bmap
->ineq
[0];
1046 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1047 swap_inequality(bmap
, k
, l
);
1048 isl_basic_map_drop_inequality(bmap
, k
);
1052 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1053 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1054 h
= hash_index(index
, size
, bits
, bmap
, k
);
1055 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1058 l
= index
[h
] - &bmap
->ineq
[0];
1059 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1060 if (isl_int_is_pos(sum
)) {
1062 bmap
= check_for_div_constraints(bmap
, k
, l
,
1066 if (isl_int_is_zero(sum
)) {
1067 /* We need to break out of the loop after these
1068 * changes since the contents of the hash
1069 * will no longer be valid.
1070 * Plus, we probably we want to regauss first.
1074 isl_basic_map_drop_inequality(bmap
, l
);
1075 isl_basic_map_inequality_to_equality(bmap
, k
);
1077 bmap
= isl_basic_map_set_to_empty(bmap
);
1087 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1094 bmap
= isl_basic_map_normalize_constraints(bmap
);
1095 bmap
= remove_duplicate_divs(bmap
, &progress
);
1096 bmap
= eliminate_divs_eq(bmap
, &progress
);
1097 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1098 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1099 /* requires equalities in normal form */
1100 bmap
= normalize_divs(bmap
, &progress
);
1101 bmap
= remove_duplicate_constraints(bmap
, &progress
, 1);
1106 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1108 return (struct isl_basic_set
*)
1109 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1113 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1114 isl_int
*constraint
, unsigned div
)
1121 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1123 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1125 isl_int_sub(bmap
->div
[div
][1],
1126 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1127 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1128 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1129 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1130 isl_int_add(bmap
->div
[div
][1],
1131 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1134 if (isl_seq_first_non_zero(constraint
+pos
+1,
1135 bmap
->n_div
-div
-1) != -1)
1137 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1138 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1140 if (isl_seq_first_non_zero(constraint
+pos
+1,
1141 bmap
->n_div
-div
-1) != -1)
1150 /* If the only constraints a div d=floor(f/m)
1151 * appears in are its two defining constraints
1154 * -(f - (m - 1)) + m d >= 0
1156 * then it can safely be removed.
1158 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1161 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1163 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1164 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1167 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1168 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1170 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1174 for (i
= 0; i
< bmap
->n_div
; ++i
)
1175 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1182 * Remove divs that don't occur in any of the constraints or other divs.
1183 * These can arise when dropping some of the variables in a quast
1184 * returned by piplib.
1186 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1193 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1194 if (!div_is_redundant(bmap
, i
))
1196 bmap
= isl_basic_map_drop_div(bmap
, i
);
1201 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1203 bmap
= remove_redundant_divs(bmap
);
1206 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1210 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1212 return (struct isl_basic_set
*)
1213 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1216 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1222 for (i
= 0; i
< set
->n
; ++i
) {
1223 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1233 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1239 for (i
= 0; i
< map
->n
; ++i
) {
1240 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1244 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1252 /* Remove definition of any div that is defined in terms of the given variable.
1253 * The div itself is not removed. Functions such as
1254 * eliminate_divs_ineq depend on the other divs remaining in place.
1256 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1261 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1262 if (isl_int_is_zero(bmap
->div
[i
][0]))
1264 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1266 isl_int_set_si(bmap
->div
[i
][0], 0);
1271 /* Eliminate the specified variables from the constraints using
1272 * Fourier-Motzkin. The variables themselves are not removed.
1274 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1275 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1285 total
= isl_basic_map_total_dim(bmap
);
1287 bmap
= isl_basic_map_cow(bmap
);
1288 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1289 bmap
= remove_dependent_vars(bmap
, d
);
1291 for (d
= pos
+ n
- 1;
1292 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1293 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1294 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1295 int n_lower
, n_upper
;
1298 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1299 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1301 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1302 isl_basic_map_drop_equality(bmap
, i
);
1309 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1310 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1312 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1315 bmap
= isl_basic_map_extend_constraints(bmap
,
1316 0, n_lower
* n_upper
);
1319 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1321 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1324 for (j
= 0; j
< i
; ++j
) {
1325 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1328 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1329 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1331 k
= isl_basic_map_alloc_inequality(bmap
);
1334 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1336 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1337 1+d
, 1+total
, NULL
);
1339 isl_basic_map_drop_inequality(bmap
, i
);
1342 if (n_lower
> 0 && n_upper
> 0) {
1343 bmap
= isl_basic_map_normalize_constraints(bmap
);
1344 bmap
= remove_duplicate_constraints(bmap
, NULL
, 0);
1345 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1346 bmap
= isl_basic_map_remove_redundancies(bmap
);
1349 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1353 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1356 isl_basic_map_free(bmap
);
1360 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1361 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1363 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1364 (struct isl_basic_map
*)bset
, pos
, n
);
1367 /* Don't assume equalities are in order, because align_divs
1368 * may have changed the order of the divs.
1370 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1375 total
= isl_dim_total(bmap
->dim
);
1376 for (d
= 0; d
< total
; ++d
)
1378 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1379 for (d
= total
- 1; d
>= 0; --d
) {
1380 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1388 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1390 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1393 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1394 struct isl_basic_map
*bmap
, int *elim
)
1400 total
= isl_dim_total(bmap
->dim
);
1401 for (d
= total
- 1; d
>= 0; --d
) {
1402 if (isl_int_is_zero(src
[1+d
]))
1407 isl_seq_cpy(dst
, src
, 1 + total
);
1410 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1415 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1416 struct isl_basic_set
*bset
, int *elim
)
1418 return reduced_using_equalities(dst
, src
,
1419 (struct isl_basic_map
*)bset
, elim
);
1422 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1423 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1428 if (!bset
|| !context
)
1431 if (context
->n_eq
== 0) {
1432 isl_basic_set_free(context
);
1436 bset
= isl_basic_set_cow(bset
);
1440 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1443 set_compute_elimination_index(context
, elim
);
1444 for (i
= 0; i
< bset
->n_eq
; ++i
)
1445 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1447 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1448 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1450 isl_basic_set_free(context
);
1452 bset
= isl_basic_set_simplify(bset
);
1453 bset
= isl_basic_set_finalize(bset
);
1456 isl_basic_set_free(bset
);
1457 isl_basic_set_free(context
);
1461 static struct isl_basic_set
*remove_shifted_constraints(
1462 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1472 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1473 bits
= ffs(size
) - 1;
1474 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1478 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1479 h
= set_hash_index(index
, size
, bits
, context
, k
);
1480 index
[h
] = &context
->ineq
[k
];
1482 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1483 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1486 l
= index
[h
] - &context
->ineq
[0];
1487 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1489 bset
= isl_basic_set_cow(bset
);
1492 isl_basic_set_drop_inequality(bset
, k
);
1502 /* Tighten (decrease) the constant terms of the inequalities based
1503 * on the equalities, without removing any integer points.
1504 * For example, if there is an equality
1512 * then we want to replace the inequality by
1516 * We do this by computing a variable compression and translating
1517 * the constraints to the compressed space.
1518 * If any constraint has coefficients (except the contant term)
1519 * with a common factor "f", then we can replace the constant term "c"
1526 * f * floor(c/f) - c = -fract(c/f)
1528 * and we can add the same value to the original constraint.
1530 * In the example, the compressed space only contains "j",
1531 * and the inequality translates to
1535 * We add -fract(-1/3) = -2 to the original constraint to obtain
1539 static struct isl_basic_set
*normalize_constraints_in_compressed_space(
1540 struct isl_basic_set
*bset
)
1544 struct isl_mat
*B
, *C
;
1550 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
))
1556 bset
= isl_basic_set_cow(bset
);
1560 total
= isl_basic_set_total_dim(bset
);
1561 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + total
);
1562 C
= isl_mat_variable_compression(B
, NULL
);
1565 if (C
->n_col
== 0) {
1567 return isl_basic_set_set_to_empty(bset
);
1569 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->ineq
,
1570 0, bset
->n_ineq
, 0, 1 + total
);
1571 C
= isl_mat_product(B
, C
);
1576 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1577 isl_seq_gcd(C
->row
[i
] + 1, C
->n_col
- 1, &gcd
);
1578 if (isl_int_is_one(gcd
))
1580 isl_int_fdiv_r(C
->row
[i
][0], C
->row
[i
][0], gcd
);
1581 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], C
->row
[i
][0]);
1590 /* Remove all information from bset that is redundant in the context
1591 * of context. Both bset and context are assumed to be full-dimensional.
1593 * We first * remove the inequalities from "bset"
1594 * that are obviously redundant with respect to some inequality in "context".
1596 * If there are any inequalities left, we construct a tableau for
1597 * the context and then add the inequalities of "bset".
1598 * Before adding these inequalities, we freeze all constraints such that
1599 * they won't be considered redundant in terms of the constraints of "bset".
1600 * Then we detect all redundant constraints (among the
1601 * constraints that weren't frozen), first by checking for redundancy in the
1602 * the tableau and then by checking if replacing a constraint by its negation
1603 * would lead to an empty set. This last step is fairly expensive
1604 * and could be optimized by more reuse of the tableau.
1605 * Finally, we update bset according to the results.
1607 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1608 __isl_take isl_basic_set
*context
)
1611 isl_basic_set
*combined
= NULL
;
1612 struct isl_tab
*tab
= NULL
;
1613 unsigned context_ineq
;
1616 if (!bset
|| !context
)
1619 if (isl_basic_set_is_universe(bset
)) {
1620 isl_basic_set_free(context
);
1624 if (isl_basic_set_is_universe(context
)) {
1625 isl_basic_set_free(context
);
1629 bset
= remove_shifted_constraints(bset
, context
);
1632 if (bset
->n_ineq
== 0)
1635 context_ineq
= context
->n_ineq
;
1636 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1637 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1638 tab
= isl_tab_from_basic_set(combined
);
1639 for (i
= 0; i
< context_ineq
; ++i
)
1640 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1642 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1643 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1644 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1646 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1650 if (isl_tab_detect_redundant(tab
) < 0)
1652 total
= isl_basic_set_total_dim(bset
);
1653 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
1655 if (tab
->con
[i
].is_redundant
)
1657 tab
->con
[i
].is_redundant
= 1;
1658 combined
= isl_basic_set_dup(bset
);
1659 combined
= isl_basic_set_update_from_tab(combined
, tab
);
1660 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
1661 k
= isl_basic_set_alloc_inequality(combined
);
1664 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
1665 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
1666 is_empty
= isl_basic_set_is_empty(combined
);
1669 isl_basic_set_free(combined
);
1672 tab
->con
[i
].is_redundant
= 0;
1674 for (i
= 0; i
< context_ineq
; ++i
)
1675 tab
->con
[i
].is_redundant
= 1;
1676 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1678 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1679 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1684 bset
= isl_basic_set_simplify(bset
);
1685 bset
= isl_basic_set_finalize(bset
);
1686 isl_basic_set_free(context
);
1690 isl_basic_set_free(combined
);
1691 isl_basic_set_free(context
);
1692 isl_basic_set_free(bset
);
1696 /* Remove all information from bset that is redundant in the context
1697 * of context. In particular, equalities that are linear combinations
1698 * of those in context are removed. Then the inequalities that are
1699 * redundant in the context of the equalities and inequalities of
1700 * context are removed.
1702 * We first compute the integer affine hull of the intersection,
1703 * compute the gist inside this affine hull and then add back
1704 * those equalities that are not implied by the context.
1706 * If two constraints are mutually redundant, then uset_gist_full
1707 * will remove the second of those constraints. We therefore first
1708 * sort the constraints so that constraints not involving existentially
1709 * quantified variables are given precedence over those that do.
1710 * We have to perform this sorting before the variable compression,
1711 * because that may effect the order of the variables.
1713 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
1714 __isl_take isl_basic_set
*context
)
1719 isl_basic_set
*aff_context
;
1722 if (!bset
|| !context
)
1725 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
1726 if (isl_basic_set_fast_is_empty(bset
)) {
1727 isl_basic_set_free(context
);
1730 bset
= isl_basic_set_sort_constraints(bset
);
1731 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
1734 if (isl_basic_set_fast_is_empty(aff
)) {
1735 isl_basic_set_free(aff
);
1736 isl_basic_set_free(context
);
1739 if (aff
->n_eq
== 0) {
1740 isl_basic_set_free(aff
);
1741 return uset_gist_full(bset
, context
);
1743 total
= isl_basic_set_total_dim(bset
);
1744 eq
= isl_mat_sub_alloc(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
1745 eq
= isl_mat_cow(eq
);
1746 T
= isl_mat_variable_compression(eq
, &T2
);
1747 if (T
&& T
->n_col
== 0) {
1750 isl_basic_set_free(context
);
1751 isl_basic_set_free(aff
);
1752 return isl_basic_set_set_to_empty(bset
);
1755 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
1757 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
1758 context
= isl_basic_set_preimage(context
, T
);
1760 bset
= uset_gist_full(bset
, context
);
1761 bset
= isl_basic_set_preimage(bset
, T2
);
1762 bset
= isl_basic_set_intersect(bset
, aff
);
1763 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
1766 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1767 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1772 isl_basic_set_free(bset
);
1773 isl_basic_set_free(context
);
1777 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1778 * We simply add the equalities in context to bmap and then do a regular
1779 * div normalizations. Better results can be obtained by normalizing
1780 * only the divs in bmap than do not also appear in context.
1781 * We need to be careful to reduce the divs using the equalities
1782 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1783 * spurious constraints.
1785 static struct isl_basic_map
*normalize_divs_in_context(
1786 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1789 unsigned total_context
;
1792 div_eq
= n_pure_div_eq(bmap
);
1796 if (context
->n_div
> 0)
1797 bmap
= isl_basic_map_align_divs(bmap
, context
);
1799 total_context
= isl_basic_map_total_dim(context
);
1800 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1801 for (i
= 0; i
< context
->n_eq
; ++i
) {
1803 k
= isl_basic_map_alloc_equality(bmap
);
1804 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1805 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1806 isl_basic_map_total_dim(bmap
) - total_context
);
1808 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1809 bmap
= normalize_divs(bmap
, NULL
);
1810 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1814 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1815 struct isl_basic_map
*context
)
1817 struct isl_basic_set
*bset
;
1819 if (!bmap
|| !context
)
1822 if (isl_basic_map_is_universe(bmap
)) {
1823 isl_basic_map_free(context
);
1826 if (isl_basic_map_fast_is_empty(context
)) {
1827 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1828 isl_basic_map_free(context
);
1829 isl_basic_map_free(bmap
);
1830 return isl_basic_map_universe(dim
);
1832 if (isl_basic_map_fast_is_empty(bmap
)) {
1833 isl_basic_map_free(context
);
1837 bmap
= isl_basic_map_remove_redundancies(bmap
);
1838 context
= isl_basic_map_remove_redundancies(context
);
1841 bmap
= normalize_divs_in_context(bmap
, context
);
1843 context
= isl_basic_map_align_divs(context
, bmap
);
1844 bmap
= isl_basic_map_align_divs(bmap
, context
);
1846 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1847 isl_basic_map_underlying_set(context
));
1849 return isl_basic_map_overlying_set(bset
, bmap
);
1851 isl_basic_map_free(bmap
);
1852 isl_basic_map_free(context
);
1857 * Assumes context has no implicit divs.
1859 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
1860 __isl_take isl_basic_map
*context
)
1864 if (!map
|| !context
)
1867 if (isl_basic_map_fast_is_empty(context
)) {
1868 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1869 isl_basic_map_free(context
);
1871 return isl_map_universe(dim
);
1874 context
= isl_basic_map_remove_redundancies(context
);
1875 map
= isl_map_cow(map
);
1876 if (!map
|| !context
)
1878 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1879 map
= isl_map_compute_divs(map
);
1880 for (i
= 0; i
< map
->n
; ++i
)
1881 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1882 for (i
= map
->n
- 1; i
>= 0; --i
) {
1883 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1884 isl_basic_map_copy(context
));
1887 if (isl_basic_map_fast_is_empty(map
->p
[i
])) {
1888 isl_basic_map_free(map
->p
[i
]);
1889 if (i
!= map
->n
- 1)
1890 map
->p
[i
] = map
->p
[map
->n
- 1];
1894 isl_basic_map_free(context
);
1895 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1899 isl_basic_map_free(context
);
1903 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
1904 __isl_take isl_map
*context
)
1906 context
= isl_map_compute_divs(context
);
1907 return isl_map_gist_basic_map(map
, isl_map_simple_hull(context
));
1910 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1911 struct isl_basic_set
*context
)
1913 return (struct isl_basic_set
*)isl_basic_map_gist(
1914 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1917 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
1918 __isl_take isl_basic_set
*context
)
1920 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
1921 (struct isl_basic_map
*)context
);
1924 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
1925 __isl_take isl_set
*context
)
1927 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1928 (struct isl_map
*)context
);
1931 /* Quick check to see if two basic maps are disjoint.
1932 * In particular, we reduce the equalities and inequalities of
1933 * one basic map in the context of the equalities of the other
1934 * basic map and check if we get a contradiction.
1936 int isl_basic_map_fast_is_disjoint(struct isl_basic_map
*bmap1
,
1937 struct isl_basic_map
*bmap2
)
1939 struct isl_vec
*v
= NULL
;
1944 if (!bmap1
|| !bmap2
)
1946 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1948 if (bmap1
->n_div
|| bmap2
->n_div
)
1950 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1953 total
= isl_dim_total(bmap1
->dim
);
1956 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1959 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1962 compute_elimination_index(bmap1
, elim
);
1963 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1965 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1967 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1968 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1971 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1973 reduced
= reduced_using_equalities(v
->block
.data
,
1974 bmap2
->ineq
[i
], bmap1
, elim
);
1975 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1976 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1979 compute_elimination_index(bmap2
, elim
);
1980 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1982 reduced
= reduced_using_equalities(v
->block
.data
,
1983 bmap1
->ineq
[i
], bmap2
, elim
);
1984 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1985 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2001 int isl_basic_set_fast_is_disjoint(struct isl_basic_set
*bset1
,
2002 struct isl_basic_set
*bset2
)
2004 return isl_basic_map_fast_is_disjoint((struct isl_basic_map
*)bset1
,
2005 (struct isl_basic_map
*)bset2
);
2008 int isl_map_fast_is_disjoint(struct isl_map
*map1
, struct isl_map
*map2
)
2015 if (isl_map_fast_is_equal(map1
, map2
))
2018 for (i
= 0; i
< map1
->n
; ++i
) {
2019 for (j
= 0; j
< map2
->n
; ++j
) {
2020 int d
= isl_basic_map_fast_is_disjoint(map1
->p
[i
],
2029 int isl_set_fast_is_disjoint(struct isl_set
*set1
, struct isl_set
*set2
)
2031 return isl_map_fast_is_disjoint((struct isl_map
*)set1
,
2032 (struct isl_map
*)set2
);
2035 /* Check if we can combine a given div with lower bound l and upper
2036 * bound u with some other div and if so return that other div.
2037 * Otherwise return -1.
2039 * We first check that
2040 * - the bounds are opposites of each other (except for the constant
2042 * - the bounds do not reference any other div
2043 * - no div is defined in terms of this div
2045 * Let m be the size of the range allowed on the div by the bounds.
2046 * That is, the bounds are of the form
2048 * e <= a <= e + m - 1
2050 * with e some expression in the other variables.
2051 * We look for another div b such that no third div is defined in terms
2052 * of this second div b and such that in any constraint that contains
2053 * a (except for the given lower and upper bound), also contains b
2054 * with a coefficient that is m times that of b.
2055 * That is, all constraints (execpt for the lower and upper bound)
2058 * e + f (a + m b) >= 0
2060 * If so, we return b so that "a + m b" can be replaced by
2061 * a single div "c = a + m b".
2063 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2064 unsigned div
, unsigned l
, unsigned u
)
2070 if (bmap
->n_div
<= 1)
2072 dim
= isl_dim_total(bmap
->dim
);
2073 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2075 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2076 bmap
->n_div
- div
- 1) != -1)
2078 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2082 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2083 if (isl_int_is_zero(bmap
->div
[i
][0]))
2085 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2089 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2090 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2091 isl_int_sub(bmap
->ineq
[l
][0],
2092 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2093 bmap
= isl_basic_map_copy(bmap
);
2094 bmap
= isl_basic_map_set_to_empty(bmap
);
2095 isl_basic_map_free(bmap
);
2098 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2099 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2104 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2105 if (isl_int_is_zero(bmap
->div
[j
][0]))
2107 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2110 if (j
< bmap
->n_div
)
2112 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2114 if (j
== l
|| j
== u
)
2116 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2118 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2120 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2121 bmap
->ineq
[j
][1 + dim
+ div
],
2123 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2124 bmap
->ineq
[j
][1 + dim
+ i
]);
2125 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2126 bmap
->ineq
[j
][1 + dim
+ div
],
2131 if (j
< bmap
->n_ineq
)
2136 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2137 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2141 /* Given a lower and an upper bound on div i, construct an inequality
2142 * that when nonnegative ensures that this pair of bounds always allows
2143 * for an integer value of the given div.
2144 * The lower bound is inequality l, while the upper bound is inequality u.
2145 * The constructed inequality is stored in ineq.
2146 * g, fl, fu are temporary scalars.
2148 * Let the upper bound be
2152 * and the lower bound
2156 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2159 * - f_u e_l <= f_u f_l g a <= f_l e_u
2161 * Since all variables are integer valued, this is equivalent to
2163 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2165 * If this interval is at least f_u f_l g, then it contains at least
2166 * one integer value for a.
2167 * That is, the test constraint is
2169 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2171 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2172 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2175 dim
= isl_dim_total(bmap
->dim
);
2177 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2178 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2179 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2180 isl_int_neg(fu
, fu
);
2181 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2182 1 + dim
+ bmap
->n_div
);
2183 isl_int_add(ineq
[0], ineq
[0], fl
);
2184 isl_int_add(ineq
[0], ineq
[0], fu
);
2185 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2186 isl_int_mul(g
, g
, fl
);
2187 isl_int_mul(g
, g
, fu
);
2188 isl_int_sub(ineq
[0], ineq
[0], g
);
2191 /* Remove more kinds of divs that are not strictly needed.
2192 * In particular, if all pairs of lower and upper bounds on a div
2193 * are such that they allow at least one integer value of the div,
2194 * the we can eliminate the div using Fourier-Motzkin without
2195 * introducing any spurious solutions.
2197 static struct isl_basic_map
*drop_more_redundant_divs(
2198 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2200 struct isl_tab
*tab
= NULL
;
2201 struct isl_vec
*vec
= NULL
;
2213 dim
= isl_dim_total(bmap
->dim
);
2214 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2218 tab
= isl_tab_from_basic_map(bmap
);
2223 enum isl_lp_result res
;
2225 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2228 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2234 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2235 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2237 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2238 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2240 construct_test_ineq(bmap
, i
, l
, u
,
2241 vec
->el
, g
, fl
, fu
);
2242 res
= isl_tab_min(tab
, vec
->el
,
2243 bmap
->ctx
->one
, &g
, NULL
, 0);
2244 if (res
== isl_lp_error
)
2246 if (res
== isl_lp_empty
) {
2247 bmap
= isl_basic_map_set_to_empty(bmap
);
2250 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2253 if (u
< bmap
->n_ineq
)
2256 if (l
== bmap
->n_ineq
) {
2276 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
2277 return isl_basic_map_drop_redundant_divs(bmap
);
2280 isl_basic_map_free(bmap
);
2289 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2290 * and the upper bound u, div1 always occurs together with div2 in the form
2291 * (div1 + m div2), where m is the constant range on the variable div1
2292 * allowed by l and u, replace the pair div1 and div2 by a single
2293 * div that is equal to div1 + m div2.
2295 * The new div will appear in the location that contains div2.
2296 * We need to modify all constraints that contain
2297 * div2 = (div - div1) / m
2298 * (If a constraint does not contain div2, it will also not contain div1.)
2299 * If the constraint also contains div1, then we know they appear
2300 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2301 * i.e., the coefficient of div is f.
2303 * Otherwise, we first need to introduce div1 into the constraint.
2312 * A lower bound on div2
2316 * can be replaced by
2318 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2320 * with g = gcd(m,n).
2325 * can be replaced by
2327 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2329 * These constraint are those that we would obtain from eliminating
2330 * div1 using Fourier-Motzkin.
2332 * After all constraints have been modified, we drop the lower and upper
2333 * bound and then drop div1.
2335 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2336 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2341 unsigned dim
, total
;
2344 dim
= isl_dim_total(bmap
->dim
);
2345 total
= 1 + dim
+ bmap
->n_div
;
2350 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2351 isl_int_add_ui(m
, m
, 1);
2353 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2354 if (i
== l
|| i
== u
)
2356 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2358 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2359 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2360 isl_int_divexact(a
, m
, b
);
2361 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2362 if (isl_int_is_pos(b
)) {
2363 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2364 b
, bmap
->ineq
[l
], total
);
2367 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2368 b
, bmap
->ineq
[u
], total
);
2371 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2372 bmap
->ineq
[i
][1 + dim
+ div1
]);
2373 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2380 isl_basic_map_drop_inequality(bmap
, l
);
2381 isl_basic_map_drop_inequality(bmap
, u
);
2383 isl_basic_map_drop_inequality(bmap
, u
);
2384 isl_basic_map_drop_inequality(bmap
, l
);
2386 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2390 /* First check if we can coalesce any pair of divs and
2391 * then continue with dropping more redundant divs.
2393 * We loop over all pairs of lower and upper bounds on a div
2394 * with coefficient 1 and -1, respectively, check if there
2395 * is any other div "c" with which we can coalesce the div
2396 * and if so, perform the coalescing.
2398 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2399 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2404 dim
= isl_dim_total(bmap
->dim
);
2406 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2409 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2410 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2412 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2415 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2417 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2421 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2422 return isl_basic_map_drop_redundant_divs(bmap
);
2427 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2430 return drop_more_redundant_divs(bmap
, pairs
, n
);
2433 /* Remove divs that are not strictly needed.
2434 * In particular, if a div only occurs positively (or negatively)
2435 * in constraints, then it can simply be dropped.
2436 * Also, if a div occurs only occurs in two constraints and if moreover
2437 * those two constraints are opposite to each other, except for the constant
2438 * term and if the sum of the constant terms is such that for any value
2439 * of the other values, there is always at least one integer value of the
2440 * div, i.e., if one plus this sum is greater than or equal to
2441 * the (absolute value) of the coefficent of the div in the constraints,
2442 * then we can also simply drop the div.
2444 * If any divs are left after these simple checks then we move on
2445 * to more complicated cases in drop_more_redundant_divs.
2447 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2448 struct isl_basic_map
*bmap
)
2458 off
= isl_dim_total(bmap
->dim
);
2459 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2463 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2465 int last_pos
, last_neg
;
2469 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2470 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2471 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2477 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2478 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2482 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2487 pairs
[i
] = pos
* neg
;
2488 if (pairs
[i
] == 0) {
2489 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2490 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2491 isl_basic_map_drop_inequality(bmap
, j
);
2492 bmap
= isl_basic_map_drop_div(bmap
, i
);
2494 return isl_basic_map_drop_redundant_divs(bmap
);
2498 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2499 bmap
->ineq
[last_neg
] + 1,
2503 isl_int_add(bmap
->ineq
[last_pos
][0],
2504 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2505 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2506 bmap
->ineq
[last_pos
][0], 1);
2507 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2508 bmap
->ineq
[last_pos
][1+off
+i
]);
2509 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2510 bmap
->ineq
[last_pos
][0], 1);
2511 isl_int_sub(bmap
->ineq
[last_pos
][0],
2512 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2515 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2520 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2521 bmap
= isl_basic_map_simplify(bmap
);
2523 return isl_basic_map_drop_redundant_divs(bmap
);
2525 if (last_pos
> last_neg
) {
2526 isl_basic_map_drop_inequality(bmap
, last_pos
);
2527 isl_basic_map_drop_inequality(bmap
, last_neg
);
2529 isl_basic_map_drop_inequality(bmap
, last_neg
);
2530 isl_basic_map_drop_inequality(bmap
, last_pos
);
2532 bmap
= isl_basic_map_drop_div(bmap
, i
);
2534 return isl_basic_map_drop_redundant_divs(bmap
);
2538 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2544 isl_basic_map_free(bmap
);
2548 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2549 struct isl_basic_set
*bset
)
2551 return (struct isl_basic_set
*)
2552 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2555 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2561 for (i
= 0; i
< map
->n
; ++i
) {
2562 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2566 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2573 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2575 return (struct isl_set
*)
2576 isl_map_drop_redundant_divs((struct isl_map
*)set
);