2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
31 #include <isl_union_set_private.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node
{
108 isl_multi_aff
*compress
;
109 isl_multi_aff
*decompress
;
124 isl_multi_val
*sizes
;
125 isl_basic_set
*bounds
;
129 static int node_has_tuples(const void *entry
, const void *val
)
131 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
132 isl_space
*space
= (isl_space
*) val
;
134 return isl_space_has_equal_tuples(node
->space
, space
);
137 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
139 return node
->scc
== scc
;
142 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
144 return node
->scc
<= scc
;
147 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
149 return node
->scc
>= scc
;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge
{
193 isl_union_map
*tagged_condition
;
194 isl_union_map
*tagged_validity
;
196 struct isl_sched_node
*src
;
197 struct isl_sched_node
*dst
;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
212 return ISL_FL_ISSET(edge
->types
, 1 << type
);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
219 ISL_FL_SET(edge
->types
, 1 << type
);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
226 ISL_FL_CLR(edge
->types
, 1 << type
);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge
*edge
)
233 return is_type(edge
, isl_edge_validity
);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge
*edge
)
240 set_type(edge
, isl_edge_validity
);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge
*edge
)
247 return is_type(edge
, isl_edge_proximity
);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge
*edge
)
254 return is_type(edge
, isl_edge_local
);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge
*edge
)
261 set_type(edge
, isl_edge_local
);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge
*edge
)
268 clear_type(edge
, isl_edge_local
);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge
*edge
)
275 return is_type(edge
, isl_edge_coincidence
);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge
*edge
)
282 return is_type(edge
, isl_edge_condition
);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge
*edge
)
289 return is_type(edge
, isl_edge_conditional_validity
);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
299 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
301 return is_condition(edge
) || is_conditional_validity(edge
);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph
{
362 isl_map_to_basic_set
*intra_hmap
;
363 isl_map_to_basic_set
*intra_hmap_param
;
364 isl_map_to_basic_set
*inter_hmap
;
366 struct isl_sched_node
*node
;
377 struct isl_sched_graph
*root
;
379 struct isl_sched_edge
*edge
;
381 int max_edge
[isl_edge_last
+ 1];
382 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
384 struct isl_hash_table
*node_table
;
385 struct isl_trivial_region
*region
;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
404 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
405 if (!graph
->node_table
)
408 for (i
= 0; i
< graph
->n
; ++i
) {
409 struct isl_hash_table_entry
*entry
;
412 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
413 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
415 graph
->node
[i
].space
, 1);
418 entry
->data
= &graph
->node
[i
];
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
428 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
430 struct isl_hash_table_entry
*entry
;
436 hash
= isl_space_get_tuple_hash(space
);
437 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
438 &node_has_tuples
, space
, 0);
440 return entry
? entry
->data
: graph
->node
+ graph
->n
;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph
*graph
,
446 struct isl_sched_node
*node
)
448 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
451 static int edge_has_src_and_dst(const void *entry
, const void *val
)
453 const struct isl_sched_edge
*edge
= entry
;
454 const struct isl_sched_edge
*temp
= val
;
456 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
462 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
463 struct isl_sched_edge
*edge
)
465 struct isl_hash_table_entry
*entry
;
468 hash
= isl_hash_init();
469 hash
= isl_hash_builtin(hash
, edge
->src
);
470 hash
= isl_hash_builtin(hash
, edge
->dst
);
471 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
472 &edge_has_src_and_dst
, edge
, 1);
474 return isl_stat_error
;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
484 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
486 enum isl_edge_type t
;
488 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
489 if (!is_type(edge
, t
))
491 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
492 return isl_stat_error
;
498 /* Allocate the edge_tables based on the maximal number of edges of
501 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
505 for (i
= 0; i
<= isl_edge_last
; ++i
) {
506 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
508 if (!graph
->edge_table
[i
])
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry
*graph_find_edge_entry(
520 struct isl_sched_graph
*graph
,
521 enum isl_edge_type type
,
522 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
524 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
526 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
528 hash
= isl_hash_init();
529 hash
= isl_hash_builtin(hash
, temp
.src
);
530 hash
= isl_hash_builtin(hash
, temp
.dst
);
531 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
532 &edge_has_src_and_dst
, &temp
, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
541 enum isl_edge_type type
,
542 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
544 struct isl_hash_table_entry
*entry
;
546 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
557 enum isl_edge_type type
,
558 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
560 struct isl_sched_edge
*edge
;
563 edge
= graph_find_edge(graph
, type
, src
, dst
);
565 return isl_bool_false
;
567 empty
= isl_map_plain_is_empty(edge
->map
);
569 return isl_bool_not(empty
);
572 /* Look for any edge with the same src, dst and map fields as "model".
574 * Return the matching edge if one can be found.
575 * Return "model" if no matching edge is found.
576 * Return NULL on error.
578 static struct isl_sched_edge
*graph_find_matching_edge(
579 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
581 enum isl_edge_type i
;
582 struct isl_sched_edge
*edge
;
584 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
587 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
590 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
600 /* Remove the given edge from all the edge_tables that refer to it.
602 static void graph_remove_edge(struct isl_sched_graph
*graph
,
603 struct isl_sched_edge
*edge
)
605 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
606 enum isl_edge_type i
;
608 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
609 struct isl_hash_table_entry
*entry
;
611 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
614 if (entry
->data
!= edge
)
616 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
620 /* Check whether the dependence graph has any edge
621 * between the given two nodes.
623 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
624 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
626 enum isl_edge_type i
;
629 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
630 r
= graph_has_edge(graph
, i
, src
, dst
);
638 /* Check whether the dependence graph has a validity edge
639 * between the given two nodes.
641 * Conditional validity edges are essentially validity edges that
642 * can be ignored if the corresponding condition edges are iteration private.
643 * Here, we are only checking for the presence of validity
644 * edges, so we need to consider the conditional validity edges too.
645 * In particular, this function is used during the detection
646 * of strongly connected components and we cannot ignore
647 * conditional validity edges during this detection.
649 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
650 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
654 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
658 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
661 /* Perform all the required memory allocations for a schedule graph "graph"
662 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
665 static isl_stat
graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
666 int n_node
, int n_edge
)
671 graph
->n_edge
= n_edge
;
672 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
673 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
674 graph
->region
= isl_alloc_array(ctx
,
675 struct isl_trivial_region
, graph
->n
);
676 graph
->edge
= isl_calloc_array(ctx
,
677 struct isl_sched_edge
, graph
->n_edge
);
679 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
680 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
681 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
683 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
685 return isl_stat_error
;
687 for(i
= 0; i
< graph
->n
; ++i
)
688 graph
->sorted
[i
] = i
;
693 /* Free the memory associated to node "node" in "graph".
694 * The "coincident" field is shared by nodes in a graph and its subgraph.
695 * It therefore only needs to be freed for the original dependence graph,
696 * i.e., one that is not the result of splitting.
698 static void clear_node(struct isl_sched_graph
*graph
,
699 struct isl_sched_node
*node
)
701 isl_space_free(node
->space
);
702 isl_set_free(node
->hull
);
703 isl_multi_aff_free(node
->compress
);
704 isl_multi_aff_free(node
->decompress
);
705 isl_mat_free(node
->sched
);
706 isl_map_free(node
->sched_map
);
707 isl_mat_free(node
->indep
);
708 isl_mat_free(node
->vmap
);
709 if (graph
->root
== graph
)
710 free(node
->coincident
);
711 isl_multi_val_free(node
->sizes
);
712 isl_basic_set_free(node
->bounds
);
713 isl_vec_free(node
->max
);
716 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
720 isl_map_to_basic_set_free(graph
->intra_hmap
);
721 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
722 isl_map_to_basic_set_free(graph
->inter_hmap
);
725 for (i
= 0; i
< graph
->n
; ++i
)
726 clear_node(graph
, &graph
->node
[i
]);
730 for (i
= 0; i
< graph
->n_edge
; ++i
) {
731 isl_map_free(graph
->edge
[i
].map
);
732 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
733 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
737 for (i
= 0; i
<= isl_edge_last
; ++i
)
738 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
739 isl_hash_table_free(ctx
, graph
->node_table
);
740 isl_basic_set_free(graph
->lp
);
743 /* For each "set" on which this function is called, increment
744 * graph->n by one and update graph->maxvar.
746 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
748 struct isl_sched_graph
*graph
= user
;
749 int nvar
= isl_set_dim(set
, isl_dim_set
);
752 if (nvar
> graph
->maxvar
)
753 graph
->maxvar
= nvar
;
760 /* Compute the number of rows that should be allocated for the schedule.
761 * In particular, we need one row for each variable or one row
762 * for each basic map in the dependences.
763 * Note that it is practically impossible to exhaust both
764 * the number of dependences and the number of variables.
766 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
767 __isl_keep isl_schedule_constraints
*sc
)
771 isl_union_set
*domain
;
775 domain
= isl_schedule_constraints_get_domain(sc
);
776 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
777 isl_union_set_free(domain
);
779 return isl_stat_error
;
780 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
782 return isl_stat_error
;
783 graph
->max_row
= n_edge
+ graph
->maxvar
;
788 /* Does "bset" have any defining equalities for its set variables?
790 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
795 return isl_bool_error
;
797 n
= isl_basic_set_dim(bset
, isl_dim_set
);
798 for (i
= 0; i
< n
; ++i
) {
801 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
807 return isl_bool_false
;
810 /* Set the entries of node->max to the value of the schedule_max_coefficient
813 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
817 max
= isl_options_get_schedule_max_coefficient(ctx
);
821 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
822 node
->max
= isl_vec_set_si(node
->max
, max
);
824 return isl_stat_error
;
829 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
830 * option (if set) and half of the minimum of the sizes in the other
831 * dimensions. Round up when computing the half such that
832 * if the minimum of the sizes is one, half of the size is taken to be one
834 * If the global minimum is unbounded (i.e., if both
835 * the schedule_max_coefficient is not set and the sizes in the other
836 * dimensions are unbounded), then store a negative value.
837 * If the schedule coefficient is close to the size of the instance set
838 * in another dimension, then the schedule may represent a loop
839 * coalescing transformation (especially if the coefficient
840 * in that other dimension is one). Forcing the coefficient to be
841 * smaller than or equal to half the minimal size should avoid this
844 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
845 struct isl_sched_node
*node
)
851 max
= isl_options_get_schedule_max_coefficient(ctx
);
852 v
= isl_vec_alloc(ctx
, node
->nvar
);
854 return isl_stat_error
;
856 for (i
= 0; i
< node
->nvar
; ++i
) {
857 isl_int_set_si(v
->el
[i
], max
);
858 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
861 for (i
= 0; i
< node
->nvar
; ++i
) {
864 size
= isl_multi_val_get_val(node
->sizes
, i
);
867 if (!isl_val_is_int(size
)) {
871 for (j
= 0; j
< node
->nvar
; ++j
) {
874 if (isl_int_is_neg(v
->el
[j
]) ||
875 isl_int_gt(v
->el
[j
], size
->n
))
876 isl_int_set(v
->el
[j
], size
->n
);
881 for (i
= 0; i
< node
->nvar
; ++i
)
882 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
888 return isl_stat_error
;
891 /* Compute and return the size of "set" in dimension "dim".
892 * The size is taken to be the difference in values for that variable
893 * for fixed values of the other variables.
894 * This assumes that "set" is convex.
895 * In particular, the variable is first isolated from the other variables
896 * in the range of a map
898 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
900 * and then duplicated
902 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
904 * The shared variables are then projected out and the maximal value
905 * of i_dim' - i_dim is computed.
907 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
914 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
915 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
916 map
= isl_map_range_product(map
, isl_map_copy(map
));
917 map
= isl_set_unwrap(isl_map_range(map
));
918 set
= isl_map_deltas(map
);
919 ls
= isl_local_space_from_space(isl_set_get_space(set
));
920 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
921 v
= isl_set_max_val(set
, obj
);
928 /* Compute the size of the instance set "set" of "node", after compression,
929 * as well as bounds on the corresponding coefficients, if needed.
931 * The sizes are needed when the schedule_treat_coalescing option is set.
932 * The bounds are needed when the schedule_treat_coalescing option or
933 * the schedule_max_coefficient option is set.
935 * If the schedule_treat_coalescing option is not set, then at most
936 * the bounds need to be set and this is done in set_max_coefficient.
937 * Otherwise, compress the domain if needed, compute the size
938 * in each direction and store the results in node->size.
939 * If the domain is not convex, then the sizes are computed
940 * on a convex superset in order to avoid picking up sizes
941 * that are valid for the individual disjuncts, but not for
942 * the domain as a whole.
943 * Finally, set the bounds on the coefficients based on the sizes
944 * and the schedule_max_coefficient option in compute_max_coefficient.
946 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
947 __isl_take isl_set
*set
)
952 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
954 return set_max_coefficient(ctx
, node
);
957 if (node
->compressed
)
958 set
= isl_set_preimage_multi_aff(set
,
959 isl_multi_aff_copy(node
->decompress
));
960 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
961 mv
= isl_multi_val_zero(isl_set_get_space(set
));
962 n
= isl_set_dim(set
, isl_dim_set
);
963 for (j
= 0; j
< n
; ++j
) {
966 v
= compute_size(isl_set_copy(set
), j
);
967 mv
= isl_multi_val_set_val(mv
, j
, v
);
972 return isl_stat_error
;
973 return compute_max_coefficient(ctx
, node
);
976 /* Add a new node to the graph representing the given instance set.
977 * "nvar" is the (possibly compressed) number of variables and
978 * may be smaller than then number of set variables in "set"
979 * if "compressed" is set.
980 * If "compressed" is set, then "hull" represents the constraints
981 * that were used to derive the compression, while "compress" and
982 * "decompress" map the original space to the compressed space and
984 * If "compressed" is not set, then "hull", "compress" and "decompress"
987 * Compute the size of the instance set and bounds on the coefficients,
990 static isl_stat
add_node(struct isl_sched_graph
*graph
,
991 __isl_take isl_set
*set
, int nvar
, int compressed
,
992 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
993 __isl_take isl_multi_aff
*decompress
)
1000 struct isl_sched_node
*node
;
1005 ctx
= isl_set_get_ctx(set
);
1006 nparam
= isl_set_dim(set
, isl_dim_param
);
1007 if (!ctx
->opt
->schedule_parametric
)
1009 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
1010 node
= &graph
->node
[graph
->n
];
1012 space
= isl_set_get_space(set
);
1013 node
->space
= space
;
1015 node
->nparam
= nparam
;
1016 node
->sched
= sched
;
1017 node
->sched_map
= NULL
;
1018 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1019 node
->coincident
= coincident
;
1020 node
->compressed
= compressed
;
1022 node
->compress
= compress
;
1023 node
->decompress
= decompress
;
1024 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1025 return isl_stat_error
;
1027 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1028 return isl_stat_error
;
1029 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1030 return isl_stat_error
;
1036 isl_multi_aff_free(compress
);
1037 isl_multi_aff_free(decompress
);
1038 return isl_stat_error
;
1041 /* Construct an identifier for node "node", which will represent "set".
1042 * The name of the identifier is either "compressed" or
1043 * "compressed_<name>", with <name> the name of the space of "set".
1044 * The user pointer of the identifier points to "node".
1046 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
1047 struct isl_sched_node
*node
)
1056 has_name
= isl_set_has_tuple_name(set
);
1060 ctx
= isl_set_get_ctx(set
);
1062 return isl_id_alloc(ctx
, "compressed", node
);
1064 p
= isl_printer_to_str(ctx
);
1065 name
= isl_set_get_tuple_name(set
);
1066 p
= isl_printer_print_str(p
, "compressed_");
1067 p
= isl_printer_print_str(p
, name
);
1068 id_name
= isl_printer_get_str(p
);
1069 isl_printer_free(p
);
1071 id
= isl_id_alloc(ctx
, id_name
, node
);
1077 /* Add a new node to the graph representing the given set.
1079 * If any of the set variables is defined by an equality, then
1080 * we perform variable compression such that we can perform
1081 * the scheduling on the compressed domain.
1082 * In this case, an identifier is used that references the new node
1083 * such that each compressed space is unique and
1084 * such that the node can be recovered from the compressed space.
1086 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1089 isl_bool has_equality
;
1091 isl_basic_set
*hull
;
1094 isl_multi_aff
*compress
, *decompress
;
1095 struct isl_sched_graph
*graph
= user
;
1097 hull
= isl_set_affine_hull(isl_set_copy(set
));
1098 hull
= isl_basic_set_remove_divs(hull
);
1099 nvar
= isl_set_dim(set
, isl_dim_set
);
1100 has_equality
= has_any_defining_equality(hull
);
1102 if (has_equality
< 0)
1104 if (!has_equality
) {
1105 isl_basic_set_free(hull
);
1106 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1109 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1110 morph
= isl_basic_set_variable_compression_with_id(hull
,
1113 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1114 compress
= isl_morph_get_var_multi_aff(morph
);
1115 morph
= isl_morph_inverse(morph
);
1116 decompress
= isl_morph_get_var_multi_aff(morph
);
1117 isl_morph_free(morph
);
1119 hull_set
= isl_set_from_basic_set(hull
);
1120 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1122 isl_basic_set_free(hull
);
1124 return isl_stat_error
;
1127 struct isl_extract_edge_data
{
1128 enum isl_edge_type type
;
1129 struct isl_sched_graph
*graph
;
1132 /* Merge edge2 into edge1, freeing the contents of edge2.
1133 * Return 0 on success and -1 on failure.
1135 * edge1 and edge2 are assumed to have the same value for the map field.
1137 static int merge_edge(struct isl_sched_edge
*edge1
,
1138 struct isl_sched_edge
*edge2
)
1140 edge1
->types
|= edge2
->types
;
1141 isl_map_free(edge2
->map
);
1143 if (is_condition(edge2
)) {
1144 if (!edge1
->tagged_condition
)
1145 edge1
->tagged_condition
= edge2
->tagged_condition
;
1147 edge1
->tagged_condition
=
1148 isl_union_map_union(edge1
->tagged_condition
,
1149 edge2
->tagged_condition
);
1152 if (is_conditional_validity(edge2
)) {
1153 if (!edge1
->tagged_validity
)
1154 edge1
->tagged_validity
= edge2
->tagged_validity
;
1156 edge1
->tagged_validity
=
1157 isl_union_map_union(edge1
->tagged_validity
,
1158 edge2
->tagged_validity
);
1161 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1163 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1169 /* Insert dummy tags in domain and range of "map".
1171 * In particular, if "map" is of the form
1177 * [A -> dummy_tag] -> [B -> dummy_tag]
1179 * where the dummy_tags are identical and equal to any dummy tags
1180 * introduced by any other call to this function.
1182 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1188 isl_set
*domain
, *range
;
1190 ctx
= isl_map_get_ctx(map
);
1192 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1193 space
= isl_space_params(isl_map_get_space(map
));
1194 space
= isl_space_set_from_params(space
);
1195 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1196 space
= isl_space_map_from_set(space
);
1198 domain
= isl_map_wrap(map
);
1199 range
= isl_map_wrap(isl_map_universe(space
));
1200 map
= isl_map_from_domain_and_range(domain
, range
);
1201 map
= isl_map_zip(map
);
1206 /* Given that at least one of "src" or "dst" is compressed, return
1207 * a map between the spaces of these nodes restricted to the affine
1208 * hull that was used in the compression.
1210 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1211 struct isl_sched_node
*dst
)
1215 if (src
->compressed
)
1216 dom
= isl_set_copy(src
->hull
);
1218 dom
= isl_set_universe(isl_space_copy(src
->space
));
1219 if (dst
->compressed
)
1220 ran
= isl_set_copy(dst
->hull
);
1222 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1224 return isl_map_from_domain_and_range(dom
, ran
);
1227 /* Intersect the domains of the nested relations in domain and range
1228 * of "tagged" with "map".
1230 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1231 __isl_keep isl_map
*map
)
1235 tagged
= isl_map_zip(tagged
);
1236 set
= isl_map_wrap(isl_map_copy(map
));
1237 tagged
= isl_map_intersect_domain(tagged
, set
);
1238 tagged
= isl_map_zip(tagged
);
1242 /* Return a pointer to the node that lives in the domain space of "map",
1243 * an invalid node if there is no such node, or NULL in case of error.
1245 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1246 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1248 struct isl_sched_node
*node
;
1251 space
= isl_space_domain(isl_map_get_space(map
));
1252 node
= graph_find_node(ctx
, graph
, space
);
1253 isl_space_free(space
);
1258 /* Return a pointer to the node that lives in the range space of "map",
1259 * an invalid node if there is no such node, or NULL in case of error.
1261 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1262 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1264 struct isl_sched_node
*node
;
1267 space
= isl_space_range(isl_map_get_space(map
));
1268 node
= graph_find_node(ctx
, graph
, space
);
1269 isl_space_free(space
);
1274 /* Refrain from adding a new edge based on "map".
1275 * Instead, just free the map.
1276 * "tagged" is either a copy of "map" with additional tags or NULL.
1278 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1281 isl_map_free(tagged
);
1286 /* Add a new edge to the graph based on the given map
1287 * and add it to data->graph->edge_table[data->type].
1288 * If a dependence relation of a given type happens to be identical
1289 * to one of the dependence relations of a type that was added before,
1290 * then we don't create a new edge, but instead mark the original edge
1291 * as also representing a dependence of the current type.
1293 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1294 * may be specified as "tagged" dependence relations. That is, "map"
1295 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1296 * the dependence on iterations and a and b are tags.
1297 * edge->map is set to the relation containing the elements i -> j,
1298 * while edge->tagged_condition and edge->tagged_validity contain
1299 * the union of all the "map" relations
1300 * for which extract_edge is called that result in the same edge->map.
1302 * If the source or the destination node is compressed, then
1303 * intersect both "map" and "tagged" with the constraints that
1304 * were used to construct the compression.
1305 * This ensures that there are no schedule constraints defined
1306 * outside of these domains, while the scheduler no longer has
1307 * any control over those outside parts.
1309 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1312 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1313 struct isl_extract_edge_data
*data
= user
;
1314 struct isl_sched_graph
*graph
= data
->graph
;
1315 struct isl_sched_node
*src
, *dst
;
1316 struct isl_sched_edge
*edge
;
1317 isl_map
*tagged
= NULL
;
1319 if (data
->type
== isl_edge_condition
||
1320 data
->type
== isl_edge_conditional_validity
) {
1321 if (isl_map_can_zip(map
)) {
1322 tagged
= isl_map_copy(map
);
1323 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1325 tagged
= insert_dummy_tags(isl_map_copy(map
));
1329 src
= find_domain_node(ctx
, graph
, map
);
1330 dst
= find_range_node(ctx
, graph
, map
);
1334 if (!is_node(graph
, src
) || !is_node(graph
, dst
))
1335 return skip_edge(map
, tagged
);
1337 if (src
->compressed
|| dst
->compressed
) {
1339 hull
= extract_hull(src
, dst
);
1341 tagged
= map_intersect_domains(tagged
, hull
);
1342 map
= isl_map_intersect(map
, hull
);
1345 empty
= isl_map_plain_is_empty(map
);
1349 return skip_edge(map
, tagged
);
1351 graph
->edge
[graph
->n_edge
].src
= src
;
1352 graph
->edge
[graph
->n_edge
].dst
= dst
;
1353 graph
->edge
[graph
->n_edge
].map
= map
;
1354 graph
->edge
[graph
->n_edge
].types
= 0;
1355 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1356 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1357 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1358 if (data
->type
== isl_edge_condition
)
1359 graph
->edge
[graph
->n_edge
].tagged_condition
=
1360 isl_union_map_from_map(tagged
);
1361 if (data
->type
== isl_edge_conditional_validity
)
1362 graph
->edge
[graph
->n_edge
].tagged_validity
=
1363 isl_union_map_from_map(tagged
);
1365 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1368 return isl_stat_error
;
1370 if (edge
== &graph
->edge
[graph
->n_edge
])
1371 return graph_edge_table_add(ctx
, graph
, data
->type
,
1372 &graph
->edge
[graph
->n_edge
++]);
1374 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1375 return isl_stat_error
;
1377 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1380 isl_map_free(tagged
);
1381 return isl_stat_error
;
1384 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1386 * The context is included in the domain before the nodes of
1387 * the graphs are extracted in order to be able to exploit
1388 * any possible additional equalities.
1389 * Note that this intersection is only performed locally here.
1391 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1392 __isl_keep isl_schedule_constraints
*sc
)
1395 isl_union_set
*domain
;
1397 struct isl_extract_edge_data data
;
1398 enum isl_edge_type i
;
1402 return isl_stat_error
;
1404 ctx
= isl_schedule_constraints_get_ctx(sc
);
1406 domain
= isl_schedule_constraints_get_domain(sc
);
1407 graph
->n
= isl_union_set_n_set(domain
);
1408 isl_union_set_free(domain
);
1410 if (graph_alloc(ctx
, graph
, graph
->n
,
1411 isl_schedule_constraints_n_map(sc
)) < 0)
1412 return isl_stat_error
;
1414 if (compute_max_row(graph
, sc
) < 0)
1415 return isl_stat_error
;
1416 graph
->root
= graph
;
1418 domain
= isl_schedule_constraints_get_domain(sc
);
1419 domain
= isl_union_set_intersect_params(domain
,
1420 isl_schedule_constraints_get_context(sc
));
1421 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1422 isl_union_set_free(domain
);
1424 return isl_stat_error
;
1425 if (graph_init_table(ctx
, graph
) < 0)
1426 return isl_stat_error
;
1427 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1428 c
= isl_schedule_constraints_get(sc
, i
);
1429 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1430 isl_union_map_free(c
);
1432 return isl_stat_error
;
1434 if (graph_init_edge_tables(ctx
, graph
) < 0)
1435 return isl_stat_error
;
1438 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1442 c
= isl_schedule_constraints_get(sc
, i
);
1443 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1444 isl_union_map_free(c
);
1446 return isl_stat_error
;
1452 /* Check whether there is any dependence from node[j] to node[i]
1453 * or from node[i] to node[j].
1455 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1458 struct isl_sched_graph
*graph
= user
;
1460 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1463 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1466 /* Check whether there is a (conditional) validity dependence from node[j]
1467 * to node[i], forcing node[i] to follow node[j].
1469 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1471 struct isl_sched_graph
*graph
= user
;
1473 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1476 /* Use Tarjan's algorithm for computing the strongly connected components
1477 * in the dependence graph only considering those edges defined by "follows".
1479 static isl_stat
detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1480 isl_bool (*follows
)(int i
, int j
, void *user
))
1483 struct isl_tarjan_graph
*g
= NULL
;
1485 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1487 return isl_stat_error
;
1493 while (g
->order
[i
] != -1) {
1494 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1502 isl_tarjan_graph_free(g
);
1507 /* Apply Tarjan's algorithm to detect the strongly connected components
1508 * in the dependence graph.
1509 * Only consider the (conditional) validity dependences and clear "weak".
1511 static isl_stat
detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1514 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1517 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1518 * in the dependence graph.
1519 * Consider all dependences and set "weak".
1521 static isl_stat
detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1524 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1527 static int cmp_scc(const void *a
, const void *b
, void *data
)
1529 struct isl_sched_graph
*graph
= data
;
1533 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1536 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1538 static int sort_sccs(struct isl_sched_graph
*graph
)
1540 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1543 /* Return a non-parametric set in the compressed space of "node" that is
1544 * bounded by the size in each direction
1546 * { [x] : -S_i <= x_i <= S_i }
1548 * If S_i is infinity in direction i, then there are no constraints
1549 * in that direction.
1551 * Cache the result in node->bounds.
1553 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1556 isl_basic_set
*bounds
;
1560 return isl_basic_set_copy(node
->bounds
);
1562 if (node
->compressed
)
1563 space
= isl_multi_aff_get_domain_space(node
->decompress
);
1565 space
= isl_space_copy(node
->space
);
1566 space
= isl_space_drop_all_params(space
);
1567 bounds
= isl_basic_set_universe(space
);
1569 for (i
= 0; i
< node
->nvar
; ++i
) {
1572 size
= isl_multi_val_get_val(node
->sizes
, i
);
1574 return isl_basic_set_free(bounds
);
1575 if (!isl_val_is_int(size
)) {
1579 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1580 isl_val_copy(size
));
1581 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1585 node
->bounds
= isl_basic_set_copy(bounds
);
1589 /* Drop some constraints from "delta" that could be exploited
1590 * to construct loop coalescing schedules.
1591 * In particular, drop those constraint that bound the difference
1592 * to the size of the domain.
1593 * First project out the parameters to improve the effectiveness.
1595 static __isl_give isl_set
*drop_coalescing_constraints(
1596 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1599 isl_basic_set
*bounds
;
1601 bounds
= get_size_bounds(node
);
1603 nparam
= isl_set_dim(delta
, isl_dim_param
);
1604 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1605 delta
= isl_set_remove_divs(delta
);
1606 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1610 /* Given a dependence relation R from "node" to itself,
1611 * construct the set of coefficients of valid constraints for elements
1612 * in that dependence relation.
1613 * In particular, the result contains tuples of coefficients
1614 * c_0, c_n, c_x such that
1616 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1620 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1622 * We choose here to compute the dual of delta R.
1623 * Alternatively, we could have computed the dual of R, resulting
1624 * in a set of tuples c_0, c_n, c_x, c_y, and then
1625 * plugged in (c_0, c_n, c_x, -c_x).
1627 * If "need_param" is set, then the resulting coefficients effectively
1628 * include coefficients for the parameters c_n. Otherwise, they may
1629 * have been projected out already.
1630 * Since the constraints may be different for these two cases,
1631 * they are stored in separate caches.
1632 * In particular, if no parameter coefficients are required and
1633 * the schedule_treat_coalescing option is set, then the parameters
1634 * are projected out and some constraints that could be exploited
1635 * to construct coalescing schedules are removed before the dual
1638 * If "node" has been compressed, then the dependence relation
1639 * is also compressed before the set of coefficients is computed.
1641 static __isl_give isl_basic_set
*intra_coefficients(
1642 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1643 __isl_take isl_map
*map
, int need_param
)
1648 isl_basic_set
*coef
;
1649 isl_maybe_isl_basic_set m
;
1650 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1656 ctx
= isl_map_get_ctx(map
);
1657 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1659 hmap
= &graph
->intra_hmap_param
;
1660 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1661 if (m
.valid
< 0 || m
.valid
) {
1666 key
= isl_map_copy(map
);
1667 if (node
->compressed
) {
1668 map
= isl_map_preimage_domain_multi_aff(map
,
1669 isl_multi_aff_copy(node
->decompress
));
1670 map
= isl_map_preimage_range_multi_aff(map
,
1671 isl_multi_aff_copy(node
->decompress
));
1673 delta
= isl_map_deltas(map
);
1675 delta
= drop_coalescing_constraints(delta
, node
);
1676 delta
= isl_set_remove_divs(delta
);
1677 coef
= isl_set_coefficients(delta
);
1678 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1683 /* Given a dependence relation R, construct the set of coefficients
1684 * of valid constraints for elements in that dependence relation.
1685 * In particular, the result contains tuples of coefficients
1686 * c_0, c_n, c_x, c_y such that
1688 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1690 * If the source or destination nodes of "edge" have been compressed,
1691 * then the dependence relation is also compressed before
1692 * the set of coefficients is computed.
1694 static __isl_give isl_basic_set
*inter_coefficients(
1695 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1696 __isl_take isl_map
*map
)
1700 isl_basic_set
*coef
;
1701 isl_maybe_isl_basic_set m
;
1703 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1704 if (m
.valid
< 0 || m
.valid
) {
1709 key
= isl_map_copy(map
);
1710 if (edge
->src
->compressed
)
1711 map
= isl_map_preimage_domain_multi_aff(map
,
1712 isl_multi_aff_copy(edge
->src
->decompress
));
1713 if (edge
->dst
->compressed
)
1714 map
= isl_map_preimage_range_multi_aff(map
,
1715 isl_multi_aff_copy(edge
->dst
->decompress
));
1716 set
= isl_map_wrap(isl_map_remove_divs(map
));
1717 coef
= isl_set_coefficients(set
);
1718 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1719 isl_basic_set_copy(coef
));
1724 /* Return the position of the coefficients of the variables in
1725 * the coefficients constraints "coef".
1727 * The space of "coef" is of the form
1729 * { coefficients[[cst, params] -> S] }
1731 * Return the position of S.
1733 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1738 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1739 offset
= isl_space_dim(space
, isl_dim_in
);
1740 isl_space_free(space
);
1745 /* Return the offset of the coefficient of the constant term of "node"
1748 * Within each node, the coefficients have the following order:
1749 * - positive and negative parts of c_i_x
1750 * - c_i_n (if parametric)
1753 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1755 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1758 /* Return the offset of the coefficients of the parameters of "node"
1761 * Within each node, the coefficients have the following order:
1762 * - positive and negative parts of c_i_x
1763 * - c_i_n (if parametric)
1766 static int node_par_coef_offset(struct isl_sched_node
*node
)
1768 return node
->start
+ 2 * node
->nvar
;
1771 /* Return the offset of the coefficients of the variables of "node"
1774 * Within each node, the coefficients have the following order:
1775 * - positive and negative parts of c_i_x
1776 * - c_i_n (if parametric)
1779 static int node_var_coef_offset(struct isl_sched_node
*node
)
1784 /* Return the position of the pair of variables encoding
1785 * coefficient "i" of "node".
1787 * The order of these variable pairs is the opposite of
1788 * that of the coefficients, with 2 variables per coefficient.
1790 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1792 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1795 /* Construct an isl_dim_map for mapping constraints on coefficients
1796 * for "node" to the corresponding positions in graph->lp.
1797 * "offset" is the offset of the coefficients for the variables
1798 * in the input constraints.
1799 * "s" is the sign of the mapping.
1801 * The input constraints are given in terms of the coefficients
1802 * (c_0, c_x) or (c_0, c_n, c_x).
1803 * The mapping produced by this function essentially plugs in
1804 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1805 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1806 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1807 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1808 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1809 * Furthermore, the order of these pairs is the opposite of that
1810 * of the corresponding coefficients.
1812 * The caller can extend the mapping to also map the other coefficients
1813 * (and therefore not plug in 0).
1815 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1816 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1821 isl_dim_map
*dim_map
;
1823 if (!node
|| !graph
->lp
)
1826 total
= isl_basic_set_total_dim(graph
->lp
);
1827 pos
= node_var_coef_pos(node
, 0);
1828 dim_map
= isl_dim_map_alloc(ctx
, total
);
1829 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1830 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1835 /* Construct an isl_dim_map for mapping constraints on coefficients
1836 * for "src" (node i) and "dst" (node j) to the corresponding positions
1838 * "offset" is the offset of the coefficients for the variables of "src"
1839 * in the input constraints.
1840 * "s" is the sign of the mapping.
1842 * The input constraints are given in terms of the coefficients
1843 * (c_0, c_n, c_x, c_y).
1844 * The mapping produced by this function essentially plugs in
1845 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1846 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1847 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1848 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1849 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1850 * Furthermore, the order of these pairs is the opposite of that
1851 * of the corresponding coefficients.
1853 * The caller can further extend the mapping.
1855 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1856 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1857 struct isl_sched_node
*dst
, int offset
, int s
)
1861 isl_dim_map
*dim_map
;
1863 if (!src
|| !dst
|| !graph
->lp
)
1866 total
= isl_basic_set_total_dim(graph
->lp
);
1867 dim_map
= isl_dim_map_alloc(ctx
, total
);
1869 pos
= node_cst_coef_offset(dst
);
1870 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1871 pos
= node_par_coef_offset(dst
);
1872 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1873 pos
= node_var_coef_pos(dst
, 0);
1874 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1876 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1879 pos
= node_cst_coef_offset(src
);
1880 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1881 pos
= node_par_coef_offset(src
);
1882 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1883 pos
= node_var_coef_pos(src
, 0);
1884 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1885 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1890 /* Add the constraints from "src" to "dst" using "dim_map",
1891 * after making sure there is enough room in "dst" for the extra constraints.
1893 static __isl_give isl_basic_set
*add_constraints_dim_map(
1894 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1895 __isl_take isl_dim_map
*dim_map
)
1899 n_eq
= isl_basic_set_n_equality(src
);
1900 n_ineq
= isl_basic_set_n_inequality(src
);
1901 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1902 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1906 /* Add constraints to graph->lp that force validity for the given
1907 * dependence from a node i to itself.
1908 * That is, add constraints that enforce
1910 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1911 * = c_i_x (y - x) >= 0
1913 * for each (x,y) in R.
1914 * We obtain general constraints on coefficients (c_0, c_x)
1915 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1916 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1917 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1918 * Note that the result of intra_coefficients may also contain
1919 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1921 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1922 struct isl_sched_edge
*edge
)
1925 isl_map
*map
= isl_map_copy(edge
->map
);
1926 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1927 isl_dim_map
*dim_map
;
1928 isl_basic_set
*coef
;
1929 struct isl_sched_node
*node
= edge
->src
;
1931 coef
= intra_coefficients(graph
, node
, map
, 0);
1933 offset
= coef_var_offset(coef
);
1936 return isl_stat_error
;
1938 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1939 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1944 /* Add constraints to graph->lp that force validity for the given
1945 * dependence from node i to node j.
1946 * That is, add constraints that enforce
1948 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1950 * for each (x,y) in R.
1951 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1952 * of valid constraints for R and then plug in
1953 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1954 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1955 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1957 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1958 struct isl_sched_edge
*edge
)
1963 isl_dim_map
*dim_map
;
1964 isl_basic_set
*coef
;
1965 struct isl_sched_node
*src
= edge
->src
;
1966 struct isl_sched_node
*dst
= edge
->dst
;
1969 return isl_stat_error
;
1971 map
= isl_map_copy(edge
->map
);
1972 ctx
= isl_map_get_ctx(map
);
1973 coef
= inter_coefficients(graph
, edge
, map
);
1975 offset
= coef_var_offset(coef
);
1978 return isl_stat_error
;
1980 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1982 edge
->start
= graph
->lp
->n_ineq
;
1983 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1985 return isl_stat_error
;
1986 edge
->end
= graph
->lp
->n_ineq
;
1991 /* Add constraints to graph->lp that bound the dependence distance for the given
1992 * dependence from a node i to itself.
1993 * If s = 1, we add the constraint
1995 * c_i_x (y - x) <= m_0 + m_n n
1999 * -c_i_x (y - x) + m_0 + m_n n >= 0
2001 * for each (x,y) in R.
2002 * If s = -1, we add the constraint
2004 * -c_i_x (y - x) <= m_0 + m_n n
2008 * c_i_x (y - x) + m_0 + m_n n >= 0
2010 * for each (x,y) in R.
2011 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2012 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2013 * with each coefficient (except m_0) represented as a pair of non-negative
2017 * If "local" is set, then we add constraints
2019 * c_i_x (y - x) <= 0
2023 * -c_i_x (y - x) <= 0
2025 * instead, forcing the dependence distance to be (less than or) equal to 0.
2026 * That is, we plug in (0, 0, -s * c_i_x),
2027 * intra_coefficients is not required to have c_n in its result when
2028 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2029 * Note that dependences marked local are treated as validity constraints
2030 * by add_all_validity_constraints and therefore also have
2031 * their distances bounded by 0 from below.
2033 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2034 struct isl_sched_edge
*edge
, int s
, int local
)
2038 isl_map
*map
= isl_map_copy(edge
->map
);
2039 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2040 isl_dim_map
*dim_map
;
2041 isl_basic_set
*coef
;
2042 struct isl_sched_node
*node
= edge
->src
;
2044 coef
= intra_coefficients(graph
, node
, map
, !local
);
2046 offset
= coef_var_offset(coef
);
2049 return isl_stat_error
;
2051 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2052 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2055 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2056 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2057 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2059 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2064 /* Add constraints to graph->lp that bound the dependence distance for the given
2065 * dependence from node i to node j.
2066 * If s = 1, we add the constraint
2068 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2073 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2076 * for each (x,y) in R.
2077 * If s = -1, we add the constraint
2079 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2084 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2087 * for each (x,y) in R.
2088 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2089 * of valid constraints for R and then plug in
2090 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2091 * s*c_i_x, -s*c_j_x)
2092 * with each coefficient (except m_0, c_*_0 and c_*_n)
2093 * represented as a pair of non-negative coefficients.
2096 * If "local" is set (and s = 1), then we add constraints
2098 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2102 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2104 * instead, forcing the dependence distance to be (less than or) equal to 0.
2105 * That is, we plug in
2106 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2107 * Note that dependences marked local are treated as validity constraints
2108 * by add_all_validity_constraints and therefore also have
2109 * their distances bounded by 0 from below.
2111 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2112 struct isl_sched_edge
*edge
, int s
, int local
)
2116 isl_map
*map
= isl_map_copy(edge
->map
);
2117 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2118 isl_dim_map
*dim_map
;
2119 isl_basic_set
*coef
;
2120 struct isl_sched_node
*src
= edge
->src
;
2121 struct isl_sched_node
*dst
= edge
->dst
;
2123 coef
= inter_coefficients(graph
, edge
, map
);
2125 offset
= coef_var_offset(coef
);
2128 return isl_stat_error
;
2130 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2131 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2134 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2135 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2136 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2139 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2144 /* Should the distance over "edge" be forced to zero?
2145 * That is, is it marked as a local edge?
2146 * If "use_coincidence" is set, then coincidence edges are treated
2149 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2151 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2154 /* Add all validity constraints to graph->lp.
2156 * An edge that is forced to be local needs to have its dependence
2157 * distances equal to zero. We take care of bounding them by 0 from below
2158 * here. add_all_proximity_constraints takes care of bounding them by 0
2161 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2162 * Otherwise, we ignore them.
2164 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2165 int use_coincidence
)
2169 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2170 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2173 zero
= force_zero(edge
, use_coincidence
);
2174 if (!is_validity(edge
) && !zero
)
2176 if (edge
->src
!= edge
->dst
)
2178 if (add_intra_validity_constraints(graph
, edge
) < 0)
2182 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2183 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2186 zero
= force_zero(edge
, use_coincidence
);
2187 if (!is_validity(edge
) && !zero
)
2189 if (edge
->src
== edge
->dst
)
2191 if (add_inter_validity_constraints(graph
, edge
) < 0)
2198 /* Add constraints to graph->lp that bound the dependence distance
2199 * for all dependence relations.
2200 * If a given proximity dependence is identical to a validity
2201 * dependence, then the dependence distance is already bounded
2202 * from below (by zero), so we only need to bound the distance
2203 * from above. (This includes the case of "local" dependences
2204 * which are treated as validity dependence by add_all_validity_constraints.)
2205 * Otherwise, we need to bound the distance both from above and from below.
2207 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2208 * Otherwise, we ignore them.
2210 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2211 int use_coincidence
)
2215 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2216 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2219 zero
= force_zero(edge
, use_coincidence
);
2220 if (!is_proximity(edge
) && !zero
)
2222 if (edge
->src
== edge
->dst
&&
2223 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2225 if (edge
->src
!= edge
->dst
&&
2226 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2228 if (is_validity(edge
) || zero
)
2230 if (edge
->src
== edge
->dst
&&
2231 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2233 if (edge
->src
!= edge
->dst
&&
2234 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2241 /* Normalize the rows of "indep" such that all rows are lexicographically
2242 * positive and such that each row contains as many final zeros as possible,
2243 * given the choice for the previous rows.
2244 * Do this by performing elementary row operations.
2246 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2248 indep
= isl_mat_reverse_gauss(indep
);
2249 indep
= isl_mat_lexnonneg_rows(indep
);
2253 /* Compute a basis for the rows in the linear part of the schedule
2254 * and extend this basis to a full basis. The remaining rows
2255 * can then be used to force linear independence from the rows
2258 * In particular, given the schedule rows S, we compute
2263 * with H the Hermite normal form of S. That is, all but the
2264 * first rank columns of H are zero and so each row in S is
2265 * a linear combination of the first rank rows of Q.
2266 * The matrix Q can be used as a variable transformation
2267 * that isolates the directions of S in the first rank rows.
2268 * Transposing S U = H yields
2272 * with all but the first rank rows of H^T zero.
2273 * The last rows of U^T are therefore linear combinations
2274 * of schedule coefficients that are all zero on schedule
2275 * coefficients that are linearly dependent on the rows of S.
2276 * At least one of these combinations is non-zero on
2277 * linearly independent schedule coefficients.
2278 * The rows are normalized to involve as few of the last
2279 * coefficients as possible and to have a positive initial value.
2281 static int node_update_vmap(struct isl_sched_node
*node
)
2284 int n_row
= isl_mat_rows(node
->sched
);
2286 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2287 1 + node
->nparam
, node
->nvar
);
2289 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2290 isl_mat_free(node
->indep
);
2291 isl_mat_free(node
->vmap
);
2293 node
->indep
= isl_mat_transpose(U
);
2294 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2295 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2296 node
->indep
= normalize_independent(node
->indep
);
2299 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2304 /* Is "edge" marked as a validity or a conditional validity edge?
2306 static int is_any_validity(struct isl_sched_edge
*edge
)
2308 return is_validity(edge
) || is_conditional_validity(edge
);
2311 /* How many times should we count the constraints in "edge"?
2313 * We count as follows
2314 * validity -> 1 (>= 0)
2315 * validity+proximity -> 2 (>= 0 and upper bound)
2316 * proximity -> 2 (lower and upper bound)
2317 * local(+any) -> 2 (>= 0 and <= 0)
2319 * If an edge is only marked conditional_validity then it counts
2320 * as zero since it is only checked afterwards.
2322 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2323 * Otherwise, we ignore them.
2325 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2327 if (is_proximity(edge
) || force_zero(edge
, use_coincidence
))
2329 if (is_validity(edge
))
2334 /* How many times should the constraints in "edge" be counted
2335 * as a parametric intra-node constraint?
2337 * Only proximity edges that are not forced zero need
2338 * coefficient constraints that include coefficients for parameters.
2339 * If the edge is also a validity edge, then only
2340 * an upper bound is introduced. Otherwise, both lower and upper bounds
2343 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2344 int use_coincidence
)
2346 if (edge
->src
!= edge
->dst
)
2348 if (!is_proximity(edge
))
2350 if (force_zero(edge
, use_coincidence
))
2352 if (is_validity(edge
))
2358 /* Add "f" times the number of equality and inequality constraints of "bset"
2359 * to "n_eq" and "n_ineq" and free "bset".
2361 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2362 int f
, int *n_eq
, int *n_ineq
)
2365 return isl_stat_error
;
2367 *n_eq
+= isl_basic_set_n_equality(bset
);
2368 *n_ineq
+= isl_basic_set_n_inequality(bset
);
2369 isl_basic_set_free(bset
);
2374 /* Count the number of equality and inequality constraints
2375 * that will be added for the given map.
2377 * The edges that require parameter coefficients are counted separately.
2379 * "use_coincidence" is set if we should take into account coincidence edges.
2381 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2382 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2383 int *n_eq
, int *n_ineq
, int use_coincidence
)
2386 isl_basic_set
*coef
;
2387 int f
= edge_multiplicity(edge
, use_coincidence
);
2388 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2395 if (edge
->src
!= edge
->dst
) {
2396 coef
= inter_coefficients(graph
, edge
, map
);
2397 return update_count(coef
, f
, n_eq
, n_ineq
);
2401 copy
= isl_map_copy(map
);
2402 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2403 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2408 copy
= isl_map_copy(map
);
2409 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2410 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2418 return isl_stat_error
;
2421 /* Count the number of equality and inequality constraints
2422 * that will be added to the main lp problem.
2423 * We count as follows
2424 * validity -> 1 (>= 0)
2425 * validity+proximity -> 2 (>= 0 and upper bound)
2426 * proximity -> 2 (lower and upper bound)
2427 * local(+any) -> 2 (>= 0 and <= 0)
2429 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2430 * Otherwise, we ignore them.
2432 static int count_constraints(struct isl_sched_graph
*graph
,
2433 int *n_eq
, int *n_ineq
, int use_coincidence
)
2437 *n_eq
= *n_ineq
= 0;
2438 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2439 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2440 isl_map
*map
= isl_map_copy(edge
->map
);
2442 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2443 use_coincidence
) < 0)
2450 /* Count the number of constraints that will be added by
2451 * add_bound_constant_constraints to bound the values of the constant terms
2452 * and increment *n_eq and *n_ineq accordingly.
2454 * In practice, add_bound_constant_constraints only adds inequalities.
2456 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2457 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2459 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2462 *n_ineq
+= graph
->n
;
2467 /* Add constraints to bound the values of the constant terms in the schedule,
2468 * if requested by the user.
2470 * The maximal value of the constant terms is defined by the option
2471 * "schedule_max_constant_term".
2473 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2474 struct isl_sched_graph
*graph
)
2480 max
= isl_options_get_schedule_max_constant_term(ctx
);
2484 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2486 for (i
= 0; i
< graph
->n
; ++i
) {
2487 struct isl_sched_node
*node
= &graph
->node
[i
];
2490 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2492 return isl_stat_error
;
2493 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2494 pos
= node_cst_coef_offset(node
);
2495 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2496 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2502 /* Count the number of constraints that will be added by
2503 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2506 * In practice, add_bound_coefficient_constraints only adds inequalities.
2508 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2509 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2513 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2514 !isl_options_get_schedule_treat_coalescing(ctx
))
2517 for (i
= 0; i
< graph
->n
; ++i
)
2518 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2523 /* Add constraints to graph->lp that bound the values of
2524 * the parameter schedule coefficients of "node" to "max" and
2525 * the variable schedule coefficients to the corresponding entry
2527 * In either case, a negative value means that no bound needs to be imposed.
2529 * For parameter coefficients, this amounts to adding a constraint
2537 * The variables coefficients are, however, not represented directly.
2538 * Instead, the variable coefficients c_x are written as differences
2539 * c_x = c_x^+ - c_x^-.
2542 * -max_i <= c_x_i <= max_i
2546 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2550 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2551 * c_x_i^+ - c_x_i^- + max_i >= 0
2553 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2554 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2560 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2562 for (j
= 0; j
< node
->nparam
; ++j
) {
2568 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2570 return isl_stat_error
;
2571 dim
= 1 + node_par_coef_offset(node
) + j
;
2572 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2573 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2574 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2577 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2578 ineq
= isl_vec_clr(ineq
);
2580 return isl_stat_error
;
2581 for (i
= 0; i
< node
->nvar
; ++i
) {
2582 int pos
= 1 + node_var_coef_pos(node
, i
);
2584 if (isl_int_is_neg(node
->max
->el
[i
]))
2587 isl_int_set_si(ineq
->el
[pos
], 1);
2588 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2589 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2591 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2594 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2596 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2597 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2600 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2602 isl_seq_clr(ineq
->el
+ pos
, 2);
2609 return isl_stat_error
;
2612 /* Add constraints that bound the values of the variable and parameter
2613 * coefficients of the schedule.
2615 * The maximal value of the coefficients is defined by the option
2616 * 'schedule_max_coefficient' and the entries in node->max.
2617 * These latter entries are only set if either the schedule_max_coefficient
2618 * option or the schedule_treat_coalescing option is set.
2620 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2621 struct isl_sched_graph
*graph
)
2626 max
= isl_options_get_schedule_max_coefficient(ctx
);
2628 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2631 for (i
= 0; i
< graph
->n
; ++i
) {
2632 struct isl_sched_node
*node
= &graph
->node
[i
];
2634 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2635 return isl_stat_error
;
2641 /* Add a constraint to graph->lp that equates the value at position
2642 * "sum_pos" to the sum of the "n" values starting at "first".
2644 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2645 int sum_pos
, int first
, int n
)
2650 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2652 k
= isl_basic_set_alloc_equality(graph
->lp
);
2654 return isl_stat_error
;
2655 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2656 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2657 for (i
= 0; i
< n
; ++i
)
2658 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2663 /* Add a constraint to graph->lp that equates the value at position
2664 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2666 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2672 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2674 k
= isl_basic_set_alloc_equality(graph
->lp
);
2676 return isl_stat_error
;
2677 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2678 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2679 for (i
= 0; i
< graph
->n
; ++i
) {
2680 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2682 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2683 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2689 /* Add a constraint to graph->lp that equates the value at position
2690 * "sum_pos" to the sum of the variable coefficients of all nodes.
2692 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2698 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2700 k
= isl_basic_set_alloc_equality(graph
->lp
);
2702 return isl_stat_error
;
2703 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2704 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2705 for (i
= 0; i
< graph
->n
; ++i
) {
2706 struct isl_sched_node
*node
= &graph
->node
[i
];
2707 int pos
= 1 + node_var_coef_offset(node
);
2709 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2710 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2716 /* Construct an ILP problem for finding schedule coefficients
2717 * that result in non-negative, but small dependence distances
2718 * over all dependences.
2719 * In particular, the dependence distances over proximity edges
2720 * are bounded by m_0 + m_n n and we compute schedule coefficients
2721 * with small values (preferably zero) of m_n and m_0.
2723 * All variables of the ILP are non-negative. The actual coefficients
2724 * may be negative, so each coefficient is represented as the difference
2725 * of two non-negative variables. The negative part always appears
2726 * immediately before the positive part.
2727 * Other than that, the variables have the following order
2729 * - sum of positive and negative parts of m_n coefficients
2731 * - sum of all c_n coefficients
2732 * (unconstrained when computing non-parametric schedules)
2733 * - sum of positive and negative parts of all c_x coefficients
2734 * - positive and negative parts of m_n coefficients
2736 * - positive and negative parts of c_i_x, in opposite order
2737 * - c_i_n (if parametric)
2740 * The constraints are those from the edges plus two or three equalities
2741 * to express the sums.
2743 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2744 * Otherwise, we ignore them.
2746 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2747 int use_coincidence
)
2757 parametric
= ctx
->opt
->schedule_parametric
;
2758 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2760 total
= param_pos
+ 2 * nparam
;
2761 for (i
= 0; i
< graph
->n
; ++i
) {
2762 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2763 if (node_update_vmap(node
) < 0)
2764 return isl_stat_error
;
2765 node
->start
= total
;
2766 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2769 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2770 return isl_stat_error
;
2771 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2772 return isl_stat_error
;
2773 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2774 return isl_stat_error
;
2776 space
= isl_space_set_alloc(ctx
, 0, total
);
2777 isl_basic_set_free(graph
->lp
);
2778 n_eq
+= 2 + parametric
;
2780 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2782 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2783 return isl_stat_error
;
2784 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2785 return isl_stat_error
;
2786 if (add_var_sum_constraint(graph
, 3) < 0)
2787 return isl_stat_error
;
2788 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2789 return isl_stat_error
;
2790 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2791 return isl_stat_error
;
2792 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2793 return isl_stat_error
;
2794 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2795 return isl_stat_error
;
2800 /* Analyze the conflicting constraint found by
2801 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2802 * constraint of one of the edges between distinct nodes, living, moreover
2803 * in distinct SCCs, then record the source and sink SCC as this may
2804 * be a good place to cut between SCCs.
2806 static int check_conflict(int con
, void *user
)
2809 struct isl_sched_graph
*graph
= user
;
2811 if (graph
->src_scc
>= 0)
2814 con
-= graph
->lp
->n_eq
;
2816 if (con
>= graph
->lp
->n_ineq
)
2819 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2820 if (!is_validity(&graph
->edge
[i
]))
2822 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2824 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2826 if (graph
->edge
[i
].start
> con
)
2828 if (graph
->edge
[i
].end
<= con
)
2830 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2831 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2837 /* Check whether the next schedule row of the given node needs to be
2838 * non-trivial. Lower-dimensional domains may have some trivial rows,
2839 * but as soon as the number of remaining required non-trivial rows
2840 * is as large as the number or remaining rows to be computed,
2841 * all remaining rows need to be non-trivial.
2843 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2845 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2848 /* Construct a non-triviality region with triviality directions
2849 * corresponding to the rows of "indep".
2850 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2851 * while the triviality directions are expressed in terms of
2852 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2853 * before c^+_i. Furthermore,
2854 * the pairs of non-negative variables representing the coefficients
2855 * are stored in the opposite order.
2857 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2866 ctx
= isl_mat_get_ctx(indep
);
2867 n
= isl_mat_rows(indep
);
2868 n_var
= isl_mat_cols(indep
);
2869 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2872 for (i
= 0; i
< n
; ++i
) {
2873 for (j
= 0; j
< n_var
; ++j
) {
2874 int nj
= n_var
- 1 - j
;
2875 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2876 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2883 /* Solve the ILP problem constructed in setup_lp.
2884 * For each node such that all the remaining rows of its schedule
2885 * need to be non-trivial, we construct a non-triviality region.
2886 * This region imposes that the next row is independent of previous rows.
2887 * In particular, the non-triviality region enforces that at least
2888 * one of the linear combinations in the rows of node->indep is non-zero.
2890 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2896 for (i
= 0; i
< graph
->n
; ++i
) {
2897 struct isl_sched_node
*node
= &graph
->node
[i
];
2900 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2901 if (needs_row(graph
, node
))
2902 trivial
= construct_trivial(node
->indep
);
2904 trivial
= isl_mat_zero(ctx
, 0, 0);
2905 graph
->region
[i
].trivial
= trivial
;
2907 lp
= isl_basic_set_copy(graph
->lp
);
2908 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2909 graph
->region
, &check_conflict
, graph
);
2910 for (i
= 0; i
< graph
->n
; ++i
)
2911 isl_mat_free(graph
->region
[i
].trivial
);
2915 /* Extract the coefficients for the variables of "node" from "sol".
2917 * Each schedule coefficient c_i_x is represented as the difference
2918 * between two non-negative variables c_i_x^+ - c_i_x^-.
2919 * The c_i_x^- appear before their c_i_x^+ counterpart.
2920 * Furthermore, the order of these pairs is the opposite of that
2921 * of the corresponding coefficients.
2923 * Return c_i_x = c_i_x^+ - c_i_x^-
2925 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2926 __isl_keep isl_vec
*sol
)
2934 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2938 pos
= 1 + node_var_coef_offset(node
);
2939 for (i
= 0; i
< node
->nvar
; ++i
)
2940 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2941 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2946 /* Update the schedules of all nodes based on the given solution
2947 * of the LP problem.
2948 * The new row is added to the current band.
2949 * All possibly negative coefficients are encoded as a difference
2950 * of two non-negative variables, so we need to perform the subtraction
2953 * If coincident is set, then the caller guarantees that the new
2954 * row satisfies the coincidence constraints.
2956 static int update_schedule(struct isl_sched_graph
*graph
,
2957 __isl_take isl_vec
*sol
, int coincident
)
2960 isl_vec
*csol
= NULL
;
2965 isl_die(sol
->ctx
, isl_error_internal
,
2966 "no solution found", goto error
);
2967 if (graph
->n_total_row
>= graph
->max_row
)
2968 isl_die(sol
->ctx
, isl_error_internal
,
2969 "too many schedule rows", goto error
);
2971 for (i
= 0; i
< graph
->n
; ++i
) {
2972 struct isl_sched_node
*node
= &graph
->node
[i
];
2974 int row
= isl_mat_rows(node
->sched
);
2977 csol
= extract_var_coef(node
, sol
);
2981 isl_map_free(node
->sched_map
);
2982 node
->sched_map
= NULL
;
2983 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2986 pos
= node_cst_coef_offset(node
);
2987 node
->sched
= isl_mat_set_element(node
->sched
,
2988 row
, 0, sol
->el
[1 + pos
]);
2989 pos
= node_par_coef_offset(node
);
2990 for (j
= 0; j
< node
->nparam
; ++j
)
2991 node
->sched
= isl_mat_set_element(node
->sched
,
2992 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
2993 for (j
= 0; j
< node
->nvar
; ++j
)
2994 node
->sched
= isl_mat_set_element(node
->sched
,
2995 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2996 node
->coincident
[graph
->n_total_row
] = coincident
;
3002 graph
->n_total_row
++;
3011 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3012 * and return this isl_aff.
3014 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
3015 struct isl_sched_node
*node
, int row
)
3023 aff
= isl_aff_zero_on_domain(ls
);
3024 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3026 aff
= isl_aff_set_constant(aff
, v
);
3027 for (j
= 0; j
< node
->nparam
; ++j
) {
3028 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3030 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3032 for (j
= 0; j
< node
->nvar
; ++j
) {
3033 if (isl_mat_get_element(node
->sched
, row
,
3034 1 + node
->nparam
+ j
, &v
) < 0)
3036 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3048 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3049 * and return this multi_aff.
3051 * The result is defined over the uncompressed node domain.
3053 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
3054 struct isl_sched_node
*node
, int first
, int n
)
3058 isl_local_space
*ls
;
3065 nrow
= isl_mat_rows(node
->sched
);
3066 if (node
->compressed
)
3067 space
= isl_multi_aff_get_domain_space(node
->decompress
);
3069 space
= isl_space_copy(node
->space
);
3070 ls
= isl_local_space_from_space(isl_space_copy(space
));
3071 space
= isl_space_from_domain(space
);
3072 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3073 ma
= isl_multi_aff_zero(space
);
3075 for (i
= first
; i
< first
+ n
; ++i
) {
3076 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3077 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3080 isl_local_space_free(ls
);
3082 if (node
->compressed
)
3083 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3084 isl_multi_aff_copy(node
->compress
));
3089 /* Convert node->sched into a multi_aff and return this multi_aff.
3091 * The result is defined over the uncompressed node domain.
3093 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3094 struct isl_sched_node
*node
)
3098 nrow
= isl_mat_rows(node
->sched
);
3099 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3102 /* Convert node->sched into a map and return this map.
3104 * The result is cached in node->sched_map, which needs to be released
3105 * whenever node->sched is updated.
3106 * It is defined over the uncompressed node domain.
3108 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3110 if (!node
->sched_map
) {
3113 ma
= node_extract_schedule_multi_aff(node
);
3114 node
->sched_map
= isl_map_from_multi_aff(ma
);
3117 return isl_map_copy(node
->sched_map
);
3120 /* Construct a map that can be used to update a dependence relation
3121 * based on the current schedule.
3122 * That is, construct a map expressing that source and sink
3123 * are executed within the same iteration of the current schedule.
3124 * This map can then be intersected with the dependence relation.
3125 * This is not the most efficient way, but this shouldn't be a critical
3128 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3129 struct isl_sched_node
*dst
)
3131 isl_map
*src_sched
, *dst_sched
;
3133 src_sched
= node_extract_schedule(src
);
3134 dst_sched
= node_extract_schedule(dst
);
3135 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3138 /* Intersect the domains of the nested relations in domain and range
3139 * of "umap" with "map".
3141 static __isl_give isl_union_map
*intersect_domains(
3142 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3144 isl_union_set
*uset
;
3146 umap
= isl_union_map_zip(umap
);
3147 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3148 umap
= isl_union_map_intersect_domain(umap
, uset
);
3149 umap
= isl_union_map_zip(umap
);
3153 /* Update the dependence relation of the given edge based
3154 * on the current schedule.
3155 * If the dependence is carried completely by the current schedule, then
3156 * it is removed from the edge_tables. It is kept in the list of edges
3157 * as otherwise all edge_tables would have to be recomputed.
3159 * If the edge is of a type that can appear multiple times
3160 * between the same pair of nodes, then it is added to
3161 * the edge table (again). This prevents the situation
3162 * where none of these edges is referenced from the edge table
3163 * because the one that was referenced turned out to be empty and
3164 * was therefore removed from the table.
3166 static isl_stat
update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3167 struct isl_sched_edge
*edge
)
3172 id
= specializer(edge
->src
, edge
->dst
);
3173 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3177 if (edge
->tagged_condition
) {
3178 edge
->tagged_condition
=
3179 intersect_domains(edge
->tagged_condition
, id
);
3180 if (!edge
->tagged_condition
)
3183 if (edge
->tagged_validity
) {
3184 edge
->tagged_validity
=
3185 intersect_domains(edge
->tagged_validity
, id
);
3186 if (!edge
->tagged_validity
)
3190 empty
= isl_map_plain_is_empty(edge
->map
);
3194 graph_remove_edge(graph
, edge
);
3195 } else if (is_multi_edge_type(edge
)) {
3196 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3204 return isl_stat_error
;
3207 /* Does the domain of "umap" intersect "uset"?
3209 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3210 __isl_keep isl_union_set
*uset
)
3214 umap
= isl_union_map_copy(umap
);
3215 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3216 empty
= isl_union_map_is_empty(umap
);
3217 isl_union_map_free(umap
);
3219 return empty
< 0 ? -1 : !empty
;
3222 /* Does the range of "umap" intersect "uset"?
3224 static int range_intersects(__isl_keep isl_union_map
*umap
,
3225 __isl_keep isl_union_set
*uset
)
3229 umap
= isl_union_map_copy(umap
);
3230 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3231 empty
= isl_union_map_is_empty(umap
);
3232 isl_union_map_free(umap
);
3234 return empty
< 0 ? -1 : !empty
;
3237 /* Are the condition dependences of "edge" local with respect to
3238 * the current schedule?
3240 * That is, are domain and range of the condition dependences mapped
3241 * to the same point?
3243 * In other words, is the condition false?
3245 static int is_condition_false(struct isl_sched_edge
*edge
)
3247 isl_union_map
*umap
;
3248 isl_map
*map
, *sched
, *test
;
3251 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3252 if (empty
< 0 || empty
)
3255 umap
= isl_union_map_copy(edge
->tagged_condition
);
3256 umap
= isl_union_map_zip(umap
);
3257 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3258 map
= isl_map_from_union_map(umap
);
3260 sched
= node_extract_schedule(edge
->src
);
3261 map
= isl_map_apply_domain(map
, sched
);
3262 sched
= node_extract_schedule(edge
->dst
);
3263 map
= isl_map_apply_range(map
, sched
);
3265 test
= isl_map_identity(isl_map_get_space(map
));
3266 local
= isl_map_is_subset(map
, test
);
3273 /* For each conditional validity constraint that is adjacent
3274 * to a condition with domain in condition_source or range in condition_sink,
3275 * turn it into an unconditional validity constraint.
3277 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3278 __isl_take isl_union_set
*condition_source
,
3279 __isl_take isl_union_set
*condition_sink
)
3283 condition_source
= isl_union_set_coalesce(condition_source
);
3284 condition_sink
= isl_union_set_coalesce(condition_sink
);
3286 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3288 isl_union_map
*validity
;
3290 if (!is_conditional_validity(&graph
->edge
[i
]))
3292 if (is_validity(&graph
->edge
[i
]))
3295 validity
= graph
->edge
[i
].tagged_validity
;
3296 adjacent
= domain_intersects(validity
, condition_sink
);
3297 if (adjacent
>= 0 && !adjacent
)
3298 adjacent
= range_intersects(validity
, condition_source
);
3304 set_validity(&graph
->edge
[i
]);
3307 isl_union_set_free(condition_source
);
3308 isl_union_set_free(condition_sink
);
3311 isl_union_set_free(condition_source
);
3312 isl_union_set_free(condition_sink
);
3316 /* Update the dependence relations of all edges based on the current schedule
3317 * and enforce conditional validity constraints that are adjacent
3318 * to satisfied condition constraints.
3320 * First check if any of the condition constraints are satisfied
3321 * (i.e., not local to the outer schedule) and keep track of
3322 * their domain and range.
3323 * Then update all dependence relations (which removes the non-local
3325 * Finally, if any condition constraints turned out to be satisfied,
3326 * then turn all adjacent conditional validity constraints into
3327 * unconditional validity constraints.
3329 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3333 isl_union_set
*source
, *sink
;
3335 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3336 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3337 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3339 isl_union_set
*uset
;
3340 isl_union_map
*umap
;
3342 if (!is_condition(&graph
->edge
[i
]))
3344 if (is_local(&graph
->edge
[i
]))
3346 local
= is_condition_false(&graph
->edge
[i
]);
3354 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3355 uset
= isl_union_map_domain(umap
);
3356 source
= isl_union_set_union(source
, uset
);
3358 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3359 uset
= isl_union_map_range(umap
);
3360 sink
= isl_union_set_union(sink
, uset
);
3363 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3364 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3369 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3371 isl_union_set_free(source
);
3372 isl_union_set_free(sink
);
3375 isl_union_set_free(source
);
3376 isl_union_set_free(sink
);
3380 static void next_band(struct isl_sched_graph
*graph
)
3382 graph
->band_start
= graph
->n_total_row
;
3385 /* Return the union of the universe domains of the nodes in "graph"
3386 * that satisfy "pred".
3388 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3389 struct isl_sched_graph
*graph
,
3390 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3396 for (i
= 0; i
< graph
->n
; ++i
)
3397 if (pred(&graph
->node
[i
], data
))
3401 isl_die(ctx
, isl_error_internal
,
3402 "empty component", return NULL
);
3404 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3405 dom
= isl_union_set_from_set(set
);
3407 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3408 if (!pred(&graph
->node
[i
], data
))
3410 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3411 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3417 /* Return a list of unions of universe domains, where each element
3418 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3420 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3421 struct isl_sched_graph
*graph
)
3424 isl_union_set_list
*filters
;
3426 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3427 for (i
= 0; i
< graph
->scc
; ++i
) {
3430 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3431 filters
= isl_union_set_list_add(filters
, dom
);
3437 /* Return a list of two unions of universe domains, one for the SCCs up
3438 * to and including graph->src_scc and another for the other SCCs.
3440 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3441 struct isl_sched_graph
*graph
)
3444 isl_union_set_list
*filters
;
3446 filters
= isl_union_set_list_alloc(ctx
, 2);
3447 dom
= isl_sched_graph_domain(ctx
, graph
,
3448 &node_scc_at_most
, graph
->src_scc
);
3449 filters
= isl_union_set_list_add(filters
, dom
);
3450 dom
= isl_sched_graph_domain(ctx
, graph
,
3451 &node_scc_at_least
, graph
->src_scc
+ 1);
3452 filters
= isl_union_set_list_add(filters
, dom
);
3457 /* Copy nodes that satisfy node_pred from the src dependence graph
3458 * to the dst dependence graph.
3460 static isl_stat
copy_nodes(struct isl_sched_graph
*dst
,
3461 struct isl_sched_graph
*src
,
3462 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3467 for (i
= 0; i
< src
->n
; ++i
) {
3470 if (!node_pred(&src
->node
[i
], data
))
3474 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3475 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3476 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3477 dst
->node
[j
].compress
=
3478 isl_multi_aff_copy(src
->node
[i
].compress
);
3479 dst
->node
[j
].decompress
=
3480 isl_multi_aff_copy(src
->node
[i
].decompress
);
3481 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3482 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3483 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3484 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3485 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3486 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3487 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3488 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3491 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3492 return isl_stat_error
;
3493 if (dst
->node
[j
].compressed
&&
3494 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3495 !dst
->node
[j
].decompress
))
3496 return isl_stat_error
;
3502 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3503 * to the dst dependence graph.
3504 * If the source or destination node of the edge is not in the destination
3505 * graph, then it must be a backward proximity edge and it should simply
3508 static isl_stat
copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3509 struct isl_sched_graph
*src
,
3510 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3515 for (i
= 0; i
< src
->n_edge
; ++i
) {
3516 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3518 isl_union_map
*tagged_condition
;
3519 isl_union_map
*tagged_validity
;
3520 struct isl_sched_node
*dst_src
, *dst_dst
;
3522 if (!edge_pred(edge
, data
))
3525 if (isl_map_plain_is_empty(edge
->map
))
3528 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3529 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3530 if (!dst_src
|| !dst_dst
)
3531 return isl_stat_error
;
3532 if (!is_node(dst
, dst_src
) || !is_node(dst
, dst_dst
)) {
3533 if (is_validity(edge
) || is_conditional_validity(edge
))
3534 isl_die(ctx
, isl_error_internal
,
3535 "backward (conditional) validity edge",
3536 return isl_stat_error
);
3540 map
= isl_map_copy(edge
->map
);
3541 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3542 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3544 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3545 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3546 dst
->edge
[dst
->n_edge
].map
= map
;
3547 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3548 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3549 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3552 if (edge
->tagged_condition
&& !tagged_condition
)
3553 return isl_stat_error
;
3554 if (edge
->tagged_validity
&& !tagged_validity
)
3555 return isl_stat_error
;
3557 if (graph_edge_tables_add(ctx
, dst
,
3558 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3559 return isl_stat_error
;
3565 /* Compute the maximal number of variables over all nodes.
3566 * This is the maximal number of linearly independent schedule
3567 * rows that we need to compute.
3568 * Just in case we end up in a part of the dependence graph
3569 * with only lower-dimensional domains, we make sure we will
3570 * compute the required amount of extra linearly independent rows.
3572 static int compute_maxvar(struct isl_sched_graph
*graph
)
3577 for (i
= 0; i
< graph
->n
; ++i
) {
3578 struct isl_sched_node
*node
= &graph
->node
[i
];
3581 if (node_update_vmap(node
) < 0)
3583 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3584 if (nvar
> graph
->maxvar
)
3585 graph
->maxvar
= nvar
;
3591 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3592 * "node_pred" and the edges satisfying "edge_pred" and store
3593 * the result in "sub".
3595 static isl_stat
extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3596 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3597 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3598 int data
, struct isl_sched_graph
*sub
)
3600 int i
, n
= 0, n_edge
= 0;
3603 for (i
= 0; i
< graph
->n
; ++i
)
3604 if (node_pred(&graph
->node
[i
], data
))
3606 for (i
= 0; i
< graph
->n_edge
; ++i
)
3607 if (edge_pred(&graph
->edge
[i
], data
))
3609 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3610 return isl_stat_error
;
3611 sub
->root
= graph
->root
;
3612 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3613 return isl_stat_error
;
3614 if (graph_init_table(ctx
, sub
) < 0)
3615 return isl_stat_error
;
3616 for (t
= 0; t
<= isl_edge_last
; ++t
)
3617 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3618 if (graph_init_edge_tables(ctx
, sub
) < 0)
3619 return isl_stat_error
;
3620 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3621 return isl_stat_error
;
3622 sub
->n_row
= graph
->n_row
;
3623 sub
->max_row
= graph
->max_row
;
3624 sub
->n_total_row
= graph
->n_total_row
;
3625 sub
->band_start
= graph
->band_start
;
3630 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3631 struct isl_sched_graph
*graph
);
3632 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3633 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3635 /* Compute a schedule for a subgraph of "graph". In particular, for
3636 * the graph composed of nodes that satisfy node_pred and edges that
3637 * that satisfy edge_pred.
3638 * If the subgraph is known to consist of a single component, then wcc should
3639 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3640 * Otherwise, we call compute_schedule, which will check whether the subgraph
3643 * The schedule is inserted at "node" and the updated schedule node
3646 static __isl_give isl_schedule_node
*compute_sub_schedule(
3647 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3648 struct isl_sched_graph
*graph
,
3649 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3650 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3653 struct isl_sched_graph split
= { 0 };
3655 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3660 node
= compute_schedule_wcc(node
, &split
);
3662 node
= compute_schedule(node
, &split
);
3664 graph_free(ctx
, &split
);
3667 graph_free(ctx
, &split
);
3668 return isl_schedule_node_free(node
);
3671 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3673 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3676 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3678 return edge
->dst
->scc
<= scc
;
3681 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3683 return edge
->src
->scc
>= scc
;
3686 /* Reset the current band by dropping all its schedule rows.
3688 static isl_stat
reset_band(struct isl_sched_graph
*graph
)
3693 drop
= graph
->n_total_row
- graph
->band_start
;
3694 graph
->n_total_row
-= drop
;
3695 graph
->n_row
-= drop
;
3697 for (i
= 0; i
< graph
->n
; ++i
) {
3698 struct isl_sched_node
*node
= &graph
->node
[i
];
3700 isl_map_free(node
->sched_map
);
3701 node
->sched_map
= NULL
;
3703 node
->sched
= isl_mat_drop_rows(node
->sched
,
3704 graph
->band_start
, drop
);
3707 return isl_stat_error
;
3713 /* Split the current graph into two parts and compute a schedule for each
3714 * part individually. In particular, one part consists of all SCCs up
3715 * to and including graph->src_scc, while the other part contains the other
3716 * SCCs. The split is enforced by a sequence node inserted at position "node"
3717 * in the schedule tree. Return the updated schedule node.
3718 * If either of these two parts consists of a sequence, then it is spliced
3719 * into the sequence containing the two parts.
3721 * The current band is reset. It would be possible to reuse
3722 * the previously computed rows as the first rows in the next
3723 * band, but recomputing them may result in better rows as we are looking
3724 * at a smaller part of the dependence graph.
3726 static __isl_give isl_schedule_node
*compute_split_schedule(
3727 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3731 isl_union_set_list
*filters
;
3736 if (reset_band(graph
) < 0)
3737 return isl_schedule_node_free(node
);
3741 ctx
= isl_schedule_node_get_ctx(node
);
3742 filters
= extract_split(ctx
, graph
);
3743 node
= isl_schedule_node_insert_sequence(node
, filters
);
3744 node
= isl_schedule_node_child(node
, 1);
3745 node
= isl_schedule_node_child(node
, 0);
3747 node
= compute_sub_schedule(node
, ctx
, graph
,
3748 &node_scc_at_least
, &edge_src_scc_at_least
,
3749 graph
->src_scc
+ 1, 0);
3750 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3751 node
= isl_schedule_node_parent(node
);
3752 node
= isl_schedule_node_parent(node
);
3754 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3755 node
= isl_schedule_node_child(node
, 0);
3756 node
= isl_schedule_node_child(node
, 0);
3757 node
= compute_sub_schedule(node
, ctx
, graph
,
3758 &node_scc_at_most
, &edge_dst_scc_at_most
,
3760 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3761 node
= isl_schedule_node_parent(node
);
3762 node
= isl_schedule_node_parent(node
);
3764 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3769 /* Insert a band node at position "node" in the schedule tree corresponding
3770 * to the current band in "graph". Mark the band node permutable
3771 * if "permutable" is set.
3772 * The partial schedules and the coincidence property are extracted
3773 * from the graph nodes.
3774 * Return the updated schedule node.
3776 static __isl_give isl_schedule_node
*insert_current_band(
3777 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3783 isl_multi_pw_aff
*mpa
;
3784 isl_multi_union_pw_aff
*mupa
;
3790 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3791 "graph should have at least one node",
3792 return isl_schedule_node_free(node
));
3794 start
= graph
->band_start
;
3795 end
= graph
->n_total_row
;
3798 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3799 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3800 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3802 for (i
= 1; i
< graph
->n
; ++i
) {
3803 isl_multi_union_pw_aff
*mupa_i
;
3805 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3807 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3808 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3809 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3811 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3813 for (i
= 0; i
< n
; ++i
)
3814 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3815 graph
->node
[0].coincident
[start
+ i
]);
3816 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3821 /* Update the dependence relations based on the current schedule,
3822 * add the current band to "node" and then continue with the computation
3824 * Return the updated schedule node.
3826 static __isl_give isl_schedule_node
*compute_next_band(
3827 __isl_take isl_schedule_node
*node
,
3828 struct isl_sched_graph
*graph
, int permutable
)
3835 ctx
= isl_schedule_node_get_ctx(node
);
3836 if (update_edges(ctx
, graph
) < 0)
3837 return isl_schedule_node_free(node
);
3838 node
= insert_current_band(node
, graph
, permutable
);
3841 node
= isl_schedule_node_child(node
, 0);
3842 node
= compute_schedule(node
, graph
);
3843 node
= isl_schedule_node_parent(node
);
3848 /* Add the constraints "coef" derived from an edge from "node" to itself
3849 * to graph->lp in order to respect the dependences and to try and carry them.
3850 * "pos" is the sequence number of the edge that needs to be carried.
3851 * "coef" represents general constraints on coefficients (c_0, c_x)
3852 * of valid constraints for (y - x) with x and y instances of the node.
3854 * The constraints added to graph->lp need to enforce
3856 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3857 * = c_j_x (y - x) >= e_i
3859 * for each (x,y) in the dependence relation of the edge.
3860 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3861 * taking into account that each coefficient in c_j_x is represented
3862 * as a pair of non-negative coefficients.
3864 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3865 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3869 isl_dim_map
*dim_map
;
3872 return isl_stat_error
;
3874 ctx
= isl_basic_set_get_ctx(coef
);
3875 offset
= coef_var_offset(coef
);
3876 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3877 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3878 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3883 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3884 * to graph->lp in order to respect the dependences and to try and carry them.
3885 * "pos" is the sequence number of the edge that needs to be carried or
3886 * -1 if no attempt should be made to carry the dependences.
3887 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3888 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3890 * The constraints added to graph->lp need to enforce
3892 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3894 * for each (x,y) in the dependence relation of the edge or
3896 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3900 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3902 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3903 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3904 * taking into account that each coefficient in c_j_x and c_k_x is represented
3905 * as a pair of non-negative coefficients.
3907 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3908 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3909 __isl_take isl_basic_set
*coef
, int pos
)
3913 isl_dim_map
*dim_map
;
3916 return isl_stat_error
;
3918 ctx
= isl_basic_set_get_ctx(coef
);
3919 offset
= coef_var_offset(coef
);
3920 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3922 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3923 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3928 /* Data structure for keeping track of the data needed
3929 * to exploit non-trivial lineality spaces.
3931 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3932 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3933 * "equivalent" connects instances to other instances on the same line(s).
3934 * "mask" contains the domain spaces of "equivalent".
3935 * Any instance set not in "mask" does not have a non-trivial lineality space.
3937 struct isl_exploit_lineality_data
{
3938 isl_bool any_non_trivial
;
3939 isl_union_map
*equivalent
;
3940 isl_union_set
*mask
;
3943 /* Data structure collecting information used during the construction
3944 * of an LP for carrying dependences.
3946 * "intra" is a sequence of coefficient constraints for intra-node edges.
3947 * "inter" is a sequence of coefficient constraints for inter-node edges.
3948 * "lineality" contains data used to exploit non-trivial lineality spaces.
3951 isl_basic_set_list
*intra
;
3952 isl_basic_set_list
*inter
;
3953 struct isl_exploit_lineality_data lineality
;
3956 /* Free all the data stored in "carry".
3958 static void isl_carry_clear(struct isl_carry
*carry
)
3960 isl_basic_set_list_free(carry
->intra
);
3961 isl_basic_set_list_free(carry
->inter
);
3962 isl_union_map_free(carry
->lineality
.equivalent
);
3963 isl_union_set_free(carry
->lineality
.mask
);
3966 /* Return a pointer to the node in "graph" that lives in "space".
3967 * If the requested node has been compressed, then "space"
3968 * corresponds to the compressed space.
3969 * The graph is assumed to have such a node.
3970 * Return NULL in case of error.
3972 * First try and see if "space" is the space of an uncompressed node.
3973 * If so, return that node.
3974 * Otherwise, "space" was constructed by construct_compressed_id and
3975 * contains a user pointer pointing to the node in the tuple id.
3976 * However, this node belongs to the original dependence graph.
3977 * If "graph" is a subgraph of this original dependence graph,
3978 * then the node with the same space still needs to be looked up
3979 * in the current graph.
3981 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
3982 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
3985 struct isl_sched_node
*node
;
3990 node
= graph_find_node(ctx
, graph
, space
);
3993 if (is_node(graph
, node
))
3996 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
3997 node
= isl_id_get_user(id
);
4003 if (!is_node(graph
->root
, node
))
4004 isl_die(ctx
, isl_error_internal
,
4005 "space points to invalid node", return NULL
);
4006 if (graph
!= graph
->root
)
4007 node
= graph_find_node(ctx
, graph
, node
->space
);
4008 if (!is_node(graph
, node
))
4009 isl_die(ctx
, isl_error_internal
,
4010 "unable to find node", return NULL
);
4015 /* Internal data structure for add_all_constraints.
4017 * "graph" is the schedule constraint graph for which an LP problem
4018 * is being constructed.
4019 * "carry_inter" indicates whether inter-node edges should be carried.
4020 * "pos" is the position of the next edge that needs to be carried.
4022 struct isl_add_all_constraints_data
{
4024 struct isl_sched_graph
*graph
;
4029 /* Add the constraints "coef" derived from an edge from a node to itself
4030 * to data->graph->lp in order to respect the dependences and
4031 * to try and carry them.
4033 * The space of "coef" is of the form
4035 * coefficients[[c_cst] -> S[c_x]]
4037 * with S[c_x] the (compressed) space of the node.
4038 * Extract the node from the space and call add_intra_constraints.
4040 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4042 struct isl_add_all_constraints_data
*data
= user
;
4044 struct isl_sched_node
*node
;
4046 space
= isl_basic_set_get_space(coef
);
4047 space
= isl_space_range(isl_space_unwrap(space
));
4048 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4049 isl_space_free(space
);
4050 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4053 /* Add the constraints "coef" derived from an edge from a node j
4054 * to a node k to data->graph->lp in order to respect the dependences and
4055 * to try and carry them (provided data->carry_inter is set).
4057 * The space of "coef" is of the form
4059 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4061 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4062 * Extract the nodes from the space and call add_inter_constraints.
4064 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4066 struct isl_add_all_constraints_data
*data
= user
;
4067 isl_space
*space
, *dom
;
4068 struct isl_sched_node
*src
, *dst
;
4071 space
= isl_basic_set_get_space(coef
);
4072 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4073 dom
= isl_space_domain(isl_space_copy(space
));
4074 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4075 isl_space_free(dom
);
4076 space
= isl_space_range(space
);
4077 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4078 isl_space_free(space
);
4080 pos
= data
->carry_inter
? data
->pos
++ : -1;
4081 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4084 /* Add constraints to graph->lp that force all (conditional) validity
4085 * dependences to be respected and attempt to carry them.
4086 * "intra" is the sequence of coefficient constraints for intra-node edges.
4087 * "inter" is the sequence of coefficient constraints for inter-node edges.
4088 * "carry_inter" indicates whether inter-node edges should be carried or
4091 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4092 __isl_keep isl_basic_set_list
*intra
,
4093 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4095 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4098 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4099 return isl_stat_error
;
4100 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4101 return isl_stat_error
;
4105 /* Internal data structure for count_all_constraints
4106 * for keeping track of the number of equality and inequality constraints.
4108 struct isl_sched_count
{
4113 /* Add the number of equality and inequality constraints of "bset"
4114 * to data->n_eq and data->n_ineq.
4116 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4118 struct isl_sched_count
*data
= user
;
4120 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4123 /* Count the number of equality and inequality constraints
4124 * that will be added to the carry_lp problem.
4125 * We count each edge exactly once.
4126 * "intra" is the sequence of coefficient constraints for intra-node edges.
4127 * "inter" is the sequence of coefficient constraints for inter-node edges.
4129 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4130 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4132 struct isl_sched_count data
;
4134 data
.n_eq
= data
.n_ineq
= 0;
4135 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4136 return isl_stat_error
;
4137 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4138 return isl_stat_error
;
4141 *n_ineq
= data
.n_ineq
;
4146 /* Construct an LP problem for finding schedule coefficients
4147 * such that the schedule carries as many validity dependences as possible.
4148 * In particular, for each dependence i, we bound the dependence distance
4149 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4150 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4151 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4152 * "intra" is the sequence of coefficient constraints for intra-node edges.
4153 * "inter" is the sequence of coefficient constraints for inter-node edges.
4154 * "n_edge" is the total number of edges.
4155 * "carry_inter" indicates whether inter-node edges should be carried or
4156 * only respected. That is, if "carry_inter" is not set, then
4157 * no e_i variables are introduced for the inter-node edges.
4159 * All variables of the LP are non-negative. The actual coefficients
4160 * may be negative, so each coefficient is represented as the difference
4161 * of two non-negative variables. The negative part always appears
4162 * immediately before the positive part.
4163 * Other than that, the variables have the following order
4165 * - sum of (1 - e_i) over all edges
4166 * - sum of all c_n coefficients
4167 * (unconstrained when computing non-parametric schedules)
4168 * - sum of positive and negative parts of all c_x coefficients
4172 * - positive and negative parts of c_i_x, in opposite order
4173 * - c_i_n (if parametric)
4176 * The constraints are those from the (validity) edges plus three equalities
4177 * to express the sums and n_edge inequalities to express e_i <= 1.
4179 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4180 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4181 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4190 for (i
= 0; i
< graph
->n
; ++i
) {
4191 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4192 node
->start
= total
;
4193 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4196 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4197 return isl_stat_error
;
4199 dim
= isl_space_set_alloc(ctx
, 0, total
);
4200 isl_basic_set_free(graph
->lp
);
4203 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
4204 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4206 k
= isl_basic_set_alloc_equality(graph
->lp
);
4208 return isl_stat_error
;
4209 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4210 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4211 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4212 for (i
= 0; i
< n_edge
; ++i
)
4213 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4215 if (add_param_sum_constraint(graph
, 1) < 0)
4216 return isl_stat_error
;
4217 if (add_var_sum_constraint(graph
, 2) < 0)
4218 return isl_stat_error
;
4220 for (i
= 0; i
< n_edge
; ++i
) {
4221 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4223 return isl_stat_error
;
4224 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4225 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4226 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4229 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4230 return isl_stat_error
;
4235 static __isl_give isl_schedule_node
*compute_component_schedule(
4236 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4239 /* If the schedule_split_scaled option is set and if the linear
4240 * parts of the scheduling rows for all nodes in the graphs have
4241 * a non-trivial common divisor, then remove this
4242 * common divisor from the linear part.
4243 * Otherwise, insert a band node directly and continue with
4244 * the construction of the schedule.
4246 * If a non-trivial common divisor is found, then
4247 * the linear part is reduced and the remainder is ignored.
4248 * The pieces of the graph that are assigned different remainders
4249 * form (groups of) strongly connected components within
4250 * the scaled down band. If needed, they can therefore
4251 * be ordered along this remainder in a sequence node.
4252 * However, this ordering is not enforced here in order to allow
4253 * the scheduler to combine some of the strongly connected components.
4255 static __isl_give isl_schedule_node
*split_scaled(
4256 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4266 ctx
= isl_schedule_node_get_ctx(node
);
4267 if (!ctx
->opt
->schedule_split_scaled
)
4268 return compute_next_band(node
, graph
, 0);
4270 return compute_next_band(node
, graph
, 0);
4273 isl_int_init(gcd_i
);
4275 isl_int_set_si(gcd
, 0);
4277 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
4279 for (i
= 0; i
< graph
->n
; ++i
) {
4280 struct isl_sched_node
*node
= &graph
->node
[i
];
4281 int cols
= isl_mat_cols(node
->sched
);
4283 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4284 isl_int_gcd(gcd
, gcd
, gcd_i
);
4287 isl_int_clear(gcd_i
);
4289 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4291 return compute_next_band(node
, graph
, 0);
4294 for (i
= 0; i
< graph
->n
; ++i
) {
4295 struct isl_sched_node
*node
= &graph
->node
[i
];
4297 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4298 node
->sched
->row
[row
][0], gcd
);
4299 isl_int_mul(node
->sched
->row
[row
][0],
4300 node
->sched
->row
[row
][0], gcd
);
4301 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4308 return compute_next_band(node
, graph
, 0);
4311 return isl_schedule_node_free(node
);
4314 /* Is the schedule row "sol" trivial on node "node"?
4315 * That is, is the solution zero on the dimensions linearly independent of
4316 * the previously found solutions?
4317 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4319 * Each coefficient is represented as the difference between
4320 * two non-negative values in "sol".
4321 * We construct the schedule row s and check if it is linearly
4322 * independent of previously computed schedule rows
4323 * by computing T s, with T the linear combinations that are zero
4324 * on linearly dependent schedule rows.
4325 * If the result consists of all zeros, then the solution is trivial.
4327 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4334 if (node
->nvar
== node
->rank
)
4337 node_sol
= extract_var_coef(node
, sol
);
4338 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4342 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4343 node
->nvar
- node
->rank
) == -1;
4345 isl_vec_free(node_sol
);
4350 /* Is the schedule row "sol" trivial on any node where it should
4352 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4354 static int is_any_trivial(struct isl_sched_graph
*graph
,
4355 __isl_keep isl_vec
*sol
)
4359 for (i
= 0; i
< graph
->n
; ++i
) {
4360 struct isl_sched_node
*node
= &graph
->node
[i
];
4363 if (!needs_row(graph
, node
))
4365 trivial
= is_trivial(node
, sol
);
4366 if (trivial
< 0 || trivial
)
4373 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4374 * If so, return the position of the coalesced dimension.
4375 * Otherwise, return node->nvar or -1 on error.
4377 * In particular, look for pairs of coefficients c_i and c_j such that
4378 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4379 * If any such pair is found, then return i.
4380 * If size_i is infinity, then no check on c_i needs to be performed.
4382 static int find_node_coalescing(struct isl_sched_node
*node
,
4383 __isl_keep isl_vec
*sol
)
4389 if (node
->nvar
<= 1)
4392 csol
= extract_var_coef(node
, sol
);
4396 for (i
= 0; i
< node
->nvar
; ++i
) {
4399 if (isl_int_is_zero(csol
->el
[i
]))
4401 v
= isl_multi_val_get_val(node
->sizes
, i
);
4404 if (!isl_val_is_int(v
)) {
4408 v
= isl_val_div_ui(v
, 2);
4409 v
= isl_val_ceil(v
);
4412 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4415 for (j
= 0; j
< node
->nvar
; ++j
) {
4418 if (isl_int_abs_gt(csol
->el
[j
], max
))
4434 /* Force the schedule coefficient at position "pos" of "node" to be zero
4436 * The coefficient is encoded as the difference between two non-negative
4437 * variables. Force these two variables to have the same value.
4439 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4440 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4446 ctx
= isl_space_get_ctx(node
->space
);
4447 dim
= isl_tab_lexmin_dim(tl
);
4449 return isl_tab_lexmin_free(tl
);
4450 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4451 eq
= isl_vec_clr(eq
);
4453 return isl_tab_lexmin_free(tl
);
4455 pos
= 1 + node_var_coef_pos(node
, pos
);
4456 isl_int_set_si(eq
->el
[pos
], 1);
4457 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4458 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4464 /* Return the lexicographically smallest rational point in the basic set
4465 * from which "tl" was constructed, double checking that this input set
4468 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4472 sol
= isl_tab_lexmin_get_solution(tl
);
4476 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4477 "error in schedule construction",
4478 return isl_vec_free(sol
));
4482 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4483 * carry any of the "n_edge" groups of dependences?
4484 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4485 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4486 * by the edge are carried by the solution.
4487 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4488 * one of those is carried.
4490 * Note that despite the fact that the problem is solved using a rational
4491 * solver, the solution is guaranteed to be integral.
4492 * Specifically, the dependence distance lower bounds e_i (and therefore
4493 * also their sum) are integers. See Lemma 5 of [1].
4495 * Any potential denominator of the sum is cleared by this function.
4496 * The denominator is not relevant for any of the other elements
4499 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4500 * Problem, Part II: Multi-Dimensional Time.
4501 * In Intl. Journal of Parallel Programming, 1992.
4503 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4505 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4506 isl_int_set_si(sol
->el
[0], 1);
4507 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4510 /* Return the lexicographically smallest rational point in "lp",
4511 * assuming that all variables are non-negative and performing some
4512 * additional sanity checks.
4513 * If "want_integral" is set, then compute the lexicographically smallest
4514 * integer point instead.
4515 * In particular, "lp" should not be empty by construction.
4516 * Double check that this is the case.
4517 * If dependences are not carried for any of the "n_edge" edges,
4518 * then return an empty vector.
4520 * If the schedule_treat_coalescing option is set and
4521 * if the computed schedule performs loop coalescing on a given node,
4522 * i.e., if it is of the form
4524 * c_i i + c_j j + ...
4526 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4527 * to cut out this solution. Repeat this process until no more loop
4528 * coalescing occurs or until no more dependences can be carried.
4529 * In the latter case, revert to the previously computed solution.
4531 * If the caller requests an integral solution and if coalescing should
4532 * be treated, then perform the coalescing treatment first as
4533 * an integral solution computed before coalescing treatment
4534 * would carry the same number of edges and would therefore probably
4535 * also be coalescing.
4537 * To allow the coalescing treatment to be performed first,
4538 * the initial solution is allowed to be rational and it is only
4539 * cut out (if needed) in the next iteration, if no coalescing measures
4542 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4543 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4548 isl_vec
*sol
= NULL
, *prev
;
4549 int treat_coalescing
;
4554 ctx
= isl_basic_set_get_ctx(lp
);
4555 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4556 tl
= isl_tab_lexmin_from_basic_set(lp
);
4564 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4566 sol
= non_empty_solution(tl
);
4570 integral
= isl_int_is_one(sol
->el
[0]);
4571 if (!carries_dependences(sol
, n_edge
)) {
4573 prev
= isl_vec_alloc(ctx
, 0);
4578 prev
= isl_vec_free(prev
);
4579 cut
= want_integral
&& !integral
;
4582 if (!treat_coalescing
)
4584 for (i
= 0; i
< graph
->n
; ++i
) {
4585 struct isl_sched_node
*node
= &graph
->node
[i
];
4587 pos
= find_node_coalescing(node
, sol
);
4590 if (pos
< node
->nvar
)
4595 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4598 } while (try_again
);
4600 isl_tab_lexmin_free(tl
);
4604 isl_tab_lexmin_free(tl
);
4610 /* If "edge" is an edge from a node to itself, then add the corresponding
4611 * dependence relation to "umap".
4612 * If "node" has been compressed, then the dependence relation
4613 * is also compressed first.
4615 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4616 struct isl_sched_edge
*edge
)
4619 struct isl_sched_node
*node
= edge
->src
;
4621 if (edge
->src
!= edge
->dst
)
4624 map
= isl_map_copy(edge
->map
);
4625 if (node
->compressed
) {
4626 map
= isl_map_preimage_domain_multi_aff(map
,
4627 isl_multi_aff_copy(node
->decompress
));
4628 map
= isl_map_preimage_range_multi_aff(map
,
4629 isl_multi_aff_copy(node
->decompress
));
4631 umap
= isl_union_map_add_map(umap
, map
);
4635 /* If "edge" is an edge from a node to another node, then add the corresponding
4636 * dependence relation to "umap".
4637 * If the source or destination nodes of "edge" have been compressed,
4638 * then the dependence relation is also compressed first.
4640 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4641 struct isl_sched_edge
*edge
)
4645 if (edge
->src
== edge
->dst
)
4648 map
= isl_map_copy(edge
->map
);
4649 if (edge
->src
->compressed
)
4650 map
= isl_map_preimage_domain_multi_aff(map
,
4651 isl_multi_aff_copy(edge
->src
->decompress
));
4652 if (edge
->dst
->compressed
)
4653 map
= isl_map_preimage_range_multi_aff(map
,
4654 isl_multi_aff_copy(edge
->dst
->decompress
));
4655 umap
= isl_union_map_add_map(umap
, map
);
4659 /* Internal data structure used by union_drop_coalescing_constraints
4660 * to collect bounds on all relevant statements.
4662 * "graph" is the schedule constraint graph for which an LP problem
4663 * is being constructed.
4664 * "bounds" collects the bounds.
4666 struct isl_collect_bounds_data
{
4668 struct isl_sched_graph
*graph
;
4669 isl_union_set
*bounds
;
4672 /* Add the size bounds for the node with instance deltas in "set"
4675 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4677 struct isl_collect_bounds_data
*data
= user
;
4678 struct isl_sched_node
*node
;
4682 space
= isl_set_get_space(set
);
4685 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4686 isl_space_free(space
);
4688 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4689 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4694 /* Drop some constraints from "delta" that could be exploited
4695 * to construct loop coalescing schedules.
4696 * In particular, drop those constraint that bound the difference
4697 * to the size of the domain.
4698 * Do this for each set/node in "delta" separately.
4699 * The parameters are assumed to have been projected out by the caller.
4701 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4702 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4704 struct isl_collect_bounds_data data
= { ctx
, graph
};
4706 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4707 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4708 data
.bounds
= isl_union_set_free(data
.bounds
);
4709 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4714 /* Given a non-trivial lineality space "lineality", add the corresponding
4715 * universe set to data->mask and add a map from elements to
4716 * other elements along the lines in "lineality" to data->equivalent.
4717 * If this is the first time this function gets called
4718 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4719 * initialize data->mask and data->equivalent.
4721 * In particular, if the lineality space is defined by equality constraints
4725 * then construct an affine mapping
4729 * and compute the equivalence relation of having the same image under f:
4731 * { x -> x' : E x = E x' }
4733 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4734 struct isl_exploit_lineality_data
*data
)
4740 isl_multi_pw_aff
*mpa
;
4744 if (isl_basic_set_check_no_locals(lineality
) < 0)
4747 space
= isl_basic_set_get_space(lineality
);
4748 if (!data
->any_non_trivial
) {
4749 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4750 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4752 data
->any_non_trivial
= isl_bool_true
;
4754 univ
= isl_set_universe(isl_space_copy(space
));
4755 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4757 eq
= isl_basic_set_extract_equalities(lineality
);
4758 n
= isl_mat_rows(eq
);
4759 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4760 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4761 space
= isl_space_from_domain(space
);
4762 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4763 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4764 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4765 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4766 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4768 isl_basic_set_free(lineality
);
4771 isl_basic_set_free(lineality
);
4772 return isl_stat_error
;
4775 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4776 * the origin or, in other words, satisfies a number of equality constraints
4777 * that is smaller than the dimension of the set).
4778 * If so, extend data->mask and data->equivalent accordingly.
4780 * The input should not have any local variables already, but
4781 * isl_set_remove_divs is called to make sure it does not.
4783 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4785 struct isl_exploit_lineality_data
*data
= user
;
4786 isl_basic_set
*hull
;
4789 set
= isl_set_remove_divs(set
);
4790 hull
= isl_set_unshifted_simple_hull(set
);
4791 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4792 n_eq
= isl_basic_set_n_equality(hull
);
4794 return isl_stat_error
;
4796 return add_non_trivial_lineality(hull
, data
);
4797 isl_basic_set_free(hull
);
4801 /* Check if the difference set on intra-node schedule constraints "intra"
4802 * has any non-trivial lineality space.
4803 * If so, then extend the difference set to a difference set
4804 * on equivalent elements. That is, if "intra" is
4806 * { y - x : (x,y) \in V }
4808 * and elements are equivalent if they have the same image under f,
4811 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4813 * or, since f is linear,
4815 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4817 * The results of the search for non-trivial lineality spaces is stored
4820 static __isl_give isl_union_set
*exploit_intra_lineality(
4821 __isl_take isl_union_set
*intra
,
4822 struct isl_exploit_lineality_data
*data
)
4824 isl_union_set
*lineality
;
4825 isl_union_set
*uset
;
4827 data
->any_non_trivial
= isl_bool_false
;
4828 lineality
= isl_union_set_copy(intra
);
4829 lineality
= isl_union_set_combined_lineality_space(lineality
);
4830 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4831 data
->any_non_trivial
= isl_bool_error
;
4832 isl_union_set_free(lineality
);
4834 if (data
->any_non_trivial
< 0)
4835 return isl_union_set_free(intra
);
4836 if (!data
->any_non_trivial
)
4839 uset
= isl_union_set_copy(intra
);
4840 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4841 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4842 intra
= isl_union_set_union(intra
, uset
);
4844 intra
= isl_union_set_remove_divs(intra
);
4849 /* If the difference set on intra-node schedule constraints was found to have
4850 * any non-trivial lineality space by exploit_intra_lineality,
4851 * as recorded in "data", then extend the inter-node
4852 * schedule constraints "inter" to schedule constraints on equivalent elements.
4853 * That is, if "inter" is V and
4854 * elements are equivalent if they have the same image under f, then return
4856 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4858 static __isl_give isl_union_map
*exploit_inter_lineality(
4859 __isl_take isl_union_map
*inter
,
4860 struct isl_exploit_lineality_data
*data
)
4862 isl_union_map
*umap
;
4864 if (data
->any_non_trivial
< 0)
4865 return isl_union_map_free(inter
);
4866 if (!data
->any_non_trivial
)
4869 umap
= isl_union_map_copy(inter
);
4870 inter
= isl_union_map_subtract_range(inter
,
4871 isl_union_set_copy(data
->mask
));
4872 umap
= isl_union_map_apply_range(umap
,
4873 isl_union_map_copy(data
->equivalent
));
4874 inter
= isl_union_map_union(inter
, umap
);
4875 umap
= isl_union_map_copy(inter
);
4876 inter
= isl_union_map_subtract_domain(inter
,
4877 isl_union_set_copy(data
->mask
));
4878 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4880 inter
= isl_union_map_union(inter
, umap
);
4882 inter
= isl_union_map_remove_divs(inter
);
4887 /* For each (conditional) validity edge in "graph",
4888 * add the corresponding dependence relation using "add"
4889 * to a collection of dependence relations and return the result.
4890 * If "coincidence" is set, then coincidence edges are considered as well.
4892 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4893 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4894 struct isl_sched_edge
*edge
), int coincidence
)
4898 isl_union_map
*umap
;
4900 space
= isl_space_copy(graph
->node
[0].space
);
4901 umap
= isl_union_map_empty(space
);
4903 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4904 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4906 if (!is_any_validity(edge
) &&
4907 (!coincidence
|| !is_coincidence(edge
)))
4910 umap
= add(umap
, edge
);
4916 /* For each dependence relation on a (conditional) validity edge
4917 * from a node to itself,
4918 * construct the set of coefficients of valid constraints for elements
4919 * in that dependence relation and collect the results.
4920 * If "coincidence" is set, then coincidence edges are considered as well.
4922 * In particular, for each dependence relation R, constraints
4923 * on coefficients (c_0, c_x) are constructed such that
4925 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4927 * If the schedule_treat_coalescing option is set, then some constraints
4928 * that could be exploited to construct coalescing schedules
4929 * are removed before the dual is computed, but after the parameters
4930 * have been projected out.
4931 * The entire computation is essentially the same as that performed
4932 * by intra_coefficients, except that it operates on multiple
4933 * edges together and that the parameters are always projected out.
4935 * Additionally, exploit any non-trivial lineality space
4936 * in the difference set after removing coalescing constraints and
4937 * store the results of the non-trivial lineality space detection in "data".
4938 * The procedure is currently run unconditionally, but it is unlikely
4939 * to find any non-trivial lineality spaces if no coalescing constraints
4940 * have been removed.
4942 * Note that if a dependence relation is a union of basic maps,
4943 * then each basic map needs to be treated individually as it may only
4944 * be possible to carry the dependences expressed by some of those
4945 * basic maps and not all of them.
4946 * The collected validity constraints are therefore not coalesced and
4947 * it is assumed that they are not coalesced automatically.
4948 * Duplicate basic maps can be removed, however.
4949 * In particular, if the same basic map appears as a disjunct
4950 * in multiple edges, then it only needs to be carried once.
4952 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4953 struct isl_sched_graph
*graph
, int coincidence
,
4954 struct isl_exploit_lineality_data
*data
)
4956 isl_union_map
*intra
;
4957 isl_union_set
*delta
;
4958 isl_basic_set_list
*list
;
4960 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4961 delta
= isl_union_map_deltas(intra
);
4962 delta
= isl_union_set_project_out_all_params(delta
);
4963 delta
= isl_union_set_remove_divs(delta
);
4964 if (isl_options_get_schedule_treat_coalescing(ctx
))
4965 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
4966 delta
= exploit_intra_lineality(delta
, data
);
4967 list
= isl_union_set_get_basic_set_list(delta
);
4968 isl_union_set_free(delta
);
4970 return isl_basic_set_list_coefficients(list
);
4973 /* For each dependence relation on a (conditional) validity edge
4974 * from a node to some other node,
4975 * construct the set of coefficients of valid constraints for elements
4976 * in that dependence relation and collect the results.
4977 * If "coincidence" is set, then coincidence edges are considered as well.
4979 * In particular, for each dependence relation R, constraints
4980 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4982 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4984 * This computation is essentially the same as that performed
4985 * by inter_coefficients, except that it operates on multiple
4988 * Additionally, exploit any non-trivial lineality space
4989 * that may have been discovered by collect_intra_validity
4990 * (as stored in "data").
4992 * Note that if a dependence relation is a union of basic maps,
4993 * then each basic map needs to be treated individually as it may only
4994 * be possible to carry the dependences expressed by some of those
4995 * basic maps and not all of them.
4996 * The collected validity constraints are therefore not coalesced and
4997 * it is assumed that they are not coalesced automatically.
4998 * Duplicate basic maps can be removed, however.
4999 * In particular, if the same basic map appears as a disjunct
5000 * in multiple edges, then it only needs to be carried once.
5002 static __isl_give isl_basic_set_list
*collect_inter_validity(
5003 struct isl_sched_graph
*graph
, int coincidence
,
5004 struct isl_exploit_lineality_data
*data
)
5006 isl_union_map
*inter
;
5007 isl_union_set
*wrap
;
5008 isl_basic_set_list
*list
;
5010 inter
= collect_validity(graph
, &add_inter
, coincidence
);
5011 inter
= exploit_inter_lineality(inter
, data
);
5012 inter
= isl_union_map_remove_divs(inter
);
5013 wrap
= isl_union_map_wrap(inter
);
5014 list
= isl_union_set_get_basic_set_list(wrap
);
5015 isl_union_set_free(wrap
);
5016 return isl_basic_set_list_coefficients(list
);
5019 /* Construct an LP problem for finding schedule coefficients
5020 * such that the schedule carries as many of the "n_edge" groups of
5021 * dependences as possible based on the corresponding coefficient
5022 * constraints and return the lexicographically smallest non-trivial solution.
5023 * "intra" is the sequence of coefficient constraints for intra-node edges.
5024 * "inter" is the sequence of coefficient constraints for inter-node edges.
5025 * If "want_integral" is set, then compute an integral solution
5026 * for the coefficients rather than using the numerators
5027 * of a rational solution.
5028 * "carry_inter" indicates whether inter-node edges should be carried or
5031 * If none of the "n_edge" groups can be carried
5032 * then return an empty vector.
5034 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5035 struct isl_sched_graph
*graph
, int n_edge
,
5036 __isl_keep isl_basic_set_list
*intra
,
5037 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5042 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5045 lp
= isl_basic_set_copy(graph
->lp
);
5046 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5049 /* Construct an LP problem for finding schedule coefficients
5050 * such that the schedule carries as many of the validity dependences
5052 * return the lexicographically smallest non-trivial solution.
5053 * If "fallback" is set, then the carrying is performed as a fallback
5054 * for the Pluto-like scheduler.
5055 * If "coincidence" is set, then try and carry coincidence edges as well.
5057 * The variable "n_edge" stores the number of groups that should be carried.
5058 * If none of the "n_edge" groups can be carried
5059 * then return an empty vector.
5060 * If, moreover, "n_edge" is zero, then the LP problem does not even
5061 * need to be constructed.
5063 * If a fallback solution is being computed, then compute an integral solution
5064 * for the coefficients rather than using the numerators
5065 * of a rational solution.
5067 * If a fallback solution is being computed, if there are any intra-node
5068 * dependences, and if requested by the user, then first try
5069 * to only carry those intra-node dependences.
5070 * If this fails to carry any dependences, then try again
5071 * with the inter-node dependences included.
5073 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5074 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5076 int n_intra
, n_inter
;
5078 struct isl_carry carry
= { 0 };
5081 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5083 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5085 if (!carry
.intra
|| !carry
.inter
)
5087 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5088 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5090 if (fallback
&& n_intra
> 0 &&
5091 isl_options_get_schedule_carry_self_first(ctx
)) {
5092 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5093 carry
.intra
, carry
.inter
, fallback
, 0);
5094 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5095 isl_carry_clear(&carry
);
5101 n_edge
= n_intra
+ n_inter
;
5103 isl_carry_clear(&carry
);
5104 return isl_vec_alloc(ctx
, 0);
5107 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5108 carry
.intra
, carry
.inter
, fallback
, 1);
5109 isl_carry_clear(&carry
);
5112 isl_carry_clear(&carry
);
5116 /* Construct a schedule row for each node such that as many validity dependences
5117 * as possible are carried and then continue with the next band.
5118 * If "fallback" is set, then the carrying is performed as a fallback
5119 * for the Pluto-like scheduler.
5120 * If "coincidence" is set, then try and carry coincidence edges as well.
5122 * If there are no validity dependences, then no dependence can be carried and
5123 * the procedure is guaranteed to fail. If there is more than one component,
5124 * then try computing a schedule on each component separately
5125 * to prevent or at least postpone this failure.
5127 * If a schedule row is computed, then check that dependences are carried
5128 * for at least one of the edges.
5130 * If the computed schedule row turns out to be trivial on one or
5131 * more nodes where it should not be trivial, then we throw it away
5132 * and try again on each component separately.
5134 * If there is only one component, then we accept the schedule row anyway,
5135 * but we do not consider it as a complete row and therefore do not
5136 * increment graph->n_row. Note that the ranks of the nodes that
5137 * do get a non-trivial schedule part will get updated regardless and
5138 * graph->maxvar is computed based on these ranks. The test for
5139 * whether more schedule rows are required in compute_schedule_wcc
5140 * is therefore not affected.
5142 * Insert a band corresponding to the schedule row at position "node"
5143 * of the schedule tree and continue with the construction of the schedule.
5144 * This insertion and the continued construction is performed by split_scaled
5145 * after optionally checking for non-trivial common divisors.
5147 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5148 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5157 ctx
= isl_schedule_node_get_ctx(node
);
5158 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5160 return isl_schedule_node_free(node
);
5161 if (sol
->size
== 0) {
5164 return compute_component_schedule(node
, graph
, 1);
5165 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5166 return isl_schedule_node_free(node
));
5169 trivial
= is_any_trivial(graph
, sol
);
5171 sol
= isl_vec_free(sol
);
5172 } else if (trivial
&& graph
->scc
> 1) {
5174 return compute_component_schedule(node
, graph
, 1);
5177 if (update_schedule(graph
, sol
, 0) < 0)
5178 return isl_schedule_node_free(node
);
5182 return split_scaled(node
, graph
);
5185 /* Construct a schedule row for each node such that as many validity dependences
5186 * as possible are carried and then continue with the next band.
5187 * Do so as a fallback for the Pluto-like scheduler.
5188 * If "coincidence" is set, then try and carry coincidence edges as well.
5190 static __isl_give isl_schedule_node
*carry_fallback(
5191 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5194 return carry(node
, graph
, 1, coincidence
);
5197 /* Construct a schedule row for each node such that as many validity dependences
5198 * as possible are carried and then continue with the next band.
5199 * Do so for the case where the Feautrier scheduler was selected
5202 static __isl_give isl_schedule_node
*carry_feautrier(
5203 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5205 return carry(node
, graph
, 0, 0);
5208 /* Construct a schedule row for each node such that as many validity dependences
5209 * as possible are carried and then continue with the next band.
5210 * Do so as a fallback for the Pluto-like scheduler.
5212 static __isl_give isl_schedule_node
*carry_dependences(
5213 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5215 return carry_fallback(node
, graph
, 0);
5218 /* Construct a schedule row for each node such that as many validity or
5219 * coincidence dependences as possible are carried and
5220 * then continue with the next band.
5221 * Do so as a fallback for the Pluto-like scheduler.
5223 static __isl_give isl_schedule_node
*carry_coincidence(
5224 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5226 return carry_fallback(node
, graph
, 1);
5229 /* Topologically sort statements mapped to the same schedule iteration
5230 * and add insert a sequence node in front of "node"
5231 * corresponding to this order.
5232 * If "initialized" is set, then it may be assumed that compute_maxvar
5233 * has been called on the current band. Otherwise, call
5234 * compute_maxvar if and before carry_dependences gets called.
5236 * If it turns out to be impossible to sort the statements apart,
5237 * because different dependences impose different orderings
5238 * on the statements, then we extend the schedule such that
5239 * it carries at least one more dependence.
5241 static __isl_give isl_schedule_node
*sort_statements(
5242 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5246 isl_union_set_list
*filters
;
5251 ctx
= isl_schedule_node_get_ctx(node
);
5253 isl_die(ctx
, isl_error_internal
,
5254 "graph should have at least one node",
5255 return isl_schedule_node_free(node
));
5260 if (update_edges(ctx
, graph
) < 0)
5261 return isl_schedule_node_free(node
);
5263 if (graph
->n_edge
== 0)
5266 if (detect_sccs(ctx
, graph
) < 0)
5267 return isl_schedule_node_free(node
);
5270 if (graph
->scc
< graph
->n
) {
5271 if (!initialized
&& compute_maxvar(graph
) < 0)
5272 return isl_schedule_node_free(node
);
5273 return carry_dependences(node
, graph
);
5276 filters
= extract_sccs(ctx
, graph
);
5277 node
= isl_schedule_node_insert_sequence(node
, filters
);
5282 /* Are there any (non-empty) (conditional) validity edges in the graph?
5284 static int has_validity_edges(struct isl_sched_graph
*graph
)
5288 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5291 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5296 if (is_any_validity(&graph
->edge
[i
]))
5303 /* Should we apply a Feautrier step?
5304 * That is, did the user request the Feautrier algorithm and are
5305 * there any validity dependences (left)?
5307 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5309 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5312 return has_validity_edges(graph
);
5315 /* Compute a schedule for a connected dependence graph using Feautrier's
5316 * multi-dimensional scheduling algorithm and return the updated schedule node.
5318 * The original algorithm is described in [1].
5319 * The main idea is to minimize the number of scheduling dimensions, by
5320 * trying to satisfy as many dependences as possible per scheduling dimension.
5322 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5323 * Problem, Part II: Multi-Dimensional Time.
5324 * In Intl. Journal of Parallel Programming, 1992.
5326 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5327 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5329 return carry_feautrier(node
, graph
);
5332 /* Turn off the "local" bit on all (condition) edges.
5334 static void clear_local_edges(struct isl_sched_graph
*graph
)
5338 for (i
= 0; i
< graph
->n_edge
; ++i
)
5339 if (is_condition(&graph
->edge
[i
]))
5340 clear_local(&graph
->edge
[i
]);
5343 /* Does "graph" have both condition and conditional validity edges?
5345 static int need_condition_check(struct isl_sched_graph
*graph
)
5348 int any_condition
= 0;
5349 int any_conditional_validity
= 0;
5351 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5352 if (is_condition(&graph
->edge
[i
]))
5354 if (is_conditional_validity(&graph
->edge
[i
]))
5355 any_conditional_validity
= 1;
5358 return any_condition
&& any_conditional_validity
;
5361 /* Does "graph" contain any coincidence edge?
5363 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5367 for (i
= 0; i
< graph
->n_edge
; ++i
)
5368 if (is_coincidence(&graph
->edge
[i
]))
5374 /* Extract the final schedule row as a map with the iteration domain
5375 * of "node" as domain.
5377 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5382 row
= isl_mat_rows(node
->sched
) - 1;
5383 ma
= node_extract_partial_schedule_multi_aff(node
, row
, 1);
5384 return isl_map_from_multi_aff(ma
);
5387 /* Is the conditional validity dependence in the edge with index "edge_index"
5388 * violated by the latest (i.e., final) row of the schedule?
5389 * That is, is i scheduled after j
5390 * for any conditional validity dependence i -> j?
5392 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5394 isl_map
*src_sched
, *dst_sched
, *map
;
5395 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5398 src_sched
= final_row(edge
->src
);
5399 dst_sched
= final_row(edge
->dst
);
5400 map
= isl_map_copy(edge
->map
);
5401 map
= isl_map_apply_domain(map
, src_sched
);
5402 map
= isl_map_apply_range(map
, dst_sched
);
5403 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5404 empty
= isl_map_is_empty(map
);
5413 /* Does "graph" have any satisfied condition edges that
5414 * are adjacent to the conditional validity constraint with
5415 * domain "conditional_source" and range "conditional_sink"?
5417 * A satisfied condition is one that is not local.
5418 * If a condition was forced to be local already (i.e., marked as local)
5419 * then there is no need to check if it is in fact local.
5421 * Additionally, mark all adjacent condition edges found as local.
5423 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5424 __isl_keep isl_union_set
*conditional_source
,
5425 __isl_keep isl_union_set
*conditional_sink
)
5430 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5431 int adjacent
, local
;
5432 isl_union_map
*condition
;
5434 if (!is_condition(&graph
->edge
[i
]))
5436 if (is_local(&graph
->edge
[i
]))
5439 condition
= graph
->edge
[i
].tagged_condition
;
5440 adjacent
= domain_intersects(condition
, conditional_sink
);
5441 if (adjacent
>= 0 && !adjacent
)
5442 adjacent
= range_intersects(condition
,
5443 conditional_source
);
5449 set_local(&graph
->edge
[i
]);
5451 local
= is_condition_false(&graph
->edge
[i
]);
5461 /* Are there any violated conditional validity dependences with
5462 * adjacent condition dependences that are not local with respect
5463 * to the current schedule?
5464 * That is, is the conditional validity constraint violated?
5466 * Additionally, mark all those adjacent condition dependences as local.
5467 * We also mark those adjacent condition dependences that were not marked
5468 * as local before, but just happened to be local already. This ensures
5469 * that they remain local if the schedule is recomputed.
5471 * We first collect domain and range of all violated conditional validity
5472 * dependences and then check if there are any adjacent non-local
5473 * condition dependences.
5475 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5476 struct isl_sched_graph
*graph
)
5480 isl_union_set
*source
, *sink
;
5482 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5483 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5484 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5485 isl_union_set
*uset
;
5486 isl_union_map
*umap
;
5489 if (!is_conditional_validity(&graph
->edge
[i
]))
5492 violated
= is_violated(graph
, i
);
5500 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5501 uset
= isl_union_map_domain(umap
);
5502 source
= isl_union_set_union(source
, uset
);
5503 source
= isl_union_set_coalesce(source
);
5505 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5506 uset
= isl_union_map_range(umap
);
5507 sink
= isl_union_set_union(sink
, uset
);
5508 sink
= isl_union_set_coalesce(sink
);
5512 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5514 isl_union_set_free(source
);
5515 isl_union_set_free(sink
);
5518 isl_union_set_free(source
);
5519 isl_union_set_free(sink
);
5523 /* Examine the current band (the rows between graph->band_start and
5524 * graph->n_total_row), deciding whether to drop it or add it to "node"
5525 * and then continue with the computation of the next band, if any.
5526 * If "initialized" is set, then it may be assumed that compute_maxvar
5527 * has been called on the current band. Otherwise, call
5528 * compute_maxvar if and before carry_dependences gets called.
5530 * The caller keeps looking for a new row as long as
5531 * graph->n_row < graph->maxvar. If the latest attempt to find
5532 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5534 * - split between SCCs and start over (assuming we found an interesting
5535 * pair of SCCs between which to split)
5536 * - continue with the next band (assuming the current band has at least
5538 * - if there is more than one SCC left, then split along all SCCs
5539 * - if outer coincidence needs to be enforced, then try to carry as many
5540 * validity or coincidence dependences as possible and
5541 * continue with the next band
5542 * - try to carry as many validity dependences as possible and
5543 * continue with the next band
5544 * In each case, we first insert a band node in the schedule tree
5545 * if any rows have been computed.
5547 * If the caller managed to complete the schedule and the current band
5548 * is empty, then finish off by topologically
5549 * sorting the statements based on the remaining dependences.
5550 * If, on the other hand, the current band has at least one row,
5551 * then continue with the next band. Note that this next band
5552 * will necessarily be empty, but the graph may still be split up
5553 * into weakly connected components before arriving back here.
5555 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
5556 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5564 empty
= graph
->n_total_row
== graph
->band_start
;
5565 if (graph
->n_row
< graph
->maxvar
) {
5568 ctx
= isl_schedule_node_get_ctx(node
);
5569 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5570 return compute_next_band(node
, graph
, 1);
5571 if (graph
->src_scc
>= 0)
5572 return compute_split_schedule(node
, graph
);
5574 return compute_next_band(node
, graph
, 1);
5576 return compute_component_schedule(node
, graph
, 1);
5577 if (!initialized
&& compute_maxvar(graph
) < 0)
5578 return isl_schedule_node_free(node
);
5579 if (isl_options_get_schedule_outer_coincidence(ctx
))
5580 return carry_coincidence(node
, graph
);
5581 return carry_dependences(node
, graph
);
5585 return compute_next_band(node
, graph
, 1);
5586 return sort_statements(node
, graph
, initialized
);
5589 /* Construct a band of schedule rows for a connected dependence graph.
5590 * The caller is responsible for determining the strongly connected
5591 * components and calling compute_maxvar first.
5593 * We try to find a sequence of as many schedule rows as possible that result
5594 * in non-negative dependence distances (independent of the previous rows
5595 * in the sequence, i.e., such that the sequence is tilable), with as
5596 * many of the initial rows as possible satisfying the coincidence constraints.
5597 * The computation stops if we can't find any more rows or if we have found
5598 * all the rows we wanted to find.
5600 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5601 * outermost dimension to satisfy the coincidence constraints. If this
5602 * turns out to be impossible, we fall back on the general scheme above
5603 * and try to carry as many dependences as possible.
5605 * If "graph" contains both condition and conditional validity dependences,
5606 * then we need to check that that the conditional schedule constraint
5607 * is satisfied, i.e., there are no violated conditional validity dependences
5608 * that are adjacent to any non-local condition dependences.
5609 * If there are, then we mark all those adjacent condition dependences
5610 * as local and recompute the current band. Those dependences that
5611 * are marked local will then be forced to be local.
5612 * The initial computation is performed with no dependences marked as local.
5613 * If we are lucky, then there will be no violated conditional validity
5614 * dependences adjacent to any non-local condition dependences.
5615 * Otherwise, we mark some additional condition dependences as local and
5616 * recompute. We continue this process until there are no violations left or
5617 * until we are no longer able to compute a schedule.
5618 * Since there are only a finite number of dependences,
5619 * there will only be a finite number of iterations.
5621 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
5622 struct isl_sched_graph
*graph
)
5624 int has_coincidence
;
5625 int use_coincidence
;
5626 int force_coincidence
= 0;
5627 int check_conditional
;
5629 if (sort_sccs(graph
) < 0)
5630 return isl_stat_error
;
5632 clear_local_edges(graph
);
5633 check_conditional
= need_condition_check(graph
);
5634 has_coincidence
= has_any_coincidence(graph
);
5636 if (ctx
->opt
->schedule_outer_coincidence
)
5637 force_coincidence
= 1;
5639 use_coincidence
= has_coincidence
;
5640 while (graph
->n_row
< graph
->maxvar
) {
5645 graph
->src_scc
= -1;
5646 graph
->dst_scc
= -1;
5648 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5649 return isl_stat_error
;
5650 sol
= solve_lp(ctx
, graph
);
5652 return isl_stat_error
;
5653 if (sol
->size
== 0) {
5654 int empty
= graph
->n_total_row
== graph
->band_start
;
5657 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5658 use_coincidence
= 0;
5663 coincident
= !has_coincidence
|| use_coincidence
;
5664 if (update_schedule(graph
, sol
, coincident
) < 0)
5665 return isl_stat_error
;
5667 if (!check_conditional
)
5669 violated
= has_violated_conditional_constraint(ctx
, graph
);
5671 return isl_stat_error
;
5674 if (reset_band(graph
) < 0)
5675 return isl_stat_error
;
5676 use_coincidence
= has_coincidence
;
5682 /* Compute a schedule for a connected dependence graph by considering
5683 * the graph as a whole and return the updated schedule node.
5685 * The actual schedule rows of the current band are computed by
5686 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5687 * care of integrating the band into "node" and continuing
5690 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5691 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5698 ctx
= isl_schedule_node_get_ctx(node
);
5699 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
5700 return isl_schedule_node_free(node
);
5702 return compute_schedule_finish_band(node
, graph
, 1);
5705 /* Clustering information used by compute_schedule_wcc_clustering.
5707 * "n" is the number of SCCs in the original dependence graph
5708 * "scc" is an array of "n" elements, each representing an SCC
5709 * of the original dependence graph. All entries in the same cluster
5710 * have the same number of schedule rows.
5711 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5712 * where each cluster is represented by the index of the first SCC
5713 * in the cluster. Initially, each SCC belongs to a cluster containing
5716 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5717 * track of which SCCs need to be merged.
5719 * "cluster" contains the merged clusters of SCCs after the clustering
5722 * "scc_node" is a temporary data structure used inside copy_partial.
5723 * For each SCC, it keeps track of the number of nodes in the SCC
5724 * that have already been copied.
5726 struct isl_clustering
{
5728 struct isl_sched_graph
*scc
;
5729 struct isl_sched_graph
*cluster
;
5735 /* Initialize the clustering data structure "c" from "graph".
5737 * In particular, allocate memory, extract the SCCs from "graph"
5738 * into c->scc, initialize scc_cluster and construct
5739 * a band of schedule rows for each SCC.
5740 * Within each SCC, there is only one SCC by definition.
5741 * Each SCC initially belongs to a cluster containing only that SCC.
5743 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
5744 struct isl_sched_graph
*graph
)
5749 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5750 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5751 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
5752 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
5753 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
5754 if (!c
->scc
|| !c
->cluster
||
5755 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
5756 return isl_stat_error
;
5758 for (i
= 0; i
< c
->n
; ++i
) {
5759 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
5760 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
5761 return isl_stat_error
;
5763 if (compute_maxvar(&c
->scc
[i
]) < 0)
5764 return isl_stat_error
;
5765 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
5766 return isl_stat_error
;
5767 c
->scc_cluster
[i
] = i
;
5773 /* Free all memory allocated for "c".
5775 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
5780 for (i
= 0; i
< c
->n
; ++i
)
5781 graph_free(ctx
, &c
->scc
[i
]);
5784 for (i
= 0; i
< c
->n
; ++i
)
5785 graph_free(ctx
, &c
->cluster
[i
]);
5787 free(c
->scc_cluster
);
5789 free(c
->scc_in_merge
);
5792 /* Should we refrain from merging the cluster in "graph" with
5793 * any other cluster?
5794 * In particular, is its current schedule band empty and incomplete.
5796 static int bad_cluster(struct isl_sched_graph
*graph
)
5798 return graph
->n_row
< graph
->maxvar
&&
5799 graph
->n_total_row
== graph
->band_start
;
5802 /* Is "edge" a proximity edge with a non-empty dependence relation?
5804 static isl_bool
is_non_empty_proximity(struct isl_sched_edge
*edge
)
5806 if (!is_proximity(edge
))
5807 return isl_bool_false
;
5808 return isl_bool_not(isl_map_plain_is_empty(edge
->map
));
5811 /* Return the index of an edge in "graph" that can be used to merge
5812 * two clusters in "c".
5813 * Return graph->n_edge if no such edge can be found.
5814 * Return -1 on error.
5816 * In particular, return a proximity edge between two clusters
5817 * that is not marked "no_merge" and such that neither of the
5818 * two clusters has an incomplete, empty band.
5820 * If there are multiple such edges, then try and find the most
5821 * appropriate edge to use for merging. In particular, pick the edge
5822 * with the greatest weight. If there are multiple of those,
5823 * then pick one with the shortest distance between
5824 * the two cluster representatives.
5826 static int find_proximity(struct isl_sched_graph
*graph
,
5827 struct isl_clustering
*c
)
5829 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
5831 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5832 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5836 prox
= is_non_empty_proximity(edge
);
5843 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5844 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5846 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
5847 c
->scc_cluster
[edge
->src
->scc
];
5850 weight
= edge
->weight
;
5851 if (best
< graph
->n_edge
) {
5852 if (best_weight
> weight
)
5854 if (best_weight
== weight
&& best_dist
<= dist
)
5859 best_weight
= weight
;
5865 /* Internal data structure used in mark_merge_sccs.
5867 * "graph" is the dependence graph in which a strongly connected
5868 * component is constructed.
5869 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5870 * "src" and "dst" are the indices of the nodes that are being merged.
5872 struct isl_mark_merge_sccs_data
{
5873 struct isl_sched_graph
*graph
;
5879 /* Check whether the cluster containing node "i" depends on the cluster
5880 * containing node "j". If "i" and "j" belong to the same cluster,
5881 * then they are taken to depend on each other to ensure that
5882 * the resulting strongly connected component consists of complete
5883 * clusters. Furthermore, if "i" and "j" are the two nodes that
5884 * are being merged, then they are taken to depend on each other as well.
5885 * Otherwise, check if there is a (conditional) validity dependence
5886 * from node[j] to node[i], forcing node[i] to follow node[j].
5888 static isl_bool
cluster_follows(int i
, int j
, void *user
)
5890 struct isl_mark_merge_sccs_data
*data
= user
;
5891 struct isl_sched_graph
*graph
= data
->graph
;
5892 int *scc_cluster
= data
->scc_cluster
;
5894 if (data
->src
== i
&& data
->dst
== j
)
5895 return isl_bool_true
;
5896 if (data
->src
== j
&& data
->dst
== i
)
5897 return isl_bool_true
;
5898 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
5899 return isl_bool_true
;
5901 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5904 /* Mark all SCCs that belong to either of the two clusters in "c"
5905 * connected by the edge in "graph" with index "edge", or to any
5906 * of the intermediate clusters.
5907 * The marking is recorded in c->scc_in_merge.
5909 * The given edge has been selected for merging two clusters,
5910 * meaning that there is at least a proximity edge between the two nodes.
5911 * However, there may also be (indirect) validity dependences
5912 * between the two nodes. When merging the two clusters, all clusters
5913 * containing one or more of the intermediate nodes along the
5914 * indirect validity dependences need to be merged in as well.
5916 * First collect all such nodes by computing the strongly connected
5917 * component (SCC) containing the two nodes connected by the edge, where
5918 * the two nodes are considered to depend on each other to make
5919 * sure they end up in the same SCC. Similarly, each node is considered
5920 * to depend on every other node in the same cluster to ensure
5921 * that the SCC consists of complete clusters.
5923 * Then the original SCCs that contain any of these nodes are marked
5924 * in c->scc_in_merge.
5926 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5927 int edge
, struct isl_clustering
*c
)
5929 struct isl_mark_merge_sccs_data data
;
5930 struct isl_tarjan_graph
*g
;
5933 for (i
= 0; i
< c
->n
; ++i
)
5934 c
->scc_in_merge
[i
] = 0;
5937 data
.scc_cluster
= c
->scc_cluster
;
5938 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
5939 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
5941 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
5942 &cluster_follows
, &data
);
5948 isl_die(ctx
, isl_error_internal
,
5949 "expecting at least two nodes in component",
5951 if (g
->order
[--i
] != -1)
5952 isl_die(ctx
, isl_error_internal
,
5953 "expecting end of component marker", goto error
);
5955 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
5956 int scc
= graph
->node
[g
->order
[i
]].scc
;
5957 c
->scc_in_merge
[scc
] = 1;
5960 isl_tarjan_graph_free(g
);
5963 isl_tarjan_graph_free(g
);
5964 return isl_stat_error
;
5967 /* Construct the identifier "cluster_i".
5969 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
5973 snprintf(name
, sizeof(name
), "cluster_%d", i
);
5974 return isl_id_alloc(ctx
, name
, NULL
);
5977 /* Construct the space of the cluster with index "i" containing
5978 * the strongly connected component "scc".
5980 * In particular, construct a space called cluster_i with dimension equal
5981 * to the number of schedule rows in the current band of "scc".
5983 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
5989 nvar
= scc
->n_total_row
- scc
->band_start
;
5990 space
= isl_space_copy(scc
->node
[0].space
);
5991 space
= isl_space_params(space
);
5992 space
= isl_space_set_from_params(space
);
5993 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
5994 id
= cluster_id(isl_space_get_ctx(space
), i
);
5995 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
6000 /* Collect the domain of the graph for merging clusters.
6002 * In particular, for each cluster with first SCC "i", construct
6003 * a set in the space called cluster_i with dimension equal
6004 * to the number of schedule rows in the current band of the cluster.
6006 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
6007 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6011 isl_union_set
*domain
;
6013 space
= isl_space_params_alloc(ctx
, 0);
6014 domain
= isl_union_set_empty(space
);
6016 for (i
= 0; i
< graph
->scc
; ++i
) {
6019 if (!c
->scc_in_merge
[i
])
6021 if (c
->scc_cluster
[i
] != i
)
6023 space
= cluster_space(&c
->scc
[i
], i
);
6024 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
6030 /* Construct a map from the original instances to the corresponding
6031 * cluster instance in the current bands of the clusters in "c".
6033 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
6034 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6038 isl_union_map
*cluster_map
;
6040 space
= isl_space_params_alloc(ctx
, 0);
6041 cluster_map
= isl_union_map_empty(space
);
6042 for (i
= 0; i
< graph
->scc
; ++i
) {
6046 if (!c
->scc_in_merge
[i
])
6049 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
6050 start
= c
->scc
[i
].band_start
;
6051 n
= c
->scc
[i
].n_total_row
- start
;
6052 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
6055 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
6057 ma
= node_extract_partial_schedule_multi_aff(node
,
6059 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
6061 map
= isl_map_from_multi_aff(ma
);
6062 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
6070 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6071 * that are not isl_edge_condition or isl_edge_conditional_validity.
6073 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
6074 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6075 __isl_take isl_schedule_constraints
*sc
)
6077 enum isl_edge_type t
;
6082 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
6083 if (t
== isl_edge_condition
||
6084 t
== isl_edge_conditional_validity
)
6086 if (!is_type(edge
, t
))
6088 sc
= isl_schedule_constraints_add(sc
, t
,
6089 isl_union_map_copy(umap
));
6095 /* Add schedule constraints of types isl_edge_condition and
6096 * isl_edge_conditional_validity to "sc" by applying "umap" to
6097 * the domains of the wrapped relations in domain and range
6098 * of the corresponding tagged constraints of "edge".
6100 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
6101 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6102 __isl_take isl_schedule_constraints
*sc
)
6104 enum isl_edge_type t
;
6105 isl_union_map
*tagged
;
6107 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
6108 if (!is_type(edge
, t
))
6110 if (t
== isl_edge_condition
)
6111 tagged
= isl_union_map_copy(edge
->tagged_condition
);
6113 tagged
= isl_union_map_copy(edge
->tagged_validity
);
6114 tagged
= isl_union_map_zip(tagged
);
6115 tagged
= isl_union_map_apply_domain(tagged
,
6116 isl_union_map_copy(umap
));
6117 tagged
= isl_union_map_zip(tagged
);
6118 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
6126 /* Given a mapping "cluster_map" from the original instances to
6127 * the cluster instances, add schedule constraints on the clusters
6128 * to "sc" corresponding to the original constraints represented by "edge".
6130 * For non-tagged dependence constraints, the cluster constraints
6131 * are obtained by applying "cluster_map" to the edge->map.
6133 * For tagged dependence constraints, "cluster_map" needs to be applied
6134 * to the domains of the wrapped relations in domain and range
6135 * of the tagged dependence constraints. Pick out the mappings
6136 * from these domains from "cluster_map" and construct their product.
6137 * This mapping can then be applied to the pair of domains.
6139 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
6140 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
6141 __isl_take isl_schedule_constraints
*sc
)
6143 isl_union_map
*umap
;
6145 isl_union_set
*uset
;
6146 isl_union_map
*umap1
, *umap2
;
6151 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
6152 umap
= isl_union_map_apply_domain(umap
,
6153 isl_union_map_copy(cluster_map
));
6154 umap
= isl_union_map_apply_range(umap
,
6155 isl_union_map_copy(cluster_map
));
6156 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
6157 isl_union_map_free(umap
);
6159 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
6162 space
= isl_space_domain(isl_map_get_space(edge
->map
));
6163 uset
= isl_union_set_from_set(isl_set_universe(space
));
6164 umap1
= isl_union_map_copy(cluster_map
);
6165 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
6166 space
= isl_space_range(isl_map_get_space(edge
->map
));
6167 uset
= isl_union_set_from_set(isl_set_universe(space
));
6168 umap2
= isl_union_map_copy(cluster_map
);
6169 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
6170 umap
= isl_union_map_product(umap1
, umap2
);
6172 sc
= add_conditional_constraints(edge
, umap
, sc
);
6174 isl_union_map_free(umap
);
6178 /* Given a mapping "cluster_map" from the original instances to
6179 * the cluster instances, add schedule constraints on the clusters
6180 * to "sc" corresponding to all edges in "graph" between nodes that
6181 * belong to SCCs that are marked for merging in "scc_in_merge".
6183 static __isl_give isl_schedule_constraints
*collect_constraints(
6184 struct isl_sched_graph
*graph
, int *scc_in_merge
,
6185 __isl_keep isl_union_map
*cluster_map
,
6186 __isl_take isl_schedule_constraints
*sc
)
6190 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6191 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6193 if (!scc_in_merge
[edge
->src
->scc
])
6195 if (!scc_in_merge
[edge
->dst
->scc
])
6197 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
6203 /* Construct a dependence graph for scheduling clusters with respect
6204 * to each other and store the result in "merge_graph".
6205 * In particular, the nodes of the graph correspond to the schedule
6206 * dimensions of the current bands of those clusters that have been
6207 * marked for merging in "c".
6209 * First construct an isl_schedule_constraints object for this domain
6210 * by transforming the edges in "graph" to the domain.
6211 * Then initialize a dependence graph for scheduling from these
6214 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6215 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6217 isl_union_set
*domain
;
6218 isl_union_map
*cluster_map
;
6219 isl_schedule_constraints
*sc
;
6222 domain
= collect_domain(ctx
, graph
, c
);
6223 sc
= isl_schedule_constraints_on_domain(domain
);
6225 return isl_stat_error
;
6226 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
6227 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
6228 isl_union_map_free(cluster_map
);
6230 r
= graph_init(merge_graph
, sc
);
6232 isl_schedule_constraints_free(sc
);
6237 /* Compute the maximal number of remaining schedule rows that still need
6238 * to be computed for the nodes that belong to clusters with the maximal
6239 * dimension for the current band (i.e., the band that is to be merged).
6240 * Only clusters that are about to be merged are considered.
6241 * "maxvar" is the maximal dimension for the current band.
6242 * "c" contains information about the clusters.
6244 * Return the maximal number of remaining schedule rows or -1 on error.
6246 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
6252 for (i
= 0; i
< c
->n
; ++i
) {
6254 struct isl_sched_graph
*scc
;
6256 if (!c
->scc_in_merge
[i
])
6259 nvar
= scc
->n_total_row
- scc
->band_start
;
6262 for (j
= 0; j
< scc
->n
; ++j
) {
6263 struct isl_sched_node
*node
= &scc
->node
[j
];
6266 if (node_update_vmap(node
) < 0)
6268 slack
= node
->nvar
- node
->rank
;
6269 if (slack
> max_slack
)
6277 /* If there are any clusters where the dimension of the current band
6278 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6279 * if there are any nodes in such a cluster where the number
6280 * of remaining schedule rows that still need to be computed
6281 * is greater than "max_slack", then return the smallest current band
6282 * dimension of all these clusters. Otherwise return the original value
6283 * of "maxvar". Return -1 in case of any error.
6284 * Only clusters that are about to be merged are considered.
6285 * "c" contains information about the clusters.
6287 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
6288 struct isl_clustering
*c
)
6292 for (i
= 0; i
< c
->n
; ++i
) {
6294 struct isl_sched_graph
*scc
;
6296 if (!c
->scc_in_merge
[i
])
6299 nvar
= scc
->n_total_row
- scc
->band_start
;
6302 for (j
= 0; j
< scc
->n
; ++j
) {
6303 struct isl_sched_node
*node
= &scc
->node
[j
];
6306 if (node_update_vmap(node
) < 0)
6308 slack
= node
->nvar
- node
->rank
;
6309 if (slack
> max_slack
) {
6319 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6320 * that still need to be computed. In particular, if there is a node
6321 * in a cluster where the dimension of the current band is smaller
6322 * than merge_graph->maxvar, but the number of remaining schedule rows
6323 * is greater than that of any node in a cluster with the maximal
6324 * dimension for the current band (i.e., merge_graph->maxvar),
6325 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6326 * of those clusters. Without this adjustment, the total number of
6327 * schedule dimensions would be increased, resulting in a skewed view
6328 * of the number of coincident dimensions.
6329 * "c" contains information about the clusters.
6331 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6332 * then there is no point in attempting any merge since it will be rejected
6333 * anyway. Set merge_graph->maxvar to zero in such cases.
6335 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
6336 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
6338 int max_slack
, maxvar
;
6340 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
6342 return isl_stat_error
;
6343 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
6345 return isl_stat_error
;
6347 if (maxvar
< merge_graph
->maxvar
) {
6348 if (isl_options_get_schedule_maximize_band_depth(ctx
))
6349 merge_graph
->maxvar
= 0;
6351 merge_graph
->maxvar
= maxvar
;
6357 /* Return the number of coincident dimensions in the current band of "graph",
6358 * where the nodes of "graph" are assumed to be scheduled by a single band.
6360 static int get_n_coincident(struct isl_sched_graph
*graph
)
6364 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
6365 if (!graph
->node
[0].coincident
[i
])
6368 return i
- graph
->band_start
;
6371 /* Should the clusters be merged based on the cluster schedule
6372 * in the current (and only) band of "merge_graph", given that
6373 * coincidence should be maximized?
6375 * If the number of coincident schedule dimensions in the merged band
6376 * would be less than the maximal number of coincident schedule dimensions
6377 * in any of the merged clusters, then the clusters should not be merged.
6379 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
6380 struct isl_sched_graph
*merge_graph
)
6387 for (i
= 0; i
< c
->n
; ++i
) {
6388 if (!c
->scc_in_merge
[i
])
6390 n_coincident
= get_n_coincident(&c
->scc
[i
]);
6391 if (n_coincident
> max_coincident
)
6392 max_coincident
= n_coincident
;
6395 n_coincident
= get_n_coincident(merge_graph
);
6397 return n_coincident
>= max_coincident
;
6400 /* Return the transformation on "node" expressed by the current (and only)
6401 * band of "merge_graph" applied to the clusters in "c".
6403 * First find the representation of "node" in its SCC in "c" and
6404 * extract the transformation expressed by the current band.
6405 * Then extract the transformation applied by "merge_graph"
6406 * to the cluster to which this SCC belongs.
6407 * Combine the two to obtain the complete transformation on the node.
6409 * Note that the range of the first transformation is an anonymous space,
6410 * while the domain of the second is named "cluster_X". The range
6411 * of the former therefore needs to be adjusted before the two
6414 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
6415 struct isl_sched_node
*node
, struct isl_clustering
*c
,
6416 struct isl_sched_graph
*merge_graph
)
6418 struct isl_sched_node
*scc_node
, *cluster_node
;
6422 isl_multi_aff
*ma
, *ma2
;
6424 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
6425 if (scc_node
&& !is_node(&c
->scc
[node
->scc
], scc_node
))
6426 isl_die(ctx
, isl_error_internal
, "unable to find node",
6428 start
= c
->scc
[node
->scc
].band_start
;
6429 n
= c
->scc
[node
->scc
].n_total_row
- start
;
6430 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
6431 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
6432 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
6433 if (cluster_node
&& !is_node(merge_graph
, cluster_node
))
6434 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
6435 space
= isl_space_free(space
));
6436 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
6437 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
6438 isl_space_free(space
);
6439 n
= merge_graph
->n_total_row
;
6440 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
6441 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
6443 return isl_map_from_multi_aff(ma
);
6446 /* Give a set of distances "set", are they bounded by a small constant
6447 * in direction "pos"?
6448 * In practice, check if they are bounded by 2 by checking that there
6449 * are no elements with a value greater than or equal to 3 or
6450 * smaller than or equal to -3.
6452 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
6458 return isl_bool_error
;
6460 test
= isl_set_copy(set
);
6461 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
6462 bounded
= isl_set_is_empty(test
);
6465 if (bounded
< 0 || !bounded
)
6468 test
= isl_set_copy(set
);
6469 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
6470 bounded
= isl_set_is_empty(test
);
6476 /* Does the set "set" have a fixed (but possible parametric) value
6477 * at dimension "pos"?
6479 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
6485 return isl_bool_error
;
6486 set
= isl_set_copy(set
);
6487 n
= isl_set_dim(set
, isl_dim_set
);
6488 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
6489 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
6490 single
= isl_set_is_singleton(set
);
6496 /* Does "map" have a fixed (but possible parametric) value
6497 * at dimension "pos" of either its domain or its range?
6499 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
6504 set
= isl_map_domain(isl_map_copy(map
));
6505 single
= has_single_value(set
, pos
);
6508 if (single
< 0 || single
)
6511 set
= isl_map_range(isl_map_copy(map
));
6512 single
= has_single_value(set
, pos
);
6518 /* Does the edge "edge" from "graph" have bounded dependence distances
6519 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6521 * Extract the complete transformations of the source and destination
6522 * nodes of the edge, apply them to the edge constraints and
6523 * compute the differences. Finally, check if these differences are bounded
6524 * in each direction.
6526 * If the dimension of the band is greater than the number of
6527 * dimensions that can be expected to be optimized by the edge
6528 * (based on its weight), then also allow the differences to be unbounded
6529 * in the remaining dimensions, but only if either the source or
6530 * the destination has a fixed value in that direction.
6531 * This allows a statement that produces values that are used by
6532 * several instances of another statement to be merged with that
6534 * However, merging such clusters will introduce an inherently
6535 * large proximity distance inside the merged cluster, meaning
6536 * that proximity distances will no longer be optimized in
6537 * subsequent merges. These merges are therefore only allowed
6538 * after all other possible merges have been tried.
6539 * The first time such a merge is encountered, the weight of the edge
6540 * is replaced by a negative weight. The second time (i.e., after
6541 * all merges over edges with a non-negative weight have been tried),
6542 * the merge is allowed.
6544 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
6545 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6546 struct isl_sched_graph
*merge_graph
)
6553 map
= isl_map_copy(edge
->map
);
6554 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
6555 map
= isl_map_apply_domain(map
, t
);
6556 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
6557 map
= isl_map_apply_range(map
, t
);
6558 dist
= isl_map_deltas(isl_map_copy(map
));
6560 bounded
= isl_bool_true
;
6561 n
= isl_set_dim(dist
, isl_dim_set
);
6562 n_slack
= n
- edge
->weight
;
6563 if (edge
->weight
< 0)
6564 n_slack
-= graph
->max_weight
+ 1;
6565 for (i
= 0; i
< n
; ++i
) {
6566 isl_bool bounded_i
, singular_i
;
6568 bounded_i
= distance_is_bounded(dist
, i
);
6573 if (edge
->weight
>= 0)
6574 bounded
= isl_bool_false
;
6578 singular_i
= has_singular_src_or_dst(map
, i
);
6583 bounded
= isl_bool_false
;
6586 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
6587 edge
->weight
-= graph
->max_weight
+ 1;
6595 return isl_bool_error
;
6598 /* Should the clusters be merged based on the cluster schedule
6599 * in the current (and only) band of "merge_graph"?
6600 * "graph" is the original dependence graph, while "c" records
6601 * which SCCs are involved in the latest merge.
6603 * In particular, is there at least one proximity constraint
6604 * that is optimized by the merge?
6606 * A proximity constraint is considered to be optimized
6607 * if the dependence distances are small.
6609 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
6610 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6611 struct isl_sched_graph
*merge_graph
)
6615 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6616 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6619 if (!is_proximity(edge
))
6621 if (!c
->scc_in_merge
[edge
->src
->scc
])
6623 if (!c
->scc_in_merge
[edge
->dst
->scc
])
6625 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6626 c
->scc_cluster
[edge
->src
->scc
])
6628 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
6630 if (bounded
< 0 || bounded
)
6634 return isl_bool_false
;
6637 /* Should the clusters be merged based on the cluster schedule
6638 * in the current (and only) band of "merge_graph"?
6639 * "graph" is the original dependence graph, while "c" records
6640 * which SCCs are involved in the latest merge.
6642 * If the current band is empty, then the clusters should not be merged.
6644 * If the band depth should be maximized and the merge schedule
6645 * is incomplete (meaning that the dimension of some of the schedule
6646 * bands in the original schedule will be reduced), then the clusters
6647 * should not be merged.
6649 * If the schedule_maximize_coincidence option is set, then check that
6650 * the number of coincident schedule dimensions is not reduced.
6652 * Finally, only allow the merge if at least one proximity
6653 * constraint is optimized.
6655 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6656 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6658 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
6659 return isl_bool_false
;
6661 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
6662 merge_graph
->n_total_row
< merge_graph
->maxvar
)
6663 return isl_bool_false
;
6665 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
6668 ok
= ok_to_merge_coincident(c
, merge_graph
);
6673 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
6676 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6677 * of the schedule in "node" and return the result.
6679 * That is, essentially compute
6681 * T * N(first:first+n-1)
6683 * taking into account the constant term and the parameter coefficients
6686 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
6687 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
6692 int n_row
, n_col
, n_param
, n_var
;
6694 n_param
= node
->nparam
;
6696 n_row
= isl_mat_rows(t_node
->sched
);
6697 n_col
= isl_mat_cols(node
->sched
);
6698 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
6701 for (i
= 0; i
< n_row
; ++i
) {
6702 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
6703 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
6704 for (j
= 0; j
< n
; ++j
)
6705 isl_seq_addmul(t
->row
[i
],
6706 t_node
->sched
->row
[i
][1 + n_param
+ j
],
6707 node
->sched
->row
[first
+ j
],
6708 1 + n_param
+ n_var
);
6713 /* Apply the cluster schedule in "t_node" to the current band
6714 * schedule of the nodes in "graph".
6716 * In particular, replace the rows starting at band_start
6717 * by the result of applying the cluster schedule in "t_node"
6718 * to the original rows.
6720 * The coincidence of the schedule is determined by the coincidence
6721 * of the cluster schedule.
6723 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6724 struct isl_sched_node
*t_node
)
6730 start
= graph
->band_start
;
6731 n
= graph
->n_total_row
- start
;
6733 n_new
= isl_mat_rows(t_node
->sched
);
6734 for (i
= 0; i
< graph
->n
; ++i
) {
6735 struct isl_sched_node
*node
= &graph
->node
[i
];
6738 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
6739 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
6740 node
->sched
= isl_mat_concat(node
->sched
, t
);
6741 node
->sched_map
= isl_map_free(node
->sched_map
);
6743 return isl_stat_error
;
6744 for (j
= 0; j
< n_new
; ++j
)
6745 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
6747 graph
->n_total_row
-= n
;
6749 graph
->n_total_row
+= n_new
;
6750 graph
->n_row
+= n_new
;
6755 /* Merge the clusters marked for merging in "c" into a single
6756 * cluster using the cluster schedule in the current band of "merge_graph".
6757 * The representative SCC for the new cluster is the SCC with
6758 * the smallest index.
6760 * The current band schedule of each SCC in the new cluster is obtained
6761 * by applying the schedule of the corresponding original cluster
6762 * to the original band schedule.
6763 * All SCCs in the new cluster have the same number of schedule rows.
6765 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
6766 struct isl_sched_graph
*merge_graph
)
6772 for (i
= 0; i
< c
->n
; ++i
) {
6773 struct isl_sched_node
*node
;
6775 if (!c
->scc_in_merge
[i
])
6779 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
6780 node
= graph_find_node(ctx
, merge_graph
, space
);
6781 isl_space_free(space
);
6783 return isl_stat_error
;
6784 if (!is_node(merge_graph
, node
))
6785 isl_die(ctx
, isl_error_internal
,
6786 "unable to find cluster",
6787 return isl_stat_error
);
6788 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
6789 return isl_stat_error
;
6790 c
->scc_cluster
[i
] = cluster
;
6796 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6797 * by scheduling the current cluster bands with respect to each other.
6799 * Construct a dependence graph with a space for each cluster and
6800 * with the coordinates of each space corresponding to the schedule
6801 * dimensions of the current band of that cluster.
6802 * Construct a cluster schedule in this cluster dependence graph and
6803 * apply it to the current cluster bands if it is applicable
6804 * according to ok_to_merge.
6806 * If the number of remaining schedule dimensions in a cluster
6807 * with a non-maximal current schedule dimension is greater than
6808 * the number of remaining schedule dimensions in clusters
6809 * with a maximal current schedule dimension, then restrict
6810 * the number of rows to be computed in the cluster schedule
6811 * to the minimal such non-maximal current schedule dimension.
6812 * Do this by adjusting merge_graph.maxvar.
6814 * Return isl_bool_true if the clusters have effectively been merged
6815 * into a single cluster.
6817 * Note that since the standard scheduling algorithm minimizes the maximal
6818 * distance over proximity constraints, the proximity constraints between
6819 * the merged clusters may not be optimized any further than what is
6820 * sufficient to bring the distances within the limits of the internal
6821 * proximity constraints inside the individual clusters.
6822 * It may therefore make sense to perform an additional translation step
6823 * to bring the clusters closer to each other, while maintaining
6824 * the linear part of the merging schedule found using the standard
6825 * scheduling algorithm.
6827 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6828 struct isl_clustering
*c
)
6830 struct isl_sched_graph merge_graph
= { 0 };
6833 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
6836 if (compute_maxvar(&merge_graph
) < 0)
6838 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
6840 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
6842 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
6843 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
6846 graph_free(ctx
, &merge_graph
);
6849 graph_free(ctx
, &merge_graph
);
6850 return isl_bool_error
;
6853 /* Is there any edge marked "no_merge" between two SCCs that are
6854 * about to be merged (i.e., that are set in "scc_in_merge")?
6855 * "merge_edge" is the proximity edge along which the clusters of SCCs
6856 * are going to be merged.
6858 * If there is any edge between two SCCs with a negative weight,
6859 * while the weight of "merge_edge" is non-negative, then this
6860 * means that the edge was postponed. "merge_edge" should then
6861 * also be postponed since merging along the edge with negative weight should
6862 * be postponed until all edges with non-negative weight have been tried.
6863 * Replace the weight of "merge_edge" by a negative weight as well and
6864 * tell the caller not to attempt a merge.
6866 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
6867 struct isl_sched_edge
*merge_edge
)
6871 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6872 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6874 if (!scc_in_merge
[edge
->src
->scc
])
6876 if (!scc_in_merge
[edge
->dst
->scc
])
6880 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
6881 merge_edge
->weight
-= graph
->max_weight
+ 1;
6889 /* Merge the two clusters in "c" connected by the edge in "graph"
6890 * with index "edge" into a single cluster.
6891 * If it turns out to be impossible to merge these two clusters,
6892 * then mark the edge as "no_merge" such that it will not be
6895 * First mark all SCCs that need to be merged. This includes the SCCs
6896 * in the two clusters, but it may also include the SCCs
6897 * of intermediate clusters.
6898 * If there is already a no_merge edge between any pair of such SCCs,
6899 * then simply mark the current edge as no_merge as well.
6900 * Likewise, if any of those edges was postponed by has_bounded_distances,
6901 * then postpone the current edge as well.
6902 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6903 * if the clusters did not end up getting merged, unless the non-merge
6904 * is due to the fact that the edge was postponed. This postponement
6905 * can be recognized by a change in weight (from non-negative to negative).
6907 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
6908 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
6911 int edge_weight
= graph
->edge
[edge
].weight
;
6913 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
6914 return isl_stat_error
;
6916 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
6917 merged
= isl_bool_false
;
6919 merged
= try_merge(ctx
, graph
, c
);
6921 return isl_stat_error
;
6922 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
6923 graph
->edge
[edge
].no_merge
= 1;
6928 /* Does "node" belong to the cluster identified by "cluster"?
6930 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
6932 return node
->cluster
== cluster
;
6935 /* Does "edge" connect two nodes belonging to the cluster
6936 * identified by "cluster"?
6938 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
6940 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
6943 /* Swap the schedule of "node1" and "node2".
6944 * Both nodes have been derived from the same node in a common parent graph.
6945 * Since the "coincident" field is shared with that node
6946 * in the parent graph, there is no need to also swap this field.
6948 static void swap_sched(struct isl_sched_node
*node1
,
6949 struct isl_sched_node
*node2
)
6954 sched
= node1
->sched
;
6955 node1
->sched
= node2
->sched
;
6956 node2
->sched
= sched
;
6958 sched_map
= node1
->sched_map
;
6959 node1
->sched_map
= node2
->sched_map
;
6960 node2
->sched_map
= sched_map
;
6963 /* Copy the current band schedule from the SCCs that form the cluster
6964 * with index "pos" to the actual cluster at position "pos".
6965 * By construction, the index of the first SCC that belongs to the cluster
6968 * The order of the nodes inside both the SCCs and the cluster
6969 * is assumed to be same as the order in the original "graph".
6971 * Since the SCC graphs will no longer be used after this function,
6972 * the schedules are actually swapped rather than copied.
6974 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
6975 struct isl_clustering
*c
, int pos
)
6979 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
6980 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
6981 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
6983 for (i
= 0; i
< graph
->n
; ++i
) {
6987 if (graph
->node
[i
].cluster
!= pos
)
6989 s
= graph
->node
[i
].scc
;
6990 k
= c
->scc_node
[s
]++;
6991 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
6992 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
6993 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
7000 /* Is there a (conditional) validity dependence from node[j] to node[i],
7001 * forcing node[i] to follow node[j] or do the nodes belong to the same
7004 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
7006 struct isl_sched_graph
*graph
= user
;
7008 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
7009 return isl_bool_true
;
7010 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
7013 /* Extract the merged clusters of SCCs in "graph", sort them, and
7014 * store them in c->clusters. Update c->scc_cluster accordingly.
7016 * First keep track of the cluster containing the SCC to which a node
7017 * belongs in the node itself.
7018 * Then extract the clusters into c->clusters, copying the current
7019 * band schedule from the SCCs that belong to the cluster.
7020 * Do this only once per cluster.
7022 * Finally, topologically sort the clusters and update c->scc_cluster
7023 * to match the new scc numbering. While the SCCs were originally
7024 * sorted already, some SCCs that depend on some other SCCs may
7025 * have been merged with SCCs that appear before these other SCCs.
7026 * A reordering may therefore be required.
7028 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
7029 struct isl_clustering
*c
)
7033 for (i
= 0; i
< graph
->n
; ++i
)
7034 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
7036 for (i
= 0; i
< graph
->scc
; ++i
) {
7037 if (c
->scc_cluster
[i
] != i
)
7039 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
7040 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
7041 return isl_stat_error
;
7042 c
->cluster
[i
].src_scc
= -1;
7043 c
->cluster
[i
].dst_scc
= -1;
7044 if (copy_partial(graph
, c
, i
) < 0)
7045 return isl_stat_error
;
7048 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
7049 return isl_stat_error
;
7050 for (i
= 0; i
< graph
->n
; ++i
)
7051 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
7056 /* Compute weights on the proximity edges of "graph" that can
7057 * be used by find_proximity to find the most appropriate
7058 * proximity edge to use to merge two clusters in "c".
7059 * The weights are also used by has_bounded_distances to determine
7060 * whether the merge should be allowed.
7061 * Store the maximum of the computed weights in graph->max_weight.
7063 * The computed weight is a measure for the number of remaining schedule
7064 * dimensions that can still be completely aligned.
7065 * In particular, compute the number of equalities between
7066 * input dimensions and output dimensions in the proximity constraints.
7067 * The directions that are already handled by outer schedule bands
7068 * are projected out prior to determining this number.
7070 * Edges that will never be considered by find_proximity are ignored.
7072 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
7073 struct isl_clustering
*c
)
7077 graph
->max_weight
= 0;
7079 for (i
= 0; i
< graph
->n_edge
; ++i
) {
7080 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
7081 struct isl_sched_node
*src
= edge
->src
;
7082 struct isl_sched_node
*dst
= edge
->dst
;
7083 isl_basic_map
*hull
;
7087 prox
= is_non_empty_proximity(edge
);
7089 return isl_stat_error
;
7092 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
7093 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
7095 if (c
->scc_cluster
[edge
->dst
->scc
] ==
7096 c
->scc_cluster
[edge
->src
->scc
])
7099 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
7100 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
7101 isl_mat_copy(src
->vmap
));
7102 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
7103 isl_mat_copy(dst
->vmap
));
7104 hull
= isl_basic_map_project_out(hull
,
7105 isl_dim_in
, 0, src
->rank
);
7106 hull
= isl_basic_map_project_out(hull
,
7107 isl_dim_out
, 0, dst
->rank
);
7108 hull
= isl_basic_map_remove_divs(hull
);
7109 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
7110 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
7111 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7112 isl_dim_in
, 0, n_in
);
7113 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7114 isl_dim_out
, 0, n_out
);
7116 return isl_stat_error
;
7117 edge
->weight
= isl_basic_map_n_equality(hull
);
7118 isl_basic_map_free(hull
);
7120 if (edge
->weight
> graph
->max_weight
)
7121 graph
->max_weight
= edge
->weight
;
7127 /* Call compute_schedule_finish_band on each of the clusters in "c"
7128 * in their topological order. This order is determined by the scc
7129 * fields of the nodes in "graph".
7130 * Combine the results in a sequence expressing the topological order.
7132 * If there is only one cluster left, then there is no need to introduce
7133 * a sequence node. Also, in this case, the cluster necessarily contains
7134 * the SCC at position 0 in the original graph and is therefore also
7135 * stored in the first cluster of "c".
7137 static __isl_give isl_schedule_node
*finish_bands_clustering(
7138 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7139 struct isl_clustering
*c
)
7143 isl_union_set_list
*filters
;
7145 if (graph
->scc
== 1)
7146 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
7148 ctx
= isl_schedule_node_get_ctx(node
);
7150 filters
= extract_sccs(ctx
, graph
);
7151 node
= isl_schedule_node_insert_sequence(node
, filters
);
7153 for (i
= 0; i
< graph
->scc
; ++i
) {
7154 int j
= c
->scc_cluster
[i
];
7155 node
= isl_schedule_node_child(node
, i
);
7156 node
= isl_schedule_node_child(node
, 0);
7157 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
7158 node
= isl_schedule_node_parent(node
);
7159 node
= isl_schedule_node_parent(node
);
7165 /* Compute a schedule for a connected dependence graph by first considering
7166 * each strongly connected component (SCC) in the graph separately and then
7167 * incrementally combining them into clusters.
7168 * Return the updated schedule node.
7170 * Initially, each cluster consists of a single SCC, each with its
7171 * own band schedule. The algorithm then tries to merge pairs
7172 * of clusters along a proximity edge until no more suitable
7173 * proximity edges can be found. During this merging, the schedule
7174 * is maintained in the individual SCCs.
7175 * After the merging is completed, the full resulting clusters
7176 * are extracted and in finish_bands_clustering,
7177 * compute_schedule_finish_band is called on each of them to integrate
7178 * the band into "node" and to continue the computation.
7180 * compute_weights initializes the weights that are used by find_proximity.
7182 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
7183 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7186 struct isl_clustering c
;
7189 ctx
= isl_schedule_node_get_ctx(node
);
7191 if (clustering_init(ctx
, &c
, graph
) < 0)
7194 if (compute_weights(graph
, &c
) < 0)
7198 i
= find_proximity(graph
, &c
);
7201 if (i
>= graph
->n_edge
)
7203 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
7207 if (extract_clusters(ctx
, graph
, &c
) < 0)
7210 node
= finish_bands_clustering(node
, graph
, &c
);
7212 clustering_free(ctx
, &c
);
7215 clustering_free(ctx
, &c
);
7216 return isl_schedule_node_free(node
);
7219 /* Compute a schedule for a connected dependence graph and return
7220 * the updated schedule node.
7222 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7223 * as many validity dependences as possible. When all validity dependences
7224 * are satisfied we extend the schedule to a full-dimensional schedule.
7226 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7227 * depending on whether the user has selected the option to try and
7228 * compute a schedule for the entire (weakly connected) component first.
7229 * If there is only a single strongly connected component (SCC), then
7230 * there is no point in trying to combine SCCs
7231 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7232 * is called instead.
7234 static __isl_give isl_schedule_node
*compute_schedule_wcc(
7235 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7242 ctx
= isl_schedule_node_get_ctx(node
);
7243 if (detect_sccs(ctx
, graph
) < 0)
7244 return isl_schedule_node_free(node
);
7246 if (compute_maxvar(graph
) < 0)
7247 return isl_schedule_node_free(node
);
7249 if (need_feautrier_step(ctx
, graph
))
7250 return compute_schedule_wcc_feautrier(node
, graph
);
7252 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
7253 return compute_schedule_wcc_whole(node
, graph
);
7255 return compute_schedule_wcc_clustering(node
, graph
);
7258 /* Compute a schedule for each group of nodes identified by node->scc
7259 * separately and then combine them in a sequence node (or as set node
7260 * if graph->weak is set) inserted at position "node" of the schedule tree.
7261 * Return the updated schedule node.
7263 * If "wcc" is set then each of the groups belongs to a single
7264 * weakly connected component in the dependence graph so that
7265 * there is no need for compute_sub_schedule to look for weakly
7266 * connected components.
7268 * If a set node would be introduced and if the number of components
7269 * is equal to the number of nodes, then check if the schedule
7270 * is already complete. If so, a redundant set node would be introduced
7271 * (without any further descendants) stating that the statements
7272 * can be executed in arbitrary order, which is also expressed
7273 * by the absence of any node. Refrain from inserting any nodes
7274 * in this case and simply return.
7276 static __isl_give isl_schedule_node
*compute_component_schedule(
7277 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7282 isl_union_set_list
*filters
;
7287 if (graph
->weak
&& graph
->scc
== graph
->n
) {
7288 if (compute_maxvar(graph
) < 0)
7289 return isl_schedule_node_free(node
);
7290 if (graph
->n_row
>= graph
->maxvar
)
7294 ctx
= isl_schedule_node_get_ctx(node
);
7295 filters
= extract_sccs(ctx
, graph
);
7297 node
= isl_schedule_node_insert_set(node
, filters
);
7299 node
= isl_schedule_node_insert_sequence(node
, filters
);
7301 for (component
= 0; component
< graph
->scc
; ++component
) {
7302 node
= isl_schedule_node_child(node
, component
);
7303 node
= isl_schedule_node_child(node
, 0);
7304 node
= compute_sub_schedule(node
, ctx
, graph
,
7306 &edge_scc_exactly
, component
, wcc
);
7307 node
= isl_schedule_node_parent(node
);
7308 node
= isl_schedule_node_parent(node
);
7314 /* Compute a schedule for the given dependence graph and insert it at "node".
7315 * Return the updated schedule node.
7317 * We first check if the graph is connected (through validity and conditional
7318 * validity dependences) and, if not, compute a schedule
7319 * for each component separately.
7320 * If the schedule_serialize_sccs option is set, then we check for strongly
7321 * connected components instead and compute a separate schedule for
7322 * each such strongly connected component.
7324 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
7325 struct isl_sched_graph
*graph
)
7332 ctx
= isl_schedule_node_get_ctx(node
);
7333 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
7334 if (detect_sccs(ctx
, graph
) < 0)
7335 return isl_schedule_node_free(node
);
7337 if (detect_wccs(ctx
, graph
) < 0)
7338 return isl_schedule_node_free(node
);
7342 return compute_component_schedule(node
, graph
, 1);
7344 return compute_schedule_wcc(node
, graph
);
7347 /* Compute a schedule on sc->domain that respects the given schedule
7350 * In particular, the schedule respects all the validity dependences.
7351 * If the default isl scheduling algorithm is used, it tries to minimize
7352 * the dependence distances over the proximity dependences.
7353 * If Feautrier's scheduling algorithm is used, the proximity dependence
7354 * distances are only minimized during the extension to a full-dimensional
7357 * If there are any condition and conditional validity dependences,
7358 * then the conditional validity dependences may be violated inside
7359 * a tilable band, provided they have no adjacent non-local
7360 * condition dependences.
7362 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
7363 __isl_take isl_schedule_constraints
*sc
)
7365 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
7366 struct isl_sched_graph graph
= { 0 };
7367 isl_schedule
*sched
;
7368 isl_schedule_node
*node
;
7369 isl_union_set
*domain
;
7371 sc
= isl_schedule_constraints_align_params(sc
);
7373 domain
= isl_schedule_constraints_get_domain(sc
);
7374 if (isl_union_set_n_set(domain
) == 0) {
7375 isl_schedule_constraints_free(sc
);
7376 return isl_schedule_from_domain(domain
);
7379 if (graph_init(&graph
, sc
) < 0)
7380 domain
= isl_union_set_free(domain
);
7382 node
= isl_schedule_node_from_domain(domain
);
7383 node
= isl_schedule_node_child(node
, 0);
7385 node
= compute_schedule(node
, &graph
);
7386 sched
= isl_schedule_node_get_schedule(node
);
7387 isl_schedule_node_free(node
);
7389 graph_free(ctx
, &graph
);
7390 isl_schedule_constraints_free(sc
);
7395 /* Compute a schedule for the given union of domains that respects
7396 * all the validity dependences and minimizes
7397 * the dependence distances over the proximity dependences.
7399 * This function is kept for backward compatibility.
7401 __isl_give isl_schedule
*isl_union_set_compute_schedule(
7402 __isl_take isl_union_set
*domain
,
7403 __isl_take isl_union_map
*validity
,
7404 __isl_take isl_union_map
*proximity
)
7406 isl_schedule_constraints
*sc
;
7408 sc
= isl_schedule_constraints_on_domain(domain
);
7409 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
7410 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
7412 return isl_schedule_constraints_compute_schedule(sc
);