3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
8 using C<GMP> or C<imath>.
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that it requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
204 =item * The function C<isl_vertex_get_expr> has been changed
205 to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
206 The function C<isl_vertex_get_domain> has been changed to return
207 a regular basic set, rather than a rational basic set.
211 =head3 Changes since isl-0.14
215 =item * The function C<isl_union_pw_multi_aff_add> now consistently
216 computes the sum on the shared definition domain.
217 The function C<isl_union_pw_multi_aff_union_add> has been added
218 to compute the sum on the union of definition domains.
219 The original behavior of C<isl_union_pw_multi_aff_add> was
220 confused and is no longer available.
222 =item * Band forests have been replaced by schedule trees.
224 =item * The function C<isl_union_map_compute_flow> has been
225 replaced by the function C<isl_union_access_info_compute_flow>.
226 Note that the may dependence relation returned by
227 C<isl_union_flow_get_may_dependence> is the union of
228 the two dependence relations returned by
229 C<isl_union_map_compute_flow>. Similarly for the no source relations.
230 The function C<isl_union_map_compute_flow> is still available
231 for backward compatibility, but it will be removed in the future.
233 =item * The function C<isl_basic_set_drop_constraint> has been
236 =item * The function C<isl_ast_build_ast_from_schedule> has been
237 renamed to C<isl_ast_build_node_from_schedule_map>.
238 The original name is still available
239 for backward compatibility, but it will be removed in the future.
241 =item * The C<separation_class> AST generation option has been
244 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
245 have been renamed to C<isl_constraint_alloc_equality> and
246 C<isl_constraint_alloc_inequality>. The original names have been
247 kept for backward compatibility, but they will be removed in the future.
249 =item * The C<schedule_fuse> option has been replaced
250 by the C<schedule_serialize_sccs> option. The effect
251 of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
252 is now obtained by turning on the C<schedule_serialize_sccs> option.
256 =head3 Changes since isl-0.17
260 =item * The function C<isl_printer_print_ast_expr> no longer prints
261 in C format by default. To print in C format, the output format
262 of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
263 As a result, the function C<isl_ast_expr_to_str> no longer prints
264 the expression in C format. Use C<isl_ast_expr_to_C_str> instead.
266 =item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
267 have been deprecated. The function C<isl_set_lift> has an effect
268 that is similar to C<isl_set_align_divs> and could in some cases
269 be used as an alternative.
275 C<isl> is released under the MIT license.
279 Permission is hereby granted, free of charge, to any person obtaining a copy of
280 this software and associated documentation files (the "Software"), to deal in
281 the Software without restriction, including without limitation the rights to
282 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
283 of the Software, and to permit persons to whom the Software is furnished to do
284 so, subject to the following conditions:
286 The above copyright notice and this permission notice shall be included in all
287 copies or substantial portions of the Software.
289 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
290 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
291 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
292 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
293 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
294 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
299 Note that by default C<isl> requires C<GMP>, which is released
300 under the GNU Lesser General Public License (LGPL). This means
301 that code linked against C<isl> is also linked against LGPL code.
303 When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
304 will link against C<imath>, a library for exact integer arithmetic released
305 under the MIT license.
309 The source of C<isl> can be obtained either as a tarball
310 or from the git repository. Both are available from
311 L<http://isl.gforge.inria.fr/>.
312 The installation process depends on how you obtained
315 =head2 Installation from the git repository
319 =item 1 Clone or update the repository
321 The first time the source is obtained, you need to clone
324 git clone git://repo.or.cz/isl.git
326 To obtain updates, you need to pull in the latest changes
330 =item 2 Optionally get C<imath> submodule
332 To build C<isl> with C<imath>, you need to obtain the C<imath>
333 submodule by running in the git source tree of C<isl>
338 This will fetch the required version of C<imath> in a subdirectory of C<isl>.
340 =item 2 Generate C<configure>
346 After performing the above steps, continue
347 with the L<Common installation instructions>.
349 =head2 Common installation instructions
353 =item 1 Obtain C<GMP>
355 By default, building C<isl> requires C<GMP>, including its headers files.
356 Your distribution may not provide these header files by default
357 and you may need to install a package called C<gmp-devel> or something
358 similar. Alternatively, C<GMP> can be built from
359 source, available from L<http://gmplib.org/>.
360 C<GMP> is not needed if you build C<isl> with C<imath>.
364 C<isl> uses the standard C<autoconf> C<configure> script.
369 optionally followed by some configure options.
370 A complete list of options can be obtained by running
374 Below we discuss some of the more common options.
380 Installation prefix for C<isl>
382 =item C<--with-int=[gmp|imath|imath-32]>
384 Select the integer library to be used by C<isl>, the default is C<gmp>.
385 With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
386 for values out of the 32 bit range. In most applications, C<isl> will run
387 fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
390 =item C<--with-gmp-prefix>
392 Installation prefix for C<GMP> (architecture-independent files).
394 =item C<--with-gmp-exec-prefix>
396 Installation prefix for C<GMP> (architecture-dependent files).
404 =item 4 Install (optional)
410 =head1 Integer Set Library
412 =head2 Memory Management
414 Since a high-level operation on isl objects usually involves
415 several substeps and since the user is usually not interested in
416 the intermediate results, most functions that return a new object
417 will also release all the objects passed as arguments.
418 If the user still wants to use one or more of these arguments
419 after the function call, she should pass along a copy of the
420 object rather than the object itself.
421 The user is then responsible for making sure that the original
422 object gets used somewhere else or is explicitly freed.
424 The arguments and return values of all documented functions are
425 annotated to make clear which arguments are released and which
426 arguments are preserved. In particular, the following annotations
433 C<__isl_give> means that a new object is returned.
434 The user should make sure that the returned pointer is
435 used exactly once as a value for an C<__isl_take> argument.
436 In between, it can be used as a value for as many
437 C<__isl_keep> arguments as the user likes.
438 There is one exception, and that is the case where the
439 pointer returned is C<NULL>. Is this case, the user
440 is free to use it as an C<__isl_take> argument or not.
441 When applied to a C<char *>, the returned pointer needs to be
446 C<__isl_null> means that a C<NULL> value is returned.
450 C<__isl_take> means that the object the argument points to
451 is taken over by the function and may no longer be used
452 by the user as an argument to any other function.
453 The pointer value must be one returned by a function
454 returning an C<__isl_give> pointer.
455 If the user passes in a C<NULL> value, then this will
456 be treated as an error in the sense that the function will
457 not perform its usual operation. However, it will still
458 make sure that all the other C<__isl_take> arguments
463 C<__isl_keep> means that the function will only use the object
464 temporarily. After the function has finished, the user
465 can still use it as an argument to other functions.
466 A C<NULL> value will be treated in the same way as
467 a C<NULL> value for an C<__isl_take> argument.
468 This annotation may also be used on return values of
469 type C<const char *>, in which case the returned pointer should
470 not be freed by the user and is only valid until the object
471 from which it was derived is updated or freed.
475 =head2 Initialization
477 All manipulations of integer sets and relations occur within
478 the context of an C<isl_ctx>.
479 A given C<isl_ctx> can only be used within a single thread.
480 All arguments of a function are required to have been allocated
481 within the same context.
482 There are currently no functions available for moving an object
483 from one C<isl_ctx> to another C<isl_ctx>. This means that
484 there is currently no way of safely moving an object from one
485 thread to another, unless the whole C<isl_ctx> is moved.
487 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
488 freed using C<isl_ctx_free>.
489 All objects allocated within an C<isl_ctx> should be freed
490 before the C<isl_ctx> itself is freed.
492 isl_ctx *isl_ctx_alloc();
493 void isl_ctx_free(isl_ctx *ctx);
495 The user can impose a bound on the number of low-level I<operations>
496 that can be performed by an C<isl_ctx>. This bound can be set and
497 retrieved using the following functions. A bound of zero means that
498 no bound is imposed. The number of operations performed can be
499 reset using C<isl_ctx_reset_operations>. Note that the number
500 of low-level operations needed to perform a high-level computation
501 may differ significantly across different versions
502 of C<isl>, but it should be the same across different platforms
503 for the same version of C<isl>.
505 Warning: This feature is experimental. C<isl> has good support to abort and
506 bail out during the computation, but this feature may exercise error code paths
507 that are normally not used that much. Consequently, it is not unlikely that
508 hidden bugs will be exposed.
510 void isl_ctx_set_max_operations(isl_ctx *ctx,
511 unsigned long max_operations);
512 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
513 void isl_ctx_reset_operations(isl_ctx *ctx);
515 In order to be able to create an object in the same context
516 as another object, most object types (described later in
517 this document) provide a function to obtain the context
518 in which the object was created.
521 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
522 isl_ctx *isl_multi_val_get_ctx(
523 __isl_keep isl_multi_val *mv);
526 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
528 #include <isl/local_space.h>
529 isl_ctx *isl_local_space_get_ctx(
530 __isl_keep isl_local_space *ls);
533 isl_ctx *isl_set_list_get_ctx(
534 __isl_keep isl_set_list *list);
537 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
538 isl_ctx *isl_multi_aff_get_ctx(
539 __isl_keep isl_multi_aff *maff);
540 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
541 isl_ctx *isl_pw_multi_aff_get_ctx(
542 __isl_keep isl_pw_multi_aff *pma);
543 isl_ctx *isl_multi_pw_aff_get_ctx(
544 __isl_keep isl_multi_pw_aff *mpa);
545 isl_ctx *isl_union_pw_aff_get_ctx(
546 __isl_keep isl_union_pw_aff *upa);
547 isl_ctx *isl_union_pw_multi_aff_get_ctx(
548 __isl_keep isl_union_pw_multi_aff *upma);
549 isl_ctx *isl_multi_union_pw_aff_get_ctx(
550 __isl_keep isl_multi_union_pw_aff *mupa);
552 #include <isl/id_to_ast_expr.h>
553 isl_ctx *isl_id_to_ast_expr_get_ctx(
554 __isl_keep isl_id_to_ast_expr *id2expr);
556 #include <isl/point.h>
557 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
560 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
563 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
565 #include <isl/vertices.h>
566 isl_ctx *isl_vertices_get_ctx(
567 __isl_keep isl_vertices *vertices);
568 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
569 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
571 #include <isl/flow.h>
572 isl_ctx *isl_restriction_get_ctx(
573 __isl_keep isl_restriction *restr);
574 isl_ctx *isl_union_access_info_get_ctx(
575 __isl_keep isl_union_access_info *access);
576 isl_ctx *isl_union_flow_get_ctx(
577 __isl_keep isl_union_flow *flow);
579 #include <isl/schedule.h>
580 isl_ctx *isl_schedule_get_ctx(
581 __isl_keep isl_schedule *sched);
582 isl_ctx *isl_schedule_constraints_get_ctx(
583 __isl_keep isl_schedule_constraints *sc);
585 #include <isl/schedule_node.h>
586 isl_ctx *isl_schedule_node_get_ctx(
587 __isl_keep isl_schedule_node *node);
589 #include <isl/band.h>
590 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
592 #include <isl/ast_build.h>
593 isl_ctx *isl_ast_build_get_ctx(
594 __isl_keep isl_ast_build *build);
597 isl_ctx *isl_ast_expr_get_ctx(
598 __isl_keep isl_ast_expr *expr);
599 isl_ctx *isl_ast_node_get_ctx(
600 __isl_keep isl_ast_node *node);
604 C<isl> uses two special return types for functions that either return
605 a boolean or that in principle do not return anything.
606 In particular, the C<isl_bool> type has three possible values:
607 C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
608 C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
609 C<isl_bool_error> (a negative integer value), indicating that something
610 went wrong. The following function can be used to negate an C<isl_bool>,
611 where the negation of C<isl_bool_error> is C<isl_bool_error> again.
614 isl_bool isl_bool_not(isl_bool b);
616 The C<isl_stat> type has two possible values:
617 C<isl_stat_ok> (the integer value zero), indicating a successful
619 C<isl_stat_error> (a negative integer value), indicating that something
621 See L</"Error Handling"> for more information on
622 C<isl_bool_error> and C<isl_stat_error>.
626 An C<isl_val> represents an integer value, a rational value
627 or one of three special values, infinity, negative infinity and NaN.
628 Some predefined values can be created using the following functions.
631 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
632 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
633 __isl_give isl_val *isl_val_negone(isl_ctx *ctx);
634 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
635 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
636 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
638 Specific integer values can be created using the following functions.
641 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
643 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
645 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
646 size_t n, size_t size, const void *chunks);
648 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
649 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
650 The least significant digit is assumed to be stored first.
652 Value objects can be copied and freed using the following functions.
655 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
656 __isl_null isl_val *isl_val_free(__isl_take isl_val *v);
658 They can be inspected using the following functions.
661 long isl_val_get_num_si(__isl_keep isl_val *v);
662 long isl_val_get_den_si(__isl_keep isl_val *v);
663 __isl_give isl_val *isl_val_get_den_val(
664 __isl_keep isl_val *v);
665 double isl_val_get_d(__isl_keep isl_val *v);
666 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
668 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
669 size_t size, void *chunks);
671 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
672 of C<size> bytes needed to store the absolute value of the
674 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
675 which is assumed to have been preallocated by the caller.
676 The least significant digit is stored first.
677 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
678 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
679 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
681 An C<isl_val> can be modified using the following function.
684 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
687 The following unary properties are defined on C<isl_val>s.
690 int isl_val_sgn(__isl_keep isl_val *v);
691 isl_bool isl_val_is_zero(__isl_keep isl_val *v);
692 isl_bool isl_val_is_one(__isl_keep isl_val *v);
693 isl_bool isl_val_is_negone(__isl_keep isl_val *v);
694 isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
695 isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
696 isl_bool isl_val_is_pos(__isl_keep isl_val *v);
697 isl_bool isl_val_is_neg(__isl_keep isl_val *v);
698 isl_bool isl_val_is_int(__isl_keep isl_val *v);
699 isl_bool isl_val_is_rat(__isl_keep isl_val *v);
700 isl_bool isl_val_is_nan(__isl_keep isl_val *v);
701 isl_bool isl_val_is_infty(__isl_keep isl_val *v);
702 isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);
704 Note that the sign of NaN is undefined.
706 The following binary properties are defined on pairs of C<isl_val>s.
709 isl_bool isl_val_lt(__isl_keep isl_val *v1,
710 __isl_keep isl_val *v2);
711 isl_bool isl_val_le(__isl_keep isl_val *v1,
712 __isl_keep isl_val *v2);
713 isl_bool isl_val_gt(__isl_keep isl_val *v1,
714 __isl_keep isl_val *v2);
715 isl_bool isl_val_ge(__isl_keep isl_val *v1,
716 __isl_keep isl_val *v2);
717 isl_bool isl_val_eq(__isl_keep isl_val *v1,
718 __isl_keep isl_val *v2);
719 isl_bool isl_val_ne(__isl_keep isl_val *v1,
720 __isl_keep isl_val *v2);
721 isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
722 __isl_keep isl_val *v2);
724 The function C<isl_val_abs_eq> checks whether its two arguments
725 are equal in absolute value.
727 For integer C<isl_val>s we additionally have the following binary property.
730 isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
731 __isl_keep isl_val *v2);
733 An C<isl_val> can also be compared to an integer using the following
734 function. The result is undefined for NaN.
737 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
739 The following unary operations are available on C<isl_val>s.
742 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
743 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
744 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
745 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
746 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
747 __isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
748 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
750 The following binary operations are available on C<isl_val>s.
753 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
754 __isl_take isl_val *v2);
755 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
756 __isl_take isl_val *v2);
757 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
758 __isl_take isl_val *v2);
759 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
761 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
762 __isl_take isl_val *v2);
763 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
765 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
766 __isl_take isl_val *v2);
767 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
769 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
770 __isl_take isl_val *v2);
772 On integer values, we additionally have the following operations.
775 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
776 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
777 __isl_take isl_val *v2);
778 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
779 __isl_take isl_val *v2);
780 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
781 __isl_take isl_val *v2, __isl_give isl_val **x,
782 __isl_give isl_val **y);
784 The function C<isl_val_gcdext> returns the greatest common divisor g
785 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
786 that C<*x> * C<v1> + C<*y> * C<v2> = g.
788 =head3 GMP specific functions
790 These functions are only available if C<isl> has been compiled with C<GMP>
793 Specific integer and rational values can be created from C<GMP> values using
794 the following functions.
796 #include <isl/val_gmp.h>
797 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
799 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
800 const mpz_t n, const mpz_t d);
802 The numerator and denominator of a rational value can be extracted as
803 C<GMP> values using the following functions.
805 #include <isl/val_gmp.h>
806 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
807 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
809 =head2 Sets and Relations
811 C<isl> uses six types of objects for representing sets and relations,
812 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
813 C<isl_union_set> and C<isl_union_map>.
814 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
815 can be described as a conjunction of affine constraints, while
816 C<isl_set> and C<isl_map> represent unions of
817 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
818 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
819 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
820 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
821 where spaces are considered different if they have a different number
822 of dimensions and/or different names (see L<"Spaces">).
823 The difference between sets and relations (maps) is that sets have
824 one set of variables, while relations have two sets of variables,
825 input variables and output variables.
827 =head2 Error Handling
829 C<isl> supports different ways to react in case a runtime error is triggered.
830 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
831 with two maps that have incompatible spaces. There are three possible ways
832 to react on error: to warn, to continue or to abort.
834 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
835 the last error in the corresponding C<isl_ctx> and the function in which the
836 error was triggered returns a value indicating that some error has
837 occurred. In case of functions returning a pointer, this value is
838 C<NULL>. In case of functions returning an C<isl_bool> or an
839 C<isl_stat>, this valus is C<isl_bool_error> or C<isl_stat_error>.
840 An error does not corrupt internal state,
841 such that isl can continue to be used. C<isl> also provides functions to
842 read the last error and to reset the memory that stores the last error. The
843 last error is only stored for information purposes. Its presence does not
844 change the behavior of C<isl>. Hence, resetting an error is not required to
845 continue to use isl, but only to observe new errors.
848 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
849 void isl_ctx_reset_error(isl_ctx *ctx);
851 Another option is to continue on error. This is similar to warn on error mode,
852 except that C<isl> does not print any warning. This allows a program to
853 implement its own error reporting.
855 The last option is to directly abort the execution of the program from within
856 the isl library. This makes it obviously impossible to recover from an error,
857 but it allows to directly spot the error location. By aborting on error,
858 debuggers break at the location the error occurred and can provide a stack
859 trace. Other tools that automatically provide stack traces on abort or that do
860 not want to continue execution after an error was triggered may also prefer to
863 The on error behavior of isl can be specified by calling
864 C<isl_options_set_on_error> or by setting the command line option
865 C<--isl-on-error>. Valid arguments for the function call are
866 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
867 choices for the command line option are C<warn>, C<continue> and C<abort>.
868 It is also possible to query the current error mode.
870 #include <isl/options.h>
871 isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
872 int isl_options_get_on_error(isl_ctx *ctx);
876 Identifiers are used to identify both individual dimensions
877 and tuples of dimensions. They consist of an optional name and an optional
878 user pointer. The name and the user pointer cannot both be C<NULL>, however.
879 Identifiers with the same name but different pointer values
880 are considered to be distinct.
881 Similarly, identifiers with different names but the same pointer value
882 are also considered to be distinct.
883 Equal identifiers are represented using the same object.
884 Pairs of identifiers can therefore be tested for equality using the
886 Identifiers can be constructed, copied, freed, inspected and printed
887 using the following functions.
890 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
891 __isl_keep const char *name, void *user);
892 __isl_give isl_id *isl_id_set_free_user(
893 __isl_take isl_id *id,
894 void (*free_user)(void *user));
895 __isl_give isl_id *isl_id_copy(isl_id *id);
896 __isl_null isl_id *isl_id_free(__isl_take isl_id *id);
898 void *isl_id_get_user(__isl_keep isl_id *id);
899 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
901 __isl_give isl_printer *isl_printer_print_id(
902 __isl_take isl_printer *p, __isl_keep isl_id *id);
904 The callback set by C<isl_id_set_free_user> is called on the user
905 pointer when the last reference to the C<isl_id> is freed.
906 Note that C<isl_id_get_name> returns a pointer to some internal
907 data structure, so the result can only be used while the
908 corresponding C<isl_id> is alive.
912 Whenever a new set, relation or similar object is created from scratch,
913 the space in which it lives needs to be specified using an C<isl_space>.
914 Each space involves zero or more parameters and zero, one or two
915 tuples of set or input/output dimensions. The parameters and dimensions
916 are identified by an C<isl_dim_type> and a position.
917 The type C<isl_dim_param> refers to parameters,
918 the type C<isl_dim_set> refers to set dimensions (for spaces
919 with a single tuple of dimensions) and the types C<isl_dim_in>
920 and C<isl_dim_out> refer to input and output dimensions
921 (for spaces with two tuples of dimensions).
922 Local spaces (see L</"Local Spaces">) also contain dimensions
923 of type C<isl_dim_div>.
924 Note that parameters are only identified by their position within
925 a given object. Across different objects, parameters are (usually)
926 identified by their names or identifiers. Only unnamed parameters
927 are identified by their positions across objects. The use of unnamed
928 parameters is discouraged.
930 #include <isl/space.h>
931 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
932 unsigned nparam, unsigned n_in, unsigned n_out);
933 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
935 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
936 unsigned nparam, unsigned dim);
937 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
938 __isl_null isl_space *isl_space_free(__isl_take isl_space *space);
940 The space used for creating a parameter domain
941 needs to be created using C<isl_space_params_alloc>.
942 For other sets, the space
943 needs to be created using C<isl_space_set_alloc>, while
944 for a relation, the space
945 needs to be created using C<isl_space_alloc>.
947 To check whether a given space is that of a set or a map
948 or whether it is a parameter space, use these functions:
950 #include <isl/space.h>
951 isl_bool isl_space_is_params(__isl_keep isl_space *space);
952 isl_bool isl_space_is_set(__isl_keep isl_space *space);
953 isl_bool isl_space_is_map(__isl_keep isl_space *space);
955 Spaces can be compared using the following functions:
957 #include <isl/space.h>
958 isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
959 __isl_keep isl_space *space2);
960 isl_bool isl_space_has_equal_tuples(
961 __isl_keep isl_space *space1,
962 __isl_keep isl_space *space2);
963 isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
964 __isl_keep isl_space *space2);
965 isl_bool isl_space_is_range(__isl_keep isl_space *space1,
966 __isl_keep isl_space *space2);
967 isl_bool isl_space_tuple_is_equal(
968 __isl_keep isl_space *space1,
969 enum isl_dim_type type1,
970 __isl_keep isl_space *space2,
971 enum isl_dim_type type2);
973 C<isl_space_is_domain> checks whether the first argument is equal
974 to the domain of the second argument. This requires in particular that
975 the first argument is a set space and that the second argument
976 is a map space. C<isl_space_tuple_is_equal> checks whether the given
977 tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
978 spaces are the same. That is, it checks if they have the same
979 identifier (if any), the same dimension and the same internal structure
981 C<isl_space_is_equal> checks whether two spaces are identical.
982 In particular, it checks whether they have the same type
983 (parameter, set or map space), the same tuples
984 (if they are not parameter spaces) in the sense
985 of C<isl_space_tuple_is_equal> and the same parameters
987 C<isl_space_has_equal_tuples> check whether two spaces have
988 the same tuples. In contrast to C<isl_space_is_equal>, it does not check the
989 parameters. This is useful because many C<isl> functions align the
990 parameters before they perform their operations, such that equivalence
993 It is often useful to create objects that live in the
994 same space as some other object. This can be accomplished
995 by creating the new objects
996 (see L</"Creating New Sets and Relations"> or
997 L</"Functions">) based on the space
998 of the original object.
1000 #include <isl/set.h>
1001 __isl_give isl_space *isl_basic_set_get_space(
1002 __isl_keep isl_basic_set *bset);
1003 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
1005 #include <isl/union_set.h>
1006 __isl_give isl_space *isl_union_set_get_space(
1007 __isl_keep isl_union_set *uset);
1009 #include <isl/map.h>
1010 __isl_give isl_space *isl_basic_map_get_space(
1011 __isl_keep isl_basic_map *bmap);
1012 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
1014 #include <isl/union_map.h>
1015 __isl_give isl_space *isl_union_map_get_space(
1016 __isl_keep isl_union_map *umap);
1018 #include <isl/constraint.h>
1019 __isl_give isl_space *isl_constraint_get_space(
1020 __isl_keep isl_constraint *constraint);
1022 #include <isl/polynomial.h>
1023 __isl_give isl_space *isl_qpolynomial_get_domain_space(
1024 __isl_keep isl_qpolynomial *qp);
1025 __isl_give isl_space *isl_qpolynomial_get_space(
1026 __isl_keep isl_qpolynomial *qp);
1027 __isl_give isl_space *
1028 isl_qpolynomial_fold_get_domain_space(
1029 __isl_keep isl_qpolynomial_fold *fold);
1030 __isl_give isl_space *isl_qpolynomial_fold_get_space(
1031 __isl_keep isl_qpolynomial_fold *fold);
1032 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
1033 __isl_keep isl_pw_qpolynomial *pwqp);
1034 __isl_give isl_space *isl_pw_qpolynomial_get_space(
1035 __isl_keep isl_pw_qpolynomial *pwqp);
1036 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
1037 __isl_keep isl_pw_qpolynomial_fold *pwf);
1038 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
1039 __isl_keep isl_pw_qpolynomial_fold *pwf);
1040 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
1041 __isl_keep isl_union_pw_qpolynomial *upwqp);
1042 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
1043 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
1045 #include <isl/val.h>
1046 __isl_give isl_space *isl_multi_val_get_space(
1047 __isl_keep isl_multi_val *mv);
1049 #include <isl/aff.h>
1050 __isl_give isl_space *isl_aff_get_domain_space(
1051 __isl_keep isl_aff *aff);
1052 __isl_give isl_space *isl_aff_get_space(
1053 __isl_keep isl_aff *aff);
1054 __isl_give isl_space *isl_pw_aff_get_domain_space(
1055 __isl_keep isl_pw_aff *pwaff);
1056 __isl_give isl_space *isl_pw_aff_get_space(
1057 __isl_keep isl_pw_aff *pwaff);
1058 __isl_give isl_space *isl_multi_aff_get_domain_space(
1059 __isl_keep isl_multi_aff *maff);
1060 __isl_give isl_space *isl_multi_aff_get_space(
1061 __isl_keep isl_multi_aff *maff);
1062 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
1063 __isl_keep isl_pw_multi_aff *pma);
1064 __isl_give isl_space *isl_pw_multi_aff_get_space(
1065 __isl_keep isl_pw_multi_aff *pma);
1066 __isl_give isl_space *isl_union_pw_aff_get_space(
1067 __isl_keep isl_union_pw_aff *upa);
1068 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
1069 __isl_keep isl_union_pw_multi_aff *upma);
1070 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
1071 __isl_keep isl_multi_pw_aff *mpa);
1072 __isl_give isl_space *isl_multi_pw_aff_get_space(
1073 __isl_keep isl_multi_pw_aff *mpa);
1074 __isl_give isl_space *
1075 isl_multi_union_pw_aff_get_domain_space(
1076 __isl_keep isl_multi_union_pw_aff *mupa);
1077 __isl_give isl_space *
1078 isl_multi_union_pw_aff_get_space(
1079 __isl_keep isl_multi_union_pw_aff *mupa);
1081 #include <isl/point.h>
1082 __isl_give isl_space *isl_point_get_space(
1083 __isl_keep isl_point *pnt);
1085 The number of dimensions of a given type of space
1086 may be read off from a space or an object that lives
1087 in a space using the following functions.
1088 In case of C<isl_space_dim>, type may be
1089 C<isl_dim_param>, C<isl_dim_in> (only for relations),
1090 C<isl_dim_out> (only for relations), C<isl_dim_set>
1091 (only for sets) or C<isl_dim_all>.
1093 #include <isl/space.h>
1094 unsigned isl_space_dim(__isl_keep isl_space *space,
1095 enum isl_dim_type type);
1097 #include <isl/local_space.h>
1098 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1099 enum isl_dim_type type);
1101 #include <isl/set.h>
1102 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1103 enum isl_dim_type type);
1104 unsigned isl_set_dim(__isl_keep isl_set *set,
1105 enum isl_dim_type type);
1107 #include <isl/union_set.h>
1108 unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
1109 enum isl_dim_type type);
1111 #include <isl/map.h>
1112 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1113 enum isl_dim_type type);
1114 unsigned isl_map_dim(__isl_keep isl_map *map,
1115 enum isl_dim_type type);
1117 #include <isl/union_map.h>
1118 unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
1119 enum isl_dim_type type);
1121 #include <isl/val.h>
1122 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
1123 enum isl_dim_type type);
1125 #include <isl/aff.h>
1126 int isl_aff_dim(__isl_keep isl_aff *aff,
1127 enum isl_dim_type type);
1128 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
1129 enum isl_dim_type type);
1130 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
1131 enum isl_dim_type type);
1132 unsigned isl_pw_multi_aff_dim(
1133 __isl_keep isl_pw_multi_aff *pma,
1134 enum isl_dim_type type);
1135 unsigned isl_multi_pw_aff_dim(
1136 __isl_keep isl_multi_pw_aff *mpa,
1137 enum isl_dim_type type);
1138 unsigned isl_union_pw_aff_dim(
1139 __isl_keep isl_union_pw_aff *upa,
1140 enum isl_dim_type type);
1141 unsigned isl_union_pw_multi_aff_dim(
1142 __isl_keep isl_union_pw_multi_aff *upma,
1143 enum isl_dim_type type);
1144 unsigned isl_multi_union_pw_aff_dim(
1145 __isl_keep isl_multi_union_pw_aff *mupa,
1146 enum isl_dim_type type);
1148 #include <isl/polynomial.h>
1149 unsigned isl_union_pw_qpolynomial_dim(
1150 __isl_keep isl_union_pw_qpolynomial *upwqp,
1151 enum isl_dim_type type);
1152 unsigned isl_union_pw_qpolynomial_fold_dim(
1153 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1154 enum isl_dim_type type);
1156 Note that an C<isl_union_set>, an C<isl_union_map>,
1157 an C<isl_union_pw_multi_aff>,
1158 an C<isl_union_pw_qpolynomial> and
1159 an C<isl_union_pw_qpolynomial_fold>
1160 only have parameters.
1162 The identifiers or names of the individual dimensions of spaces
1163 may be set or read off using the following functions on spaces
1164 or objects that live in spaces.
1165 These functions are mostly useful to obtain the identifiers, positions
1166 or names of the parameters. Identifiers of individual dimensions are
1167 essentially only useful for printing. They are ignored by all other
1168 operations and may not be preserved across those operations.
1170 #include <isl/space.h>
1171 __isl_give isl_space *isl_space_set_dim_id(
1172 __isl_take isl_space *space,
1173 enum isl_dim_type type, unsigned pos,
1174 __isl_take isl_id *id);
1175 isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
1176 enum isl_dim_type type, unsigned pos);
1177 __isl_give isl_id *isl_space_get_dim_id(
1178 __isl_keep isl_space *space,
1179 enum isl_dim_type type, unsigned pos);
1180 __isl_give isl_space *isl_space_set_dim_name(
1181 __isl_take isl_space *space,
1182 enum isl_dim_type type, unsigned pos,
1183 __isl_keep const char *name);
1184 isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
1185 enum isl_dim_type type, unsigned pos);
1186 __isl_keep const char *isl_space_get_dim_name(
1187 __isl_keep isl_space *space,
1188 enum isl_dim_type type, unsigned pos);
1190 #include <isl/local_space.h>
1191 __isl_give isl_local_space *isl_local_space_set_dim_id(
1192 __isl_take isl_local_space *ls,
1193 enum isl_dim_type type, unsigned pos,
1194 __isl_take isl_id *id);
1195 isl_bool isl_local_space_has_dim_id(
1196 __isl_keep isl_local_space *ls,
1197 enum isl_dim_type type, unsigned pos);
1198 __isl_give isl_id *isl_local_space_get_dim_id(
1199 __isl_keep isl_local_space *ls,
1200 enum isl_dim_type type, unsigned pos);
1201 __isl_give isl_local_space *isl_local_space_set_dim_name(
1202 __isl_take isl_local_space *ls,
1203 enum isl_dim_type type, unsigned pos, const char *s);
1204 isl_bool isl_local_space_has_dim_name(
1205 __isl_keep isl_local_space *ls,
1206 enum isl_dim_type type, unsigned pos)
1207 const char *isl_local_space_get_dim_name(
1208 __isl_keep isl_local_space *ls,
1209 enum isl_dim_type type, unsigned pos);
1211 #include <isl/constraint.h>
1212 const char *isl_constraint_get_dim_name(
1213 __isl_keep isl_constraint *constraint,
1214 enum isl_dim_type type, unsigned pos);
1216 #include <isl/set.h>
1217 __isl_give isl_id *isl_basic_set_get_dim_id(
1218 __isl_keep isl_basic_set *bset,
1219 enum isl_dim_type type, unsigned pos);
1220 __isl_give isl_set *isl_set_set_dim_id(
1221 __isl_take isl_set *set, enum isl_dim_type type,
1222 unsigned pos, __isl_take isl_id *id);
1223 isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
1224 enum isl_dim_type type, unsigned pos);
1225 __isl_give isl_id *isl_set_get_dim_id(
1226 __isl_keep isl_set *set, enum isl_dim_type type,
1228 const char *isl_basic_set_get_dim_name(
1229 __isl_keep isl_basic_set *bset,
1230 enum isl_dim_type type, unsigned pos);
1231 isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
1232 enum isl_dim_type type, unsigned pos);
1233 const char *isl_set_get_dim_name(
1234 __isl_keep isl_set *set,
1235 enum isl_dim_type type, unsigned pos);
1237 #include <isl/map.h>
1238 __isl_give isl_map *isl_map_set_dim_id(
1239 __isl_take isl_map *map, enum isl_dim_type type,
1240 unsigned pos, __isl_take isl_id *id);
1241 isl_bool isl_basic_map_has_dim_id(
1242 __isl_keep isl_basic_map *bmap,
1243 enum isl_dim_type type, unsigned pos);
1244 isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
1245 enum isl_dim_type type, unsigned pos);
1246 __isl_give isl_id *isl_map_get_dim_id(
1247 __isl_keep isl_map *map, enum isl_dim_type type,
1249 __isl_give isl_id *isl_union_map_get_dim_id(
1250 __isl_keep isl_union_map *umap,
1251 enum isl_dim_type type, unsigned pos);
1252 const char *isl_basic_map_get_dim_name(
1253 __isl_keep isl_basic_map *bmap,
1254 enum isl_dim_type type, unsigned pos);
1255 isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
1256 enum isl_dim_type type, unsigned pos);
1257 const char *isl_map_get_dim_name(
1258 __isl_keep isl_map *map,
1259 enum isl_dim_type type, unsigned pos);
1261 #include <isl/val.h>
1262 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
1263 __isl_take isl_multi_val *mv,
1264 enum isl_dim_type type, unsigned pos,
1265 __isl_take isl_id *id);
1266 __isl_give isl_id *isl_multi_val_get_dim_id(
1267 __isl_keep isl_multi_val *mv,
1268 enum isl_dim_type type, unsigned pos);
1269 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
1270 __isl_take isl_multi_val *mv,
1271 enum isl_dim_type type, unsigned pos, const char *s);
1273 #include <isl/aff.h>
1274 __isl_give isl_aff *isl_aff_set_dim_id(
1275 __isl_take isl_aff *aff, enum isl_dim_type type,
1276 unsigned pos, __isl_take isl_id *id);
1277 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
1278 __isl_take isl_multi_aff *maff,
1279 enum isl_dim_type type, unsigned pos,
1280 __isl_take isl_id *id);
1281 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
1282 __isl_take isl_pw_aff *pma,
1283 enum isl_dim_type type, unsigned pos,
1284 __isl_take isl_id *id);
1285 __isl_give isl_multi_pw_aff *
1286 isl_multi_pw_aff_set_dim_id(
1287 __isl_take isl_multi_pw_aff *mpa,
1288 enum isl_dim_type type, unsigned pos,
1289 __isl_take isl_id *id);
1290 __isl_give isl_multi_union_pw_aff *
1291 isl_multi_union_pw_aff_set_dim_id(
1292 __isl_take isl_multi_union_pw_aff *mupa,
1293 enum isl_dim_type type, unsigned pos,
1294 __isl_take isl_id *id);
1295 __isl_give isl_id *isl_multi_aff_get_dim_id(
1296 __isl_keep isl_multi_aff *ma,
1297 enum isl_dim_type type, unsigned pos);
1298 isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
1299 enum isl_dim_type type, unsigned pos);
1300 __isl_give isl_id *isl_pw_aff_get_dim_id(
1301 __isl_keep isl_pw_aff *pa,
1302 enum isl_dim_type type, unsigned pos);
1303 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
1304 __isl_keep isl_pw_multi_aff *pma,
1305 enum isl_dim_type type, unsigned pos);
1306 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
1307 __isl_keep isl_multi_pw_aff *mpa,
1308 enum isl_dim_type type, unsigned pos);
1309 __isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
1310 __isl_keep isl_multi_union_pw_aff *mupa,
1311 enum isl_dim_type type, unsigned pos);
1312 __isl_give isl_aff *isl_aff_set_dim_name(
1313 __isl_take isl_aff *aff, enum isl_dim_type type,
1314 unsigned pos, const char *s);
1315 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
1316 __isl_take isl_multi_aff *maff,
1317 enum isl_dim_type type, unsigned pos, const char *s);
1318 __isl_give isl_multi_pw_aff *
1319 isl_multi_pw_aff_set_dim_name(
1320 __isl_take isl_multi_pw_aff *mpa,
1321 enum isl_dim_type type, unsigned pos, const char *s);
1322 __isl_give isl_union_pw_aff *
1323 isl_union_pw_aff_set_dim_name(
1324 __isl_take isl_union_pw_aff *upa,
1325 enum isl_dim_type type, unsigned pos,
1327 __isl_give isl_union_pw_multi_aff *
1328 isl_union_pw_multi_aff_set_dim_name(
1329 __isl_take isl_union_pw_multi_aff *upma,
1330 enum isl_dim_type type, unsigned pos,
1332 __isl_give isl_multi_union_pw_aff *
1333 isl_multi_union_pw_aff_set_dim_name(
1334 __isl_take isl_multi_union_pw_aff *mupa,
1335 enum isl_dim_type type, unsigned pos,
1336 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
1337 enum isl_dim_type type, unsigned pos);
1338 const char *isl_pw_aff_get_dim_name(
1339 __isl_keep isl_pw_aff *pa,
1340 enum isl_dim_type type, unsigned pos);
1341 const char *isl_pw_multi_aff_get_dim_name(
1342 __isl_keep isl_pw_multi_aff *pma,
1343 enum isl_dim_type type, unsigned pos);
1345 #include <isl/polynomial.h>
1346 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1347 __isl_take isl_qpolynomial *qp,
1348 enum isl_dim_type type, unsigned pos,
1350 __isl_give isl_pw_qpolynomial *
1351 isl_pw_qpolynomial_set_dim_name(
1352 __isl_take isl_pw_qpolynomial *pwqp,
1353 enum isl_dim_type type, unsigned pos,
1355 __isl_give isl_pw_qpolynomial_fold *
1356 isl_pw_qpolynomial_fold_set_dim_name(
1357 __isl_take isl_pw_qpolynomial_fold *pwf,
1358 enum isl_dim_type type, unsigned pos,
1360 __isl_give isl_union_pw_qpolynomial *
1361 isl_union_pw_qpolynomial_set_dim_name(
1362 __isl_take isl_union_pw_qpolynomial *upwqp,
1363 enum isl_dim_type type, unsigned pos,
1365 __isl_give isl_union_pw_qpolynomial_fold *
1366 isl_union_pw_qpolynomial_fold_set_dim_name(
1367 __isl_take isl_union_pw_qpolynomial_fold *upwf,
1368 enum isl_dim_type type, unsigned pos,
1371 Note that C<isl_space_get_name> returns a pointer to some internal
1372 data structure, so the result can only be used while the
1373 corresponding C<isl_space> is alive.
1374 Also note that every function that operates on two sets or relations
1375 requires that both arguments have the same parameters. This also
1376 means that if one of the arguments has named parameters, then the
1377 other needs to have named parameters too and the names need to match.
1378 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
1379 arguments may have different parameters (as long as they are named),
1380 in which case the result will have as parameters the union of the parameters of
1383 Given the identifier or name of a dimension (typically a parameter),
1384 its position can be obtained from the following functions.
1386 #include <isl/space.h>
1387 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
1388 enum isl_dim_type type, __isl_keep isl_id *id);
1389 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
1390 enum isl_dim_type type, const char *name);
1392 #include <isl/local_space.h>
1393 int isl_local_space_find_dim_by_name(
1394 __isl_keep isl_local_space *ls,
1395 enum isl_dim_type type, const char *name);
1397 #include <isl/val.h>
1398 int isl_multi_val_find_dim_by_id(
1399 __isl_keep isl_multi_val *mv,
1400 enum isl_dim_type type, __isl_keep isl_id *id);
1401 int isl_multi_val_find_dim_by_name(
1402 __isl_keep isl_multi_val *mv,
1403 enum isl_dim_type type, const char *name);
1405 #include <isl/set.h>
1406 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1407 enum isl_dim_type type, __isl_keep isl_id *id);
1408 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1409 enum isl_dim_type type, const char *name);
1411 #include <isl/map.h>
1412 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1413 enum isl_dim_type type, __isl_keep isl_id *id);
1414 int isl_basic_map_find_dim_by_name(
1415 __isl_keep isl_basic_map *bmap,
1416 enum isl_dim_type type, const char *name);
1417 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1418 enum isl_dim_type type, const char *name);
1419 int isl_union_map_find_dim_by_name(
1420 __isl_keep isl_union_map *umap,
1421 enum isl_dim_type type, const char *name);
1423 #include <isl/aff.h>
1424 int isl_multi_aff_find_dim_by_id(
1425 __isl_keep isl_multi_aff *ma,
1426 enum isl_dim_type type, __isl_keep isl_id *id);
1427 int isl_multi_pw_aff_find_dim_by_id(
1428 __isl_keep isl_multi_pw_aff *mpa,
1429 enum isl_dim_type type, __isl_keep isl_id *id);
1430 int isl_multi_union_pw_aff_find_dim_by_id(
1431 __isl_keep isl_union_multi_pw_aff *mupa,
1432 enum isl_dim_type type, __isl_keep isl_id *id);
1433 int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
1434 enum isl_dim_type type, const char *name);
1435 int isl_multi_aff_find_dim_by_name(
1436 __isl_keep isl_multi_aff *ma,
1437 enum isl_dim_type type, const char *name);
1438 int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
1439 enum isl_dim_type type, const char *name);
1440 int isl_multi_pw_aff_find_dim_by_name(
1441 __isl_keep isl_multi_pw_aff *mpa,
1442 enum isl_dim_type type, const char *name);
1443 int isl_pw_multi_aff_find_dim_by_name(
1444 __isl_keep isl_pw_multi_aff *pma,
1445 enum isl_dim_type type, const char *name);
1446 int isl_union_pw_aff_find_dim_by_name(
1447 __isl_keep isl_union_pw_aff *upa,
1448 enum isl_dim_type type, const char *name);
1449 int isl_union_pw_multi_aff_find_dim_by_name(
1450 __isl_keep isl_union_pw_multi_aff *upma,
1451 enum isl_dim_type type, const char *name);
1452 int isl_multi_union_pw_aff_find_dim_by_name(
1453 __isl_keep isl_multi_union_pw_aff *mupa,
1454 enum isl_dim_type type, const char *name);
1456 #include <isl/polynomial.h>
1457 int isl_pw_qpolynomial_find_dim_by_name(
1458 __isl_keep isl_pw_qpolynomial *pwqp,
1459 enum isl_dim_type type, const char *name);
1460 int isl_pw_qpolynomial_fold_find_dim_by_name(
1461 __isl_keep isl_pw_qpolynomial_fold *pwf,
1462 enum isl_dim_type type, const char *name);
1463 int isl_union_pw_qpolynomial_find_dim_by_name(
1464 __isl_keep isl_union_pw_qpolynomial *upwqp,
1465 enum isl_dim_type type, const char *name);
1466 int isl_union_pw_qpolynomial_fold_find_dim_by_name(
1467 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1468 enum isl_dim_type type, const char *name);
1470 The identifiers or names of entire spaces may be set or read off
1471 using the following functions.
1473 #include <isl/space.h>
1474 __isl_give isl_space *isl_space_set_tuple_id(
1475 __isl_take isl_space *space,
1476 enum isl_dim_type type, __isl_take isl_id *id);
1477 __isl_give isl_space *isl_space_reset_tuple_id(
1478 __isl_take isl_space *space, enum isl_dim_type type);
1479 isl_bool isl_space_has_tuple_id(
1480 __isl_keep isl_space *space,
1481 enum isl_dim_type type);
1482 __isl_give isl_id *isl_space_get_tuple_id(
1483 __isl_keep isl_space *space, enum isl_dim_type type);
1484 __isl_give isl_space *isl_space_set_tuple_name(
1485 __isl_take isl_space *space,
1486 enum isl_dim_type type, const char *s);
1487 isl_bool isl_space_has_tuple_name(
1488 __isl_keep isl_space *space,
1489 enum isl_dim_type type);
1490 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
1491 enum isl_dim_type type);
1493 #include <isl/local_space.h>
1494 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1495 __isl_take isl_local_space *ls,
1496 enum isl_dim_type type, __isl_take isl_id *id);
1498 #include <isl/set.h>
1499 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1500 __isl_take isl_basic_set *bset,
1501 __isl_take isl_id *id);
1502 __isl_give isl_set *isl_set_set_tuple_id(
1503 __isl_take isl_set *set, __isl_take isl_id *id);
1504 __isl_give isl_set *isl_set_reset_tuple_id(
1505 __isl_take isl_set *set);
1506 isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
1507 __isl_give isl_id *isl_set_get_tuple_id(
1508 __isl_keep isl_set *set);
1509 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1510 __isl_take isl_basic_set *set, const char *s);
1511 __isl_give isl_set *isl_set_set_tuple_name(
1512 __isl_take isl_set *set, const char *s);
1513 const char *isl_basic_set_get_tuple_name(
1514 __isl_keep isl_basic_set *bset);
1515 isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
1516 const char *isl_set_get_tuple_name(
1517 __isl_keep isl_set *set);
1519 #include <isl/map.h>
1520 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1521 __isl_take isl_basic_map *bmap,
1522 enum isl_dim_type type, __isl_take isl_id *id);
1523 __isl_give isl_map *isl_map_set_tuple_id(
1524 __isl_take isl_map *map, enum isl_dim_type type,
1525 __isl_take isl_id *id);
1526 __isl_give isl_map *isl_map_reset_tuple_id(
1527 __isl_take isl_map *map, enum isl_dim_type type);
1528 isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
1529 enum isl_dim_type type);
1530 __isl_give isl_id *isl_map_get_tuple_id(
1531 __isl_keep isl_map *map, enum isl_dim_type type);
1532 __isl_give isl_map *isl_map_set_tuple_name(
1533 __isl_take isl_map *map,
1534 enum isl_dim_type type, const char *s);
1535 const char *isl_basic_map_get_tuple_name(
1536 __isl_keep isl_basic_map *bmap,
1537 enum isl_dim_type type);
1538 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1539 __isl_take isl_basic_map *bmap,
1540 enum isl_dim_type type, const char *s);
1541 isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
1542 enum isl_dim_type type);
1543 const char *isl_map_get_tuple_name(
1544 __isl_keep isl_map *map,
1545 enum isl_dim_type type);
1547 #include <isl/val.h>
1548 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
1549 __isl_take isl_multi_val *mv,
1550 enum isl_dim_type type, __isl_take isl_id *id);
1551 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
1552 __isl_take isl_multi_val *mv,
1553 enum isl_dim_type type);
1554 isl_bool isl_multi_val_has_tuple_id(
1555 __isl_keep isl_multi_val *mv,
1556 enum isl_dim_type type);
1557 __isl_give isl_id *isl_multi_val_get_tuple_id(
1558 __isl_keep isl_multi_val *mv,
1559 enum isl_dim_type type);
1560 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
1561 __isl_take isl_multi_val *mv,
1562 enum isl_dim_type type, const char *s);
1563 const char *isl_multi_val_get_tuple_name(
1564 __isl_keep isl_multi_val *mv,
1565 enum isl_dim_type type);
1567 #include <isl/aff.h>
1568 __isl_give isl_aff *isl_aff_set_tuple_id(
1569 __isl_take isl_aff *aff,
1570 enum isl_dim_type type, __isl_take isl_id *id);
1571 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
1572 __isl_take isl_multi_aff *maff,
1573 enum isl_dim_type type, __isl_take isl_id *id);
1574 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
1575 __isl_take isl_pw_aff *pwaff,
1576 enum isl_dim_type type, __isl_take isl_id *id);
1577 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
1578 __isl_take isl_pw_multi_aff *pma,
1579 enum isl_dim_type type, __isl_take isl_id *id);
1580 __isl_give isl_multi_union_pw_aff *
1581 isl_multi_union_pw_aff_set_tuple_id(
1582 __isl_take isl_multi_union_pw_aff *mupa,
1583 enum isl_dim_type type, __isl_take isl_id *id);
1584 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
1585 __isl_take isl_multi_aff *ma,
1586 enum isl_dim_type type);
1587 __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
1588 __isl_take isl_pw_aff *pa,
1589 enum isl_dim_type type);
1590 __isl_give isl_multi_pw_aff *
1591 isl_multi_pw_aff_reset_tuple_id(
1592 __isl_take isl_multi_pw_aff *mpa,
1593 enum isl_dim_type type);
1594 __isl_give isl_pw_multi_aff *
1595 isl_pw_multi_aff_reset_tuple_id(
1596 __isl_take isl_pw_multi_aff *pma,
1597 enum isl_dim_type type);
1598 __isl_give isl_multi_union_pw_aff *
1599 isl_multi_union_pw_aff_reset_tuple_id(
1600 __isl_take isl_multi_union_pw_aff *mupa,
1601 enum isl_dim_type type);
1602 isl_bool isl_multi_aff_has_tuple_id(
1603 __isl_keep isl_multi_aff *ma,
1604 enum isl_dim_type type);
1605 __isl_give isl_id *isl_multi_aff_get_tuple_id(
1606 __isl_keep isl_multi_aff *ma,
1607 enum isl_dim_type type);
1608 isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
1609 enum isl_dim_type type);
1610 __isl_give isl_id *isl_pw_aff_get_tuple_id(
1611 __isl_keep isl_pw_aff *pa,
1612 enum isl_dim_type type);
1613 isl_bool isl_pw_multi_aff_has_tuple_id(
1614 __isl_keep isl_pw_multi_aff *pma,
1615 enum isl_dim_type type);
1616 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
1617 __isl_keep isl_pw_multi_aff *pma,
1618 enum isl_dim_type type);
1619 isl_bool isl_multi_pw_aff_has_tuple_id(
1620 __isl_keep isl_multi_pw_aff *mpa,
1621 enum isl_dim_type type);
1622 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
1623 __isl_keep isl_multi_pw_aff *mpa,
1624 enum isl_dim_type type);
1625 isl_bool isl_multi_union_pw_aff_has_tuple_id(
1626 __isl_keep isl_multi_union_pw_aff *mupa,
1627 enum isl_dim_type type);
1628 __isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
1629 __isl_keep isl_multi_union_pw_aff *mupa,
1630 enum isl_dim_type type);
1631 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
1632 __isl_take isl_multi_aff *maff,
1633 enum isl_dim_type type, const char *s);
1634 __isl_give isl_multi_pw_aff *
1635 isl_multi_pw_aff_set_tuple_name(
1636 __isl_take isl_multi_pw_aff *mpa,
1637 enum isl_dim_type type, const char *s);
1638 __isl_give isl_multi_union_pw_aff *
1639 isl_multi_union_pw_aff_set_tuple_name(
1640 __isl_take isl_multi_union_pw_aff *mupa,
1641 enum isl_dim_type type, const char *s);
1642 const char *isl_multi_aff_get_tuple_name(
1643 __isl_keep isl_multi_aff *multi,
1644 enum isl_dim_type type);
1645 isl_bool isl_pw_multi_aff_has_tuple_name(
1646 __isl_keep isl_pw_multi_aff *pma,
1647 enum isl_dim_type type);
1648 const char *isl_pw_multi_aff_get_tuple_name(
1649 __isl_keep isl_pw_multi_aff *pma,
1650 enum isl_dim_type type);
1651 const char *isl_multi_union_pw_aff_get_tuple_name(
1652 __isl_keep isl_multi_union_pw_aff *mupa,
1653 enum isl_dim_type type);
1655 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1656 or C<isl_dim_set>. As with C<isl_space_get_name>,
1657 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1659 Binary operations require the corresponding spaces of their arguments
1660 to have the same name.
1662 To keep the names of all parameters and tuples, but reset the user pointers
1663 of all the corresponding identifiers, use the following function.
1665 #include <isl/space.h>
1666 __isl_give isl_space *isl_space_reset_user(
1667 __isl_take isl_space *space);
1669 #include <isl/set.h>
1670 __isl_give isl_set *isl_set_reset_user(
1671 __isl_take isl_set *set);
1673 #include <isl/map.h>
1674 __isl_give isl_map *isl_map_reset_user(
1675 __isl_take isl_map *map);
1677 #include <isl/union_set.h>
1678 __isl_give isl_union_set *isl_union_set_reset_user(
1679 __isl_take isl_union_set *uset);
1681 #include <isl/union_map.h>
1682 __isl_give isl_union_map *isl_union_map_reset_user(
1683 __isl_take isl_union_map *umap);
1685 #include <isl/val.h>
1686 __isl_give isl_multi_val *isl_multi_val_reset_user(
1687 __isl_take isl_multi_val *mv);
1689 #include <isl/aff.h>
1690 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
1691 __isl_take isl_multi_aff *ma);
1692 __isl_give isl_pw_aff *isl_pw_aff_reset_user(
1693 __isl_take isl_pw_aff *pa);
1694 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
1695 __isl_take isl_multi_pw_aff *mpa);
1696 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
1697 __isl_take isl_pw_multi_aff *pma);
1698 __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
1699 __isl_take isl_union_pw_aff *upa);
1700 __isl_give isl_multi_union_pw_aff *
1701 isl_multi_union_pw_aff_reset_user(
1702 __isl_take isl_multi_union_pw_aff *mupa);
1703 __isl_give isl_union_pw_multi_aff *
1704 isl_union_pw_multi_aff_reset_user(
1705 __isl_take isl_union_pw_multi_aff *upma);
1707 #include <isl/polynomial.h>
1708 __isl_give isl_pw_qpolynomial *
1709 isl_pw_qpolynomial_reset_user(
1710 __isl_take isl_pw_qpolynomial *pwqp);
1711 __isl_give isl_union_pw_qpolynomial *
1712 isl_union_pw_qpolynomial_reset_user(
1713 __isl_take isl_union_pw_qpolynomial *upwqp);
1714 __isl_give isl_pw_qpolynomial_fold *
1715 isl_pw_qpolynomial_fold_reset_user(
1716 __isl_take isl_pw_qpolynomial_fold *pwf);
1717 __isl_give isl_union_pw_qpolynomial_fold *
1718 isl_union_pw_qpolynomial_fold_reset_user(
1719 __isl_take isl_union_pw_qpolynomial_fold *upwf);
1721 Spaces can be nested. In particular, the domain of a set or
1722 the domain or range of a relation can be a nested relation.
1723 This process is also called I<wrapping>.
1724 The functions for detecting, constructing and deconstructing
1725 such nested spaces can be found in the wrapping properties
1726 of L</"Unary Properties">, the wrapping operations
1727 of L</"Unary Operations"> and the Cartesian product operations
1728 of L</"Basic Operations">.
1730 Spaces can be created from other spaces
1731 using the functions described in L</"Unary Operations">
1732 and L</"Binary Operations">.
1736 A local space is essentially a space with
1737 zero or more existentially quantified variables.
1738 The local space of various objects can be obtained
1739 using the following functions.
1741 #include <isl/constraint.h>
1742 __isl_give isl_local_space *isl_constraint_get_local_space(
1743 __isl_keep isl_constraint *constraint);
1745 #include <isl/set.h>
1746 __isl_give isl_local_space *isl_basic_set_get_local_space(
1747 __isl_keep isl_basic_set *bset);
1749 #include <isl/map.h>
1750 __isl_give isl_local_space *isl_basic_map_get_local_space(
1751 __isl_keep isl_basic_map *bmap);
1753 #include <isl/aff.h>
1754 __isl_give isl_local_space *isl_aff_get_domain_local_space(
1755 __isl_keep isl_aff *aff);
1756 __isl_give isl_local_space *isl_aff_get_local_space(
1757 __isl_keep isl_aff *aff);
1759 A new local space can be created from a space using
1761 #include <isl/local_space.h>
1762 __isl_give isl_local_space *isl_local_space_from_space(
1763 __isl_take isl_space *space);
1765 They can be inspected, modified, copied and freed using the following functions.
1767 #include <isl/local_space.h>
1768 isl_bool isl_local_space_is_params(
1769 __isl_keep isl_local_space *ls);
1770 isl_bool isl_local_space_is_set(
1771 __isl_keep isl_local_space *ls);
1772 __isl_give isl_space *isl_local_space_get_space(
1773 __isl_keep isl_local_space *ls);
1774 __isl_give isl_aff *isl_local_space_get_div(
1775 __isl_keep isl_local_space *ls, int pos);
1776 __isl_give isl_local_space *isl_local_space_copy(
1777 __isl_keep isl_local_space *ls);
1778 __isl_null isl_local_space *isl_local_space_free(
1779 __isl_take isl_local_space *ls);
1781 Note that C<isl_local_space_get_div> can only be used on local spaces
1784 Two local spaces can be compared using
1786 isl_bool isl_local_space_is_equal(
1787 __isl_keep isl_local_space *ls1,
1788 __isl_keep isl_local_space *ls2);
1790 Local spaces can be created from other local spaces
1791 using the functions described in L</"Unary Operations">
1792 and L</"Binary Operations">.
1794 =head2 Creating New Sets and Relations
1796 C<isl> has functions for creating some standard sets and relations.
1800 =item * Empty sets and relations
1802 __isl_give isl_basic_set *isl_basic_set_empty(
1803 __isl_take isl_space *space);
1804 __isl_give isl_basic_map *isl_basic_map_empty(
1805 __isl_take isl_space *space);
1806 __isl_give isl_set *isl_set_empty(
1807 __isl_take isl_space *space);
1808 __isl_give isl_map *isl_map_empty(
1809 __isl_take isl_space *space);
1810 __isl_give isl_union_set *isl_union_set_empty(
1811 __isl_take isl_space *space);
1812 __isl_give isl_union_map *isl_union_map_empty(
1813 __isl_take isl_space *space);
1815 For C<isl_union_set>s and C<isl_union_map>s, the space
1816 is only used to specify the parameters.
1818 =item * Universe sets and relations
1820 __isl_give isl_basic_set *isl_basic_set_universe(
1821 __isl_take isl_space *space);
1822 __isl_give isl_basic_map *isl_basic_map_universe(
1823 __isl_take isl_space *space);
1824 __isl_give isl_set *isl_set_universe(
1825 __isl_take isl_space *space);
1826 __isl_give isl_map *isl_map_universe(
1827 __isl_take isl_space *space);
1828 __isl_give isl_union_set *isl_union_set_universe(
1829 __isl_take isl_union_set *uset);
1830 __isl_give isl_union_map *isl_union_map_universe(
1831 __isl_take isl_union_map *umap);
1833 The sets and relations constructed by the functions above
1834 contain all integer values, while those constructed by the
1835 functions below only contain non-negative values.
1837 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1838 __isl_take isl_space *space);
1839 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1840 __isl_take isl_space *space);
1841 __isl_give isl_set *isl_set_nat_universe(
1842 __isl_take isl_space *space);
1843 __isl_give isl_map *isl_map_nat_universe(
1844 __isl_take isl_space *space);
1846 =item * Identity relations
1848 __isl_give isl_basic_map *isl_basic_map_identity(
1849 __isl_take isl_space *space);
1850 __isl_give isl_map *isl_map_identity(
1851 __isl_take isl_space *space);
1853 The number of input and output dimensions in C<space> needs
1856 =item * Lexicographic order
1858 __isl_give isl_map *isl_map_lex_lt(
1859 __isl_take isl_space *set_space);
1860 __isl_give isl_map *isl_map_lex_le(
1861 __isl_take isl_space *set_space);
1862 __isl_give isl_map *isl_map_lex_gt(
1863 __isl_take isl_space *set_space);
1864 __isl_give isl_map *isl_map_lex_ge(
1865 __isl_take isl_space *set_space);
1866 __isl_give isl_map *isl_map_lex_lt_first(
1867 __isl_take isl_space *space, unsigned n);
1868 __isl_give isl_map *isl_map_lex_le_first(
1869 __isl_take isl_space *space, unsigned n);
1870 __isl_give isl_map *isl_map_lex_gt_first(
1871 __isl_take isl_space *space, unsigned n);
1872 __isl_give isl_map *isl_map_lex_ge_first(
1873 __isl_take isl_space *space, unsigned n);
1875 The first four functions take a space for a B<set>
1876 and return relations that express that the elements in the domain
1877 are lexicographically less
1878 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1879 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1880 than the elements in the range.
1881 The last four functions take a space for a map
1882 and return relations that express that the first C<n> dimensions
1883 in the domain are lexicographically less
1884 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1885 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1886 than the first C<n> dimensions in the range.
1890 A basic set or relation can be converted to a set or relation
1891 using the following functions.
1893 __isl_give isl_set *isl_set_from_basic_set(
1894 __isl_take isl_basic_set *bset);
1895 __isl_give isl_map *isl_map_from_basic_map(
1896 __isl_take isl_basic_map *bmap);
1898 Sets and relations can be converted to union sets and relations
1899 using the following functions.
1901 __isl_give isl_union_set *isl_union_set_from_basic_set(
1902 __isl_take isl_basic_set *bset);
1903 __isl_give isl_union_map *isl_union_map_from_basic_map(
1904 __isl_take isl_basic_map *bmap);
1905 __isl_give isl_union_set *isl_union_set_from_set(
1906 __isl_take isl_set *set);
1907 __isl_give isl_union_map *isl_union_map_from_map(
1908 __isl_take isl_map *map);
1910 The inverse conversions below can only be used if the input
1911 union set or relation is known to contain elements in exactly one
1914 __isl_give isl_set *isl_set_from_union_set(
1915 __isl_take isl_union_set *uset);
1916 __isl_give isl_map *isl_map_from_union_map(
1917 __isl_take isl_union_map *umap);
1919 Sets and relations can be copied and freed again using the following
1922 __isl_give isl_basic_set *isl_basic_set_copy(
1923 __isl_keep isl_basic_set *bset);
1924 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1925 __isl_give isl_union_set *isl_union_set_copy(
1926 __isl_keep isl_union_set *uset);
1927 __isl_give isl_basic_map *isl_basic_map_copy(
1928 __isl_keep isl_basic_map *bmap);
1929 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1930 __isl_give isl_union_map *isl_union_map_copy(
1931 __isl_keep isl_union_map *umap);
1932 __isl_null isl_basic_set *isl_basic_set_free(
1933 __isl_take isl_basic_set *bset);
1934 __isl_null isl_set *isl_set_free(__isl_take isl_set *set);
1935 __isl_null isl_union_set *isl_union_set_free(
1936 __isl_take isl_union_set *uset);
1937 __isl_null isl_basic_map *isl_basic_map_free(
1938 __isl_take isl_basic_map *bmap);
1939 __isl_null isl_map *isl_map_free(__isl_take isl_map *map);
1940 __isl_null isl_union_map *isl_union_map_free(
1941 __isl_take isl_union_map *umap);
1943 Other sets and relations can be constructed by starting
1944 from a universe set or relation, adding equality and/or
1945 inequality constraints and then projecting out the
1946 existentially quantified variables, if any.
1947 Constraints can be constructed, manipulated and
1948 added to (or removed from) (basic) sets and relations
1949 using the following functions.
1951 #include <isl/constraint.h>
1952 __isl_give isl_constraint *isl_constraint_alloc_equality(
1953 __isl_take isl_local_space *ls);
1954 __isl_give isl_constraint *isl_constraint_alloc_inequality(
1955 __isl_take isl_local_space *ls);
1956 __isl_give isl_constraint *isl_constraint_set_constant_si(
1957 __isl_take isl_constraint *constraint, int v);
1958 __isl_give isl_constraint *isl_constraint_set_constant_val(
1959 __isl_take isl_constraint *constraint,
1960 __isl_take isl_val *v);
1961 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1962 __isl_take isl_constraint *constraint,
1963 enum isl_dim_type type, int pos, int v);
1964 __isl_give isl_constraint *
1965 isl_constraint_set_coefficient_val(
1966 __isl_take isl_constraint *constraint,
1967 enum isl_dim_type type, int pos,
1968 __isl_take isl_val *v);
1969 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1970 __isl_take isl_basic_map *bmap,
1971 __isl_take isl_constraint *constraint);
1972 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1973 __isl_take isl_basic_set *bset,
1974 __isl_take isl_constraint *constraint);
1975 __isl_give isl_map *isl_map_add_constraint(
1976 __isl_take isl_map *map,
1977 __isl_take isl_constraint *constraint);
1978 __isl_give isl_set *isl_set_add_constraint(
1979 __isl_take isl_set *set,
1980 __isl_take isl_constraint *constraint);
1982 For example, to create a set containing the even integers
1983 between 10 and 42, you would use the following code.
1986 isl_local_space *ls;
1988 isl_basic_set *bset;
1990 space = isl_space_set_alloc(ctx, 0, 2);
1991 bset = isl_basic_set_universe(isl_space_copy(space));
1992 ls = isl_local_space_from_space(space);
1994 c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
1995 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1996 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1997 bset = isl_basic_set_add_constraint(bset, c);
1999 c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
2000 c = isl_constraint_set_constant_si(c, -10);
2001 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
2002 bset = isl_basic_set_add_constraint(bset, c);
2004 c = isl_constraint_alloc_inequality(ls);
2005 c = isl_constraint_set_constant_si(c, 42);
2006 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2007 bset = isl_basic_set_add_constraint(bset, c);
2009 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
2013 isl_basic_set *bset;
2014 bset = isl_basic_set_read_from_str(ctx,
2015 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
2017 A basic set or relation can also be constructed from two matrices
2018 describing the equalities and the inequalities.
2020 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
2021 __isl_take isl_space *space,
2022 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2023 enum isl_dim_type c1,
2024 enum isl_dim_type c2, enum isl_dim_type c3,
2025 enum isl_dim_type c4);
2026 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
2027 __isl_take isl_space *space,
2028 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2029 enum isl_dim_type c1,
2030 enum isl_dim_type c2, enum isl_dim_type c3,
2031 enum isl_dim_type c4, enum isl_dim_type c5);
2033 The C<isl_dim_type> arguments indicate the order in which
2034 different kinds of variables appear in the input matrices
2035 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
2036 C<isl_dim_set> and C<isl_dim_div> for sets and
2037 of C<isl_dim_cst>, C<isl_dim_param>,
2038 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
2040 A (basic or union) set or relation can also be constructed from a
2041 (union) (piecewise) (multiple) affine expression
2042 or a list of affine expressions
2043 (See L</"Functions">), provided these affine expressions do not
2046 __isl_give isl_basic_map *isl_basic_map_from_aff(
2047 __isl_take isl_aff *aff);
2048 __isl_give isl_map *isl_map_from_aff(
2049 __isl_take isl_aff *aff);
2050 __isl_give isl_set *isl_set_from_pw_aff(
2051 __isl_take isl_pw_aff *pwaff);
2052 __isl_give isl_map *isl_map_from_pw_aff(
2053 __isl_take isl_pw_aff *pwaff);
2054 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
2055 __isl_take isl_space *domain_space,
2056 __isl_take isl_aff_list *list);
2057 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
2058 __isl_take isl_multi_aff *maff)
2059 __isl_give isl_map *isl_map_from_multi_aff(
2060 __isl_take isl_multi_aff *maff)
2061 __isl_give isl_set *isl_set_from_pw_multi_aff(
2062 __isl_take isl_pw_multi_aff *pma);
2063 __isl_give isl_map *isl_map_from_pw_multi_aff(
2064 __isl_take isl_pw_multi_aff *pma);
2065 __isl_give isl_set *isl_set_from_multi_pw_aff(
2066 __isl_take isl_multi_pw_aff *mpa);
2067 __isl_give isl_map *isl_map_from_multi_pw_aff(
2068 __isl_take isl_multi_pw_aff *mpa);
2069 __isl_give isl_union_map *isl_union_map_from_union_pw_aff(
2070 __isl_take isl_union_pw_aff *upa);
2071 __isl_give isl_union_map *
2072 isl_union_map_from_union_pw_multi_aff(
2073 __isl_take isl_union_pw_multi_aff *upma);
2074 __isl_give isl_union_map *
2075 isl_union_map_from_multi_union_pw_aff(
2076 __isl_take isl_multi_union_pw_aff *mupa);
2078 The C<domain_space> argument describes the domain of the resulting
2079 basic relation. It is required because the C<list> may consist
2080 of zero affine expressions.
2081 The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
2082 is not allowed to be zero-dimensional. The domain of the result
2083 is the shared domain of the union piecewise affine elements.
2085 =head2 Inspecting Sets and Relations
2087 Usually, the user should not have to care about the actual constraints
2088 of the sets and maps, but should instead apply the abstract operations
2089 explained in the following sections.
2090 Occasionally, however, it may be required to inspect the individual
2091 coefficients of the constraints. This section explains how to do so.
2092 In these cases, it may also be useful to have C<isl> compute
2093 an explicit representation of the existentially quantified variables.
2095 __isl_give isl_set *isl_set_compute_divs(
2096 __isl_take isl_set *set);
2097 __isl_give isl_map *isl_map_compute_divs(
2098 __isl_take isl_map *map);
2099 __isl_give isl_union_set *isl_union_set_compute_divs(
2100 __isl_take isl_union_set *uset);
2101 __isl_give isl_union_map *isl_union_map_compute_divs(
2102 __isl_take isl_union_map *umap);
2104 This explicit representation defines the existentially quantified
2105 variables as integer divisions of the other variables, possibly
2106 including earlier existentially quantified variables.
2107 An explicitly represented existentially quantified variable therefore
2108 has a unique value when the values of the other variables are known.
2110 Alternatively, the existentially quantified variables can be removed
2111 using the following functions, which compute an overapproximation.
2113 __isl_give isl_basic_set *isl_basic_set_remove_divs(
2114 __isl_take isl_basic_set *bset);
2115 __isl_give isl_basic_map *isl_basic_map_remove_divs(
2116 __isl_take isl_basic_map *bmap);
2117 __isl_give isl_set *isl_set_remove_divs(
2118 __isl_take isl_set *set);
2119 __isl_give isl_map *isl_map_remove_divs(
2120 __isl_take isl_map *map);
2122 It is also possible to only remove those divs that are defined
2123 in terms of a given range of dimensions or only those for which
2124 no explicit representation is known.
2126 __isl_give isl_basic_set *
2127 isl_basic_set_remove_divs_involving_dims(
2128 __isl_take isl_basic_set *bset,
2129 enum isl_dim_type type,
2130 unsigned first, unsigned n);
2131 __isl_give isl_basic_map *
2132 isl_basic_map_remove_divs_involving_dims(
2133 __isl_take isl_basic_map *bmap,
2134 enum isl_dim_type type,
2135 unsigned first, unsigned n);
2136 __isl_give isl_set *isl_set_remove_divs_involving_dims(
2137 __isl_take isl_set *set, enum isl_dim_type type,
2138 unsigned first, unsigned n);
2139 __isl_give isl_map *isl_map_remove_divs_involving_dims(
2140 __isl_take isl_map *map, enum isl_dim_type type,
2141 unsigned first, unsigned n);
2143 __isl_give isl_basic_set *
2144 isl_basic_set_remove_unknown_divs(
2145 __isl_take isl_basic_set *bset);
2146 __isl_give isl_set *isl_set_remove_unknown_divs(
2147 __isl_take isl_set *set);
2148 __isl_give isl_map *isl_map_remove_unknown_divs(
2149 __isl_take isl_map *map);
2151 To iterate over all the sets or maps in a union set or map, use
2153 isl_stat isl_union_set_foreach_set(
2154 __isl_keep isl_union_set *uset,
2155 isl_stat (*fn)(__isl_take isl_set *set, void *user),
2157 isl_stat isl_union_map_foreach_map(
2158 __isl_keep isl_union_map *umap,
2159 isl_stat (*fn)(__isl_take isl_map *map, void *user),
2162 These functions call the callback function once for each
2163 (pair of) space(s) for which there are elements in the input.
2164 The argument to the callback contains all elements in the input
2165 with that (pair of) space(s).
2167 The number of sets or maps in a union set or map can be obtained
2170 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
2171 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
2173 To extract the set or map in a given space from a union, use
2175 __isl_give isl_set *isl_union_set_extract_set(
2176 __isl_keep isl_union_set *uset,
2177 __isl_take isl_space *space);
2178 __isl_give isl_map *isl_union_map_extract_map(
2179 __isl_keep isl_union_map *umap,
2180 __isl_take isl_space *space);
2182 To iterate over all the basic sets or maps in a set or map, use
2184 isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
2185 isl_stat (*fn)(__isl_take isl_basic_set *bset,
2188 isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
2189 isl_stat (*fn)(__isl_take isl_basic_map *bmap,
2193 The callback function C<fn> should return 0 if successful and
2194 -1 if an error occurs. In the latter case, or if any other error
2195 occurs, the above functions will return -1.
2197 It should be noted that C<isl> does not guarantee that
2198 the basic sets or maps passed to C<fn> are disjoint.
2199 If this is required, then the user should call one of
2200 the following functions first.
2202 __isl_give isl_set *isl_set_make_disjoint(
2203 __isl_take isl_set *set);
2204 __isl_give isl_map *isl_map_make_disjoint(
2205 __isl_take isl_map *map);
2207 The number of basic sets in a set can be obtained
2208 or the number of basic maps in a map can be obtained
2211 #include <isl/set.h>
2212 int isl_set_n_basic_set(__isl_keep isl_set *set);
2214 #include <isl/map.h>
2215 int isl_map_n_basic_map(__isl_keep isl_map *map);
2217 It is also possible to obtain a list of basic sets from a set
2219 #include <isl/set.h>
2220 __isl_give isl_basic_set_list *isl_set_get_basic_set_list(
2221 __isl_keep isl_set *set);
2223 The returned list can be manipulated using the functions in L<"Lists">.
2225 To iterate over the constraints of a basic set or map, use
2227 #include <isl/constraint.h>
2229 int isl_basic_set_n_constraint(
2230 __isl_keep isl_basic_set *bset);
2231 isl_stat isl_basic_set_foreach_constraint(
2232 __isl_keep isl_basic_set *bset,
2233 isl_stat (*fn)(__isl_take isl_constraint *c,
2236 int isl_basic_map_n_constraint(
2237 __isl_keep isl_basic_map *bmap);
2238 isl_stat isl_basic_map_foreach_constraint(
2239 __isl_keep isl_basic_map *bmap,
2240 isl_stat (*fn)(__isl_take isl_constraint *c,
2243 __isl_null isl_constraint *isl_constraint_free(
2244 __isl_take isl_constraint *c);
2246 Again, the callback function C<fn> should return 0 if successful and
2247 -1 if an error occurs. In the latter case, or if any other error
2248 occurs, the above functions will return -1.
2249 The constraint C<c> represents either an equality or an inequality.
2250 Use the following function to find out whether a constraint
2251 represents an equality. If not, it represents an inequality.
2253 isl_bool isl_constraint_is_equality(
2254 __isl_keep isl_constraint *constraint);
2256 It is also possible to obtain a list of constraints from a basic
2259 #include <isl/constraint.h>
2260 __isl_give isl_constraint_list *
2261 isl_basic_map_get_constraint_list(
2262 __isl_keep isl_basic_map *bmap);
2263 __isl_give isl_constraint_list *
2264 isl_basic_set_get_constraint_list(
2265 __isl_keep isl_basic_set *bset);
2267 These functions require that all existentially quantified variables
2268 have an explicit representation.
2269 The returned list can be manipulated using the functions in L<"Lists">.
2271 The coefficients of the constraints can be inspected using
2272 the following functions.
2274 isl_bool isl_constraint_is_lower_bound(
2275 __isl_keep isl_constraint *constraint,
2276 enum isl_dim_type type, unsigned pos);
2277 isl_bool isl_constraint_is_upper_bound(
2278 __isl_keep isl_constraint *constraint,
2279 enum isl_dim_type type, unsigned pos);
2280 __isl_give isl_val *isl_constraint_get_constant_val(
2281 __isl_keep isl_constraint *constraint);
2282 __isl_give isl_val *isl_constraint_get_coefficient_val(
2283 __isl_keep isl_constraint *constraint,
2284 enum isl_dim_type type, int pos);
2286 The explicit representations of the existentially quantified
2287 variables can be inspected using the following function.
2288 Note that the user is only allowed to use this function
2289 if the inspected set or map is the result of a call
2290 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
2291 The existentially quantified variable is equal to the floor
2292 of the returned affine expression. The affine expression
2293 itself can be inspected using the functions in
2296 __isl_give isl_aff *isl_constraint_get_div(
2297 __isl_keep isl_constraint *constraint, int pos);
2299 To obtain the constraints of a basic set or map in matrix
2300 form, use the following functions.
2302 __isl_give isl_mat *isl_basic_set_equalities_matrix(
2303 __isl_keep isl_basic_set *bset,
2304 enum isl_dim_type c1, enum isl_dim_type c2,
2305 enum isl_dim_type c3, enum isl_dim_type c4);
2306 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
2307 __isl_keep isl_basic_set *bset,
2308 enum isl_dim_type c1, enum isl_dim_type c2,
2309 enum isl_dim_type c3, enum isl_dim_type c4);
2310 __isl_give isl_mat *isl_basic_map_equalities_matrix(
2311 __isl_keep isl_basic_map *bmap,
2312 enum isl_dim_type c1,
2313 enum isl_dim_type c2, enum isl_dim_type c3,
2314 enum isl_dim_type c4, enum isl_dim_type c5);
2315 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
2316 __isl_keep isl_basic_map *bmap,
2317 enum isl_dim_type c1,
2318 enum isl_dim_type c2, enum isl_dim_type c3,
2319 enum isl_dim_type c4, enum isl_dim_type c5);
2321 The C<isl_dim_type> arguments dictate the order in which
2322 different kinds of variables appear in the resulting matrix.
2323 For set inputs, they should be a permutation of
2324 C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
2325 For map inputs, they should be a permutation of
2326 C<isl_dim_cst>, C<isl_dim_param>,
2327 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
2331 Points are elements of a set. They can be used to construct
2332 simple sets (boxes) or they can be used to represent the
2333 individual elements of a set.
2334 The zero point (the origin) can be created using
2336 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2338 The coordinates of a point can be inspected, set and changed
2341 __isl_give isl_val *isl_point_get_coordinate_val(
2342 __isl_keep isl_point *pnt,
2343 enum isl_dim_type type, int pos);
2344 __isl_give isl_point *isl_point_set_coordinate_val(
2345 __isl_take isl_point *pnt,
2346 enum isl_dim_type type, int pos,
2347 __isl_take isl_val *v);
2349 __isl_give isl_point *isl_point_add_ui(
2350 __isl_take isl_point *pnt,
2351 enum isl_dim_type type, int pos, unsigned val);
2352 __isl_give isl_point *isl_point_sub_ui(
2353 __isl_take isl_point *pnt,
2354 enum isl_dim_type type, int pos, unsigned val);
2356 Points can be copied or freed using
2358 __isl_give isl_point *isl_point_copy(
2359 __isl_keep isl_point *pnt);
2360 void isl_point_free(__isl_take isl_point *pnt);
2362 A singleton set can be created from a point using
2364 __isl_give isl_basic_set *isl_basic_set_from_point(
2365 __isl_take isl_point *pnt);
2366 __isl_give isl_set *isl_set_from_point(
2367 __isl_take isl_point *pnt);
2368 __isl_give isl_union_set *isl_union_set_from_point(
2369 __isl_take isl_point *pnt);
2371 and a box can be created from two opposite extremal points using
2373 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2374 __isl_take isl_point *pnt1,
2375 __isl_take isl_point *pnt2);
2376 __isl_give isl_set *isl_set_box_from_points(
2377 __isl_take isl_point *pnt1,
2378 __isl_take isl_point *pnt2);
2380 All elements of a B<bounded> (union) set can be enumerated using
2381 the following functions.
2383 isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
2384 isl_stat (*fn)(__isl_take isl_point *pnt,
2387 isl_stat isl_union_set_foreach_point(
2388 __isl_keep isl_union_set *uset,
2389 isl_stat (*fn)(__isl_take isl_point *pnt,
2393 The function C<fn> is called for each integer point in
2394 C<set> with as second argument the last argument of
2395 the C<isl_set_foreach_point> call. The function C<fn>
2396 should return C<0> on success and C<-1> on failure.
2397 In the latter case, C<isl_set_foreach_point> will stop
2398 enumerating and return C<-1> as well.
2399 If the enumeration is performed successfully and to completion,
2400 then C<isl_set_foreach_point> returns C<0>.
2402 To obtain a single point of a (basic or union) set, use
2404 __isl_give isl_point *isl_basic_set_sample_point(
2405 __isl_take isl_basic_set *bset);
2406 __isl_give isl_point *isl_set_sample_point(
2407 __isl_take isl_set *set);
2408 __isl_give isl_point *isl_union_set_sample_point(
2409 __isl_take isl_union_set *uset);
2411 If C<set> does not contain any (integer) points, then the
2412 resulting point will be ``void'', a property that can be
2415 isl_bool isl_point_is_void(__isl_keep isl_point *pnt);
2419 Besides sets and relation, C<isl> also supports various types of functions.
2420 Each of these types is derived from the value type (see L</"Values">)
2421 or from one of two primitive function types
2422 through the application of zero or more type constructors.
2423 We first describe the primitive type and then we describe
2424 the types derived from these primitive types.
2426 =head3 Primitive Functions
2428 C<isl> support two primitive function types, quasi-affine
2429 expressions and quasipolynomials.
2430 A quasi-affine expression is defined either over a parameter
2431 space or over a set and is composed of integer constants,
2432 parameters and set variables, addition, subtraction and
2433 integer division by an integer constant.
2434 For example, the quasi-affine expression
2436 [n] -> { [x] -> [2*floor((4 n + x)/9] }
2438 maps C<x> to C<2*floor((4 n + x)/9>.
2439 A quasipolynomial is a polynomial expression in quasi-affine
2440 expression. That is, it additionally allows for multiplication.
2441 Note, though, that it is not allowed to construct an integer
2442 division of an expression involving multiplications.
2443 Here is an example of a quasipolynomial that is not
2444 quasi-affine expression
2446 [n] -> { [x] -> (n*floor((4 n + x)/9) }
2448 Note that the external representations of quasi-affine expressions
2449 and quasipolynomials are different. Quasi-affine expressions
2450 use a notation with square brackets just like binary relations,
2451 while quasipolynomials do not. This might change at some point.
2453 If a primitive function is defined over a parameter space,
2454 then the space of the function itself is that of a set.
2455 If it is defined over a set, then the space of the function
2456 is that of a relation. In both cases, the set space (or
2457 the output space) is single-dimensional, anonymous and unstructured.
2458 To create functions with multiple dimensions or with other kinds
2459 of set or output spaces, use multiple expressions
2460 (see L</"Multiple Expressions">).
2464 =item * Quasi-affine Expressions
2466 Besides the expressions described above, a quasi-affine
2467 expression can also be set to NaN. Such expressions
2468 typically represent a failure to represent a result
2469 as a quasi-affine expression.
2471 The zero quasi affine expression or the quasi affine expression
2472 that is equal to a given value or
2473 a specified dimension on a given domain can be created using
2475 #include <isl/aff.h>
2476 __isl_give isl_aff *isl_aff_zero_on_domain(
2477 __isl_take isl_local_space *ls);
2478 __isl_give isl_aff *isl_aff_val_on_domain(
2479 __isl_take isl_local_space *ls,
2480 __isl_take isl_val *val);
2481 __isl_give isl_aff *isl_aff_var_on_domain(
2482 __isl_take isl_local_space *ls,
2483 enum isl_dim_type type, unsigned pos);
2484 __isl_give isl_aff *isl_aff_nan_on_domain(
2485 __isl_take isl_local_space *ls);
2487 Quasi affine expressions can be copied and freed using
2489 #include <isl/aff.h>
2490 __isl_give isl_aff *isl_aff_copy(
2491 __isl_keep isl_aff *aff);
2492 __isl_null isl_aff *isl_aff_free(
2493 __isl_take isl_aff *aff);
2495 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2496 using the following function. The constraint is required to have
2497 a non-zero coefficient for the specified dimension.
2499 #include <isl/constraint.h>
2500 __isl_give isl_aff *isl_constraint_get_bound(
2501 __isl_keep isl_constraint *constraint,
2502 enum isl_dim_type type, int pos);
2504 The entire affine expression of the constraint can also be extracted
2505 using the following function.
2507 #include <isl/constraint.h>
2508 __isl_give isl_aff *isl_constraint_get_aff(
2509 __isl_keep isl_constraint *constraint);
2511 Conversely, an equality constraint equating
2512 the affine expression to zero or an inequality constraint enforcing
2513 the affine expression to be non-negative, can be constructed using
2515 __isl_give isl_constraint *isl_equality_from_aff(
2516 __isl_take isl_aff *aff);
2517 __isl_give isl_constraint *isl_inequality_from_aff(
2518 __isl_take isl_aff *aff);
2520 The coefficients and the integer divisions of an affine expression
2521 can be inspected using the following functions.
2523 #include <isl/aff.h>
2524 __isl_give isl_val *isl_aff_get_constant_val(
2525 __isl_keep isl_aff *aff);
2526 __isl_give isl_val *isl_aff_get_coefficient_val(
2527 __isl_keep isl_aff *aff,
2528 enum isl_dim_type type, int pos);
2529 int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
2530 enum isl_dim_type type, int pos);
2531 __isl_give isl_val *isl_aff_get_denominator_val(
2532 __isl_keep isl_aff *aff);
2533 __isl_give isl_aff *isl_aff_get_div(
2534 __isl_keep isl_aff *aff, int pos);
2536 They can be modified using the following functions.
2538 #include <isl/aff.h>
2539 __isl_give isl_aff *isl_aff_set_constant_si(
2540 __isl_take isl_aff *aff, int v);
2541 __isl_give isl_aff *isl_aff_set_constant_val(
2542 __isl_take isl_aff *aff, __isl_take isl_val *v);
2543 __isl_give isl_aff *isl_aff_set_coefficient_si(
2544 __isl_take isl_aff *aff,
2545 enum isl_dim_type type, int pos, int v);
2546 __isl_give isl_aff *isl_aff_set_coefficient_val(
2547 __isl_take isl_aff *aff,
2548 enum isl_dim_type type, int pos,
2549 __isl_take isl_val *v);
2551 __isl_give isl_aff *isl_aff_add_constant_si(
2552 __isl_take isl_aff *aff, int v);
2553 __isl_give isl_aff *isl_aff_add_constant_val(
2554 __isl_take isl_aff *aff, __isl_take isl_val *v);
2555 __isl_give isl_aff *isl_aff_add_constant_num_si(
2556 __isl_take isl_aff *aff, int v);
2557 __isl_give isl_aff *isl_aff_add_coefficient_si(
2558 __isl_take isl_aff *aff,
2559 enum isl_dim_type type, int pos, int v);
2560 __isl_give isl_aff *isl_aff_add_coefficient_val(
2561 __isl_take isl_aff *aff,
2562 enum isl_dim_type type, int pos,
2563 __isl_take isl_val *v);
2565 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
2566 set the I<numerator> of the constant or coefficient, while
2567 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
2568 the constant or coefficient as a whole.
2569 The C<add_constant> and C<add_coefficient> functions add an integer
2570 or rational value to
2571 the possibly rational constant or coefficient.
2572 The C<add_constant_num> functions add an integer value to
2575 =item * Quasipolynomials
2577 Some simple quasipolynomials can be created using the following functions.
2579 #include <isl/polynomial.h>
2580 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2581 __isl_take isl_space *domain);
2582 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2583 __isl_take isl_space *domain);
2584 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2585 __isl_take isl_space *domain);
2586 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2587 __isl_take isl_space *domain);
2588 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2589 __isl_take isl_space *domain);
2590 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2591 __isl_take isl_space *domain,
2592 __isl_take isl_val *val);
2593 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2594 __isl_take isl_space *domain,
2595 enum isl_dim_type type, unsigned pos);
2596 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2597 __isl_take isl_aff *aff);
2599 Recall that the space in which a quasipolynomial lives is a map space
2600 with a one-dimensional range. The C<domain> argument in some of
2601 the functions above corresponds to the domain of this map space.
2603 Quasipolynomials can be copied and freed again using the following
2606 #include <isl/polynomial.h>
2607 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2608 __isl_keep isl_qpolynomial *qp);
2609 __isl_null isl_qpolynomial *isl_qpolynomial_free(
2610 __isl_take isl_qpolynomial *qp);
2612 The constant term of a quasipolynomial can be extracted using
2614 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2615 __isl_keep isl_qpolynomial *qp);
2617 To iterate over all terms in a quasipolynomial,
2620 isl_stat isl_qpolynomial_foreach_term(
2621 __isl_keep isl_qpolynomial *qp,
2622 isl_stat (*fn)(__isl_take isl_term *term,
2623 void *user), void *user);
2625 The terms themselves can be inspected and freed using
2628 unsigned isl_term_dim(__isl_keep isl_term *term,
2629 enum isl_dim_type type);
2630 __isl_give isl_val *isl_term_get_coefficient_val(
2631 __isl_keep isl_term *term);
2632 int isl_term_get_exp(__isl_keep isl_term *term,
2633 enum isl_dim_type type, unsigned pos);
2634 __isl_give isl_aff *isl_term_get_div(
2635 __isl_keep isl_term *term, unsigned pos);
2636 void isl_term_free(__isl_take isl_term *term);
2638 Each term is a product of parameters, set variables and
2639 integer divisions. The function C<isl_term_get_exp>
2640 returns the exponent of a given dimensions in the given term.
2646 A reduction represents a maximum or a minimum of its
2648 The only reduction type defined by C<isl> is
2649 C<isl_qpolynomial_fold>.
2651 There are currently no functions to directly create such
2652 objects, but they do appear in the piecewise quasipolynomial
2653 reductions returned by the C<isl_pw_qpolynomial_bound> function.
2655 L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
2657 Reductions can be copied and freed using
2658 the following functions.
2660 #include <isl/polynomial.h>
2661 __isl_give isl_qpolynomial_fold *
2662 isl_qpolynomial_fold_copy(
2663 __isl_keep isl_qpolynomial_fold *fold);
2664 void isl_qpolynomial_fold_free(
2665 __isl_take isl_qpolynomial_fold *fold);
2667 To iterate over all quasipolynomials in a reduction, use
2669 isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
2670 __isl_keep isl_qpolynomial_fold *fold,
2671 isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
2672 void *user), void *user);
2674 =head3 Multiple Expressions
2676 A multiple expression represents a sequence of zero or
2677 more base expressions, all defined on the same domain space.
2678 The domain space of the multiple expression is the same
2679 as that of the base expressions, but the range space
2680 can be any space. In case the base expressions have
2681 a set space, the corresponding multiple expression
2682 also has a set space.
2683 Objects of the value type do not have an associated space.
2684 The space of a multiple value is therefore always a set space.
2685 Similarly, the space of a multiple union piecewise
2686 affine expression is always a set space.
2688 The multiple expression types defined by C<isl>
2689 are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
2690 C<isl_multi_union_pw_aff>.
2692 A multiple expression with the value zero for
2693 each output (or set) dimension can be created
2694 using the following functions.
2696 #include <isl/val.h>
2697 __isl_give isl_multi_val *isl_multi_val_zero(
2698 __isl_take isl_space *space);
2700 #include <isl/aff.h>
2701 __isl_give isl_multi_aff *isl_multi_aff_zero(
2702 __isl_take isl_space *space);
2703 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
2704 __isl_take isl_space *space);
2705 __isl_give isl_multi_union_pw_aff *
2706 isl_multi_union_pw_aff_zero(
2707 __isl_take isl_space *space);
2709 Since there is no canonical way of representing a zero
2710 value of type C<isl_union_pw_aff>, the space passed
2711 to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.
2713 An identity function can be created using the following
2714 functions. The space needs to be that of a relation
2715 with the same number of input and output dimensions.
2717 #include <isl/aff.h>
2718 __isl_give isl_multi_aff *isl_multi_aff_identity(
2719 __isl_take isl_space *space);
2720 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
2721 __isl_take isl_space *space);
2723 A function that performs a projection on a universe
2724 relation or set can be created using the following functions.
2725 See also the corresponding
2726 projection operations in L</"Unary Operations">.
2728 #include <isl/aff.h>
2729 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
2730 __isl_take isl_space *space);
2731 __isl_give isl_multi_aff *isl_multi_aff_range_map(
2732 __isl_take isl_space *space);
2733 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
2734 __isl_take isl_space *space,
2735 enum isl_dim_type type,
2736 unsigned first, unsigned n);
2738 A multiple expression can be created from a single
2739 base expression using the following functions.
2740 The space of the created multiple expression is the same
2741 as that of the base expression, except for
2742 C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
2743 lives in a parameter space and the output lives
2744 in a single-dimensional set space.
2746 #include <isl/aff.h>
2747 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
2748 __isl_take isl_aff *aff);
2749 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
2750 __isl_take isl_pw_aff *pa);
2751 __isl_give isl_multi_union_pw_aff *
2752 isl_multi_union_pw_aff_from_union_pw_aff(
2753 __isl_take isl_union_pw_aff *upa);
2755 A multiple expression can be created from a list
2756 of base expression in a specified space.
2757 The domain of this space needs to be the same
2758 as the domains of the base expressions in the list.
2759 If the base expressions have a set space (or no associated space),
2760 then this space also needs to be a set space.
2762 #include <isl/val.h>
2763 __isl_give isl_multi_val *isl_multi_val_from_val_list(
2764 __isl_take isl_space *space,
2765 __isl_take isl_val_list *list);
2767 #include <isl/aff.h>
2768 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2769 __isl_take isl_space *space,
2770 __isl_take isl_aff_list *list);
2771 __isl_give isl_multi_pw_aff *
2772 isl_multi_pw_aff_from_pw_aff_list(
2773 __isl_take isl_space *space,
2774 __isl_take isl_pw_aff_list *list);
2775 __isl_give isl_multi_union_pw_aff *
2776 isl_multi_union_pw_aff_from_union_pw_aff_list(
2777 __isl_take isl_space *space,
2778 __isl_take isl_union_pw_aff_list *list);
2780 As a convenience, a multiple piecewise expression can
2781 also be created from a multiple expression.
2782 Each piecewise expression in the result has a single
2785 #include <isl/aff.h>
2786 __isl_give isl_multi_pw_aff *
2787 isl_multi_pw_aff_from_multi_aff(
2788 __isl_take isl_multi_aff *ma);
2790 Similarly, a multiple union expression can be
2791 created from a multiple expression.
2793 #include <isl/aff.h>
2794 __isl_give isl_multi_union_pw_aff *
2795 isl_multi_union_pw_aff_from_multi_aff(
2796 __isl_take isl_multi_aff *ma);
2797 __isl_give isl_multi_union_pw_aff *
2798 isl_multi_union_pw_aff_from_multi_pw_aff(
2799 __isl_take isl_multi_pw_aff *mpa);
2801 A multiple quasi-affine expression can be created from
2802 a multiple value with a given domain space using the following
2805 #include <isl/aff.h>
2806 __isl_give isl_multi_aff *
2807 isl_multi_aff_multi_val_on_space(
2808 __isl_take isl_space *space,
2809 __isl_take isl_multi_val *mv);
2812 a multiple union piecewise affine expression can be created from
2813 a multiple value with a given domain or
2814 a multiple affine expression with a given domain
2815 using the following functions.
2817 #include <isl/aff.h>
2818 __isl_give isl_multi_union_pw_aff *
2819 isl_multi_union_pw_aff_multi_val_on_domain(
2820 __isl_take isl_union_set *domain,
2821 __isl_take isl_multi_val *mv);
2822 __isl_give isl_multi_union_pw_aff *
2823 isl_multi_union_pw_aff_multi_aff_on_domain(
2824 __isl_take isl_union_set *domain,
2825 __isl_take isl_multi_aff *ma);
2827 Multiple expressions can be copied and freed using
2828 the following functions.
2830 #include <isl/val.h>
2831 __isl_give isl_multi_val *isl_multi_val_copy(
2832 __isl_keep isl_multi_val *mv);
2833 __isl_null isl_multi_val *isl_multi_val_free(
2834 __isl_take isl_multi_val *mv);
2836 #include <isl/aff.h>
2837 __isl_give isl_multi_aff *isl_multi_aff_copy(
2838 __isl_keep isl_multi_aff *maff);
2839 __isl_null isl_multi_aff *isl_multi_aff_free(
2840 __isl_take isl_multi_aff *maff);
2841 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
2842 __isl_keep isl_multi_pw_aff *mpa);
2843 __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
2844 __isl_take isl_multi_pw_aff *mpa);
2845 __isl_give isl_multi_union_pw_aff *
2846 isl_multi_union_pw_aff_copy(
2847 __isl_keep isl_multi_union_pw_aff *mupa);
2848 __isl_null isl_multi_union_pw_aff *
2849 isl_multi_union_pw_aff_free(
2850 __isl_take isl_multi_union_pw_aff *mupa);
2852 The base expression at a given position of a multiple
2853 expression can be extracted using the following functions.
2855 #include <isl/val.h>
2856 __isl_give isl_val *isl_multi_val_get_val(
2857 __isl_keep isl_multi_val *mv, int pos);
2859 #include <isl/aff.h>
2860 __isl_give isl_aff *isl_multi_aff_get_aff(
2861 __isl_keep isl_multi_aff *multi, int pos);
2862 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
2863 __isl_keep isl_multi_pw_aff *mpa, int pos);
2864 __isl_give isl_union_pw_aff *
2865 isl_multi_union_pw_aff_get_union_pw_aff(
2866 __isl_keep isl_multi_union_pw_aff *mupa, int pos);
2868 It can be replaced using the following functions.
2870 #include <isl/val.h>
2871 __isl_give isl_multi_val *isl_multi_val_set_val(
2872 __isl_take isl_multi_val *mv, int pos,
2873 __isl_take isl_val *val);
2875 #include <isl/aff.h>
2876 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
2877 __isl_take isl_multi_aff *multi, int pos,
2878 __isl_take isl_aff *aff);
2879 __isl_give isl_multi_union_pw_aff *
2880 isl_multi_union_pw_aff_set_union_pw_aff(
2881 __isl_take isl_multi_union_pw_aff *mupa, int pos,
2882 __isl_take isl_union_pw_aff *upa);
2884 As a convenience, a sequence of base expressions that have
2885 their domains in a given space can be extracted from a sequence
2886 of union expressions using the following function.
2888 #include <isl/aff.h>
2889 __isl_give isl_multi_pw_aff *
2890 isl_multi_union_pw_aff_extract_multi_pw_aff(
2891 __isl_keep isl_multi_union_pw_aff *mupa,
2892 __isl_take isl_space *space);
2894 Note that there is a difference between C<isl_multi_union_pw_aff>
2895 and C<isl_union_pw_multi_aff> objects. The first is a sequence
2896 of unions of piecewise expressions, while the second is a union
2897 of piecewise sequences. In particular, multiple affine expressions
2898 in an C<isl_union_pw_multi_aff> may live in different spaces,
2899 while there is only a single multiple expression in
2900 an C<isl_multi_union_pw_aff>, which can therefore only live
2901 in a single space. This means that not every
2902 C<isl_union_pw_multi_aff> can be converted to
2903 an C<isl_multi_union_pw_aff>. Conversely, a zero-dimensional
2904 C<isl_multi_union_pw_aff> carries no information
2905 about any possible domain and therefore cannot be converted
2906 to an C<isl_union_pw_multi_aff>. Moreover, the elements
2907 of an C<isl_multi_union_pw_aff> may be defined over different domains,
2908 while each multiple expression inside an C<isl_union_pw_multi_aff>
2909 has a single domain. The conversion of an C<isl_union_pw_multi_aff>
2910 of dimension greater than one may therefore not be exact.
2911 The following functions can
2912 be used to perform these conversions when they are possible.
2914 #include <isl/aff.h>
2915 __isl_give isl_multi_union_pw_aff *
2916 isl_multi_union_pw_aff_from_union_pw_multi_aff(
2917 __isl_take isl_union_pw_multi_aff *upma);
2918 __isl_give isl_union_pw_multi_aff *
2919 isl_union_pw_multi_aff_from_multi_union_pw_aff(
2920 __isl_take isl_multi_union_pw_aff *mupa);
2922 =head3 Piecewise Expressions
2924 A piecewise expression is an expression that is described
2925 using zero or more base expression defined over the same
2926 number of cells in the domain space of the base expressions.
2927 All base expressions are defined over the same
2928 domain space and the cells are disjoint.
2929 The space of a piecewise expression is the same as
2930 that of the base expressions.
2931 If the union of the cells is a strict subset of the domain
2932 space, then the value of the piecewise expression outside
2933 this union is different for types derived from quasi-affine
2934 expressions and those derived from quasipolynomials.
2935 Piecewise expressions derived from quasi-affine expressions
2936 are considered to be undefined outside the union of their cells.
2937 Piecewise expressions derived from quasipolynomials
2938 are considered to be zero outside the union of their cells.
2940 Piecewise quasipolynomials are mainly used by the C<barvinok>
2941 library for representing the number of elements in a parametric set or map.
2942 For example, the piecewise quasipolynomial
2944 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2946 represents the number of points in the map
2948 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2950 The piecewise expression types defined by C<isl>
2951 are C<isl_pw_aff>, C<isl_pw_multi_aff>,
2952 C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
2954 A piecewise expression with no cells can be created using
2955 the following functions.
2957 #include <isl/aff.h>
2958 __isl_give isl_pw_aff *isl_pw_aff_empty(
2959 __isl_take isl_space *space);
2960 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
2961 __isl_take isl_space *space);
2963 A piecewise expression with a single universe cell can be
2964 created using the following functions.
2966 #include <isl/aff.h>
2967 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2968 __isl_take isl_aff *aff);
2969 __isl_give isl_pw_multi_aff *
2970 isl_pw_multi_aff_from_multi_aff(
2971 __isl_take isl_multi_aff *ma);
2973 #include <isl/polynomial.h>
2974 __isl_give isl_pw_qpolynomial *
2975 isl_pw_qpolynomial_from_qpolynomial(
2976 __isl_take isl_qpolynomial *qp);
2978 A piecewise expression with a single specified cell can be
2979 created using the following functions.
2981 #include <isl/aff.h>
2982 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2983 __isl_take isl_set *set, __isl_take isl_aff *aff);
2984 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
2985 __isl_take isl_set *set,
2986 __isl_take isl_multi_aff *maff);
2988 #include <isl/polynomial.h>
2989 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2990 __isl_take isl_set *set,
2991 __isl_take isl_qpolynomial *qp);
2993 The following convenience functions first create a base expression and
2994 then create a piecewise expression over a universe domain.
2996 #include <isl/aff.h>
2997 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
2998 __isl_take isl_local_space *ls);
2999 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3000 __isl_take isl_local_space *ls,
3001 enum isl_dim_type type, unsigned pos);
3002 __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
3003 __isl_take isl_local_space *ls);
3004 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
3005 __isl_take isl_space *space);
3006 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
3007 __isl_take isl_space *space);
3008 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
3009 __isl_take isl_space *space);
3010 __isl_give isl_pw_multi_aff *
3011 isl_pw_multi_aff_project_out_map(
3012 __isl_take isl_space *space,
3013 enum isl_dim_type type,
3014 unsigned first, unsigned n);
3016 #include <isl/polynomial.h>
3017 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3018 __isl_take isl_space *space);
3020 The following convenience functions first create a base expression and
3021 then create a piecewise expression over a given domain.
3023 #include <isl/aff.h>
3024 __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
3025 __isl_take isl_set *domain,
3026 __isl_take isl_val *v);
3027 __isl_give isl_pw_multi_aff *
3028 isl_pw_multi_aff_multi_val_on_domain(
3029 __isl_take isl_set *domain,
3030 __isl_take isl_multi_val *mv);
3032 As a convenience, a piecewise multiple expression can
3033 also be created from a piecewise expression.
3034 Each multiple expression in the result is derived
3035 from the corresponding base expression.
3037 #include <isl/aff.h>
3038 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
3039 __isl_take isl_pw_aff *pa);
3041 Similarly, a piecewise quasipolynomial can be
3042 created from a piecewise quasi-affine expression using
3043 the following function.
3045 #include <isl/polynomial.h>
3046 __isl_give isl_pw_qpolynomial *
3047 isl_pw_qpolynomial_from_pw_aff(
3048 __isl_take isl_pw_aff *pwaff);
3050 Piecewise expressions can be copied and freed using the following functions.
3052 #include <isl/aff.h>
3053 __isl_give isl_pw_aff *isl_pw_aff_copy(
3054 __isl_keep isl_pw_aff *pwaff);
3055 __isl_null isl_pw_aff *isl_pw_aff_free(
3056 __isl_take isl_pw_aff *pwaff);
3057 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3058 __isl_keep isl_pw_multi_aff *pma);
3059 __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
3060 __isl_take isl_pw_multi_aff *pma);
3062 #include <isl/polynomial.h>
3063 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3064 __isl_keep isl_pw_qpolynomial *pwqp);
3065 __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
3066 __isl_take isl_pw_qpolynomial *pwqp);
3067 __isl_give isl_pw_qpolynomial_fold *
3068 isl_pw_qpolynomial_fold_copy(
3069 __isl_keep isl_pw_qpolynomial_fold *pwf);
3070 __isl_null isl_pw_qpolynomial_fold *
3071 isl_pw_qpolynomial_fold_free(
3072 __isl_take isl_pw_qpolynomial_fold *pwf);
3074 To iterate over the different cells of a piecewise expression,
3075 use the following functions.
3077 #include <isl/aff.h>
3078 isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3079 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3080 isl_stat isl_pw_aff_foreach_piece(
3081 __isl_keep isl_pw_aff *pwaff,
3082 isl_stat (*fn)(__isl_take isl_set *set,
3083 __isl_take isl_aff *aff,
3084 void *user), void *user);
3085 isl_stat isl_pw_multi_aff_foreach_piece(
3086 __isl_keep isl_pw_multi_aff *pma,
3087 isl_stat (*fn)(__isl_take isl_set *set,
3088 __isl_take isl_multi_aff *maff,
3089 void *user), void *user);
3091 #include <isl/polynomial.h>
3092 isl_stat isl_pw_qpolynomial_foreach_piece(
3093 __isl_keep isl_pw_qpolynomial *pwqp,
3094 isl_stat (*fn)(__isl_take isl_set *set,
3095 __isl_take isl_qpolynomial *qp,
3096 void *user), void *user);
3097 isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
3098 __isl_keep isl_pw_qpolynomial *pwqp,
3099 isl_stat (*fn)(__isl_take isl_set *set,
3100 __isl_take isl_qpolynomial *qp,
3101 void *user), void *user);
3102 isl_stat isl_pw_qpolynomial_fold_foreach_piece(
3103 __isl_keep isl_pw_qpolynomial_fold *pwf,
3104 isl_stat (*fn)(__isl_take isl_set *set,
3105 __isl_take isl_qpolynomial_fold *fold,
3106 void *user), void *user);
3107 isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
3108 __isl_keep isl_pw_qpolynomial_fold *pwf,
3109 isl_stat (*fn)(__isl_take isl_set *set,
3110 __isl_take isl_qpolynomial_fold *fold,
3111 void *user), void *user);
3113 As usual, the function C<fn> should return C<0> on success
3114 and C<-1> on failure. The difference between
3115 C<isl_pw_qpolynomial_foreach_piece> and
3116 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3117 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3118 compute unique representations for all existentially quantified
3119 variables and then turn these existentially quantified variables
3120 into extra set variables, adapting the associated quasipolynomial
3121 accordingly. This means that the C<set> passed to C<fn>
3122 will not have any existentially quantified variables, but that
3123 the dimensions of the sets may be different for different
3124 invocations of C<fn>.
3125 Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
3126 and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
3128 A piecewise expression consisting of the expressions at a given
3129 position of a piecewise multiple expression can be extracted
3130 using the following function.
3132 #include <isl/aff.h>
3133 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3134 __isl_keep isl_pw_multi_aff *pma, int pos);
3136 These expressions can be replaced using the following function.
3138 #include <isl/aff.h>
3139 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
3140 __isl_take isl_pw_multi_aff *pma, unsigned pos,
3141 __isl_take isl_pw_aff *pa);
3143 Note that there is a difference between C<isl_multi_pw_aff> and
3144 C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
3145 affine expressions, while the second is a piecewise sequence
3146 of affine expressions. In particular, each of the piecewise
3147 affine expressions in an C<isl_multi_pw_aff> may have a different
3148 domain, while all multiple expressions associated to a cell
3149 in an C<isl_pw_multi_aff> have the same domain.
3150 It is possible to convert between the two, but when converting
3151 an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
3152 of the result is the intersection of the domains of the input.
3153 The reverse conversion is exact.
3155 #include <isl/aff.h>
3156 __isl_give isl_pw_multi_aff *
3157 isl_pw_multi_aff_from_multi_pw_aff(
3158 __isl_take isl_multi_pw_aff *mpa);
3159 __isl_give isl_multi_pw_aff *
3160 isl_multi_pw_aff_from_pw_multi_aff(
3161 __isl_take isl_pw_multi_aff *pma);
3163 =head3 Union Expressions
3165 A union expression collects base expressions defined
3166 over different domains. The space of a union expression
3167 is that of the shared parameter space.
3169 The union expression types defined by C<isl>
3170 are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
3171 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
3173 C<isl_union_pw_aff>,
3174 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
3175 there can be at most one base expression for a given domain space.
3177 C<isl_union_pw_multi_aff>,
3178 there can be multiple such expressions for a given domain space,
3179 but the domains of these expressions need to be disjoint.
3181 An empty union expression can be created using the following functions.
3183 #include <isl/aff.h>
3184 __isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
3185 __isl_take isl_space *space);
3186 __isl_give isl_union_pw_multi_aff *
3187 isl_union_pw_multi_aff_empty(
3188 __isl_take isl_space *space);
3190 #include <isl/polynomial.h>
3191 __isl_give isl_union_pw_qpolynomial *
3192 isl_union_pw_qpolynomial_zero(
3193 __isl_take isl_space *space);
3195 A union expression containing a single base expression
3196 can be created using the following functions.
3198 #include <isl/aff.h>
3199 __isl_give isl_union_pw_aff *
3200 isl_union_pw_aff_from_pw_aff(
3201 __isl_take isl_pw_aff *pa);
3202 __isl_give isl_union_pw_multi_aff *
3203 isl_union_pw_multi_aff_from_aff(
3204 __isl_take isl_aff *aff);
3205 __isl_give isl_union_pw_multi_aff *
3206 isl_union_pw_multi_aff_from_pw_multi_aff(
3207 __isl_take isl_pw_multi_aff *pma);
3209 #include <isl/polynomial.h>
3210 __isl_give isl_union_pw_qpolynomial *
3211 isl_union_pw_qpolynomial_from_pw_qpolynomial(
3212 __isl_take isl_pw_qpolynomial *pwqp);
3214 The following functions create a base expression on each
3215 of the sets in the union set and collect the results.
3217 #include <isl/aff.h>
3218 __isl_give isl_union_pw_multi_aff *
3219 isl_union_pw_multi_aff_from_union_pw_aff(
3220 __isl_take isl_union_pw_aff *upa);
3221 __isl_give isl_union_pw_aff *
3222 isl_union_pw_multi_aff_get_union_pw_aff(
3223 __isl_keep isl_union_pw_multi_aff *upma, int pos);
3224 __isl_give isl_union_pw_aff *
3225 isl_union_pw_aff_val_on_domain(
3226 __isl_take isl_union_set *domain,
3227 __isl_take isl_val *v);
3228 __isl_give isl_union_pw_multi_aff *
3229 isl_union_pw_multi_aff_multi_val_on_domain(
3230 __isl_take isl_union_set *domain,
3231 __isl_take isl_multi_val *mv);
3233 An C<isl_union_pw_aff> that is equal to a (parametric) affine
3234 expression on a given domain can be created using the following
3237 #include <isl/aff.h>
3238 __isl_give isl_union_pw_aff *
3239 isl_union_pw_aff_aff_on_domain(
3240 __isl_take isl_union_set *domain,
3241 __isl_take isl_aff *aff);
3243 A base expression can be added to a union expression using
3244 the following functions.
3246 #include <isl/aff.h>
3247 __isl_give isl_union_pw_aff *
3248 isl_union_pw_aff_add_pw_aff(
3249 __isl_take isl_union_pw_aff *upa,
3250 __isl_take isl_pw_aff *pa);
3251 __isl_give isl_union_pw_multi_aff *
3252 isl_union_pw_multi_aff_add_pw_multi_aff(
3253 __isl_take isl_union_pw_multi_aff *upma,
3254 __isl_take isl_pw_multi_aff *pma);
3256 #include <isl/polynomial.h>
3257 __isl_give isl_union_pw_qpolynomial *
3258 isl_union_pw_qpolynomial_add_pw_qpolynomial(
3259 __isl_take isl_union_pw_qpolynomial *upwqp,
3260 __isl_take isl_pw_qpolynomial *pwqp);
3262 Union expressions can be copied and freed using
3263 the following functions.
3265 #include <isl/aff.h>
3266 __isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
3267 __isl_keep isl_union_pw_aff *upa);
3268 __isl_null isl_union_pw_aff *isl_union_pw_aff_free(
3269 __isl_take isl_union_pw_aff *upa);
3270 __isl_give isl_union_pw_multi_aff *
3271 isl_union_pw_multi_aff_copy(
3272 __isl_keep isl_union_pw_multi_aff *upma);
3273 __isl_null isl_union_pw_multi_aff *
3274 isl_union_pw_multi_aff_free(
3275 __isl_take isl_union_pw_multi_aff *upma);
3277 #include <isl/polynomial.h>
3278 __isl_give isl_union_pw_qpolynomial *
3279 isl_union_pw_qpolynomial_copy(
3280 __isl_keep isl_union_pw_qpolynomial *upwqp);
3281 __isl_null isl_union_pw_qpolynomial *
3282 isl_union_pw_qpolynomial_free(
3283 __isl_take isl_union_pw_qpolynomial *upwqp);
3284 __isl_give isl_union_pw_qpolynomial_fold *
3285 isl_union_pw_qpolynomial_fold_copy(
3286 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3287 __isl_null isl_union_pw_qpolynomial_fold *
3288 isl_union_pw_qpolynomial_fold_free(
3289 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3291 To iterate over the base expressions in a union expression,
3292 use the following functions.
3294 #include <isl/aff.h>
3295 int isl_union_pw_aff_n_pw_aff(
3296 __isl_keep isl_union_pw_aff *upa);
3297 isl_stat isl_union_pw_aff_foreach_pw_aff(
3298 __isl_keep isl_union_pw_aff *upa,
3299 isl_stat (*fn)(__isl_take isl_pw_aff *pa,
3300 void *user), void *user);
3301 int isl_union_pw_multi_aff_n_pw_multi_aff(
3302 __isl_keep isl_union_pw_multi_aff *upma);
3303 isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
3304 __isl_keep isl_union_pw_multi_aff *upma,
3305 isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
3306 void *user), void *user);
3308 #include <isl/polynomial.h>
3309 int isl_union_pw_qpolynomial_n_pw_qpolynomial(
3310 __isl_keep isl_union_pw_qpolynomial *upwqp);
3311 isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3312 __isl_keep isl_union_pw_qpolynomial *upwqp,
3313 isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
3314 void *user), void *user);
3315 int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
3316 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3317 isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3318 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3319 isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3320 void *user), void *user);
3322 To extract the base expression in a given space from a union, use
3323 the following functions.
3325 #include <isl/aff.h>
3326 __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
3327 __isl_keep isl_union_pw_aff *upa,
3328 __isl_take isl_space *space);
3329 __isl_give isl_pw_multi_aff *
3330 isl_union_pw_multi_aff_extract_pw_multi_aff(
3331 __isl_keep isl_union_pw_multi_aff *upma,
3332 __isl_take isl_space *space);
3334 #include <isl/polynomial.h>
3335 __isl_give isl_pw_qpolynomial *
3336 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3337 __isl_keep isl_union_pw_qpolynomial *upwqp,
3338 __isl_take isl_space *space);
3340 =head2 Input and Output
3342 For set and relation,
3343 C<isl> supports its own input/output format, which is similar
3344 to the C<Omega> format, but also supports the C<PolyLib> format
3346 For other object types, typically only an C<isl> format is supported.
3348 =head3 C<isl> format
3350 The C<isl> format is similar to that of C<Omega>, but has a different
3351 syntax for describing the parameters and allows for the definition
3352 of an existentially quantified variable as the integer division
3353 of an affine expression.
3354 For example, the set of integers C<i> between C<0> and C<n>
3355 such that C<i % 10 <= 6> can be described as
3357 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
3360 A set or relation can have several disjuncts, separated
3361 by the keyword C<or>. Each disjunct is either a conjunction
3362 of constraints or a projection (C<exists>) of a conjunction
3363 of constraints. The constraints are separated by the keyword
3366 =head3 C<PolyLib> format
3368 If the represented set is a union, then the first line
3369 contains a single number representing the number of disjuncts.
3370 Otherwise, a line containing the number C<1> is optional.
3372 Each disjunct is represented by a matrix of constraints.
3373 The first line contains two numbers representing
3374 the number of rows and columns,
3375 where the number of rows is equal to the number of constraints
3376 and the number of columns is equal to two plus the number of variables.
3377 The following lines contain the actual rows of the constraint matrix.
3378 In each row, the first column indicates whether the constraint
3379 is an equality (C<0>) or inequality (C<1>). The final column
3380 corresponds to the constant term.
3382 If the set is parametric, then the coefficients of the parameters
3383 appear in the last columns before the constant column.
3384 The coefficients of any existentially quantified variables appear
3385 between those of the set variables and those of the parameters.
3387 =head3 Extended C<PolyLib> format
3389 The extended C<PolyLib> format is nearly identical to the
3390 C<PolyLib> format. The only difference is that the line
3391 containing the number of rows and columns of a constraint matrix
3392 also contains four additional numbers:
3393 the number of output dimensions, the number of input dimensions,
3394 the number of local dimensions (i.e., the number of existentially
3395 quantified variables) and the number of parameters.
3396 For sets, the number of ``output'' dimensions is equal
3397 to the number of set dimensions, while the number of ``input''
3402 Objects can be read from input using the following functions.
3404 #include <isl/val.h>
3405 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
3407 __isl_give isl_multi_val *isl_multi_val_read_from_str(
3408 isl_ctx *ctx, const char *str);
3410 #include <isl/set.h>
3411 __isl_give isl_basic_set *isl_basic_set_read_from_file(
3412 isl_ctx *ctx, FILE *input);
3413 __isl_give isl_basic_set *isl_basic_set_read_from_str(
3414 isl_ctx *ctx, const char *str);
3415 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
3417 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
3420 #include <isl/map.h>
3421 __isl_give isl_basic_map *isl_basic_map_read_from_file(
3422 isl_ctx *ctx, FILE *input);
3423 __isl_give isl_basic_map *isl_basic_map_read_from_str(
3424 isl_ctx *ctx, const char *str);
3425 __isl_give isl_map *isl_map_read_from_file(
3426 isl_ctx *ctx, FILE *input);
3427 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
3430 #include <isl/union_set.h>
3431 __isl_give isl_union_set *isl_union_set_read_from_file(
3432 isl_ctx *ctx, FILE *input);
3433 __isl_give isl_union_set *isl_union_set_read_from_str(
3434 isl_ctx *ctx, const char *str);
3436 #include <isl/union_map.h>
3437 __isl_give isl_union_map *isl_union_map_read_from_file(
3438 isl_ctx *ctx, FILE *input);
3439 __isl_give isl_union_map *isl_union_map_read_from_str(
3440 isl_ctx *ctx, const char *str);
3442 #include <isl/aff.h>
3443 __isl_give isl_aff *isl_aff_read_from_str(
3444 isl_ctx *ctx, const char *str);
3445 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3446 isl_ctx *ctx, const char *str);
3447 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3448 isl_ctx *ctx, const char *str);
3449 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3450 isl_ctx *ctx, const char *str);
3451 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
3452 isl_ctx *ctx, const char *str);
3453 __isl_give isl_union_pw_aff *
3454 isl_union_pw_aff_read_from_str(
3455 isl_ctx *ctx, const char *str);
3456 __isl_give isl_union_pw_multi_aff *
3457 isl_union_pw_multi_aff_read_from_str(
3458 isl_ctx *ctx, const char *str);
3459 __isl_give isl_multi_union_pw_aff *
3460 isl_multi_union_pw_aff_read_from_str(
3461 isl_ctx *ctx, const char *str);
3463 #include <isl/polynomial.h>
3464 __isl_give isl_union_pw_qpolynomial *
3465 isl_union_pw_qpolynomial_read_from_str(
3466 isl_ctx *ctx, const char *str);
3468 For sets and relations,
3469 the input format is autodetected and may be either the C<PolyLib> format
3470 or the C<isl> format.
3474 Before anything can be printed, an C<isl_printer> needs to
3477 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
3479 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
3480 __isl_null isl_printer *isl_printer_free(
3481 __isl_take isl_printer *printer);
3483 C<isl_printer_to_file> prints to the given file, while
3484 C<isl_printer_to_str> prints to a string that can be extracted
3485 using the following function.
3487 #include <isl/printer.h>
3488 __isl_give char *isl_printer_get_str(
3489 __isl_keep isl_printer *printer);
3491 The printer can be inspected using the following functions.
3493 FILE *isl_printer_get_file(
3494 __isl_keep isl_printer *printer);
3495 int isl_printer_get_output_format(
3496 __isl_keep isl_printer *p);
3497 int isl_printer_get_yaml_style(__isl_keep isl_printer *p);
3499 The behavior of the printer can be modified in various ways
3501 __isl_give isl_printer *isl_printer_set_output_format(
3502 __isl_take isl_printer *p, int output_format);
3503 __isl_give isl_printer *isl_printer_set_indent(
3504 __isl_take isl_printer *p, int indent);
3505 __isl_give isl_printer *isl_printer_set_indent_prefix(
3506 __isl_take isl_printer *p, const char *prefix);
3507 __isl_give isl_printer *isl_printer_indent(
3508 __isl_take isl_printer *p, int indent);
3509 __isl_give isl_printer *isl_printer_set_prefix(
3510 __isl_take isl_printer *p, const char *prefix);
3511 __isl_give isl_printer *isl_printer_set_suffix(
3512 __isl_take isl_printer *p, const char *suffix);
3513 __isl_give isl_printer *isl_printer_set_yaml_style(
3514 __isl_take isl_printer *p, int yaml_style);
3516 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
3517 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
3518 and defaults to C<ISL_FORMAT_ISL>.
3519 Each line in the output is prefixed by C<indent_prefix>,
3520 indented by C<indent> (set by C<isl_printer_set_indent>) spaces
3521 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
3522 In the C<PolyLib> format output,
3523 the coefficients of the existentially quantified variables
3524 appear between those of the set variables and those
3526 The function C<isl_printer_indent> increases the indentation
3527 by the specified amount (which may be negative).
3528 The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
3529 C<ISL_YAML_STYLE_FLOW> and when we are printing something
3532 To actually print something, use
3534 #include <isl/printer.h>
3535 __isl_give isl_printer *isl_printer_print_double(
3536 __isl_take isl_printer *p, double d);
3538 #include <isl/val.h>
3539 __isl_give isl_printer *isl_printer_print_val(
3540 __isl_take isl_printer *p, __isl_keep isl_val *v);
3542 #include <isl/set.h>
3543 __isl_give isl_printer *isl_printer_print_basic_set(
3544 __isl_take isl_printer *printer,
3545 __isl_keep isl_basic_set *bset);
3546 __isl_give isl_printer *isl_printer_print_set(
3547 __isl_take isl_printer *printer,
3548 __isl_keep isl_set *set);
3550 #include <isl/map.h>
3551 __isl_give isl_printer *isl_printer_print_basic_map(
3552 __isl_take isl_printer *printer,
3553 __isl_keep isl_basic_map *bmap);
3554 __isl_give isl_printer *isl_printer_print_map(
3555 __isl_take isl_printer *printer,
3556 __isl_keep isl_map *map);
3558 #include <isl/union_set.h>
3559 __isl_give isl_printer *isl_printer_print_union_set(
3560 __isl_take isl_printer *p,
3561 __isl_keep isl_union_set *uset);
3563 #include <isl/union_map.h>
3564 __isl_give isl_printer *isl_printer_print_union_map(
3565 __isl_take isl_printer *p,
3566 __isl_keep isl_union_map *umap);
3568 #include <isl/val.h>
3569 __isl_give isl_printer *isl_printer_print_multi_val(
3570 __isl_take isl_printer *p,
3571 __isl_keep isl_multi_val *mv);
3573 #include <isl/aff.h>
3574 __isl_give isl_printer *isl_printer_print_aff(
3575 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3576 __isl_give isl_printer *isl_printer_print_multi_aff(
3577 __isl_take isl_printer *p,
3578 __isl_keep isl_multi_aff *maff);
3579 __isl_give isl_printer *isl_printer_print_pw_aff(
3580 __isl_take isl_printer *p,
3581 __isl_keep isl_pw_aff *pwaff);
3582 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3583 __isl_take isl_printer *p,
3584 __isl_keep isl_pw_multi_aff *pma);
3585 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
3586 __isl_take isl_printer *p,
3587 __isl_keep isl_multi_pw_aff *mpa);
3588 __isl_give isl_printer *isl_printer_print_union_pw_aff(
3589 __isl_take isl_printer *p,
3590 __isl_keep isl_union_pw_aff *upa);
3591 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3592 __isl_take isl_printer *p,
3593 __isl_keep isl_union_pw_multi_aff *upma);
3594 __isl_give isl_printer *
3595 isl_printer_print_multi_union_pw_aff(
3596 __isl_take isl_printer *p,
3597 __isl_keep isl_multi_union_pw_aff *mupa);
3599 #include <isl/polynomial.h>
3600 __isl_give isl_printer *isl_printer_print_qpolynomial(
3601 __isl_take isl_printer *p,
3602 __isl_keep isl_qpolynomial *qp);
3603 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3604 __isl_take isl_printer *p,
3605 __isl_keep isl_pw_qpolynomial *pwqp);
3606 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3607 __isl_take isl_printer *p,
3608 __isl_keep isl_union_pw_qpolynomial *upwqp);
3610 __isl_give isl_printer *
3611 isl_printer_print_pw_qpolynomial_fold(
3612 __isl_take isl_printer *p,
3613 __isl_keep isl_pw_qpolynomial_fold *pwf);
3614 __isl_give isl_printer *
3615 isl_printer_print_union_pw_qpolynomial_fold(
3616 __isl_take isl_printer *p,
3617 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3619 For C<isl_printer_print_qpolynomial>,
3620 C<isl_printer_print_pw_qpolynomial> and
3621 C<isl_printer_print_pw_qpolynomial_fold>,
3622 the output format of the printer
3623 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3624 For C<isl_printer_print_union_pw_qpolynomial> and
3625 C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
3627 In case of printing in C<ISL_FORMAT_C>, the user may want
3628 to set the names of all dimensions first.
3630 C<isl> also provides limited support for printing YAML documents,
3631 just enough for the internal use for printing such documents.
3633 #include <isl/printer.h>
3634 __isl_give isl_printer *isl_printer_yaml_start_mapping(
3635 __isl_take isl_printer *p);
3636 __isl_give isl_printer *isl_printer_yaml_end_mapping(
3637 __isl_take isl_printer *p);
3638 __isl_give isl_printer *isl_printer_yaml_start_sequence(
3639 __isl_take isl_printer *p);
3640 __isl_give isl_printer *isl_printer_yaml_end_sequence(
3641 __isl_take isl_printer *p);
3642 __isl_give isl_printer *isl_printer_yaml_next(
3643 __isl_take isl_printer *p);
3645 A document is started by a call to either
3646 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3647 Anything printed to the printer after such a call belong to the
3648 first key of the mapping or the first element in the sequence.
3649 The function C<isl_printer_yaml_next> moves to the value if
3650 we are currently printing a mapping key, the next key if we
3651 are printing a value or the next element if we are printing
3652 an element in a sequence.
3653 Nested mappings and sequences are initiated by the same
3654 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3655 Each call to these functions needs to have a corresponding call to
3656 C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.
3658 When called on a file printer, the following function flushes
3659 the file. When called on a string printer, the buffer is cleared.
3661 __isl_give isl_printer *isl_printer_flush(
3662 __isl_take isl_printer *p);
3664 The following functions allow the user to attach
3665 notes to a printer in order to keep track of additional state.
3667 #include <isl/printer.h>
3668 isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
3669 __isl_keep isl_id *id);
3670 __isl_give isl_id *isl_printer_get_note(
3671 __isl_keep isl_printer *p, __isl_take isl_id *id);
3672 __isl_give isl_printer *isl_printer_set_note(
3673 __isl_take isl_printer *p,
3674 __isl_take isl_id *id, __isl_take isl_id *note);
3676 C<isl_printer_set_note> associates the given note to the given
3677 identifier in the printer.
3678 C<isl_printer_get_note> retrieves a note associated to an
3680 C<isl_printer_has_note> checks if there is such a note.
3681 C<isl_printer_get_note> fails if the requested note does not exist.
3683 Alternatively, a string representation can be obtained
3684 directly using the following functions, which always print
3688 __isl_give char *isl_id_to_str(
3689 __isl_keep isl_id *id);
3691 #include <isl/space.h>
3692 __isl_give char *isl_space_to_str(
3693 __isl_keep isl_space *space);
3695 #include <isl/val.h>
3696 __isl_give char *isl_val_to_str(__isl_keep isl_val *v);
3697 __isl_give char *isl_multi_val_to_str(
3698 __isl_keep isl_multi_val *mv);
3700 #include <isl/set.h>
3701 __isl_give char *isl_basic_set_to_str(
3702 __isl_keep isl_basic_set *bset);
3703 __isl_give char *isl_set_to_str(
3704 __isl_keep isl_set *set);
3706 #include <isl/union_set.h>
3707 __isl_give char *isl_union_set_to_str(
3708 __isl_keep isl_union_set *uset);
3710 #include <isl/map.h>
3711 __isl_give char *isl_basic_map_to_str(
3712 __isl_keep isl_basic_map *bmap);
3713 __isl_give char *isl_map_to_str(
3714 __isl_keep isl_map *map);
3716 #include <isl/union_map.h>
3717 __isl_give char *isl_union_map_to_str(
3718 __isl_keep isl_union_map *umap);
3720 #include <isl/aff.h>
3721 __isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
3722 __isl_give char *isl_pw_aff_to_str(
3723 __isl_keep isl_pw_aff *pa);
3724 __isl_give char *isl_multi_aff_to_str(
3725 __isl_keep isl_multi_aff *ma);
3726 __isl_give char *isl_pw_multi_aff_to_str(
3727 __isl_keep isl_pw_multi_aff *pma);
3728 __isl_give char *isl_multi_pw_aff_to_str(
3729 __isl_keep isl_multi_pw_aff *mpa);
3730 __isl_give char *isl_union_pw_aff_to_str(
3731 __isl_keep isl_union_pw_aff *upa);
3732 __isl_give char *isl_union_pw_multi_aff_to_str(
3733 __isl_keep isl_union_pw_multi_aff *upma);
3734 __isl_give char *isl_multi_union_pw_aff_to_str(
3735 __isl_keep isl_multi_union_pw_aff *mupa);
3737 #include <isl/point.h>
3738 __isl_give char *isl_point_to_str(
3739 __isl_keep isl_point *pnt);
3741 #include <isl/polynomial.h>
3742 __isl_give char *isl_pw_qpolynomial_to_str(
3743 __isl_keep isl_pw_qpolynomial *pwqp);
3744 __isl_give char *isl_union_pw_qpolynomial_to_str(
3745 __isl_keep isl_union_pw_qpolynomial *upwqp);
3749 =head3 Unary Properties
3755 The following functions test whether the given set or relation
3756 contains any integer points. The ``plain'' variants do not perform
3757 any computations, but simply check if the given set or relation
3758 is already known to be empty.
3760 isl_bool isl_basic_set_plain_is_empty(
3761 __isl_keep isl_basic_set *bset);
3762 isl_bool isl_basic_set_is_empty(
3763 __isl_keep isl_basic_set *bset);
3764 isl_bool isl_set_plain_is_empty(
3765 __isl_keep isl_set *set);
3766 isl_bool isl_set_is_empty(__isl_keep isl_set *set);
3767 isl_bool isl_union_set_is_empty(
3768 __isl_keep isl_union_set *uset);
3769 isl_bool isl_basic_map_plain_is_empty(
3770 __isl_keep isl_basic_map *bmap);
3771 isl_bool isl_basic_map_is_empty(
3772 __isl_keep isl_basic_map *bmap);
3773 isl_bool isl_map_plain_is_empty(
3774 __isl_keep isl_map *map);
3775 isl_bool isl_map_is_empty(__isl_keep isl_map *map);
3776 isl_bool isl_union_map_is_empty(
3777 __isl_keep isl_union_map *umap);
3779 =item * Universality
3781 isl_bool isl_basic_set_plain_is_universe(
3782 __isl_keep isl_basic_set *bset);
3783 isl_bool isl_basic_set_is_universe(
3784 __isl_keep isl_basic_set *bset);
3785 isl_bool isl_basic_map_plain_is_universe(
3786 __isl_keep isl_basic_map *bmap);
3787 isl_bool isl_basic_map_is_universe(
3788 __isl_keep isl_basic_map *bmap);
3789 isl_bool isl_set_plain_is_universe(
3790 __isl_keep isl_set *set);
3791 isl_bool isl_map_plain_is_universe(
3792 __isl_keep isl_map *map);
3794 =item * Single-valuedness
3796 #include <isl/set.h>
3797 isl_bool isl_set_is_singleton(__isl_keep isl_set *set);
3799 #include <isl/map.h>
3800 isl_bool isl_basic_map_is_single_valued(
3801 __isl_keep isl_basic_map *bmap);
3802 isl_bool isl_map_plain_is_single_valued(
3803 __isl_keep isl_map *map);
3804 isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);
3806 #include <isl/union_map.h>
3807 isl_bool isl_union_map_is_single_valued(
3808 __isl_keep isl_union_map *umap);
3812 isl_bool isl_map_plain_is_injective(
3813 __isl_keep isl_map *map);
3814 isl_bool isl_map_is_injective(
3815 __isl_keep isl_map *map);
3816 isl_bool isl_union_map_plain_is_injective(
3817 __isl_keep isl_union_map *umap);
3818 isl_bool isl_union_map_is_injective(
3819 __isl_keep isl_union_map *umap);
3823 isl_bool isl_map_is_bijective(
3824 __isl_keep isl_map *map);
3825 isl_bool isl_union_map_is_bijective(
3826 __isl_keep isl_union_map *umap);
3830 The following functions test whether the given relation
3831 only maps elements to themselves.
3833 #include <isl/map.h>
3834 isl_bool isl_map_is_identity(
3835 __isl_keep isl_map *map);
3837 #include <isl/union_map.h>
3838 isl_bool isl_union_map_is_identity(
3839 __isl_keep isl_union_map *umap);
3843 __isl_give isl_val *
3844 isl_basic_map_plain_get_val_if_fixed(
3845 __isl_keep isl_basic_map *bmap,
3846 enum isl_dim_type type, unsigned pos);
3847 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
3848 __isl_keep isl_set *set,
3849 enum isl_dim_type type, unsigned pos);
3850 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
3851 __isl_keep isl_map *map,
3852 enum isl_dim_type type, unsigned pos);
3854 If the set or relation obviously lies on a hyperplane where the given dimension
3855 has a fixed value, then return that value.
3856 Otherwise return NaN.
3860 isl_stat isl_set_dim_residue_class_val(
3861 __isl_keep isl_set *set,
3862 int pos, __isl_give isl_val **modulo,
3863 __isl_give isl_val **residue);
3865 Check if the values of the given set dimension are equal to a fixed
3866 value modulo some integer value. If so, assign the modulo to C<*modulo>
3867 and the fixed value to C<*residue>. If the given dimension attains only
3868 a single value, then assign C<0> to C<*modulo> and the fixed value to
3870 If the dimension does not attain only a single value and if no modulo
3871 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
3875 To check whether the description of a set, relation or function depends
3876 on one or more given dimensions,
3877 the following functions can be used.
3879 #include <isl/constraint.h>
3880 isl_bool isl_constraint_involves_dims(
3881 __isl_keep isl_constraint *constraint,
3882 enum isl_dim_type type, unsigned first, unsigned n);
3884 #include <isl/set.h>
3885 isl_bool isl_basic_set_involves_dims(
3886 __isl_keep isl_basic_set *bset,
3887 enum isl_dim_type type, unsigned first, unsigned n);
3888 isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
3889 enum isl_dim_type type, unsigned first, unsigned n);
3891 #include <isl/map.h>
3892 isl_bool isl_basic_map_involves_dims(
3893 __isl_keep isl_basic_map *bmap,
3894 enum isl_dim_type type, unsigned first, unsigned n);
3895 isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
3896 enum isl_dim_type type, unsigned first, unsigned n);
3898 #include <isl/union_map.h>
3899 isl_bool isl_union_map_involves_dims(
3900 __isl_keep isl_union_map *umap,
3901 enum isl_dim_type type, unsigned first, unsigned n);
3903 #include <isl/aff.h>
3904 isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
3905 enum isl_dim_type type, unsigned first, unsigned n);
3906 isl_bool isl_pw_aff_involves_dims(
3907 __isl_keep isl_pw_aff *pwaff,
3908 enum isl_dim_type type, unsigned first, unsigned n);
3909 isl_bool isl_multi_aff_involves_dims(
3910 __isl_keep isl_multi_aff *ma,
3911 enum isl_dim_type type, unsigned first, unsigned n);
3912 isl_bool isl_multi_pw_aff_involves_dims(
3913 __isl_keep isl_multi_pw_aff *mpa,
3914 enum isl_dim_type type, unsigned first, unsigned n);
3916 #include <isl/polynomial.h>
3917 isl_bool isl_qpolynomial_involves_dims(
3918 __isl_keep isl_qpolynomial *qp,
3919 enum isl_dim_type type, unsigned first, unsigned n);
3921 Similarly, the following functions can be used to check whether
3922 a given dimension is involved in any lower or upper bound.
3924 #include <isl/set.h>
3925 isl_bool isl_set_dim_has_any_lower_bound(
3926 __isl_keep isl_set *set,
3927 enum isl_dim_type type, unsigned pos);
3928 isl_bool isl_set_dim_has_any_upper_bound(
3929 __isl_keep isl_set *set,
3930 enum isl_dim_type type, unsigned pos);
3932 Note that these functions return true even if there is a bound on
3933 the dimension on only some of the basic sets of C<set>.
3934 To check if they have a bound for all of the basic sets in C<set>,
3935 use the following functions instead.
3937 #include <isl/set.h>
3938 isl_bool isl_set_dim_has_lower_bound(
3939 __isl_keep isl_set *set,
3940 enum isl_dim_type type, unsigned pos);
3941 isl_bool isl_set_dim_has_upper_bound(
3942 __isl_keep isl_set *set,
3943 enum isl_dim_type type, unsigned pos);
3947 To check whether a set is a parameter domain, use this function:
3949 isl_bool isl_set_is_params(__isl_keep isl_set *set);
3950 isl_bool isl_union_set_is_params(
3951 __isl_keep isl_union_set *uset);
3955 The following functions check whether the space of the given
3956 (basic) set or relation range is a wrapped relation.
3958 #include <isl/space.h>
3959 isl_bool isl_space_is_wrapping(
3960 __isl_keep isl_space *space);
3961 isl_bool isl_space_domain_is_wrapping(
3962 __isl_keep isl_space *space);
3963 isl_bool isl_space_range_is_wrapping(
3964 __isl_keep isl_space *space);
3966 #include <isl/set.h>
3967 isl_bool isl_basic_set_is_wrapping(
3968 __isl_keep isl_basic_set *bset);
3969 isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);
3971 #include <isl/map.h>
3972 isl_bool isl_map_domain_is_wrapping(
3973 __isl_keep isl_map *map);
3974 isl_bool isl_map_range_is_wrapping(
3975 __isl_keep isl_map *map);
3977 #include <isl/val.h>
3978 isl_bool isl_multi_val_range_is_wrapping(
3979 __isl_keep isl_multi_val *mv);
3981 #include <isl/aff.h>
3982 isl_bool isl_multi_aff_range_is_wrapping(
3983 __isl_keep isl_multi_aff *ma);
3984 isl_bool isl_multi_pw_aff_range_is_wrapping(
3985 __isl_keep isl_multi_pw_aff *mpa);
3986 isl_bool isl_multi_union_pw_aff_range_is_wrapping(
3987 __isl_keep isl_multi_union_pw_aff *mupa);
3989 The input to C<isl_space_is_wrapping> should
3990 be the space of a set, while that of
3991 C<isl_space_domain_is_wrapping> and
3992 C<isl_space_range_is_wrapping> should be the space of a relation.
3994 =item * Internal Product
3996 isl_bool isl_basic_map_can_zip(
3997 __isl_keep isl_basic_map *bmap);
3998 isl_bool isl_map_can_zip(__isl_keep isl_map *map);
4000 Check whether the product of domain and range of the given relation
4002 i.e., whether both domain and range are nested relations.
4006 #include <isl/space.h>
4007 isl_bool isl_space_can_curry(
4008 __isl_keep isl_space *space);
4010 #include <isl/map.h>
4011 isl_bool isl_basic_map_can_curry(
4012 __isl_keep isl_basic_map *bmap);
4013 isl_bool isl_map_can_curry(__isl_keep isl_map *map);
4015 Check whether the domain of the (basic) relation is a wrapped relation.
4017 #include <isl/space.h>
4018 __isl_give isl_space *isl_space_uncurry(
4019 __isl_take isl_space *space);
4021 #include <isl/map.h>
4022 isl_bool isl_basic_map_can_uncurry(
4023 __isl_keep isl_basic_map *bmap);
4024 isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);
4026 Check whether the range of the (basic) relation is a wrapped relation.
4028 #include <isl/space.h>
4029 isl_bool isl_space_can_range_curry(
4030 __isl_keep isl_space *space);
4032 #include <isl/map.h>
4033 isl_bool isl_map_can_range_curry(
4034 __isl_keep isl_map *map);
4036 Check whether the domain of the relation wrapped in the range of
4037 the input is itself a wrapped relation.
4039 =item * Special Values
4041 #include <isl/aff.h>
4042 isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
4043 isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
4044 isl_bool isl_multi_pw_aff_is_cst(
4045 __isl_keep isl_multi_pw_aff *mpa);
4047 Check whether the given expression is a constant.
4049 #include <isl/aff.h>
4050 isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
4051 isl_bool isl_pw_aff_involves_nan(
4052 __isl_keep isl_pw_aff *pa);
4054 #include <isl/polynomial.h>
4055 isl_bool isl_qpolynomial_fold_is_nan(
4056 __isl_keep isl_qpolynomial_fold *fold);
4058 Check whether the given expression is equal to or involves NaN.
4060 #include <isl/aff.h>
4061 isl_bool isl_aff_plain_is_zero(
4062 __isl_keep isl_aff *aff);
4064 Check whether the affine expression is obviously zero.
4068 =head3 Binary Properties
4074 The following functions check whether two objects
4075 represent the same set, relation or function.
4076 The C<plain> variants only return true if the objects
4077 are obviously the same. That is, they may return false
4078 even if the objects are the same, but they will never
4079 return true if the objects are not the same.
4081 #include <isl/set.h>
4082 isl_bool isl_basic_set_plain_is_equal(
4083 __isl_keep isl_basic_set *bset1,
4084 __isl_keep isl_basic_set *bset2);
4085 isl_bool isl_basic_set_is_equal(
4086 __isl_keep isl_basic_set *bset1,
4087 __isl_keep isl_basic_set *bset2);
4088 isl_bool isl_set_plain_is_equal(
4089 __isl_keep isl_set *set1,
4090 __isl_keep isl_set *set2);
4091 isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
4092 __isl_keep isl_set *set2);
4094 #include <isl/map.h>
4095 isl_bool isl_basic_map_is_equal(
4096 __isl_keep isl_basic_map *bmap1,
4097 __isl_keep isl_basic_map *bmap2);
4098 isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
4099 __isl_keep isl_map *map2);
4100 isl_bool isl_map_plain_is_equal(
4101 __isl_keep isl_map *map1,
4102 __isl_keep isl_map *map2);
4104 #include <isl/union_set.h>
4105 isl_bool isl_union_set_is_equal(
4106 __isl_keep isl_union_set *uset1,
4107 __isl_keep isl_union_set *uset2);
4109 #include <isl/union_map.h>
4110 isl_bool isl_union_map_is_equal(
4111 __isl_keep isl_union_map *umap1,
4112 __isl_keep isl_union_map *umap2);
4114 #include <isl/aff.h>
4115 isl_bool isl_aff_plain_is_equal(
4116 __isl_keep isl_aff *aff1,
4117 __isl_keep isl_aff *aff2);
4118 isl_bool isl_multi_aff_plain_is_equal(
4119 __isl_keep isl_multi_aff *maff1,
4120 __isl_keep isl_multi_aff *maff2);
4121 isl_bool isl_pw_aff_plain_is_equal(
4122 __isl_keep isl_pw_aff *pwaff1,
4123 __isl_keep isl_pw_aff *pwaff2);
4124 isl_bool isl_pw_multi_aff_plain_is_equal(
4125 __isl_keep isl_pw_multi_aff *pma1,
4126 __isl_keep isl_pw_multi_aff *pma2);
4127 isl_bool isl_multi_pw_aff_plain_is_equal(
4128 __isl_keep isl_multi_pw_aff *mpa1,
4129 __isl_keep isl_multi_pw_aff *mpa2);
4130 isl_bool isl_multi_pw_aff_is_equal(
4131 __isl_keep isl_multi_pw_aff *mpa1,
4132 __isl_keep isl_multi_pw_aff *mpa2);
4133 isl_bool isl_union_pw_aff_plain_is_equal(
4134 __isl_keep isl_union_pw_aff *upa1,
4135 __isl_keep isl_union_pw_aff *upa2);
4136 isl_bool isl_union_pw_multi_aff_plain_is_equal(
4137 __isl_keep isl_union_pw_multi_aff *upma1,
4138 __isl_keep isl_union_pw_multi_aff *upma2);
4139 isl_bool isl_multi_union_pw_aff_plain_is_equal(
4140 __isl_keep isl_multi_union_pw_aff *mupa1,
4141 __isl_keep isl_multi_union_pw_aff *mupa2);
4143 #include <isl/polynomial.h>
4144 isl_bool isl_union_pw_qpolynomial_plain_is_equal(
4145 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4146 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4147 isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
4148 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4149 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4151 =item * Disjointness
4153 #include <isl/set.h>
4154 isl_bool isl_basic_set_is_disjoint(
4155 __isl_keep isl_basic_set *bset1,
4156 __isl_keep isl_basic_set *bset2);
4157 isl_bool isl_set_plain_is_disjoint(
4158 __isl_keep isl_set *set1,
4159 __isl_keep isl_set *set2);
4160 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
4161 __isl_keep isl_set *set2);
4163 #include <isl/map.h>
4164 isl_bool isl_basic_map_is_disjoint(
4165 __isl_keep isl_basic_map *bmap1,
4166 __isl_keep isl_basic_map *bmap2);
4167 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
4168 __isl_keep isl_map *map2);
4170 #include <isl/union_set.h>
4171 isl_bool isl_union_set_is_disjoint(
4172 __isl_keep isl_union_set *uset1,
4173 __isl_keep isl_union_set *uset2);
4175 #include <isl/union_map.h>
4176 isl_bool isl_union_map_is_disjoint(
4177 __isl_keep isl_union_map *umap1,
4178 __isl_keep isl_union_map *umap2);
4182 isl_bool isl_basic_set_is_subset(
4183 __isl_keep isl_basic_set *bset1,
4184 __isl_keep isl_basic_set *bset2);
4185 isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
4186 __isl_keep isl_set *set2);
4187 isl_bool isl_set_is_strict_subset(
4188 __isl_keep isl_set *set1,
4189 __isl_keep isl_set *set2);
4190 isl_bool isl_union_set_is_subset(
4191 __isl_keep isl_union_set *uset1,
4192 __isl_keep isl_union_set *uset2);
4193 isl_bool isl_union_set_is_strict_subset(
4194 __isl_keep isl_union_set *uset1,
4195 __isl_keep isl_union_set *uset2);
4196 isl_bool isl_basic_map_is_subset(
4197 __isl_keep isl_basic_map *bmap1,
4198 __isl_keep isl_basic_map *bmap2);
4199 isl_bool isl_basic_map_is_strict_subset(
4200 __isl_keep isl_basic_map *bmap1,
4201 __isl_keep isl_basic_map *bmap2);
4202 isl_bool isl_map_is_subset(
4203 __isl_keep isl_map *map1,
4204 __isl_keep isl_map *map2);
4205 isl_bool isl_map_is_strict_subset(
4206 __isl_keep isl_map *map1,
4207 __isl_keep isl_map *map2);
4208 isl_bool isl_union_map_is_subset(
4209 __isl_keep isl_union_map *umap1,
4210 __isl_keep isl_union_map *umap2);
4211 isl_bool isl_union_map_is_strict_subset(
4212 __isl_keep isl_union_map *umap1,
4213 __isl_keep isl_union_map *umap2);
4215 Check whether the first argument is a (strict) subset of the
4220 Every comparison function returns a negative value if the first
4221 argument is considered smaller than the second, a positive value
4222 if the first argument is considered greater and zero if the two
4223 constraints are considered the same by the comparison criterion.
4225 #include <isl/constraint.h>
4226 int isl_constraint_plain_cmp(
4227 __isl_keep isl_constraint *c1,
4228 __isl_keep isl_constraint *c2);
4230 This function is useful for sorting C<isl_constraint>s.
4231 The order depends on the internal representation of the inputs.
4232 The order is fixed over different calls to the function (assuming
4233 the internal representation of the inputs has not changed), but may
4234 change over different versions of C<isl>.
4236 #include <isl/constraint.h>
4237 int isl_constraint_cmp_last_non_zero(
4238 __isl_keep isl_constraint *c1,
4239 __isl_keep isl_constraint *c2);
4241 This function can be used to sort constraints that live in the same
4242 local space. Constraints that involve ``earlier'' dimensions or
4243 that have a smaller coefficient for the shared latest dimension
4244 are considered smaller than other constraints.
4245 This function only defines a B<partial> order.
4247 #include <isl/set.h>
4248 int isl_set_plain_cmp(__isl_keep isl_set *set1,
4249 __isl_keep isl_set *set2);
4251 This function is useful for sorting C<isl_set>s.
4252 The order depends on the internal representation of the inputs.
4253 The order is fixed over different calls to the function (assuming
4254 the internal representation of the inputs has not changed), but may
4255 change over different versions of C<isl>.
4257 #include <isl/aff.h>
4258 int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
4259 __isl_keep isl_pw_aff *pa2);
4261 The function C<isl_pw_aff_plain_cmp> can be used to sort
4262 C<isl_pw_aff>s. The order is not strictly defined.
4263 The current order sorts expressions that only involve
4264 earlier dimensions before those that involve later dimensions.
4268 =head2 Unary Operations
4274 __isl_give isl_set *isl_set_complement(
4275 __isl_take isl_set *set);
4276 __isl_give isl_map *isl_map_complement(
4277 __isl_take isl_map *map);
4281 #include <isl/space.h>
4282 __isl_give isl_space *isl_space_reverse(
4283 __isl_take isl_space *space);
4285 #include <isl/map.h>
4286 __isl_give isl_basic_map *isl_basic_map_reverse(
4287 __isl_take isl_basic_map *bmap);
4288 __isl_give isl_map *isl_map_reverse(
4289 __isl_take isl_map *map);
4291 #include <isl/union_map.h>
4292 __isl_give isl_union_map *isl_union_map_reverse(
4293 __isl_take isl_union_map *umap);
4297 #include <isl/space.h>
4298 __isl_give isl_space *isl_space_domain(
4299 __isl_take isl_space *space);
4300 __isl_give isl_space *isl_space_range(
4301 __isl_take isl_space *space);
4302 __isl_give isl_space *isl_space_params(
4303 __isl_take isl_space *space);
4305 #include <isl/local_space.h>
4306 __isl_give isl_local_space *isl_local_space_domain(
4307 __isl_take isl_local_space *ls);
4308 __isl_give isl_local_space *isl_local_space_range(
4309 __isl_take isl_local_space *ls);
4311 #include <isl/set.h>
4312 __isl_give isl_basic_set *isl_basic_set_project_out(
4313 __isl_take isl_basic_set *bset,
4314 enum isl_dim_type type, unsigned first, unsigned n);
4315 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
4316 enum isl_dim_type type, unsigned first, unsigned n);
4317 __isl_give isl_map *isl_set_project_onto_map(
4318 __isl_take isl_set *set,
4319 enum isl_dim_type type, unsigned first,
4321 __isl_give isl_basic_set *isl_basic_set_params(
4322 __isl_take isl_basic_set *bset);
4323 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
4325 The function C<isl_set_project_onto_map> returns a relation
4326 that projects the input set onto the given set dimensions.
4328 #include <isl/map.h>
4329 __isl_give isl_basic_map *isl_basic_map_project_out(
4330 __isl_take isl_basic_map *bmap,
4331 enum isl_dim_type type, unsigned first, unsigned n);
4332 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
4333 enum isl_dim_type type, unsigned first, unsigned n);
4334 __isl_give isl_basic_set *isl_basic_map_domain(
4335 __isl_take isl_basic_map *bmap);
4336 __isl_give isl_basic_set *isl_basic_map_range(
4337 __isl_take isl_basic_map *bmap);
4338 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
4339 __isl_give isl_set *isl_map_domain(
4340 __isl_take isl_map *bmap);
4341 __isl_give isl_set *isl_map_range(
4342 __isl_take isl_map *map);
4344 #include <isl/union_set.h>
4345 __isl_give isl_union_set *isl_union_set_project_out(
4346 __isl_take isl_union_set *uset,
4347 enum isl_dim_type type,
4348 unsigned first, unsigned n);
4349 __isl_give isl_set *isl_union_set_params(
4350 __isl_take isl_union_set *uset);
4352 The function C<isl_union_set_project_out> can only project out
4355 #include <isl/union_map.h>
4356 __isl_give isl_union_map *isl_union_map_project_out(
4357 __isl_take isl_union_map *umap,
4358 enum isl_dim_type type, unsigned first, unsigned n);
4359 __isl_give isl_set *isl_union_map_params(
4360 __isl_take isl_union_map *umap);
4361 __isl_give isl_union_set *isl_union_map_domain(
4362 __isl_take isl_union_map *umap);
4363 __isl_give isl_union_set *isl_union_map_range(
4364 __isl_take isl_union_map *umap);
4366 The function C<isl_union_map_project_out> can only project out
4369 #include <isl/aff.h>
4370 __isl_give isl_aff *isl_aff_project_domain_on_params(
4371 __isl_take isl_aff *aff);
4372 __isl_give isl_pw_multi_aff *
4373 isl_pw_multi_aff_project_domain_on_params(
4374 __isl_take isl_pw_multi_aff *pma);
4375 __isl_give isl_set *isl_pw_aff_domain(
4376 __isl_take isl_pw_aff *pwaff);
4377 __isl_give isl_set *isl_pw_multi_aff_domain(
4378 __isl_take isl_pw_multi_aff *pma);
4379 __isl_give isl_set *isl_multi_pw_aff_domain(
4380 __isl_take isl_multi_pw_aff *mpa);
4381 __isl_give isl_union_set *isl_union_pw_aff_domain(
4382 __isl_take isl_union_pw_aff *upa);
4383 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4384 __isl_take isl_union_pw_multi_aff *upma);
4385 __isl_give isl_union_set *
4386 isl_multi_union_pw_aff_domain(
4387 __isl_take isl_multi_union_pw_aff *mupa);
4388 __isl_give isl_set *isl_pw_aff_params(
4389 __isl_take isl_pw_aff *pwa);
4391 The function C<isl_multi_union_pw_aff_domain> requires its
4392 input to have at least one set dimension.
4394 #include <isl/polynomial.h>
4395 __isl_give isl_qpolynomial *
4396 isl_qpolynomial_project_domain_on_params(
4397 __isl_take isl_qpolynomial *qp);
4398 __isl_give isl_pw_qpolynomial *
4399 isl_pw_qpolynomial_project_domain_on_params(
4400 __isl_take isl_pw_qpolynomial *pwqp);
4401 __isl_give isl_pw_qpolynomial_fold *
4402 isl_pw_qpolynomial_fold_project_domain_on_params(
4403 __isl_take isl_pw_qpolynomial_fold *pwf);
4404 __isl_give isl_set *isl_pw_qpolynomial_domain(
4405 __isl_take isl_pw_qpolynomial *pwqp);
4406 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4407 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4408 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4409 __isl_take isl_union_pw_qpolynomial *upwqp);
4411 #include <isl/space.h>
4412 __isl_give isl_space *isl_space_domain_map(
4413 __isl_take isl_space *space);
4414 __isl_give isl_space *isl_space_range_map(
4415 __isl_take isl_space *space);
4417 #include <isl/map.h>
4418 __isl_give isl_map *isl_set_wrapped_domain_map(
4419 __isl_take isl_set *set);
4420 __isl_give isl_basic_map *isl_basic_map_domain_map(
4421 __isl_take isl_basic_map *bmap);
4422 __isl_give isl_basic_map *isl_basic_map_range_map(
4423 __isl_take isl_basic_map *bmap);
4424 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
4425 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
4427 #include <isl/union_map.h>
4428 __isl_give isl_union_map *isl_union_map_domain_map(
4429 __isl_take isl_union_map *umap);
4430 __isl_give isl_union_pw_multi_aff *
4431 isl_union_map_domain_map_union_pw_multi_aff(
4432 __isl_take isl_union_map *umap);
4433 __isl_give isl_union_map *isl_union_map_range_map(
4434 __isl_take isl_union_map *umap);
4435 __isl_give isl_union_map *
4436 isl_union_set_wrapped_domain_map(
4437 __isl_take isl_union_set *uset);
4439 The functions above construct a (basic, regular or union) relation
4440 that maps (a wrapped version of) the input relation to its domain or range.
4441 C<isl_set_wrapped_domain_map> maps the input set to the domain
4442 of its wrapped relation.
4446 __isl_give isl_basic_set *isl_basic_set_eliminate(
4447 __isl_take isl_basic_set *bset,
4448 enum isl_dim_type type,
4449 unsigned first, unsigned n);
4450 __isl_give isl_set *isl_set_eliminate(
4451 __isl_take isl_set *set, enum isl_dim_type type,
4452 unsigned first, unsigned n);
4453 __isl_give isl_basic_map *isl_basic_map_eliminate(
4454 __isl_take isl_basic_map *bmap,
4455 enum isl_dim_type type,
4456 unsigned first, unsigned n);
4457 __isl_give isl_map *isl_map_eliminate(
4458 __isl_take isl_map *map, enum isl_dim_type type,
4459 unsigned first, unsigned n);
4461 Eliminate the coefficients for the given dimensions from the constraints,
4462 without removing the dimensions.
4464 =item * Constructing a set from a parameter domain
4466 A zero-dimensional space or (basic) set can be constructed
4467 on a given parameter domain using the following functions.
4469 #include <isl/space.h>
4470 __isl_give isl_space *isl_space_set_from_params(
4471 __isl_take isl_space *space);
4473 #include <isl/set.h>
4474 __isl_give isl_basic_set *isl_basic_set_from_params(
4475 __isl_take isl_basic_set *bset);
4476 __isl_give isl_set *isl_set_from_params(
4477 __isl_take isl_set *set);
4479 =item * Constructing a relation from one or two sets
4481 Create a relation with the given set(s) as domain and/or range.
4482 If only the domain or the range is specified, then
4483 the range or domain of the created relation is a zero-dimensional
4484 flat anonymous space.
4486 #include <isl/space.h>
4487 __isl_give isl_space *isl_space_from_domain(
4488 __isl_take isl_space *space);
4489 __isl_give isl_space *isl_space_from_range(
4490 __isl_take isl_space *space);
4491 __isl_give isl_space *isl_space_map_from_set(
4492 __isl_take isl_space *space);
4493 __isl_give isl_space *isl_space_map_from_domain_and_range(
4494 __isl_take isl_space *domain,
4495 __isl_take isl_space *range);
4497 #include <isl/local_space.h>
4498 __isl_give isl_local_space *isl_local_space_from_domain(
4499 __isl_take isl_local_space *ls);
4501 #include <isl/map.h>
4502 __isl_give isl_map *isl_map_from_domain(
4503 __isl_take isl_set *set);
4504 __isl_give isl_map *isl_map_from_range(
4505 __isl_take isl_set *set);
4507 #include <isl/union_map.h>
4508 __isl_give isl_union_map *
4509 isl_union_map_from_domain_and_range(
4510 __isl_take isl_union_set *domain,
4511 __isl_take isl_union_set *range);
4513 #include <isl/val.h>
4514 __isl_give isl_multi_val *isl_multi_val_from_range(
4515 __isl_take isl_multi_val *mv);
4517 #include <isl/aff.h>
4518 __isl_give isl_multi_aff *isl_multi_aff_from_range(
4519 __isl_take isl_multi_aff *ma);
4520 __isl_give isl_pw_aff *isl_pw_aff_from_range(
4521 __isl_take isl_pw_aff *pwa);
4522 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
4523 __isl_take isl_multi_pw_aff *mpa);
4524 __isl_give isl_multi_union_pw_aff *
4525 isl_multi_union_pw_aff_from_range(
4526 __isl_take isl_multi_union_pw_aff *mupa);
4527 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4528 __isl_take isl_set *set);
4529 __isl_give isl_union_pw_multi_aff *
4530 isl_union_pw_multi_aff_from_domain(
4531 __isl_take isl_union_set *uset);
4535 #include <isl/set.h>
4536 __isl_give isl_basic_set *isl_basic_set_fix_si(
4537 __isl_take isl_basic_set *bset,
4538 enum isl_dim_type type, unsigned pos, int value);
4539 __isl_give isl_basic_set *isl_basic_set_fix_val(
4540 __isl_take isl_basic_set *bset,
4541 enum isl_dim_type type, unsigned pos,
4542 __isl_take isl_val *v);
4543 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
4544 enum isl_dim_type type, unsigned pos, int value);
4545 __isl_give isl_set *isl_set_fix_val(
4546 __isl_take isl_set *set,
4547 enum isl_dim_type type, unsigned pos,
4548 __isl_take isl_val *v);
4550 #include <isl/map.h>
4551 __isl_give isl_basic_map *isl_basic_map_fix_si(
4552 __isl_take isl_basic_map *bmap,
4553 enum isl_dim_type type, unsigned pos, int value);
4554 __isl_give isl_basic_map *isl_basic_map_fix_val(
4555 __isl_take isl_basic_map *bmap,
4556 enum isl_dim_type type, unsigned pos,
4557 __isl_take isl_val *v);
4558 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
4559 enum isl_dim_type type, unsigned pos, int value);
4560 __isl_give isl_map *isl_map_fix_val(
4561 __isl_take isl_map *map,
4562 enum isl_dim_type type, unsigned pos,
4563 __isl_take isl_val *v);
4565 #include <isl/aff.h>
4566 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
4567 __isl_take isl_pw_multi_aff *pma,
4568 enum isl_dim_type type, unsigned pos, int value);
4570 #include <isl/polynomial.h>
4571 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
4572 __isl_take isl_pw_qpolynomial *pwqp,
4573 enum isl_dim_type type, unsigned n,
4574 __isl_take isl_val *v);
4576 Intersect the set, relation or function domain
4577 with the hyperplane where the given
4578 dimension has the fixed given value.
4580 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
4581 __isl_take isl_basic_map *bmap,
4582 enum isl_dim_type type, unsigned pos, int value);
4583 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
4584 __isl_take isl_basic_map *bmap,
4585 enum isl_dim_type type, unsigned pos, int value);
4586 __isl_give isl_set *isl_set_lower_bound_si(
4587 __isl_take isl_set *set,
4588 enum isl_dim_type type, unsigned pos, int value);
4589 __isl_give isl_set *isl_set_lower_bound_val(
4590 __isl_take isl_set *set,
4591 enum isl_dim_type type, unsigned pos,
4592 __isl_take isl_val *value);
4593 __isl_give isl_map *isl_map_lower_bound_si(
4594 __isl_take isl_map *map,
4595 enum isl_dim_type type, unsigned pos, int value);
4596 __isl_give isl_set *isl_set_upper_bound_si(
4597 __isl_take isl_set *set,
4598 enum isl_dim_type type, unsigned pos, int value);
4599 __isl_give isl_set *isl_set_upper_bound_val(
4600 __isl_take isl_set *set,
4601 enum isl_dim_type type, unsigned pos,
4602 __isl_take isl_val *value);
4603 __isl_give isl_map *isl_map_upper_bound_si(
4604 __isl_take isl_map *map,
4605 enum isl_dim_type type, unsigned pos, int value);
4607 Intersect the set or relation with the half-space where the given
4608 dimension has a value bounded by the fixed given integer value.
4610 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
4611 enum isl_dim_type type1, int pos1,
4612 enum isl_dim_type type2, int pos2);
4613 __isl_give isl_basic_map *isl_basic_map_equate(
4614 __isl_take isl_basic_map *bmap,
4615 enum isl_dim_type type1, int pos1,
4616 enum isl_dim_type type2, int pos2);
4617 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
4618 enum isl_dim_type type1, int pos1,
4619 enum isl_dim_type type2, int pos2);
4621 Intersect the set or relation with the hyperplane where the given
4622 dimensions are equal to each other.
4624 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
4625 enum isl_dim_type type1, int pos1,
4626 enum isl_dim_type type2, int pos2);
4628 Intersect the relation with the hyperplane where the given
4629 dimensions have opposite values.
4631 __isl_give isl_map *isl_map_order_le(
4632 __isl_take isl_map *map,
4633 enum isl_dim_type type1, int pos1,
4634 enum isl_dim_type type2, int pos2);
4635 __isl_give isl_basic_map *isl_basic_map_order_ge(
4636 __isl_take isl_basic_map *bmap,
4637 enum isl_dim_type type1, int pos1,
4638 enum isl_dim_type type2, int pos2);
4639 __isl_give isl_map *isl_map_order_ge(
4640 __isl_take isl_map *map,
4641 enum isl_dim_type type1, int pos1,
4642 enum isl_dim_type type2, int pos2);
4643 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
4644 enum isl_dim_type type1, int pos1,
4645 enum isl_dim_type type2, int pos2);
4646 __isl_give isl_basic_map *isl_basic_map_order_gt(
4647 __isl_take isl_basic_map *bmap,
4648 enum isl_dim_type type1, int pos1,
4649 enum isl_dim_type type2, int pos2);
4650 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
4651 enum isl_dim_type type1, int pos1,
4652 enum isl_dim_type type2, int pos2);
4654 Intersect the relation with the half-space where the given
4655 dimensions satisfy the given ordering.
4659 #include <isl/aff.h>
4660 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4661 __isl_take isl_aff *aff);
4662 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4663 __isl_take isl_aff *aff);
4664 __isl_give isl_set *isl_pw_aff_pos_set(
4665 __isl_take isl_pw_aff *pa);
4666 __isl_give isl_set *isl_pw_aff_nonneg_set(
4667 __isl_take isl_pw_aff *pwaff);
4668 __isl_give isl_set *isl_pw_aff_zero_set(
4669 __isl_take isl_pw_aff *pwaff);
4670 __isl_give isl_set *isl_pw_aff_non_zero_set(
4671 __isl_take isl_pw_aff *pwaff);
4672 __isl_give isl_union_set *
4673 isl_union_pw_aff_zero_union_set(
4674 __isl_take isl_union_pw_aff *upa);
4675 __isl_give isl_union_set *
4676 isl_multi_union_pw_aff_zero_union_set(
4677 __isl_take isl_multi_union_pw_aff *mupa);
4679 The function C<isl_aff_neg_basic_set> returns a basic set
4680 containing those elements in the domain space
4681 of C<aff> where C<aff> is negative.
4682 The function C<isl_pw_aff_nonneg_set> returns a set
4683 containing those elements in the domain
4684 of C<pwaff> where C<pwaff> is non-negative.
4685 The function C<isl_multi_union_pw_aff_zero_union_set>
4686 returns a union set containing those elements
4687 in the domains of its elements where they are all zero.
4691 __isl_give isl_map *isl_set_identity(
4692 __isl_take isl_set *set);
4693 __isl_give isl_union_map *isl_union_set_identity(
4694 __isl_take isl_union_set *uset);
4695 __isl_give isl_union_pw_multi_aff *
4696 isl_union_set_identity_union_pw_multi_aff(
4697 __isl_take isl_union_set *uset);
4699 Construct an identity relation on the given (union) set.
4701 =item * Function Extraction
4703 A piecewise quasi affine expression that is equal to 1 on a set
4704 and 0 outside the set can be created using the following function.
4706 #include <isl/aff.h>
4707 __isl_give isl_pw_aff *isl_set_indicator_function(
4708 __isl_take isl_set *set);
4710 A piecewise multiple quasi affine expression can be extracted
4711 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4712 and the C<isl_map> is single-valued.
4713 In case of a conversion from an C<isl_union_map>
4714 to an C<isl_union_pw_multi_aff>, these properties need to hold
4715 in each domain space.
4716 A conversion to a C<isl_multi_union_pw_aff> additionally
4717 requires that the input is non-empty and involves only a single
4720 #include <isl/aff.h>
4721 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4722 __isl_take isl_set *set);
4723 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4724 __isl_take isl_map *map);
4726 __isl_give isl_union_pw_multi_aff *
4727 isl_union_pw_multi_aff_from_union_set(
4728 __isl_take isl_union_set *uset);
4729 __isl_give isl_union_pw_multi_aff *
4730 isl_union_pw_multi_aff_from_union_map(
4731 __isl_take isl_union_map *umap);
4733 __isl_give isl_multi_union_pw_aff *
4734 isl_multi_union_pw_aff_from_union_map(
4735 __isl_take isl_union_map *umap);
4739 __isl_give isl_basic_set *isl_basic_map_deltas(
4740 __isl_take isl_basic_map *bmap);
4741 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
4742 __isl_give isl_union_set *isl_union_map_deltas(
4743 __isl_take isl_union_map *umap);
4745 These functions return a (basic) set containing the differences
4746 between image elements and corresponding domain elements in the input.
4748 __isl_give isl_basic_map *isl_basic_map_deltas_map(
4749 __isl_take isl_basic_map *bmap);
4750 __isl_give isl_map *isl_map_deltas_map(
4751 __isl_take isl_map *map);
4752 __isl_give isl_union_map *isl_union_map_deltas_map(
4753 __isl_take isl_union_map *umap);
4755 The functions above construct a (basic, regular or union) relation
4756 that maps (a wrapped version of) the input relation to its delta set.
4760 Simplify the representation of a set, relation or functions by trying
4761 to combine pairs of basic sets or relations into a single
4762 basic set or relation.
4764 #include <isl/set.h>
4765 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
4767 #include <isl/map.h>
4768 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
4770 #include <isl/union_set.h>
4771 __isl_give isl_union_set *isl_union_set_coalesce(
4772 __isl_take isl_union_set *uset);
4774 #include <isl/union_map.h>
4775 __isl_give isl_union_map *isl_union_map_coalesce(
4776 __isl_take isl_union_map *umap);
4778 #include <isl/aff.h>
4779 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
4780 __isl_take isl_pw_aff *pwqp);
4781 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4782 __isl_take isl_pw_multi_aff *pma);
4783 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
4784 __isl_take isl_multi_pw_aff *mpa);
4785 __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
4786 __isl_take isl_union_pw_aff *upa);
4787 __isl_give isl_union_pw_multi_aff *
4788 isl_union_pw_multi_aff_coalesce(
4789 __isl_take isl_union_pw_multi_aff *upma);
4790 __isl_give isl_multi_union_pw_aff *
4791 isl_multi_union_pw_aff_coalesce(
4792 __isl_take isl_multi_union_pw_aff *aff);
4794 #include <isl/polynomial.h>
4795 __isl_give isl_pw_qpolynomial_fold *
4796 isl_pw_qpolynomial_fold_coalesce(
4797 __isl_take isl_pw_qpolynomial_fold *pwf);
4798 __isl_give isl_union_pw_qpolynomial *
4799 isl_union_pw_qpolynomial_coalesce(
4800 __isl_take isl_union_pw_qpolynomial *upwqp);
4801 __isl_give isl_union_pw_qpolynomial_fold *
4802 isl_union_pw_qpolynomial_fold_coalesce(
4803 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4805 One of the methods for combining pairs of basic sets or relations
4806 can result in coefficients that are much larger than those that appear
4807 in the constraints of the input. By default, the coefficients are
4808 not allowed to grow larger, but this can be changed by unsetting
4809 the following option.
4811 isl_stat isl_options_set_coalesce_bounded_wrapping(
4812 isl_ctx *ctx, int val);
4813 int isl_options_get_coalesce_bounded_wrapping(
4816 =item * Detecting equalities
4818 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
4819 __isl_take isl_basic_set *bset);
4820 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
4821 __isl_take isl_basic_map *bmap);
4822 __isl_give isl_set *isl_set_detect_equalities(
4823 __isl_take isl_set *set);
4824 __isl_give isl_map *isl_map_detect_equalities(
4825 __isl_take isl_map *map);
4826 __isl_give isl_union_set *isl_union_set_detect_equalities(
4827 __isl_take isl_union_set *uset);
4828 __isl_give isl_union_map *isl_union_map_detect_equalities(
4829 __isl_take isl_union_map *umap);
4831 Simplify the representation of a set or relation by detecting implicit
4834 =item * Removing redundant constraints
4836 #include <isl/set.h>
4837 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
4838 __isl_take isl_basic_set *bset);
4839 __isl_give isl_set *isl_set_remove_redundancies(
4840 __isl_take isl_set *set);
4842 #include <isl/union_set.h>
4843 __isl_give isl_union_set *
4844 isl_union_set_remove_redundancies(
4845 __isl_take isl_union_set *uset);
4847 #include <isl/map.h>
4848 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
4849 __isl_take isl_basic_map *bmap);
4850 __isl_give isl_map *isl_map_remove_redundancies(
4851 __isl_take isl_map *map);
4853 #include <isl/union_map.h>
4854 __isl_give isl_union_map *
4855 isl_union_map_remove_redundancies(
4856 __isl_take isl_union_map *umap);
4860 __isl_give isl_basic_set *isl_set_convex_hull(
4861 __isl_take isl_set *set);
4862 __isl_give isl_basic_map *isl_map_convex_hull(
4863 __isl_take isl_map *map);
4865 If the input set or relation has any existentially quantified
4866 variables, then the result of these operations is currently undefined.
4870 #include <isl/set.h>
4871 __isl_give isl_basic_set *
4872 isl_set_unshifted_simple_hull(
4873 __isl_take isl_set *set);
4874 __isl_give isl_basic_set *isl_set_simple_hull(
4875 __isl_take isl_set *set);
4876 __isl_give isl_basic_set *
4877 isl_set_plain_unshifted_simple_hull(
4878 __isl_take isl_set *set);
4879 __isl_give isl_basic_set *
4880 isl_set_unshifted_simple_hull_from_set_list(
4881 __isl_take isl_set *set,
4882 __isl_take isl_set_list *list);
4884 #include <isl/map.h>
4885 __isl_give isl_basic_map *
4886 isl_map_unshifted_simple_hull(
4887 __isl_take isl_map *map);
4888 __isl_give isl_basic_map *isl_map_simple_hull(
4889 __isl_take isl_map *map);
4890 __isl_give isl_basic_map *
4891 isl_map_plain_unshifted_simple_hull(
4892 __isl_take isl_map *map);
4893 __isl_give isl_basic_map *
4894 isl_map_unshifted_simple_hull_from_map_list(
4895 __isl_take isl_map *map,
4896 __isl_take isl_map_list *list);
4898 #include <isl/union_map.h>
4899 __isl_give isl_union_map *isl_union_map_simple_hull(
4900 __isl_take isl_union_map *umap);
4902 These functions compute a single basic set or relation
4903 that contains the whole input set or relation.
4904 In particular, the output is described by translates
4905 of the constraints describing the basic sets or relations in the input.
4906 In case of C<isl_set_unshifted_simple_hull>, only the original
4907 constraints are used, without any translation.
4908 In case of C<isl_set_plain_unshifted_simple_hull> and
4909 C<isl_map_plain_unshifted_simple_hull>, the result is described
4910 by original constraints that are obviously satisfied
4911 by the entire input set or relation.
4912 In case of C<isl_set_unshifted_simple_hull_from_set_list> and
4913 C<isl_map_unshifted_simple_hull_from_map_list>, the
4914 constraints are taken from the elements of the second argument.
4918 (See \autoref{s:simple hull}.)
4924 __isl_give isl_basic_set *isl_basic_set_affine_hull(
4925 __isl_take isl_basic_set *bset);
4926 __isl_give isl_basic_set *isl_set_affine_hull(
4927 __isl_take isl_set *set);
4928 __isl_give isl_union_set *isl_union_set_affine_hull(
4929 __isl_take isl_union_set *uset);
4930 __isl_give isl_basic_map *isl_basic_map_affine_hull(
4931 __isl_take isl_basic_map *bmap);
4932 __isl_give isl_basic_map *isl_map_affine_hull(
4933 __isl_take isl_map *map);
4934 __isl_give isl_union_map *isl_union_map_affine_hull(
4935 __isl_take isl_union_map *umap);
4937 In case of union sets and relations, the affine hull is computed
4940 =item * Polyhedral hull
4942 __isl_give isl_basic_set *isl_set_polyhedral_hull(
4943 __isl_take isl_set *set);
4944 __isl_give isl_basic_map *isl_map_polyhedral_hull(
4945 __isl_take isl_map *map);
4946 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
4947 __isl_take isl_union_set *uset);
4948 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
4949 __isl_take isl_union_map *umap);
4951 These functions compute a single basic set or relation
4952 not involving any existentially quantified variables
4953 that contains the whole input set or relation.
4954 In case of union sets and relations, the polyhedral hull is computed
4957 =item * Other approximations
4959 #include <isl/set.h>
4960 __isl_give isl_basic_set *
4961 isl_basic_set_drop_constraints_involving_dims(
4962 __isl_take isl_basic_set *bset,
4963 enum isl_dim_type type,
4964 unsigned first, unsigned n);
4965 __isl_give isl_basic_set *
4966 isl_basic_set_drop_constraints_not_involving_dims(
4967 __isl_take isl_basic_set *bset,
4968 enum isl_dim_type type,
4969 unsigned first, unsigned n);
4970 __isl_give isl_set *
4971 isl_set_drop_constraints_involving_dims(
4972 __isl_take isl_set *set,
4973 enum isl_dim_type type,
4974 unsigned first, unsigned n);
4975 __isl_give isl_set *
4976 isl_set_drop_constraints_not_involving_dims(
4977 __isl_take isl_set *set,
4978 enum isl_dim_type type,
4979 unsigned first, unsigned n);
4981 #include <isl/map.h>
4982 __isl_give isl_basic_map *
4983 isl_basic_map_drop_constraints_involving_dims(
4984 __isl_take isl_basic_map *bmap,
4985 enum isl_dim_type type,
4986 unsigned first, unsigned n);
4987 __isl_give isl_basic_map *
4988 isl_basic_map_drop_constraints_not_involving_dims(
4989 __isl_take isl_basic_map *bmap,
4990 enum isl_dim_type type,
4991 unsigned first, unsigned n);
4992 __isl_give isl_map *
4993 isl_map_drop_constraints_involving_dims(
4994 __isl_take isl_map *map,
4995 enum isl_dim_type type,
4996 unsigned first, unsigned n);
4997 __isl_give isl_map *
4998 isl_map_drop_constraints_not_involving_dims(
4999 __isl_take isl_map *map,
5000 enum isl_dim_type type,
5001 unsigned first, unsigned n);
5003 These functions drop any constraints (not) involving the specified dimensions.
5004 Note that the result depends on the representation of the input.
5006 #include <isl/polynomial.h>
5007 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5008 __isl_take isl_pw_qpolynomial *pwqp, int sign);
5009 __isl_give isl_union_pw_qpolynomial *
5010 isl_union_pw_qpolynomial_to_polynomial(
5011 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
5013 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
5014 the polynomial will be an overapproximation. If C<sign> is negative,
5015 it will be an underapproximation. If C<sign> is zero, the approximation
5016 will lie somewhere in between.
5020 __isl_give isl_basic_set *isl_basic_set_sample(
5021 __isl_take isl_basic_set *bset);
5022 __isl_give isl_basic_set *isl_set_sample(
5023 __isl_take isl_set *set);
5024 __isl_give isl_basic_map *isl_basic_map_sample(
5025 __isl_take isl_basic_map *bmap);
5026 __isl_give isl_basic_map *isl_map_sample(
5027 __isl_take isl_map *map);
5029 If the input (basic) set or relation is non-empty, then return
5030 a singleton subset of the input. Otherwise, return an empty set.
5032 =item * Optimization
5034 #include <isl/ilp.h>
5035 __isl_give isl_val *isl_basic_set_max_val(
5036 __isl_keep isl_basic_set *bset,
5037 __isl_keep isl_aff *obj);
5038 __isl_give isl_val *isl_set_min_val(
5039 __isl_keep isl_set *set,
5040 __isl_keep isl_aff *obj);
5041 __isl_give isl_val *isl_set_max_val(
5042 __isl_keep isl_set *set,
5043 __isl_keep isl_aff *obj);
5044 __isl_give isl_multi_val *
5045 isl_union_set_min_multi_union_pw_aff(
5046 __isl_keep isl_union_set *set,
5047 __isl_keep isl_multi_union_pw_aff *obj);
5049 Compute the minimum or maximum of the integer affine expression C<obj>
5050 over the points in C<set>, returning the result in C<opt>.
5051 The result is C<NULL> in case of an error, the optimal value in case
5052 there is one, negative infinity or infinity if the problem is unbounded and
5053 NaN if the problem is empty.
5055 =item * Parametric optimization
5057 __isl_give isl_pw_aff *isl_set_dim_min(
5058 __isl_take isl_set *set, int pos);
5059 __isl_give isl_pw_aff *isl_set_dim_max(
5060 __isl_take isl_set *set, int pos);
5061 __isl_give isl_pw_aff *isl_map_dim_min(
5062 __isl_take isl_map *map, int pos);
5063 __isl_give isl_pw_aff *isl_map_dim_max(
5064 __isl_take isl_map *map, int pos);
5066 Compute the minimum or maximum of the given set or output dimension
5067 as a function of the parameters (and input dimensions), but independently
5068 of the other set or output dimensions.
5069 For lexicographic optimization, see L<"Lexicographic Optimization">.
5073 The following functions compute either the set of (rational) coefficient
5074 values of valid constraints for the given set or the set of (rational)
5075 values satisfying the constraints with coefficients from the given set.
5076 Internally, these two sets of functions perform essentially the
5077 same operations, except that the set of coefficients is assumed to
5078 be a cone, while the set of values may be any polyhedron.
5079 The current implementation is based on the Farkas lemma and
5080 Fourier-Motzkin elimination, but this may change or be made optional
5081 in future. In particular, future implementations may use different
5082 dualization algorithms or skip the elimination step.
5084 __isl_give isl_basic_set *isl_basic_set_coefficients(
5085 __isl_take isl_basic_set *bset);
5086 __isl_give isl_basic_set *isl_set_coefficients(
5087 __isl_take isl_set *set);
5088 __isl_give isl_union_set *isl_union_set_coefficients(
5089 __isl_take isl_union_set *bset);
5090 __isl_give isl_basic_set *isl_basic_set_solutions(
5091 __isl_take isl_basic_set *bset);
5092 __isl_give isl_basic_set *isl_set_solutions(
5093 __isl_take isl_set *set);
5094 __isl_give isl_union_set *isl_union_set_solutions(
5095 __isl_take isl_union_set *bset);
5099 __isl_give isl_map *isl_map_fixed_power_val(
5100 __isl_take isl_map *map,
5101 __isl_take isl_val *exp);
5102 __isl_give isl_union_map *
5103 isl_union_map_fixed_power_val(
5104 __isl_take isl_union_map *umap,
5105 __isl_take isl_val *exp);
5107 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
5108 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
5109 of C<map> is computed.
5111 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
5113 __isl_give isl_union_map *isl_union_map_power(
5114 __isl_take isl_union_map *umap, int *exact);
5116 Compute a parametric representation for all positive powers I<k> of C<map>.
5117 The result maps I<k> to a nested relation corresponding to the
5118 I<k>th power of C<map>.
5119 The result may be an overapproximation. If the result is known to be exact,
5120 then C<*exact> is set to C<1>.
5122 =item * Transitive closure
5124 __isl_give isl_map *isl_map_transitive_closure(
5125 __isl_take isl_map *map, int *exact);
5126 __isl_give isl_union_map *isl_union_map_transitive_closure(
5127 __isl_take isl_union_map *umap, int *exact);
5129 Compute the transitive closure of C<map>.
5130 The result may be an overapproximation. If the result is known to be exact,
5131 then C<*exact> is set to C<1>.
5133 =item * Reaching path lengths
5135 __isl_give isl_map *isl_map_reaching_path_lengths(
5136 __isl_take isl_map *map, int *exact);
5138 Compute a relation that maps each element in the range of C<map>
5139 to the lengths of all paths composed of edges in C<map> that
5140 end up in the given element.
5141 The result may be an overapproximation. If the result is known to be exact,
5142 then C<*exact> is set to C<1>.
5143 To compute the I<maximal> path length, the resulting relation
5144 should be postprocessed by C<isl_map_lexmax>.
5145 In particular, if the input relation is a dependence relation
5146 (mapping sources to sinks), then the maximal path length corresponds
5147 to the free schedule.
5148 Note, however, that C<isl_map_lexmax> expects the maximum to be
5149 finite, so if the path lengths are unbounded (possibly due to
5150 the overapproximation), then you will get an error message.
5154 #include <isl/space.h>
5155 __isl_give isl_space *isl_space_wrap(
5156 __isl_take isl_space *space);
5157 __isl_give isl_space *isl_space_unwrap(
5158 __isl_take isl_space *space);
5160 #include <isl/local_space.h>
5161 __isl_give isl_local_space *isl_local_space_wrap(
5162 __isl_take isl_local_space *ls);
5164 #include <isl/set.h>
5165 __isl_give isl_basic_map *isl_basic_set_unwrap(
5166 __isl_take isl_basic_set *bset);
5167 __isl_give isl_map *isl_set_unwrap(
5168 __isl_take isl_set *set);
5170 #include <isl/map.h>
5171 __isl_give isl_basic_set *isl_basic_map_wrap(
5172 __isl_take isl_basic_map *bmap);
5173 __isl_give isl_set *isl_map_wrap(
5174 __isl_take isl_map *map);
5176 #include <isl/union_set.h>
5177 __isl_give isl_union_map *isl_union_set_unwrap(
5178 __isl_take isl_union_set *uset);
5180 #include <isl/union_map.h>
5181 __isl_give isl_union_set *isl_union_map_wrap(
5182 __isl_take isl_union_map *umap);
5184 The input to C<isl_space_unwrap> should
5185 be the space of a set, while that of
5186 C<isl_space_wrap> should be the space of a relation.
5187 Conversely, the output of C<isl_space_unwrap> is the space
5188 of a relation, while that of C<isl_space_wrap> is the space of a set.
5192 Remove any internal structure of domain (and range) of the given
5193 set or relation. If there is any such internal structure in the input,
5194 then the name of the space is also removed.
5196 #include <isl/local_space.h>
5197 __isl_give isl_local_space *
5198 isl_local_space_flatten_domain(
5199 __isl_take isl_local_space *ls);
5200 __isl_give isl_local_space *
5201 isl_local_space_flatten_range(
5202 __isl_take isl_local_space *ls);
5204 #include <isl/set.h>
5205 __isl_give isl_basic_set *isl_basic_set_flatten(
5206 __isl_take isl_basic_set *bset);
5207 __isl_give isl_set *isl_set_flatten(
5208 __isl_take isl_set *set);
5210 #include <isl/map.h>
5211 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
5212 __isl_take isl_basic_map *bmap);
5213 __isl_give isl_basic_map *isl_basic_map_flatten_range(
5214 __isl_take isl_basic_map *bmap);
5215 __isl_give isl_map *isl_map_flatten_range(
5216 __isl_take isl_map *map);
5217 __isl_give isl_map *isl_map_flatten_domain(
5218 __isl_take isl_map *map);
5219 __isl_give isl_basic_map *isl_basic_map_flatten(
5220 __isl_take isl_basic_map *bmap);
5221 __isl_give isl_map *isl_map_flatten(
5222 __isl_take isl_map *map);
5224 #include <isl/val.h>
5225 __isl_give isl_multi_val *isl_multi_val_flatten_range(
5226 __isl_take isl_multi_val *mv);
5228 #include <isl/aff.h>
5229 __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
5230 __isl_take isl_multi_aff *ma);
5231 __isl_give isl_multi_aff *isl_multi_aff_flatten_range(
5232 __isl_take isl_multi_aff *ma);
5233 __isl_give isl_multi_pw_aff *
5234 isl_multi_pw_aff_flatten_range(
5235 __isl_take isl_multi_pw_aff *mpa);
5236 __isl_give isl_multi_union_pw_aff *
5237 isl_multi_union_pw_aff_flatten_range(
5238 __isl_take isl_multi_union_pw_aff *mupa);
5240 #include <isl/map.h>
5241 __isl_give isl_map *isl_set_flatten_map(
5242 __isl_take isl_set *set);
5244 The function above constructs a relation
5245 that maps the input set to a flattened version of the set.
5249 Lift the input set to a space with extra dimensions corresponding
5250 to the existentially quantified variables in the input.
5251 In particular, the result lives in a wrapped map where the domain
5252 is the original space and the range corresponds to the original
5253 existentially quantified variables.
5255 #include <isl/set.h>
5256 __isl_give isl_basic_set *isl_basic_set_lift(
5257 __isl_take isl_basic_set *bset);
5258 __isl_give isl_set *isl_set_lift(
5259 __isl_take isl_set *set);
5260 __isl_give isl_union_set *isl_union_set_lift(
5261 __isl_take isl_union_set *uset);
5263 Given a local space that contains the existentially quantified
5264 variables of a set, a basic relation that, when applied to
5265 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
5266 can be constructed using the following function.
5268 #include <isl/local_space.h>
5269 __isl_give isl_basic_map *isl_local_space_lifting(
5270 __isl_take isl_local_space *ls);
5272 #include <isl/aff.h>
5273 __isl_give isl_multi_aff *isl_multi_aff_lift(
5274 __isl_take isl_multi_aff *maff,
5275 __isl_give isl_local_space **ls);
5277 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
5278 then it is assigned the local space that lies at the basis of
5279 the lifting applied.
5281 =item * Internal Product
5283 #include <isl/space.h>
5284 __isl_give isl_space *isl_space_zip(
5285 __isl_take isl_space *space);
5287 #include <isl/map.h>
5288 __isl_give isl_basic_map *isl_basic_map_zip(
5289 __isl_take isl_basic_map *bmap);
5290 __isl_give isl_map *isl_map_zip(
5291 __isl_take isl_map *map);
5293 #include <isl/union_map.h>
5294 __isl_give isl_union_map *isl_union_map_zip(
5295 __isl_take isl_union_map *umap);
5297 Given a relation with nested relations for domain and range,
5298 interchange the range of the domain with the domain of the range.
5302 #include <isl/space.h>
5303 __isl_give isl_space *isl_space_curry(
5304 __isl_take isl_space *space);
5305 __isl_give isl_space *isl_space_uncurry(
5306 __isl_take isl_space *space);
5308 #include <isl/map.h>
5309 __isl_give isl_basic_map *isl_basic_map_curry(
5310 __isl_take isl_basic_map *bmap);
5311 __isl_give isl_basic_map *isl_basic_map_uncurry(
5312 __isl_take isl_basic_map *bmap);
5313 __isl_give isl_map *isl_map_curry(
5314 __isl_take isl_map *map);
5315 __isl_give isl_map *isl_map_uncurry(
5316 __isl_take isl_map *map);
5318 #include <isl/union_map.h>
5319 __isl_give isl_union_map *isl_union_map_curry(
5320 __isl_take isl_union_map *umap);
5321 __isl_give isl_union_map *isl_union_map_uncurry(
5322 __isl_take isl_union_map *umap);
5324 Given a relation with a nested relation for domain,
5325 the C<curry> functions
5326 move the range of the nested relation out of the domain
5327 and use it as the domain of a nested relation in the range,
5328 with the original range as range of this nested relation.
5329 The C<uncurry> functions perform the inverse operation.
5331 #include <isl/space.h>
5332 __isl_give isl_space *isl_space_range_curry(
5333 __isl_take isl_space *space);
5335 #include <isl/map.h>
5336 __isl_give isl_map *isl_map_range_curry(
5337 __isl_take isl_map *map);
5339 #include <isl/union_map.h>
5340 __isl_give isl_union_map *isl_union_map_range_curry(
5341 __isl_take isl_union_map *umap);
5343 These functions apply the currying to the relation that
5344 is nested inside the range of the input.
5346 =item * Aligning parameters
5348 Change the order of the parameters of the given set, relation
5350 such that the first parameters match those of C<model>.
5351 This may involve the introduction of extra parameters.
5352 All parameters need to be named.
5354 #include <isl/space.h>
5355 __isl_give isl_space *isl_space_align_params(
5356 __isl_take isl_space *space1,
5357 __isl_take isl_space *space2)
5359 #include <isl/set.h>
5360 __isl_give isl_basic_set *isl_basic_set_align_params(
5361 __isl_take isl_basic_set *bset,
5362 __isl_take isl_space *model);
5363 __isl_give isl_set *isl_set_align_params(
5364 __isl_take isl_set *set,
5365 __isl_take isl_space *model);
5367 #include <isl/map.h>
5368 __isl_give isl_basic_map *isl_basic_map_align_params(
5369 __isl_take isl_basic_map *bmap,
5370 __isl_take isl_space *model);
5371 __isl_give isl_map *isl_map_align_params(
5372 __isl_take isl_map *map,
5373 __isl_take isl_space *model);
5375 #include <isl/val.h>
5376 __isl_give isl_multi_val *isl_multi_val_align_params(
5377 __isl_take isl_multi_val *mv,
5378 __isl_take isl_space *model);
5380 #include <isl/aff.h>
5381 __isl_give isl_aff *isl_aff_align_params(
5382 __isl_take isl_aff *aff,
5383 __isl_take isl_space *model);
5384 __isl_give isl_multi_aff *isl_multi_aff_align_params(
5385 __isl_take isl_multi_aff *multi,
5386 __isl_take isl_space *model);
5387 __isl_give isl_pw_aff *isl_pw_aff_align_params(
5388 __isl_take isl_pw_aff *pwaff,
5389 __isl_take isl_space *model);
5390 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
5391 __isl_take isl_pw_multi_aff *pma,
5392 __isl_take isl_space *model);
5393 __isl_give isl_union_pw_aff *
5394 isl_union_pw_aff_align_params(
5395 __isl_take isl_union_pw_aff *upa,
5396 __isl_take isl_space *model);
5397 __isl_give isl_union_pw_multi_aff *
5398 isl_union_pw_multi_aff_align_params(
5399 __isl_take isl_union_pw_multi_aff *upma,
5400 __isl_take isl_space *model);
5401 __isl_give isl_multi_union_pw_aff *
5402 isl_multi_union_pw_aff_align_params(
5403 __isl_take isl_multi_union_pw_aff *mupa,
5404 __isl_take isl_space *model);
5406 #include <isl/polynomial.h>
5407 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
5408 __isl_take isl_qpolynomial *qp,
5409 __isl_take isl_space *model);
5411 =item * Unary Arithmetic Operations
5413 #include <isl/set.h>
5414 __isl_give isl_set *isl_set_neg(
5415 __isl_take isl_set *set);
5416 #include <isl/map.h>
5417 __isl_give isl_map *isl_map_neg(
5418 __isl_take isl_map *map);
5420 C<isl_set_neg> constructs a set containing the opposites of
5421 the elements in its argument.
5422 The domain of the result of C<isl_map_neg> is the same
5423 as the domain of its argument. The corresponding range
5424 elements are the opposites of the corresponding range
5425 elements in the argument.
5427 #include <isl/val.h>
5428 __isl_give isl_multi_val *isl_multi_val_neg(
5429 __isl_take isl_multi_val *mv);
5431 #include <isl/aff.h>
5432 __isl_give isl_aff *isl_aff_neg(
5433 __isl_take isl_aff *aff);
5434 __isl_give isl_multi_aff *isl_multi_aff_neg(
5435 __isl_take isl_multi_aff *ma);
5436 __isl_give isl_pw_aff *isl_pw_aff_neg(
5437 __isl_take isl_pw_aff *pwaff);
5438 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
5439 __isl_take isl_pw_multi_aff *pma);
5440 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
5441 __isl_take isl_multi_pw_aff *mpa);
5442 __isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
5443 __isl_take isl_union_pw_aff *upa);
5444 __isl_give isl_union_pw_multi_aff *
5445 isl_union_pw_multi_aff_neg(
5446 __isl_take isl_union_pw_multi_aff *upma);
5447 __isl_give isl_multi_union_pw_aff *
5448 isl_multi_union_pw_aff_neg(
5449 __isl_take isl_multi_union_pw_aff *mupa);
5450 __isl_give isl_aff *isl_aff_ceil(
5451 __isl_take isl_aff *aff);
5452 __isl_give isl_pw_aff *isl_pw_aff_ceil(
5453 __isl_take isl_pw_aff *pwaff);
5454 __isl_give isl_aff *isl_aff_floor(
5455 __isl_take isl_aff *aff);
5456 __isl_give isl_multi_aff *isl_multi_aff_floor(
5457 __isl_take isl_multi_aff *ma);
5458 __isl_give isl_pw_aff *isl_pw_aff_floor(
5459 __isl_take isl_pw_aff *pwaff);
5460 __isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
5461 __isl_take isl_union_pw_aff *upa);
5462 __isl_give isl_multi_union_pw_aff *
5463 isl_multi_union_pw_aff_floor(
5464 __isl_take isl_multi_union_pw_aff *mupa);
5466 #include <isl/aff.h>
5467 __isl_give isl_pw_aff *isl_pw_aff_list_min(
5468 __isl_take isl_pw_aff_list *list);
5469 __isl_give isl_pw_aff *isl_pw_aff_list_max(
5470 __isl_take isl_pw_aff_list *list);
5472 #include <isl/polynomial.h>
5473 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
5474 __isl_take isl_qpolynomial *qp);
5475 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
5476 __isl_take isl_pw_qpolynomial *pwqp);
5477 __isl_give isl_union_pw_qpolynomial *
5478 isl_union_pw_qpolynomial_neg(
5479 __isl_take isl_union_pw_qpolynomial *upwqp);
5480 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
5481 __isl_take isl_qpolynomial *qp,
5483 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
5484 __isl_take isl_pw_qpolynomial *pwqp,
5489 The following functions evaluate a function in a point.
5491 #include <isl/polynomial.h>
5492 __isl_give isl_val *isl_pw_qpolynomial_eval(
5493 __isl_take isl_pw_qpolynomial *pwqp,
5494 __isl_take isl_point *pnt);
5495 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
5496 __isl_take isl_pw_qpolynomial_fold *pwf,
5497 __isl_take isl_point *pnt);
5498 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
5499 __isl_take isl_union_pw_qpolynomial *upwqp,
5500 __isl_take isl_point *pnt);
5501 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
5502 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5503 __isl_take isl_point *pnt);
5505 =item * Dimension manipulation
5507 It is usually not advisable to directly change the (input or output)
5508 space of a set or a relation as this removes the name and the internal
5509 structure of the space. However, the functions below can be useful
5510 to add new parameters, assuming
5511 C<isl_set_align_params> and C<isl_map_align_params>
5514 #include <isl/space.h>
5515 __isl_give isl_space *isl_space_add_dims(
5516 __isl_take isl_space *space,
5517 enum isl_dim_type type, unsigned n);
5518 __isl_give isl_space *isl_space_insert_dims(
5519 __isl_take isl_space *space,
5520 enum isl_dim_type type, unsigned pos, unsigned n);
5521 __isl_give isl_space *isl_space_drop_dims(
5522 __isl_take isl_space *space,
5523 enum isl_dim_type type, unsigned first, unsigned n);
5524 __isl_give isl_space *isl_space_move_dims(
5525 __isl_take isl_space *space,
5526 enum isl_dim_type dst_type, unsigned dst_pos,
5527 enum isl_dim_type src_type, unsigned src_pos,
5530 #include <isl/local_space.h>
5531 __isl_give isl_local_space *isl_local_space_add_dims(
5532 __isl_take isl_local_space *ls,
5533 enum isl_dim_type type, unsigned n);
5534 __isl_give isl_local_space *isl_local_space_insert_dims(
5535 __isl_take isl_local_space *ls,
5536 enum isl_dim_type type, unsigned first, unsigned n);
5537 __isl_give isl_local_space *isl_local_space_drop_dims(
5538 __isl_take isl_local_space *ls,
5539 enum isl_dim_type type, unsigned first, unsigned n);
5541 #include <isl/set.h>
5542 __isl_give isl_basic_set *isl_basic_set_add_dims(
5543 __isl_take isl_basic_set *bset,
5544 enum isl_dim_type type, unsigned n);
5545 __isl_give isl_set *isl_set_add_dims(
5546 __isl_take isl_set *set,
5547 enum isl_dim_type type, unsigned n);
5548 __isl_give isl_basic_set *isl_basic_set_insert_dims(
5549 __isl_take isl_basic_set *bset,
5550 enum isl_dim_type type, unsigned pos,
5552 __isl_give isl_set *isl_set_insert_dims(
5553 __isl_take isl_set *set,
5554 enum isl_dim_type type, unsigned pos, unsigned n);
5555 __isl_give isl_basic_set *isl_basic_set_move_dims(
5556 __isl_take isl_basic_set *bset,
5557 enum isl_dim_type dst_type, unsigned dst_pos,
5558 enum isl_dim_type src_type, unsigned src_pos,
5560 __isl_give isl_set *isl_set_move_dims(
5561 __isl_take isl_set *set,
5562 enum isl_dim_type dst_type, unsigned dst_pos,
5563 enum isl_dim_type src_type, unsigned src_pos,
5566 #include <isl/map.h>
5567 __isl_give isl_basic_map *isl_basic_map_add_dims(
5568 __isl_take isl_basic_map *bmap,
5569 enum isl_dim_type type, unsigned n);
5570 __isl_give isl_map *isl_map_add_dims(
5571 __isl_take isl_map *map,
5572 enum isl_dim_type type, unsigned n);
5573 __isl_give isl_basic_map *isl_basic_map_insert_dims(
5574 __isl_take isl_basic_map *bmap,
5575 enum isl_dim_type type, unsigned pos,
5577 __isl_give isl_map *isl_map_insert_dims(
5578 __isl_take isl_map *map,
5579 enum isl_dim_type type, unsigned pos, unsigned n);
5580 __isl_give isl_basic_map *isl_basic_map_move_dims(
5581 __isl_take isl_basic_map *bmap,
5582 enum isl_dim_type dst_type, unsigned dst_pos,
5583 enum isl_dim_type src_type, unsigned src_pos,
5585 __isl_give isl_map *isl_map_move_dims(
5586 __isl_take isl_map *map,
5587 enum isl_dim_type dst_type, unsigned dst_pos,
5588 enum isl_dim_type src_type, unsigned src_pos,
5591 #include <isl/val.h>
5592 __isl_give isl_multi_val *isl_multi_val_insert_dims(
5593 __isl_take isl_multi_val *mv,
5594 enum isl_dim_type type, unsigned first, unsigned n);
5595 __isl_give isl_multi_val *isl_multi_val_add_dims(
5596 __isl_take isl_multi_val *mv,
5597 enum isl_dim_type type, unsigned n);
5598 __isl_give isl_multi_val *isl_multi_val_drop_dims(
5599 __isl_take isl_multi_val *mv,
5600 enum isl_dim_type type, unsigned first, unsigned n);
5602 #include <isl/aff.h>
5603 __isl_give isl_aff *isl_aff_insert_dims(
5604 __isl_take isl_aff *aff,
5605 enum isl_dim_type type, unsigned first, unsigned n);
5606 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
5607 __isl_take isl_multi_aff *ma,
5608 enum isl_dim_type type, unsigned first, unsigned n);
5609 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
5610 __isl_take isl_pw_aff *pwaff,
5611 enum isl_dim_type type, unsigned first, unsigned n);
5612 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
5613 __isl_take isl_multi_pw_aff *mpa,
5614 enum isl_dim_type type, unsigned first, unsigned n);
5615 __isl_give isl_aff *isl_aff_add_dims(
5616 __isl_take isl_aff *aff,
5617 enum isl_dim_type type, unsigned n);
5618 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
5619 __isl_take isl_multi_aff *ma,
5620 enum isl_dim_type type, unsigned n);
5621 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
5622 __isl_take isl_pw_aff *pwaff,
5623 enum isl_dim_type type, unsigned n);
5624 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
5625 __isl_take isl_multi_pw_aff *mpa,
5626 enum isl_dim_type type, unsigned n);
5627 __isl_give isl_aff *isl_aff_drop_dims(
5628 __isl_take isl_aff *aff,
5629 enum isl_dim_type type, unsigned first, unsigned n);
5630 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
5631 __isl_take isl_multi_aff *maff,
5632 enum isl_dim_type type, unsigned first, unsigned n);
5633 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
5634 __isl_take isl_pw_aff *pwaff,
5635 enum isl_dim_type type, unsigned first, unsigned n);
5636 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
5637 __isl_take isl_pw_multi_aff *pma,
5638 enum isl_dim_type type, unsigned first, unsigned n);
5639 __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
5640 __isl_take isl_union_pw_aff *upa,
5641 enum isl_dim_type type, unsigned first, unsigned n);
5642 __isl_give isl_union_pw_multi_aff *
5643 isl_union_pw_multi_aff_drop_dims(
5644 __isl_take isl_union_pw_multi_aff *upma,
5645 enum isl_dim_type type,
5646 unsigned first, unsigned n);
5647 __isl_give isl_multi_union_pw_aff *
5648 isl_multi_union_pw_aff_drop_dims(
5649 __isl_take isl_multi_union_pw_aff *mupa,
5650 enum isl_dim_type type, unsigned first,
5652 __isl_give isl_aff *isl_aff_move_dims(
5653 __isl_take isl_aff *aff,
5654 enum isl_dim_type dst_type, unsigned dst_pos,
5655 enum isl_dim_type src_type, unsigned src_pos,
5657 __isl_give isl_multi_aff *isl_multi_aff_move_dims(
5658 __isl_take isl_multi_aff *ma,
5659 enum isl_dim_type dst_type, unsigned dst_pos,
5660 enum isl_dim_type src_type, unsigned src_pos,
5662 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
5663 __isl_take isl_pw_aff *pa,
5664 enum isl_dim_type dst_type, unsigned dst_pos,
5665 enum isl_dim_type src_type, unsigned src_pos,
5667 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
5668 __isl_take isl_multi_pw_aff *pma,
5669 enum isl_dim_type dst_type, unsigned dst_pos,
5670 enum isl_dim_type src_type, unsigned src_pos,
5673 #include <isl/polynomial.h>
5674 __isl_give isl_union_pw_qpolynomial *
5675 isl_union_pw_qpolynomial_drop_dims(
5676 __isl_take isl_union_pw_qpolynomial *upwqp,
5677 enum isl_dim_type type,
5678 unsigned first, unsigned n);
5679 __isl_give isl_union_pw_qpolynomial_fold *
5680 isl_union_pw_qpolynomial_fold_drop_dims(
5681 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5682 enum isl_dim_type type,
5683 unsigned first, unsigned n);
5685 The operations on union expressions can only manipulate parameters.
5689 =head2 Binary Operations
5691 The two arguments of a binary operation not only need to live
5692 in the same C<isl_ctx>, they currently also need to have
5693 the same (number of) parameters.
5695 =head3 Basic Operations
5699 =item * Intersection
5701 #include <isl/local_space.h>
5702 __isl_give isl_local_space *isl_local_space_intersect(
5703 __isl_take isl_local_space *ls1,
5704 __isl_take isl_local_space *ls2);
5706 #include <isl/set.h>
5707 __isl_give isl_basic_set *isl_basic_set_intersect_params(
5708 __isl_take isl_basic_set *bset1,
5709 __isl_take isl_basic_set *bset2);
5710 __isl_give isl_basic_set *isl_basic_set_intersect(
5711 __isl_take isl_basic_set *bset1,
5712 __isl_take isl_basic_set *bset2);
5713 __isl_give isl_basic_set *isl_basic_set_list_intersect(
5714 __isl_take struct isl_basic_set_list *list);
5715 __isl_give isl_set *isl_set_intersect_params(
5716 __isl_take isl_set *set,
5717 __isl_take isl_set *params);
5718 __isl_give isl_set *isl_set_intersect(
5719 __isl_take isl_set *set1,
5720 __isl_take isl_set *set2);
5722 #include <isl/map.h>
5723 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
5724 __isl_take isl_basic_map *bmap,
5725 __isl_take isl_basic_set *bset);
5726 __isl_give isl_basic_map *isl_basic_map_intersect_range(
5727 __isl_take isl_basic_map *bmap,
5728 __isl_take isl_basic_set *bset);
5729 __isl_give isl_basic_map *isl_basic_map_intersect(
5730 __isl_take isl_basic_map *bmap1,
5731 __isl_take isl_basic_map *bmap2);
5732 __isl_give isl_basic_map *isl_basic_map_list_intersect(
5733 __isl_take isl_basic_map_list *list);
5734 __isl_give isl_map *isl_map_intersect_params(
5735 __isl_take isl_map *map,
5736 __isl_take isl_set *params);
5737 __isl_give isl_map *isl_map_intersect_domain(
5738 __isl_take isl_map *map,
5739 __isl_take isl_set *set);
5740 __isl_give isl_map *isl_map_intersect_range(
5741 __isl_take isl_map *map,
5742 __isl_take isl_set *set);
5743 __isl_give isl_map *isl_map_intersect(
5744 __isl_take isl_map *map1,
5745 __isl_take isl_map *map2);
5747 #include <isl/union_set.h>
5748 __isl_give isl_union_set *isl_union_set_intersect_params(
5749 __isl_take isl_union_set *uset,
5750 __isl_take isl_set *set);
5751 __isl_give isl_union_set *isl_union_set_intersect(
5752 __isl_take isl_union_set *uset1,
5753 __isl_take isl_union_set *uset2);
5755 #include <isl/union_map.h>
5756 __isl_give isl_union_map *isl_union_map_intersect_params(
5757 __isl_take isl_union_map *umap,
5758 __isl_take isl_set *set);
5759 __isl_give isl_union_map *isl_union_map_intersect_domain(
5760 __isl_take isl_union_map *umap,
5761 __isl_take isl_union_set *uset);
5762 __isl_give isl_union_map *isl_union_map_intersect_range(
5763 __isl_take isl_union_map *umap,
5764 __isl_take isl_union_set *uset);
5765 __isl_give isl_union_map *isl_union_map_intersect(
5766 __isl_take isl_union_map *umap1,
5767 __isl_take isl_union_map *umap2);
5769 #include <isl/aff.h>
5770 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
5771 __isl_take isl_pw_aff *pa,
5772 __isl_take isl_set *set);
5773 __isl_give isl_multi_pw_aff *
5774 isl_multi_pw_aff_intersect_domain(
5775 __isl_take isl_multi_pw_aff *mpa,
5776 __isl_take isl_set *domain);
5777 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
5778 __isl_take isl_pw_multi_aff *pma,
5779 __isl_take isl_set *set);
5780 __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
5781 __isl_take isl_union_pw_aff *upa,
5782 __isl_take isl_union_set *uset);
5783 __isl_give isl_union_pw_multi_aff *
5784 isl_union_pw_multi_aff_intersect_domain(
5785 __isl_take isl_union_pw_multi_aff *upma,
5786 __isl_take isl_union_set *uset);
5787 __isl_give isl_multi_union_pw_aff *
5788 isl_multi_union_pw_aff_intersect_domain(
5789 __isl_take isl_multi_union_pw_aff *mupa,
5790 __isl_take isl_union_set *uset);
5791 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
5792 __isl_take isl_pw_aff *pa,
5793 __isl_take isl_set *set);
5794 __isl_give isl_multi_pw_aff *
5795 isl_multi_pw_aff_intersect_params(
5796 __isl_take isl_multi_pw_aff *mpa,
5797 __isl_take isl_set *set);
5798 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
5799 __isl_take isl_pw_multi_aff *pma,
5800 __isl_take isl_set *set);
5801 __isl_give isl_union_pw_aff *
5802 isl_union_pw_aff_intersect_params(
5803 __isl_take isl_union_pw_aff *upa,
5804 __isl_give isl_union_pw_multi_aff *
5805 isl_union_pw_multi_aff_intersect_params(
5806 __isl_take isl_union_pw_multi_aff *upma,
5807 __isl_take isl_set *set);
5808 __isl_give isl_multi_union_pw_aff *
5809 isl_multi_union_pw_aff_intersect_params(
5810 __isl_take isl_multi_union_pw_aff *mupa,
5811 __isl_take isl_set *params);
5812 isl_multi_union_pw_aff_intersect_range(
5813 __isl_take isl_multi_union_pw_aff *mupa,
5814 __isl_take isl_set *set);
5816 #include <isl/polynomial.h>
5817 __isl_give isl_pw_qpolynomial *
5818 isl_pw_qpolynomial_intersect_domain(
5819 __isl_take isl_pw_qpolynomial *pwpq,
5820 __isl_take isl_set *set);
5821 __isl_give isl_union_pw_qpolynomial *
5822 isl_union_pw_qpolynomial_intersect_domain(
5823 __isl_take isl_union_pw_qpolynomial *upwpq,
5824 __isl_take isl_union_set *uset);
5825 __isl_give isl_union_pw_qpolynomial_fold *
5826 isl_union_pw_qpolynomial_fold_intersect_domain(
5827 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5828 __isl_take isl_union_set *uset);
5829 __isl_give isl_pw_qpolynomial *
5830 isl_pw_qpolynomial_intersect_params(
5831 __isl_take isl_pw_qpolynomial *pwpq,
5832 __isl_take isl_set *set);
5833 __isl_give isl_pw_qpolynomial_fold *
5834 isl_pw_qpolynomial_fold_intersect_params(
5835 __isl_take isl_pw_qpolynomial_fold *pwf,
5836 __isl_take isl_set *set);
5837 __isl_give isl_union_pw_qpolynomial *
5838 isl_union_pw_qpolynomial_intersect_params(
5839 __isl_take isl_union_pw_qpolynomial *upwpq,
5840 __isl_take isl_set *set);
5841 __isl_give isl_union_pw_qpolynomial_fold *
5842 isl_union_pw_qpolynomial_fold_intersect_params(
5843 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5844 __isl_take isl_set *set);
5846 The second argument to the C<_params> functions needs to be
5847 a parametric (basic) set. For the other functions, a parametric set
5848 for either argument is only allowed if the other argument is
5849 a parametric set as well.
5850 The list passed to C<isl_basic_set_list_intersect> needs to have
5851 at least one element and all elements need to live in the same space.
5852 The function C<isl_multi_union_pw_aff_intersect_range>
5853 restricts the input function to those shared domain elements
5854 that map to the specified range.
5858 #include <isl/set.h>
5859 __isl_give isl_set *isl_basic_set_union(
5860 __isl_take isl_basic_set *bset1,
5861 __isl_take isl_basic_set *bset2);
5862 __isl_give isl_set *isl_set_union(
5863 __isl_take isl_set *set1,
5864 __isl_take isl_set *set2);
5865 __isl_give isl_set *isl_set_list_union(
5866 __isl_take isl_set_list *list);
5868 #include <isl/map.h>
5869 __isl_give isl_map *isl_basic_map_union(
5870 __isl_take isl_basic_map *bmap1,
5871 __isl_take isl_basic_map *bmap2);
5872 __isl_give isl_map *isl_map_union(
5873 __isl_take isl_map *map1,
5874 __isl_take isl_map *map2);
5876 #include <isl/union_set.h>
5877 __isl_give isl_union_set *isl_union_set_union(
5878 __isl_take isl_union_set *uset1,
5879 __isl_take isl_union_set *uset2);
5880 __isl_give isl_union_set *isl_union_set_list_union(
5881 __isl_take isl_union_set_list *list);
5883 #include <isl/union_map.h>
5884 __isl_give isl_union_map *isl_union_map_union(
5885 __isl_take isl_union_map *umap1,
5886 __isl_take isl_union_map *umap2);
5888 The list passed to C<isl_set_list_union> needs to have
5889 at least one element and all elements need to live in the same space.
5891 =item * Set difference
5893 #include <isl/set.h>
5894 __isl_give isl_set *isl_set_subtract(
5895 __isl_take isl_set *set1,
5896 __isl_take isl_set *set2);
5898 #include <isl/map.h>
5899 __isl_give isl_map *isl_map_subtract(
5900 __isl_take isl_map *map1,
5901 __isl_take isl_map *map2);
5902 __isl_give isl_map *isl_map_subtract_domain(
5903 __isl_take isl_map *map,
5904 __isl_take isl_set *dom);
5905 __isl_give isl_map *isl_map_subtract_range(
5906 __isl_take isl_map *map,
5907 __isl_take isl_set *dom);
5909 #include <isl/union_set.h>
5910 __isl_give isl_union_set *isl_union_set_subtract(
5911 __isl_take isl_union_set *uset1,
5912 __isl_take isl_union_set *uset2);
5914 #include <isl/union_map.h>
5915 __isl_give isl_union_map *isl_union_map_subtract(
5916 __isl_take isl_union_map *umap1,
5917 __isl_take isl_union_map *umap2);
5918 __isl_give isl_union_map *isl_union_map_subtract_domain(
5919 __isl_take isl_union_map *umap,
5920 __isl_take isl_union_set *dom);
5921 __isl_give isl_union_map *isl_union_map_subtract_range(
5922 __isl_take isl_union_map *umap,
5923 __isl_take isl_union_set *dom);
5925 #include <isl/aff.h>
5926 __isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
5927 __isl_take isl_pw_aff *pa,
5928 __isl_take isl_set *set);
5929 __isl_give isl_pw_multi_aff *
5930 isl_pw_multi_aff_subtract_domain(
5931 __isl_take isl_pw_multi_aff *pma,
5932 __isl_take isl_set *set);
5933 __isl_give isl_union_pw_aff *
5934 isl_union_pw_aff_subtract_domain(
5935 __isl_take isl_union_pw_aff *upa,
5936 __isl_take isl_union_set *uset);
5937 __isl_give isl_union_pw_multi_aff *
5938 isl_union_pw_multi_aff_subtract_domain(
5939 __isl_take isl_union_pw_multi_aff *upma,
5940 __isl_take isl_set *set);
5942 #include <isl/polynomial.h>
5943 __isl_give isl_pw_qpolynomial *
5944 isl_pw_qpolynomial_subtract_domain(
5945 __isl_take isl_pw_qpolynomial *pwpq,
5946 __isl_take isl_set *set);
5947 __isl_give isl_pw_qpolynomial_fold *
5948 isl_pw_qpolynomial_fold_subtract_domain(
5949 __isl_take isl_pw_qpolynomial_fold *pwf,
5950 __isl_take isl_set *set);
5951 __isl_give isl_union_pw_qpolynomial *
5952 isl_union_pw_qpolynomial_subtract_domain(
5953 __isl_take isl_union_pw_qpolynomial *upwpq,
5954 __isl_take isl_union_set *uset);
5955 __isl_give isl_union_pw_qpolynomial_fold *
5956 isl_union_pw_qpolynomial_fold_subtract_domain(
5957 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5958 __isl_take isl_union_set *uset);
5962 #include <isl/space.h>
5963 __isl_give isl_space *isl_space_join(
5964 __isl_take isl_space *left,
5965 __isl_take isl_space *right);
5967 #include <isl/map.h>
5968 __isl_give isl_basic_set *isl_basic_set_apply(
5969 __isl_take isl_basic_set *bset,
5970 __isl_take isl_basic_map *bmap);
5971 __isl_give isl_set *isl_set_apply(
5972 __isl_take isl_set *set,
5973 __isl_take isl_map *map);
5974 __isl_give isl_union_set *isl_union_set_apply(
5975 __isl_take isl_union_set *uset,
5976 __isl_take isl_union_map *umap);
5977 __isl_give isl_basic_map *isl_basic_map_apply_domain(
5978 __isl_take isl_basic_map *bmap1,
5979 __isl_take isl_basic_map *bmap2);
5980 __isl_give isl_basic_map *isl_basic_map_apply_range(
5981 __isl_take isl_basic_map *bmap1,
5982 __isl_take isl_basic_map *bmap2);
5983 __isl_give isl_map *isl_map_apply_domain(
5984 __isl_take isl_map *map1,
5985 __isl_take isl_map *map2);
5986 __isl_give isl_map *isl_map_apply_range(
5987 __isl_take isl_map *map1,
5988 __isl_take isl_map *map2);
5990 #include <isl/union_map.h>
5991 __isl_give isl_union_map *isl_union_map_apply_domain(
5992 __isl_take isl_union_map *umap1,
5993 __isl_take isl_union_map *umap2);
5994 __isl_give isl_union_map *isl_union_map_apply_range(
5995 __isl_take isl_union_map *umap1,
5996 __isl_take isl_union_map *umap2);
5998 #include <isl/aff.h>
5999 __isl_give isl_union_pw_aff *
6000 isl_multi_union_pw_aff_apply_aff(
6001 __isl_take isl_multi_union_pw_aff *mupa,
6002 __isl_take isl_aff *aff);
6003 __isl_give isl_union_pw_aff *
6004 isl_multi_union_pw_aff_apply_pw_aff(
6005 __isl_take isl_multi_union_pw_aff *mupa,
6006 __isl_take isl_pw_aff *pa);
6007 __isl_give isl_multi_union_pw_aff *
6008 isl_multi_union_pw_aff_apply_multi_aff(
6009 __isl_take isl_multi_union_pw_aff *mupa,
6010 __isl_take isl_multi_aff *ma);
6011 __isl_give isl_multi_union_pw_aff *
6012 isl_multi_union_pw_aff_apply_pw_multi_aff(
6013 __isl_take isl_multi_union_pw_aff *mupa,
6014 __isl_take isl_pw_multi_aff *pma);
6016 The result of C<isl_multi_union_pw_aff_apply_aff> is defined
6017 over the shared domain of the elements of the input. The dimension is
6018 required to be greater than zero.
6019 The C<isl_multi_union_pw_aff> argument of
6020 C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
6021 but only if the range of the C<isl_multi_aff> argument
6022 is also zero-dimensional.
6023 Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.
6025 #include <isl/polynomial.h>
6026 __isl_give isl_pw_qpolynomial_fold *
6027 isl_set_apply_pw_qpolynomial_fold(
6028 __isl_take isl_set *set,
6029 __isl_take isl_pw_qpolynomial_fold *pwf,
6031 __isl_give isl_pw_qpolynomial_fold *
6032 isl_map_apply_pw_qpolynomial_fold(
6033 __isl_take isl_map *map,
6034 __isl_take isl_pw_qpolynomial_fold *pwf,
6036 __isl_give isl_union_pw_qpolynomial_fold *
6037 isl_union_set_apply_union_pw_qpolynomial_fold(
6038 __isl_take isl_union_set *uset,
6039 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6041 __isl_give isl_union_pw_qpolynomial_fold *
6042 isl_union_map_apply_union_pw_qpolynomial_fold(
6043 __isl_take isl_union_map *umap,
6044 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6047 The functions taking a map
6048 compose the given map with the given piecewise quasipolynomial reduction.
6049 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
6050 over all elements in the intersection of the range of the map
6051 and the domain of the piecewise quasipolynomial reduction
6052 as a function of an element in the domain of the map.
6053 The functions taking a set compute a bound over all elements in the
6054 intersection of the set and the domain of the
6055 piecewise quasipolynomial reduction.
6059 #include <isl/set.h>
6060 __isl_give isl_basic_set *
6061 isl_basic_set_preimage_multi_aff(
6062 __isl_take isl_basic_set *bset,
6063 __isl_take isl_multi_aff *ma);
6064 __isl_give isl_set *isl_set_preimage_multi_aff(
6065 __isl_take isl_set *set,
6066 __isl_take isl_multi_aff *ma);
6067 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
6068 __isl_take isl_set *set,
6069 __isl_take isl_pw_multi_aff *pma);
6070 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
6071 __isl_take isl_set *set,
6072 __isl_take isl_multi_pw_aff *mpa);
6074 #include <isl/union_set.h>
6075 __isl_give isl_union_set *
6076 isl_union_set_preimage_multi_aff(
6077 __isl_take isl_union_set *uset,
6078 __isl_take isl_multi_aff *ma);
6079 __isl_give isl_union_set *
6080 isl_union_set_preimage_pw_multi_aff(
6081 __isl_take isl_union_set *uset,
6082 __isl_take isl_pw_multi_aff *pma);
6083 __isl_give isl_union_set *
6084 isl_union_set_preimage_union_pw_multi_aff(
6085 __isl_take isl_union_set *uset,
6086 __isl_take isl_union_pw_multi_aff *upma);
6088 #include <isl/map.h>
6089 __isl_give isl_basic_map *
6090 isl_basic_map_preimage_domain_multi_aff(
6091 __isl_take isl_basic_map *bmap,
6092 __isl_take isl_multi_aff *ma);
6093 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
6094 __isl_take isl_map *map,
6095 __isl_take isl_multi_aff *ma);
6096 __isl_give isl_map *isl_map_preimage_range_multi_aff(
6097 __isl_take isl_map *map,
6098 __isl_take isl_multi_aff *ma);
6099 __isl_give isl_map *
6100 isl_map_preimage_domain_pw_multi_aff(
6101 __isl_take isl_map *map,
6102 __isl_take isl_pw_multi_aff *pma);
6103 __isl_give isl_map *
6104 isl_map_preimage_range_pw_multi_aff(
6105 __isl_take isl_map *map,
6106 __isl_take isl_pw_multi_aff *pma);
6107 __isl_give isl_map *
6108 isl_map_preimage_domain_multi_pw_aff(
6109 __isl_take isl_map *map,
6110 __isl_take isl_multi_pw_aff *mpa);
6111 __isl_give isl_basic_map *
6112 isl_basic_map_preimage_range_multi_aff(
6113 __isl_take isl_basic_map *bmap,
6114 __isl_take isl_multi_aff *ma);
6116 #include <isl/union_map.h>
6117 __isl_give isl_union_map *
6118 isl_union_map_preimage_domain_multi_aff(
6119 __isl_take isl_union_map *umap,
6120 __isl_take isl_multi_aff *ma);
6121 __isl_give isl_union_map *
6122 isl_union_map_preimage_range_multi_aff(
6123 __isl_take isl_union_map *umap,
6124 __isl_take isl_multi_aff *ma);
6125 __isl_give isl_union_map *
6126 isl_union_map_preimage_domain_pw_multi_aff(
6127 __isl_take isl_union_map *umap,
6128 __isl_take isl_pw_multi_aff *pma);
6129 __isl_give isl_union_map *
6130 isl_union_map_preimage_range_pw_multi_aff(
6131 __isl_take isl_union_map *umap,
6132 __isl_take isl_pw_multi_aff *pma);
6133 __isl_give isl_union_map *
6134 isl_union_map_preimage_domain_union_pw_multi_aff(
6135 __isl_take isl_union_map *umap,
6136 __isl_take isl_union_pw_multi_aff *upma);
6137 __isl_give isl_union_map *
6138 isl_union_map_preimage_range_union_pw_multi_aff(
6139 __isl_take isl_union_map *umap,
6140 __isl_take isl_union_pw_multi_aff *upma);
6142 These functions compute the preimage of the given set or map domain/range under
6143 the given function. In other words, the expression is plugged
6144 into the set description or into the domain/range of the map.
6148 #include <isl/aff.h>
6149 __isl_give isl_aff *isl_aff_pullback_aff(
6150 __isl_take isl_aff *aff1,
6151 __isl_take isl_aff *aff2);
6152 __isl_give isl_aff *isl_aff_pullback_multi_aff(
6153 __isl_take isl_aff *aff,
6154 __isl_take isl_multi_aff *ma);
6155 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
6156 __isl_take isl_pw_aff *pa,
6157 __isl_take isl_multi_aff *ma);
6158 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
6159 __isl_take isl_pw_aff *pa,
6160 __isl_take isl_pw_multi_aff *pma);
6161 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
6162 __isl_take isl_pw_aff *pa,
6163 __isl_take isl_multi_pw_aff *mpa);
6164 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
6165 __isl_take isl_multi_aff *ma1,
6166 __isl_take isl_multi_aff *ma2);
6167 __isl_give isl_pw_multi_aff *
6168 isl_pw_multi_aff_pullback_multi_aff(
6169 __isl_take isl_pw_multi_aff *pma,
6170 __isl_take isl_multi_aff *ma);
6171 __isl_give isl_multi_pw_aff *
6172 isl_multi_pw_aff_pullback_multi_aff(
6173 __isl_take isl_multi_pw_aff *mpa,
6174 __isl_take isl_multi_aff *ma);
6175 __isl_give isl_pw_multi_aff *
6176 isl_pw_multi_aff_pullback_pw_multi_aff(
6177 __isl_take isl_pw_multi_aff *pma1,
6178 __isl_take isl_pw_multi_aff *pma2);
6179 __isl_give isl_multi_pw_aff *
6180 isl_multi_pw_aff_pullback_pw_multi_aff(
6181 __isl_take isl_multi_pw_aff *mpa,
6182 __isl_take isl_pw_multi_aff *pma);
6183 __isl_give isl_multi_pw_aff *
6184 isl_multi_pw_aff_pullback_multi_pw_aff(
6185 __isl_take isl_multi_pw_aff *mpa1,
6186 __isl_take isl_multi_pw_aff *mpa2);
6187 __isl_give isl_union_pw_aff *
6188 isl_union_pw_aff_pullback_union_pw_multi_aff(
6189 __isl_take isl_union_pw_aff *upa,
6190 __isl_take isl_union_pw_multi_aff *upma);
6191 __isl_give isl_union_pw_multi_aff *
6192 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
6193 __isl_take isl_union_pw_multi_aff *upma1,
6194 __isl_take isl_union_pw_multi_aff *upma2);
6195 __isl_give isl_multi_union_pw_aff *
6196 isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
6197 __isl_take isl_multi_union_pw_aff *mupa,
6198 __isl_take isl_union_pw_multi_aff *upma);
6200 These functions precompose the first expression by the second function.
6201 In other words, the second function is plugged
6202 into the first expression.
6206 #include <isl/aff.h>
6207 __isl_give isl_basic_set *isl_aff_eq_basic_set(
6208 __isl_take isl_aff *aff1,
6209 __isl_take isl_aff *aff2);
6210 __isl_give isl_set *isl_aff_eq_set(
6211 __isl_take isl_aff *aff1,
6212 __isl_take isl_aff *aff2);
6213 __isl_give isl_basic_set *isl_aff_le_basic_set(
6214 __isl_take isl_aff *aff1,
6215 __isl_take isl_aff *aff2);
6216 __isl_give isl_set *isl_aff_le_set(
6217 __isl_take isl_aff *aff1,
6218 __isl_take isl_aff *aff2);
6219 __isl_give isl_basic_set *isl_aff_ge_basic_set(
6220 __isl_take isl_aff *aff1,
6221 __isl_take isl_aff *aff2);
6222 __isl_give isl_set *isl_aff_ge_set(
6223 __isl_take isl_aff *aff1,
6224 __isl_take isl_aff *aff2);
6225 __isl_give isl_set *isl_pw_aff_eq_set(
6226 __isl_take isl_pw_aff *pwaff1,
6227 __isl_take isl_pw_aff *pwaff2);
6228 __isl_give isl_set *isl_pw_aff_ne_set(
6229 __isl_take isl_pw_aff *pwaff1,
6230 __isl_take isl_pw_aff *pwaff2);
6231 __isl_give isl_set *isl_pw_aff_le_set(
6232 __isl_take isl_pw_aff *pwaff1,
6233 __isl_take isl_pw_aff *pwaff2);
6234 __isl_give isl_set *isl_pw_aff_lt_set(
6235 __isl_take isl_pw_aff *pwaff1,
6236 __isl_take isl_pw_aff *pwaff2);
6237 __isl_give isl_set *isl_pw_aff_ge_set(
6238 __isl_take isl_pw_aff *pwaff1,
6239 __isl_take isl_pw_aff *pwaff2);
6240 __isl_give isl_set *isl_pw_aff_gt_set(
6241 __isl_take isl_pw_aff *pwaff1,
6242 __isl_take isl_pw_aff *pwaff2);
6244 __isl_give isl_set *isl_multi_aff_lex_le_set(
6245 __isl_take isl_multi_aff *ma1,
6246 __isl_take isl_multi_aff *ma2);
6247 __isl_give isl_set *isl_multi_aff_lex_lt_set(
6248 __isl_take isl_multi_aff *ma1,
6249 __isl_take isl_multi_aff *ma2);
6250 __isl_give isl_set *isl_multi_aff_lex_ge_set(
6251 __isl_take isl_multi_aff *ma1,
6252 __isl_take isl_multi_aff *ma2);
6253 __isl_give isl_set *isl_multi_aff_lex_gt_set(
6254 __isl_take isl_multi_aff *ma1,
6255 __isl_take isl_multi_aff *ma2);
6257 __isl_give isl_set *isl_pw_aff_list_eq_set(
6258 __isl_take isl_pw_aff_list *list1,
6259 __isl_take isl_pw_aff_list *list2);
6260 __isl_give isl_set *isl_pw_aff_list_ne_set(
6261 __isl_take isl_pw_aff_list *list1,
6262 __isl_take isl_pw_aff_list *list2);
6263 __isl_give isl_set *isl_pw_aff_list_le_set(
6264 __isl_take isl_pw_aff_list *list1,
6265 __isl_take isl_pw_aff_list *list2);
6266 __isl_give isl_set *isl_pw_aff_list_lt_set(
6267 __isl_take isl_pw_aff_list *list1,
6268 __isl_take isl_pw_aff_list *list2);
6269 __isl_give isl_set *isl_pw_aff_list_ge_set(
6270 __isl_take isl_pw_aff_list *list1,
6271 __isl_take isl_pw_aff_list *list2);
6272 __isl_give isl_set *isl_pw_aff_list_gt_set(
6273 __isl_take isl_pw_aff_list *list1,
6274 __isl_take isl_pw_aff_list *list2);
6276 The function C<isl_aff_ge_basic_set> returns a basic set
6277 containing those elements in the shared space
6278 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
6279 The function C<isl_pw_aff_ge_set> returns a set
6280 containing those elements in the shared domain
6281 of C<pwaff1> and C<pwaff2> where C<pwaff1> is
6282 greater than or equal to C<pwaff2>.
6283 The function C<isl_multi_aff_lex_le_set> returns a set
6284 containing those elements in the shared domain space
6285 where C<ma1> is lexicographically smaller than or
6287 The functions operating on C<isl_pw_aff_list> apply the corresponding
6288 C<isl_pw_aff> function to each pair of elements in the two lists.
6290 #include <isl/aff.h>
6291 __isl_give isl_map *isl_pw_aff_eq_map(
6292 __isl_take isl_pw_aff *pa1,
6293 __isl_take isl_pw_aff *pa2);
6294 __isl_give isl_map *isl_pw_aff_lt_map(
6295 __isl_take isl_pw_aff *pa1,
6296 __isl_take isl_pw_aff *pa2);
6297 __isl_give isl_map *isl_pw_aff_gt_map(
6298 __isl_take isl_pw_aff *pa1,
6299 __isl_take isl_pw_aff *pa2);
6301 __isl_give isl_map *isl_multi_pw_aff_eq_map(
6302 __isl_take isl_multi_pw_aff *mpa1,
6303 __isl_take isl_multi_pw_aff *mpa2);
6304 __isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
6305 __isl_take isl_multi_pw_aff *mpa1,
6306 __isl_take isl_multi_pw_aff *mpa2);
6307 __isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
6308 __isl_take isl_multi_pw_aff *mpa1,
6309 __isl_take isl_multi_pw_aff *mpa2);
6311 These functions return a map between domain elements of the arguments
6312 where the function values satisfy the given relation.
6314 #include <isl/union_map.h>
6315 __isl_give isl_union_map *
6316 isl_union_map_eq_at_multi_union_pw_aff(
6317 __isl_take isl_union_map *umap,
6318 __isl_take isl_multi_union_pw_aff *mupa);
6319 __isl_give isl_union_map *
6320 isl_union_map_lex_lt_at_multi_union_pw_aff(
6321 __isl_take isl_union_map *umap,
6322 __isl_take isl_multi_union_pw_aff *mupa);
6323 __isl_give isl_union_map *
6324 isl_union_map_lex_gt_at_multi_union_pw_aff(
6325 __isl_take isl_union_map *umap,
6326 __isl_take isl_multi_union_pw_aff *mupa);
6328 These functions select the subset of elements in the union map
6329 that have an equal or lexicographically smaller function value.
6331 =item * Cartesian Product
6333 #include <isl/space.h>
6334 __isl_give isl_space *isl_space_product(
6335 __isl_take isl_space *space1,
6336 __isl_take isl_space *space2);
6337 __isl_give isl_space *isl_space_domain_product(
6338 __isl_take isl_space *space1,
6339 __isl_take isl_space *space2);
6340 __isl_give isl_space *isl_space_range_product(
6341 __isl_take isl_space *space1,
6342 __isl_take isl_space *space2);
6345 C<isl_space_product>, C<isl_space_domain_product>
6346 and C<isl_space_range_product> take pairs or relation spaces and
6347 produce a single relations space, where either the domain, the range
6348 or both domain and range are wrapped spaces of relations between
6349 the domains and/or ranges of the input spaces.
6350 If the product is only constructed over the domain or the range
6351 then the ranges or the domains of the inputs should be the same.
6352 The function C<isl_space_product> also accepts a pair of set spaces,
6353 in which case it returns a wrapped space of a relation between the
6356 #include <isl/set.h>
6357 __isl_give isl_set *isl_set_product(
6358 __isl_take isl_set *set1,
6359 __isl_take isl_set *set2);
6361 #include <isl/map.h>
6362 __isl_give isl_basic_map *isl_basic_map_domain_product(
6363 __isl_take isl_basic_map *bmap1,
6364 __isl_take isl_basic_map *bmap2);
6365 __isl_give isl_basic_map *isl_basic_map_range_product(
6366 __isl_take isl_basic_map *bmap1,
6367 __isl_take isl_basic_map *bmap2);
6368 __isl_give isl_basic_map *isl_basic_map_product(
6369 __isl_take isl_basic_map *bmap1,
6370 __isl_take isl_basic_map *bmap2);
6371 __isl_give isl_map *isl_map_domain_product(
6372 __isl_take isl_map *map1,
6373 __isl_take isl_map *map2);
6374 __isl_give isl_map *isl_map_range_product(
6375 __isl_take isl_map *map1,
6376 __isl_take isl_map *map2);
6377 __isl_give isl_map *isl_map_product(
6378 __isl_take isl_map *map1,
6379 __isl_take isl_map *map2);
6381 #include <isl/union_set.h>
6382 __isl_give isl_union_set *isl_union_set_product(
6383 __isl_take isl_union_set *uset1,
6384 __isl_take isl_union_set *uset2);
6386 #include <isl/union_map.h>
6387 __isl_give isl_union_map *isl_union_map_domain_product(
6388 __isl_take isl_union_map *umap1,
6389 __isl_take isl_union_map *umap2);
6390 __isl_give isl_union_map *isl_union_map_range_product(
6391 __isl_take isl_union_map *umap1,
6392 __isl_take isl_union_map *umap2);
6393 __isl_give isl_union_map *isl_union_map_product(
6394 __isl_take isl_union_map *umap1,
6395 __isl_take isl_union_map *umap2);
6397 #include <isl/val.h>
6398 __isl_give isl_multi_val *isl_multi_val_range_product(
6399 __isl_take isl_multi_val *mv1,
6400 __isl_take isl_multi_val *mv2);
6401 __isl_give isl_multi_val *isl_multi_val_product(
6402 __isl_take isl_multi_val *mv1,
6403 __isl_take isl_multi_val *mv2);
6405 #include <isl/aff.h>
6406 __isl_give isl_multi_aff *isl_multi_aff_range_product(
6407 __isl_take isl_multi_aff *ma1,
6408 __isl_take isl_multi_aff *ma2);
6409 __isl_give isl_multi_aff *isl_multi_aff_product(
6410 __isl_take isl_multi_aff *ma1,
6411 __isl_take isl_multi_aff *ma2);
6412 __isl_give isl_multi_pw_aff *
6413 isl_multi_pw_aff_range_product(
6414 __isl_take isl_multi_pw_aff *mpa1,
6415 __isl_take isl_multi_pw_aff *mpa2);
6416 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
6417 __isl_take isl_multi_pw_aff *mpa1,
6418 __isl_take isl_multi_pw_aff *mpa2);
6419 __isl_give isl_pw_multi_aff *
6420 isl_pw_multi_aff_range_product(
6421 __isl_take isl_pw_multi_aff *pma1,
6422 __isl_take isl_pw_multi_aff *pma2);
6423 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
6424 __isl_take isl_pw_multi_aff *pma1,
6425 __isl_take isl_pw_multi_aff *pma2);
6426 __isl_give isl_multi_union_pw_aff *
6427 isl_multi_union_pw_aff_range_product(
6428 __isl_take isl_multi_union_pw_aff *mupa1,
6429 __isl_take isl_multi_union_pw_aff *mupa2);
6431 The above functions compute the cross product of the given
6432 sets, relations or functions. The domains and ranges of the results
6433 are wrapped maps between domains and ranges of the inputs.
6434 To obtain a ``flat'' product, use the following functions
6437 #include <isl/set.h>
6438 __isl_give isl_basic_set *isl_basic_set_flat_product(
6439 __isl_take isl_basic_set *bset1,
6440 __isl_take isl_basic_set *bset2);
6441 __isl_give isl_set *isl_set_flat_product(
6442 __isl_take isl_set *set1,
6443 __isl_take isl_set *set2);
6445 #include <isl/map.h>
6446 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
6447 __isl_take isl_basic_map *bmap1,
6448 __isl_take isl_basic_map *bmap2);
6449 __isl_give isl_map *isl_map_flat_domain_product(
6450 __isl_take isl_map *map1,
6451 __isl_take isl_map *map2);
6452 __isl_give isl_map *isl_map_flat_range_product(
6453 __isl_take isl_map *map1,
6454 __isl_take isl_map *map2);
6455 __isl_give isl_basic_map *isl_basic_map_flat_product(
6456 __isl_take isl_basic_map *bmap1,
6457 __isl_take isl_basic_map *bmap2);
6458 __isl_give isl_map *isl_map_flat_product(
6459 __isl_take isl_map *map1,
6460 __isl_take isl_map *map2);
6462 #include <isl/union_map.h>
6463 __isl_give isl_union_map *
6464 isl_union_map_flat_domain_product(
6465 __isl_take isl_union_map *umap1,
6466 __isl_take isl_union_map *umap2);
6467 __isl_give isl_union_map *
6468 isl_union_map_flat_range_product(
6469 __isl_take isl_union_map *umap1,
6470 __isl_take isl_union_map *umap2);
6472 #include <isl/val.h>
6473 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
6474 __isl_take isl_multi_val *mv1,
6475 __isl_take isl_multi_aff *mv2);
6477 #include <isl/aff.h>
6478 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
6479 __isl_take isl_multi_aff *ma1,
6480 __isl_take isl_multi_aff *ma2);
6481 __isl_give isl_pw_multi_aff *
6482 isl_pw_multi_aff_flat_range_product(
6483 __isl_take isl_pw_multi_aff *pma1,
6484 __isl_take isl_pw_multi_aff *pma2);
6485 __isl_give isl_multi_pw_aff *
6486 isl_multi_pw_aff_flat_range_product(
6487 __isl_take isl_multi_pw_aff *mpa1,
6488 __isl_take isl_multi_pw_aff *mpa2);
6489 __isl_give isl_union_pw_multi_aff *
6490 isl_union_pw_multi_aff_flat_range_product(
6491 __isl_take isl_union_pw_multi_aff *upma1,
6492 __isl_take isl_union_pw_multi_aff *upma2);
6493 __isl_give isl_multi_union_pw_aff *
6494 isl_multi_union_pw_aff_flat_range_product(
6495 __isl_take isl_multi_union_pw_aff *mupa1,
6496 __isl_take isl_multi_union_pw_aff *mupa2);
6498 #include <isl/space.h>
6499 __isl_give isl_space *isl_space_factor_domain(
6500 __isl_take isl_space *space);
6501 __isl_give isl_space *isl_space_factor_range(
6502 __isl_take isl_space *space);
6503 __isl_give isl_space *isl_space_domain_factor_domain(
6504 __isl_take isl_space *space);
6505 __isl_give isl_space *isl_space_domain_factor_range(
6506 __isl_take isl_space *space);
6507 __isl_give isl_space *isl_space_range_factor_domain(
6508 __isl_take isl_space *space);
6509 __isl_give isl_space *isl_space_range_factor_range(
6510 __isl_take isl_space *space);
6512 The functions C<isl_space_range_factor_domain> and
6513 C<isl_space_range_factor_range> extract the two arguments from
6514 the result of a call to C<isl_space_range_product>.
6516 The arguments of a call to a product can be extracted
6517 from the result using the following functions.
6519 #include <isl/map.h>
6520 __isl_give isl_map *isl_map_factor_domain(
6521 __isl_take isl_map *map);
6522 __isl_give isl_map *isl_map_factor_range(
6523 __isl_take isl_map *map);
6524 __isl_give isl_map *isl_map_domain_factor_domain(
6525 __isl_take isl_map *map);
6526 __isl_give isl_map *isl_map_domain_factor_range(
6527 __isl_take isl_map *map);
6528 __isl_give isl_map *isl_map_range_factor_domain(
6529 __isl_take isl_map *map);
6530 __isl_give isl_map *isl_map_range_factor_range(
6531 __isl_take isl_map *map);
6533 #include <isl/union_map.h>
6534 __isl_give isl_union_map *isl_union_map_factor_domain(
6535 __isl_take isl_union_map *umap);
6536 __isl_give isl_union_map *isl_union_map_factor_range(
6537 __isl_take isl_union_map *umap);
6538 __isl_give isl_union_map *
6539 isl_union_map_domain_factor_domain(
6540 __isl_take isl_union_map *umap);
6541 __isl_give isl_union_map *
6542 isl_union_map_domain_factor_range(
6543 __isl_take isl_union_map *umap);
6544 __isl_give isl_union_map *
6545 isl_union_map_range_factor_domain(
6546 __isl_take isl_union_map *umap);
6547 __isl_give isl_union_map *
6548 isl_union_map_range_factor_range(
6549 __isl_take isl_union_map *umap);
6551 #include <isl/val.h>
6552 __isl_give isl_multi_val *isl_multi_val_factor_range(
6553 __isl_take isl_multi_val *mv);
6554 __isl_give isl_multi_val *
6555 isl_multi_val_range_factor_domain(
6556 __isl_take isl_multi_val *mv);
6557 __isl_give isl_multi_val *
6558 isl_multi_val_range_factor_range(
6559 __isl_take isl_multi_val *mv);
6561 #include <isl/aff.h>
6562 __isl_give isl_multi_aff *isl_multi_aff_factor_range(
6563 __isl_take isl_multi_aff *ma);
6564 __isl_give isl_multi_aff *
6565 isl_multi_aff_range_factor_domain(
6566 __isl_take isl_multi_aff *ma);
6567 __isl_give isl_multi_aff *
6568 isl_multi_aff_range_factor_range(
6569 __isl_take isl_multi_aff *ma);
6570 __isl_give isl_multi_pw_aff *
6571 isl_multi_pw_aff_factor_range(
6572 __isl_take isl_multi_pw_aff *mpa);
6573 __isl_give isl_multi_pw_aff *
6574 isl_multi_pw_aff_range_factor_domain(
6575 __isl_take isl_multi_pw_aff *mpa);
6576 __isl_give isl_multi_pw_aff *
6577 isl_multi_pw_aff_range_factor_range(
6578 __isl_take isl_multi_pw_aff *mpa);
6579 __isl_give isl_multi_union_pw_aff *
6580 isl_multi_union_pw_aff_factor_range(
6581 __isl_take isl_multi_union_pw_aff *mupa);
6582 __isl_give isl_multi_union_pw_aff *
6583 isl_multi_union_pw_aff_range_factor_domain(
6584 __isl_take isl_multi_union_pw_aff *mupa);
6585 __isl_give isl_multi_union_pw_aff *
6586 isl_multi_union_pw_aff_range_factor_range(
6587 __isl_take isl_multi_union_pw_aff *mupa);
6589 The splice functions are a generalization of the flat product functions,
6590 where the second argument may be inserted at any position inside
6591 the first argument rather than being placed at the end.
6592 The functions C<isl_multi_val_factor_range>,
6593 C<isl_multi_aff_factor_range>,
6594 C<isl_multi_pw_aff_factor_range> and
6595 C<isl_multi_union_pw_aff_factor_range>
6596 take functions that live in a set space.
6598 #include <isl/val.h>
6599 __isl_give isl_multi_val *isl_multi_val_range_splice(
6600 __isl_take isl_multi_val *mv1, unsigned pos,
6601 __isl_take isl_multi_val *mv2);
6603 #include <isl/aff.h>
6604 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
6605 __isl_take isl_multi_aff *ma1, unsigned pos,
6606 __isl_take isl_multi_aff *ma2);
6607 __isl_give isl_multi_aff *isl_multi_aff_splice(
6608 __isl_take isl_multi_aff *ma1,
6609 unsigned in_pos, unsigned out_pos,
6610 __isl_take isl_multi_aff *ma2);
6611 __isl_give isl_multi_pw_aff *
6612 isl_multi_pw_aff_range_splice(
6613 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
6614 __isl_take isl_multi_pw_aff *mpa2);
6615 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
6616 __isl_take isl_multi_pw_aff *mpa1,
6617 unsigned in_pos, unsigned out_pos,
6618 __isl_take isl_multi_pw_aff *mpa2);
6619 __isl_give isl_multi_union_pw_aff *
6620 isl_multi_union_pw_aff_range_splice(
6621 __isl_take isl_multi_union_pw_aff *mupa1,
6623 __isl_take isl_multi_union_pw_aff *mupa2);
6625 =item * Simplification
6627 When applied to a set or relation,
6628 the gist operation returns a set or relation that has the
6629 same intersection with the context as the input set or relation.
6630 Any implicit equality in the intersection is made explicit in the result,
6631 while all inequalities that are redundant with respect to the intersection
6633 In case of union sets and relations, the gist operation is performed
6636 When applied to a function,
6637 the gist operation applies the set gist operation to each of
6638 the cells in the domain of the input piecewise expression.
6639 The context is also exploited
6640 to simplify the expression associated to each cell.
6642 #include <isl/set.h>
6643 __isl_give isl_basic_set *isl_basic_set_gist(
6644 __isl_take isl_basic_set *bset,
6645 __isl_take isl_basic_set *context);
6646 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
6647 __isl_take isl_set *context);
6648 __isl_give isl_set *isl_set_gist_params(
6649 __isl_take isl_set *set,
6650 __isl_take isl_set *context);
6652 #include <isl/map.h>
6653 __isl_give isl_basic_map *isl_basic_map_gist(
6654 __isl_take isl_basic_map *bmap,
6655 __isl_take isl_basic_map *context);
6656 __isl_give isl_basic_map *isl_basic_map_gist_domain(
6657 __isl_take isl_basic_map *bmap,
6658 __isl_take isl_basic_set *context);
6659 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
6660 __isl_take isl_map *context);
6661 __isl_give isl_map *isl_map_gist_params(
6662 __isl_take isl_map *map,
6663 __isl_take isl_set *context);
6664 __isl_give isl_map *isl_map_gist_domain(
6665 __isl_take isl_map *map,
6666 __isl_take isl_set *context);
6667 __isl_give isl_map *isl_map_gist_range(
6668 __isl_take isl_map *map,
6669 __isl_take isl_set *context);
6671 #include <isl/union_set.h>
6672 __isl_give isl_union_set *isl_union_set_gist(
6673 __isl_take isl_union_set *uset,
6674 __isl_take isl_union_set *context);
6675 __isl_give isl_union_set *isl_union_set_gist_params(
6676 __isl_take isl_union_set *uset,
6677 __isl_take isl_set *set);
6679 #include <isl/union_map.h>
6680 __isl_give isl_union_map *isl_union_map_gist(
6681 __isl_take isl_union_map *umap,
6682 __isl_take isl_union_map *context);
6683 __isl_give isl_union_map *isl_union_map_gist_params(
6684 __isl_take isl_union_map *umap,
6685 __isl_take isl_set *set);
6686 __isl_give isl_union_map *isl_union_map_gist_domain(
6687 __isl_take isl_union_map *umap,
6688 __isl_take isl_union_set *uset);
6689 __isl_give isl_union_map *isl_union_map_gist_range(
6690 __isl_take isl_union_map *umap,
6691 __isl_take isl_union_set *uset);
6693 #include <isl/aff.h>
6694 __isl_give isl_aff *isl_aff_gist_params(
6695 __isl_take isl_aff *aff,
6696 __isl_take isl_set *context);
6697 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
6698 __isl_take isl_set *context);
6699 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
6700 __isl_take isl_multi_aff *maff,
6701 __isl_take isl_set *context);
6702 __isl_give isl_multi_aff *isl_multi_aff_gist(
6703 __isl_take isl_multi_aff *maff,
6704 __isl_take isl_set *context);
6705 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
6706 __isl_take isl_pw_aff *pwaff,
6707 __isl_take isl_set *context);
6708 __isl_give isl_pw_aff *isl_pw_aff_gist(
6709 __isl_take isl_pw_aff *pwaff,
6710 __isl_take isl_set *context);
6711 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
6712 __isl_take isl_pw_multi_aff *pma,
6713 __isl_take isl_set *set);
6714 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
6715 __isl_take isl_pw_multi_aff *pma,
6716 __isl_take isl_set *set);
6717 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
6718 __isl_take isl_multi_pw_aff *mpa,
6719 __isl_take isl_set *set);
6720 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
6721 __isl_take isl_multi_pw_aff *mpa,
6722 __isl_take isl_set *set);
6723 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
6724 __isl_take isl_union_pw_aff *upa,
6725 __isl_take isl_union_set *context);
6726 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
6727 __isl_take isl_union_pw_aff *upa,
6728 __isl_take isl_set *context);
6729 __isl_give isl_union_pw_multi_aff *
6730 isl_union_pw_multi_aff_gist_params(
6731 __isl_take isl_union_pw_multi_aff *upma,
6732 __isl_take isl_set *context);
6733 __isl_give isl_union_pw_multi_aff *
6734 isl_union_pw_multi_aff_gist(
6735 __isl_take isl_union_pw_multi_aff *upma,
6736 __isl_take isl_union_set *context);
6737 __isl_give isl_multi_union_pw_aff *
6738 isl_multi_union_pw_aff_gist_params(
6739 __isl_take isl_multi_union_pw_aff *aff,
6740 __isl_take isl_set *context);
6741 __isl_give isl_multi_union_pw_aff *
6742 isl_multi_union_pw_aff_gist(
6743 __isl_take isl_multi_union_pw_aff *aff,
6744 __isl_take isl_union_set *context);
6746 #include <isl/polynomial.h>
6747 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
6748 __isl_take isl_qpolynomial *qp,
6749 __isl_take isl_set *context);
6750 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
6751 __isl_take isl_qpolynomial *qp,
6752 __isl_take isl_set *context);
6753 __isl_give isl_qpolynomial_fold *
6754 isl_qpolynomial_fold_gist_params(
6755 __isl_take isl_qpolynomial_fold *fold,
6756 __isl_take isl_set *context);
6757 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
6758 __isl_take isl_qpolynomial_fold *fold,
6759 __isl_take isl_set *context);
6760 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
6761 __isl_take isl_pw_qpolynomial *pwqp,
6762 __isl_take isl_set *context);
6763 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
6764 __isl_take isl_pw_qpolynomial *pwqp,
6765 __isl_take isl_set *context);
6766 __isl_give isl_pw_qpolynomial_fold *
6767 isl_pw_qpolynomial_fold_gist(
6768 __isl_take isl_pw_qpolynomial_fold *pwf,
6769 __isl_take isl_set *context);
6770 __isl_give isl_pw_qpolynomial_fold *
6771 isl_pw_qpolynomial_fold_gist_params(
6772 __isl_take isl_pw_qpolynomial_fold *pwf,
6773 __isl_take isl_set *context);
6774 __isl_give isl_union_pw_qpolynomial *
6775 isl_union_pw_qpolynomial_gist_params(
6776 __isl_take isl_union_pw_qpolynomial *upwqp,
6777 __isl_take isl_set *context);
6778 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
6779 __isl_take isl_union_pw_qpolynomial *upwqp,
6780 __isl_take isl_union_set *context);
6781 __isl_give isl_union_pw_qpolynomial_fold *
6782 isl_union_pw_qpolynomial_fold_gist(
6783 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6784 __isl_take isl_union_set *context);
6785 __isl_give isl_union_pw_qpolynomial_fold *
6786 isl_union_pw_qpolynomial_fold_gist_params(
6787 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6788 __isl_take isl_set *context);
6790 =item * Binary Arithmetic Operations
6792 #include <isl/set.h>
6793 __isl_give isl_set *isl_set_sum(
6794 __isl_take isl_set *set1,
6795 __isl_take isl_set *set2);
6796 #include <isl/map.h>
6797 __isl_give isl_map *isl_map_sum(
6798 __isl_take isl_map *map1,
6799 __isl_take isl_map *map2);
6801 C<isl_set_sum> computes the Minkowski sum of its two arguments,
6802 i.e., the set containing the sums of pairs of elements from
6803 C<set1> and C<set2>.
6804 The domain of the result of C<isl_map_sum> is the intersection
6805 of the domains of its two arguments. The corresponding range
6806 elements are the sums of the corresponding range elements
6807 in the two arguments.
6809 #include <isl/val.h>
6810 __isl_give isl_multi_val *isl_multi_val_add(
6811 __isl_take isl_multi_val *mv1,
6812 __isl_take isl_multi_val *mv2);
6813 __isl_give isl_multi_val *isl_multi_val_sub(
6814 __isl_take isl_multi_val *mv1,
6815 __isl_take isl_multi_val *mv2);
6817 #include <isl/aff.h>
6818 __isl_give isl_aff *isl_aff_add(
6819 __isl_take isl_aff *aff1,
6820 __isl_take isl_aff *aff2);
6821 __isl_give isl_multi_aff *isl_multi_aff_add(
6822 __isl_take isl_multi_aff *maff1,
6823 __isl_take isl_multi_aff *maff2);
6824 __isl_give isl_pw_aff *isl_pw_aff_add(
6825 __isl_take isl_pw_aff *pwaff1,
6826 __isl_take isl_pw_aff *pwaff2);
6827 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
6828 __isl_take isl_multi_pw_aff *mpa1,
6829 __isl_take isl_multi_pw_aff *mpa2);
6830 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
6831 __isl_take isl_pw_multi_aff *pma1,
6832 __isl_take isl_pw_multi_aff *pma2);
6833 __isl_give isl_union_pw_aff *isl_union_pw_aff_add(
6834 __isl_take isl_union_pw_aff *upa1,
6835 __isl_take isl_union_pw_aff *upa2);
6836 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
6837 __isl_take isl_union_pw_multi_aff *upma1,
6838 __isl_take isl_union_pw_multi_aff *upma2);
6839 __isl_give isl_multi_union_pw_aff *
6840 isl_multi_union_pw_aff_add(
6841 __isl_take isl_multi_union_pw_aff *mupa1,
6842 __isl_take isl_multi_union_pw_aff *mupa2);
6843 __isl_give isl_pw_aff *isl_pw_aff_min(
6844 __isl_take isl_pw_aff *pwaff1,
6845 __isl_take isl_pw_aff *pwaff2);
6846 __isl_give isl_pw_aff *isl_pw_aff_max(
6847 __isl_take isl_pw_aff *pwaff1,
6848 __isl_take isl_pw_aff *pwaff2);
6849 __isl_give isl_aff *isl_aff_sub(
6850 __isl_take isl_aff *aff1,
6851 __isl_take isl_aff *aff2);
6852 __isl_give isl_multi_aff *isl_multi_aff_sub(
6853 __isl_take isl_multi_aff *ma1,
6854 __isl_take isl_multi_aff *ma2);
6855 __isl_give isl_pw_aff *isl_pw_aff_sub(
6856 __isl_take isl_pw_aff *pwaff1,
6857 __isl_take isl_pw_aff *pwaff2);
6858 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
6859 __isl_take isl_multi_pw_aff *mpa1,
6860 __isl_take isl_multi_pw_aff *mpa2);
6861 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
6862 __isl_take isl_pw_multi_aff *pma1,
6863 __isl_take isl_pw_multi_aff *pma2);
6864 __isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
6865 __isl_take isl_union_pw_aff *upa1,
6866 __isl_take isl_union_pw_aff *upa2);
6867 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
6868 __isl_take isl_union_pw_multi_aff *upma1,
6869 __isl_take isl_union_pw_multi_aff *upma2);
6870 __isl_give isl_multi_union_pw_aff *
6871 isl_multi_union_pw_aff_sub(
6872 __isl_take isl_multi_union_pw_aff *mupa1,
6873 __isl_take isl_multi_union_pw_aff *mupa2);
6875 C<isl_aff_sub> subtracts the second argument from the first.
6877 #include <isl/polynomial.h>
6878 __isl_give isl_qpolynomial *isl_qpolynomial_add(
6879 __isl_take isl_qpolynomial *qp1,
6880 __isl_take isl_qpolynomial *qp2);
6881 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
6882 __isl_take isl_pw_qpolynomial *pwqp1,
6883 __isl_take isl_pw_qpolynomial *pwqp2);
6884 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
6885 __isl_take isl_pw_qpolynomial *pwqp1,
6886 __isl_take isl_pw_qpolynomial *pwqp2);
6887 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
6888 __isl_take isl_pw_qpolynomial_fold *pwf1,
6889 __isl_take isl_pw_qpolynomial_fold *pwf2);
6890 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
6891 __isl_take isl_union_pw_qpolynomial *upwqp1,
6892 __isl_take isl_union_pw_qpolynomial *upwqp2);
6893 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
6894 __isl_take isl_qpolynomial *qp1,
6895 __isl_take isl_qpolynomial *qp2);
6896 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
6897 __isl_take isl_pw_qpolynomial *pwqp1,
6898 __isl_take isl_pw_qpolynomial *pwqp2);
6899 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
6900 __isl_take isl_union_pw_qpolynomial *upwqp1,
6901 __isl_take isl_union_pw_qpolynomial *upwqp2);
6902 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
6903 __isl_take isl_pw_qpolynomial_fold *pwf1,
6904 __isl_take isl_pw_qpolynomial_fold *pwf2);
6905 __isl_give isl_union_pw_qpolynomial_fold *
6906 isl_union_pw_qpolynomial_fold_fold(
6907 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
6908 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
6910 #include <isl/aff.h>
6911 __isl_give isl_pw_aff *isl_pw_aff_union_add(
6912 __isl_take isl_pw_aff *pwaff1,
6913 __isl_take isl_pw_aff *pwaff2);
6914 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
6915 __isl_take isl_pw_multi_aff *pma1,
6916 __isl_take isl_pw_multi_aff *pma2);
6917 __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
6918 __isl_take isl_union_pw_aff *upa1,
6919 __isl_take isl_union_pw_aff *upa2);
6920 __isl_give isl_union_pw_multi_aff *
6921 isl_union_pw_multi_aff_union_add(
6922 __isl_take isl_union_pw_multi_aff *upma1,
6923 __isl_take isl_union_pw_multi_aff *upma2);
6924 __isl_give isl_multi_union_pw_aff *
6925 isl_multi_union_pw_aff_union_add(
6926 __isl_take isl_multi_union_pw_aff *mupa1,
6927 __isl_take isl_multi_union_pw_aff *mupa2);
6928 __isl_give isl_pw_aff *isl_pw_aff_union_min(
6929 __isl_take isl_pw_aff *pwaff1,
6930 __isl_take isl_pw_aff *pwaff2);
6931 __isl_give isl_pw_aff *isl_pw_aff_union_max(
6932 __isl_take isl_pw_aff *pwaff1,
6933 __isl_take isl_pw_aff *pwaff2);
6935 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
6936 expression with a domain that is the union of those of C<pwaff1> and
6937 C<pwaff2> and such that on each cell, the quasi-affine expression is
6938 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
6939 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
6940 associated expression is the defined one.
6941 This in contrast to the C<isl_pw_aff_max> function, which is
6942 only defined on the shared definition domain of the arguments.
6944 #include <isl/val.h>
6945 __isl_give isl_multi_val *isl_multi_val_add_val(
6946 __isl_take isl_multi_val *mv,
6947 __isl_take isl_val *v);
6948 __isl_give isl_multi_val *isl_multi_val_mod_val(
6949 __isl_take isl_multi_val *mv,
6950 __isl_take isl_val *v);
6951 __isl_give isl_multi_val *isl_multi_val_scale_val(
6952 __isl_take isl_multi_val *mv,
6953 __isl_take isl_val *v);
6954 __isl_give isl_multi_val *isl_multi_val_scale_down_val(
6955 __isl_take isl_multi_val *mv,
6956 __isl_take isl_val *v);
6958 #include <isl/aff.h>
6959 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
6960 __isl_take isl_val *mod);
6961 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
6962 __isl_take isl_pw_aff *pa,
6963 __isl_take isl_val *mod);
6964 __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
6965 __isl_take isl_union_pw_aff *upa,
6966 __isl_take isl_val *f);
6967 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
6968 __isl_take isl_val *v);
6969 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
6970 __isl_take isl_multi_aff *ma,
6971 __isl_take isl_val *v);
6972 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
6973 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
6974 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
6975 __isl_take isl_multi_pw_aff *mpa,
6976 __isl_take isl_val *v);
6977 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
6978 __isl_take isl_pw_multi_aff *pma,
6979 __isl_take isl_val *v);
6980 __isl_give isl_union_pw_multi_aff *
6981 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
6982 __isl_take isl_union_pw_aff *upa,
6983 __isl_take isl_val *f);
6984 isl_union_pw_multi_aff_scale_val(
6985 __isl_take isl_union_pw_multi_aff *upma,
6986 __isl_take isl_val *val);
6987 __isl_give isl_multi_union_pw_aff *
6988 isl_multi_union_pw_aff_scale_val(
6989 __isl_take isl_multi_union_pw_aff *mupa,
6990 __isl_take isl_val *v);
6991 __isl_give isl_aff *isl_aff_scale_down_ui(
6992 __isl_take isl_aff *aff, unsigned f);
6993 __isl_give isl_aff *isl_aff_scale_down_val(
6994 __isl_take isl_aff *aff, __isl_take isl_val *v);
6995 __isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
6996 __isl_take isl_multi_aff *ma,
6997 __isl_take isl_val *v);
6998 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
6999 __isl_take isl_pw_aff *pa,
7000 __isl_take isl_val *f);
7001 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
7002 __isl_take isl_multi_pw_aff *mpa,
7003 __isl_take isl_val *v);
7004 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
7005 __isl_take isl_pw_multi_aff *pma,
7006 __isl_take isl_val *v);
7007 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
7008 __isl_take isl_union_pw_aff *upa,
7009 __isl_take isl_val *v);
7010 __isl_give isl_union_pw_multi_aff *
7011 isl_union_pw_multi_aff_scale_down_val(
7012 __isl_take isl_union_pw_multi_aff *upma,
7013 __isl_take isl_val *val);
7014 __isl_give isl_multi_union_pw_aff *
7015 isl_multi_union_pw_aff_scale_down_val(
7016 __isl_take isl_multi_union_pw_aff *mupa,
7017 __isl_take isl_val *v);
7019 #include <isl/polynomial.h>
7020 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
7021 __isl_take isl_qpolynomial *qp,
7022 __isl_take isl_val *v);
7023 __isl_give isl_qpolynomial_fold *
7024 isl_qpolynomial_fold_scale_val(
7025 __isl_take isl_qpolynomial_fold *fold,
7026 __isl_take isl_val *v);
7027 __isl_give isl_pw_qpolynomial *
7028 isl_pw_qpolynomial_scale_val(
7029 __isl_take isl_pw_qpolynomial *pwqp,
7030 __isl_take isl_val *v);
7031 __isl_give isl_pw_qpolynomial_fold *
7032 isl_pw_qpolynomial_fold_scale_val(
7033 __isl_take isl_pw_qpolynomial_fold *pwf,
7034 __isl_take isl_val *v);
7035 __isl_give isl_union_pw_qpolynomial *
7036 isl_union_pw_qpolynomial_scale_val(
7037 __isl_take isl_union_pw_qpolynomial *upwqp,
7038 __isl_take isl_val *v);
7039 __isl_give isl_union_pw_qpolynomial_fold *
7040 isl_union_pw_qpolynomial_fold_scale_val(
7041 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7042 __isl_take isl_val *v);
7043 __isl_give isl_qpolynomial *
7044 isl_qpolynomial_scale_down_val(
7045 __isl_take isl_qpolynomial *qp,
7046 __isl_take isl_val *v);
7047 __isl_give isl_qpolynomial_fold *
7048 isl_qpolynomial_fold_scale_down_val(
7049 __isl_take isl_qpolynomial_fold *fold,
7050 __isl_take isl_val *v);
7051 __isl_give isl_pw_qpolynomial *
7052 isl_pw_qpolynomial_scale_down_val(
7053 __isl_take isl_pw_qpolynomial *pwqp,
7054 __isl_take isl_val *v);
7055 __isl_give isl_pw_qpolynomial_fold *
7056 isl_pw_qpolynomial_fold_scale_down_val(
7057 __isl_take isl_pw_qpolynomial_fold *pwf,
7058 __isl_take isl_val *v);
7059 __isl_give isl_union_pw_qpolynomial *
7060 isl_union_pw_qpolynomial_scale_down_val(
7061 __isl_take isl_union_pw_qpolynomial *upwqp,
7062 __isl_take isl_val *v);
7063 __isl_give isl_union_pw_qpolynomial_fold *
7064 isl_union_pw_qpolynomial_fold_scale_down_val(
7065 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7066 __isl_take isl_val *v);
7068 #include <isl/val.h>
7069 __isl_give isl_multi_val *isl_multi_val_mod_multi_val(
7070 __isl_take isl_multi_val *mv1,
7071 __isl_take isl_multi_val *mv2);
7072 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
7073 __isl_take isl_multi_val *mv1,
7074 __isl_take isl_multi_val *mv2);
7075 __isl_give isl_multi_val *
7076 isl_multi_val_scale_down_multi_val(
7077 __isl_take isl_multi_val *mv1,
7078 __isl_take isl_multi_val *mv2);
7080 #include <isl/aff.h>
7081 __isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
7082 __isl_take isl_multi_aff *ma,
7083 __isl_take isl_multi_val *mv);
7084 __isl_give isl_multi_union_pw_aff *
7085 isl_multi_union_pw_aff_mod_multi_val(
7086 __isl_take isl_multi_union_pw_aff *upma,
7087 __isl_take isl_multi_val *mv);
7088 __isl_give isl_multi_pw_aff *
7089 isl_multi_pw_aff_mod_multi_val(
7090 __isl_take isl_multi_pw_aff *mpa,
7091 __isl_take isl_multi_val *mv);
7092 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
7093 __isl_take isl_multi_aff *ma,
7094 __isl_take isl_multi_val *mv);
7095 __isl_give isl_pw_multi_aff *
7096 isl_pw_multi_aff_scale_multi_val(
7097 __isl_take isl_pw_multi_aff *pma,
7098 __isl_take isl_multi_val *mv);
7099 __isl_give isl_multi_pw_aff *
7100 isl_multi_pw_aff_scale_multi_val(
7101 __isl_take isl_multi_pw_aff *mpa,
7102 __isl_take isl_multi_val *mv);
7103 __isl_give isl_multi_union_pw_aff *
7104 isl_multi_union_pw_aff_scale_multi_val(
7105 __isl_take isl_multi_union_pw_aff *mupa,
7106 __isl_take isl_multi_val *mv);
7107 __isl_give isl_union_pw_multi_aff *
7108 isl_union_pw_multi_aff_scale_multi_val(
7109 __isl_take isl_union_pw_multi_aff *upma,
7110 __isl_take isl_multi_val *mv);
7111 __isl_give isl_multi_aff *
7112 isl_multi_aff_scale_down_multi_val(
7113 __isl_take isl_multi_aff *ma,
7114 __isl_take isl_multi_val *mv);
7115 __isl_give isl_multi_pw_aff *
7116 isl_multi_pw_aff_scale_down_multi_val(
7117 __isl_take isl_multi_pw_aff *mpa,
7118 __isl_take isl_multi_val *mv);
7119 __isl_give isl_multi_union_pw_aff *
7120 isl_multi_union_pw_aff_scale_down_multi_val(
7121 __isl_take isl_multi_union_pw_aff *mupa,
7122 __isl_take isl_multi_val *mv);
7124 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
7125 by the corresponding elements of C<mv>.
7127 #include <isl/aff.h>
7128 __isl_give isl_aff *isl_aff_mul(
7129 __isl_take isl_aff *aff1,
7130 __isl_take isl_aff *aff2);
7131 __isl_give isl_aff *isl_aff_div(
7132 __isl_take isl_aff *aff1,
7133 __isl_take isl_aff *aff2);
7134 __isl_give isl_pw_aff *isl_pw_aff_mul(
7135 __isl_take isl_pw_aff *pwaff1,
7136 __isl_take isl_pw_aff *pwaff2);
7137 __isl_give isl_pw_aff *isl_pw_aff_div(
7138 __isl_take isl_pw_aff *pa1,
7139 __isl_take isl_pw_aff *pa2);
7140 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
7141 __isl_take isl_pw_aff *pa1,
7142 __isl_take isl_pw_aff *pa2);
7143 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
7144 __isl_take isl_pw_aff *pa1,
7145 __isl_take isl_pw_aff *pa2);
7147 When multiplying two affine expressions, at least one of the two needs
7148 to be a constant. Similarly, when dividing an affine expression by another,
7149 the second expression needs to be a constant.
7150 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
7151 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
7154 #include <isl/polynomial.h>
7155 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
7156 __isl_take isl_qpolynomial *qp1,
7157 __isl_take isl_qpolynomial *qp2);
7158 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
7159 __isl_take isl_pw_qpolynomial *pwqp1,
7160 __isl_take isl_pw_qpolynomial *pwqp2);
7161 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
7162 __isl_take isl_union_pw_qpolynomial *upwqp1,
7163 __isl_take isl_union_pw_qpolynomial *upwqp2);
7167 =head3 Lexicographic Optimization
7169 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
7170 the following functions
7171 compute a set that contains the lexicographic minimum or maximum
7172 of the elements in C<set> (or C<bset>) for those values of the parameters
7173 that satisfy C<dom>.
7174 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7175 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
7177 In other words, the union of the parameter values
7178 for which the result is non-empty and of C<*empty>
7181 #include <isl/set.h>
7182 __isl_give isl_set *isl_basic_set_partial_lexmin(
7183 __isl_take isl_basic_set *bset,
7184 __isl_take isl_basic_set *dom,
7185 __isl_give isl_set **empty);
7186 __isl_give isl_set *isl_basic_set_partial_lexmax(
7187 __isl_take isl_basic_set *bset,
7188 __isl_take isl_basic_set *dom,
7189 __isl_give isl_set **empty);
7190 __isl_give isl_set *isl_set_partial_lexmin(
7191 __isl_take isl_set *set, __isl_take isl_set *dom,
7192 __isl_give isl_set **empty);
7193 __isl_give isl_set *isl_set_partial_lexmax(
7194 __isl_take isl_set *set, __isl_take isl_set *dom,
7195 __isl_give isl_set **empty);
7197 Given a (basic) set C<set> (or C<bset>), the following functions simply
7198 return a set containing the lexicographic minimum or maximum
7199 of the elements in C<set> (or C<bset>).
7200 In case of union sets, the optimum is computed per space.
7202 #include <isl/set.h>
7203 __isl_give isl_set *isl_basic_set_lexmin(
7204 __isl_take isl_basic_set *bset);
7205 __isl_give isl_set *isl_basic_set_lexmax(
7206 __isl_take isl_basic_set *bset);
7207 __isl_give isl_set *isl_set_lexmin(
7208 __isl_take isl_set *set);
7209 __isl_give isl_set *isl_set_lexmax(
7210 __isl_take isl_set *set);
7211 __isl_give isl_union_set *isl_union_set_lexmin(
7212 __isl_take isl_union_set *uset);
7213 __isl_give isl_union_set *isl_union_set_lexmax(
7214 __isl_take isl_union_set *uset);
7216 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
7217 the following functions
7218 compute a relation that maps each element of C<dom>
7219 to the single lexicographic minimum or maximum
7220 of the elements that are associated to that same
7221 element in C<map> (or C<bmap>).
7222 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7223 that contains the elements in C<dom> that do not map
7224 to any elements in C<map> (or C<bmap>).
7225 In other words, the union of the domain of the result and of C<*empty>
7228 #include <isl/map.h>
7229 __isl_give isl_map *isl_basic_map_partial_lexmax(
7230 __isl_take isl_basic_map *bmap,
7231 __isl_take isl_basic_set *dom,
7232 __isl_give isl_set **empty);
7233 __isl_give isl_map *isl_basic_map_partial_lexmin(
7234 __isl_take isl_basic_map *bmap,
7235 __isl_take isl_basic_set *dom,
7236 __isl_give isl_set **empty);
7237 __isl_give isl_map *isl_map_partial_lexmax(
7238 __isl_take isl_map *map, __isl_take isl_set *dom,
7239 __isl_give isl_set **empty);
7240 __isl_give isl_map *isl_map_partial_lexmin(
7241 __isl_take isl_map *map, __isl_take isl_set *dom,
7242 __isl_give isl_set **empty);
7244 Given a (basic) map C<map> (or C<bmap>), the following functions simply
7245 return a map mapping each element in the domain of
7246 C<map> (or C<bmap>) to the lexicographic minimum or maximum
7247 of all elements associated to that element.
7248 In case of union relations, the optimum is computed per space.
7250 #include <isl/map.h>
7251 __isl_give isl_map *isl_basic_map_lexmin(
7252 __isl_take isl_basic_map *bmap);
7253 __isl_give isl_map *isl_basic_map_lexmax(
7254 __isl_take isl_basic_map *bmap);
7255 __isl_give isl_map *isl_map_lexmin(
7256 __isl_take isl_map *map);
7257 __isl_give isl_map *isl_map_lexmax(
7258 __isl_take isl_map *map);
7259 __isl_give isl_union_map *isl_union_map_lexmin(
7260 __isl_take isl_union_map *umap);
7261 __isl_give isl_union_map *isl_union_map_lexmax(
7262 __isl_take isl_union_map *umap);
7264 The following functions return their result in the form of
7265 a piecewise multi-affine expression,
7266 but are otherwise equivalent to the corresponding functions
7267 returning a basic set or relation.
7269 #include <isl/set.h>
7270 __isl_give isl_pw_multi_aff *
7271 isl_basic_set_partial_lexmin_pw_multi_aff(
7272 __isl_take isl_basic_set *bset,
7273 __isl_take isl_basic_set *dom,
7274 __isl_give isl_set **empty);
7275 __isl_give isl_pw_multi_aff *
7276 isl_basic_set_partial_lexmax_pw_multi_aff(
7277 __isl_take isl_basic_set *bset,
7278 __isl_take isl_basic_set *dom,
7279 __isl_give isl_set **empty);
7280 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
7281 __isl_take isl_set *set);
7282 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
7283 __isl_take isl_set *set);
7285 #include <isl/map.h>
7286 __isl_give isl_pw_multi_aff *
7287 isl_basic_map_lexmin_pw_multi_aff(
7288 __isl_take isl_basic_map *bmap);
7289 __isl_give isl_pw_multi_aff *
7290 isl_basic_map_partial_lexmin_pw_multi_aff(
7291 __isl_take isl_basic_map *bmap,
7292 __isl_take isl_basic_set *dom,
7293 __isl_give isl_set **empty);
7294 __isl_give isl_pw_multi_aff *
7295 isl_basic_map_partial_lexmax_pw_multi_aff(
7296 __isl_take isl_basic_map *bmap,
7297 __isl_take isl_basic_set *dom,
7298 __isl_give isl_set **empty);
7299 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
7300 __isl_take isl_map *map);
7301 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
7302 __isl_take isl_map *map);
7304 The following functions return the lexicographic minimum or maximum
7305 on the shared domain of the inputs and the single defined function
7306 on those parts of the domain where only a single function is defined.
7308 #include <isl/aff.h>
7309 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
7310 __isl_take isl_pw_multi_aff *pma1,
7311 __isl_take isl_pw_multi_aff *pma2);
7312 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
7313 __isl_take isl_pw_multi_aff *pma1,
7314 __isl_take isl_pw_multi_aff *pma2);
7316 If the input to a lexicographic optimization problem has
7317 multiple constraints with the same coefficients for the optimized
7318 variables, then, by default, this symmetry is exploited by
7319 replacing those constraints by a single constraint with
7320 an abstract bound, which is in turn bounded by the corresponding terms
7321 in the original constraints.
7322 Without this optimization, the solver would typically consider
7323 all possible orderings of those original bounds, resulting in a needless
7324 decomposition of the domain.
7325 However, the optimization can also result in slowdowns since
7326 an extra parameter is introduced that may get used in additional
7328 The following option determines whether symmetry detection is applied
7329 during lexicographic optimization.
7331 #include <isl/options.h>
7332 isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
7334 int isl_options_get_pip_symmetry(isl_ctx *ctx);
7338 See also \autoref{s:offline}.
7342 =head2 Ternary Operations
7344 #include <isl/aff.h>
7345 __isl_give isl_pw_aff *isl_pw_aff_cond(
7346 __isl_take isl_pw_aff *cond,
7347 __isl_take isl_pw_aff *pwaff_true,
7348 __isl_take isl_pw_aff *pwaff_false);
7350 The function C<isl_pw_aff_cond> performs a conditional operator
7351 and returns an expression that is equal to C<pwaff_true>
7352 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
7353 where C<cond> is zero.
7357 Lists are defined over several element types, including
7358 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_union_pw_aff>,
7359 C<isl_union_pw_multi_aff>, C<isl_constraint>,
7360 C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
7361 C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
7362 Here we take lists of C<isl_set>s as an example.
7363 Lists can be created, copied, modified and freed using the following functions.
7365 #include <isl/set.h>
7366 __isl_give isl_set_list *isl_set_list_from_set(
7367 __isl_take isl_set *el);
7368 __isl_give isl_set_list *isl_set_list_alloc(
7369 isl_ctx *ctx, int n);
7370 __isl_give isl_set_list *isl_set_list_copy(
7371 __isl_keep isl_set_list *list);
7372 __isl_give isl_set_list *isl_set_list_insert(
7373 __isl_take isl_set_list *list, unsigned pos,
7374 __isl_take isl_set *el);
7375 __isl_give isl_set_list *isl_set_list_add(
7376 __isl_take isl_set_list *list,
7377 __isl_take isl_set *el);
7378 __isl_give isl_set_list *isl_set_list_drop(
7379 __isl_take isl_set_list *list,
7380 unsigned first, unsigned n);
7381 __isl_give isl_set_list *isl_set_list_set_set(
7382 __isl_take isl_set_list *list, int index,
7383 __isl_take isl_set *set);
7384 __isl_give isl_set_list *isl_set_list_concat(
7385 __isl_take isl_set_list *list1,
7386 __isl_take isl_set_list *list2);
7387 __isl_give isl_set_list *isl_set_list_sort(
7388 __isl_take isl_set_list *list,
7389 int (*cmp)(__isl_keep isl_set *a,
7390 __isl_keep isl_set *b, void *user),
7392 __isl_null isl_set_list *isl_set_list_free(
7393 __isl_take isl_set_list *list);
7395 C<isl_set_list_alloc> creates an empty list with an initial capacity
7396 for C<n> elements. C<isl_set_list_insert> and C<isl_set_list_add>
7397 add elements to a list, increasing its capacity as needed.
7398 C<isl_set_list_from_set> creates a list with a single element.
7400 Lists can be inspected using the following functions.
7402 #include <isl/set.h>
7403 int isl_set_list_n_set(__isl_keep isl_set_list *list);
7404 __isl_give isl_set *isl_set_list_get_set(
7405 __isl_keep isl_set_list *list, int index);
7406 isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
7407 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7409 isl_stat isl_set_list_foreach_scc(
7410 __isl_keep isl_set_list *list,
7411 isl_bool (*follows)(__isl_keep isl_set *a,
7412 __isl_keep isl_set *b, void *user),
7414 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7417 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
7418 strongly connected components of the graph with as vertices the elements
7419 of C<list> and a directed edge from vertex C<b> to vertex C<a>
7420 iff C<follows(a, b)> returns C<isl_bool_true>. The callbacks C<follows> and
7421 C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.
7423 Lists can be printed using
7425 #include <isl/set.h>
7426 __isl_give isl_printer *isl_printer_print_set_list(
7427 __isl_take isl_printer *p,
7428 __isl_keep isl_set_list *list);
7430 =head2 Associative arrays
7432 Associative arrays map isl objects of a specific type to isl objects
7433 of some (other) specific type. They are defined for several pairs
7434 of types, including (C<isl_map>, C<isl_basic_set>),
7435 (C<isl_id>, C<isl_ast_expr>),
7436 (C<isl_id>, C<isl_id>) and
7437 (C<isl_id>, C<isl_pw_aff>).
7438 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
7441 Associative arrays can be created, copied and freed using
7442 the following functions.
7444 #include <isl/id_to_ast_expr.h>
7445 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
7446 isl_ctx *ctx, int min_size);
7447 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
7448 __isl_keep isl_id_to_ast_expr *id2expr);
7449 __isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
7450 __isl_take isl_id_to_ast_expr *id2expr);
7452 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
7453 to specify the expected size of the associative array.
7454 The associative array will be grown automatically as needed.
7456 Associative arrays can be inspected using the following functions.
7458 #include <isl/id_to_ast_expr.h>
7459 __isl_give isl_maybe_isl_ast_expr
7460 isl_id_to_ast_expr_try_get(
7461 __isl_keep isl_id_to_ast_expr *id2expr,
7462 __isl_keep isl_id *key);
7463 isl_bool isl_id_to_ast_expr_has(
7464 __isl_keep isl_id_to_ast_expr *id2expr,
7465 __isl_keep isl_id *key);
7466 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
7467 __isl_keep isl_id_to_ast_expr *id2expr,
7468 __isl_take isl_id *key);
7469 isl_stat isl_id_to_ast_expr_foreach(
7470 __isl_keep isl_id_to_ast_expr *id2expr,
7471 isl_stat (*fn)(__isl_take isl_id *key,
7472 __isl_take isl_ast_expr *val, void *user),
7475 The function C<isl_id_to_ast_expr_try_get> returns a structure
7476 containing two elements, C<valid> and C<value>.
7477 If there is a value associated to the key, then C<valid>
7478 is set to C<isl_bool_true> and C<value> contains a copy of
7479 the associated value. Otherwise C<value> is C<NULL> and
7480 C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
7481 on whether some error has occurred or there simply is no associated value.
7482 The function C<isl_id_to_ast_expr_has> returns the C<valid> field
7483 in the structure and
7484 the function C<isl_id_to_ast_expr_get> returns the C<value> field.
7486 Associative arrays can be modified using the following functions.
7488 #include <isl/id_to_ast_expr.h>
7489 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
7490 __isl_take isl_id_to_ast_expr *id2expr,
7491 __isl_take isl_id *key,
7492 __isl_take isl_ast_expr *val);
7493 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
7494 __isl_take isl_id_to_ast_expr *id2expr,
7495 __isl_take isl_id *key);
7497 Associative arrays can be printed using the following function.
7499 #include <isl/id_to_ast_expr.h>
7500 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
7501 __isl_take isl_printer *p,
7502 __isl_keep isl_id_to_ast_expr *id2expr);
7506 Vectors can be created, copied and freed using the following functions.
7508 #include <isl/vec.h>
7509 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
7511 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
7512 __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
7514 Note that the elements of a newly created vector may have arbitrary values.
7515 The elements can be changed and inspected using the following functions.
7517 int isl_vec_size(__isl_keep isl_vec *vec);
7518 __isl_give isl_val *isl_vec_get_element_val(
7519 __isl_keep isl_vec *vec, int pos);
7520 __isl_give isl_vec *isl_vec_set_element_si(
7521 __isl_take isl_vec *vec, int pos, int v);
7522 __isl_give isl_vec *isl_vec_set_element_val(
7523 __isl_take isl_vec *vec, int pos,
7524 __isl_take isl_val *v);
7525 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
7527 __isl_give isl_vec *isl_vec_set_val(
7528 __isl_take isl_vec *vec, __isl_take isl_val *v);
7529 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
7530 __isl_keep isl_vec *vec2, int pos);
7532 C<isl_vec_get_element> will return a negative value if anything went wrong.
7533 In that case, the value of C<*v> is undefined.
7535 The following function can be used to concatenate two vectors.
7537 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
7538 __isl_take isl_vec *vec2);
7542 Matrices can be created, copied and freed using the following functions.
7544 #include <isl/mat.h>
7545 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
7546 unsigned n_row, unsigned n_col);
7547 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
7548 __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
7550 Note that the elements of a newly created matrix may have arbitrary values.
7551 The elements can be changed and inspected using the following functions.
7553 int isl_mat_rows(__isl_keep isl_mat *mat);
7554 int isl_mat_cols(__isl_keep isl_mat *mat);
7555 __isl_give isl_val *isl_mat_get_element_val(
7556 __isl_keep isl_mat *mat, int row, int col);
7557 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
7558 int row, int col, int v);
7559 __isl_give isl_mat *isl_mat_set_element_val(
7560 __isl_take isl_mat *mat, int row, int col,
7561 __isl_take isl_val *v);
7563 C<isl_mat_get_element> will return a negative value if anything went wrong.
7564 In that case, the value of C<*v> is undefined.
7566 The following function can be used to compute the (right) inverse
7567 of a matrix, i.e., a matrix such that the product of the original
7568 and the inverse (in that order) is a multiple of the identity matrix.
7569 The input matrix is assumed to be of full row-rank.
7571 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
7573 The following function can be used to compute the (right) kernel
7574 (or null space) of a matrix, i.e., a matrix such that the product of
7575 the original and the kernel (in that order) is the zero matrix.
7577 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
7579 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
7581 The following functions determine
7582 an upper or lower bound on a quasipolynomial over its domain.
7584 __isl_give isl_pw_qpolynomial_fold *
7585 isl_pw_qpolynomial_bound(
7586 __isl_take isl_pw_qpolynomial *pwqp,
7587 enum isl_fold type, int *tight);
7589 __isl_give isl_union_pw_qpolynomial_fold *
7590 isl_union_pw_qpolynomial_bound(
7591 __isl_take isl_union_pw_qpolynomial *upwqp,
7592 enum isl_fold type, int *tight);
7594 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
7595 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
7596 is the returned bound is known be tight, i.e., for each value
7597 of the parameters there is at least
7598 one element in the domain that reaches the bound.
7599 If the domain of C<pwqp> is not wrapping, then the bound is computed
7600 over all elements in that domain and the result has a purely parametric
7601 domain. If the domain of C<pwqp> is wrapping, then the bound is
7602 computed over the range of the wrapped relation. The domain of the
7603 wrapped relation becomes the domain of the result.
7605 =head2 Parametric Vertex Enumeration
7607 The parametric vertex enumeration described in this section
7608 is mainly intended to be used internally and by the C<barvinok>
7611 #include <isl/vertices.h>
7612 __isl_give isl_vertices *isl_basic_set_compute_vertices(
7613 __isl_keep isl_basic_set *bset);
7615 The function C<isl_basic_set_compute_vertices> performs the
7616 actual computation of the parametric vertices and the chamber
7617 decomposition and stores the result in an C<isl_vertices> object.
7618 This information can be queried by either iterating over all
7619 the vertices or iterating over all the chambers or cells
7620 and then iterating over all vertices that are active on the chamber.
7622 isl_stat isl_vertices_foreach_vertex(
7623 __isl_keep isl_vertices *vertices,
7624 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7625 void *user), void *user);
7627 isl_stat isl_vertices_foreach_cell(
7628 __isl_keep isl_vertices *vertices,
7629 isl_stat (*fn)(__isl_take isl_cell *cell,
7630 void *user), void *user);
7631 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
7632 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7633 void *user), void *user);
7635 Other operations that can be performed on an C<isl_vertices> object are
7638 int isl_vertices_get_n_vertices(
7639 __isl_keep isl_vertices *vertices);
7640 void isl_vertices_free(__isl_take isl_vertices *vertices);
7642 Vertices can be inspected and destroyed using the following functions.
7644 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
7645 __isl_give isl_basic_set *isl_vertex_get_domain(
7646 __isl_keep isl_vertex *vertex);
7647 __isl_give isl_multi_aff *isl_vertex_get_expr(
7648 __isl_keep isl_vertex *vertex);
7649 void isl_vertex_free(__isl_take isl_vertex *vertex);
7651 C<isl_vertex_get_expr> returns a multiple quasi-affine expression
7652 describing the vertex in terms of the parameters,
7653 while C<isl_vertex_get_domain> returns the activity domain
7656 Chambers can be inspected and destroyed using the following functions.
7658 __isl_give isl_basic_set *isl_cell_get_domain(
7659 __isl_keep isl_cell *cell);
7660 void isl_cell_free(__isl_take isl_cell *cell);
7662 =head1 Polyhedral Compilation Library
7664 This section collects functionality in C<isl> that has been specifically
7665 designed for use during polyhedral compilation.
7667 =head2 Schedule Trees
7669 A schedule tree is a structured representation of a schedule,
7670 assigning a relative order to a set of domain elements.
7671 The relative order expressed by the schedule tree is
7672 defined recursively. In particular, the order between
7673 two domain elements is determined by the node that is closest
7674 to the root that refers to both elements and that orders them apart.
7675 Each node in the tree is of one of several types.
7676 The root node is always of type C<isl_schedule_node_domain>
7677 (or C<isl_schedule_node_extension>)
7678 and it describes the (extra) domain elements to which the schedule applies.
7679 The other types of nodes are as follows.
7683 =item C<isl_schedule_node_band>
7685 A band of schedule dimensions. Each schedule dimension is represented
7686 by a union piecewise quasi-affine expression. If this expression
7687 assigns a different value to two domain elements, while all previous
7688 schedule dimensions in the same band assign them the same value,
7689 then the two domain elements are ordered according to these two
7691 Each expression is required to be total in the domain elements
7692 that reach the band node.
7694 =item C<isl_schedule_node_expansion>
7696 An expansion node maps each of the domain elements that reach the node
7697 to one or more domain elements. The image of this mapping forms
7698 the set of domain elements that reach the child of the expansion node.
7699 The function that maps each of the expanded domain elements
7700 to the original domain element from which it was expanded
7701 is called the contraction.
7703 =item C<isl_schedule_node_filter>
7705 A filter node does not impose any ordering, but rather intersects
7706 the set of domain elements that the current subtree refers to
7707 with a given union set. The subtree of the filter node only
7708 refers to domain elements in the intersection.
7709 A filter node is typically only used as a child of a sequence or
7712 =item C<isl_schedule_node_leaf>
7714 A leaf of the schedule tree. Leaf nodes do not impose any ordering.
7716 =item C<isl_schedule_node_mark>
7718 A mark node can be used to attach any kind of information to a subtree
7719 of the schedule tree.
7721 =item C<isl_schedule_node_sequence>
7723 A sequence node has one or more children, each of which is a filter node.
7724 The filters on these filter nodes form a partition of
7725 the domain elements that the current subtree refers to.
7726 If two domain elements appear in distinct filters then the sequence
7727 node orders them according to the child positions of the corresponding
7730 =item C<isl_schedule_node_set>
7732 A set node is similar to a sequence node, except that
7733 it expresses that domain elements appearing in distinct filters
7734 may have any order. The order of the children of a set node
7735 is therefore also immaterial.
7739 The following node types are only supported by the AST generator.
7743 =item C<isl_schedule_node_context>
7745 The context describes constraints on the parameters and
7746 the schedule dimensions of outer
7747 bands that the AST generator may assume to hold. It is also the only
7748 kind of node that may introduce additional parameters.
7749 The space of the context is that of the flat product of the outer
7750 band nodes. In particular, if there are no outer band nodes, then
7751 this space is the unnamed zero-dimensional space.
7752 Since a context node references the outer band nodes, any tree
7753 containing a context node is considered to be anchored.
7755 =item C<isl_schedule_node_extension>
7757 An extension node instructs the AST generator to add additional
7758 domain elements that need to be scheduled.
7759 The additional domain elements are described by the range of
7760 the extension map in terms of the outer schedule dimensions,
7761 i.e., the flat product of the outer band nodes.
7762 Note that domain elements are added whenever the AST generator
7763 reaches the extension node, meaning that there are still some
7764 active domain elements for which an AST needs to be generated.
7765 The conditions under which some domain elements are still active
7766 may however not be completely described by the outer AST nodes
7767 generated at that point.
7769 An extension node may also appear as the root of a schedule tree,
7770 when it is intended to be inserted into another tree
7771 using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
7772 In this case, the domain of the extension node should
7773 correspond to the flat product of the outer band nodes
7774 in this other schedule tree at the point where the extension tree
7777 =item C<isl_schedule_node_guard>
7779 The guard describes constraints on the parameters and
7780 the schedule dimensions of outer
7781 bands that need to be enforced by the outer nodes
7782 in the generated AST.
7783 The space of the guard is that of the flat product of the outer
7784 band nodes. In particular, if there are no outer band nodes, then
7785 this space is the unnamed zero-dimensional space.
7786 Since a guard node references the outer band nodes, any tree
7787 containing a guard node is considered to be anchored.
7791 Except for the C<isl_schedule_node_context> nodes,
7792 none of the nodes may introduce any parameters that were not
7793 already present in the root domain node.
7795 A schedule tree is encapsulated in an C<isl_schedule> object.
7796 The simplest such objects, those with a tree consisting of single domain node,
7797 can be created using the following functions with either an empty
7798 domain or a given domain.
7800 #include <isl/schedule.h>
7801 __isl_give isl_schedule *isl_schedule_empty(
7802 __isl_take isl_space *space);
7803 __isl_give isl_schedule *isl_schedule_from_domain(
7804 __isl_take isl_union_set *domain);
7806 The function C<isl_schedule_constraints_compute_schedule> described
7807 in L</"Scheduling"> can also be used to construct schedules.
7809 C<isl_schedule> objects may be copied and freed using the following functions.
7811 #include <isl/schedule.h>
7812 __isl_give isl_schedule *isl_schedule_copy(
7813 __isl_keep isl_schedule *sched);
7814 __isl_null isl_schedule *isl_schedule_free(
7815 __isl_take isl_schedule *sched);
7817 The following functions checks whether two C<isl_schedule> objects
7818 are obviously the same.
7820 #include <isl/schedule.h>
7821 isl_bool isl_schedule_plain_is_equal(
7822 __isl_keep isl_schedule *schedule1,
7823 __isl_keep isl_schedule *schedule2);
7825 The domain of the schedule, i.e., the domain described by the root node,
7826 can be obtained using the following function.
7828 #include <isl/schedule.h>
7829 __isl_give isl_union_set *isl_schedule_get_domain(
7830 __isl_keep isl_schedule *schedule);
7832 An extra top-level band node (right underneath the domain node) can
7833 be introduced into the schedule using the following function.
7834 The schedule tree is assumed not to have any anchored nodes.
7836 #include <isl/schedule.h>
7837 __isl_give isl_schedule *
7838 isl_schedule_insert_partial_schedule(
7839 __isl_take isl_schedule *schedule,
7840 __isl_take isl_multi_union_pw_aff *partial);
7842 A top-level context node (right underneath the domain node) can
7843 be introduced into the schedule using the following function.
7845 #include <isl/schedule.h>
7846 __isl_give isl_schedule *isl_schedule_insert_context(
7847 __isl_take isl_schedule *schedule,
7848 __isl_take isl_set *context)
7850 A top-level guard node (right underneath the domain node) can
7851 be introduced into the schedule using the following function.
7853 #include <isl/schedule.h>
7854 __isl_give isl_schedule *isl_schedule_insert_guard(
7855 __isl_take isl_schedule *schedule,
7856 __isl_take isl_set *guard)
7858 A schedule that combines two schedules either in the given
7859 order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
7860 or an C<isl_schedule_node_set> node,
7861 can be created using the following functions.
7863 #include <isl/schedule.h>
7864 __isl_give isl_schedule *isl_schedule_sequence(
7865 __isl_take isl_schedule *schedule1,
7866 __isl_take isl_schedule *schedule2);
7867 __isl_give isl_schedule *isl_schedule_set(
7868 __isl_take isl_schedule *schedule1,
7869 __isl_take isl_schedule *schedule2);
7871 The domains of the two input schedules need to be disjoint.
7873 The following function can be used to restrict the domain
7874 of a schedule with a domain node as root to be a subset of the given union set.
7875 This operation may remove nodes in the tree that have become
7878 #include <isl/schedule.h>
7879 __isl_give isl_schedule *isl_schedule_intersect_domain(
7880 __isl_take isl_schedule *schedule,
7881 __isl_take isl_union_set *domain);
7883 The following function can be used to simplify the domain
7884 of a schedule with a domain node as root with respect to the given
7887 #include <isl/schedule.h>
7888 __isl_give isl_schedule *isl_schedule_gist_domain_params(
7889 __isl_take isl_schedule *schedule,
7890 __isl_take isl_set *context);
7892 The following function resets the user pointers on all parameter
7893 and tuple identifiers referenced by the nodes of the given schedule.
7895 #include <isl/schedule.h>
7896 __isl_give isl_schedule *isl_schedule_reset_user(
7897 __isl_take isl_schedule *schedule);
7899 The following function aligns the parameters of all nodes
7900 in the given schedule to the given space.
7902 #include <isl/schedule.h>
7903 __isl_give isl_schedule *isl_schedule_align_params(
7904 __isl_take isl_schedule *schedule,
7905 __isl_take isl_space *space);
7907 The following function allows the user to plug in a given function
7908 in the iteration domains. The input schedule is not allowed to contain
7909 any expansion nodes.
7911 #include <isl/schedule.h>
7912 __isl_give isl_schedule *
7913 isl_schedule_pullback_union_pw_multi_aff(
7914 __isl_take isl_schedule *schedule,
7915 __isl_take isl_union_pw_multi_aff *upma);
7917 The following function can be used to plug in the schedule C<expansion>
7918 in the leaves of C<schedule>, where C<contraction> describes how
7919 the domain elements of C<expansion> map to the domain elements
7920 at the original leaves of C<schedule>.
7921 The resulting schedule will contain expansion nodes, unless
7922 C<contraction> is an identity function.
7924 #include <isl/schedule.h>
7925 __isl_give isl_schedule *isl_schedule_expand(
7926 __isl_take isl_schedule *schedule,
7927 __isl_take isl_union_pw_multi_aff *contraction,
7928 __isl_take isl_schedule *expansion);
7930 An C<isl_union_map> representation of the schedule can be obtained
7931 from an C<isl_schedule> using the following function.
7933 #include <isl/schedule.h>
7934 __isl_give isl_union_map *isl_schedule_get_map(
7935 __isl_keep isl_schedule *sched);
7937 The resulting relation encodes the same relative ordering as
7938 the schedule by mapping the domain elements to a common schedule space.
7939 If the schedule_separate_components option is set, then the order
7940 of the children of a set node is explicitly encoded in the result.
7941 If the tree contains any expansion nodes, then the relation
7942 is formulated in terms of the expanded domain elements.
7944 Schedules can be read from input using the following functions.
7946 #include <isl/schedule.h>
7947 __isl_give isl_schedule *isl_schedule_read_from_file(
7948 isl_ctx *ctx, FILE *input);
7949 __isl_give isl_schedule *isl_schedule_read_from_str(
7950 isl_ctx *ctx, const char *str);
7952 A representation of the schedule can be printed using
7954 #include <isl/schedule.h>
7955 __isl_give isl_printer *isl_printer_print_schedule(
7956 __isl_take isl_printer *p,
7957 __isl_keep isl_schedule *schedule);
7958 __isl_give char *isl_schedule_to_str(
7959 __isl_keep isl_schedule *schedule);
7961 C<isl_schedule_to_str> prints the schedule in flow format.
7963 The schedule tree can be traversed through the use of
7964 C<isl_schedule_node> objects that point to a particular
7965 position in the schedule tree. Whenever a C<isl_schedule_node>
7966 is use to modify a node in the schedule tree, the original schedule
7967 tree is left untouched and the modifications are performed to a copy
7968 of the tree. The returned C<isl_schedule_node> then points to
7969 this modified copy of the tree.
7971 The root of the schedule tree can be obtained using the following function.
7973 #include <isl/schedule.h>
7974 __isl_give isl_schedule_node *isl_schedule_get_root(
7975 __isl_keep isl_schedule *schedule);
7977 A pointer to a newly created schedule tree with a single domain
7978 node can be created using the following functions.
7980 #include <isl/schedule_node.h>
7981 __isl_give isl_schedule_node *
7982 isl_schedule_node_from_domain(
7983 __isl_take isl_union_set *domain);
7984 __isl_give isl_schedule_node *
7985 isl_schedule_node_from_extension(
7986 __isl_take isl_union_map *extension);
7988 C<isl_schedule_node_from_extension> creates a tree with an extension
7991 Schedule nodes can be copied and freed using the following functions.
7993 #include <isl/schedule_node.h>
7994 __isl_give isl_schedule_node *isl_schedule_node_copy(
7995 __isl_keep isl_schedule_node *node);
7996 __isl_null isl_schedule_node *isl_schedule_node_free(
7997 __isl_take isl_schedule_node *node);
7999 The following functions can be used to check if two schedule
8000 nodes point to the same position in the same schedule.
8002 #include <isl/schedule_node.h>
8003 isl_bool isl_schedule_node_is_equal(
8004 __isl_keep isl_schedule_node *node1,
8005 __isl_keep isl_schedule_node *node2);
8007 The following properties can be obtained from a schedule node.
8009 #include <isl/schedule_node.h>
8010 enum isl_schedule_node_type isl_schedule_node_get_type(
8011 __isl_keep isl_schedule_node *node);
8012 enum isl_schedule_node_type
8013 isl_schedule_node_get_parent_type(
8014 __isl_keep isl_schedule_node *node);
8015 __isl_give isl_schedule *isl_schedule_node_get_schedule(
8016 __isl_keep isl_schedule_node *node);
8018 The function C<isl_schedule_node_get_type> returns the type of
8019 the node, while C<isl_schedule_node_get_parent_type> returns
8020 type of the parent of the node, which is required to exist.
8021 The function C<isl_schedule_node_get_schedule> returns a copy
8022 to the schedule to which the node belongs.
8024 The following functions can be used to move the schedule node
8025 to a different position in the tree or to check if such a position
8028 #include <isl/schedule_node.h>
8029 isl_bool isl_schedule_node_has_parent(
8030 __isl_keep isl_schedule_node *node);
8031 __isl_give isl_schedule_node *isl_schedule_node_parent(
8032 __isl_take isl_schedule_node *node);
8033 __isl_give isl_schedule_node *isl_schedule_node_root(
8034 __isl_take isl_schedule_node *node);
8035 __isl_give isl_schedule_node *isl_schedule_node_ancestor(
8036 __isl_take isl_schedule_node *node,
8038 int isl_schedule_node_n_children(
8039 __isl_keep isl_schedule_node *node);
8040 __isl_give isl_schedule_node *isl_schedule_node_child(
8041 __isl_take isl_schedule_node *node, int pos);
8042 isl_bool isl_schedule_node_has_children(
8043 __isl_keep isl_schedule_node *node);
8044 __isl_give isl_schedule_node *isl_schedule_node_first_child(
8045 __isl_take isl_schedule_node *node);
8046 isl_bool isl_schedule_node_has_previous_sibling(
8047 __isl_keep isl_schedule_node *node);
8048 __isl_give isl_schedule_node *
8049 isl_schedule_node_previous_sibling(
8050 __isl_take isl_schedule_node *node);
8051 isl_bool isl_schedule_node_has_next_sibling(
8052 __isl_keep isl_schedule_node *node);
8053 __isl_give isl_schedule_node *
8054 isl_schedule_node_next_sibling(
8055 __isl_take isl_schedule_node *node);
8057 For C<isl_schedule_node_ancestor>, the ancestor of generation 0
8058 is the node itself, the ancestor of generation 1 is its parent and so on.
8060 It is also possible to query the number of ancestors of a node,
8061 the position of the current node
8062 within the children of its parent, the position of the subtree
8063 containing a node within the children of an ancestor
8064 or to obtain a copy of a given
8065 child without destroying the current node.
8066 Given two nodes that point to the same schedule, their closest
8067 shared ancestor can be obtained using
8068 C<isl_schedule_node_get_shared_ancestor>.
8070 #include <isl/schedule_node.h>
8071 int isl_schedule_node_get_tree_depth(
8072 __isl_keep isl_schedule_node *node);
8073 int isl_schedule_node_get_child_position(
8074 __isl_keep isl_schedule_node *node);
8075 int isl_schedule_node_get_ancestor_child_position(
8076 __isl_keep isl_schedule_node *node,
8077 __isl_keep isl_schedule_node *ancestor);
8078 __isl_give isl_schedule_node *isl_schedule_node_get_child(
8079 __isl_keep isl_schedule_node *node, int pos);
8080 __isl_give isl_schedule_node *
8081 isl_schedule_node_get_shared_ancestor(
8082 __isl_keep isl_schedule_node *node1,
8083 __isl_keep isl_schedule_node *node2);
8085 All nodes in a schedule tree or
8086 all descendants of a specific node (including the node) can be visited
8087 in depth-first pre-order using the following functions.
8089 #include <isl/schedule.h>
8090 isl_stat isl_schedule_foreach_schedule_node_top_down(
8091 __isl_keep isl_schedule *sched,
8092 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8093 void *user), void *user);
8095 #include <isl/schedule_node.h>
8096 isl_stat isl_schedule_node_foreach_descendant_top_down(
8097 __isl_keep isl_schedule_node *node,
8098 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8099 void *user), void *user);
8101 The callback function is slightly different from the usual
8102 callbacks in that it not only indicates success (non-negative result)
8103 or failure (negative result), but also indicates whether the children
8104 of the given node should be visited. In particular, if the callback
8105 returns a positive value, then the children are visited, but if
8106 the callback returns zero, then the children are not visited.
8108 The ancestors of a node in a schedule tree can be visited from
8109 the root down to and including the parent of the node using
8110 the following function.
8112 #include <isl/schedule_node.h>
8113 isl_stat isl_schedule_node_foreach_ancestor_top_down(
8114 __isl_keep isl_schedule_node *node,
8115 isl_stat (*fn)(__isl_keep isl_schedule_node *node,
8116 void *user), void *user);
8118 The following functions allows for a depth-first post-order
8119 traversal of the nodes in a schedule tree or
8120 of the descendants of a specific node (including the node
8121 itself), where the user callback is allowed to modify the
8124 #include <isl/schedule.h>
8125 __isl_give isl_schedule *
8126 isl_schedule_map_schedule_node_bottom_up(
8127 __isl_take isl_schedule *schedule,
8128 __isl_give isl_schedule_node *(*fn)(
8129 __isl_take isl_schedule_node *node,
8130 void *user), void *user);
8132 #include <isl/schedule_node.h>
8133 __isl_give isl_schedule_node *
8134 isl_schedule_node_map_descendant_bottom_up(
8135 __isl_take isl_schedule_node *node,
8136 __isl_give isl_schedule_node *(*fn)(
8137 __isl_take isl_schedule_node *node,
8138 void *user), void *user);
8140 The traversal continues from the node returned by the callback function.
8141 It is the responsibility of the user to ensure that this does not
8142 lead to an infinite loop. It is safest to always return a pointer
8143 to the same position (same ancestors and child positions) as the input node.
8145 The following function removes a node (along with its descendants)
8146 from a schedule tree and returns a pointer to the leaf at the
8147 same position in the updated tree.
8148 It is not allowed to remove the root of a schedule tree or
8149 a child of a set or sequence node.
8151 #include <isl/schedule_node.h>
8152 __isl_give isl_schedule_node *isl_schedule_node_cut(
8153 __isl_take isl_schedule_node *node);
8155 The following function removes a single node
8156 from a schedule tree and returns a pointer to the child
8157 of the node, now located at the position of the original node
8158 or to a leaf node at that position if there was no child.
8159 It is not allowed to remove the root of a schedule tree,
8160 a set or sequence node, a child of a set or sequence node or
8161 a band node with an anchored subtree.
8163 #include <isl/schedule_node.h>
8164 __isl_give isl_schedule_node *isl_schedule_node_delete(
8165 __isl_take isl_schedule_node *node);
8167 Most nodes in a schedule tree only contain local information.
8168 In some cases, however, a node may also refer to the schedule dimensions
8169 of its outer band nodes.
8170 This means that the position of the node within the tree should
8171 not be changed, or at least that no changes are performed to the
8172 outer band nodes. The following function can be used to test
8173 whether the subtree rooted at a given node contains any such nodes.
8175 #include <isl/schedule_node.h>
8176 isl_bool isl_schedule_node_is_subtree_anchored(
8177 __isl_keep isl_schedule_node *node);
8179 The following function resets the user pointers on all parameter
8180 and tuple identifiers referenced by the given schedule node.
8182 #include <isl/schedule_node.h>
8183 __isl_give isl_schedule_node *isl_schedule_node_reset_user(
8184 __isl_take isl_schedule_node *node);
8186 The following function aligns the parameters of the given schedule
8187 node to the given space.
8189 #include <isl/schedule_node.h>
8190 __isl_give isl_schedule_node *
8191 isl_schedule_node_align_params(
8192 __isl_take isl_schedule_node *node,
8193 __isl_take isl_space *space);
8195 Several node types have their own functions for querying
8196 (and in some cases setting) some node type specific properties.
8198 #include <isl/schedule_node.h>
8199 __isl_give isl_space *isl_schedule_node_band_get_space(
8200 __isl_keep isl_schedule_node *node);
8201 __isl_give isl_multi_union_pw_aff *
8202 isl_schedule_node_band_get_partial_schedule(
8203 __isl_keep isl_schedule_node *node);
8204 __isl_give isl_union_map *
8205 isl_schedule_node_band_get_partial_schedule_union_map(
8206 __isl_keep isl_schedule_node *node);
8207 unsigned isl_schedule_node_band_n_member(
8208 __isl_keep isl_schedule_node *node);
8209 isl_bool isl_schedule_node_band_member_get_coincident(
8210 __isl_keep isl_schedule_node *node, int pos);
8211 __isl_give isl_schedule_node *
8212 isl_schedule_node_band_member_set_coincident(
8213 __isl_take isl_schedule_node *node, int pos,
8215 isl_bool isl_schedule_node_band_get_permutable(
8216 __isl_keep isl_schedule_node *node);
8217 __isl_give isl_schedule_node *
8218 isl_schedule_node_band_set_permutable(
8219 __isl_take isl_schedule_node *node, int permutable);
8220 enum isl_ast_loop_type
8221 isl_schedule_node_band_member_get_ast_loop_type(
8222 __isl_keep isl_schedule_node *node, int pos);
8223 __isl_give isl_schedule_node *
8224 isl_schedule_node_band_member_set_ast_loop_type(
8225 __isl_take isl_schedule_node *node, int pos,
8226 enum isl_ast_loop_type type);
8227 __isl_give isl_union_set *
8228 enum isl_ast_loop_type
8229 isl_schedule_node_band_member_get_isolate_ast_loop_type(
8230 __isl_keep isl_schedule_node *node, int pos);
8231 __isl_give isl_schedule_node *
8232 isl_schedule_node_band_member_set_isolate_ast_loop_type(
8233 __isl_take isl_schedule_node *node, int pos,
8234 enum isl_ast_loop_type type);
8235 isl_schedule_node_band_get_ast_build_options(
8236 __isl_keep isl_schedule_node *node);
8237 __isl_give isl_schedule_node *
8238 isl_schedule_node_band_set_ast_build_options(
8239 __isl_take isl_schedule_node *node,
8240 __isl_take isl_union_set *options);
8241 __isl_give isl_set *
8242 isl_schedule_node_band_get_ast_isolate_option(
8243 __isl_keep isl_schedule_node *node);
8245 The function C<isl_schedule_node_band_get_space> returns the space
8246 of the partial schedule of the band.
8247 The function C<isl_schedule_node_band_get_partial_schedule_union_map>
8248 returns a representation of the partial schedule of the band node
8249 in the form of an C<isl_union_map>.
8250 The coincident and permutable properties are set by
8251 C<isl_schedule_constraints_compute_schedule> on the schedule tree
8253 A scheduling dimension is considered to be ``coincident''
8254 if it satisfies the coincidence constraints within its band.
8255 That is, if the dependence distances of the coincidence
8256 constraints are all zero in that direction (for fixed
8257 iterations of outer bands).
8258 A band is marked permutable if it was produced using the Pluto-like scheduler.
8259 Note that the scheduler may have to resort to a Feautrier style scheduling
8260 step even if the default scheduler is used.
8261 An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
8262 C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
8263 For the meaning of these loop AST generation types and the difference
8264 between the regular loop AST generation type and the isolate
8265 loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
8266 The functions C<isl_schedule_node_band_member_get_ast_loop_type>
8267 and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
8268 may return C<isl_ast_loop_error> if an error occurs.
8269 The AST build options govern how an AST is generated for
8270 the individual schedule dimensions during AST generation.
8271 See L</"AST Generation Options (Schedule Tree)">.
8272 The isolate option for the given node can be extracted from these
8273 AST build options using the function
8274 C<isl_schedule_node_band_get_ast_isolate_option>.
8276 #include <isl/schedule_node.h>
8277 __isl_give isl_set *
8278 isl_schedule_node_context_get_context(
8279 __isl_keep isl_schedule_node *node);
8281 #include <isl/schedule_node.h>
8282 __isl_give isl_union_set *
8283 isl_schedule_node_domain_get_domain(
8284 __isl_keep isl_schedule_node *node);
8286 #include <isl/schedule_node.h>
8287 __isl_give isl_union_map *
8288 isl_schedule_node_expansion_get_expansion(
8289 __isl_keep isl_schedule_node *node);
8290 __isl_give isl_union_pw_multi_aff *
8291 isl_schedule_node_expansion_get_contraction(
8292 __isl_keep isl_schedule_node *node);
8294 #include <isl/schedule_node.h>
8295 __isl_give isl_union_map *
8296 isl_schedule_node_extension_get_extension(
8297 __isl_keep isl_schedule_node *node);
8299 #include <isl/schedule_node.h>
8300 __isl_give isl_union_set *
8301 isl_schedule_node_filter_get_filter(
8302 __isl_keep isl_schedule_node *node);
8304 #include <isl/schedule_node.h>
8305 __isl_give isl_set *isl_schedule_node_guard_get_guard(
8306 __isl_keep isl_schedule_node *node);
8308 #include <isl/schedule_node.h>
8309 __isl_give isl_id *isl_schedule_node_mark_get_id(
8310 __isl_keep isl_schedule_node *node);
8312 The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
8313 an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
8314 partial schedules related to the node.
8316 #include <isl/schedule_node.h>
8317 __isl_give isl_multi_union_pw_aff *
8318 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
8319 __isl_keep isl_schedule_node *node);
8320 __isl_give isl_union_pw_multi_aff *
8321 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
8322 __isl_keep isl_schedule_node *node);
8323 __isl_give isl_union_map *
8324 isl_schedule_node_get_prefix_schedule_union_map(
8325 __isl_keep isl_schedule_node *node);
8326 __isl_give isl_union_map *
8327 isl_schedule_node_get_prefix_schedule_relation(
8328 __isl_keep isl_schedule_node *node);
8329 __isl_give isl_union_map *
8330 isl_schedule_node_get_subtree_schedule_union_map(
8331 __isl_keep isl_schedule_node *node);
8333 In particular, the functions
8334 C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
8335 C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
8336 and C<isl_schedule_node_get_prefix_schedule_union_map>
8337 return a relative ordering on the domain elements that reach the given
8338 node determined by its ancestors.
8339 The function C<isl_schedule_node_get_prefix_schedule_relation>
8340 additionally includes the domain constraints in the result.
8341 The function C<isl_schedule_node_get_subtree_schedule_union_map>
8342 returns a representation of the partial schedule defined by the
8343 subtree rooted at the given node.
8344 If the tree contains any expansion nodes, then the subtree schedule
8345 is formulated in terms of the expanded domain elements.
8346 The tree passed to functions returning a prefix schedule
8347 may only contain extension nodes if these would not affect
8348 the result of these functions. That is, if one of the ancestors
8349 is an extension node, then all of the domain elements that were
8350 added by the extension node need to have been filtered out
8351 by filter nodes between the extension node and the input node.
8352 The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
8353 may not contain in extension nodes in the selected subtree.
8355 The expansion/contraction defined by an entire subtree, combining
8356 the expansions/contractions
8357 on the expansion nodes in the subtree, can be obtained using
8358 the following functions.
8360 #include <isl/schedule_node.h>
8361 __isl_give isl_union_map *
8362 isl_schedule_node_get_subtree_expansion(
8363 __isl_keep isl_schedule_node *node);
8364 __isl_give isl_union_pw_multi_aff *
8365 isl_schedule_node_get_subtree_contraction(
8366 __isl_keep isl_schedule_node *node);
8368 The total number of outer band members of given node, i.e.,
8369 the shared output dimension of the maps in the result
8370 of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
8371 using the following function.
8373 #include <isl/schedule_node.h>
8374 int isl_schedule_node_get_schedule_depth(
8375 __isl_keep isl_schedule_node *node);
8377 The following functions return the elements that reach the given node
8378 or the union of universes in the spaces that contain these elements.
8380 #include <isl/schedule_node.h>
8381 __isl_give isl_union_set *
8382 isl_schedule_node_get_domain(
8383 __isl_keep isl_schedule_node *node);
8384 __isl_give isl_union_set *
8385 isl_schedule_node_get_universe_domain(
8386 __isl_keep isl_schedule_node *node);
8388 The input tree of C<isl_schedule_node_get_domain>
8389 may only contain extension nodes if these would not affect
8390 the result of this function. That is, if one of the ancestors
8391 is an extension node, then all of the domain elements that were
8392 added by the extension node need to have been filtered out
8393 by filter nodes between the extension node and the input node.
8395 The following functions can be used to introduce additional nodes
8396 in the schedule tree. The new node is introduced at the point
8397 in the tree where the C<isl_schedule_node> points to and
8398 the results points to the new node.
8400 #include <isl/schedule_node.h>
8401 __isl_give isl_schedule_node *
8402 isl_schedule_node_insert_partial_schedule(
8403 __isl_take isl_schedule_node *node,
8404 __isl_take isl_multi_union_pw_aff *schedule);
8406 This function inserts a new band node with (the greatest integer
8407 part of) the given partial schedule.
8408 The subtree rooted at the given node is assumed not to have
8411 #include <isl/schedule_node.h>
8412 __isl_give isl_schedule_node *
8413 isl_schedule_node_insert_context(
8414 __isl_take isl_schedule_node *node,
8415 __isl_take isl_set *context);
8417 This function inserts a new context node with the given context constraints.
8419 #include <isl/schedule_node.h>
8420 __isl_give isl_schedule_node *
8421 isl_schedule_node_insert_filter(
8422 __isl_take isl_schedule_node *node,
8423 __isl_take isl_union_set *filter);
8425 This function inserts a new filter node with the given filter.
8426 If the original node already pointed to a filter node, then the
8427 two filter nodes are merged into one.
8429 #include <isl/schedule_node.h>
8430 __isl_give isl_schedule_node *
8431 isl_schedule_node_insert_guard(
8432 __isl_take isl_schedule_node *node,
8433 __isl_take isl_set *guard);
8435 This function inserts a new guard node with the given guard constraints.
8437 #include <isl/schedule_node.h>
8438 __isl_give isl_schedule_node *
8439 isl_schedule_node_insert_mark(
8440 __isl_take isl_schedule_node *node,
8441 __isl_take isl_id *mark);
8443 This function inserts a new mark node with the give mark identifier.
8445 #include <isl/schedule_node.h>
8446 __isl_give isl_schedule_node *
8447 isl_schedule_node_insert_sequence(
8448 __isl_take isl_schedule_node *node,
8449 __isl_take isl_union_set_list *filters);
8450 __isl_give isl_schedule_node *
8451 isl_schedule_node_insert_set(
8452 __isl_take isl_schedule_node *node,
8453 __isl_take isl_union_set_list *filters);
8455 These functions insert a new sequence or set node with the given
8456 filters as children.
8458 #include <isl/schedule_node.h>
8459 __isl_give isl_schedule_node *isl_schedule_node_group(
8460 __isl_take isl_schedule_node *node,
8461 __isl_take isl_id *group_id);
8463 This function introduces an expansion node in between the current
8464 node and its parent that expands instances of a space with tuple
8465 identifier C<group_id> to the original domain elements that reach
8466 the node. The group instances are identified by the prefix schedule
8467 of those domain elements. The ancestors of the node are adjusted
8468 to refer to the group instances instead of the original domain
8469 elements. The return value points to the same node in the updated
8470 schedule tree as the input node, i.e., to the child of the newly
8471 introduced expansion node. Grouping instances of different statements
8472 ensures that they will be treated as a single statement by the
8473 AST generator up to the point of the expansion node.
8475 The following function can be used to flatten a nested
8478 #include <isl/schedule_node.h>
8479 __isl_give isl_schedule_node *
8480 isl_schedule_node_sequence_splice_child(
8481 __isl_take isl_schedule_node *node, int pos);
8483 That is, given a sequence node C<node> that has another sequence node
8484 in its child at position C<pos> (in particular, the child of that filter
8485 node is a sequence node), attach the children of that other sequence
8486 node as children of C<node>, replacing the original child at position
8489 The partial schedule of a band node can be scaled (down) or reduced using
8490 the following functions.
8492 #include <isl/schedule_node.h>
8493 __isl_give isl_schedule_node *
8494 isl_schedule_node_band_scale(
8495 __isl_take isl_schedule_node *node,
8496 __isl_take isl_multi_val *mv);
8497 __isl_give isl_schedule_node *
8498 isl_schedule_node_band_scale_down(
8499 __isl_take isl_schedule_node *node,
8500 __isl_take isl_multi_val *mv);
8501 __isl_give isl_schedule_node *
8502 isl_schedule_node_band_mod(
8503 __isl_take isl_schedule_node *node,
8504 __isl_take isl_multi_val *mv);
8506 The spaces of the two arguments need to match.
8507 After scaling, the partial schedule is replaced by its greatest
8508 integer part to ensure that the schedule remains integral.
8510 The partial schedule of a band node can be shifted by an
8511 C<isl_multi_union_pw_aff> with a domain that is a superset
8512 of the domain of the partial schedule using
8513 the following function.
8515 #include <isl/schedule_node.h>
8516 __isl_give isl_schedule_node *
8517 isl_schedule_node_band_shift(
8518 __isl_take isl_schedule_node *node,
8519 __isl_take isl_multi_union_pw_aff *shift);
8521 A band node can be tiled using the following function.
8523 #include <isl/schedule_node.h>
8524 __isl_give isl_schedule_node *isl_schedule_node_band_tile(
8525 __isl_take isl_schedule_node *node,
8526 __isl_take isl_multi_val *sizes);
8528 isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
8530 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
8531 isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
8533 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
8535 The C<isl_schedule_node_band_tile> function tiles
8536 the band using the given tile sizes inside its schedule.
8537 A new child band node is created to represent the point loops and it is
8538 inserted between the modified band and its children.
8539 The subtree rooted at the given node is assumed not to have
8541 The C<tile_scale_tile_loops> option specifies whether the tile
8542 loops iterators should be scaled by the tile sizes.
8543 If the C<tile_shift_point_loops> option is set, then the point loops
8544 are shifted to start at zero.
8546 A band node can be split into two nested band nodes
8547 using the following function.
8549 #include <isl/schedule_node.h>
8550 __isl_give isl_schedule_node *isl_schedule_node_band_split(
8551 __isl_take isl_schedule_node *node, int pos);
8553 The resulting outer band node contains the first C<pos> dimensions of
8554 the schedule of C<node> while the inner band contains the remaining dimensions.
8555 The schedules of the two band nodes live in anonymous spaces.
8556 The loop AST generation type options and the isolate option
8557 are split over the the two band nodes.
8559 A band node can be moved down to the leaves of the subtree rooted
8560 at the band node using the following function.
8562 #include <isl/schedule_node.h>
8563 __isl_give isl_schedule_node *isl_schedule_node_band_sink(
8564 __isl_take isl_schedule_node *node);
8566 The subtree rooted at the given node is assumed not to have
8568 The result points to the node in the resulting tree that is in the same
8569 position as the node pointed to by C<node> in the original tree.
8571 #include <isl/schedule_node.h>
8572 __isl_give isl_schedule_node *
8573 isl_schedule_node_order_before(
8574 __isl_take isl_schedule_node *node,
8575 __isl_take isl_union_set *filter);
8576 __isl_give isl_schedule_node *
8577 isl_schedule_node_order_after(
8578 __isl_take isl_schedule_node *node,
8579 __isl_take isl_union_set *filter);
8581 These functions split the domain elements that reach C<node>
8582 into those that satisfy C<filter> and those that do not and
8583 arranges for the elements that do satisfy the filter to be
8584 executed before (in case of C<isl_schedule_node_order_before>)
8585 or after (in case of C<isl_schedule_node_order_after>)
8586 those that do not. The order is imposed by
8587 a sequence node, possibly reusing the grandparent of C<node>
8588 on two copies of the subtree attached to the original C<node>.
8589 Both copies are simplified with respect to their filter.
8591 Return a pointer to the copy of the subtree that does not
8592 satisfy C<filter>. If there is no such copy (because all
8593 reaching domain elements satisfy the filter), then return
8594 the original pointer.
8596 #include <isl/schedule_node.h>
8597 __isl_give isl_schedule_node *
8598 isl_schedule_node_graft_before(
8599 __isl_take isl_schedule_node *node,
8600 __isl_take isl_schedule_node *graft);
8601 __isl_give isl_schedule_node *
8602 isl_schedule_node_graft_after(
8603 __isl_take isl_schedule_node *node,
8604 __isl_take isl_schedule_node *graft);
8606 This function inserts the C<graft> tree into the tree containing C<node>
8607 such that it is executed before (in case of C<isl_schedule_node_graft_before>)
8608 or after (in case of C<isl_schedule_node_graft_after>) C<node>.
8609 The root node of C<graft>
8610 should be an extension node where the domain of the extension
8611 is the flat product of all outer band nodes of C<node>.
8612 The root node may also be a domain node.
8613 The elements of the domain or the range of the extension may not
8614 intersect with the domain elements that reach "node".
8615 The schedule tree of C<graft> may not be anchored.
8617 The schedule tree of C<node> is modified to include an extension node
8618 corresponding to the root node of C<graft> as a child of the original
8619 parent of C<node>. The original node that C<node> points to and the
8620 child of the root node of C<graft> are attached to this extension node
8621 through a sequence, with appropriate filters and with the child
8622 of C<graft> appearing before or after the original C<node>.
8624 If C<node> already appears inside a sequence that is the child of
8625 an extension node and if the spaces of the new domain elements
8626 do not overlap with those of the original domain elements,
8627 then that extension node is extended with the new extension
8628 rather than introducing a new segment of extension and sequence nodes.
8630 Return a pointer to the same node in the modified tree that
8631 C<node> pointed to in the original tree.
8633 A representation of the schedule node can be printed using
8635 #include <isl/schedule_node.h>
8636 __isl_give isl_printer *isl_printer_print_schedule_node(
8637 __isl_take isl_printer *p,
8638 __isl_keep isl_schedule_node *node);
8639 __isl_give char *isl_schedule_node_to_str(
8640 __isl_keep isl_schedule_node *node);
8642 C<isl_schedule_node_to_str> prints the schedule node in block format.
8644 =head2 Dependence Analysis
8646 C<isl> contains specialized functionality for performing
8647 array dataflow analysis. That is, given a I<sink> access relation
8648 and a collection of possible I<source> access relations,
8649 C<isl> can compute relations that describe
8650 for each iteration of the sink access, which iteration
8651 of which of the source access relations was the last
8652 to access the same data element before the given iteration
8654 The resulting dependence relations map source iterations
8655 to either the corresponding sink iterations or
8656 pairs of corresponding sink iterations and accessed data elements.
8657 To compute standard flow dependences, the sink should be
8658 a read, while the sources should be writes.
8659 If any of the source accesses are marked as being I<may>
8660 accesses, then there will be a dependence from the last
8661 I<must> access B<and> from any I<may> access that follows
8662 this last I<must> access.
8663 In particular, if I<all> sources are I<may> accesses,
8664 then memory based dependence analysis is performed.
8665 If, on the other hand, all sources are I<must> accesses,
8666 then value based dependence analysis is performed.
8668 =head3 High-level Interface
8670 A high-level interface to dependence analysis is provided
8671 by the following function.
8673 #include <isl/flow.h>
8674 __isl_give isl_union_flow *
8675 isl_union_access_info_compute_flow(
8676 __isl_take isl_union_access_info *access);
8678 The input C<isl_union_access_info> object describes the sink
8679 access relations, the source access relations and a schedule,
8680 while the output C<isl_union_flow> object describes
8681 the resulting dependence relations and the subsets of the
8682 sink relations for which no source was found.
8684 An C<isl_union_access_info> is created, modified, copied and freed using
8685 the following functions.
8687 #include <isl/flow.h>
8688 __isl_give isl_union_access_info *
8689 isl_union_access_info_from_sink(
8690 __isl_take isl_union_map *sink);
8691 __isl_give isl_union_access_info *
8692 isl_union_access_info_set_must_source(
8693 __isl_take isl_union_access_info *access,
8694 __isl_take isl_union_map *must_source);
8695 __isl_give isl_union_access_info *
8696 isl_union_access_info_set_may_source(
8697 __isl_take isl_union_access_info *access,
8698 __isl_take isl_union_map *may_source);
8699 __isl_give isl_union_access_info *
8700 isl_union_access_info_set_schedule(
8701 __isl_take isl_union_access_info *access,
8702 __isl_take isl_schedule *schedule);
8703 __isl_give isl_union_access_info *
8704 isl_union_access_info_set_schedule_map(
8705 __isl_take isl_union_access_info *access,
8706 __isl_take isl_union_map *schedule_map);
8707 __isl_give isl_union_access_info *
8708 isl_union_access_info_copy(
8709 __isl_keep isl_union_access_info *access);
8710 __isl_null isl_union_access_info *
8711 isl_union_access_info_free(
8712 __isl_take isl_union_access_info *access);
8714 The may sources set by C<isl_union_access_info_set_may_source>
8715 do not need to include the must sources set by
8716 C<isl_union_access_info_set_must_source> as a subset.
8717 The user is free not to call one (or both) of these functions,
8718 in which case the corresponding set is kept to its empty default.
8719 Similarly, the default schedule initialized by
8720 C<isl_union_access_info_from_sink> is empty.
8721 The current schedule is determined by the last call to either
8722 C<isl_union_access_info_set_schedule> or
8723 C<isl_union_access_info_set_schedule_map>.
8724 The domain of the schedule corresponds to the domains of
8725 the access relations. In particular, the domains of the access
8726 relations are effectively intersected with the domain of the schedule
8727 and only the resulting accesses are considered by the dependence analysis.
8729 A representation of the information contained in an object
8730 of type C<isl_union_access_info> can be obtained using
8732 #include <isl/flow.h>
8733 __isl_give isl_printer *
8734 isl_printer_print_union_access_info(
8735 __isl_take isl_printer *p,
8736 __isl_keep isl_union_access_info *access);
8737 __isl_give char *isl_union_access_info_to_str(
8738 __isl_keep isl_union_access_info *access);
8740 C<isl_union_access_info_to_str> prints the information in flow format.
8742 The output of C<isl_union_access_info_compute_flow> can be examined,
8743 copied, and freed using the following functions.
8745 #include <isl/flow.h>
8746 __isl_give isl_union_map *isl_union_flow_get_must_dependence(
8747 __isl_keep isl_union_flow *flow);
8748 __isl_give isl_union_map *isl_union_flow_get_may_dependence(
8749 __isl_keep isl_union_flow *flow);
8750 __isl_give isl_union_map *
8751 isl_union_flow_get_full_must_dependence(
8752 __isl_keep isl_union_flow *flow);
8753 __isl_give isl_union_map *
8754 isl_union_flow_get_full_may_dependence(
8755 __isl_keep isl_union_flow *flow);
8756 __isl_give isl_union_map *isl_union_flow_get_must_no_source(
8757 __isl_keep isl_union_flow *flow);
8758 __isl_give isl_union_map *isl_union_flow_get_may_no_source(
8759 __isl_keep isl_union_flow *flow);
8760 __isl_give isl_union_flow *isl_union_flow_copy(
8761 __isl_keep isl_union_flow *flow);
8762 __isl_null isl_union_flow *isl_union_flow_free(
8763 __isl_take isl_union_flow *flow);
8765 The relation returned by C<isl_union_flow_get_must_dependence>
8766 relates domain elements of must sources to domain elements of the sink.
8767 The relation returned by C<isl_union_flow_get_may_dependence>
8768 relates domain elements of must or may sources to domain elements of the sink
8769 and includes the previous relation as a subset.
8770 The relation returned by C<isl_union_flow_get_full_must_dependence>
8771 relates domain elements of must sources to pairs of domain elements of the sink
8772 and accessed data elements.
8773 The relation returned by C<isl_union_flow_get_full_may_dependence>
8774 relates domain elements of must or may sources to pairs of
8775 domain elements of the sink and accessed data elements.
8776 This relation includes the previous relation as a subset.
8777 The relation returned by C<isl_union_flow_get_must_no_source> is the subset
8778 of the sink relation for which no dependences have been found.
8779 The relation returned by C<isl_union_flow_get_may_no_source> is the subset
8780 of the sink relation for which no definite dependences have been found.
8781 That is, it contains those sink access that do not contribute to any
8782 of the elements in the relation returned
8783 by C<isl_union_flow_get_must_dependence>.
8785 A representation of the information contained in an object
8786 of type C<isl_union_flow> can be obtained using
8788 #include <isl/flow.h>
8789 __isl_give isl_printer *isl_printer_print_union_flow(
8790 __isl_take isl_printer *p,
8791 __isl_keep isl_union_flow *flow);
8792 __isl_give char *isl_union_flow_to_str(
8793 __isl_keep isl_union_flow *flow);
8795 C<isl_union_flow_to_str> prints the information in flow format.
8797 =head3 Low-level Interface
8799 A lower-level interface is provided by the following functions.
8801 #include <isl/flow.h>
8803 typedef int (*isl_access_level_before)(void *first, void *second);
8805 __isl_give isl_access_info *isl_access_info_alloc(
8806 __isl_take isl_map *sink,
8807 void *sink_user, isl_access_level_before fn,
8809 __isl_give isl_access_info *isl_access_info_add_source(
8810 __isl_take isl_access_info *acc,
8811 __isl_take isl_map *source, int must,
8813 __isl_null isl_access_info *isl_access_info_free(
8814 __isl_take isl_access_info *acc);
8816 __isl_give isl_flow *isl_access_info_compute_flow(
8817 __isl_take isl_access_info *acc);
8819 isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
8820 isl_stat (*fn)(__isl_take isl_map *dep, int must,
8821 void *dep_user, void *user),
8823 __isl_give isl_map *isl_flow_get_no_source(
8824 __isl_keep isl_flow *deps, int must);
8825 void isl_flow_free(__isl_take isl_flow *deps);
8827 The function C<isl_access_info_compute_flow> performs the actual
8828 dependence analysis. The other functions are used to construct
8829 the input for this function or to read off the output.
8831 The input is collected in an C<isl_access_info>, which can
8832 be created through a call to C<isl_access_info_alloc>.
8833 The arguments to this functions are the sink access relation
8834 C<sink>, a token C<sink_user> used to identify the sink
8835 access to the user, a callback function for specifying the
8836 relative order of source and sink accesses, and the number
8837 of source access relations that will be added.
8838 The callback function has type C<int (*)(void *first, void *second)>.
8839 The function is called with two user supplied tokens identifying
8840 either a source or the sink and it should return the shared nesting
8841 level and the relative order of the two accesses.
8842 In particular, let I<n> be the number of loops shared by
8843 the two accesses. If C<first> precedes C<second> textually,
8844 then the function should return I<2 * n + 1>; otherwise,
8845 it should return I<2 * n>.
8846 The sources can be added to the C<isl_access_info> by performing
8847 (at most) C<max_source> calls to C<isl_access_info_add_source>.
8848 C<must> indicates whether the source is a I<must> access
8849 or a I<may> access. Note that a multi-valued access relation
8850 should only be marked I<must> if every iteration in the domain
8851 of the relation accesses I<all> elements in its image.
8852 The C<source_user> token is again used to identify
8853 the source access. The range of the source access relation
8854 C<source> should have the same dimension as the range
8855 of the sink access relation.
8856 The C<isl_access_info_free> function should usually not be
8857 called explicitly, because it is called implicitly by
8858 C<isl_access_info_compute_flow>.
8860 The result of the dependence analysis is collected in an
8861 C<isl_flow>. There may be elements of
8862 the sink access for which no preceding source access could be
8863 found or for which all preceding sources are I<may> accesses.
8864 The relations containing these elements can be obtained through
8865 calls to C<isl_flow_get_no_source>, the first with C<must> set
8866 and the second with C<must> unset.
8867 In the case of standard flow dependence analysis,
8868 with the sink a read and the sources I<must> writes,
8869 the first relation corresponds to the reads from uninitialized
8870 array elements and the second relation is empty.
8871 The actual flow dependences can be extracted using
8872 C<isl_flow_foreach>. This function will call the user-specified
8873 callback function C<fn> for each B<non-empty> dependence between
8874 a source and the sink. The callback function is called
8875 with four arguments, the actual flow dependence relation
8876 mapping source iterations to sink iterations, a boolean that
8877 indicates whether it is a I<must> or I<may> dependence, a token
8878 identifying the source and an additional C<void *> with value
8879 equal to the third argument of the C<isl_flow_foreach> call.
8880 A dependence is marked I<must> if it originates from a I<must>
8881 source and if it is not followed by any I<may> sources.
8883 After finishing with an C<isl_flow>, the user should call
8884 C<isl_flow_free> to free all associated memory.
8886 =head3 Interaction with the Low-level Interface
8888 During the dependence analysis, we frequently need to perform
8889 the following operation. Given a relation between sink iterations
8890 and potential source iterations from a particular source domain,
8891 what is the last potential source iteration corresponding to each
8892 sink iteration. It can sometimes be convenient to adjust
8893 the set of potential source iterations before or after each such operation.
8894 The prototypical example is fuzzy array dataflow analysis,
8895 where we need to analyze if, based on data-dependent constraints,
8896 the sink iteration can ever be executed without one or more of
8897 the corresponding potential source iterations being executed.
8898 If so, we can introduce extra parameters and select an unknown
8899 but fixed source iteration from the potential source iterations.
8900 To be able to perform such manipulations, C<isl> provides the following
8903 #include <isl/flow.h>
8905 typedef __isl_give isl_restriction *(*isl_access_restrict)(
8906 __isl_keep isl_map *source_map,
8907 __isl_keep isl_set *sink, void *source_user,
8909 __isl_give isl_access_info *isl_access_info_set_restrict(
8910 __isl_take isl_access_info *acc,
8911 isl_access_restrict fn, void *user);
8913 The function C<isl_access_info_set_restrict> should be called
8914 before calling C<isl_access_info_compute_flow> and registers a callback function
8915 that will be called any time C<isl> is about to compute the last
8916 potential source. The first argument is the (reverse) proto-dependence,
8917 mapping sink iterations to potential source iterations.
8918 The second argument represents the sink iterations for which
8919 we want to compute the last source iteration.
8920 The third argument is the token corresponding to the source
8921 and the final argument is the token passed to C<isl_access_info_set_restrict>.
8922 The callback is expected to return a restriction on either the input or
8923 the output of the operation computing the last potential source.
8924 If the input needs to be restricted then restrictions are needed
8925 for both the source and the sink iterations. The sink iterations
8926 and the potential source iterations will be intersected with these sets.
8927 If the output needs to be restricted then only a restriction on the source
8928 iterations is required.
8929 If any error occurs, the callback should return C<NULL>.
8930 An C<isl_restriction> object can be created, freed and inspected
8931 using the following functions.
8933 #include <isl/flow.h>
8935 __isl_give isl_restriction *isl_restriction_input(
8936 __isl_take isl_set *source_restr,
8937 __isl_take isl_set *sink_restr);
8938 __isl_give isl_restriction *isl_restriction_output(
8939 __isl_take isl_set *source_restr);
8940 __isl_give isl_restriction *isl_restriction_none(
8941 __isl_take isl_map *source_map);
8942 __isl_give isl_restriction *isl_restriction_empty(
8943 __isl_take isl_map *source_map);
8944 __isl_null isl_restriction *isl_restriction_free(
8945 __isl_take isl_restriction *restr);
8947 C<isl_restriction_none> and C<isl_restriction_empty> are special
8948 cases of C<isl_restriction_input>. C<isl_restriction_none>
8949 is essentially equivalent to
8951 isl_restriction_input(isl_set_universe(
8952 isl_space_range(isl_map_get_space(source_map))),
8954 isl_space_domain(isl_map_get_space(source_map))));
8956 whereas C<isl_restriction_empty> is essentially equivalent to
8958 isl_restriction_input(isl_set_empty(
8959 isl_space_range(isl_map_get_space(source_map))),
8961 isl_space_domain(isl_map_get_space(source_map))));
8965 #include <isl/schedule.h>
8966 __isl_give isl_schedule *
8967 isl_schedule_constraints_compute_schedule(
8968 __isl_take isl_schedule_constraints *sc);
8970 The function C<isl_schedule_constraints_compute_schedule> can be
8971 used to compute a schedule that satisfies the given schedule constraints.
8972 These schedule constraints include the iteration domain for which
8973 a schedule should be computed and dependences between pairs of
8974 iterations. In particular, these dependences include
8975 I<validity> dependences and I<proximity> dependences.
8976 By default, the algorithm used to construct the schedule is similar
8977 to that of C<Pluto>.
8978 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
8980 The generated schedule respects all validity dependences.
8981 That is, all dependence distances over these dependences in the
8982 scheduled space are lexicographically positive.
8984 The default algorithm tries to ensure that the dependence distances
8985 over coincidence constraints are zero and to minimize the
8986 dependence distances over proximity dependences.
8987 Moreover, it tries to obtain sequences (bands) of schedule dimensions
8988 for groups of domains where the dependence distances over validity
8989 dependences have only non-negative values.
8990 Note that when minimizing the maximal dependence distance
8991 over proximity dependences, a single affine expression in the parameters
8992 is constructed that bounds all dependence distances. If no such expression
8993 exists, then the algorithm will fail and resort to an alternative
8994 scheduling algorithm. In particular, this means that adding proximity
8995 dependences may eliminate valid solutions. A typical example where this
8996 phenomenon may occur is when some subset of the proximity dependences
8997 has no restriction on some parameter, forcing the coefficient of that
8998 parameter to be zero, while some other subset forces the dependence
8999 distance to depend on that parameter, requiring the same coefficient
9001 When using Feautrier's algorithm, the coincidence and proximity constraints
9002 are only taken into account during the extension to a
9003 full-dimensional schedule.
9005 An C<isl_schedule_constraints> object can be constructed
9006 and manipulated using the following functions.
9008 #include <isl/schedule.h>
9009 __isl_give isl_schedule_constraints *
9010 isl_schedule_constraints_copy(
9011 __isl_keep isl_schedule_constraints *sc);
9012 __isl_give isl_schedule_constraints *
9013 isl_schedule_constraints_on_domain(
9014 __isl_take isl_union_set *domain);
9015 __isl_give isl_schedule_constraints *
9016 isl_schedule_constraints_set_context(
9017 __isl_take isl_schedule_constraints *sc,
9018 __isl_take isl_set *context);
9019 __isl_give isl_schedule_constraints *
9020 isl_schedule_constraints_set_validity(
9021 __isl_take isl_schedule_constraints *sc,
9022 __isl_take isl_union_map *validity);
9023 __isl_give isl_schedule_constraints *
9024 isl_schedule_constraints_set_coincidence(
9025 __isl_take isl_schedule_constraints *sc,
9026 __isl_take isl_union_map *coincidence);
9027 __isl_give isl_schedule_constraints *
9028 isl_schedule_constraints_set_proximity(
9029 __isl_take isl_schedule_constraints *sc,
9030 __isl_take isl_union_map *proximity);
9031 __isl_give isl_schedule_constraints *
9032 isl_schedule_constraints_set_conditional_validity(
9033 __isl_take isl_schedule_constraints *sc,
9034 __isl_take isl_union_map *condition,
9035 __isl_take isl_union_map *validity);
9036 __isl_give isl_schedule_constraints *
9037 isl_schedule_constraints_apply(
9038 __isl_take isl_schedule_constraints *sc,
9039 __isl_take isl_union_map *umap);
9040 __isl_null isl_schedule_constraints *
9041 isl_schedule_constraints_free(
9042 __isl_take isl_schedule_constraints *sc);
9044 The initial C<isl_schedule_constraints> object created by
9045 C<isl_schedule_constraints_on_domain> does not impose any constraints.
9046 That is, it has an empty set of dependences.
9047 The function C<isl_schedule_constraints_set_context> allows the user
9048 to specify additional constraints on the parameters that may
9049 be assumed to hold during the construction of the schedule.
9050 The function C<isl_schedule_constraints_set_validity> replaces the
9051 validity dependences, mapping domain elements I<i> to domain
9052 elements that should be scheduled after I<i>.
9053 The function C<isl_schedule_constraints_set_coincidence> replaces the
9054 coincidence dependences, mapping domain elements I<i> to domain
9055 elements that should be scheduled together with I<I>, if possible.
9056 The function C<isl_schedule_constraints_set_proximity> replaces the
9057 proximity dependences, mapping domain elements I<i> to domain
9058 elements that should be scheduled either before I<I>
9059 or as early as possible after I<i>.
9061 The function C<isl_schedule_constraints_set_conditional_validity>
9062 replaces the conditional validity constraints.
9063 A conditional validity constraint is only imposed when any of the corresponding
9064 conditions is satisfied, i.e., when any of them is non-zero.
9065 That is, the scheduler ensures that within each band if the dependence
9066 distances over the condition constraints are not all zero
9067 then all corresponding conditional validity constraints are respected.
9068 A conditional validity constraint corresponds to a condition
9069 if the two are adjacent, i.e., if the domain of one relation intersect
9070 the range of the other relation.
9071 The typical use case of conditional validity constraints is
9072 to allow order constraints between live ranges to be violated
9073 as long as the live ranges themselves are local to the band.
9074 To allow more fine-grained control over which conditions correspond
9075 to which conditional validity constraints, the domains and ranges
9076 of these relations may include I<tags>. That is, the domains and
9077 ranges of those relation may themselves be wrapped relations
9078 where the iteration domain appears in the domain of those wrapped relations
9079 and the range of the wrapped relations can be arbitrarily chosen
9080 by the user. Conditions and conditional validity constraints are only
9081 considered adjacent to each other if the entire wrapped relation matches.
9082 In particular, a relation with a tag will never be considered adjacent
9083 to a relation without a tag.
9085 The function C<isl_schedule_constraints_compute_schedule> takes
9086 schedule constraints that are defined on some set of domain elements
9087 and transforms them to schedule constraints on the elements
9088 to which these domain elements are mapped by the given transformation.
9090 An C<isl_schedule_constraints> object can be inspected
9091 using the following functions.
9093 #include <isl/schedule.h>
9094 __isl_give isl_union_set *
9095 isl_schedule_constraints_get_domain(
9096 __isl_keep isl_schedule_constraints *sc);
9097 __isl_give isl_set *isl_schedule_constraints_get_context(
9098 __isl_keep isl_schedule_constraints *sc);
9099 __isl_give isl_union_map *
9100 isl_schedule_constraints_get_validity(
9101 __isl_keep isl_schedule_constraints *sc);
9102 __isl_give isl_union_map *
9103 isl_schedule_constraints_get_coincidence(
9104 __isl_keep isl_schedule_constraints *sc);
9105 __isl_give isl_union_map *
9106 isl_schedule_constraints_get_proximity(
9107 __isl_keep isl_schedule_constraints *sc);
9108 __isl_give isl_union_map *
9109 isl_schedule_constraints_get_conditional_validity(
9110 __isl_keep isl_schedule_constraints *sc);
9111 __isl_give isl_union_map *
9112 isl_schedule_constraints_get_conditional_validity_condition(
9113 __isl_keep isl_schedule_constraints *sc);
9115 An C<isl_schedule_constraints> object can be read from input
9116 using the following functions.
9118 #include <isl/schedule.h>
9119 __isl_give isl_schedule_constraints *
9120 isl_schedule_constraints_read_from_str(isl_ctx *ctx,
9122 __isl_give isl_schedule_constraints *
9123 isl_schedule_constraints_read_from_file(isl_ctx *ctx,
9126 The contents of an C<isl_schedule_constraints> object can be printed
9127 using the following functions.
9129 #include <isl/schedule.h>
9130 __isl_give isl_printer *
9131 isl_printer_print_schedule_constraints(
9132 __isl_take isl_printer *p,
9133 __isl_keep isl_schedule_constraints *sc);
9134 __isl_give char *isl_schedule_constraints_to_str(
9135 __isl_keep isl_schedule_constraints *sc);
9137 The following function computes a schedule directly from
9138 an iteration domain and validity and proximity dependences
9139 and is implemented in terms of the functions described above.
9140 The use of C<isl_union_set_compute_schedule> is discouraged.
9142 #include <isl/schedule.h>
9143 __isl_give isl_schedule *isl_union_set_compute_schedule(
9144 __isl_take isl_union_set *domain,
9145 __isl_take isl_union_map *validity,
9146 __isl_take isl_union_map *proximity);
9148 The generated schedule represents a schedule tree.
9149 For more information on schedule trees, see
9150 L</"Schedule Trees">.
9154 #include <isl/schedule.h>
9155 isl_stat isl_options_set_schedule_max_coefficient(
9156 isl_ctx *ctx, int val);
9157 int isl_options_get_schedule_max_coefficient(
9159 isl_stat isl_options_set_schedule_max_constant_term(
9160 isl_ctx *ctx, int val);
9161 int isl_options_get_schedule_max_constant_term(
9163 isl_stat isl_options_set_schedule_serialize_sccs(
9164 isl_ctx *ctx, int val);
9165 int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
9166 isl_stat isl_options_set_schedule_whole_component(
9167 isl_ctx *ctx, int val);
9168 int isl_options_get_schedule_whole_component(
9170 isl_stat isl_options_set_schedule_maximize_band_depth(
9171 isl_ctx *ctx, int val);
9172 int isl_options_get_schedule_maximize_band_depth(
9174 isl_stat isl_options_set_schedule_maximize_coincidence(
9175 isl_ctx *ctx, int val);
9176 int isl_options_get_schedule_maximize_coincidence(
9178 isl_stat isl_options_set_schedule_outer_coincidence(
9179 isl_ctx *ctx, int val);
9180 int isl_options_get_schedule_outer_coincidence(
9182 isl_stat isl_options_set_schedule_split_scaled(
9183 isl_ctx *ctx, int val);
9184 int isl_options_get_schedule_split_scaled(
9186 isl_stat isl_options_set_schedule_treat_coalescing(
9187 isl_ctx *ctx, int val);
9188 int isl_options_get_schedule_treat_coalescing(
9190 isl_stat isl_options_set_schedule_algorithm(
9191 isl_ctx *ctx, int val);
9192 int isl_options_get_schedule_algorithm(
9194 isl_stat isl_options_set_schedule_separate_components(
9195 isl_ctx *ctx, int val);
9196 int isl_options_get_schedule_separate_components(
9201 =item * schedule_max_coefficient
9203 This option enforces that the coefficients for variable and parameter
9204 dimensions in the calculated schedule are not larger than the specified value.
9205 This option can significantly increase the speed of the scheduling calculation
9206 and may also prevent fusing of unrelated dimensions. A value of -1 means that
9207 this option does not introduce bounds on the variable or parameter
9210 =item * schedule_max_constant_term
9212 This option enforces that the constant coefficients in the calculated schedule
9213 are not larger than the maximal constant term. This option can significantly
9214 increase the speed of the scheduling calculation and may also prevent fusing of
9215 unrelated dimensions. A value of -1 means that this option does not introduce
9216 bounds on the constant coefficients.
9218 =item * schedule_serialize_sccs
9220 If this option is set, then all strongly connected components
9221 in the dependence graph are serialized as soon as they are detected.
9222 This means in particular that instances of statements will only
9223 appear in the same band node if these statements belong
9224 to the same strongly connected component at the point where
9225 the band node is constructed.
9227 =item * schedule_whole_component
9229 If this option is set, then entire (weakly) connected
9230 components in the dependence graph are scheduled together
9232 Otherwise, each strongly connected component within
9233 such a weakly connected component is first scheduled separately
9234 and then combined with other strongly connected components.
9235 This option has no effect if C<schedule_serialize_sccs> is set.
9237 =item * schedule_maximize_band_depth
9239 If this option is set, then the scheduler tries to maximize
9240 the width of the bands. Wider bands give more possibilities for tiling.
9241 In particular, if the C<schedule_whole_component> option is set,
9242 then bands are split if this might result in wider bands.
9243 Otherwise, the effect of this option is to only allow
9244 strongly connected components to be combined if this does
9245 not reduce the width of the bands.
9246 Note that if the C<schedule_serialize_sccs> options is set, then
9247 the C<schedule_maximize_band_depth> option therefore has no effect.
9249 =item * schedule_maximize_coincidence
9251 This option is only effective if the C<schedule_whole_component>
9252 option is turned off.
9253 If the C<schedule_maximize_coincidence> option is set, then (clusters of)
9254 strongly connected components are only combined with each other
9255 if this does not reduce the number of coincident band members.
9257 =item * schedule_outer_coincidence
9259 If this option is set, then we try to construct schedules
9260 where the outermost scheduling dimension in each band
9261 satisfies the coincidence constraints.
9263 =item * schedule_algorithm
9265 Selects the scheduling algorithm to be used.
9266 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
9267 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
9269 =item * schedule_split_scaled
9271 If this option is set, then we try to construct schedules in which the
9272 constant term is split off from the linear part if the linear parts of
9273 the scheduling rows for all nodes in the graphs have a common non-trivial
9275 The constant term is then placed in a separate band and the linear
9277 This option is only effective when the Feautrier style scheduler is
9278 being used, either as the main scheduler or as a fallback for the
9279 Pluto-like scheduler.
9281 =item * schedule_treat_coalescing
9283 If this option is set, then the scheduler will try and avoid
9284 producing schedules that perform loop coalescing.
9285 In particular, for the Pluto-like scheduler, this option places
9286 bounds on the schedule coefficients based on the sizes of the instance sets.
9287 For the Feautrier style scheduler, this option detects potentially
9288 coalescing schedules and then tries to adjust the schedule to avoid
9291 =item * schedule_separate_components
9293 If this option is set then the function C<isl_schedule_get_map>
9294 will treat set nodes in the same way as sequence nodes.
9298 =head2 AST Generation
9300 This section describes the C<isl> functionality for generating
9301 ASTs that visit all the elements
9302 in a domain in an order specified by a schedule tree or
9304 In case the schedule given as a C<isl_union_map>, an AST is generated
9305 that visits all the elements in the domain of the C<isl_union_map>
9306 according to the lexicographic order of the corresponding image
9307 element(s). If the range of the C<isl_union_map> consists of
9308 elements in more than one space, then each of these spaces is handled
9309 separately in an arbitrary order.
9310 It should be noted that the schedule tree or the image elements
9311 in a schedule map only specify the I<order>
9312 in which the corresponding domain elements should be visited.
9313 No direct relation between the partial schedule values
9314 or the image elements on the one hand and the loop iterators
9315 in the generated AST on the other hand should be assumed.
9317 Each AST is generated within a build. The initial build
9318 simply specifies the constraints on the parameters (if any)
9319 and can be created, inspected, copied and freed using the following functions.
9321 #include <isl/ast_build.h>
9322 __isl_give isl_ast_build *isl_ast_build_alloc(
9324 __isl_give isl_ast_build *isl_ast_build_from_context(
9325 __isl_take isl_set *set);
9326 __isl_give isl_ast_build *isl_ast_build_copy(
9327 __isl_keep isl_ast_build *build);
9328 __isl_null isl_ast_build *isl_ast_build_free(
9329 __isl_take isl_ast_build *build);
9331 The C<set> argument is usually a parameter set with zero or more parameters.
9332 In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
9333 this set is required to be a parameter set.
9334 An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
9335 specify any parameter constraints.
9336 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
9337 and L</"Fine-grained Control over AST Generation">.
9338 Finally, the AST itself can be constructed using one of the following
9341 #include <isl/ast_build.h>
9342 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
9343 __isl_keep isl_ast_build *build,
9344 __isl_take isl_schedule *schedule);
9345 __isl_give isl_ast_node *
9346 isl_ast_build_node_from_schedule_map(
9347 __isl_keep isl_ast_build *build,
9348 __isl_take isl_union_map *schedule);
9350 =head3 Inspecting the AST
9352 The basic properties of an AST node can be obtained as follows.
9354 #include <isl/ast.h>
9355 enum isl_ast_node_type isl_ast_node_get_type(
9356 __isl_keep isl_ast_node *node);
9358 The type of an AST node is one of
9359 C<isl_ast_node_for>,
9361 C<isl_ast_node_block>,
9362 C<isl_ast_node_mark> or
9363 C<isl_ast_node_user>.
9364 An C<isl_ast_node_for> represents a for node.
9365 An C<isl_ast_node_if> represents an if node.
9366 An C<isl_ast_node_block> represents a compound node.
9367 An C<isl_ast_node_mark> introduces a mark in the AST.
9368 An C<isl_ast_node_user> represents an expression statement.
9369 An expression statement typically corresponds to a domain element, i.e.,
9370 one of the elements that is visited by the AST.
9372 Each type of node has its own additional properties.
9374 #include <isl/ast.h>
9375 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
9376 __isl_keep isl_ast_node *node);
9377 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
9378 __isl_keep isl_ast_node *node);
9379 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
9380 __isl_keep isl_ast_node *node);
9381 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
9382 __isl_keep isl_ast_node *node);
9383 __isl_give isl_ast_node *isl_ast_node_for_get_body(
9384 __isl_keep isl_ast_node *node);
9385 isl_bool isl_ast_node_for_is_degenerate(
9386 __isl_keep isl_ast_node *node);
9388 An C<isl_ast_for> is considered degenerate if it is known to execute
9391 #include <isl/ast.h>
9392 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
9393 __isl_keep isl_ast_node *node);
9394 __isl_give isl_ast_node *isl_ast_node_if_get_then(
9395 __isl_keep isl_ast_node *node);
9396 isl_bool isl_ast_node_if_has_else(
9397 __isl_keep isl_ast_node *node);
9398 __isl_give isl_ast_node *isl_ast_node_if_get_else(
9399 __isl_keep isl_ast_node *node);
9401 __isl_give isl_ast_node_list *
9402 isl_ast_node_block_get_children(
9403 __isl_keep isl_ast_node *node);
9405 __isl_give isl_id *isl_ast_node_mark_get_id(
9406 __isl_keep isl_ast_node *node);
9407 __isl_give isl_ast_node *isl_ast_node_mark_get_node(
9408 __isl_keep isl_ast_node *node);
9410 C<isl_ast_node_mark_get_id> returns the identifier of the mark.
9411 C<isl_ast_node_mark_get_node> returns the child node that is being marked.
9413 #include <isl/ast.h>
9414 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
9415 __isl_keep isl_ast_node *node);
9417 All descendants of a specific node in the AST (including the node itself)
9419 in depth-first pre-order using the following function.
9421 #include <isl/ast.h>
9422 isl_stat isl_ast_node_foreach_descendant_top_down(
9423 __isl_keep isl_ast_node *node,
9424 isl_bool (*fn)(__isl_keep isl_ast_node *node,
9425 void *user), void *user);
9427 The callback function should return C<isl_bool_true> if the children
9428 of the given node should be visited and C<isl_bool_false> if they should not.
9429 It should return C<isl_bool_error> in case of failure, in which case
9430 the entire traversal is aborted.
9432 Each of the returned C<isl_ast_expr>s can in turn be inspected using
9433 the following functions.
9435 #include <isl/ast.h>
9436 enum isl_ast_expr_type isl_ast_expr_get_type(
9437 __isl_keep isl_ast_expr *expr);
9439 The type of an AST expression is one of
9441 C<isl_ast_expr_id> or
9442 C<isl_ast_expr_int>.
9443 An C<isl_ast_expr_op> represents the result of an operation.
9444 An C<isl_ast_expr_id> represents an identifier.
9445 An C<isl_ast_expr_int> represents an integer value.
9447 Each type of expression has its own additional properties.
9449 #include <isl/ast.h>
9450 enum isl_ast_op_type isl_ast_expr_get_op_type(
9451 __isl_keep isl_ast_expr *expr);
9452 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
9453 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
9454 __isl_keep isl_ast_expr *expr, int pos);
9455 isl_stat isl_ast_expr_foreach_ast_op_type(
9456 __isl_keep isl_ast_expr *expr,
9457 isl_stat (*fn)(enum isl_ast_op_type type,
9458 void *user), void *user);
9459 isl_stat isl_ast_node_foreach_ast_op_type(
9460 __isl_keep isl_ast_node *node,
9461 isl_stat (*fn)(enum isl_ast_op_type type,
9462 void *user), void *user);
9464 C<isl_ast_expr_get_op_type> returns the type of the operation
9465 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
9466 arguments. C<isl_ast_expr_get_op_arg> returns the specified
9468 C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
9469 C<isl_ast_op_type> that appears in C<expr>.
9470 C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
9471 C<isl_ast_op_type> that appears in C<node>.
9472 The operation type is one of the following.
9476 =item C<isl_ast_op_and>
9478 Logical I<and> of two arguments.
9479 Both arguments can be evaluated.
9481 =item C<isl_ast_op_and_then>
9483 Logical I<and> of two arguments.
9484 The second argument can only be evaluated if the first evaluates to true.
9486 =item C<isl_ast_op_or>
9488 Logical I<or> of two arguments.
9489 Both arguments can be evaluated.
9491 =item C<isl_ast_op_or_else>
9493 Logical I<or> of two arguments.
9494 The second argument can only be evaluated if the first evaluates to false.
9496 =item C<isl_ast_op_max>
9498 Maximum of two or more arguments.
9500 =item C<isl_ast_op_min>
9502 Minimum of two or more arguments.
9504 =item C<isl_ast_op_minus>
9508 =item C<isl_ast_op_add>
9510 Sum of two arguments.
9512 =item C<isl_ast_op_sub>
9514 Difference of two arguments.
9516 =item C<isl_ast_op_mul>
9518 Product of two arguments.
9520 =item C<isl_ast_op_div>
9522 Exact division. That is, the result is known to be an integer.
9524 =item C<isl_ast_op_fdiv_q>
9526 Result of integer division, rounded towards negative
9529 =item C<isl_ast_op_pdiv_q>
9531 Result of integer division, where dividend is known to be non-negative.
9533 =item C<isl_ast_op_pdiv_r>
9535 Remainder of integer division, where dividend is known to be non-negative.
9537 =item C<isl_ast_op_zdiv_r>
9539 Equal to zero iff the remainder on integer division is zero.
9541 =item C<isl_ast_op_cond>
9543 Conditional operator defined on three arguments.
9544 If the first argument evaluates to true, then the result
9545 is equal to the second argument. Otherwise, the result
9546 is equal to the third argument.
9547 The second and third argument may only be evaluated if
9548 the first argument evaluates to true and false, respectively.
9549 Corresponds to C<a ? b : c> in C.
9551 =item C<isl_ast_op_select>
9553 Conditional operator defined on three arguments.
9554 If the first argument evaluates to true, then the result
9555 is equal to the second argument. Otherwise, the result
9556 is equal to the third argument.
9557 The second and third argument may be evaluated independently
9558 of the value of the first argument.
9559 Corresponds to C<a * b + (1 - a) * c> in C.
9561 =item C<isl_ast_op_eq>
9565 =item C<isl_ast_op_le>
9567 Less than or equal relation.
9569 =item C<isl_ast_op_lt>
9573 =item C<isl_ast_op_ge>
9575 Greater than or equal relation.
9577 =item C<isl_ast_op_gt>
9579 Greater than relation.
9581 =item C<isl_ast_op_call>
9584 The number of arguments of the C<isl_ast_expr> is one more than
9585 the number of arguments in the function call, the first argument
9586 representing the function being called.
9588 =item C<isl_ast_op_access>
9591 The number of arguments of the C<isl_ast_expr> is one more than
9592 the number of index expressions in the array access, the first argument
9593 representing the array being accessed.
9595 =item C<isl_ast_op_member>
9598 This operation has two arguments, a structure and the name of
9599 the member of the structure being accessed.
9603 #include <isl/ast.h>
9604 __isl_give isl_id *isl_ast_expr_get_id(
9605 __isl_keep isl_ast_expr *expr);
9607 Return the identifier represented by the AST expression.
9609 #include <isl/ast.h>
9610 __isl_give isl_val *isl_ast_expr_get_val(
9611 __isl_keep isl_ast_expr *expr);
9613 Return the integer represented by the AST expression.
9615 =head3 Properties of ASTs
9617 #include <isl/ast.h>
9618 isl_bool isl_ast_expr_is_equal(
9619 __isl_keep isl_ast_expr *expr1,
9620 __isl_keep isl_ast_expr *expr2);
9622 Check if two C<isl_ast_expr>s are equal to each other.
9624 =head3 Manipulating and printing the AST
9626 AST nodes can be copied and freed using the following functions.
9628 #include <isl/ast.h>
9629 __isl_give isl_ast_node *isl_ast_node_copy(
9630 __isl_keep isl_ast_node *node);
9631 __isl_null isl_ast_node *isl_ast_node_free(
9632 __isl_take isl_ast_node *node);
9634 AST expressions can be copied and freed using the following functions.
9636 #include <isl/ast.h>
9637 __isl_give isl_ast_expr *isl_ast_expr_copy(
9638 __isl_keep isl_ast_expr *expr);
9639 __isl_null isl_ast_expr *isl_ast_expr_free(
9640 __isl_take isl_ast_expr *expr);
9642 New AST expressions can be created either directly or within
9643 the context of an C<isl_ast_build>.
9645 #include <isl/ast.h>
9646 __isl_give isl_ast_expr *isl_ast_expr_from_val(
9647 __isl_take isl_val *v);
9648 __isl_give isl_ast_expr *isl_ast_expr_from_id(
9649 __isl_take isl_id *id);
9650 __isl_give isl_ast_expr *isl_ast_expr_neg(
9651 __isl_take isl_ast_expr *expr);
9652 __isl_give isl_ast_expr *isl_ast_expr_address_of(
9653 __isl_take isl_ast_expr *expr);
9654 __isl_give isl_ast_expr *isl_ast_expr_add(
9655 __isl_take isl_ast_expr *expr1,
9656 __isl_take isl_ast_expr *expr2);
9657 __isl_give isl_ast_expr *isl_ast_expr_sub(
9658 __isl_take isl_ast_expr *expr1,
9659 __isl_take isl_ast_expr *expr2);
9660 __isl_give isl_ast_expr *isl_ast_expr_mul(
9661 __isl_take isl_ast_expr *expr1,
9662 __isl_take isl_ast_expr *expr2);
9663 __isl_give isl_ast_expr *isl_ast_expr_div(
9664 __isl_take isl_ast_expr *expr1,
9665 __isl_take isl_ast_expr *expr2);
9666 __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
9667 __isl_take isl_ast_expr *expr1,
9668 __isl_take isl_ast_expr *expr2);
9669 __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
9670 __isl_take isl_ast_expr *expr1,
9671 __isl_take isl_ast_expr *expr2);
9672 __isl_give isl_ast_expr *isl_ast_expr_and(
9673 __isl_take isl_ast_expr *expr1,
9674 __isl_take isl_ast_expr *expr2)
9675 __isl_give isl_ast_expr *isl_ast_expr_and_then(
9676 __isl_take isl_ast_expr *expr1,
9677 __isl_take isl_ast_expr *expr2)
9678 __isl_give isl_ast_expr *isl_ast_expr_or(
9679 __isl_take isl_ast_expr *expr1,
9680 __isl_take isl_ast_expr *expr2)
9681 __isl_give isl_ast_expr *isl_ast_expr_or_else(
9682 __isl_take isl_ast_expr *expr1,
9683 __isl_take isl_ast_expr *expr2)
9684 __isl_give isl_ast_expr *isl_ast_expr_eq(
9685 __isl_take isl_ast_expr *expr1,
9686 __isl_take isl_ast_expr *expr2);
9687 __isl_give isl_ast_expr *isl_ast_expr_le(
9688 __isl_take isl_ast_expr *expr1,
9689 __isl_take isl_ast_expr *expr2);
9690 __isl_give isl_ast_expr *isl_ast_expr_lt(
9691 __isl_take isl_ast_expr *expr1,
9692 __isl_take isl_ast_expr *expr2);
9693 __isl_give isl_ast_expr *isl_ast_expr_ge(
9694 __isl_take isl_ast_expr *expr1,
9695 __isl_take isl_ast_expr *expr2);
9696 __isl_give isl_ast_expr *isl_ast_expr_gt(
9697 __isl_take isl_ast_expr *expr1,
9698 __isl_take isl_ast_expr *expr2);
9699 __isl_give isl_ast_expr *isl_ast_expr_access(
9700 __isl_take isl_ast_expr *array,
9701 __isl_take isl_ast_expr_list *indices);
9702 __isl_give isl_ast_expr *isl_ast_expr_call(
9703 __isl_take isl_ast_expr *function,
9704 __isl_take isl_ast_expr_list *arguments);
9706 The function C<isl_ast_expr_address_of> can be applied to an
9707 C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
9708 to represent the address of the C<isl_ast_expr_access>. The function
9709 C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
9710 versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.
9712 #include <isl/ast_build.h>
9713 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
9714 __isl_keep isl_ast_build *build,
9715 __isl_take isl_set *set);
9716 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
9717 __isl_keep isl_ast_build *build,
9718 __isl_take isl_pw_aff *pa);
9719 __isl_give isl_ast_expr *
9720 isl_ast_build_access_from_pw_multi_aff(
9721 __isl_keep isl_ast_build *build,
9722 __isl_take isl_pw_multi_aff *pma);
9723 __isl_give isl_ast_expr *
9724 isl_ast_build_access_from_multi_pw_aff(
9725 __isl_keep isl_ast_build *build,
9726 __isl_take isl_multi_pw_aff *mpa);
9727 __isl_give isl_ast_expr *
9728 isl_ast_build_call_from_pw_multi_aff(
9729 __isl_keep isl_ast_build *build,
9730 __isl_take isl_pw_multi_aff *pma);
9731 __isl_give isl_ast_expr *
9732 isl_ast_build_call_from_multi_pw_aff(
9733 __isl_keep isl_ast_build *build,
9734 __isl_take isl_multi_pw_aff *mpa);
9737 the domains of C<pa>, C<mpa> and C<pma> should correspond
9738 to the schedule space of C<build>.
9739 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
9740 the function being called.
9741 If the accessed space is a nested relation, then it is taken
9742 to represent an access of the member specified by the range
9743 of this nested relation of the structure specified by the domain
9744 of the nested relation.
9746 The following functions can be used to modify an C<isl_ast_expr>.
9748 #include <isl/ast.h>
9749 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
9750 __isl_take isl_ast_expr *expr, int pos,
9751 __isl_take isl_ast_expr *arg);
9753 Replace the argument of C<expr> at position C<pos> by C<arg>.
9755 #include <isl/ast.h>
9756 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
9757 __isl_take isl_ast_expr *expr,
9758 __isl_take isl_id_to_ast_expr *id2expr);
9760 The function C<isl_ast_expr_substitute_ids> replaces the
9761 subexpressions of C<expr> of type C<isl_ast_expr_id>
9762 by the corresponding expression in C<id2expr>, if there is any.
9765 User specified data can be attached to an C<isl_ast_node> and obtained
9766 from the same C<isl_ast_node> using the following functions.
9768 #include <isl/ast.h>
9769 __isl_give isl_ast_node *isl_ast_node_set_annotation(
9770 __isl_take isl_ast_node *node,
9771 __isl_take isl_id *annotation);
9772 __isl_give isl_id *isl_ast_node_get_annotation(
9773 __isl_keep isl_ast_node *node);
9775 Basic printing can be performed using the following functions.
9777 #include <isl/ast.h>
9778 __isl_give isl_printer *isl_printer_print_ast_expr(
9779 __isl_take isl_printer *p,
9780 __isl_keep isl_ast_expr *expr);
9781 __isl_give isl_printer *isl_printer_print_ast_node(
9782 __isl_take isl_printer *p,
9783 __isl_keep isl_ast_node *node);
9784 __isl_give char *isl_ast_expr_to_str(
9785 __isl_keep isl_ast_expr *expr);
9786 __isl_give char *isl_ast_node_to_str(
9787 __isl_keep isl_ast_node *node);
9788 __isl_give char *isl_ast_expr_to_C_str(
9789 __isl_keep isl_ast_expr *expr);
9790 __isl_give char *isl_ast_node_to_C_str(
9791 __isl_keep isl_ast_node *node);
9793 The functions C<isl_ast_expr_to_C_str> and
9794 C<isl_ast_node_to_C_str> are convenience functions
9795 that return a string representation of the input in C format.
9797 More advanced printing can be performed using the following functions.
9799 #include <isl/ast.h>
9800 __isl_give isl_printer *isl_ast_op_type_set_print_name(
9801 __isl_take isl_printer *p,
9802 enum isl_ast_op_type type,
9803 __isl_keep const char *name);
9804 isl_stat isl_options_set_ast_print_macro_once(
9805 isl_ctx *ctx, int val);
9806 int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
9807 __isl_give isl_printer *isl_ast_op_type_print_macro(
9808 enum isl_ast_op_type type,
9809 __isl_take isl_printer *p);
9810 __isl_give isl_printer *isl_ast_expr_print_macros(
9811 __isl_keep isl_ast_expr *expr,
9812 __isl_take isl_printer *p);
9813 __isl_give isl_printer *isl_ast_node_print_macros(
9814 __isl_keep isl_ast_node *node,
9815 __isl_take isl_printer *p);
9816 __isl_give isl_printer *isl_ast_node_print(
9817 __isl_keep isl_ast_node *node,
9818 __isl_take isl_printer *p,
9819 __isl_take isl_ast_print_options *options);
9820 __isl_give isl_printer *isl_ast_node_for_print(
9821 __isl_keep isl_ast_node *node,
9822 __isl_take isl_printer *p,
9823 __isl_take isl_ast_print_options *options);
9824 __isl_give isl_printer *isl_ast_node_if_print(
9825 __isl_keep isl_ast_node *node,
9826 __isl_take isl_printer *p,
9827 __isl_take isl_ast_print_options *options);
9829 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
9830 C<isl> may print out an AST that makes use of macros such
9831 as C<floord>, C<min> and C<max>.
9832 The names of these macros may be modified by a call
9833 to C<isl_ast_op_type_set_print_name>. The user-specified
9834 names are associated to the printer object.
9835 C<isl_ast_op_type_print_macro> prints out the macro
9836 corresponding to a specific C<isl_ast_op_type>.
9837 If the print-macro-once option is set, then a given macro definition
9838 is only printed once to any given printer object.
9839 C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
9840 for subexpressions where these macros would be used and prints
9841 out the required macro definitions.
9842 Essentially, C<isl_ast_expr_print_macros> calls
9843 C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
9844 as function argument.
9845 C<isl_ast_node_print_macros> does the same
9846 for expressions in its C<isl_ast_node> argument.
9847 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
9848 C<isl_ast_node_if_print> print an C<isl_ast_node>
9849 in C<ISL_FORMAT_C>, but allow for some extra control
9850 through an C<isl_ast_print_options> object.
9851 This object can be created using the following functions.
9853 #include <isl/ast.h>
9854 __isl_give isl_ast_print_options *
9855 isl_ast_print_options_alloc(isl_ctx *ctx);
9856 __isl_give isl_ast_print_options *
9857 isl_ast_print_options_copy(
9858 __isl_keep isl_ast_print_options *options);
9859 __isl_null isl_ast_print_options *
9860 isl_ast_print_options_free(
9861 __isl_take isl_ast_print_options *options);
9863 __isl_give isl_ast_print_options *
9864 isl_ast_print_options_set_print_user(
9865 __isl_take isl_ast_print_options *options,
9866 __isl_give isl_printer *(*print_user)(
9867 __isl_take isl_printer *p,
9868 __isl_take isl_ast_print_options *options,
9869 __isl_keep isl_ast_node *node, void *user),
9871 __isl_give isl_ast_print_options *
9872 isl_ast_print_options_set_print_for(
9873 __isl_take isl_ast_print_options *options,
9874 __isl_give isl_printer *(*print_for)(
9875 __isl_take isl_printer *p,
9876 __isl_take isl_ast_print_options *options,
9877 __isl_keep isl_ast_node *node, void *user),
9880 The callback set by C<isl_ast_print_options_set_print_user>
9881 is called whenever a node of type C<isl_ast_node_user> needs to
9883 The callback set by C<isl_ast_print_options_set_print_for>
9884 is called whenever a node of type C<isl_ast_node_for> needs to
9886 Note that C<isl_ast_node_for_print> will I<not> call the
9887 callback set by C<isl_ast_print_options_set_print_for> on the node
9888 on which C<isl_ast_node_for_print> is called, but only on nested
9889 nodes of type C<isl_ast_node_for>. It is therefore safe to
9890 call C<isl_ast_node_for_print> from within the callback set by
9891 C<isl_ast_print_options_set_print_for>.
9893 The following option determines the type to be used for iterators
9894 while printing the AST.
9896 isl_stat isl_options_set_ast_iterator_type(
9897 isl_ctx *ctx, const char *val);
9898 const char *isl_options_get_ast_iterator_type(
9901 The AST printer only prints body nodes as blocks if these
9902 blocks cannot be safely omitted.
9903 For example, a C<for> node with one body node will not be
9904 surrounded with braces in C<ISL_FORMAT_C>.
9905 A block will always be printed by setting the following option.
9907 isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
9909 int isl_options_get_ast_always_print_block(isl_ctx *ctx);
9913 #include <isl/ast_build.h>
9914 isl_stat isl_options_set_ast_build_atomic_upper_bound(
9915 isl_ctx *ctx, int val);
9916 int isl_options_get_ast_build_atomic_upper_bound(
9918 isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
9920 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
9921 isl_stat isl_options_set_ast_build_detect_min_max(
9922 isl_ctx *ctx, int val);
9923 int isl_options_get_ast_build_detect_min_max(
9925 isl_stat isl_options_set_ast_build_exploit_nested_bounds(
9926 isl_ctx *ctx, int val);
9927 int isl_options_get_ast_build_exploit_nested_bounds(
9929 isl_stat isl_options_set_ast_build_group_coscheduled(
9930 isl_ctx *ctx, int val);
9931 int isl_options_get_ast_build_group_coscheduled(
9933 isl_stat isl_options_set_ast_build_scale_strides(
9934 isl_ctx *ctx, int val);
9935 int isl_options_get_ast_build_scale_strides(
9937 isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
9939 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
9940 isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
9942 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
9946 =item * ast_build_atomic_upper_bound
9948 Generate loop upper bounds that consist of the current loop iterator,
9949 an operator and an expression not involving the iterator.
9950 If this option is not set, then the current loop iterator may appear
9951 several times in the upper bound.
9952 For example, when this option is turned off, AST generation
9955 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
9959 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
9962 When the option is turned on, the following AST is generated
9964 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
9967 =item * ast_build_prefer_pdiv
9969 If this option is turned off, then the AST generation will
9970 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
9971 operators, but no C<isl_ast_op_pdiv_q> or
9972 C<isl_ast_op_pdiv_r> operators.
9973 If this option is turned on, then C<isl> will try to convert
9974 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
9975 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
9977 =item * ast_build_detect_min_max
9979 If this option is turned on, then C<isl> will try and detect
9980 min or max-expressions when building AST expressions from
9981 piecewise affine expressions.
9983 =item * ast_build_exploit_nested_bounds
9985 Simplify conditions based on bounds of nested for loops.
9986 In particular, remove conditions that are implied by the fact
9987 that one or more nested loops have at least one iteration,
9988 meaning that the upper bound is at least as large as the lower bound.
9989 For example, when this option is turned off, AST generation
9992 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
9998 for (int c0 = 0; c0 <= N; c0 += 1)
9999 for (int c1 = 0; c1 <= M; c1 += 1)
10002 When the option is turned on, the following AST is generated
10004 for (int c0 = 0; c0 <= N; c0 += 1)
10005 for (int c1 = 0; c1 <= M; c1 += 1)
10008 =item * ast_build_group_coscheduled
10010 If two domain elements are assigned the same schedule point, then
10011 they may be executed in any order and they may even appear in different
10012 loops. If this options is set, then the AST generator will make
10013 sure that coscheduled domain elements do not appear in separate parts
10014 of the AST. This is useful in case of nested AST generation
10015 if the outer AST generation is given only part of a schedule
10016 and the inner AST generation should handle the domains that are
10017 coscheduled by this initial part of the schedule together.
10018 For example if an AST is generated for a schedule
10020 { A[i] -> [0]; B[i] -> [0] }
10022 then the C<isl_ast_build_set_create_leaf> callback described
10023 below may get called twice, once for each domain.
10024 Setting this option ensures that the callback is only called once
10025 on both domains together.
10027 =item * ast_build_separation_bounds
10029 This option specifies which bounds to use during separation.
10030 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
10031 then all (possibly implicit) bounds on the current dimension will
10032 be used during separation.
10033 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
10034 then only those bounds that are explicitly available will
10035 be used during separation.
10037 =item * ast_build_scale_strides
10039 This option specifies whether the AST generator is allowed
10040 to scale down iterators of strided loops.
10042 =item * ast_build_allow_else
10044 This option specifies whether the AST generator is allowed
10045 to construct if statements with else branches.
10047 =item * ast_build_allow_or
10049 This option specifies whether the AST generator is allowed
10050 to construct if conditions with disjunctions.
10054 =head3 AST Generation Options (Schedule Tree)
10056 In case of AST construction from a schedule tree, the options
10057 that control how an AST is created from the individual schedule
10058 dimensions are stored in the band nodes of the tree
10059 (see L</"Schedule Trees">).
10061 In particular, a schedule dimension can be handled in four
10062 different ways, atomic, separate, unroll or the default.
10063 This loop AST generation type can be set using
10064 C<isl_schedule_node_band_member_set_ast_loop_type>.
10066 the first three can be selected by including a one-dimensional
10067 element with as value the position of the schedule dimension
10068 within the band and as name one of C<atomic>, C<separate>
10069 or C<unroll> in the options
10070 set by C<isl_schedule_node_band_set_ast_build_options>.
10071 Only one of these three may be specified for
10072 any given schedule dimension within a band node.
10073 If none of these is specified, then the default
10074 is used. The meaning of the options is as follows.
10080 When this option is specified, the AST generator will make
10081 sure that a given domains space only appears in a single
10082 loop at the specified level.
10084 For example, for the schedule tree
10086 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10088 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10089 options: "{ atomic[x] }"
10091 the following AST will be generated
10093 for (int c0 = 0; c0 <= 10; c0 += 1) {
10100 On the other hand, for the schedule tree
10102 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10104 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10105 options: "{ separate[x] }"
10107 the following AST will be generated
10111 for (int c0 = 1; c0 <= 9; c0 += 1) {
10118 If neither C<atomic> nor C<separate> is specified, then the AST generator
10119 may produce either of these two results or some intermediate form.
10123 When this option is specified, the AST generator will
10124 split the domain of the specified schedule dimension
10125 into pieces with a fixed set of statements for which
10126 instances need to be executed by the iterations in
10127 the schedule domain part. This option tends to avoid
10128 the generation of guards inside the corresponding loops.
10129 See also the C<atomic> option.
10133 When this option is specified, the AST generator will
10134 I<completely> unroll the corresponding schedule dimension.
10135 It is the responsibility of the user to ensure that such
10136 unrolling is possible.
10137 To obtain a partial unrolling, the user should apply an additional
10138 strip-mining to the schedule and fully unroll the inner schedule
10143 The C<isolate> option is a bit more involved. It allows the user
10144 to isolate a range of schedule dimension values from smaller and
10145 greater values. Additionally, the user may specify a different
10146 atomic/separate/unroll choice for the isolated part and the remaining
10147 parts. The typical use case of the C<isolate> option is to isolate
10148 full tiles from partial tiles.
10149 The part that needs to be isolated may depend on outer schedule dimensions.
10150 The option therefore needs to be able to reference those outer schedule
10151 dimensions. In particular, the space of the C<isolate> option is that
10152 of a wrapped map with as domain the flat product of all outer band nodes
10153 and as range the space of the current band node.
10154 The atomic/separate/unroll choice for the isolated part is determined
10155 by an option that lives in an unnamed wrapped space with as domain
10156 a zero-dimensional C<isolate> space and as range the regular
10157 C<atomic>, C<separate> or C<unroll> space.
10158 This option may also be set directly using
10159 C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
10160 The atomic/separate/unroll choice for the remaining part is determined
10161 by the regular C<atomic>, C<separate> or C<unroll> option.
10162 Since the C<isolate> option references outer schedule dimensions,
10163 its use in a band node causes any tree containing the node
10164 to be considered anchored.
10166 As an example, consider the isolation of full tiles from partial tiles
10167 in a tiling of a triangular domain. The original schedule is as follows.
10169 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10171 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10172 { A[i,j] -> [floor(j/10)] }, \
10173 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10177 for (int c0 = 0; c0 <= 10; c0 += 1)
10178 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10179 for (int c2 = 10 * c0;
10180 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10181 for (int c3 = 10 * c1;
10182 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10185 Isolating the full tiles, we have the following input
10187 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10189 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10190 { A[i,j] -> [floor(j/10)] }, \
10191 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10192 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10193 10a+9+10b+9 <= 100 }"
10198 for (int c0 = 0; c0 <= 8; c0 += 1) {
10199 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10200 for (int c2 = 10 * c0;
10201 c2 <= 10 * c0 + 9; c2 += 1)
10202 for (int c3 = 10 * c1;
10203 c3 <= 10 * c1 + 9; c3 += 1)
10205 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10206 for (int c2 = 10 * c0;
10207 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10208 for (int c3 = 10 * c1;
10209 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10212 for (int c0 = 9; c0 <= 10; c0 += 1)
10213 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10214 for (int c2 = 10 * c0;
10215 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10216 for (int c3 = 10 * c1;
10217 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10221 We may then additionally unroll the innermost loop of the isolated part
10223 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10225 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10226 { A[i,j] -> [floor(j/10)] }, \
10227 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10228 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10229 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"
10234 for (int c0 = 0; c0 <= 8; c0 += 1) {
10235 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10236 for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
10238 A(c2, 10 * c1 + 1);
10239 A(c2, 10 * c1 + 2);
10240 A(c2, 10 * c1 + 3);
10241 A(c2, 10 * c1 + 4);
10242 A(c2, 10 * c1 + 5);
10243 A(c2, 10 * c1 + 6);
10244 A(c2, 10 * c1 + 7);
10245 A(c2, 10 * c1 + 8);
10246 A(c2, 10 * c1 + 9);
10248 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10249 for (int c2 = 10 * c0;
10250 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10251 for (int c3 = 10 * c1;
10252 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10255 for (int c0 = 9; c0 <= 10; c0 += 1)
10256 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10257 for (int c2 = 10 * c0;
10258 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10259 for (int c3 = 10 * c1;
10260 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10265 =head3 AST Generation Options (Schedule Map)
10267 In case of AST construction using
10268 C<isl_ast_build_node_from_schedule_map>, the options
10269 that control how an AST is created from the individual schedule
10270 dimensions are stored in the C<isl_ast_build>.
10271 They can be set using the following function.
10273 #include <isl/ast_build.h>
10274 __isl_give isl_ast_build *
10275 isl_ast_build_set_options(
10276 __isl_take isl_ast_build *control,
10277 __isl_take isl_union_map *options);
10279 The options are encoded in an C<isl_union_map>.
10280 The domain of this union relation refers to the schedule domain,
10281 i.e., the range of the schedule passed
10282 to C<isl_ast_build_node_from_schedule_map>.
10283 In the case of nested AST generation (see L</"Nested AST Generation">),
10284 the domain of C<options> should refer to the extra piece of the schedule.
10285 That is, it should be equal to the range of the wrapped relation in the
10286 range of the schedule.
10287 The range of the options can consist of elements in one or more spaces,
10288 the names of which determine the effect of the option.
10289 The values of the range typically also refer to the schedule dimension
10290 to which the option applies. In case of nested AST generation
10291 (see L</"Nested AST Generation">), these values refer to the position
10292 of the schedule dimension within the innermost AST generation.
10293 The constraints on the domain elements of
10294 the option should only refer to this dimension and earlier dimensions.
10295 We consider the following spaces.
10299 =item C<separation_class>
10301 B<This option has been deprecated. Use the isolate option on
10302 schedule trees instead.>
10304 This space is a wrapped relation between two one dimensional spaces.
10305 The input space represents the schedule dimension to which the option
10306 applies and the output space represents the separation class.
10307 While constructing a loop corresponding to the specified schedule
10308 dimension(s), the AST generator will try to generate separate loops
10309 for domain elements that are assigned different classes.
10310 If only some of the elements are assigned a class, then those elements
10311 that are not assigned any class will be treated as belonging to a class
10312 that is separate from the explicitly assigned classes.
10313 The typical use case for this option is to separate full tiles from
10315 The other options, described below, are applied after the separation
10318 As an example, consider the separation into full and partial tiles
10319 of a tiling of a triangular domain.
10320 Take, for example, the domain
10322 { A[i,j] : 0 <= i,j and i + j <= 100 }
10324 and a tiling into tiles of 10 by 10. The input to the AST generator
10325 is then the schedule
10327 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
10330 Without any options, the following AST is generated
10332 for (int c0 = 0; c0 <= 10; c0 += 1)
10333 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10334 for (int c2 = 10 * c0;
10335 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10337 for (int c3 = 10 * c1;
10338 c3 <= min(10 * c1 + 9, -c2 + 100);
10342 Separation into full and partial tiles can be obtained by assigning
10343 a class, say C<0>, to the full tiles. The full tiles are represented by those
10344 values of the first and second schedule dimensions for which there are
10345 values of the third and fourth dimensions to cover an entire tile.
10346 That is, we need to specify the following option
10348 { [a,b,c,d] -> separation_class[[0]->[0]] :
10349 exists b': 0 <= 10a,10b' and
10350 10a+9+10b'+9 <= 100;
10351 [a,b,c,d] -> separation_class[[1]->[0]] :
10352 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
10354 which simplifies to
10356 { [a, b, c, d] -> separation_class[[1] -> [0]] :
10357 a >= 0 and b >= 0 and b <= 8 - a;
10358 [a, b, c, d] -> separation_class[[0] -> [0]] :
10359 a >= 0 and a <= 8 }
10361 With this option, the generated AST is as follows
10364 for (int c0 = 0; c0 <= 8; c0 += 1) {
10365 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10366 for (int c2 = 10 * c0;
10367 c2 <= 10 * c0 + 9; c2 += 1)
10368 for (int c3 = 10 * c1;
10369 c3 <= 10 * c1 + 9; c3 += 1)
10371 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10372 for (int c2 = 10 * c0;
10373 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10375 for (int c3 = 10 * c1;
10376 c3 <= min(-c2 + 100, 10 * c1 + 9);
10380 for (int c0 = 9; c0 <= 10; c0 += 1)
10381 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10382 for (int c2 = 10 * c0;
10383 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10385 for (int c3 = 10 * c1;
10386 c3 <= min(10 * c1 + 9, -c2 + 100);
10393 This is a single-dimensional space representing the schedule dimension(s)
10394 to which ``separation'' should be applied. Separation tries to split
10395 a loop into several pieces if this can avoid the generation of guards
10397 See also the C<atomic> option.
10401 This is a single-dimensional space representing the schedule dimension(s)
10402 for which the domains should be considered ``atomic''. That is, the
10403 AST generator will make sure that any given domain space will only appear
10404 in a single loop at the specified level.
10406 Consider the following schedule
10408 { a[i] -> [i] : 0 <= i < 10;
10409 b[i] -> [i+1] : 0 <= i < 10 }
10411 If the following option is specified
10413 { [i] -> separate[x] }
10415 then the following AST will be generated
10419 for (int c0 = 1; c0 <= 9; c0 += 1) {
10426 If, on the other hand, the following option is specified
10428 { [i] -> atomic[x] }
10430 then the following AST will be generated
10432 for (int c0 = 0; c0 <= 10; c0 += 1) {
10439 If neither C<atomic> nor C<separate> is specified, then the AST generator
10440 may produce either of these two results or some intermediate form.
10444 This is a single-dimensional space representing the schedule dimension(s)
10445 that should be I<completely> unrolled.
10446 To obtain a partial unrolling, the user should apply an additional
10447 strip-mining to the schedule and fully unroll the inner loop.
10451 =head3 Fine-grained Control over AST Generation
10453 Besides specifying the constraints on the parameters,
10454 an C<isl_ast_build> object can be used to control
10455 various aspects of the AST generation process.
10456 In case of AST construction using
10457 C<isl_ast_build_node_from_schedule_map>,
10458 the most prominent way of control is through ``options'',
10459 as explained above.
10461 Additional control is available through the following functions.
10463 #include <isl/ast_build.h>
10464 __isl_give isl_ast_build *
10465 isl_ast_build_set_iterators(
10466 __isl_take isl_ast_build *control,
10467 __isl_take isl_id_list *iterators);
10469 The function C<isl_ast_build_set_iterators> allows the user to
10470 specify a list of iterator C<isl_id>s to be used as iterators.
10471 If the input schedule is injective, then
10472 the number of elements in this list should be as large as the dimension
10473 of the schedule space, but no direct correspondence should be assumed
10474 between dimensions and elements.
10475 If the input schedule is not injective, then an additional number
10476 of C<isl_id>s equal to the largest dimension of the input domains
10478 If the number of provided C<isl_id>s is insufficient, then additional
10479 names are automatically generated.
10481 #include <isl/ast_build.h>
10482 __isl_give isl_ast_build *
10483 isl_ast_build_set_create_leaf(
10484 __isl_take isl_ast_build *control,
10485 __isl_give isl_ast_node *(*fn)(
10486 __isl_take isl_ast_build *build,
10487 void *user), void *user);
10490 C<isl_ast_build_set_create_leaf> function allows for the
10491 specification of a callback that should be called whenever the AST
10492 generator arrives at an element of the schedule domain.
10493 The callback should return an AST node that should be inserted
10494 at the corresponding position of the AST. The default action (when
10495 the callback is not set) is to continue generating parts of the AST to scan
10496 all the domain elements associated to the schedule domain element
10497 and to insert user nodes, ``calling'' the domain element, for each of them.
10498 The C<build> argument contains the current state of the C<isl_ast_build>.
10499 To ease nested AST generation (see L</"Nested AST Generation">),
10500 all control information that is
10501 specific to the current AST generation such as the options and
10502 the callbacks has been removed from this C<isl_ast_build>.
10503 The callback would typically return the result of a nested
10504 AST generation or a
10505 user defined node created using the following function.
10507 #include <isl/ast.h>
10508 __isl_give isl_ast_node *isl_ast_node_alloc_user(
10509 __isl_take isl_ast_expr *expr);
10511 #include <isl/ast_build.h>
10512 __isl_give isl_ast_build *
10513 isl_ast_build_set_at_each_domain(
10514 __isl_take isl_ast_build *build,
10515 __isl_give isl_ast_node *(*fn)(
10516 __isl_take isl_ast_node *node,
10517 __isl_keep isl_ast_build *build,
10518 void *user), void *user);
10519 __isl_give isl_ast_build *
10520 isl_ast_build_set_before_each_for(
10521 __isl_take isl_ast_build *build,
10522 __isl_give isl_id *(*fn)(
10523 __isl_keep isl_ast_build *build,
10524 void *user), void *user);
10525 __isl_give isl_ast_build *
10526 isl_ast_build_set_after_each_for(
10527 __isl_take isl_ast_build *build,
10528 __isl_give isl_ast_node *(*fn)(
10529 __isl_take isl_ast_node *node,
10530 __isl_keep isl_ast_build *build,
10531 void *user), void *user);
10532 __isl_give isl_ast_build *
10533 isl_ast_build_set_before_each_mark(
10534 __isl_take isl_ast_build *build,
10535 isl_stat (*fn)(__isl_keep isl_id *mark,
10536 __isl_keep isl_ast_build *build,
10537 void *user), void *user);
10538 __isl_give isl_ast_build *
10539 isl_ast_build_set_after_each_mark(
10540 __isl_take isl_ast_build *build,
10541 __isl_give isl_ast_node *(*fn)(
10542 __isl_take isl_ast_node *node,
10543 __isl_keep isl_ast_build *build,
10544 void *user), void *user);
10546 The callback set by C<isl_ast_build_set_at_each_domain> will
10547 be called for each domain AST node.
10548 The callbacks set by C<isl_ast_build_set_before_each_for>
10549 and C<isl_ast_build_set_after_each_for> will be called
10550 for each for AST node. The first will be called in depth-first
10551 pre-order, while the second will be called in depth-first post-order.
10552 Since C<isl_ast_build_set_before_each_for> is called before the for
10553 node is actually constructed, it is only passed an C<isl_ast_build>.
10554 The returned C<isl_id> will be added as an annotation (using
10555 C<isl_ast_node_set_annotation>) to the constructed for node.
10556 In particular, if the user has also specified an C<after_each_for>
10557 callback, then the annotation can be retrieved from the node passed to
10558 that callback using C<isl_ast_node_get_annotation>.
10559 The callbacks set by C<isl_ast_build_set_before_each_mark>
10560 and C<isl_ast_build_set_after_each_mark> will be called for each
10561 mark AST node that is created, i.e., for each mark schedule node
10562 in the input schedule tree. The first will be called in depth-first
10563 pre-order, while the second will be called in depth-first post-order.
10564 Since the callback set by C<isl_ast_build_set_before_each_mark>
10565 is called before the mark AST node is actually constructed, it is passed
10566 the identifier of the mark node.
10567 All callbacks should C<NULL> (or -1) on failure.
10568 The given C<isl_ast_build> can be used to create new
10569 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
10570 or C<isl_ast_build_call_from_pw_multi_aff>.
10572 =head3 Nested AST Generation
10574 C<isl> allows the user to create an AST within the context
10575 of another AST. These nested ASTs are created using the
10576 same C<isl_ast_build_node_from_schedule_map> function that is used to create
10577 the outer AST. The C<build> argument should be an C<isl_ast_build>
10578 passed to a callback set by
10579 C<isl_ast_build_set_create_leaf>.
10580 The space of the range of the C<schedule> argument should refer
10581 to this build. In particular, the space should be a wrapped
10582 relation and the domain of this wrapped relation should be the
10583 same as that of the range of the schedule returned by
10584 C<isl_ast_build_get_schedule> below.
10585 In practice, the new schedule is typically
10586 created by calling C<isl_union_map_range_product> on the old schedule
10587 and some extra piece of the schedule.
10588 The space of the schedule domain is also available from
10589 the C<isl_ast_build>.
10591 #include <isl/ast_build.h>
10592 __isl_give isl_union_map *isl_ast_build_get_schedule(
10593 __isl_keep isl_ast_build *build);
10594 __isl_give isl_space *isl_ast_build_get_schedule_space(
10595 __isl_keep isl_ast_build *build);
10596 __isl_give isl_ast_build *isl_ast_build_restrict(
10597 __isl_take isl_ast_build *build,
10598 __isl_take isl_set *set);
10600 The C<isl_ast_build_get_schedule> function returns a (partial)
10601 schedule for the domains elements for which part of the AST still needs to
10602 be generated in the current build.
10603 In particular, the domain elements are mapped to those iterations of the loops
10604 enclosing the current point of the AST generation inside which
10605 the domain elements are executed.
10606 No direct correspondence between
10607 the input schedule and this schedule should be assumed.
10608 The space obtained from C<isl_ast_build_get_schedule_space> can be used
10609 to create a set for C<isl_ast_build_restrict> to intersect
10610 with the current build. In particular, the set passed to
10611 C<isl_ast_build_restrict> can have additional parameters.
10612 The ids of the set dimensions in the space returned by
10613 C<isl_ast_build_get_schedule_space> correspond to the
10614 iterators of the already generated loops.
10615 The user should not rely on the ids of the output dimensions
10616 of the relations in the union relation returned by
10617 C<isl_ast_build_get_schedule> having any particular value.
10619 =head1 Applications
10621 Although C<isl> is mainly meant to be used as a library,
10622 it also contains some basic applications that use some
10623 of the functionality of C<isl>.
10624 For applications that take one or more polytopes or polyhedra
10625 as input, this input may be specified in either the L<isl format>
10626 or the L<PolyLib format>.
10628 =head2 C<isl_polyhedron_sample>
10630 C<isl_polyhedron_sample> takes a polyhedron as input and prints
10631 an integer element of the polyhedron, if there is any.
10632 The first column in the output is the denominator and is always
10633 equal to 1. If the polyhedron contains no integer points,
10634 then a vector of length zero is printed.
10638 C<isl_pip> takes the same input as the C<example> program
10639 from the C<piplib> distribution, i.e., a set of constraints
10640 on the parameters, a line containing only -1 and finally a set
10641 of constraints on a parametric polyhedron.
10642 The coefficients of the parameters appear in the last columns
10643 (but before the final constant column).
10644 The output is the lexicographic minimum of the parametric polyhedron.
10645 As C<isl> currently does not have its own output format, the output
10646 is just a dump of the internal state.
10648 =head2 C<isl_polyhedron_minimize>
10650 C<isl_polyhedron_minimize> computes the minimum of some linear
10651 or affine objective function over the integer points in a polyhedron.
10652 If an affine objective function
10653 is given, then the constant should appear in the last column.
10655 =head2 C<isl_polytope_scan>
10657 Given a polytope, C<isl_polytope_scan> prints
10658 all integer points in the polytope.
10660 =head2 C<isl_codegen>
10662 Given either a schedule tree or a sequence consisting of
10663 a schedule map, a context set and an options relation,
10664 C<isl_codegen> prints out an AST that scans the domain elements
10665 of the schedule in the order of their image(s) taking into account
10666 the constraints in the context set.
10668 =head2 C<isl_schedule>
10670 Given an C<isl_schedule_constraints> object as input,
10671 C<isl_schedule> prints out a schedule that satisfies the given